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ABSTRACT

Numerous attempts have been made to address the computationally intractable open 

pit optimization and long-term planning problem. Heuristic methods, economic 

parametric analysis, operations research, and genetic algorithms have been used to 

formulate periodic open pit long-term schedules. In practice all these techniques have 

limitations in dealing with large industrial problems; stochastic processes governing 

mining technical and economic variables; temporal nature of exploitation; and mine to 

mill integration. In complex mining operations, small deviations from the optimal 

strategic plan could result in the loss of millions of dollars.

The primary research goal is to develop, analyze, and implement a 3-D intelligent 

open pit optimal production simulator (IOPS) based on reinforcement learning (RL) to 

maximize the net present value (NPV) of the venture. Also a continuous open pit 

simulator (COPS) based on the modified open pit geometrical model and a system of 

differential equations have been developed to capture the continuous-time open pit 

dynamics for tactical purposes. The Java Reinforcement Learning Library was chosen as 

the core of the IOPS application implementation. Java programming language and 

MATLAB were selected as the platform for programming and graphical user interface 

(GUI) implementation.

To verify and validate the research models, a case study on an iron ore deposit with

114,000 blocks was carried out. The final pit limits were determined using Lerch’s 

Grossman’s algorithm with the Whittle software. The optimized final pit limits show the 

total amount of 399 million tonnes of material consisting of 220 million tonnes o f  ore and 

179 million tonnes of waste. The practical annual schedule generated by the industry
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standard tool — Milawa algorithm used in Whittle software -- yielded an NPV of $430 

million over a 21-year mine life at a discount rate of 10% per annum. The practical 

learned scenario of 3000 simulation iterations using IOPS yielded an NPV of $438 

million over the same time span. Experiments were also performed to compare the annual 

stripping ratio, average grade, annual waste, and the ore and concentrate production. The 

outcome of the research demonstrated a strong promise towards improving the expected 

net present value of mining investments. The algorithms developed can be the basis of 

the next generation of mine design software packages.
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Chapter 1 Introduction

CHAPTER 1 
INTRODUCTION

1.1 Background

An open pit mine is an excavation or cut made at surface of the ground for the 

purpose of extracting ore, which is open to the surface for the duration of the mine’s life. 

To expose and mine the ore it is generally necessary to excavate and relocate large 

quantities of waste rock. The main objective in any commercial mining operation is the 

exploitation of the mineral deposit at the lowest possible cost to maximize the net present 

value of the operation. The selection of physical design parameters and the scheduling of 

the ore and waste extraction program are complex engineering decisions of enormous 

economic significance. The planning of an open pit mine is, therefore, basically an 

economic exercise constrained by certain geologic, technical, and operating aspects. 

Open pit mining layouts consist of concentric shells with near ellipsoidal cross-sections. 

These shells decrease in size with increasing depth from the surface. Wall slopes, whose 

angles depend on the rock mechanics and geological characteristics of the ore body and 

host rocks, bound an open pit layout. The challenge to mine planning engineers is to plan, 

design and optimize the pit layouts to minimize waste removal, ensure safety and 

maximize the net value of the minerals in the pit (Asa, 2002).

Mine planning has its objective, the specification of an extraction sequence, which 

maximizes the profit or cash flow over the economic life of the ore body. The optimal 

plan must determine: (i) the ultimate economic limit (pit limits), which defines the final 

size and shape of the pit; and (ii) the mining schedule, which depletes the ore body 

defined by the pit limit and maximizes the chosen financial objective over the life of the 

mine (Koenigsberg, 1982). According to Whittle (1989), the pit outline with highest net 

present value can not be determined until the values of the blocks are known; the values 

of the blocks can not be determined until the extraction sequence has been established; 

and the extraction sequence can not be prepared without knowledge of the final pit 

outline.

1
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Chapter 1 Introduction

Lerchs and Grossman (1965) presented a 2D algorithm to determine the optimum 

ultimate pit limits based on dynamic programming. Simultaneously, they demonstrated a 

3D algorithm based on graph theory for optimum ultimate pit limits problem. Some of 

the researchers used variants of the original algorithm derived from graph theory (Picard, 

1976; Whittle, 1988; Zhao and Kim, 1992). Other categories of algorithms namely 

heuristic methods, include different versions of floating or moving cone (Pana and 

Davey, 1965; Williams, 1970; Gauthier and Gray, 1971; Robinson and Prenn, 1973; 

Lemieux, 1976; Lemieux, 1979), the Korobov algorithm (Korobov, 1974), the corrected 

form of Korobov algorithm (Dowd and Onur, 1993), and dynamic programming 

(Johnson and Sharp, 1971; Koenigsberg, 1982; Wilke and Wright, 1984; Yamatomi et al., 

1995). Rigorous methods including network or maximum flow techniques (Johnson and 

Barnes, 1988; Yegulalp and Arias, 1992), transportation algorithm (Huttagosol and 

Cameron, 1992), network flow algorithm based on dual of Lerchs and Grossmann 

(Underwood and Tolwinski, 1998) and parameterization techniques (Francois-Bongarcon 

and Marechal, 1976; Francois-Bongarcon and Guibal, 1982). Stochastic methods 

including genetic algorithm (Denby and Schofield, 1994; Denby et a l, 1996), modified 

conditional simulation/multi-layer feed forward neural networks (MCS/MFNN) 

(Frimpong and Achireko, 1997), simulative optimization model (Erarslan and Celebi, 

2001), simulated annealing and neurogentic algorithm (Asa, 2002), and recently open pit 

optimization including mineral processing criteria using non-linear goal programming 

(Esfandiari et al., 2004).

1.2 Statement of the Problem

A problem of central concern to the mining industry is to determine the most 

profitable material, which can be feasibly removed from an open pit mine. An early task 

in mine management is the establishment of an accurate model of the deposit. The 

problem is approached by first taking samples of the ore from boreholes and applying 

geostatistical techniques to estimate the ore’s distribution in terms of quality and quantity 

(Underwood and Tolwinski, 1998; Caccetta and Hill, 2003). There are a number of 

models available for reserve modeling. According to Kim (1978), they are classified into:

2
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Chapter 1 Introduction

Figure 1.1 Sample block model (Thomas, 1996)

(i) regular 3D fixed model; (ii) 3D variable block model; (iii) girded seam model; (iv) 2D 

irregular model; and (v) 3D irregular block model. The 3D fixed block model is the most 

commonly used and the most suitable model for computerized optimization techniques. 

This model is based on the ore body being divided into fixed size blocks. The block 

dimensions are dependent on the physical characteristics of the mine, such as pit slopes, 

dip of deposit and grade variability, as well as, the production equipment (Gignac, 1975). 

A grade is assigned to the center of each block using geostatistical methods such as 

distance weighted interpolations, kriging (Krige, 1951; Matheron, 1962), sequential 

Gaussian simulation (SGS) (Deutsch, 2002), or modified conditional simulation (MCS) 

(Frimpong and Achireko, 1997). Each block is identified by its location coordinates. The 

net value of the block, referred to as economical block value (EBV), is the difference 

between the value of the estimated or simulated ore in a block and the cost of extracting 

that block. The value of the ore, in general depends on its grade richness. In most of the 

cases a cut-off grade is established; all ore with grades below this cut-off is considered as 

waste. A second cut-off grade may be defined to differentiate ores sent to the processing 

plant from ores sent to stockpiles. The gross return of the block is determined on the basis 

of mineral grade, cut-off grades, and block grades. The cost of mining a block depends on

3
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Chapter 1 Introduction

the type of material and the production equipment. The value of the block is the 

difference between the gross return and the cost of mining (Koenigsberg, 1982).

The general definition of the ultimate pit limits could be described as size and shape 

of mine-able reserves and associated waste materials to be excavated based on technical, 

economical, and safety constraints. It can also be defined as the final dimensions of an 

open pit at the end of the mining period, which maximizes the objective function. The 

management’s objective could be based on: recovered metal, profit, or net present value. 

The model usually provides information for evaluating: (i) the economic potential of a 

mineral deposit; (ii) financing and taxation; (iii) short and long-term mine plans; and (iv) 

the boundaries outside which mine plant and structures should be located.

The objective of pit design and optimization is to maximize the net value of an open 

pit operation subject to geological, geotechnical, economic and capacity constraints. 

Constrained by variable field slopes, blocks are removed to optimize the pit layouts 

following algorithmic procedures that mimic the extraction sequence of a mining 

operation (Frimpong et al., 2002). The problem of finding the optimal plan is 

compounded by the interaction between the schedule (which depends, in part on the pit 

limit) and the pit limit (which depends, in part on the schedule) and by the physical and 

technical constraints on mining operations. The physical constraints include the type of 

soil or rock in the substrate, which affects the limiting slopes of the pit, the speed, and 

cost of excavation. The technical constraints would include the number and size of the 

excavation and transportation equipment, which affects the speed and cost of excavation 

and, perhaps, the extraction sequence of the ore body. Other technical constraints depend 

on the rate and cost of processing the ore (i.e., on economic considerations external to pit 

development). These may be included in the planning program or introduced externally 

(Koenigsberg, 1982).

