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Abstract

Image quality assessment (IQA) algorithms aim to simulate human judgment

of visual quality on an image. These algorithms are essential components of

every multimedia pipeline. IQA is divided into full reference(FR) or no refer-

ence (NR) depending on the presence or absence of a pristine image while the

image is being judged. Traditional FR and NR-IQA algorithms show high per-

formance on conventional images. However, they fail to generate good results

on newer modalities of multimedia data like HDR images and 3D textured

meshes. Furthermore, these IQA algorithms limit themselves to low-level fea-

tures and do not incorporate the effect of image content on human judgment

of visual quality. In this thesis, we explore and extend the current IQA capa-

bilities to address these issues.

We focus on adaptation of IQA to newer modalities of multimedia content,

incorporation of scene level knowledge and integration of low-level features.

The goal of this thesis is to advance the IQA algorithms to perform on a larger

range of multimedia content by accounting for all available data features and

applying latest Machine Learning technologies.

The new modalities of multimedia content that we explore in this thesis are

High Dynamic Range (HDR) images, and 3D textured meshes (tex-meshes).

HDR images pose challenges to conventional IQA methods because of the

much larger range of perceptual effects shown by them. This leads to the fail-

ure of statistics-based approaches followed by NR-IQA techniques. To account

for perceptual effects of HDR, we designed machine learning models that can
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determine human visual sensitivity from subjective image quality data, with-

out going through psycho-visual experiments. Using this model, we developed

a blind noise estimation and quality assessment algorithm for HDR images.

Next, we addressed the lack of research into the perceptual effects of texture

in tex-meshes. We performed subjective experiments to model the effects of

texture compression and incorporated our results into existing research into

3D mesh quality assessment.

Furthermore, we design two algorithms that show better correlation to

human judgments on quality compared to the existing FR-IQA. The first al-

gorithm is a content-specific IQA performance enhancer, which can be applied

to any IQA. The second algorithm is a new full reference algorithm that inte-

grates more low-level features and color elements to improve IQA accuracy.

Finally, we performed a case study that analyzed the changes in gaze be-

havior of humans with the level of familiarity of task. We show statistically

significant differences in gaze behavior dependent on familiarity.

We validate all of our proposed algorithms by comparing the predictions of

our algorithms with human opinions. We observed a high degree of correlation

between the human and algorithms scores.
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Chapter 1

Introduction

An ever increasing focus on multimedia content creation in the modern world

has led to the rapid development of high quality 2D and 3D imaging de-

vices. The multimedia processing pipeline has various operations, which in-

clude content acquisition, storage, compression, transmission and visualiza-

tion. Some practical examples of these operations are JPEG compression,

contrast changes, color adjustments for images etc. In order to optimize the

limited resources such as time and bandwidth, these processing operations can

introduce visual artifacts to the images. Blurring or lose of contrast due to

image compression is a common example; these changes usually reduce the

visual quality of the content.

An objective measure of the visual quality change is essential in under-

standing and fine tuning of the various processing algorithms and for com-

parisons of the final results of the processing operations. Since the target

audience of any multimedia system is the human visual system (HVS), the

method used to evaluate these processing operations is through a user study,

with human subjects scoring the changes on a fixed scale using a wide variety

of subjective experiments. The test subjects rate the images on an intuitive

scale like excellent, best, good and worst. These scales are then transferred

to numerical values after statistical normalization operations [37], [58]. These

numerical values indicate the perceived quality of the images by the HVS.

Broadly speaking, experimental methods to measure the quality of a con-

tent can be classified into the categories of full reference and no-reference/reduced
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Additionally, areas of research into IQA have ignored certain aspects of

images like the color and content. These areas also need to be explored to

model a comprehensive method of assessing visual quality.

In this thesis, we focus on three aspects of assessing visual quality of images,

namely Modalities (Dynamic range - Chapter 3 , 3D - Chapter 8), Content

(Chapter 4) and Low level color feature integration (Visibility - Chapter 4,

Feature integration - Chapter 6, Expert gaze analysis -7). Within these sub-

fields, we investigate full reference methods for color and content, no reference

methods for dynamic range and texture compression in 3D textured meshes.

We choose these topics of study to bridge the gap in these sub-fields of IQA.

1.2 Motivation

Perceptual Quality assessment is a heavily researched field with a lot of im-

provements over the years. However, there are some aspects of modeling visual

quality that have not yet been adequately studied. In this thesis, we focus on

three aspects of perceptual quality assessment: Dynamic range, Content de-

pendency, and low level feature integration.

1.2.1 Dynamic Range

High dynamic range (HDR) imaging can capture a much larger range of lu-

minance compared to conventional images. This larger range of luminance

is achieved by increasing the number of bits used to store the image pixels.

Typically HDR image content is stored using 16-32 bit floating point values

per pixel as opposed to a conventional image file that uses 8 bits per integer

for a pixel. HDR imaging technology incorporates techniques of capturing,

processing and displaying HDR content. This technology is becoming main-

stream in the consumer market and is reaching larger number of people as

a result of investments in the technology made by the camera and television

manufacturers. IQA of the commonly seen image distortions on HDR images

is a problem of great academic and industrial interest. Existing IQA metrics

developed for LDR fail to provide adequate performance in measurement of
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visual quality on HDR data. Hence, there is a need for high performance auto-

mated systems that are capable of IQA. Though there are some stellar works

on full reference high dynamic range images, at the time of writing, there is

no published work on NR-IQA for HDR images that have been evaluated by

users on HDR compatible screens.

1.2.2 Content dependency

In the HVS, the quality evaluation process is carried out at different levels

starting from the pixel-level to the scene or content level. An explanation

of how high-level scene information affects low-level processing can be found

in [34]. The authors showed that low-level feature maps can be preset at a

higher-level and influence in a top-down manner. In other words, viewer ex-

pectation can have a certain degree of influence when interpreting low-level

features. Thus, depending on the viewer’s expectation of the scene, his/her

visual quality score maybe subject to change. Another major experimental

evidence was provided by [101]. The study analyzed influence of scene cate-

gories on image visual annoyance. Specifically they selected: indoor, outdoor

natural, and outdoor man-made. The study reported statistically significant

results showing that a scene category had an influence on the degree of visual

annoyance perceived by the viewer. Specifically, they found that people are

more critical to indoor images as compared with outdoor images, especially

when comparing with outdoor natural scenes. Another observation in the ex-

periment was the difference in quality assessment, which seems dependent on

scene category. Though there are significant evidence of influence of content

on visual quality, we found inadequate research on modeling this influence and

incorporating this into the visual quality assessment algorithms.

1.2.3 Low-level color feature integration

Almost all of the existing image quality metrics focus on the luminance of the

pixel as a measure of quality and ignore the color channels completely. How-

ever, color is a significant part of the visual perception process and needs to

be considered while evaluating the perceived quality of images. It is believed
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that sensitivity of the HVS to scene content is derived from various stimulus

modalities, including intensity, color, spatial and temporal (for dynamic scene

only) features. This is consistent with what we noticed from our datasets,

where brightly colored images display a different perceptual sensitivity com-

pared to the less vibrant images. Additionally, the expertise of the user could

also have an influence of the image analysis process. Here also research is lack-

ing. The effect of expertise can be studied by analyzing the eye gaze behavior

of an expert and a novice. We can gain additional insights by the statistical

analysis of the data collected. Hence there is room for integration of color into

IQA metrics.

1.2.4 Quality of textured 3D mesh

With the advent of VR and computer games, 3D graphics is becoming more

relevant. Textured polygonal meshes (referred to as tex-meshes in this thesis)

are an integral part of 3D graphics. Most tex-mesh representations make use of

uncompressed texture formats for the sake of preserving quality. Hence, most

applications have large texture sizes consuming large file size and bandwidth

during transmission. A good analysis of what texture resolution to use vs.

quality of the mesh given a limited bandwidth is given in [87]. The study,

however, did not look into the impact of texture compression.

JPEG is one of the most popular image compression methods to date and

is widely used. Most applications involving subjective judgments on quality

use a fixed compression ratio that is heuristically decided. For JPEG, the

compression ratio is decided by the Q factor used in the compression of the

images. There are however no guidelines on how to select this Q factor. Deter-

mining the ideal compression could be greatly beneficial towards transmission

and optimization of 3D models. We found no other studies exploring the ef-

fect of texture compression on 3D meshes though there are a lot of unsolved

research problems in this area.
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1.3 Contributions

The following are the contributions of the thesis.

• Introduction of a new method to learn perceptual visibility from Image

Quality datasets. As opposed to the existing methods of perceptual sen-

sitivity measurements with psychovisual experiments, we provide a data

driven solution to this problem. We use a neural network based archi-

tecture to derive perceptual sensitivity measure from a real world image

quality database. Specifically, we define a new term called ’Perceptual

Resistance’ of a patch in an image. This represents how difficult it is for

a viewer to perceive the average visual error present in the block. This

can be combined with any error detection based method to provide the

perceived quality estimate of any high dynamic range image.

• Proposal of the state-of-the-art No reference assessment of compression

artifacts in HDR images. We provide a neural network based architec-

ture for the detection of compression artifacts in high dynamic range

images without the need for a reference image. We use perceptual re-

sistance that we derived to predict the perceived visual quality of HDR

images. This was validated on multiple datasets of HDR quality mea-

surements and was found to be the state-of-the-art in the field.

• Modeling the influence of scene content on full reference assessment of

visual quality. We develop a new architecture for improving full refer-

ence visual quality assessment in images. Our low-level feature gener-

ation approach based on a single-layer object detection architecture is

especially effective for IQA because of the following advantages: 1) the

generated features capture structural information [108] of the image, 2)

our approach, with a new frequency scaling technique, we can explic-

itly model the HVS and account for the first mechanism to detect not

easily visible distortions [57], 3) our approach captures the low-level fea-

tures that can be used for object detection accounting for the second

mechanism to detect supra-threshold distortions [57], 4) the extracted
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low-level features can influence visual perception based on earlier find-

ings [35], 5) visual saliency is incorporated in our framework by using

our new center-surround processing step.

• Investigation on gaze patterns, using a surgical environment in our case

study We performed a user study analyzing the gaze patterns of a high

performing experts in a multi-view laparoscopic environment and com-

pared it with that of a novice to detect the differences between the gaze

behavior. Our finding leads to a future research direction of analyzing

the difference in IQA between viewers with and without experience of

the scene or image content.

• Investigation into impact of texture compression on perceptual quality of

3D textured mesh We study the effect of JPEG texture compression on

the perceived quality of a 3D mesh. Our experiment provides a statistics-

based model for describing the drop in quality of texture with decrease

in Q factor. We integrated these results into current research.

1.4 Challenges

Each of the distinct avenues of investigation has its own set of challenges that

needs to be handled

• High dynamic range images on assessment of visual quality. The main

challenge in HDR images is the lack of datasets and the expense of

conducting user study. The use of publicly available datasets for LDR

images is not suitable because of the use of LDR based screens in user

studies. At the time of writing, there are only a few publications that

studied the effects of distortions on HDR quality. These were individual

studies that were conducted on a single type of distortion and did not

cover the impact of multiple distortions at the same time. The second

challenge here is the lack of localized perceptual data. Most conventional

methods of deriving perceptual data involved experiments with simple

stimuli that cannot generalize to real world complex images. We face
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the problem of modeling these perceptual effects without adequate data

on interactions between the effects.

• Study of influence of image content on visual quality. There is some

literature on how scene content can influence visual quality but the effects

of this have never been modeled explicitly. The easiest solution to the

problem is to divide an image based on content and then assess the

qualities of different content types separately. However, the diversity of

content in image quality dataset are not large enough and there is not

enough examples of each content type. This makes it difficult to model

the effect.

• Investigation into features used in image quality assessment scheme Im-

age quality feature and its integration is an extensively studied problem

but there is no consistent approach by which we can integrate this the-

ory. There is also the problem of modeling color and its impact on HVS

which have largely been ignore in quality assessment literature. Differ-

ent algorithms seem to show different performances on different datasets

and this makes it hard to quantify how well a method works.

• Texture mesh quality interaction in 3D models The major hurdle in the

study of 3D perceptual quality is the lack of sufficient data to model the

phenomenon. Most user studies that are publicly available concentrate

on LDR images.

1.5 Organization of the thesis

The rest of the thesis document is organized as follows: In Chapter 2, we

cover the background research and related works in the areas of image quality

assessment. In Chapter 3 and 4, we detail our study of dynamic range and

its effect on image quality. A no reference image quality assessment model

on image quality is presented as the application of the observations from our

study. Chapter 5 covers our findings on content dependency in image quality
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assessment and the proposals to augment image quality metrics with this re-

sult. In Chapter 6 we list our approach in modeling color into full reference

image quality assessment strategies. In chapter 7 we present the results of a

study we did to apply the results we derived in color features to the field of

surgical performance enhancement. In Chapter 8, we report our results of the

user study on 3D quality and mathematical modeling. Finally, in Chapter 9

we state our conclusions and indicate directions for future work.
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Chapter 2

Background and Related Work

There is an extensive amount of research that has gone into quality assessment

research. We conceptually separate the topics of interest in the following order

and discuss it in the following sections.

1. 2D Image Quality

2. High level feature based image quality

3. HDR image quality

4. Quality of textured 3D mesh

5. Datasets

2.1 2D image quality

The research in 2D image IQA can be broadly classified into full reference and

no reference methods.

2.1.1 Full Reference Image quality assessment

The most simple way of comparing the quality of two images is via peak

signal-to-noise-ratio (PSNR), mean squared error (MSE) etc.

PSNR

PSNR is the most popular method for comparison of images in most of image

processing and image coding fields. The popularity of PSNR stems from the
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simplicity of computation. PSNR however does not give an accurate model of

perceptual difference. The fact is verified in [27], [108] etc.

Since then, research in the scope of full reference perceptual quality assess-

ment of images is divided into two approaches to solving the problem. The first

approach is perceptually motivated, where the researchers attempt to model

the HVS explicitly in some cases making assumptions on the nature of the

images and attempt to predict quality. The second approach is structural sim-

ilarity based, where change in structural similarity is used as a metric instead

of a model based approach.

Perceptual Model based

One of the earliest attempts to form a quality metric is Mannos-Sakrison metric

[71]. Here the authors tried to make use of Shannons rate distortion function

and investigated a choice of distortion measure to simulate an optimum en-

coding. They accounted for luminance adaptation and CSF. This, however

was limited to grayscale images.

A power spectrum based approach to image quality assessment is explored

in [82]. The final quality metric is formed by transforming the image power

spectrum by a modulation transfer function corresponding to the HVS. The

metric works under the assumption that must natural images have a similar

power spectral density.

The paper [27] describes two psychovisual experiments on with JPEG

encoded images. In the initial experiment, images were compressed at dif-

ferent bit-rates and the users were asked to evaluate the quality of the dis-

torted/compressed image with the original. 2AFC method was followed here

with staircase increments. For the second experiment, the image was divided

into blocks and paired ranking was used to compare image sub-blocks. The

results of the user study was compared with the image quality metrics at that

time namely, MSE, Logarithmic image processing metric(LIP), Distortion con-

trast (DCON),Mannos-Sakrison metric , mean intensity, spectrum slope etc.

One of the major results of this study was that MSE was a poor predictor

of user response. It showed high variability at the JND point. Distortion
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contrast seems to be the best performer among the tested metrics. MANNOS

that employs frequency weighting did not get significantly better results. Mean

intensity proved to be a good predictor in supra-threshold experiment. The

paper discourages the use of frequency domain methods as it require precise

knowledge of viewing conditions.