The standard algorithm, which is used by commercial packages1 in industry today, is 

Lerchs and Grossmann (1965) based on graph theory. The algorithm is rigorously 

optimal with due consideration to the primary assumptions. The algorithm is limited due

1 Whittle Four X, MineMax Planner, MaxiPit Earthworks,

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 1 Introduction

to (i) complexity in terms of comprehensibility and programming; (ii) long computing 

time; (iii) difficulty of incorporating variable slopes; (iv) optimizing criterion is total 

undiscounted profit, where as it should be net present value (Dowd and Onur, 1993).

Achireko and Frimpong (1996), Frimpong and Achireko (1997), Frimpong et al. 

(1998), Frimpong et al. (1998), Frimpong et al. (2001), Frimpong et al. (2002), and 

Frimpong et al. (2002) outlined the limitations of LG2 and other common algorithms. 

These limitations are due to the stochastic processes governing ore reserves, commodity 

price, and production cost. The variables underlying mining operations are stochastic in 

nature, and their inherent uncertainties can significantly affect the value of an optimized 

layout. Any algorithm that neglects these processes has a potential to yield suboptimal 

results. Short learning curves and CPU times are invaluable in data processing, program 

execution, and interpretation of results for prompt decisions. Current algorithms must be 

rerun for any changes in information and database, thus may result in long CPU times.

Computational intelligent (Cl) algorithms are capable of storing the submitted 

patterns of layout in memory after complete training of the neural agents. Thus, any 

changes in database can be processed at a faster rate without having to retrain the neural 

agents, resulting in shorter CPU times. The ease of understanding Cl algorithms and their 

numerical procedures results in short learning curves. This is particularly significant in 

mining applications since mining engineers spend much time in mastering the concepts 

and procedures in current algorithms. An important design focus in surface mine layout is 

slope stability, a function of the geological structures within the formation environment. 

Current algorithms are blind to geological structures that may affect the pit layout. As a 

result, the resulting optimized layout may not be technically feasible because of the 

presence of major faulting, folding, jointing, or disturbed regions. The potential for the Cl 

algorithms to store information on geological structures for use in layout optimization is 

significant in surface mining. Finally, current algorithms make no allowance for 

operating strategies to maximize the net pit values. The value derived from any mining 

activity is dependent on operating strategies used for extracting minerals. The sequence

2 Lerchs and Grossmann

5
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and schedule of material extraction, incremental haul road distances, fleet management, 

and other important strategies affect the value of a surface mine. These deficiencies can 

cost a surface mining operation severely in terms of dollars, time, material and logistics 

handling, and future strategic and tactical plans.

In spite of the importance of haul roads in open pit mine design, most computer- 

aided design software packages neglect haul roads in surface mine layout design. Haul 

road design is directly input into the computer model and the results of ultimate pit limits 

are subsequently adjusted to reflect the incorporation of the haul road. Direct input can be 

either through manual coding or the digitizer (Kim, 1978). The incorporation of the road 

forces changes in the shape and slopes in different areas of the ultimate pit limit design. 

The location of the haul road alternates the access to the ore that was designed by the 

optimization method.

Another important consideration in open pit planning and design, which is mostly 

neglected, is the consideration of the whole mining process as a unit. Mining operation 

consists of exploitation and mineral processing as a unit global entity. One should always 

take this into account that neither pit limit optimization nor production scheduling 

optimization is goal by themselves; they are parameters that are used to maximize the 

total value of the mining venture. Most of the existing algorithms do not consider the 

effects of the processing plant and stockpiles on the block extraction sequence. The basic 

demands of the processing plant are uniform material grade and maximum usage of the 

processing plant capacity. Uniformity should be both in quantity (amount) and quality 

(grade) to minimize idle times of the plant. The supply of material to the plant requires an 

optimized excavation sequence. Hence, the optimum pit configuration is not only a 

function of monetary values but also of technical constraints.

The variable slope deficiency associated with the LG algorithm has been solved 

through research (Whittle Programming Pty, 1992; Whittle Programming Pty, 1998; 

Khalokakaie et al., 2000; Khalokakaie et al., 2000; Khalokakaie et al., 2000). 

Tremendous improvements in computing science have resulted in new algorithms with 

acceptable running times.

6
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Although numerous algorithms have been developed since 1965, when Lerchs and 

Grossmann published the landmark paper, there are still many shortcomings in the 

available techniques that are used in industry. There is a requirement for continuous 

research that will lead to the development of a robust and comprehensive algorithm, 

which will improve the open pit mine planning and design extensively.

1.3 Objectives of the Study

The primary goal of this research study is to develop and implement an intelligent 

3-D algorithm for optimal long-term open pit planning. The elements of this primary 

objective include: (i) mathematical modeling and adapting the long-term open pit mine 

planning problem in the context of reinforcement learning (RL); (ii) analyzing and 

implementing “Intelligent Open Pit Optimal Production Simulator” (IOPS) with an 

interactive graphical user interface; and (iii) verifying and validating the models.

The entire RL design framework is broken down into the development of three major 

entities of reinforcement learning paradigm: (i) the environment - geostatistical ore-body 

block model is the entity that the agent learns from; (ii) intelligent agent - a computer 

system capable of autonomous action in the environment in order to meet the main 

objective of maximizing the NPV over time; and (iii) simulation -  a simulation model, 

which stochastically mimics the discrete and continuous dynamic expansion of open pit 

layouts.

In order to achieve the objectives, this work includes development of the theoretical 

and conceptual architecture of IOPS. Also, the research is concerned with algorithm 

development, object oriented analysis, design, and implementation of the algorithm as a 

graphical user interface.

1.4 Scope and Limitations of the Study

The study deals with development of an intelligent 3-D open pit long-term planning 

and optimization algorithm. The main focus of the study is on optimal long-term open pit 

planning, employing reinforcement learning, which is a subtopic of artificial intelligence. 

The objective of the algorithm is maximizing the net present value of open pit operation

7
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subject to geological, operating, technological, financial, and marketing requirements and 

constraints. Following a stochastic dynamic open pit expansion model, which imitates the 

extraction sequence of a mining operation, constrained by variable pit slopes, and limited 

shovels movements’ blocks are removed to optimize the material scheduling and pit 

layouts.

A comprehensive problem definition and mathematical modeling is carried out to 

define and develop the IOPS architecture, which complies with the objectives of the 

study. The conceptual frame work of intelligent open pit planning is based on 

reinforcement learning paradigm. The IOPS is developed based on an off-policy temporal 

difference (TD) control algorithm known as one step Q-leaming (Watkins, 1989).

Object oriented analysis, design, and implementation are carried out to develop IOPS 

application as a graphical user interface (GUI). Java (Sun Microsystems, 1994-2006) and 

MATLAB (MathWorks, 2005) are employed to develop IOPS. The GUI for the IOPS 

engine is implemented using Java IDE IntelliJ IDEA (JetBrains, 2000-2006). For 

visualization of the results the commercial mining package GEMCOM and AutoCAD are 

employed.

Experimental design framework and model correctness are verified and validated 

through a case study. The optimized pit limits are designed using LG (Lerchs and 

Grossmann, 1965) algorithm. Subsequently the best-case and the practical annual long

term schedule generated by IOPS and the shells node in Whittle Four-X (Gemcom 

Software International, 1998-2005) are compared. The experiments compared the annual 

stripping ratio, average grade, the annual waste and ore production, and the respective 

NPV. The results of the experimental design are subjected to sensitivity and statistical 

analysis. Although optimality is not guaranteed mathematically with the parametric 

analysis in Whittle 4-X, it is a strong tool for identifying high grade ore clusters in the 

model and is the standard tool used in industry for long term planning.

1.5 Research Methodology

The first section of the study carried out a comprehensive literature survey on the 

open pit optimization and scheduling algorithms. This was followed by gathering

8
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borehole data from an iron ore mine in Iran for the future experimental studies. Figure 1.2 

illustrates the research methodology as part of the broader context of mineral supply 

process. Appropriate mathematical and numerical models have been formulated to 

capture the inputs and outputs of the intelligent open pit planning framework. The 

research focuses on development, analysis, and implementation of two main models (i) 

intelligent open pit optimal production simulator (IOPS) based on reinforcement learning 

(RL) to find an optimal plan which maximizes the NPV of the mining operation; and (ii) 

continuous open pit simulation (COPS) based on the modified open pit geometrical 

model, and a system of PDE’s capturing the continuous-time open pit dynamics.

Appropriate solution techniques and theory have been employed to convert these 

models into a finite set of procedural instructions, algorithms, and numerical methods in 

order to accomplish the research objectives.
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Figure 1.2 Flow diagram of research methodology
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The design and implementation of IOPS application continues with class design, 

object identification, and implementation in Java and MATLAB. The result of this 

research phase is the IOPS application with a graphical user interface capable of learning 

the optimal long-term plan based on Q-leaming algorithm. Subsequently, the models 

have been verified and validated with an experimental study of long-term planning of an 

iron ore mine. The optimized pit limits are designed using LG (Lerchs and Grossmann, 

1965) algorithm. Afterward comparisons are made of the best-case and the practical 

annual long-term schedule generated by IOPS, COPS, and the shells node in Whittle 

Four-X. The experiments then compared the annual stripping ratio, waste and ore 

production, average grade, and the respective NPV of the venture. The results of the 

experimentation are subjected to sensitivity and statistics analysis. The solution of the 

IOPS and COPS return the trajectories of changes in major and minor axes and the depth 

of the open pit model, as well as, the volume of extracted materials. The results from all 

the experiments have been analyzed to draw relevant conclusions with appropriate 

recommendations.

1.6 Contributions and Industrial Significance of the Study

This research enormously contributes to the body of knowledge on intelligent open 

pit mine planning and design. The research has formulated robust mathematical models 

and comprehensive algorithms, expanding the frontiers of open pit planning and 

optimization using reinforcement learning. The research resulted in implementation of 

the IOPS framework, which has the potential to be the fundamental of the next generation 

of mine design software packages based on intelligent agents. The outcome of the 

research has resulted in the development of a novel methodology, which improves the 

expected monetary return on the mining investments to a great extent. The original 

algorithm enables step-changes in planning and management of mines.

The key limitations of current production scheduling methods namely heuristic 

methods, nested pits, and operations research methods (mixed integer programming, 

dynamic programming, linear programming, goal programming, branch and bound 

methods) are: (i) inability to solve large industrial problems. The extraction sequence in a
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predetermined final pit limits has to deal with the limitation of computing resources. 

These limitations include: time and space; (ii) limitation in dealing with stochastic 

processes governing ore reserves, commodity price, cut-off grade, and production cost; 

(iii) inadequacy of the current final pit limits optimization methods in taking into account 

the temporal nature of the exploitation; and (iv) shortcoming in defining the economics of 

ore with respect to the economics of the entire mining process, from ore to the finished 

product.

The study aimed at addressing all the abovementioned limitations. The research 

tackled the curse of dimensionality and the computational limitations of the mine long

term planning problem by employing reinforcement learning. Q-leaming as the core of 

IOPS engine can learn optimal plans from experience in the form of sample simulation 

episodes of push-backs. Unlike the current algorithms IOPS has the capability of dealing 

with the mine planning parameters as stochastic variables.

1.7 Organization of Thesis

Chapter 1 of this dissertation discusses the background and the statement of the 

problem; this is followed by objectives of the study, scope and limitations of the study, 

the proposed methodology, report structure, and the contributions of the study.

Chapter 2 provides a detail literature survey of open pit planning and design. The 

survey comprises the final pit limit optimization and production scheduling algorithms, 

which have been employed in the mineral industry in the last 45 years. It also contains 

the review on the design and incorporation of haul roads in optimization techniques. The 

chapter concludes with the rationale for the PhD research.

Chapter 3 frilly outlines the conceptual framework of intelligent open pit planning. 

The general theoretical framework, mathematical models and their interrelationships are 

developed and discussed for achieving research objectives. The focus of research is on 

development, analysis, and implementation of intelligent open pit optimal production 

simulator (IOPS) based on reinforcement learning (RL). This chapter focuses on 

formulating, modeling, and developing the components of IOPS: environment, 

simulation, intelligent agent, and their relationships. The chapter also contains the

11
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continuous open pit simulation (COPS) model. COPS characterizes the changes made in 

the geometry of the open pit and the volume of materials moved by a set of differential 

equations. The chapter concludes with a review on solution methods to the RL problem.

Chapter 4 deals with algorithm development, computer modeling, and IOPS 

application implementation. A graphical user interface (GUI) with an object oriented 

design has been implemented. The IOPS application is implemented in Java (Sun 

Microsystems, 1994-2006) and MATLAB (MathWorks, 2005) environment. This 

exercise consisted of class and object identification based on the Java Reinforcement 

Learning Library, JavaRL, (Kerr et al., 2003).

Chapter 5 is mainly concerned with experimental design and experimentation, which 

consists of validation, verification, and model correctness. A case study of an iron ore 

deposit was carried out to verify and validate the model. The optimized pit limit was 

designed using LG algorithm. Subsequently the best-case and the practical annual long

term schedule generated by IOPS, COPS, and the shells node in Whittle Four-X are 

compared. The experiments compare the annual stripping ratio, average grade, the annual 

waste and ore production, and the respective NPV. The results from all the experiments 

have been analyzed to draw relevant conclusions and make necessary recommendations.

Chapter 6 contains the study summary, concluding statement, research contributions, 

and recommendations for future work in this research paradigm.
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CHAPTER 2 
ANALYTICAL LITERATURE SURVEY

An extensive literature survey is the focus of this chapter. This literature survey is 

being employed in evaluating past and current developments in the optimization and 

scheduling algorithms in open pit mining. Open pit mine design and optimization can be 

divided into open pit optimization algorithms and open pit scheduling algorithms. A 

short review of haul road design is included because it has a great influence on the 

projects economics.

2.1 Open Pit Optimization Algorithms

Kim (1978) classified optimization techniques as either “rigorous” or “heuristic” . 

Thomas (1996) expanded the definitions to ‘rigorous’, ‘heuristic’, ‘stochastic’, ‘static’, 

‘dynamic’. The existing methods today could be categorized as:

Rigorous -  A term applied to algorithms which, given enough time, will always find the 

optimum solution to the problem for the supplied data and constraints, and for which 

a formal proof has been developed for the optimality of their solutions.

Heuristic -  A term applied to techniques which lack rigorous mathematical proof to the 

optimality of their solutions. These methods either work in nearly all cases or find an 

approximate solution to the problem, which may or may not be close to the true 

optimum.

Stochastic -  A term applied to techniques which base their analysis on probabilistic 

sampling of the range of possible solutions.

Static -  A term applied to analyses which neglect the effect of time on monetary values. 

Dynamic -  A term applied to analyses which consider the effect of time on monetary 

values.

13
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Artificial Intelligence -  A term applied to methods which use the computations that 

make it possible to perceive, reason and act (Winston, 1991).

Open pit mining is defined as the process of development and superposition of a 

geometric surface called a pit onto the mineral reserve. The mineable reserve is the 

component within the pit boundaries. The size and shape of the pit depends upon 

economic factors and design/production constraints. The pit existing at the end of the 

mining is called the final or the ultimate pit. In between the startup and the closure of an 

open-pit mine, there are a series of ‘intermediate’ pits (Hustrulid and Kuchta, 1998). An 

open-pit mining operation can be viewed as a process by which the surface topography of 

a mine is continuously extracted using a series of box cuts. The planning of a mining 

program involves the design of the final shape of this open surface (Lerchs and 

Grossmann, 1965).

The ultimate pit limit defines the size and shape of an open pit at the end of its life 

based on the operating, technical, economic and ground stability constraints. It also 

determines the extent of the mineable reserves and the waste materials to be moved in the 

mining process. Pit limits on the surface mark the boundaries for locating surface 

structures, such as processing plants and mine offices. The pit limits would normally 

delineate the limiting boundary beyond which the open pit mining of a given deposit will 

be uneconomic. As such the pit limits are commonly referred to as the economic pit 

limits (EPL), ultimate pit limits (UPL) or ultimate pit design (UPD) (Asa, 2002).The 

optimum ultimate pit limit of a mine is defined to be that contour which is the result of 

extracting the volume of material which provides the total maximum profit whilst 

satisfying the underlying field constraints. The ultimate pit limit gives the shape of the 

mine at the end of its life (Caccetta and Giannini, 1990).

Since the development of the first computer models in the late 1950’s, much research 

has been carried out and many papers have been written in the quest for good solutions to 

the optimum ultimate pit limit problem. Lerchs and Grossmann (1965) introduced two 

modeling approaches, namely, the graph theory and the dynamic programming algorithm. 

Both methods make use of the economic block model to yield an optimum pit limit where 

the effect of time on monetary values is not taken into consideration. Additionally, the 

two methods don not consider the effect of extraction time of ore blocks. This assumes

14
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that, from the point of view of mine economics, there is no difference or significance 

attached to the extraction time of a more valuable block to that of a less valuable block. It 

can be said that under these assumptions, graph theory is a powerful and reliable tool for 

the determination of the optimum pit limit.

Several researchers including (Picard, 1976; Whittle, 1988; Zhao and Kim, 1992; 

Khalokakaie et ah, 2000; Khalokakaie et al., 2000) have applied this theory to solve 

several mining optimization problems. Underwood and Tolwinski (1998) developed a 

network flow algorithm based on the dual of Lerchs and Grossmann’s (1965) primal 

model. This new model provides an interpretation of the graph theory when applied in a 

mathematical programming setting to analyze convergence and other mathematical 

implementation issues. Dynamic programming optimization is typically performed on 

two-dimensional block sections and integrated to obtain a three dimensional pit limit. 

This approach tends to yield inconsistent shapes necessitating the use of smoothing 

routines.

Johnson and Sharp (1971) and Koenigsberg (1982) have tried to eliminate the 

shortcoming of this algorithm but these attempts have not been totally successful in 

finding the mathematically true optimum. Pana and Davey (1965) introduced an 

algorithm called moving cone that works on the same assumptions as graph theory and 

the dynamic programming model. However, the shortcoming of this model is that it 

creates overlapping cones, and it is incapable of examining all combinations o f adjacent 

blocks. For this reason, the algorithm fails to consistently give realistic results. Lemieux 

(1979) has tried to solve this problem by adding some heuristic approaches. Lizotte 

(1988) proposed yet another solution but he was candid enough to admit that his 

approach can’t give the true optimum pit limit in all cases. Meyer (1969) has brought an 

approach to the optimization problem, namely a linear programming algorithm. However 

as the author implies, the algorithm does not guarantee the optimum, and interest rate is 

not taken into consideration. Two other algorithms for pit limit optimization have been 

introduced. These are the maximum flow algorithm (Yegulalp and Arias, 1992) and the 

transportation algorithm (Huttagosol and Cameron, 1992). Maximum flow algorithms are 

widely applied in operations research (Ford and Fulkerson, 1956; Ahuja and Orlin, 1989). 