Another area where exploration into HVS and image quality is in the field

of compression of images. Some of the initial research in the field was done in

[29], where major psychovisual phenomenon were explored in the context of

image compression. Experiments were conducted here to study the effects of

subthreshold error integration and masking at edges. A masking function was

also derived here and was shown that it incorporated edge masking.

Another wavelet based approach to compression is [85]. The authors con-

siders the limitations of HVS.The approach followed by the authors here was

to initially study the response of HVS to sinusoidal gratings. Then they used

HVS based wavelets that had a similar response as the one observed in stud-

ies of HVS. Followed by this appropriate bit allocation was done to achieve

compression.

[114] is also a HVS model that can be used in image compression. It ac-

counts for frequency selectivity, orientation sensitivity and contrast sensitivity

of the image. The main idea used is the concept of local band-limited contrast

(LBC). The definition of contrast used here is that of Peli [88] that consid-

ers ratios between frequency bands. Because of the use of LBC, the masking

was found to be maximum at the location of an edge of the LBC transformed

image. Furthermore, the threshold elevation was found o be approximately

constant when LBC model was used. The final perceptual error value was

found using

PEM = (
∑

x,y

|
∑

k,t

∆MLBCk,l(x, y)|
α|β)γ (2.1)

where α,β, γ are constants and ∆MLBC is the masked LBC value.

A sub-band coding approach is followed in perceptuallytuned It is a per-

ceptually tuned image coding system. It decomposes the image into subbands

and then adjusts the sensitivity of each sub-band on the basis of the local tex-
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ture energy and intensity. The paper shows results proving that the masking

threshold seems to follow an approximately linear increase with respect to dif-

ference in luminance (luminance edge) at a specific background illumination.

It seems to increase. It also does a study on the effect of noise detection thresh-

old at various illumination levels. The paper considers luminance masking by

Webers law and masking by considering the luminance slopes of the neighbor-

hood of each pixel. The JND is assumed to be independently contributed by

both of these factors. The final JND is the weighted sum of JND of each of

the sub-band.

Another approach to development of an image quality metric is to detects

edge artifacts in images. This is studied in [48] . This is a full reference

image quality metric that works by processing the errors between the original

image and the reference image. The error image is modulated to account for

masking effect due to high frequencies and background image brightness and

orientation of edges. The study found that only a limited spatial background

around the artifact affects the visibility. Another interesting result was that

the presence of high frequency activity at a location can affect the visibility

of the edges in the area. The authors tabulated the sensitivity of the edge

against the various frequency. They also model the masking as a function of

orientation and frequency.

A new approach to the problem was used in [117]. This is a different

approach towards quality metric. It discusses a JND models based on self

similarity. It uses the assumption that regular repeating patterns cannot con-

ceal noise because of the predictability of image. The paper attempts to pre-

dict repetability of the structures by a structural similarity measure. It also

accounts for luminance adaptation by using the threshold function defined

in [A perceptually tuned subband image coder based on the measure of just-

noticeable distortion profile]. The jnd threshold is calculated as a combination

of spatial masking due to similarity and the luminance threshold weighted by

the larger factor.

Quality metric can be formed by processing the difference between two

images. A representative case in this case is [74]. This is a full reference
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image quality metric that produces a score on the basis of differences in image,

frequency and edges. It takes into account masking phenomenon, noise , other

distortions like block noise etc. Taking all of these factors into account, five

features are created, combined using PCA to produce a quality score. The

metric claims to be able to produce scores with high correlations to human

judgments.

One of the more popular models for image quality comparison is by Daly.

This is an image quality model that give the probability that a difference will

be noticed in various parts of the image. It takes into account luminance

adaptation, contrast sensitivity and masking. Luminance adaptation is mod-

eled locally. HVS frequency and orientation selectivity is modeled with cortex

transform. HVS contrast sensityivity is modeled by a function that depends

on radial spatial frequency, orientation, light adaptation and image size.The

paper implements different models for masking in the final stages and has a

psycometric model to determine the final probabilities of detection.

Structural similarity based

The second approach to image quality metric was proposed in [108]. This

methods is based on the fact that HVS is more sensitive to structural infor-

mation in images rather than a threshold based approach. Hence the guiding

principle here was instead of modeling every stage of the process, an overall

effect (structural similarity in this case) would be evaluated.

The similarity in [108] is calculated by dividing images into patches and

then comparing the luminance, contrast and structure of the two patches. The

formula for overall SSIM is given by

c(X, Y ) =
2σxσy + C2

σ2
x + σ2

y + C2

(2.2)

SSIM was further improved in [111] by introduction of multi scale SSIM and

[97] that used SSIM in the wavelet domain. The paper claims to get very

good results and is considered one of the leading publications in image quaity

metrics.

15



Other methods explored in the domain are [57] that tries to combine mul-

tiple methods of quality assessment. The logic behind this approach was that

HVS might use multiple strategies to detect differences in images; for high

quality, HVS looks for distortions in presence of image, and or low quality

HVS looks at the image content in presence of distortions. For the first case,

MSE error weighted by masking functions are used and for the latter, texture

analysis approach is used where the images are passed through a gabor filter

bank and a difference between coefficients are used as a similarity measure.

Based on earlier studies [108], it is believed that structural similarity plays

a major role in perceptual quality assessment. Additionally, there are findings

([35] and [127]) demonstrating that low level features can influence visual per-

ception and can model how humans assess image quality. Recent theories ([57]

and [116]) also claim that the HVS in fact uses multiple strategies to detect

differences in images. The first mechanism dominates when the distortions

are not easily visible. Here the visual system seems to employ a detection

based strategy, that most of the IQA algorithms, e.g., [21], apply to explicitly

model how the HVS detects quality. The second mechanism becomes effective

when the distortions are supra-threshold or visible. Here the quality is deter-

mined mostly by the perceptual ability to recognize the image content. Visual

saliency is another research approach to study IQA. Zhang et al. claimed that

differences in visual salience maps can be used as a predictor of visual quality

[125].

Another study [67] claims that SSIM can be further simplified by just

considering the gradient magnitude and choosing a better pooling strategy.

The fundamental theory, however, is still based on the concept of structural

similarity. An alternative method that has been successful is IFS [15] that

tries to compute differences in terms of luminance and features extracted using

Independent Component Analysis (ICA). ICA is also used to model the color

mechanism of the HVS. Luminance distortion is calculated separately and

combined with the ICA outcome to generate a final quality score.

Another recent work that tries to model IQA by learning algorithm is [45],

which train a convolutional neural network (CNN) specifically to estimate
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quality and distortion. In this case, the local error maps and the pooling are

also determined by the training process of the CNN. However the method has

the limitation of the model over-fitting on the trained dataset.

2.1.2 No reference Image Quality assessment

The problem solving approach followed in LDR NR-IQA uses some form of

machine learning. Most of the methods start by creating a feature image by

using different processing methods and then fit an arbitrary distribution on

it. The parameters of this distribution are used as the feature vector of the

distorted image (for example, DCT of the image would be utilized as a feature

image and a Gaussian distribution would be fitted on the same, the features

would be the mean and variance of the Gaussian). The features are then used

as inputs to some learning system, which is used to generate a quality score.

One of the first machine learning based methods in LDR NR-IQA is BIQI

[75]. It is a two step process where, from a set of features, an SVM predicts

the type of distortion and another set of SVRs’ predict the score for each kind

of distortion. The final quality score is computed by

score =
m
∑

i=1

pi.qi (2.3)

where pi represents the probability of each distortion obtained from the SVM

and qi represents the quality score given by each of the SVR’s. BIQI [75] used

Daubechies 9/7 wavelet as feature image.

A variety of methods follow a similar approach and show very good per-

formances on assessing LDR content without reference. Notable examples are

BRISQUE [73], DIIVINE [76] and SSEQ [69]. These algorithms have more

complex features and just need a single SVR to predict the final quality of an

image.

BRISQUE [73] computes a mean subtracted contrast normalized (MSCN)

image as feature by using MSCN(i, j) =
I(i,j)−µI,N,i,j

σI,N,i,j+1
, where µI,i,j and σI,i,j

represents the mean and variance computed over a local Gaussian window of

size N around the point i, j. DIIVINE [76] uses divisive normalized steerable

pyramid decomposition coefficients to create the feature image.
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SSEQ [69] generates features using entropy as features. Here, a scale space

decomposition is carried out to generate three scales of images, and then en-

tropy is calculated for image blocks in the spatial and DCT domain. The

entropies are then pooled by percentile pooling and the mean and variance of

the spatial and frequency components are used as a feature vector.

An alternative approach that achieves state-of-the-art results in LDR NR-

IQA is the Convolutional Neural Network (CNN) based approach used by

Kang et al., kCNN [43]. This is a better implementation of the concepts intro-

duced in [121]. The basic idea here was to learn discriminative features that

can perform IQA rather than a handcrafted approach. [121] used dictionary

learning to form discriminative filters. [43] improved this by redesigning it as

a convolutional neural network (CNN). The CNN has four layers that act on

MSCN image blocks of size 32×32. The first layer is a convolutional layer with

50 filters (kernels), then a pooling layer that reduces the dimensionality of the

data and finally two fully connected layers. The network is trained with the

Mean Opinion Scores (MOS). The method has an additional advantage that it

can produce an ”error map” showing the visible errors on the distorted image.

An important observation here is that LDR NR-IQA algorithms rely on im-

age distortions altering the statistical properties exhibited by ’natural’ undis-

torted images. Hence, the problem considered in this domain of research is

that of quantifying the changes in natural image statistics. Another key obser-

vation is that the natural statistics are not modeled explicitly but captured in

the internal representation of the SVM or the CNN’s used in the algorithms.

Because of this, algorithms need an explicit training stage that adapts to the

data before use. This training helps the learning component to learn what a

”natural” feature is and how the noise changes this natural feature.

A recent work that tries to alleviate this problem is [129]. The research

looks into assessing perceived quality of images corrupted by uniform and high

frequency noise. The method uses a custom combination of feature whose

weights that scales the error. This method however is not valid in our case as

it cannot estimate compression errors.
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2.2 High-level features in Image quality as-

sessment

Research on image features has a long history, but the work on structural

features was pioneered by Wang [110]. The concept was instead of modeling

and evaluating every stage of the visual error recognition process, an overall

effect of the error (structural similarity in this case) is evaluated. Subsequent

work includes phase congruence [126], visual saliency [124] and a mixture of

high- and low-level features depending on the apparent distortion [59], etc.

All these methods focus on judging distortions and determining deterioration

of quality with respect to a known reference. However, none of the methods

comments on how the scene content may influence the image quality decision.

2.2.1 Visual saliency

Visual saliency is a capability of the HVS, where the attention of the human

eyes is attracted to certain elements in the scene. It is a mechanism that

helps to focus on more relevant or important information. Visual saliency is

conventionally measured in user studies, where the users view an image freely

in a given time. The eye movements are recorded with an eye tracker. The

data captured by the eye tracker over time is expressed as a heatmap or a

grayscale image called a saliency map [41].

The visual saliency process can be bottom-up or top-down.

• Bottom-up visual saliency means that the image saliency is determined

by observing the low-level image features like edge orientation, color

change, etc. Since the work of [41], a lot of approaches have been pro-

posed to mathematically predict saliency maps for images. The latest

modeling techniques include [9] and [66]. The models were found to

agree with the earlier eye tracking findings.

• Top-down saliency suggests that an understanding of high-level content

can influence the visual attention at a lower level. Recent research has

looked into such top-down approach [119], as well as object dependent

19



visual saliency (salient object detection) [16]. These studies, however,

have not analyzed the impact of top-down influence and visual saliency

influence on image quality, which is the focus of our work.

Changes in Visual attention with task

The first study demonstrating changes to visual attention mechanisms was con-

ducted by [120]. One of the major observations of the study was ”Depending

on the task in which a person is engaged, i.e., depending on the character of the

information which he must obtain, the distribution of the points of fixation on

an object will vary correspondingly, because different items of information are

usually localized in different parts of an object”. The authors arrived at this

result by analyzing the eye movements of subjects asked different questions

while viewing an image content.

The experiment shows the inadequacy of a free viewing eye tracker data

towards evaluation of visual quality; the resultant fixation maps when the

users are free viewing the image and when the viewers are performing quality

assessment should be different.

2.2.2 Saliency and image quality

A related study looking into the association of visual saliency and image quality

is [33]. The authors performed two experiments with eye-tracker. One with

free looking task and another with quality assessment task. The tests were

conducted on images in the LIVE dataset only ([99]).

They also found that in terms of improving Image Quality Metric (IQM),

fixation points in free viewing were better, compared to fixation maps while

doing IQA. The hypothesized reason for this was that IQA’s already estimated

the fixation on errors and adding extra weights would lead to over-estimation

of the image quality scores. The paper did not delve further into the causes of

these changes and concentrated on improving image quality metrics with free

viewing fixation maps.

The authors found that the visual attention maps obtained from the free

viewing task and the visual quality evaluation task were different. Further
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investigation was conducted in their later study [32], but the authors focused

on the free viewing task rather than the image quality assessment task. In

contrast, we are interested in the quality assessment task. Furthermore, there

is little research that looks into improving IQM with scene context. Most

approaches focus on the use of image patch content or saliency, e.g., [128] and

[96].

2.2.3 Image aesthetics and high-level features

There are many works that claim to assess image asthetics using various image

features. Most of them rely of adapting rules from photography to automated

visual quality analysis ([6],[47]). Certain other works rely on using CNN’s

to model the system as a whole and predict a quality score. One of the

latest work here is [46] which uses CNN-based method and image categories

to learning techniques to predict the visual appeal of images. However, none

of the techniques provide a good explanation of how features are significant

on the basis of general image content.

2.3 HDR image quality

HDR images are images that use more than the conventional 8 bits to capture,

store, transmit and display. Depending on the standard being used, this could

be either 10bits or 12+ bits. HDR images, when viewed on a compatible

HDR screen can show a wider range of colors and can display larger range of

luminances compared to an LDR image, viewed on a conventional screen.

Image perception on HDR screens are different from that on an LDR screen.

The changes in perceptual characteristics on HVS have been extensively stud-

ied by Aydin et. al. [7]. The study found that when viewing a distorted

image on two different displays with different maximum luminances, the im-

age shown on the brighter display was perceived as worse. The study further

went on to prove that viewing content on LDR display and an HDR display

has different perceptual effects due to differences in visual sensitivity at larger

luminance ranges. Therefore, a direct statistical comparison of the errors with-
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out considering perceptual changes in sensitivity with luminance may not give

an accurate model for HDR data.

In terms of a full reference assessment of HDR image quality, an important

work is HDR-VDP-2.2 [81] and HDR-VQM. HDR-VDP 2.2, models the early

stages of HVS, based on psychophysical measurements. HDR-VQM uses sub-

band decomposition and spatial and temporal error pooling. Both methods

are full reference and outputs a local error visibility map as well.

In terms of no reference assessment of HDR image quality on HDR screens,

we found no previous research. A seach on the same topic often leads to

another category of LDR No reference algorithms. These are tone mapped

image quality.

2.3.1 Tone Mapped IQA

The research under this category focuses on evaluation of HDR images that

have been tonemapped to LDR range, displayed on LDR screens. The field

of research is relatively new with the first publication on FR-IQA for tone

mapped images is [122]. The paper uses structural fidelity criteria akin to

[111], however, alters the standard deviation based on a CSF. Along with this,

a naturalness measure is also implemented by using methods similar to NR-

IQA by fitting a Gaussian and beta probability density function on histograms

of mean and standard deviation of the images. This was further advanced

in [54], where the performance was improved with better error pooling and

naturalness measure. Phase congruency was used as a feature in [78] for the

same purpose. The phase congruency is added as an additional feature to

compare the two images.

One of the only research that looks into NR-IQA for Tone Mapped HDR

is [55]. The method uses MSCN as spatial domain features and gradient

computations on different neighborhoods of every pixel. This is followed by

Gaussian parameter extraction and SVR like the other techniques described

here. The publication uses images tone mapped to LDR range by fusing LDR

photographs of multiple exposures. The MOS scores are computed on an

LDR display. The method is purely statistical and does not use perceptual

22



psychophysical modeling. This research is different from our work because our

results are valid of HDR images displayed on compatible HDR display.

Tone-Mapped HDR is different from HDR. Experimental evidence of psy-

chophysical differences in viewing HDR and LDR image content was provided

by [2]. The study carried out a user study on how HDR and LDR image

contents are perceived when displayed on HDR screens, with users rating nat-

uralness, visual appeal, spaciousness, and visibility. The parameter of interest

that is relevant to the current work is visibility. The study found statisti-

cally significant differences in how the users rated visibility in HDR and LDR

images. Here visibility refers to the details in the image. Additionally, the

authors found that asthetically, the users preferred HDR images displayed on

HDR screens compared to LDR images.

2.3.2 Algorithms for comparing performance of HDR
NR-IQA

Because of lack of research in the area of a true HDR Noreference image quality

assessment algorithms, we approach the problem of HDR FR-IQA through the

use of the LDR-NRIQA on PU-encoded HDR data. These are based on the

results of [26], that did a survey on the performance of various FR-IQA on

HDR data. They found that PU encoded HDR data that is assessed by LDR-

FRIQA algorithms performed well on HDR conditions. Hence we hypothesize(

and confirmed) that these methods can provided a result that we can compare

with.

2.4 Perceptual Quality of 3D textured meshes

Most of the works related to the perceptual quality of 3d models are limited to

un-textured 3d meshes. Some of the earlier publications relied on simple prop-

erties of mesh like dihedral angle, Hausdorff distance and roughness [106], [18],

[60] etc. A lot of these metrics are aimed at a specific task like simplification

in [50], transmission of signals in karni watermarking in [20] and rendering in

[24].
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A different approach, where curvature was used in a manner similar to

structural similarity [108] in image was [63]. This was later extended by [61]

and [62]. These metrics make use of various statistical properties of a geometric

mesh and model the perceptual quality. These measures are however limited

to the structural properties of the mesh surface only and do not model the

effect of quality of the texture on the data.

Most practical applications of 3D models however involves the use of tex-

tures. For certain applications like VR and medical data, the appearance of

texture play a critical role and cannot be ignored. One of the first publica-

tions to work on perceptual quality of a textured 3D mesh was explored in

the field of transmission was by [17]. A quality prediction model that takes

geometry and texture into account was proposed here. ZIM predictors are

used for evaluation of the texture quality. The predictor is a combination of

the range required for color quantization Z (RGB color model), the texture

intensity component I (HSI color model), and the degree of visual masking

M, induced by the pattern complexity. The quality computation was done by

taking a linear combination of both of these features, applying equal weights

to both of the predictors.

[87] is one of the first attempts to take both texture and geometry into

account while estimating the quality. The method attempts to fit a curve that

satisfies the observed quality levels under different texture and mesh resolu-

tions. The model was a global approach and is very fast as it does not require

complex calculations. It finds use in quality control while transmitting in a

limited bandwidth. This model is however restricted to effect of texture reso-

lutions. The effect of compression is an area where more research needs to be

done.

2.5 Datasets used for evaluation of results

To validate our results on different imaging modalities and distortion types,

we make use of a large number of datasets available in the public domain. We

use a standard dataset containing a set of images, its degraded versions and

24



the perceptual quality scores (mean opinion scores) determined by user studies

on those set of images. We generate a quality score on the images using our

algorithm. Then we compare the scores by the algorithm with that of the user

quality scores in the dataset. The comparison is performed using Spearman

rank order correlation coefficient (SRCC), Kendall rank-order correlation co-

efficient (KRCC) and Pearson linear correlation coefficient (PLCC) and root

mean square error (RMSE). A good performance is indicated by high values

of SRCC, PLCC and KRCC and low value for RMSE.

2.5.1 Low dynamic range datasets

The datasets I use for evaluating the performance of LDR image quality as-

sessment algorithms developed in this thesis are CSIQ, LIVE, TID2008 and

TID2013.

The LIVE dataset (Fig. 2.1) has 29 reference images, distorted using five

distortion types. JPEG2000, JPEG, white noise in the RGB components,

Gaussian blur, and transmission errors in the JPEG2000 bit stream using a

fast-fading Rayleigh channel model. CSIQ dataset has a total of 866 distorted

images are available. For the quality assessment task, observers were asked

to provide their opinion of quality using “Bad”, “Poor”, “Fair”, “Good” and

“Excellent”. About 20-29 human observers rated each distorted image by

comparing with the reference images.

The TID2013 contains 25 reference images and 3000 distorted images (25

reference images x 24 types of distortions x 5 levels of distortions). Reference

images are obtained by cropping from the Kodak Lossless True Color Image

Suite. The TID2008 dataset was the first version of TID2013 and is included

for compatibility of results with older publications.

2.5.2 High Dynamic Range datasets

For a comprehensive data set of HDR image, we selected 5 separate data sets.

The authors of the respective publications performed subjective evaluations

using different displays with varying maximum intensities and viewing dis-

tances providing a good testing platform for the algorithms. [79], consisting
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Figure 2.1: Example images in the LIVE dataset.

Database No. of Images Distortion Type Resolution

CSIQ [58] 866 6 Distortions 512 x 512

IVC[65] 185 4 Distortions 512x512

LIVE[37] 779 5 Distortions Mixed

TID2008[91] 1700 17 Distortions 512 x 384

TID2013[89] 3000 24 Distortions 512 x 384

Table 2.1: LDR database statistics.

of JPEG compressed HDR images, [80] consisting of JPEG2000 compressed

HDR images, [52] with JPEGXT compression and [105], [26] containing im-

ages distorted by JPEG, JPEG2000 and JPEGXT compression schemes. The

statistics of the data-sets are given in Table 3.1.
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Chapter 3

Quality assessment of High
Dynamic Range Images

3.1 Introduction

High dynamic range (HDR) imaging can capture a much larger range of lu-

minance compared to conventional images. This larger range of luminance

is achieved by increasing the number of bits used to store the image pixels.

Typically HDR image content is stored using 10-12 bit floating point values

per pixel as opposed to a conventional image file that uses 8 bits per integer

for a pixel. HDR imaging technology incorporates techniques of capturing,

processing and displaying HDR content. This technology is becoming main-

stream in the consumer market and is reaching larger sections of people as

a result of investments in the technology made by the camera and television

manufacturers.

In order to reproduce native HDR content, an HDR display is required.

HDR displays have the capability to display a very high range of pixel inten-

sities. When viewing an HDR image through an HDR display, a viewer will

perceive an increased range of colors and image details compared to a conven-

tional screen displaying the same content. This results in a better quality of

experience for the user. In this paper, we consider this case of HDR images

being displayed on an HDR compatible display.

The process of quantifying the visual quality perceived by a human being

is called image quality assessment or IQA. IQA can be mainly categorized into
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Full-Reference (FR) and No-Reference (NR). In FR-IQA, the quality of the

image is evaluated on the assumption that an undistorted version of the same

image is available. In NR-IQA, the quality of the content is evaluated on the

basis of the distorted image only.

IQA of the commonly seen image distortions on HDR images is a problem

of great academic and industrial interest. Since the target audience for the

HDR content is a human being, the easiest method for IQA is through a sub-

jective test. However, subjective tests are often tedious and time-consuming.

Even with massive crowdsourcing projects (systems like mturk), HDR IQA is

difficult in view of expenses involved in acquiring systems capable of display-

ing the HDR content. Hence there is a need for high performance automated

systems that are capable of IQA.

We propose the first model for NR-IQA that is capable of predicting the

perceived image quality and localizing the distortions present in an HDR im-

age. We use a convolutional neural network (CNN) based architecture to

achieve this. The scope of this work is limited to commonly seen low-level im-

age distortions like artifacts caused by image compression. We do not consider

changes in image quality due to high-level changes, e.g., artistic intent, where

complex aesthetics considerations should be taken into account.

The contributions of this work are as follows:

1. We propose the first HDR NR-IQA method based on a convolutional

neural net architecture capable of separation of error and perceptual

effects present in a distorted image. The proposed method outperforms

other NR-IQA methods and is competitive with state-of-the-art HDR

FR-IQA algorithms .

2. We provide a method for the accurate estimation of error in a distorted

image without a reference.

3. We predict the perceptual masking factors error without an explicit psy-

chophysical model.
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3.2 Motivation

The research on NR-IQA discussed above is focused on LDR images displayed

on a conventional screen with a maximum luminance of about 300 cd/m2.

HDR displays have luminances up to 4000 cd/m2 and more. The response of

the HVS under this increased luminance range is radically different from the

responses in LDR luminance range. Note that Tone Mapped HDR also comes

under the category of LDR luminance range because of the LDR display used

in the user evaluations.

Change in sensitivity in HVS response with luminance levels lead to loss

of performance under HDR conditions. Therefore, a pure statistical modelling

alone is not enough for an NR-IQA on HDR data. We confirm this fact with

our experiments in section VI.B. We do not know of any literature in the field

of NR-IQA that anticipates and adapts to these changes.

3.2.1 Perceptual factors affecting HDR data

The changes in perceptual characteristics on HVS have been extensively stud-

ied by Aydin et. al. [7]. The study found that, when viewing a distorted

image on two different displays with different maximum luminance, the im-

age shown on the brighter display was perceived as worse. The study further

went on to prove that viewing content on LDR display and an HDR display

has different perceptual effects due to differences in visual sensitivity at larger

luminance ranges. Therefore, a direct statistical comparison of the errors with-

out considering perceptual changes in sensitivity with luminance may not give

an accurate model for HDR data.

Hence, we argue that, in addition to statistical modeling, HDR NR-IQA

requires considering the psychophysical phenomena that determine the percep-

tion of distortion in HDR conditions. Even though such a perceptual approach

is not very popular in NR-IQA, it is very popular in FR-IQA models. An im-

portant work in this category of algorithms on HDR data is HDR-VDP-2.2

[81] and HDR-VQM. HDR-VDP 2.2, models the early stages of HVS, based

on psychophysical measurements. HDR-VQM uses subband decomposition
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and spatial and temporal error pooling. Both methods are full reference and

output a local error visibility map as well.

3.3 Proposed method

Designing a perceptual model is a challenging task because of the lack of un-

derstanding of how the existing psychophysical measurements with sinusoidal

gratings generalize to a complex image. The traditional approach to this prob-

lem considers various visual features like contrast, frequency and background

luminance etc into account. Then, a handcrafted function is used to combine

all these features into a quality score. This function is derived from fitting

functions to the results of various psychophysical experiments which test the

limits of our perception. Generalization of these results to a real-world image

is, however, a problem of interest and yet to be solved.

We approach this problem of designing a perceptual HDR NR-IQA by di-

viding the visual quality perception process into sub-components and modeling

them individually. Conceptually, the visual quality perception can be repre-

sented as an interaction of two functional units. The first unit takes distorted

image as input and detects error, and the second unit performs a perceptual

scaling of this error to compute a quality score.

We first model the error detection unit. Then, using this result, the dis-

torted image data and real-world MOS scores from IQA databases, we perform

an optimization that derives the perceptual component and the quality score

simultaneously. Differently from existing perceptual IQA methods such as

HDR-VDP, we find the perceptual component in our network directly from

data.

3.3.1 Design

To model the above idea, we design a convolutional network architecture that

acts on image blocks of HDR linear luminance values. We consider a block

size of 32x32 pixels. We consider a block size of 32x32 pixels corresponding

to the pixels in one visual degree under standard HDR test conditions. This
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is not a Full Reference Algorithm. The undistorted version here is only used

during training; any HDR image and its distorted version can be used here.

The objective here is to give representative examples of characteristic patterns

produced by image distortion like blocky artifacts, blur, jagged edges etc.

Conceptually, E-net would learn and quantify these patterns.

The choice of L1 error best represents the overall impact of the error of the

block, giving equal importance to extremely high and low values of error (as

opposed to biased values obtained the L2 norm is used).

To estimate this error, we use our own CNN, E-net, with the training data

being linear luminance values of the image block centered at any (i, j) and the

training target being to reproduce the average error in the block computed by

equation 3.1.

3.3.3 Perceptual Resistance

For each image block centered at (i, j), we compute the Perceptual Resistance

T (i, j). This represents how difficult it is for a viewer to perceive the error of

the block δ(i, j). A high value for T implies that a subject is less likely to see

the error of the block, hence the quality of the block will be less affected. A

low value implies that the image block will be perceptually degraded by error.

The purpose of this term in our system is to perceptually scale the error δ(i, j)

in order to produce a quality score through a mixing function.

Perceptual Resistance T (i, j), represents the combination of all the percep-

tual effects exhibited by the image luminance block centered at (i, j). Though

functionally similar to the pixel-wise Just Noticeable error thresholds (JND)

in conventional IQA systems like [129], [21] and [81], we define Perceptual

Resistance as a new term. This was done to differentiate the fact that the

results given by our model are local quality scores (DMOS) as opposed to a

local probability of error detection.

An important detail worth mentioning here is that JND is traditionally

determined by mathematical modelling of the response of the HVS to the re-

gion surrounding any location of interest. Various visual features like contrast,

frequency and background luminance are considered and custom functions are
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used to combine these factors. These functions, in turn, are derived from var-

ious psychophysical experiments. The experiments check how HVS responds

to simple stimuli under various conditions. It cannot be assumed that these

methods can be generalized to a real world image with complex frequencies,

luminance and contrast levels.

Our solution to this problem is instead driven by data. We use a convolu-

tional network based architecture, P-net, to derive the Perceptual Resistance

of the block. The CNN analyzes the image content and computes the features

required to do this task from real world image data provided to it by numer-

ical optimization. Thus, the Perceptual Resistance is computed by a neural

network, whose behavior is guided by a potentially large number of ’functions’

(that are represented as neural network weights) that best explain the observed

data.

3.3.4 Mixing Function

To combine the error and Perceptual Resistance, we use a mixing function,

represented as f(δ, T ). This is an important part of the formulation since it

determines the behavior of P-net. The result of the mixing function would be

optimized by the training process to match quality score; hence depending on

this function, the output of P-net would change. For example, if we choose

DMOS = δ
T
and the CNN training optimization converges successfully (error

values does not decrease with training in training and validation sets), P-net

would generate a T that acts as an error detection threshold to the value

produced by E-net.

While it can be argued that the mixing function can be chosen by an

another CNN, this process would involve more weights and difficulties in opti-

mization resulting in the overall model not converging to a good solution. We

confirmed this fact experimentally by using a DBN (Deep Belief Network) in

place of the mixing function. Even if the system did converge with a DBN,

this function would be a ’black box’ with no intuitive interpretations.

We design the structure of the mixing function to express error in multiples
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of Perceptual Resistance:

DMOS = f(δ, T ) = G

(

δ

T

)

(3.2)

where G() is some arbitrary function. To observe how δ
T
is indicative of the

quality, consider a value of δ
T
< 1; from the low value of the ratio, we can infer

that the error is very small compared to the Perceptual Resistance of the block,

implying that quality of the block is very high, hence a lower DMOS. Con-

versely, δ
T
> 1 would imply a higher DMOS. Such formulations are frequently

used in perceptual image quality literature like [129], [7] and [81] etc. The

common step in all these publications is expressing error in JND units( error
JND

). The objective of this step is to convert the error into a more perceptually

relevant value.