Yegulalp and Arias (1992) successfully adapted this algorithm for solving mining
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problems. The algorithm finds optimum limits quickly, and the authors were able to 

greatly increase the processing speed. However, the algorithm does not consider either 

the time value of money or the economical significance of the block extraction sequence. 

The transportation algorithm was introduced by Huttagosol and Cameron (1992). The 

algorithm gives true optimum limits.

Frimpong and Achireko (1997) introduced a set of algorithms that address the 

random filed properties of the various parameters involved in open pit optimization. The 

modified conditional simulation and multilayer feed-forward error-back propagation 

algorithm were developed to capture the stochastic behavior of ore grades and reserves 

on one hand and to utilize neural network architecture in the optimization process. Aside 

from the fact that the open pit optimization problem is a 3-D problem. The use of a back 

propagation could result in a local optimum instead of global optimum. Their approach 

took into consideration the stochastic nature of the open pit optimization process. Asa 

(2002) used neuro-genetic algorithms for slope design, grade and block modeling. 

Simulated annealing was used to optimize the pit for 30 realizations and the results were 

fed into a neuro-genetic algorithm for true optimization.

Besides the algorithms described above, there are two other optimization models that 

may be used to solve open pit mine problems. These are bounding techniques (Kim, 

1978; Barnes and Johnson, 1982; Whittle, 1988) and parameterization (Bongarcon and 

Marechal, 1976; Bongarcon and Guibal, 1982; Dagdelen and Bongarcon, 1982; Barnes 

and Bertrand, 1990; Wang and Sevim, 1992; Zhao and Kim, 1992) According to Lizotte 

(1988), bounding techniques are not optimization techniques, but they provide a 

methodology for limiting the search for optimum pit by defining upper and lower bounds, 

thereby reducing the processing time. The parameterization approach seeks to simplify 

optimization by initially identifying problem-bearing variables and solving the 

optimization problem using convenient parameters and dimensions. The approach is 

generally a geostatistical one wherein starting block dimensions are relatively large, but 

once the pit outline has been determined, the block dimensions are reduced to the normal 

size. Parameterization routines also use cost/price ratio as a more stable parameter in 

place of monetary value, and the maximum metal content in place of the economic block 

model.
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These models also impose geometric constraints on the pit. One of the arguments 

being made by researchers who favor the use of this optimization technique is that 

economic parameters are dynamic, and that economic block models are not reliable. 

Therefore, a search for the pit with maximum metal content eliminates most of the 

aforementioned problems. One of the problems is that the choice of maximum metal 

content as the optimization parameter allows the researcher to focus only on the grades of 

blocks while ignoring such factors as price, cost, and interest rate. However, one should 

always remember that the location of an ore block is as crucial as its grade. For instance, 

two blocks that have the same grade and metal content, but with one block located on a 

shallow part of pit, while the other block is located on a deeper part, will not have the 

same value from an economic point of view. The block located at the deeper part of the 

pit may not be extracted due to stripping cost of the cone over it. In other words, even if 

the block located at the deeper parts of the pit contributes significantly to the overall 

metal content, it may not provide the same contribution economically because its mining 

cost may exceed its potential revenue. So, the pit with maximum metal content may not 

necessarily mean the pit with maximum profit. Thus, a block by block production plan 

should be included in optimization calculations.

Wang and Sevim (1992) have also emphasized the necessity of production planning 

in parameterization studies. Their approach is based on the estimation of initial pits with 

maximum metal content (long-term planning), followed by mining through those pits 

block by block (short-term planning). By using this approach, one avoids the misleading 

effects of monetary values while allowing further processing with the economic block 

model. Processing plant requirements should be factored into the optimization routines as 

they have a major influence on the extraction sequence, and subsequently on the final pit 

contours. In other words a complete optimization system should be able to reflect the 

stages; in a mine so that before mining starts, the proposed methodology could be 

simulated to its future impact should be predicted. Such a system would be a  powerful 

decision making tool for mining operations.
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2.1.1 The Manual Method

Manual approach of open pit design is the traditional design method which is based 

on trail and error, in which the designer uses subjective and objective analyses to define 

the pit limits. The data required are: (i) vertical sections showing ore boundaries, grade 

distribution within the ore, overburden and waste rock; (ii) plans for proposed mining 

levels showing ore/waste; (iii) allowable maximum slope for different rock types and 

different areas of the pit; (iv) minimum pit width at the suggested pit bottom; (v) 

stripping ratio-ore grade curves and (vi) net value-ore grade curves representing the 

alterations of the stripping-ratio and net value of a section with the ore grades and 

possible product selling price.

With the aid of stripping ratio-grade curves and net value-grade curves the pit limits 

are designed as follows: (i) generate vertical sections and level plans of the deposit 

(cross-sections, longitudinal sections, radial-sections) and select a slice; (ii) from these 

sections and their intervals, generate volumes (waste, ore) tonnage and stripping-ratios; 

(iii) generate the economic striping-ratio which defines the limit of mining that ensures 

the achievement of this cost minimum profit margin; (iv) generate economic limit 

stripping-ratio versus ore grade and economic limit stripping-ratio versus selling price;

(v) using the economic limit stripping-ratio, generate the pit limits for each section and

(vi) using planimeter, estimate the volumes and tonnage of ore and waste on each section.

This method is very time consuming and tedious, and it is only possible for small 

deposits with simple geology. The method is prone to errors from judgment and tiredness 

and it is impossible to carry out many design options using sensitivity and risk analysis.

2.1.2 The Moving Cone Algorithm

Moving or floating-cone algorithm and its variants are the most popular heuristic or 

nearly optimizing techniques (Pana and Davey, 1965; Williams, 1970; Gauthier and 

Gray, 1971; Robinson and Prenn, 1973; Lemieux, 1976; Lemieux, 1979). The method is 

a simulation technique in which cones or frustums are established using positive 

economic blocks as basis. If the sum of economic block values for all the blocks in the 

cone is positive, the cone is included in the mine-able set of cones. Negative economic
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blocks and cones with negative values established with positive economic blocks are not 

considered as part of the optimum layout. The basic element for the optimization process 

is the minimum removal cone. A summary of the algorithm can be stated as follows: (i) 

the cone is floated from left to right along the top row of blocks in the section if  there is a 

positive block it is removed; (ii) after traversing the first row, the apex of the cone is 

moved to the second row. Starting from the left hand side it floats from left to right 

stopping when it encounters the first positive block; (iii) if the sum of the economic block 

values (EBV) of all blocks contained in a given cone is positive, consider the cone 

removed (extracted); (iv) the floating cone process moving from left to right and top to 

bottom of the section continues until no more blocks can be removed; (v) the profitability 

of this section is found by summing the values of the blocks removed; (vi) the ultimate 

pit is formed by the shape left after the removal of all positive blocks; Figure 2.1 

illustrates the moving cone algorithm flowchart.

The 3D positive moving cone technique, the search commences at the north-west 

corner (top left) of the block model and proceeds from west to east (left to right) along 

each level. All blocks with positive value on the first level are examined, before 

proceeding to the second level and then to the third level until the ultimate pit depth. 

Finally the 3D block representation of the optimum pit is a combination of the optimum 

2D cross-sections and longitudinal sections. Smoothing is employed to fit the sections 

into 3D pits after the completing the optimum pit limits on 2D sections (Asa, 2002).

According to Wright (1990) the floating cone method can be an expensive process, 

especially for a large open pit mine. Furthermore, the technique can miss the optimum pit 

limit under certain unusual conditions, because it cannot execute the pit for a joint 

contribution by two blocks that are laterally some distance apart. Lemieux (1968) stated 

that his heuristic algorithm does overcome this short coming of the moving cone 

technique. However, the geometric requirements of slope stability, in combination with 

certain ore blocks, can lead to situations where the technique will fail to yield the pit with 

the maximum value (Kim, 1978). Barnes (1982) has presented three problems 

representing floating cone situations not leading to an optimum pit. (i) missing 

combinations of profitable blocks; (ii) extending the ultimate pit beyond the optimal pit 

limits; and (iii) combination of problems (i) and (ii).
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In spite of these problems, there are however a number of very positive aspects of 

the technique, which accounted for its widespread use and popularity especially during 

the 80’s including: (i) The method is easy to understand and use by mining engineers; (ii) 

computationally, the algorithm is quite simple. Development and implementation of a 

moving cone computer program does not require sophisticated knowledge in operations 

research or computer science. The computer code could be developed in-house rather 

than purchased from a software company. Thus, a more custom-fitted product can be
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provided at an operating mine site; (iii) the moving cone technique can be used with 

generalized pit slopes. The single requirement is an unambiguous rule for determining 

which blocks overlie individual ore blocks; (iv) it provides highly useable and 

sufficiently accurate results for engineering planning (Hustrulid and Kuchta, 1998).