Translation of δ
T
to quality scores is achieved by the function G(). From

the example above, we see that DMOS has to increase with this ratio, implying

that G() will have to be monotonically increasing with δ
T
. Other than this con-

straint, the choice of G() can be arbitrary; any function that is monotonically

increasing would be sufficient as long as the optimization converges.

However, choosing a G() that is too complex can also lead to optimization

problems because of unstable points along the function or low values for gra-

dients, leading to slow or zero learning. We do not go into the mathematics of

CNN convergence and optimization functions as it is beyond the scope of this

work.

Based on the above considerations, hereafter we use G(x) = 1−exp(−|kx|)

for obtaining DMOS. Here k is an adjustable parameter to control the shape of

the function. Hence the DMOS of an image block centered at (i, j) is defined

as

DMOS(i, j) = 1− exp

(

−

∣

∣

∣

∣

k ∗ δ(i, j)

T (i, j)

∣

∣

∣

∣

)

(3.3)

This choice is inspired by the error model proposed in [129]. We modified this

equation by adding a scaling factor k to control the shape of the function.

We found that similar results, with slight variations in performance, can

be obtained by using other functions that are monotonically increasing like a
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global scores by simple averaging. A weighted scheme is not required here

since the perceptual scaling of errors based on content is already handled by

equation 3.3 (the term T computed by the CNN changes with image content

and handles content-dependent scaling).

3.3.5 Training

The biggest drawback of a CNN based system is the large amount of training

data required to compute the weights of the neural network.

E-Net estimates error; the training data for this task can be easily obtained.

For each block of the image, the target value would be the mean error in that

block. This, in turn, is the difference between the distorted and reference

images (Equation 2).

For training P-Net, the ideal training data would be a number that com-

bines all the perceptual effects of the HVS acting on the image block. We do

not have this data, however, we can obtain the value for the final block quality

after the mixing function. We use this for training.

In training P-net, we make a strong assumption that the block quality

is equal to the global image quality score. Even though this assumption is

incorrect most of the time, it was shown in [45] that, with a starting assumption

that the global quality of the distorted image is the same as that of the local

quality, the training process of the CNN isolates the local quality. A study of

the filters generated by the CNN in the study revealed that it detected spatial

patterns of error in the feature image provided. Under the assumption that the

block quality is equal to the global image quality, multiple quality scores might

be associated with the same pattern of error. However, when trained over

millions of blocks with a cost function that imposes sparsity constraint ([45]

used the L1 distance between the predicted quality and the actual quality),

the correct local quality is the only value that minimizes the total error. In

other words, the lowest cost of the CNN cost function is obtained when the

CNN generated the true local errors of the image, regardless of the labels it

started out with.

We now define our two-stage training process. In stage 1, E-net is trained
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with image blocks as input and the corresponding mean error of the image

block as a target, hence E-Net learns the patterns in the data corresponding

to error.

Then, in stage 2, all the training weights of E-net are frozen by dropping

the learning rate of this section to zero. The whole network is then trained

with image block as input and global image quality ( DMOSglobal ) score as

a target. We use |DMOS(i, j)−DMOSglobal|. The choice of L1 norm was

inspired by the results of [36], who found that the regularizing properties of

L1 norm helped achieve high performance in LDR NR-IQA. The process is

illustrated in Fig 3.3.

Figure 3.3: Two-stage training Process.

Note that there is no explicit training of P-net. The results of E-net,

image block and the ground truth DMOS scores from image dataset are used

for a global optimization. The cost function used for this optimization is the

L1 norm between generated DMOS and the ground truth DMOS. It is this

sequential training that forces the P-net to extract a set of perceptual features

from the image block and derives a single Perceptual Resistance value from it.
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3.3.6 Further considerations

By separating the whole process into sub-components as opposed to a single

system we force the individual sub-components to model a simpler process.

E-net handles modeling error statistics only and deals with detection of non-

natural statistics in an image. P-net models perceptual processes only and

produces an approximation of perceptual response and nonlinearity from image

data. Mixing function deals with the conversion of the results of E and P-net

to DMOS.

Thus, each system has to model only one physical process implying that

the data to each sub-system have similar underlying distributions. The CNN’s

eliminate the need for rigidly handcrafting the behavior of individual sub-

systems.

This two-model mechanism has two major advantages. First, a separa-

tion of perceptual components from the physical error gives us more intuitive

results that can be used in applied fields of IQA like image and video com-

pression. With adequate calibration, Perceptual Resistance values can be used

to optimize compression or transmission. Secondly, it simplifies the learning

process leading to improved results and better generalization of those results

to real world cases.

3.4 Architecture

The proposed network architecture for the error estimation (E-Net) has 5

layers. E-Net is required to do a blind error estimation. Hence we choose a

typical CNN architecture consisting of 5 layers. The layers are convolutional

with 64 filters of dimension 7×7, 128 filters of 5X5, 256 filters of 3×3 and 512

1×1 filters. Spatial pooling of 2×2 was used after each filtering stage. The final

layer consists of one node corresponding to the output. Spatial dropout layers

[103] are added to prevent over-fitting of the data. The network structure is

shown in Fig 3.4.

P-Net is required to estimate the Perceptual Resistance values of the block.

Here, we define a custom CNN layer, Augmented Input Layer. In this layer, in
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The results of the two networks are combined by the mixing function whose

behavior can be modelled by equation 3.3. Here the parameter k is tuned as

part of the training process.

3.5 Results

The proposed algorithm was implemented on a computer with an Intel core

i7 processor, 16GB RAM, and a Nvidia GTX660 graphics processor. The

language used was Python with keras on theano backend, imageio and open

CV as supporting libraries. We used the Adam optimizer ([51]) to optimize the

weights of the CNN. The parameter values of Adam was learning rate=0.001,

β1=0.9, β2=0.999, ε=1e-08 and decay=0.0. The batch size used was 200. The

training was done for 10 epochs.

3.5.1 Dataset

For a comprehensive data set of HDR image, we selected 5 separate data sets.

The authors of the respective publications performed subjective evaluations

using different displays with varying maximum intensities and viewing dis-

tances providing a good testing platform for the algorithms. [79], consisting

of JPEG compressed HDR images, [80] consisting of JPEG2000 compressed

HDR images, [52] with JPEGXT compression and [105], [26] containing im-

ages distorted by JPEG, JPEG2000 and JPEGXT compression schemes. The

statistics of the data-sets are described in table 3.1 .

The dataset provides MOS values for the images. Since our models expects

differences in quality, we use a value (120−MOS)
120

for training the complete system

training.

3.5.2 Reference IQA schemes

Due to lack of research into NR-IQA on HDR images, we test our algorithms on

the major LDR NR-IQA (BRISQUE [73], SSEQ [69], BIQI [75], DIIVINE [76],

and kCNN [43]) with and without various pre-processing operators. The re-

sults were obtained after retraining the algorithms on the respective processed
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Dataset

Number

Number

of Reference

Images

Number

of Distorted

Images

Distortion

type

Maximum

Luminance

(Cd/m2)

#1 [79] 27 140 JPEG 1000

#2 [80] 29 210 JPEG 2000 1000

#3 [52] 24 240 JPEG-XT 4000

#4 [105] 15 50

JPEG

JPEG2000

JPEGXT

4000

#5 [26] 15 50

JPEG

JPEG2000

JPEGXT

4000

Table 3.1: Database statistics.

HDR data. The pre-processing operators we choose are PU encoding and var-

ious tone mapping including Reinhard 2002 and 2005 ([94], [93]), Drago [23]

and Mantiuk [72]. PU encoding has been shown to perform well in a similar

context in the case of HDR FR-IQA [105].

The features were extracted using the implementation provided by the

authors. In the case of SSEQ [69], we normalized the images by the maximum

intensity under the respective schemes (4000 for linear HDR and 455 for PU

encoded data). For training the SVM, methods suggested by the authors

were used (SVR with RBF kernel). A grid search on the cost and the kernel

parameter of the SVM was conducted for a range of 10−15 to 1015 before

training. [36] was re-implemented using python. For testing the algorithms,

we used the same procedure as in [36], i.e. 100 iterations of training and

testing with median scores of test cases reported. Note that the results can

vary slightly since the weight initialization of CNN is random. Here, training

and testing sets are formed ensuring that there is no overlap in image content,

i.e. the reference images for the distorted images in training and testing sets

were not the same.
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using the formula:

√

mean
(

MOSMAX ∗DMOSpred(i)− (MOSMAX −MOS(i))
)2

) (3.4)

for all image i in the dataset.

The results in terms of SRCC, KLCC, and PLCC are shown in Tables 3.2.

Considering the NR-IQA originally designed for LDR content, we see an

acceptable performance after retraining with SRCC around 0.7 for many of

the algorithms; as hypothesized, the learning component of conventional NR-

IQA is adapting and capturing the statistics of the error types even in HDR

conditions. Best performances were obtained by using BRISQUE [73] and

kCNN [45]. The high performance of BRISQUE and KCNN can be attributed

to the features they use i.e. the MSCN coefficients. It is likely that the

normalization by variance acts to cancel the effects of the increased dynamic

range and yields a similar distortion pattern as LDR images. Practically,

kCNN is more useful because it produces an error map in addition to the

quality score. The error map shows an approximate error that is seen by the

observer on the noisy image.

Furthermore, we observe a clear performance improvement in LDR-NR-

IQA algorithms if the data is pre-processed and the dynamic range of the data

is reduced to LDR levels. PU encoding improves the performance in most of

the cases. The best performance among LDR-NR-IQA was obtained in the

case using PU encoding in conjunction with kCNN.

The performance of the proposed system is significantly better than the

other algorithms in all cases even after compensation with PU encoding.

Statistical Analysis

To further validate our approach, we perform statistical analysis on algorithms

that show performance similar to ours (Bolded in table 3.2).

We follow the approach used in [73]; here, we use different randomly se-

lected training and test sets and record the SRCC performance for each of the

training set used. For our tests, we re-run the training of the four algorithms
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Feature Processing SRCC KRCC PLCC RMSE

BRISQUE

Lin 0.7274 0.5430 0.7231 18.1797

PU 0.8047 0.6116 0.7825 17.3576

TMO - Drago 0.7374 0.5415 0.7203 19.1261

TMO - Reinhard 02 0.7782 0.5853 0.7699 18.1523

TMO - Reinhard 05 0.6903 0.5061 0.6643 20.3307

TMO - Mantiuk 0.6172 0.4559 0.6148 22.1868

SSEQ

Lin 0.6022 0.4378 0.6008 23.3017

PU 0.7342 0.5451 0.7175 19.4117

TMO - Drago 0.6853 0.5011 0.6954 20.8766

TMO - Reinhard 02 0.6866 0.5183 0.6688 21.0673

TMO - Reinhard 05 0.6568 0.4845 0.6467 20.5737

TMO - Mantiuk 0.4185 0.2926 0.4651 25.7570

BIQI

Lin 0.1817 0.1391 0.1466 38.7513

PU 0.3387 0.2406 0.3445 30.5220

TMO - Drago 0.2803 0.1923 0.2960 41.0579

TMO - Reinhard 02 0.3756 0.2778 0.3766 33.2005

TMO - Reinhard 05 0.3097 0.2213 0.2874 27.7294

TMO - Mantiuk 0.2822 0.1957 0.2408 39.0999

DIIVINE

Lin 0.6677 0.4853 0.6759 21.8020

PU 0.7156 0.5290 0.7193 18.7586

TMO - Drago 0.7418 0.5562 0.7400 18.9959

TMO - Reinhard 02 0.7149 0.5266 0.7024 20.7177

TMO - Reinhard 05 0.7900 0.5932 0.7809 17.2134

TMO - Mantiuk 0.4946 0.3549 0.4936 27.4918

kCNN

Lin 0.8363 0.6530 0.8134 19.1753

PU 0.8638 0.6852 0.8497 16.8937

TMO - Drago 0.7700 0.5853 0.7485 18.2759

TMO - Mantiuk 0.8075 0.6188 0.8053 17.7948

TMO - Reinhard 02 0.8613 0.6668 0.8179 17.7157

TMO - Reinhard 05 0.6438 0.4631 0.6074 22.3484

Proposed Lin 0.8920 0.7184 0.8860 14.1464

Table 3.2: Overall Performance comparison.

20 times. For a fair comparison, each of the algorithm was trained for an equal

amount of time.

The results were then compared for significant differences using the one

sided t-test. The null hypothesis was that the mean correlation of the algo-

rithms are same, the alternative was that the mean correlation is different. We

reject the null hypothesis if our p < 0.05. We can indicate if the difference is

greater or smaller by using the mean correlation of each method. We denote it

similar to [73] as (1) if algorithm in the row is better than the one in column,

(0) if no difference in mean and (−1) if mean is lesser. Results are recorded

in table 3.3.

We can see that the proposed method does indeed produce a statistically
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Proposed kCNN PU-kCNN Reinhard02-kCNN

Proposed 0 1 1 1

kCNN -1 0 -1 -1

PU-kCNN -1 1 0 0

Reinhard02-kCNN -1 1 0 0

Table 3.3: Statistical significance of difference in performance of algorithms
(Bolded in table 3.2).

significant improvement in performance.

3.5.5 Generalization capability

One of the common complaints against an NR-IQA system is that the per-

formance cannot be generalized in situations with a different conditions and

contents. To test this, we train the algorithms using data sets #1,#2 and #3

and test it on #4 and 5. This represents a real-world test scenario where the

experimental conditions are different as that of the training data. In addition,

this testing method also allows us to perform a head-to-head real world test

against the performance of full reference image quality assessment algorithms.

From a machine learning point of view, this is acceptable, since we have suf-

ficient number of examples of each type of distortion in data sets #1,#2 and

#3 and a combination of all of the distortions in data set #4 and 5. The test

set contains DMOS scores uniformly distributed in the range [20,90].

Since the CNN are initialized with a random set of weights, the results of

training can vary. We report the median score after 10 train test cycles. Our

results for real world test is given in 3.4.

The results here are very interesting. The most notable fact is that PU

encoding helps the conventional LDR NR-IQA algorithms to generalize better.

This is not surprising as PU encoding was designed to convert luminance values

to a dynamic range independent space. By itself, BRISQUE, BIQI, SSEQ

and DIIVIINE seem to be unable to adapt to the different image sizes and

luminance ranges in the data set when these are different from the training set.

46



This can be explained by the fact that the features used by these algorithms

are computed over a joint histogram from the entire image.

The kCNNmethod performs well and shows good adaptability to a different

test case. This can be attributed to the fact that an image block is used to

train the kCNN and hence the overall image size becomes less important. The

method, however, does not take into account perceptual factors and we see an

improvement if PU encoding is used.

Our proposed algorithm outperform all the test cases by a large amount

in this test of generalization to real world scenario. The large differences

in performance shows the strength of the two-stage method. The proposed

model successfully adapts to different image and luminance range of distorted

images in test conditions because of the perceptual Resistance values scaling

the error in accordance with the luminance and the content. The method is

achieves performance close to full reference algorithms, though there is still

room for improvement. Note here that the large RMSE value for full reference

algorithms are because the scale of the values produced by these algorithms

are significantly different compared to original DMOS.