2.1.3 Lerchs and Grossmann Algorithm

Lerchs and Grossmann (1965) used dynamic programming and graph theory for 

optimum design of open pit mines. The objective of their studies was defined as the 

design of the contour of a pit so as to maximize economic value of the material contained 

in the layout. Their model was based on the following assumptions: (i) the type of 

material, its mine value and its extraction cost are given for each point; (ii) restrictions on 

the geometry of the pit are specified (surface boundaries and maximum allowable wall 

slopes); (iii) the objective is to maximize total profit: total mine value of material 

extracted minus total extraction cost. The 3-D algorithm is mathematically proven to 

generate a rigorous optimum solution, based on its assumptions. The algorithm is the 

basis of commercial packages used in industry.

2.1.3.1 Lerchs and Grossmann 2-D Algorithm

By this method, the economic block values, cumulative block values, and temporary 

block values, are estimated column wise. Arcs are provided to indicate the direction of 

optimum pit layout using dynamic programming based on the following procedure: (i) 

divide the 2-D section of the ore body into blocks, Btj (i = 1...«; j  -  \..m) . Provide a

dummy row of blocks at the top; (ii) estimate the economic block values, EBVy, for all

the blocks using the following formula:

EBVy = Re vtJ -  TCl} V waste or ore block (2.1)

EBVy = 0  V dummy blocks (2.2)

(iii) compute the cumulative column values for each block from top to bottom. Designate 

this cumulative column figure as the second value in the respective block;

CBV» = Y 1 ,.» EBV< r i i  <2-3)
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(iv) from the northwest corner or the section (on level zero), compute the temporary 

block values as follows and designate TBVtJ, as the third number in the respective blocks.

(v) compute the TBVtJ values for all the blocks, column by column, (vi) The maximum 

value at the surface, P0j, is the total value of the pit; (vii) The path followed in back 

tracing from this maximum P0j, defines the optimal contour of the pit, which further 

defines the pit outline that maximizes the net value of the ore body.

2.1.3.2 Lerchs and Grossmann 3-D Algorithm

The open pit optimization can be formally represented as a graph problem defined on 

a directed graph G=(V,E). Each block corresponds to a node in V with a weight EBVj

representing the net value of the individual block. This weight can either be positive, 

negative or zero. There is a directed arc in E from node i to node j  if block i can not be 

extracted before block j . Thus to decide which block to extract in order to maximize 

profit is equivalent to finding a maximum weight set of nodes in the graph such that all 

successors of the nodes in the set are included in the set. Such a set is called a maximum 

closure of G (Hochbaum and Chen, 2000).

Some Important terms and concepts are as follows: Path: A path is a sequence of 

arcs such that the terminal vertex of each arc corresponds to the initial vertex of the 

succeeding arc. Circuit: A circuit is a path in which the initial vertex coincides with the 

terminal vertex. Directed Graph: A  directed graph is defined by a set of nodes connected 

by ordered pairs of elements called arcs. Closure: Closure from the view point of a 

mining engineer is simply a sub-graph yielding a feasible pit. Tree: A  tree T is a 

connected and directed graph containing no cycles. Root: A  root is one node selected 

from a tree. A tree may have only one root.

rTBVi W

TBV:j = CBVtJ + max *<

\. J

(2.4)
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z z

z z

Figure 2.2 Representation of the 1-9 block constraints (Hustrulid and Kuchta, 1998)

Formally the optimization problem is defined as the determination of the maximum 

closure graph. Given a directed graph G=(V,E), and node weights (positive or negative) 

EBVt for all i e V . The algorithm finds a closed subset of nodes V' e  V such that

Z . EBV: is maximum.ieV 1

An edge of the tree either points towards the root or points away from the root. To 

distinguish the orientation of the edges with respect to the root in a particular tree, the 

following definitions are used: (i) an edge pointing away from the root is a p-edge and an 

edge pointing toward the root is a m-edge; (ii) a p-edge is strong if it supports a mass that 

is strictly positive and an m-edge is strong if it support a mass that it is null or negative. 

Edges that are not strong said to be weak Table 2.1 and Figure 2.3; (iii) a branch is strong 

if the edge that links it to the root is strong, otherwise it is weak. The nodes o f a strong 

(weak) branch are strong (weak) nodes; (iv) a tree in a graph is normalized if only strong 

edges it contains are adjacent to the root.

The graph G is first augmented with a dummy node. The algorithm starts with the 

construction of a tree T0 in G. T0 is then transformed into successive trees

T \ T 2, ..... ,T" following given rules, until no further transformation is possible. The

maximum closure is then given by the vertices of a set of well identified branches of the 

final tree. Each iteration involves three operations: (i) Merger: adding an arc from a 

strong branch S to a weak branch W and removing the arc from the root of the sub-tree S
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to the root of S; (ii) Mass update: updating total value of all nodes; and (iii) 

Renormalization: removal of strong edges and there sub-trees and reattaching them to 

root as separate branches, see Figure 2.4. The flow chart of the algorithm is shown in 

Figure 2.5.

Table 2.1 Labeling guide for arcs

Case Direction Cumulative weight Label

1 Plus Positive Strong

2 Plus Null or negative Weak

3 Minus Positive Weak

4 Minus Null or negative Strong

S - M

Figure 2.3 Labeling guide for arcs
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Figure 2.4 Illustration of the steps in LG algorithm (Hochbaum and Chen, 1996)

2.1.4 Neural Network (MCS/MFNN) Algorithm for Open Pit Optimization

Frimpong and Achireko (1997) introduced a set of algorithms that address the 

random field properties of the various parameters involved in open pit optimization. The 

modified conditional simulation and multilayer feed-forward error back propagation 

algorithm was developed to capture the stochastic behavior of ore grades and reserves on 

one hand and to utilize neural network architecture in the optimization process. The 

modified conditional simulation (MCS) algorithm involves the use of linear average 

subdivision technique (LAS) and best linear unbiased estimation (BLUE) to model the 

stochastic nature of ore reserves and grade. In this case conditional simulation is 

employed to model the grade using the mean and the standard deviation. The MFNN is 

then used for classifying and partitioning the conditionally simulated blocks. The 2-D 

model as presented by this algorithm does not represent reality. There is a possibility of 

the existence of both local and global maxima in a maximization problem. The learning 

algorithm can converge to a solution that does not minimize the mean square error. The 

back propagation algorithm can converge to a local maximum with one set of initial 

conditions and converge to a global maximum with another set of initial conditions. To 

ensure that a global optimum point has been achieved, several different initial conditions 

have to be evaluated. The situation may even get worse in multi dimensional problem

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 2 Literature Review

with multiple parameters. Therefore an optimal solution may not be achieved when a 

back propagation algorithm is used to solve this problem (Asa, 2002).

start

Resultant branch 
strong ?

model ?
All levels are in the

'Any more strong 
arcs?

la k e  first lc \e !

Add next 
level

Link all nodes to dummy root 
Label arcs strong or weak

M erger
Add an arc from a strong 

branch to a weak

R enorm alization
Rem oval o f  strong edges and 

sub trees and reattaching them  
to root as a separate branch

Figure 2.5 Lerchs and Grossmann algorithm flow chart
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2.2 Production Scheduling Algorithms

Several researchers have studied and developed algorithms for long-term mine 

planning problem. Scheduling studies have typically been carried out for the purpose of 

profit maximization (Chanda and Wilke, 1992; Tolwinski and Underwood, 1992; Onur 

and Dowd, 1993; Dijilani and Dowd, 1994; Elveli, 1995; Frimpong et al., 1998) or for the 

determination of optimum plant feeding conditions (Dowd and L., 1987; Mann and 

Wilke, 1992; Youdi et al., 1992; Huang, 1993; Zhang et al., 1993; Chanda and Dagdelen, 

1995). The algorithms use a block model as the basis for extraction scheduling to 

optimize an economic objective function. Initially, the excavator is located at a starting 

point. This excavator extracts the blocks considering either economic criteria or plant 

requirements. All the algorithms use slope conditions determined from the mechanical 

and geological properties of the rock.

In most of the profit maximization studies (Chanda and Wilke, 1992; Tolwinski and 

Underwood, 1992; Onur and Dowd, 1993; Dijilani and Dowd, 1994; Elveli, 1995) the 

block model consists of economic values which are either given to the system, or 

calculated from block volume, tonnage factor and grade. The aim is to sequence blocks to 

maximize the net present value. The general and common approach is to include 

scheduling in a previously determined pit boundary. This boundary is determined by the 

use of another optimization algorithm for open pit limit. However, as it is implied, these 

boundaries are not real optimum boundaries from an economic point of view, since the 

interest rate can never be zero, and the extraction time of a more valuable block may be 

significantly different from those for a less valuable block. On the other hand, algorithms 

that seek optimum plant feeding conditions (Dowd and L., 1987; Mann and Wilke, 1992; 

Youdi et al., 1992; Huang, 1993; Chanda and Dagdelen, 1995) use grade blocks to 

control the input to the processing plant. Generally, a stockpile is employed to provide a 

blend of material, if necessary, and to store a certain amount of material in the event that 

the mine is unable to supply the plant for a short period of time. Thus, the sequence of 

block extraction is dictated by the management of material stockpiles. The amount and 

grade of accumulated material should be adequate to provide a uniform feed for the next 

production phase. Accordingly, mining is directed to those blocks that have the required
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quality and quantity. The resulting optimization problem then becomes minimizing the 

difference in quality and quantity of the supplied blended material from desired feed. An 

application of this approach to phosphate mining was carried out by Smith (1999). The 

method combines mixed integer, goal and separable programming techniques to 

minimize quantity and quality of material transfer to plant. In the system, stockpiles are 

employed as regulators to prevent fluctuation in material quality. Branch and bound 

approach enables the system to work quicker than other similar systems. The main 

drawback of these approaches is the same as that identified with the profit maximization 

approach, namely, sequencing is optimized in only given boundaries. However, the net 

present value may be greater or the disparity in the quantity and quality of the supply 

from the required material may be less for a different pit boundary.