A scatter plot of the scores produced by the proposed method to actual

DMOS is shown in Fig 3.8

3.5.6 Error Estimation

The output of E-net after real world test on a few images from Data set #4

and #5 are shown in Figure 3.9. The figure shows a few distorted images,

the error present in those images and the estimation of error by E-net. We

colormap the images for easier visualization; red represents high values, green

intermediate and blue low values. The corresponding Mean Squared Error

(MSE) between the actual error value and estimated error value is given in

the last column. Note here that the errors are being compared here and not

perceptual quality, hence the use of MSE. It is clear that E-net performs as

expected and is able to successfully isolate most of the errors in the image.
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Feature Processing SRCC KRCC PLCC RMSE

BRISQUE

Lin 0.5400 0.3732 0.4772 28.8475

PU 0.7135 0.5121 0.6503 20.5534

TMO - Drago 0.6337 0.4483 0.5903 21.7118

TMO - Reinhard 02 0.6583 0.4670 0.6512 18.4500

TMO - Reinhard 05 0.3524 0.2482 0.3946 30.6615

TMO - Mantiuk 0.5887 0.4103 0.5493 22.7529

SSEQ

Lin 0.5287 0.3599 0.4714 25.2588

PU 0.6492 0.4543 0.6111 19.6977

TMO - Drago 0.5865 0.3956 0.5634 22.6987

TMO - Reinhard 02 0.5810 0.4075 0.5644 22.9900

TMO - Reinhard 05 0.4990 0.3401 0.5036 24.9193

TMO - Mantiuk 0.4973 0.3398 0.4770 21.2044

BIQI

Lin 0.2845 0.1876 0.2831 31.0686

PU 0.4386 0.3041 0.4399 21.2084

TMO - Drago 0.5332 0.3780 0.4436 25.6200

TMO - Reinhard 02 0.4632 0.3196 0.4358 22.0376

TMO - Reinhard 05 0.5748 0.4048 0.5630 19.4825

TMO - Mantiuk 0.4651 0.3204 0.4571 24.2268

DIIVINE

Lin 0.5041 0.3429 0.5209 20.6506

PU 0.5318 0.3691 0.5442 19.6772

TMO - Drago 0.4143 0.2852 0.4065 25.9697

TMO - Reinhard 02 0.3634 0.2434 0.3953 26.1464

TMO - Reinhard 05 0.5558 0.3849 0.5374 19.3122

TMO - Mantiuk 0.4138 0.2838 0.4496 21.0499

kCNN Lin 0.6991 0.5156 0.7008 19.3677

kCNN PU 0.7694 0.5845 0.7544 18.5854

Proposed Lin 0.8672 0.6773 0.8780 18.6268

HDR-VDP-2.2 Full Reference 0.9298 0.7691 0.8710 16.2727

HDR-VQM Full Reference 0.9193 0.7444 0.8940 51.1045

PU-MSSIM Full Reference 0.8969 0.7125 0.7589 59.7094

PU-SSIM Full Reference 0.9121 0.7339 0.7121 59.7065

Table 3.4: Generalization capability.

and 250 cd/m2. We then give this image as input to the proposed algorithm

(as blocks of size 32x32) and examine the output images. The results are

shown in Fig 3.11. The luminance increases from left to right; The distorted

image is the same. The results from various stages processing in the proposed

algorithm is shown. The DMOS scores generated by the proposed algorithm

is shown in the last row.

Spatial masking: To analyze the spatial masking trends observed in the out-

puts of P-net (Row 3), consider any one Perceptual Resistance map of one

luminance range. The value of the Perceptual Resistance is low in pixels cor-

responding to the sky (blue values in Perceptual Resistance map), indicating

an increase in sensitivity to error and hence a reduced quality. On the contrary,

the regions where there is texture, like the bushes or the struts of the tower,
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PU-SSIM and HDR-VDP2.2 uses Minkowski summation, whereas we use a

mean value for the final quality. However, a relative comparison is helpful to

know which areas of the image show errors. Again the results we report here

are on data set #4 and #5 after the test for generalization capability.

A comparison of the error maps produced by HDR-VDP2.2, PU-SSIM, PU-

KCNN and the proposed method is shown in fig 3.12. In the figure, for HDR-

VDP2.2, the probability of error detection is shown; for PU-SSIM, an inverted

PU-SSIM map is shown to indicate the areas with error as high values. The

output of proposed algorithm is shown in the fourth column. We normalize all

the values so that the maximum value is one in which we get a good relative

comparison. The images are color-coded - red represents high value, green

intermediate values and blue represents a low value. The error maps produced

by proposed scheme and kangCNN with PU processing are compared with

HDR-VDP2.2 and corresponding MSE value are reported.

It is clear that the values produced agree with the highest performing full

reference metric (HDR-VDP2.2) in terms of the location of and the relative

intensity of the visual errors. Further proof of the overall performance is can

be seen in the high correlation values of proposed metric scores compared to

PU-KCNN in Table 3.4.

3.5.9 Effects of mixing function

The nature of P-net is heavily dependent on the specific mixing function.

As explained, the choice of this function can be arbitrary as long as it is

monotonically increasing and the network can converge.

To show the effects of using alternate mixing functions to the one we pro-

posed to use, we perform the real world test using the following mixing func-

tions.

1. Proposed model,

DMOS(i, j) = 1− exp(−
∣

∣

∣

k∗δ(i,j)
T (i,j)

∣

∣

∣
).

2. Linear mixing, DMOS = δ
T
.
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that there is minimal distortion, however, our method predicts a higher error.

MSE values are given to quantify the results.

To investigate the issue further we show the corresponding error estimate

and the perceptual resistance values in columns 5 and 6. The error is caused

by faulty error estimation by E-net and these faulty value propagating to P-

net. The training process creates an internal bias that produces error values

that tend to be always high in smooth regions. This is most likely due to the

large amount of sky pixels in training data affecting the training.

3.6 Conclusion

We propose an HDR NR-IQA scheme that uses a CNN based architecture to

generate values corresponding to perceptual masking and true Error present

in an image and combines it in a mixing function. The perceptual effects are

derived from optimization on real world data and do not involve psychophys-

ical measurements. The perceptual resistance derived from data show similar

characteristics as other perceptual models. Our algorithm predicts the vi-

sual distortions in the image due to low-level distortion such as compression

artifacts. It was found that the algorithm scores correlate well with human

scores. It outperforms state-of-the-art NR-IQA methods and is competitive

when compared to HDR FR-IQA methods.
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Chapter 4

Learning error visibility from
Image quality

4.1 Introduction

A visual error detection threshold measures, the magnitude a certain target

stimulus must have, in order to become distinguishable from a background,

masking signal. They are useful to determine the error visibility of various

kinds of distortions (compression artifacts, additive noise, etc.) produced by

several image processing algorithms. Predicting the visibility of visual distor-

tion is of paramount importance in a number of image processing applications,

such as image compression, watermarking and quality assessment.

Conventional approaches to model distortion visibility strongly rely upon

psychophysical experiments that are, in their nature, based on a simplification

of real-world conditions. For example, models that describe visibility of sine-

wave gratings might be enough to predict visibility in DCT-based image com-

pression; however, they are probably failing in modeling different or multiple

concurrent artifacts. Furthermore, local visibility is influenced by surround-

ing regions, and is ultimately linked to image semantics. It is evident that

modeling all these complex factors only through psychophysical experiments

is unfeasible.
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4.2 Motivation

Instead of learning distortion visibility directly from psychophysical data, we

propose to learn it indirectly, leveraging the large availability of alternative,

yet related, data: subjectively annotated image quality assessment (IQA)

datasets. Image quality scores provide higher level information about the vi-

sual appearance of a picture, compared to psychophysical measurements. At

the same time, they bring information about the visibility of distortion. In-

deed, a common assumption in image quality assessment is that the perceived

quality is directly related to the visibility of the error signal [109], [129]. In

other words, the per pixel error is weighted locally by the ensemble of per-

ceptual phenomena, such as contrast sensitivity and several forms of masking,

which discount its visibility to the human visual system.

Visual quality scores thus implicitly embed latent information on error

visibility. In Chapter 3, we had proposed a deep convolutional neural network

(CNN) architecture to disentangle the per pixel distortion and what we called

the “perceptual resistance”, in the context of no-reference quality estimation of

high dynamic range compressed pictures. Our results demonstrated that it is

possible to effectively estimate these two terms over a broad range of qualities,

starting from supra-threshold quality scores. This opens a question of whether

a similar approach can also be used to predict near-threshold visibility. To this

end, we train our proposed system in a full-reference fashion, i.e., we assume

that the error signal is known, as it is the case in most IQA datasets. However,

the inference step does not require the knowledge of the error, and can produce

an estimate of local masking for any input image. Interestingly (and perhaps

surprisingly), we find that perceptual scaling learned from image quality scores

can predict the detection thresholds in [3] with similar accuracy as the CNN-

based regressor in [4], although our model is learned on other datasets with

different contents and several kinds of visual impairements. This makes the

proposed approach potentially more general than previous work.
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4.3 Proposed model

In this section we present our proposed model to estimate local distortion

visibility thresholds. Specifically, we first discuss the assumptions of our model

and provide a mathematical framework to split (supra-threshold) quality scores

into per pixel error and a perceptual scaling term, which we show in Section 4.4

to be a good predictor of visibility thresholds in local masking. Afterwards,

we describe how to implement this model using a deep convolutional neural

network architecture.

4.3.1 Mathematical framework and assumptions

Let IR and ID be an original reference image and its distorted version, respec-

tively, and Q ∈ [0, 1] the quality score for ID. Without loss of generality, we

assume that Q is given as a differential mean opinion score (DMOS). We as-

sume that we have access to the local quality q(i, j) of an image patch ID(i, j)

of size N × N pixels, centered at location (i, j). The pooling process linking

the quality of individual patches to the overall quality Q may depend on many

factors, e.g., saliency. Here, we assume that the local quality of an image block

is the same as the global image quality score, similarly to the setting in [44].

While this is a strong assumption, which is often not met in practice, it has

been proved to be accurate enough to predict image quality [44].

In order to model local quality, we further assume that per pixel distortion

in a patch is discounted by a perceptual weight, T (i, j), that accounts for

typical masking and visibility effects. Specifically, we measure pixel distortion

through the average absolute error E(i, j) of a patch, defined as:

E(i, j) =
1

N2

N2
∑

k=1

|ID(i, j)k − IR(i, j)k| , (4.1)

where k is the pixel index in the patch. We then approximate local quality as

a function of the error and the perceptual weight, that is:

q(i, j) ≈ 1− exp

(

∣

∣

∣

∣

α · E(i, j)

T (i, j)

∣

∣

∣

∣

β
)

, (4.2)
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where both ID and IR are available. The local visibility thresholds T (i, j) are

computed in a module that we name “P-net”, while an estimate of local quality,

q̂(i, j) is obtained by implementing Eq. (4.2) in the “Mixing function” block.

Notice that this structure is required for training the P-net, as T is considered

a latent variable which depends implicitly on the observations of the input

content and perceived quality. Instead, for inference the P-net is employed

as a standalone block. Furthermore, we are generally interested in applying

the learned P-net on the original pictures, rather than on the distorted ones.

However, we found that training the P-net with noisy versions of the image

was more effective, as this increases the variability of input data, leading to

improved generalization capabilities.

Our model is trained to predict local quality q̂(i, j) using the ground-truth

quality q(i, j) as targets, by minimizing the following cost function:

J(i, j) = |q(i, j)− q̂(i, j)| . (4.3)

Notice that q̂(i, j) depends implicitly on the latent variables T (i, j) through

Eq. (4.2). Thus, when optimizing J , the visibility thresholds are adjusted

in such a way to weigh the error coherently with the observed ground-truth

quality.

For the architecture of P-net, we make use of a handcrafted layer that

we named as augmented input layer [53]. In this layer, in addition to the

luminance values of theN×N block, we compute the mean, variance and Mean

Subtracted Contrast Normalized (MSCN) image [77]. The latter is defined as:

MSCN(x, y) =
I(x, y)− µM [I(x, y)]

σM [I(x, y)] + ε
, (4.4)

where (x, y) denotes the location of a pixel in the patch, µM [I(x, y)] is the

mean and σM [I(x, y)] the variance of the patch, computed by replacing every

pixel (x, y) with the mean and variance, respectively, over a local Gaussian

window of size M ≤ N around (x, y). The regularization term ε is set to

0.01. This is followed by convolutional layers with 32 × 5 × 5 filters and a

fully connected layer with 100 nodes. We use relu activation in all neurons.

Dropout layers are used to prevent overfitting.
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4.4 Results and Analysis

In order to assess how well the estimated distortion visibility predicts ground-

truth data from psychophysical experiments, we test the proposed model on

the dataset of local masking thresholds in [3]. This dataset collects measured

threshold values for 1080 image patches of size 85× 85 pixels, extracted from

the CSIQ dataset [59]. The detection thresholds are reported in terms of

root-mean-squared (RMS) contrast and expressed in decibels (dB).

To test the proposed model, we train it on three different datasets: the

CSIQ dataset [59], containing 855 images, 6 types of distortions; the TID

2013 dataset [90], with 3000 images and 25 types of distortion; and the LIVE

dataset [37], featuring 779 images and 5 types of distortion. In general, the

thresholds T (i, j) found with our model do not lie on the same scale as those

in [3]. In addition, the P-net can be trained on different IQA datasets, and

the interpretation of DMOS in each dataset depends on the experiment carried

out to collect the data [123]. Following a typical protocol in the evaluation of

quality metrics, we compensate for this mismatch by linearizing the predictions

with respect to psychophysical ground truth through a monotonic third-order

polynomial fitting before evaluating their statistical accuracy.

4.4.1 Performance

A comparison of the predicted and ground-truth local visibility thresholds is

illustrated in the scatter plots of Figure 4.2, where our P-net has been trained

on the LIVE and TID 2013 datasets, respectively. Each point in the scatter

plot represents a 85×85 patch of [3]. Since our predictor can produce per pixel

estimates of distortion visibility (using overlapping patches), we decimate the

maps produced by the P-net to match the resolution of the ground truth, using

a simple averaging filter (see Figures 4.4 and 4.5).

We can observe from Figure 4.2 that the predicted thresholds capture rel-

atively well the overall trends of the measures obtained from psychophysical

experiments, even if they have been obtained by training on very different data

(IQA scores) and using different source contents. This indicates that learning
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Method Training Data RMSE

Watson et al.-KMF [112]

Pychophysical

visibility experiments

5.713

Watson et al.-JYS [112] 6.521

Teo & Heeger [102] 6.861

Chandler et al. [13] 6.879

Optimized GC [4] 5.192

Alam et al. CNN [4] 5.475

Proposed

CSIQ quality scores [59] 5.691

LIVE quality scores [37] 5.991

TID 2013 quality scores [90] 5.626

Table 4.1: Performance comparison between different algorithms. Highlighted
are the best state-of-the-art methods (handcrafted and CNN-based), as well
as our results.

4.5 Conclusion

We present a method to derive local visibility thresholds from image qual-

ity scores using a neural-network-based approach. Our experiments demon-

strate that the latent information about distortion visibility carried by supra-

threshold quality scores can be recovered and used to predict near-threshold

local masking. One advantage of our approach, compared to models based

on psychophysical data, is that it can leverage the larger availability of sub-

jectively annotated image quality datasets. We plan to formalize further this

approach in the future and apply it to objective image quality assessment.
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Chapter 5

Content dependency

5.1 Introduction

In the Human Visual System (HVS), the quality evaluation process is carried

out at different layers, equivalent to starting from pixel-level to neighbourhood,

and to scene, in image processing and pattern recognition. An explanation of

how high-level scene information affects low-level processing can be found in

[34]. The authors showed that low-level feature maps can be preset at higher-

level and influence in a top-down manner. In other words, if the viewer is

familiar with the scene, expectation creates certain degree of influence when

interpreting low-level features. Thus, depending on the viewer’s expectation

of the scene, his/her visual quality score changes. A simple example is while

enjoying a natural scene image, e.g., rural landscape under the sun, we expect

a blue sky, fresh green leaves, bright colored flowers, etc. The deviation from a

blue sky, green leaves and colorful flowers affects the perceived image quality.

Conversely, if we judge a portrait image, we look for vividness of the eyes,

correct skin tones and so on. Any deviation affects the image quality.

Based on the above real-life experience, a practical approach to assign the

degree of importance of an image region relating to visual quality is a scene

dependent Visual Error Importance (VEI) map, where the values in a region

reflect the influence to visual quality. We hypothesize that if scene charac-

teristics is given as prior knowledge, the values of this map can be computed

by a second order function with low-level image features as parameters. The

parameters can be derived by using a global optimization process and an Im-
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age Quality Metric (IQM). Such a framework can be used to augment existing

IQMs. In addition to augmenting the performance of IQMs, VEI can also

be used to propagate high-level information (top-down) in various perceptual

quality dependent image processing techniques, like image compression and

transmission.

The contributions of this work include: 1) Proposing a content-specific

IQM performance augmentation strategy, and 2) validating the strategy with

a benchmark dataset.

5.1.1 Psycho-visual experimental evidence

A major experimental evidence supporting our proposed strategy was provided

by [101]. The study analyzed influence of scene categories on image visual

annoyance. Specifically they selected: indoor, outdoor natural, and outdoor

man-made. The study showed that humans recognize these scene categories

differently at pre-attentional stages. The impact of a scene category on the

impairment level was computed by using a Generalized linear mixed model.

They found statistically significant results showing that a scene category

had an influence on the degree of visual annoyance perceived by the viewer.

Specifically, they found that people are more critical to indoor images as com-

pared with outdoor images, especially when comparing with outdoor natural

scenes. Another observation in the experiment was the difference in quality

assessment, which seems dependent on scene category.

In a related study [101], the authors observed that there was a difference of

importance between non-animated and animated objects. Their experimental

results indicate that object categories in the image also have effects on per-

ceived quality. Viewers tend to be more critical towards images with animated

objects rather than non-animated (man-made or not alive) objects.

Further insight on how image quality is influenced by scene features and

high-level content was provided by [5]. Here, the authors found category-

specific dependence of colorfulness on aesthetics. A main conclusion of the

study was that though there was no direct correlation between colorfulness

and image quality, if the image was macro photograph, colorfulness was found
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to correlate with visual quality.

Motivated by previous studies including psycho-visual experimental evi-

dence, we conducted a test described in the next section to verify our hy-

pothesis of ”Visual importance in an image can be influenced by the scene

category.”

5.1.2 Experiment on CSIQ

A quick verification to find out whether image quality is content-dependent

can be obtained by analyzing the impact of noise on images with natural

and man-made scenes. Sample images are available in the CSIQ dataset [59].

We choose images that was clearly outdoor man-made (not alive) and clearly

natural (alive) (Fig. 5.1), and analyzed the Difference in Mean Opinion Scores

(DMOS) for all the distorted images in the dataset. The amount of noise

remained the same for both natural and man-made content. We found that the

overall mean of DMOS for outdoor man-made images was 0.35 and for outdoor

natural images was 0.41. The difference was statistically significant (p < 0.05).

It means that the HVS perceives higher quality in images with man-made

scene compared with natural scene, given the same noise distortion level. In

other words, image content influences image quality assessment. Although the

difference in score, i.e., 0.06, is small, which is likely due to the Double Stimulus

Impairment Scale method used for generating the DMOS, the statisitcally

significant difference verifies the observation of [101], that people are more

critical to images with natural animated objects, as reflected from a larger

DMOS (poorer perceived quality), and how the HVS assesses image quality is

also dependent on the scene category or the objects composing the scene.

5.2 Computational Design and Implementa-

tion

From the discussion above, we believe that human perception of image distor-

tions changes depending on the high-level image content. Certain features like

color become more visually important in certain specific categorizes of image
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Figure 5.1: Examples of outdoor natural and outdoor man-made images chosen
from the CSIQ dataset.

content. In other words, if an Image Quality Metric (IQM) integrates this

content-specific factor in its computational model, the image quality assess-

ment performance can be improved.

To explore this strategy, we define a high-level Visual Error Importance

(VEI) map from a reference image (original image without distortion) and

use it to mask the error map of an IQM. The VEI map displays the visual

significance of image errors dictated by the image content. Computation of the

VEI map is done via an optimization framework using a nonlinear combination

of low-level image features of the reference with specific content. Note that

VEI computation does not involve local processing of noise and is purely based

on image content of the reference.

There are two important parameters in our formulation: image content C

and image features F .

5.2.1 Image Content C

For generating vector C, a content detection system needs to be implemented.

In this work, we are more concerned about the overall influence of the image

and not that of any particular object. Hence, we limit the definition of con-

tent to just scene represented in the image. We consider the following broad

categories of scene content: 1) indoor: characterized by rectangular spaces like

rooms lit by artificial light or low lighting with both man-made and natural

objects, 2) outdoor urban man-made: characterized by man-made buildings
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Figure 5.2: Scene Probability: The description on top shows the likelihood
of each class in the image: Id refers to indoor, Od-Nat is outdoor natural,
Od-Man is outdoor man-made.

and structures in sunlit or lit by artificial light sources, and 3) outdoor natu-

ral: characterized by fresh colors, natural objects like trees or animals, lit by

sunlight.

We used the scene-15 dataset provided by [64] and reorganized the images

for our scene classes. Then, we used a combination of SIFT [70] and GIST [83]

features with a multi-class SVM using RBF kernel to train the scene classifier.

Practically, there can be multiple classes in a single image. Hence, we use

the class probability of the SVM. Corresponding to each image, we have a vec-

tor C consisting of cs, where cs denotes the probability of the image containing

a class s. An example image with corresponding scene probabilities is shown

in Fig. 5.2, where the scene probabilities generated by our classifier indicates

that the scene has both indoor and outdoor man-made characteristics.

5.2.2 Image Features F

We use the Hue, Saturation, Entropy, image Detail level and image Saliency to

generate feature maps. To compute the detail level of an image I, we use the

equation, f5(I) = abs(I −G~ I), where f5(I) is the feature map computed,

~ is the convolution operation and G is a 3x3 Qaussian kernel with standard

deviation 1 (though larger blur levels can be applied, we found that this set of

parameters gave adequate results). For entropy, we threshold the maximum

entropy at 4.0 and then normalize it. We normalize all of the values to the
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Figure 5.3: Visual presentation of the feature maps extracted from an image.
The colorbar with the relative values from cool to hot are shown next to the
image. The original image is shown on top left. The Visual Error Importance
(VEI) map is shown on the right.

range [−1, 1]. These features are used to distinguish different scene content.

Natural outdoor images are characterized by bright saturated colors. Outdoor

urban environments have rich detail in man-made structures and clear detail

in sky. Man-made indoor images usually have less saturated colors, but with

salient objects more prominent. We use the saliency algorithms in [49], which

adopts a bottom-up approach. The purpose of the saliency map here is to

highlight the areas of the image that have an object (or object like structure).

An example set of feature maps are shown in Fig 5.3.

5.2.3 Problem formulation

For any distorted image, ID, let the image content be denoted by a vector

C = [c1, c2, ...cM ], where ci denotes the probability of the image representing a

specific content i. Let image ID be associated with a set of features represented

by F = [f1, f2...fN ], where fi represents the i
th feature map in F . Each feature

map has the same resolution as the error map δIQM(ID), of the IQM computed

72



Figure 5.4: Schematic representation of the proposed strategy.

on image ID.

We compute VEI of ID as a weighted second order function of all the feature

maps in F.

V EI(ID) =
N
∑

i

N
∑

j=0

wi∗N+j ∗ fi ∗ fj + γ (5.1)

where V EI(ID) is the scaling applied to δIQM(ID), wi∗N+j represents the

weight of the term fi ∗ fj, fi and fj represent the i and j th feature maps,

i.e., f0 = 1. γ is a very small constant used to stabilize the cost function

when wi = 0 ∀i. This formulation represents a generic function that can apply

to any first order and second order combination of the feature maps. Note

that we assume the third and higher order interaction between the features

are insignificant because the feature map values are normalized to a maximum

value of 1.

Every w is then computed using an optimization process. We simplify Eqn.

5.1 by combining fi ∗ fj and fj ∗ fi to a single term. The number of terms in

w is equal to the number of unique combination of j and k; let this count be

L.

The weight w can vary based on the scene content. Hence for M scene

categories, we need L ×M weights. Let this matrix be X. We compute the
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weight matrix WID = [w1, w2...wL] for an image using Eqn. 5.2

WID = C ∗X (5.2)

This formulation allows the IQM adjust the weights based on the scene proba-

bility, which represents the likelihood that the image contains certain content.

If the probability values of a scene are similar to two image categories, e.g.,

indoor and outdoor natural, the weights would scale and mix accordingly.

We assume that the IQM has the capability to compute the visual quality

by pooling the values of its error map. For an image ID, let the error map be

IErr,ID . Here, VEI gives the top-down influence on the lower-level error map.

We apply a linear mixing to simulate the influence of content on the error

map, following the prediction technique by [34]. The augmented error map is

computed using Eqn. 5.3.

∆IQM,X(ID) = δIQM(ID) ∗ V EIX(ID) (5.3)

where δIQM(ID) is the original error map generated from the IQM, ∆IQM(ID)

is the augmented error map and V EIX(ID) is the V EI computed using the

set of weights X.

The final score computation for an image ID is computed using Eqn. 5.4.

QID = poolIQM(∆IQM,X(ID)) (5.4)

where poolIQM() represents the original error pooling strategy used by the

IQM and V EIID,X refers to the VEI computed for image ID with the weight

matrix X.

The optimal value of X can be obtained by minimizing P in Eqn. 5.5.

P = −d(MOS, IQMV EIX ) (5.5)

Here, d() represents the distance metric used to compare the performance

of the IQM, MOS is the ground truth Mean Opinion Score of the set of images

considered, and IQMV EIX is the IQM scores obtained after the enhancement

with VEI using Eqn. 5.4 above.
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Algorithm Default performance Augmented with VEI Augmented with Saliency map

SRCC KRCC PLCC RMSE SRCC KRCC PLCC RMSE SRCC KRCC PLCC RMSE

SSIM 0.8763 0.6705 0.7949 0.6419 0.8904 0.7071 0.7994 8.4225 0.8286 0.6231 0.7913 6.1554

FSIM 0.9242 0.7567 0.8047 1.2898 0.9319 0.7698 0.8505 0.6403 0.7523 0.5521 0.7689 1.4757

MAD 0.9466 0.7974 0.9499 6.3578 0.9518 0.8066 0.9446 6.8143 0.9445 0.7952 0.9474 7.2441

GMSD 0.9574 0.8125 0.9336 0.3317 0.9616 0.8232 0.9402 0.4137 0.5485 0.3827 0.6042 0.2627

PSNR 0.5972 0.4208 0.5066 13.219 0.7129 0.5412 0.6510 22.78 0.6066 0.4270 0.5190 9.5203

Table 5.1: Performance of IQMs before and after augmentation with VEI.

In Eqn. 5.5, we constrain the values of X such that −1.0 < xi < 1.0 ∀i.

This was done for ease of optimization. The distance metric used was the

Spearman Rank Order Correlation (SRCC). We used the technique described

in [104] for obtaining the global minimal point. The local optimization was

performed by using simplex search method of Lagarias et al. [56].

The overall system implementation with complete optimization is shown

in Fig. 5.4.

5.3 Results and Analysis

Our experiments were performed using the CSIQ datasets testing with a num-

ber of IQMs: MAD [59], FSIM [126], SSIM [109] and GMSD [118]. Since

our strategy is to improve IQM performance using content-specific features,

we chose CSIQ because of its rich variation of content comparing to other

datasets, e.g., LIVE.

We divide the dataset into an 80:20 ratio based on the image content.

Then, we find the coefficient values of VEI using distorted content of the 80%

images, and check the performance of the same on the 20%. Note here that

we do not alter the selection in any way and there can be some examples

of unbalanced training set. The results are obtained after 100 iterations of

training and testing. This is to prove that the coefficients we derive using op-

timization can generalize on a different content. We compare the VEI outcome

with the performance of the original IQMs without VEI enhancement (default

performance).

Comparison of performance was based on Spearman Rank Order Correla-

tion coefficient (SRCC), Kendall Rank-Order Correlation Coefficient (KRCC)
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and Pearson Linear Correlation Coefficient (PLCC). A better IQM perfor-

mance is characterized by a higher value in SRCC, KRCC, and PLCC. For

completeness, we also include Root Mean Square Error (RMSE), which is

computed between human score and metric generated score. The improve-

ment in correlation with human judgment is supported by the SRCC, KRCC

and PLCC scores.

Comparing the default performance and the enhancement with VEI in

Table 5.1, we can see improvement in all the tested IQMs. Note that the

improvement in PSNR is large. The degree of improvement varies depending

on the IQM used. We can see that the improvement obtained is relatively

small. We hypothesize that this is because of the way the IQA experiment

was carried out. The MOS scores provided by the CSIQ dataset was generated

using the Double Stimulus Impairment Scale (DSIS) method, where the viewer

uses an undistorted image as reference and does not need to use any knowledge

from experience to judge the displayed images. Hence the top-down influence

is less. In a no-reference image quality assessment context, the improved IQM

performance can be higher. As shown in our analysis on CSIQ images in section

5.1.2, the IQM enhancement contributed from our content-specific strategy is

statistically significant.

Another valuable information provided by our method is the VEI map

(Fig. 5.3 Right). VEI maps show the relative importance of visual errors

in image regions. We can use this region importance metric to make image

compression and transmission algorithms more efficient based on the perceived

image content.

It is important to point out that VEI maps are different from saliency

maps obtained during free viewing as discussed in [33]. The difference can be

seen by comparing the outcome obtained by using saliency maps to augment

the same IQMs (Table 5.1). For comparison, we applied the saliency map to

mask the error map (generated by the IQM) with the equation δ′IQM(ID) =

(1 + sal(ID)) ∗ δIQM(ID), where sal(ID) is the saliency map of image ID and

δ′IQM(ID) is the masked error map. We chose this computation as the mixing

model for saliency map and error map of the IQM because it can be compared
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Figure 5.5: We compare the VEI map for the correct class, with the VEI maps
generated by forcing the algorithm to consider the image as a different class.
Class is shown on the left. The values are normalized to [0,1] to show relative
importance. The colorbar on the right of the image shows increasing visual
error importance (cool to hot colors).

to our own Eqn. 5.3). We found that if IQM values are reduced to zero by a

low saliency, the IQM error can be reduced to a low value. To prevent removal

of IQM error, we add a constant 1 to shift the values.

Observed that augmenting with VEI maps, IQMs have better performance

than augmenting with saliency maps.

5.3.1 Visual Error Importance (VEI) maps

To gain further insight into how content-specific information can affect our al-

gorithm and output, we force the algorithm to simulate a wrong image content

class. Consider the images in the top row of Fig. 5.5 and the corresponding

VEI maps in the second to fourth rows when SSIM is used as the IQM. The

values in the VEI maps are scaled to the range [0,1] for display purpose. The

actual scaling depends on the IQM used.

From the maps, we see that in outdoor natural scenes, VEI emphasizes

errors in smooth, well lit areas and lower to medium complexity regions, with

a lower priority to salient objects. Such areas are more important if natural

scenes are being displayed. On the other hand, for outdoor scenes with man-

77



made structures, we see that VEI assigns more importance, in term of image

quality, to regions with higher details, and less importance to smooth regions.

For indoor scenes, we observe a larger importance given to smoother regions.

5.3.2 Limitation and Future direction

Our experimental results and analysis show the feasibility of improving IQM

performance by integrating content-specific knowledge. Nevertheless, the ef-

fectiveness of the proposed strategy depends on the classifier used to categorize

the class content C, the number of classes used and the quality of the features

F . All these factors can be handcrafted or incorporated into a machine learn-

ing framework to improve performance further. Perhaps a better dataset can

be setup as benchmark for researchers to study content-specific influence on

IQM.