2.3 Haul Road Design and Incorporation

One of the first published accounts of the incorporation of roadways in optimal open- 

pit design was by (Taylor, 1971). Yun and Lu (1992) presented a dynamic programming 

approach to the optimization of roadway location within an overall expert system. Haul 

roads are designed to transport all the ore and waste from the bottom of the pit to the 

dumping point (for waste) or to the crusher (for ore) and there must, therefore, be a 

connection to the surface from the levels within the pit. The width of the road depends 

entirely on safety and mining and equipment capacities. Bench widths depend on the 

amount of access space that is required by equipment, but they can be altered during the 

life of the pit. Bench heights are function of the geology, blasting requirements, 

selectivity, and the existing mining equipment. Hence, they are rarely changed during the 

life of the pit unless there is a significant change in economic parameters that alters the 

selectivity criteria.

Original bench widths may not always be large enough to accommodate roads and 

some additional excavation will usually be necessary. The roads are specified by their 

slopes and widths. The slopes depend on the materials on which the roads are built, 

traction factors, types of trucks and weather conditions. Slopes define the distance of 

travel from level n to level n-1. It is assumed that an algorithm has been used to obtain an -
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optimum pit design in the form of a block model. With this design several alternative 

roads can be created by starting them from different points at the bottom of the pit and 

changing the direction in which they are allowed to develop from clockwise to 

anticlockwise. The user specifies a dumping location on the surface, which may be the 

treatment plant, a stockpile or a loading point. The algorithm starts with a block on the pit 

bottom and, moving in clockwise direction, generates a ramp with the specified slope and 

width to the level above. A ramp is then generated in the same direction to the next level 

until the surface is reached. The length of the road is measured from the starting point at 

the pit bottom to the specified dumping location on the surface. This procedure is 

repeated, starting from the same block but moving in an anticlockwise direction. When 

the two roadways have been generated for this block the procedure is repeated for all the 

other blocks on the pit bottom. A removal cone is defined for each block that is added to 

the road and all blocks within this cone, if not already removed, are added to the pit. The 

computing time can be reduced by specifying a minimum increment from one starting 

point to the next (e.g. every second or third block on the pit bottom). The road is 

constructed in terms of blocks that are removed from the block model. The use of a block 

model prevents the algorithm from producing precise road dimensions because it is 

always restricted by those of the blocks: to obtain a proper width a whole block must be 

removed rather than the required portion of it.

The most significant advantage of the block model approach is rapid computing 

time. When the algorithm completes the process, the user is given a summary o f all roads 

that have been generated together with three criteria for assessing each road. These 

include: (i) the number of additional blocks to be removed; (ii) the reduction in the 

overall profit that would result from removing these blocks; and (iii) the distance from 

the bottom of the pit to the dumping point. The latter is regarded as a measure of the 

haulage cost. All three selection criteria are then used to choose a road from the list of 

alternatives. Although this haul-road design method is not based on a truly optimizing 

algorithm, it does provide information that allows near optimal choices to be made in a 

very short time (Onur and Dowd, 1993).
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2.4 Rationale for PhD Research

The current production scheduling methods are not just limited to, but can be divided 

into: (i) heuristic methods; (ii) nested pits; (iii) operations research methods; and (iv) 

artificial intelligence methods. The main OR methods include mixed integer 

programming (Gershon, 1983; Dagdelen, 1985; Ramazan and Dimitrakopoulos, 2004), 

dynamic programming (Dowd, 1976; Dowd and Onur, 1993), linear programming 

(Gershon, 1982), goal programming (Chanda and Dagdelen, 1995; Esfandiari et al., 

2004), integer programming (Kim, 1990), and branch and bound methods (Caccetta and 

Hill, 2003). Different Al methods (Tolwinski and Underwood, 1992; Elveli, 1995; 

Askari-Nasab et al., 2005) with explicitly genetic algorithms (Denby and Schofield, 

1994; Denby et al., 1996; Wageningen et al., 2005) have also been used by researchers to 

find a solution to the mine long-term scheduling problem.

In practice, the optimized solution cannot be attained without examining all possible 

combinations and permutations of the extraction sequence. Whittle (1989) outlined the 

complexity of the problem in three areas, including: (i) the pit outline with the highest 

value cannot be determined until the block values are known; (ii) the block values are not 

known until the mining sequence is determined; and (iii) the mining sequence cannot be 

determined unless a pit outline is available. Such an objective results in a computationally 

intractable problem.

Most of the aforementioned techniques guarantee the optimality of the solution by 

enumerating all possible combinations, with mathematical rigor for solving material 

transfer problems. However, the key limitations of these methods are: (i) inability to 

solve large industrial problems. The extraction sequence in a predetermined final pit 

limits has to deal with the limitation of computing resources. These limitations include: 

time (how many steps does it take to solve a problem), and space (how much memory 

does it take to solve a problem); (ii) limitation in dealing with stochastic processes 

governing ore reserves, commodity price, cut-off grade, and production cost. The 

treatment of stochastic variables as deterministic variables results in over or under

estimated layouts; (iii) inadequacy of the current final pit limits optimization methods in 

taking into account the temporal nature of the exploitation. The ultimate pit limits
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optimization algorithms assume that the final contour is dug at once without considering 

the time aspect of the problem; and (iv) shortcoming in defining the economics of ore 

with respect to the economics of the entire mining process, from ore to finished product.

These deficiencies can cause an open pit mining operation severely in terms of 

dollars, time, material logistics handling, and strategic and tactical plans. Mining 

industry, as a dynamic uncertain system with a number of underlying stochastic variables, 

needs optimization tools to be kept profitable. In complex mining operations, small 

deviations from the optimal strategic plan could result in the loss of millions of dollars.

2.5 Summary and Remarks

The literature relevant to this research has been reviewed. In summary, open pit mine 

planning and optimization has a great direct influence on the mining economics. Various 

attempts have been made to address the problem during the last 40 years. A non 

exhaustive list of final pit limits optimization techniques categories can be classified as: 

(i) rigorous; (ii) heuristic; (iii) stochastic; (iv) static; (v) dynamic; and (vi) artificial 

intelligence methods. Lerchs and Grossman (1965) demonstrated a groundbreaking 3D 

algorithm based on graph theory for optimum ultimate pit limits problem. Some of the 

researchers used different variants of the original algorithm using graph theory (Picard, 

1976; Whittle, 1988; Zhao and Kim, 1992). Other categories of algorithms namely 

heuristic methods including different versions of floating or moving cone (Pana and 

Davey, 1965; Williams, 1970; Gauthier and Gray, 1971; Robinson and Prenn, 1973; 

Lemieux, 1976; Lemieux, 1979) the Korobov algorithm (Korobov, 1974), the corrected 

form of Korobov algorithm (Dowd and Onur, 1993), dynamic programming (Johnson 

and Sharp, 1971; Koenigsberg, 1982; Wilke and Wright, 1984; Yamatomi et al., 1995). 

Rigorous methods including network or maximum flow techniques (Johnson and Barnes, 

1988; Yegulalp and Arias, 1992), transportation algorithm (Huttagosol and Cameron, 

1992), network flow algorithm based on dual of Lerchs and Grossmann (Underwood and 

Tolwinski, 1998), and parameterization techniques (Francois-Bongarcon and Marechal, 

1976; Francois-Bongarcon and Guibal, 1982). Stochastic methods including genetic 

algorithm (Denby and Schofield, 1994; Denby et al., 1996), modified conditional
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simulation/multi-layer feed forward neural networks (MCS/MFNN) (Frimpong and 

Achireko, 1997), simulative optimization model (Erarslan and Celebi, 2001), simulated 

annealing and neurogentic algorithm (Asa, 2002), and open pit optimization including 

mineral processing criteria using non-linear goal programming (Esfandiari et al., 2004).

The objective function in a mine scheduling problem has typically focused on 

revenue maximization (Chanda and Wilke, 1992; Tolwinski and Underwood, 1992; 

Dowd and Onur, 1993; Elveli, 1995; Frimpong et al., 1998; Erarslan and Celebi, 2001; 

Halatchev, 2005) or the optimized plant feeding conditions (Dowd and L., 1987; Mann 

and Wilke, 1992; Youdi et al., 1992; Chanda and Dagdelen, 1995). Profit maximization 

functions focus on generating a block sequence that maximizes the net present value. 