While the quality assessment scores in CSIQ are based on the Double

Stimulus Impairment Scale (DSIS) method, we anticipate to obtain higher

IQM improvement if the Single Stimulus Method is deployed. This can be

another future direction.

5.4 Conclusion

We propose a new strategy to improve the performance of an IQM by using

image content dependent information. Our method produces Visual Error

Importance (VEI) maps that detect image regions, which are important in

terms of image quality assessment. We tested our proposed method on the

CSIQ dataset, which has a rich set of content classes. Experimental results

demonstrate that better performances were obtained from all tested IQMs:

SSIM, FSIM, MAD and GMSD.
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Chapter 6

Color and low-level-feature
based quality assessment

6.1 Introduction

My experiments with simple features and HVS based scaling of features was

motivated by the fact that most previously proposed theories can be accom-

modated into a single low level feature based model. In a work I did col-

laborating with Dr Frederik Dufaux, Dr Irene Cheng and Dr Anup Basu, we

exploit an architecture that encapsulates the concept of object detection [42],

and explore a feature optimization strategy to deliver a more efficient IQA

framework. Current systems often capture edge like structures as features us-

ing natural images in the training set. The learnt filters are likely very similar

to the Gabor filters that can be used to model the HVS [19]. In this type of

model, high level features are generated from the input image. The generated

feature representations are used for the object detection process. There are

multiple processing layers, with each layer consisting of a filter-bank stage, a

non-linearity stage and a feature pooling stage.

Instead of multiple layers, we found out that one level of sub-band decom-

position (one layer) with an appropriate feature map scaling based on normal-

izing the coefficients can accurately predict the effect of image distortion on

perceptual quality.

Our low level feature generation approach based on a single-layer object

detection architecture is especially effective for IQA because of the following
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Note that we use a custom wavelet decomposition, rather than a trained set

of filter weights described in the original model [42], the performance of which

can be limited by the training set. A custom approach better simulates HVS

characteristics like brightness induction and other frequency dependent ones

[86].

Two-tier feature distribution normalization

The saliency of an image is dictated by the viewer’s perceptual power to dis-

criminate between the center and surround along with the relative distribution

of features in the target region [12]. Motivated by this “center-surround” pro-

cessing in biological vision, a two-tier normalization process is incorporated in

our model. We perform patch-wise divisive normalization and subtractive nor-

malization after wavelet decomposition. A feature map is divided into patches

of 13 x 13 with an overlap of 4 pixels between patches. The 5 x 5 center region

within the patch is then processed. We use the surround to simulate the retinal

eccentricity, beyond which the vision is blurred. Earlier studies [86] showed

that this patch definition better simulates brightness induction of HVS.

Tier 1: Individual feature map normalization

A temporary subtractive normalization is first performed by subtracting

the mean of the coefficients as shown in Eq. 6.1. Cs,o(i, j) denotes the feature

map at level s and orientation o of the wavelet decomposition for all pixels

(i, j) surrounding the current pixel in the 5 x 5 center block, and the mean of

the coefficients is: Cs,o(i, j).

vs,o(i, j) = Cs,o(i, j)− Cs,o(i, j) (6.1)

Let σvcenter
be the standard deviation of the feature map values in a 5 x 5

neighborhood around the current pixel (i, j) and σvsurrounding
be the standard

deviation of the feature map values in the corresponding 13 x 13 neighborhood.

We calculate the normalization factor r for the divisive normalization as:

r =

{

σvcenter

σvsurrounding

if σvsurrounding
6= 0

σvcenter
if σvsurrounding

= 0
(6.2)
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Divisive normalization is essentially a decorrelation performed by dividing

each pixel vs,o(i, j) of the 5 x 5 neighborhood by r.

ys,o(i, j) =
vs,o(i, j)

r
(6.3)

The mean values are then added back to each feature map pixel ys,o(i, j).

The temporary mean subtraction enhances only the variation in the visual

information, without altering the mean value of the feature maps.

V ′

s,o(i, j) = ys,o(i, j) + Cs,o(i, j) (6.4)

Tier 2: Cross feature map normalization

After V ′

s,o(i, j) is computed for each feature map, the mean value V ′

s,o across

all feature maps is calculated. A subtractive normalization using this average

is then performed across levels, i.e., level s ε (2, 7) and orientation o. C ′

s,o are

the feature map values after the subtractive normalization.

C ′

s,o = V ′

s,o − V ′

s,o (6.5)

The approximation feature map, i.e., level 1 (coarsest), is left unaltered in

order to preserve the low frequency components that might have been lost on

the final feature representation during the normalization and scaling processes.

Using this center-surround processing operation, we are able to simulate

effects similar to lateral inhibition in the HVS, thus enhancing the regions of

the image that have more variations. This has the added benefit of enhancing

the visually salient regions of the image; e.g., global saliency computation in

[40].

Liu and Heynderickx [68] improved the performance over SSIM [108] by

scaling with the saliency term, following which they performed dissimilarity

computation. We achieve the same effect in our method implicitly, by en-

hancing salient feature map values by our center-surround processing, before

calculating perceptual distance.

Spatial frequency scaling

The normalization step described in the last section allows us to capture the

local features within each level (feature map) of the image. However, the HVS
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Cr =
n
∑

s=1

σas + σbs

(σLs)
(6.8)

σLs denotes the standard deviation of the feature map of the luminance

component at level s. σCas,bs
is the product of σas and σbs. The experimentally

determined threshold of 0.25 was chosen to distinguish between colorful and

normal images. A comparison of the two categories of images is shown in Fig.

6.5.

Pooling

Similar to object detection based models, the pooling component takes an

N × M block in a processed feature map, divides it into k × k blocks and

returns a single value equal to the maximum valued coefficient in the block,

helping us to achieve invariance to small translations. We choose k as 3 for

a window size of 3 x 3 and select the maximum of the feature map values in

the block. Assuming the dimensionally reduced feature map as Cf (s, o), the

final feature representation f for an image, we apply concatenation on all the

processed feature maps Cf(s,o).

F = concatenate(Cf(s,o)) (6.9)

for every level s and orientation o of the processed feature map Cf(s,o).

Perceptual distance measurement

In order to compute the perceptual similarity between images, we use the L1

norm to compare the features between images.

e =
N
∑

i=1

|F1(i)− F2(i)| (6.10)

F1 and F2 are the two features generated from Images 1 and 2 respectively; N

is the dimension of the features; and e is the perceptual difference of Image 1

with reference to Image 2.
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Proposed VSI [125] PSNR SSIM[108] MS-SSIM[111] VSNR [14] VIF[98] FSIM [127] IW-SSIM [97] IFS [15] GSIM [67] MAD[57] GMSD [1]

SRCC 0.9430 0.9524 0.8756 0.9479 0.9513 0.9274 0.9636 0.9634 0.9567 0.9599 0.9554 0.9669 0.9600

LIVE KRCC 0.8200 0.8058 0.6865 0.7963 0.8045 0.7616 0.8282 0.8337 0.8175 0.8254 0.8131 0.8421 -

(2005) PLCC 0.9467 0.9482 0.8723 0.9449 0.9489 0.9231 0.9604 0.9597 0.9522 0.9586 0.9437 0.9674 0.9600

SRCC 0.8820 0.8979 0.5531 0.7749 0.8542 0.7046 0.7491 0.8805 0.8559 0.8903 0.8554 0.8340 0.8910

TID KRCC 0.6969 0.7123 0.4027 0.5768 0.6568 0.5340 0.5860 0.6946 0.6636 0.7009 0.6651 0.6445 -

(2008) PLCC 0.8883 0.8762 0.5734 0.7732 0.8451 0.6820 0.8084 0.8738 0.8579 0.8810 0.8462 0.8306 0.8710

SRCC 0.9432 0.6423 0.8057 0.8755 0.9132 0.8105 0.9194 0.9242 0.9212 0.9581 0.9126 0.9467 0.9560

CSIQ KRCC 0.7879 0.7857 0.6078 0.6900 0.7386 0.6241 0.7532 0.7561 0.7522 0.8158 0.7403 0.797 -

(2010) PLCC 0.9395 0.9279 0.8000 0.8612 0.8991 0.8002 0.9278 0.9120 0.9144 0.9576 0.8979 0.9502 0.9540

SRCC 0.8829 0.8965 0.6394 0.6274 0.7851 0.6818 0.6769 0.8015 0.7779 0.8697 0.7846 0.7808 -

TID2013 KRCC 0.6979 0.7183 0.4696 0.4554 0.6029 0.5084 0.5147 0.6289 0.5977 0.6785 0.6255 0.6035 -

PLCC 0.8890 0.9000 0.7017 0.6861 0.8334 0.7129 0.7720 0.8589 0.8319 0.8791 0.8267 0.8267 -

Table 6.1: Comparison of performance on datasets.

6.3 Experimental results

We tested our framework on four benchmark databases, which contain a set

of original images, the degraded version and the perceptual quality scores,

i.e, mean opinion scores (MOS). We generated quality scores on these images

using our algorithm. For a fair comparison with other algorithms a logistic

function was fitted to get a non-linear mapping from the objective scores to

the subjective scores, following [95]. The comparison was based on Spearman

rank order correlation coefficient (SRCC), Kendall rank-order correlation co-

efficient (KRCC) and Pearson linear correlation coefficient (PLCC). A good

IQA is characterized by higher values for SRCC, KRCC and PLCC. Our im-

plementation in python had an average time per image pair (1 reference and

1 distorted) of 3.06s for the LIVE dataset. This can be improved with C++

programming. Our computational complexity is similar to that of SSIM; one

wavelet decomposition (FIR implementation O(N log(N))) followed by a scal-

ing in windows and then on sub-band level. Since a wavelet transform is used,

the total number of pixels in all the sub-bands remains the same as the original

image, resulting in low overall complexity.

6.3.1 Performance comparison and analysis

The strengths of our model can be attributed to the local normalization and

global scaling processes, which have advantages over traditional methods.

These operations model the adaptation of the HVS by decorrelating elements

in the feature maps along the axis of the wavelet basis, mimicking the process-

ing in retinal ganglion cells [8] [28]. The end result is similar to PCA whitening

(where the whitening operation makes the different components of PCA un-
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correlated and of unit variance). The color intensity invariance feature of our

model improves the IQA results by adaptively categorizing images at different

brightness levels and analysing accordingly.

To test the performance, we run our IQA algorithm on the CSIQ [58], LIVE

[37], TID2013 [89] and TID [91] databases. A comparison among different IQA

algorithms on various datasets is given in [116], which we use to evaluate our

algorithm. The algorithms that we compare with are VSI (Visual Saliency

induced IQA) [125], PSNR, SSIM (Strutural similarity based IQA) [108], MS-

SSIM (Multi scale SSIM) [111], VSNR [14], VIF (Visual information fidelity

based IQA) [98], FSIM (Feature similarity index IQA) [127], IW-SSIM ( in-

formation weighted SSIM) [97], IFS (Independent feature detector IQA) [15],

GSIM (Low level gradient similarity IQA) [67], MAD (Most Apparent Distor-

tion) [57], GMSD ( Advanced SSIM based on gradient magnitude IQA ) [1].

The results are shown in Table 6.1.

Over the years, many IQA algorithms have been introduced. In order to

evaluate the correlation between subjective scores and objective scores gener-

ated by IQA algorithms, statistical ranking methods like SRCC, KRCC and

PLCC are used. However, what is the significant threshold in these rankings

which truly reflects noticeable visual quality difference in the assessed images?

Is it 0.01 or 0.05? In the VSI paper, the authors highlight the top two scores

with a difference up to 0.05. In Table 1, we bolded the scores which are within

0.03 (half way between 0.01 and 0.05) of the maximum value. Our method

has all bolded scores while others have at least one score not bolded. For com-

parison, if the threshold is reduced to 0.02, the proposed method only has one

not bolded score while IFS and VSI have 3 and 6 respectively. One obvious

reason for our consistent performance, as illustrated in Table 1, is that other

algorithms work particularly well in one test database at the expense of an-

other. For example, LIVE was released around 2005 by the authors/co-authors

of [SSIM, MS-SSIM, VIF, FSIM, IW-SSIM and GMSD] (published in 2004,

2003, 2005, 20011, 2009 and 2013 respectively). The techniques described in

these papers, following the concept of SSIM, all perform well in LIVE. Image

structural content is an important factor for quality assessment, but an algo-
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rithm designed for one type of structure, e.g. edges, may not be effective on

another. Besides, we observed that by tuning the parameters in an algorithm,

the outcome may favor one test dataset over another. By adopting an optimal

set of parameter values, as in our method and as explained in the IFS paper,

a balance in quality across datasets can be achieved.

Among the state-of-the-art IQA techniques from 2005 to 2015 no one al-

gorithm performs best for all datasets. GMSD does not show KRCC score

and the test on TID2013 is missing. Thus, we exclude it from the comparison.

Both IW-SSIM and MAD were published in 2009. While IW-SSIM outper-

forms MAD in TID, MAD is better in CSIQ and LIVE. Both algorithms work

equally well in TID2013. While MAD works better in all four datasets than

VIF (2005), IW-SSIM is not as good as VIF in the LIVE dataset. FSIM

was published in 2011. Although it shows improvement over IW-SSIM in the

TID2008/2013 datasets, MAD (2009) is better than FSIM in the CSIQ and

LIVE datasets. VSI and IFS were published in 2014 and 2015 respectively.

VSI shows the best results in the two TID datasets and IFS is better in CSIQ,

but MAD is still the best in the LIVE dataset.

Since IQA research has advanced rapidly in recent years, new parameters

have been introduced in the algorithms to accurately assess image content.

Accordingly, small image datasets are expanded to increase the variety of image

content. It can be seen that compared with TID2008, TID2013 has seven extra

types of distortions adding up to a total of 24 types. In comparison, LIVE

(Release 2) has only five distortion types. Since TID2008 can be treated as a

subset of TID2013, we exclude the scores of TID2008 to avoid double counting.

Also, as pointed out in the IFS paper, “independent component analysis can

provide a good description for the receptive fields of neurons in the primary

visual cortex which is the most important part of the HVS.” Image contents

vary and each image is composed of low level components which stimulate the

HVS. SSIM-based techniques detect certain types of component successfully,

e.g., edge structures in the LIVE dataset. However, there are other perceptual

components, such as luminance and color, generated from different types of

distortion which are not described in the LIVE dataset. Thus, evaluation
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based on the scores in LIVE does not truly reflect potential distortions. Since

TID2013 contains 3000 images and CSIQ (2010) contains 866 images, which

are far more than other datasets, and they were created more recently, we use

them as benchmark datasets for evaluating IQA algorithms.

In a real-world application, it is not possible to predict what type or what

combination of distortion(s) will occur in the processing, transmission and ren-

dering pipeline, and accordingly select the best performing algorithm. Instead

of comparing scores for 24 distortion types individually, it is practical to ex-

amine the overall (average) performance of an algorithm. Based on the test

datasets CSIQ and TID2013, the 5 best performing algorithms with average

score over 0.8 are MAD, VSI, IFS, FSIM and our proposed method.

Note that IFS and VSI have the best performance in the CSIQ and TID2013

datasets respectively, but at the expense of the other dataset. FSIM, IFS and

MAD have a high difference in average score of more than 0.1 between the

two datasets. Our algorithm has a high average and achieves more consistent

performance in both datasets. Our method shows an improvement compared

to low level feature based IQA FSIM [127]. The inclusion of two-tier normal-

ization, optimized frequency scaling and color adaptation, attributes to this

improvement.