Alternatively, plant feeding quality methods use grade block models to control input to 

the processing plant. The quantity and quality of available materials should be adequate 

to provide a uniform feed to the plant for the next production period.

The major shortcomings of planning and optimization techniques can be summarized 

as: (i) inability to solve large industrial problems; (ii) limitation in dealing with stochastic 

processes governing mining operation; (iii) inadequacy in referencing the temporal nature 

of the exploitation and the time aspect of the problem; and (iv) shortcoming in defining 

the economics of ore with respect to the economics of the entire mining process, from ore 

to finished product. Consequently there is a need for a more comprehensive algorithm 

which can address the aforementioned problems. The outcome of the research is expected 

to contribute towards the development and implementation of an intelligent long-term 

planning algorithm, which will enable step-changes in the manner in which open pit mine 

layouts are engineered and managed.
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CHAPTER 3 
INTELLIGENT OPEN PIT PLANNING 

THEORETICAL FRAMEWORK

3.1 Foreword

This chapter focuses on the conceptual framework of intelligent open pit planning as 

presented in this thesis. The general theoretical framework, mathematical models and 

their interrelationships are developed for achieving research objectives. The research 

focus is on development, analysis, and implementation of ‘Intelligent Open Pit Optimal 

Production Simulator’ (IOPS) based on reinforcement learning (RL). The RL problem 

can be formalized by the interaction of two basic entities: the agent and the environment. 

The agent is the learner and decision-maker. The agent’s environment comprises 

everything that it cannot completely control. Thus, the environment defines the task that 

the agent is seeking to learn. A third entity, the simulation, mediates the interactions 

between the agent and the environment. Figure 3.1 illustrates the basic components of an 

RL problem. The agent takes sensory input from the environment, and produces as output 

actions that affect it. The interaction is usually an ongoing non-terminating process.

Sensor inpul/^

SIMULATION

__ _____ __________ _

ENVIRONMENT

Action output

+ - J

Figure 3.1 The agent-environment interaction in reinforcement learning (Sutton and Barto, 1998)
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Figure 3.2 Intelligent open pit optimal production simulator (IOPS) frame work

This chapter focuses on formulating, modeling, and developing the components of 

IOPS: environment, simulation, intelligent agent, and their relationships. Figure 3.2 

illustrates the IOPS conceptual framework as an RL problem. IOPS comprise 

independent, interactive and interrelated subsystems with processes and procedures, 

using RL as the main engine to maximize the net present value of the mining venture. 

The main integral parts of IOPS are as follows: (i) environment: consists of geological 

block model (GBM) and economic block model (EBM); (ii) simulation: open pit 

production simulator (OPPS) which comprises geometrical open pit model (GOPM), 

discrete open pit simulation (DOPS), economic pit expansion model (EPEM), and 

continuous open pit simulation (COPS); (iii) agent: the output of the OPPS is the 

monetary value of each period of the mining operation. The simulated results are 

transferred to the intelligent open pit agent (IOPA) where Q-leaming algorithm serves as
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the engine. Sections 3.2 and 3.3 discuss and develop the main RL components of the 

model. Section 3.5 give details about adapting open pit planning problem as an RL 

problem and the solution.

3.2 Environment: Geostatistical Block Model

Geostatistics, a tool for estimating spatially correlated variables is used widely in 

mineral reserve estimations. The variogram model, which characterizes the spatial 

correlation of variables, is the first and essential step for any geostatistical estimation. 

The variogram model is primarily dependent on number of samples or boreholes 

intercepts within the ore body. Figure 3.3 shows the sequence of actions in geostatistical 

modeling.

Modeling Geostatistical Constraints

r

Coordinate Transform ► Representative Statistics

f
Spatial Statistics

I
r r

t . Simulation, Selectivity and 
Kriging Uncertainty

Grade Control,— ► 4—
Reporting and Planning

Figure 3.3 Sequence of actions in geostatistical modeling
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Reserve risk is an important component of the mine feasibility, optimization and 

operations process. The success of any optimization algorithm is dependent on estimates 

of reserves and grade together with the assessment of uncertainty and risk.

Geostatistical study of a mineralized zone of interest is a multiple-stage process. The 

first stage of an actual geostatistical study involves the modeling of the spatial variability 

within the study area. The variogram can be simply defined as the relationship between 

geological distance and Euclidean distance. The variogram quantifies the spatial 

variability of the contained mineral/metal by computing the variance of the grade values 

measured some distance h, apart. The variogram variance increases with the separation 

distance. Kriging techniques are estimation methods that minimize the error variance of 

estimation for spatially distributed data. The kriging estimation variance can be affected 

by errors in the calculation of the variogram. Some of the reasons for estimation errors 

include (i) sparse data, (ii) high variability, and (iii) incorrect assumptions in the 

modeling procedure.

The results of the geostatistical analysis will be the estimation of resources/reserves 

and classification into various categories. It is evident that the entire in-situ mineral 

resource identified and estimated by geostatistical analysis cannot be mined because of 

variable mining and treatment costs and spatial variability inherent in the deposit. In this 

study, sequential Gaussian simulation (Isaaks, 1990) (SGS) is used to provide reserve 

estimates and the associated risks. Geostatistical Software Library (GSLIB) (Deutsch and 

Journel, 1998; Deutsch, 2002) will be utilized to model the ore-body deposits in this 

study.

Briefly, the procedure of Sequential Gaussian Simulation (SGS) consists of: (i) 

selection of a voxel where the reserve property under investigation is unknown; (ii) 

identification of neighboring voxels where that property is known; (iii) assignment of 

weights to the neighbors, depending upon their perceived relevance at the unknown 

voxel; (iv) construction of a local PDF at the unknown voxel from the neighbor values;

(v) extraction form the PDF of a single value to occupy the empty voxel; (vi) random 

selection of another empty voxel; and (vii) repetition of the process until estimations have 

been made at all the unknown voxels.
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3.3 Simulation: Open Pit Production Simulator Com ponents (OPPS)

An open pit production simulator, OPPS illustrated in Figure 3.2, is developed 

incorporating GOPM, DOPS, EPEM, and COPS models. The OPPS mimics the 

stochastic dynamic expansion of an open pit using discrete incremental push-backs in 

time and space. The interactions of economic pit expansion model, EPEM, with DOPS 

returns the pit’s NPV following the simulated schedule. COPS models the dynamics of 

open pit geometry and the material movement as a continuous system described by time- 

dependent, differential equations. The next sections investigate the theoretical and 

practical framework of OPPS.

3.3.1 Geometrical Open Pit Models (GOPM)

Excavation of ore and waste in an open pit mine takes place on different elevations. 

The pit expands horizontally and vertically toward the final pit limits. Given an initial 

box cut, surface mining can be viewed as a process of pit layout deformation toward the 

final pit limits. Surface mine layout optimization therefore focuses on the optimal pit 

outline, whereas scheduling concentrates on the optimal extraction sequence to reach the 

final pit limits. The main objectives of long-term plans are to meet production quantity 

and quality targets to maximize the future market value of the venture. There is therefore 

a need for models of pit geometry and the evolution of the geometry as the pit is 

continuously deformed to reach the final pit limits. Frimpong et al. (1998) provided a 

basis for using the solid geometry of an elliptical frustum to model the open pit expansion 

process. Figure 3.4 shows the frustum which is defined by two ellipsoids with areas Ax 

and A2 separated by a vertical distance h. 6 is the stable and economic overall pit slope 

resulted from geo-mechanical studies. Askari-Nasab et al. (2004) developed a production 

simulator based on the elliptical frustum model to capture the random field process 

associated with materials scheduling and sequencing in an open pit environment. The 

volume of material in the frustum is given by equations (3.1) and (3.2) as:

V = ^x [A l +A2+{Axx A 2y /l^ H  (3,1)
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(3.2)

2a and 2b are the length of the major and minor axes of the top ellipse. Assuming 

that equation (3.1) is valid and maintained during the production and any changes in 

production time, A t , causes an increase equal to A V , to the volume of the frustum. The 

volume of the pit layout resulting from expansion due to incremental push-backs, 

V = V + A V ,  given by equation (3.3), at any time is a function of the changes in the 

ellipsoid radii and the incremental depth of the frustum.