To-date, there has been no one single IQA algorithm which outperforms

others for all distortion types and in all benchmark test datasets. Our contri-

bution lies in proposing a more consistent technique to assess image quality

based on a systematic approach to review the evolution of IQA algorithms us-

ing unbiased test data, instead of following the traditional method to look at

individual scores in isolation. The scatter plots of the scores generated by our

metric against user subjective scores are shown in Fig. 6.6, which illustrates

the consistency between our metric scores and the user scores. In order to

illustrate the advantage of using center-surround in the normalization process,

we computed the scores using only a simple window of size 3x3, 5x5 and 7x7

respectively. The results are shown in Table 6.2. The lower performance of

single window compared with center-surround agrees with the finding that the

saliency of an image is influenced by the relative distribution of the image
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parameters at the image level, it is difficult to have one algorithm that outper-

forms others in all image datasets. Given an arbitrary image, without knowing

what training characteristics it is associated with, our method guarantees a

balanced assessment.
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Chapter 7

Investigation of Gaze Patterns
in a case study

7.1 Introduction

One practical application of out results on low-level features and attention is

in the field of surgical training. Specifically, we focus on Laparoscopic surgical

training. Laparoscopic Surgery (LS) is becoming the standard procedure in

surgery. It uses small incisions created in the patients body to insert surgical

tools and camera. The operation is performed with the surgeon guiding the

surgical tool with the camera guiding his movements. LS offers a lot of benefits

to the patients including reduced recovery times, less risk of hemorrhaging

etc. However, for the surgeons using the system, it is difficult to perceive the

surgical site in 3-dimensional (3D) fashion and coordinate their eyes and hands,

due to the loss of depth perception, indirect image, mirrored hand movements,

and eye- hand misorientation using a single camera[11]. The limitation of

visual perception in LS increases cognitive and physical stress of the surgeons

and trainees and is a leading cause of inaccurate judgment and estimation.

This leads to significantly longer times in training and performing LS c2

Some recent studies have found that different camera arrangements af-

fect perceptual-motor performance in laparoscopic surgery [31] - [38]. The

use of multiple cameras as a tool for restoring the three dimensionality is op-

timistic and can easily resemble the different vantage points accessibility of

open surgery. In the current study we investigate the behavior of subjects
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when presented with multiple viewing perspectives in surgical simulation. We

compare the eye behavior of the high and the low performers when attempting

to perceive the depth cues presented with a multiple view setting.

7.2 Motivation

It was shown that a multiple view arrangement can be superior to the use of

a single camera [31] - [38]. However, this also increases the cognitive load on

the user. From studies in aviation displays, we have the conclusion that men-

tally integrating information across multiple displays is challenging and draws

additional attention demands from the user [84] - [115]. In the study of DeLu-

cia on effects of camera arrangement on perceptual-motor performance in LS,

multiple– camera views provided more information about 3D space but im-

posed more attention demands compared with a single-camera view. In their

study participants were presented with multiple-camera views of a surgical

simulation environment. Participants did not look at all views equally often

and may not have necessarily mentally integrated the views to reconstruct 3D

space [22]. It was also suggested that surgeons (elite performers) use differ-

ent information or integrate multiple sources of information differently than

novices. This leads us to believe that with training, humans might learn a

specific ’gaze behavior’ that integrates the 3D information more efficiently.

We seek to discover this behavior that separates the experts from the novices.

The results can help in design of better displays in multi-view environment,

more intelligent camera placement and better training programs for novices

[107].

7.3 Method

In the study we conducted, we compared the gaze behaviors of human opera-

tors while performing simple surgical task in a multiple camera view condition.
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7.3.1 Subjects and experimental environment

Twenty university students with varying levels of laparoscopic surgical training

participated in the study (13 males, 7 females; mean age, 28). The sample

size was calculated based on outcomes from previous research found in the

literature. For example, we used DeLucia’s study (2011) to adjust our sample

size. In DeLucia’s study, 12 subjects were included in testing how the number

and type of camera views affect manual manipulation. They recorded a main

effect of viewing condition (F(4, 44)= 23.79, p < 0.001, w2= 45.58%). Tukey’s

HSD analyses showed that mean task completion time was significantly faster

for the direct view compared with the front and side views, and the side view

resulted in the slowest completion time among the different views (p < 0.05).

The larger group size in the current study was expected to have significant

power to show significant effects. Ethics approval was obtained from the Health

Research Ethics Board of the University of Alberta before the recruitment of

human subjects. Written consent was obtained from each participant prior to

entering the study.

The experimental setup included three main components, (1) a 2D monitor

(LG-24MA31D, LG Electronics, Seoul, South Korea) which displays images

captured by the surgical cameras (2) Training box with three camera for front,

top and side views and 3) Tobii X2( Tobii Technology, Inc., Washington DC,

USA) 60Hz eye-tracker placed under the monitor to unobtrusively record the

subject’s eye motions.

Subjects performed a surgical simulation task with the camera placed at

two different angles (front camera at 30-, and top camera at 90- degree angle to

the plane of the target), with a third camera placed on the side of the training

box.

7.3.2 Tasks

Subjects were asked to move graspers and transfer objects between surgical

targets (pegs) in different depth planes (Figure 3). Subjects were required

to perform the task as quickly and accurately as possible without dropping
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Statistical tests : By comparison of the low and high performers’ eye be-

havior we were able to reveal how human operator collect visual information

to rebuild 3D vision in Image-guided surgery. The eye behavior measurements

(percentage of view used and frequency of gaze shift) were subject to 2 (groups;

high performers versus low performers) x 2 (views; top versus front) two-way

ANOVA model for analysis of variance. To define further difference between

the high and the low performance groups, data was subjected to a indepen-

dent samples t-test. SPSS (SPSS Inc. Chicago) was used to perform statistical

analysis and p < 0.05 was considered statistically significant.

7.4.2 Features used

From the eye tracker and the feature tracking, we analyzed the following data:

1. Gaze location: Initial analysis of subjects’ gaze location over the three

camera views subjects spent sufficient time (48%) on the top view as

well as the front view (50%), but not on the side view, which was used

at only 1%. Additionally, we compared the number of visits between the

3 views. Pair comparison revealed significant difference between the top

and the side view (p < 0.001); front and side view (p < 0.001), but not

between top and front view (p = 0.971). For this reason, we excluded

the side view data in our further comparisons.

2. Frequency of gaze shift between the different views: This looked at the

amount of time there was a shift of gaze from one view to other. The

statistical test results showed that there is significant main effect between

the high and low performers : F (3,16) = 8.96; p = 0.009; η2 = 0.359.

The graphical representation of the same is show in 7.5

3. Percentage of view used (eye behavior measurements): This looked at

the amount of time one particular view was utilized during the course of

the experiment by a user. We consider percentage values here to remove

the effect of varying times among users. Results revealed for the group

as a whole, significant main effect for views: F (3,16) = 27.71; p = <
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trial compared to their low performance counterparts which focused mainly

on one view. We conclude these from the Front/Top ratio for the high and

low performers.

In conclusion, the current study showed that human operators utilize in-

formation from different visual sources, when available, for reconstructing the

three-dimensionality of a surgical scene without impairment of performance.

We additionally revealed eye behavioral evidence to support the notion that

expert and novice performers use the visual information from the multiple

sources differently. As was suggested in previous research on perceptual-motor

performance in the LS [31], top surgeons (elite performers) might use differ-

ent information or integrate multiple sources of information differently than

novices. It is also believed that, with practice, trainees could learn to use

the multiple views to improve performance beyond what was achieved with a

single view. Thorough understanding of the operators’ behaviors is vital to

direct further research on the feasibility of multiple views usage in the OR

and for surgical training. The knowledge from this study can be used for cre-

ation of smart display interfaces where trainee’s gaze can be guided towards

an expert-like behavior. The benefit of such a remote training tool (smart

display system) is significant.

This study was useful in analysis of expertise in a task specific environ-

ment. A similar experiment can be performed to analyze the effect of human

experience with art on perceptual quality.

Here there is a big potential that machine learning can be used to capture

and model differences in gaze behavior. The results of our studies can be easily

modeled by a simple system like an SVM. since we derive a set of features

that can be separated by a linear hyperplane. More complex behavior can

be captured by deep learning based systems that work on the raw data. A

potential future system can be build that can monitor gaze behavior to check

for expertise level per session. The analysis can also be done in time windows

hence having a fatigue tracking mechanism.
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Chapter 8

Impact of JPEG compression on
perceptual quality of 3D models

8.1 Introduction

3D graphics is an integral part of modern multimedia with applications in

various areas including video games, medical data transmission, and virtual

reality. 3D models are a fundamental part of 3D computer graphics. The

most common method to represent 3D model is by using a triangular mesh

to describe 3D geometry and one or more 2D images to represent the texture.

We will be referring to 3D models used in graphics represented this way as

tex-mesh in this paper.

With the recent push towards cloud storage and interactive 3D graphics,

a significant part of the information exchange is happening over the Internet.

The information in 3D graphics consists mainly of tex-meshes. Given limited

bandwidth and a high amount of tex-mesh data to be transmitted, there is a

significant drop in transfer speed and hence the quality of user interaction with

a graphics application can become unacceptably slow. One way to increase the

speed is to compress the data, which leads to loss in perceived quality. This

in turn leads to a bad quality of experience for the user. Thus, it is extremely

important to find a tradeoff between compression and perceived quality. Such

a trade-off requires a model that can predict the perceived quality of a tex-

mesh at a given compression level.

A popular method for increasing the efficiency in the representation of
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multimedia data, that is meant to be perceived by the human visual sys-

tem (HVS), is to remove perceptually irrelevant information. Identification

of perceptually irrelevant information requires subjective studies, where user

opinion about quality is collected. Since this is not feasible in every situation,

a perceptual quality model can be used to mimic the HVS. Perceptual quality

models analyze a given tex-mesh and give a score or rating to the quality of

the tex-mesh that would be similar to what a human would score or rate.

The literature is rich with studies that model the perceptual quality of

3D meshes (without texture). However, the texture is an important part of

the tex-mesh representation, as it contributes to the visual appeal of a model

as well as act as a mask to hide some geometric imperfections in the mesh.

Despite its importance, there is insufficient amount of research that deals with

perceptual effects of texture on tex-mesh. We found no study that specifically

deals specifically with texture compression and its effects on perceived quality

of tex-mesh.

8.2 Experimental setup

Perceptual experiments were conducted with a rating based subjective experi-

ment on a custom interface. The design and details of the interface are detailed

in this section.

8.2.1 Design consideration

Number of reference: Providing a reference to subjects while taking opinion

scores allows precise control for the variable we want to study (in this case

texture compression). However, in studies like these, the self consistency of

results is extremely important. The importance and positive results of these

are shown in [87] and analysis is found in [30]. To ensure the consistency of

results, we provide the subject with the best and the worst models as reference.
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is removed from the pool. Once we ensure that all the models have a certain

minimum number of response, we select models whose response have larger

variance by using the same model pool based method above. This ensures

that the models where there is large variance in user score is examined by

more number of users; hence reducing our error.

8.2.3 Experimental conditions

The subjective experiment was performed with the interface displayed on an

AOC 27 inch screen with factory color calibration. The subjects viewed the

screen at a distance of approximately 70cm. The subjects had 30 seconds

to take a decision. The computer used to perform the experiment had an i7

processor with 16GB RAM and and Nvidia GTX660 GPU.

8.2.4 Stimuli generation

We select from a total of 6 models. The visualization of the models are shown

in figure 8.2. The details of models used are detailed in table 8.1. We limit

the resolution of the model to a width of 480 pixels.

Model #Vertex
#Texture

shape

File Size

Mesh Texture

Apple 6738 480x480 1.04MB 184KB

Bison 3821 480x480 883KB 188KB

Dwarf 6167 480x480 1.12MB 188KB

House plant 6608 480x480 58KB 61KB

Treasure chest 6792 960x480 43KB 294KB

Barrell 42284 480x480 7.03MB 100KB

Table 8.1: Details of 3D models used for psychovisual experiment.

8.2.5 Experiment

Each subject was initially briefed about the purpose of the study and informed

about the reference models, time limits and mode of interaction in a short
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Figure 8.2: Visualization of models used in experiment.

demonstration session. The subjects were then asked to rate center model on

the scale of the interface. Each user is asked to rate 30 times.

We chose from a set of 6 different models with 6 levels of texture com-

pression (Q factors 1,20,40,60,80,100) giving us 36 textured models to assess

subjectively.

8.3 Mathematical Modeling

An initial analysis of the data can be performed by analyzing the average

user rating for each Q factor. The plots of raw data collected from 9 subjects

are shown in the plots. Here we calculate the error bar assuming that the

sampling distribution is Normal and the standard deviation is unknown. Here

we see that even without any processing the data that we obtain an average

score that is monotonically increasing with Q factor; consistent with general

intuitions on effect of compressed texture on quality.

The interaction between texture and geometry on perceived quality was

modeled by [87]. The model generalizes texture and geometry quality with

normalized variables for texture and geometry level. Since texture resolution

and the range of quality levels are normalized in a fixed range, we can model

the overall effect of texture compression by modulating the texture variable t

in model proposed above.

Outlier Detection

Detection and removal of outliers are performed by using modified z score

method proposed in [39] because of its robustness. We follow the recommen-
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step is shown in fig 8.6. An interesting observation here is that certain models

where the models are animate(alive), we find that the decrease in quality is

more linear. This opens up the possibility of model content influencing the

rate at which the global texture quality deteriorates. This however is beyond

the scope of this work and can be considered as future work.

8.4 Conclusion

We studied the effects of JPEG texture compression on the perceived quality

of a textured 3D model. We performed a rating based subjective experiment

to measure human responses to degradation in texture because of JPEG com-

pression. We then model our observations by statistical model and integrate

it into existing model by [87]. We also provide an alternative model based on

file size and integrate the same into this model also.
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Chapter 9

Conclusions and future
directions

In this work, we proposed various methods for expanding the field of image

quality assessment.

Our major contribution is the proposal of the first no reference image qual-

ity assessment method for evaluation of local image quality in High Dynamic

range images. To address the issue of algorithms failing to predict the visual

quality in HDR images, we derive a neural network based solution for esti-

mating errors and deriving the perceptual resistance in an image. Perceptual

resistance is a measure that we define to denote the degree of difficulty of a

viewer to perceive an error in a given part of the image. We derive this mea-

sure using a purely data driven method on IQA datasets without the need for

psychovisual experiments( which is the traditional method to derive this mea-

sure). Further experiments verified the performance of perceptual resistance

with experimental evidence on visibility on LDR images. We then studied the

impact of texture compression on 3D textured models and modeled our find-

ings into existing models for perceptual quality of 3D meshes. Additionally,

to address the lack of research into content dependent image quality assess-

ment, we propose an intelligent method of error scaling that depends on the

scene content of the image. Finally we derive a low-level feature based method

for improving the performance scores of LDR FR-IQA’s by utilizing color fea-

tures. In all cases, we compare our results with existing algorithms on multiple

datasets and showed a clear improvement in performance.
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We also present the results of a study that we performed on the analysis of

surgical performance in laproscopic surgery emphasizing the differences in gaze

patterns between expert and novice surgeons. A similar study can be used to

explore the effects of human expertise with images on perceptual quality.

The studies that we presented represent the first exploration to incorporate

dynamic range into blind IQA. The results could be expanded with additional

studies into the perceptual quantities that we derived. Larger datasets can

be used to improve the performance of this measure. Our results on content

dependency were meant to demonstrate a proof of concept and can also be

expanded using more complicated methods. A more complex scene identifica-

tion system and more descriptive feature and be used to do this. Our results

on the inclusion of color into IQA can be extended using a more continuous

method of integrating features into IQA. Finally, our observations on texture

quality in a tex-mesh can further be extended to include other factors like

tessellation, material types etc.
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