NFn and NFE are respective number of concurrent active faces in the north-south and 

east-west directions; NEn and NEe are the number of loading equipment in active faces 

in north-south and east-west directions; A is equipment availability; U is utilization; and 

Ln and Le are the length of cuts in the north-south and east-west direction ; LNO and LE0

are the respective maximum cut lengths in the north-south and east-west directions. The 

amount of change in volume in equation (3.3) depends on the production planning and 

scheduling requirements. The goal is to design a production process to extract fractional 

components of equation (3.3) and to find sequential A V ’s in any changes in production

Figure 3.4 Frustum geometry o f open pit

(3.3)
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time, A/. The production process should be designed to maximize the profit and minimize 

the extraction costs. In equation (3.3), changes in  the determinant variables like number 

of faces and loading equipment, will have an effect on AV, which could be defined only 

in terms of Aa,Ab and AH. If 6 is assumed to be constant over the pit, AV will be a

function of three variables A a, A b and A H , and V' can be written as equation (3.4):

V' = -  X [2.7V.{H + AH).(a  + Aa).{b + Ab) -  2^ H  +-A^  + (3.4)
3 tan 6

(2 .n.(H + A H )1.(a + Aa).(b + Ab) -  2-(H + ÂH \  ]
tan 9

The simplification of reality for the purpose of building useful models initiates an 

adherent error in them. The assumption of modeling open pit mines with elliptical 

frustum causes a considerable error in volume calculations. There is hardly any open pit 

mine that has a completely ellipsoid cross-section. To reduce this error, a more reliable 

elliptical frustum model is proposed. The modified geometry consists of four concentric 

ellipses with various major and minor axes, as illustrated in Figure 3.5a. The modified 

frustum model consists of four quadrants of elliptical frustums, which are appended along 

the major and minor axes of the top ellipsoid as in Figure 3.5b. This figure illustrates the 

modified elliptical frustum, which is defined by two ellipsoids with areas A] and A2 

separated by a vertical distanceh . Figure 3.6 illustrates the model, which divides the 

open pit into four sections, north-west, north-east, south-west, and south-east. Each area 

is defined by the major and minor axes of the respective top ellipsoid as in Table 3.1. The

overall stable pit slope 9 is defined for each region according to the rock slope stability

and geo-mechanical studies. The volume of material in each area is given by a quarter of 

the volume in equation (3.1). The area of the top and bottom ellipsoids defining the 

frustum are given by Ar and A2 in equations (3.6) and (3.7).

= + Ane + Asw + Ase (3-5)

TCA| = ~ x  (ciyyb pj + ci gbpj + cttybg + ciEbE) (3.6)
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figure ft

figure b

Figure 3.5 Concentric ellipses

A  = j x [(%  “  ~ j — )(bN -  k  ) + (aE -  ■■■ k )(bN -  , -  ) +
4 tan 6m  tan 6„„ tan 6\,r tan 6\'N E 'N E

(aw   — )(b„ ------ -— ) + (aE
tan 6 sw tan 0 VW tan 6' s w SE tan 0SE

(3.7)

By substitution of Ax and A2 in equation (3.1) the volume of material is calculated. 

Table 3.1 Variables defining frustums in each region

Region Major Axis (m) Minor Axis (m) Slope (degree) Area (m 2)

North-West a w K @n w
A

NW

North-East aE bN @NE -d-NE

South-West a w bs @ sw ■ASW

South-East a E bs @SE SE
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The geometry of the modified frustum is used to calculate the volume of material 

transferred during mining operation. Two different models are used in this thesis: (i) each 

open pit bench is simulated using an elliptical frustum in the discrete simulation model; 

and (ii) the whole open pit geometry is modeled with one modified elliptical frustum in 

the continuous simulation model, where the dynamics of the open pit are captured by a 

set of differential equations. Figure 3.6 demonstrates the model used in COPS and Figure 

3.7 illustrates the model used in DOPS.

Figure 3.6 Modified geometrical frustum model

3.3.2 Dynamics of Open Pit Expansion

The mechanics of open pit layout expansion depends on the production rate, which is 

a function of several variables. These variables include: (i) volume of proven reserve; (ii)

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 3 Theoretical Framework

Figure 3.7 Open pit geometry, each bench is modeled by a modified frustum

reserve geometry; (iii) proposed mine life; (iv) capacity of loading and hauling fleet; (v) 

number of active loading equipments; (vi) number of active working faces; (vii) milling 

and processing plant capacity; (viii) mill head grade; and (ix) site and working 

conditions. To ensure optimal plant operations it needs a uniform feed during the life of 

mine. Stable annual ore production within an acceptable range is required to achieve this 

objective. The dynamics of the open pit expansion are captured by two different methods 

(i) discrete modeling as a guide for strategic mine plans and (ii) continuous modeling as a 

guide for tactical mine plans.

3.3.2.1 Discrete Open Pit Expansion Model

Discrete modeling involves the modeling of discrete functions, which represent a 

finite number of attributes of a system in a finite number of states, typically described by 

algebraic equations. In this study, the pit geometry evolution is viewed as series of 

snapshots over period of time, i = \,...,n. Each of these snapshots represents the state of 

the open pit at a particular time. The pit expansion process is initiated by a box cut in the 

form of a frustum, i = 1, as in Figure 3.8. The pit expands in all directions toward 

reaching the next state of the open pit, z' + l. Each pushback represents a  periodic
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increment of production in strategic mine plans. The annual production capacity, Pc, is a

function of the fleet size, Fs ; fleet capacity, Fc; equipment availability, A ; utilization, U ;

cycle time, CT ; and the loose density of materials, / , .  The annual production capacity

given by equation (3.8) is constrained by a minimum,Pmm, and maximum, .Pmax , annual

production targets. For practical purposes, the variability between these two constraints 

must be controlled significantly to ensure a steady flow of materials to meet the quantity 

and quality requirements of the processing plant.

The volume of material, VM -  VI, given by equation (3.9), results from pit expansion

from i,h to (/' + l)'/! production period. The volume must be equal or fall within the 

acceptable production range. The volume of material moved in each pushback is a 

function of production capacity and changes of the ellipsoid radii and the geometry of the 

layout. The volume of material in the pit at the i‘h period is a function of the variables in 

equation (3.9). The sequential discrete open pit expansion model is the theoretical 

framework for capturing the long-term mine plane as an RL problem. The problem is 

viewed as a series of open pit geometry states in time, where the intelligent agent 

attempts to schedule the operation to maximize the NPV.

Pc = M Fs,Fc ,A,U ,CT,r i); Pmm <Pc ^ P max (3-8)

Pj+1 — Pi ~ Wifi] (P's > Pc > A,U , CT, yt) ,fi2 (aw, aE,bN ,bs ,h,dNW ,6m ,0sw ,6'^g)) (3-9)

The discrete open pit expansion model is the basis for DOPS. There are many different 

scenarios of push-back designs, which deplete the ore body to the final pit limits. The 

goal is to find the sequence of extraction, which maximizes the net present value, subject 

to all the underlying constraints and satisfies the management objectives. The Monte 

Carlo simulation technique is used in DOPS to randomly generate the discrete changes of 

Aaw, AaE, AbN, Abs , and Ah, which will satisfy the annual production targets of

Pmm <PC < Pmax . The simulation results are a series of equally probable realizations of

the long-term mine plan and the respective changes in Aaw, AaE, AbN, Abs , and Ah

over time.
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Figure 3.8 Discrete open pit expansion model

The Monte Carlo simulation technique estimates the value of a complex function by 

statistical sampling from a cumulative density function(s) of the input random variable(s). 

The design, efficiency and convergence characteristics of a Monte Carlo simulation 

experiment depend on the choice of variance reduction technique, random variate 

generation method and the input sample size (Narsing, 1997). A relationship exists 

between the sample size and the variance reduction technique. Even though the variance 

can be stabilized by choosing an appropriately large sample size, choosing a good 

variance reduction technique can reduce the sample size required to achieve the same 

results. The trade-off is between the cost to develop and program a variance reduction 

technique and the computational time associated with large sample sizes (Smith and 

Wagner, 2003).

The main components of a typical Monte Carlo simulation are: (i) a set o f PDF’s to 

represent the physical or mathematical system; (ii) a uniformly distributed set o f random
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numbers on the unit interval; (iii) some sampling rule utilizing the set of random numbers 

and the PDF’s; (iv) the outcome of the quantities; (v) determination of the statistical error 

(variance) as a function of the number of trails and other quantities; (vi) the use of a 

variance reduction technique (for reduction of the variance in the estimated solution) to 

reduce the computational time of the Monte Carlo simulation; and (vii) the use of 

parallelization or vectorization algorithms to enable efficient implementation.

3.3.2.2 Continuous Open Pit Expansion Model

Continuous modeling of open pit dynamics involves the characterization of the 

changes in the geometry of the open pit and the volume of materials moved by a set of 

differential equations. In general, the model does not have analytic solution and requires 

approximate solution methods such as finite elements, finite differences or boundary 

elements. Discretization of the open pit dynamics focuses on the process of transferring 

the continuous models and equations into discrete components. Typically discretization 

involves splitting the region of interest into a set of small elements, producing a discrete 

approximation of the differential equations in each element, and solving all of the discrete 

approximations simultaneously. The volume of material transferred throughout the pit 

expansion process, in equation (3.1), can be represented as the differential changes in the 

volume of material transferred by equation (3.4) for the original elliptical frustum model, 

and by equation (3.9) for the modified elliptical frustum model. The differential changes 

in volume of material transferred, A V , is a function of <j)} and <js2 in equation (3.3) for the 

original elliptical frustum model and in equation (3.9) for the modified elliptical frustum 

model. $  is a function of Fs, Fc, A , U , CT , and yt . The other variable <t>2 is a function

of frustum variables, aw, aE, bN, bs , h, 9m , 0NE, 9SW, and @se •

First, the frame work for the continuous model was developed based on the original 

elliptical frustum with three variables. Considering equations (3.3) and (3.4), a Taylor 

series expansion of function V(a,b,H) in three variables is given by equation (3.10):
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8V dV 8V 1 d2VV(a + Aa,b + Ab,H + VH) -  V(a,b,H) + —  Aa + - —Ab+-— AH + - - —T
da db 8H 2 8a2 zoo

AbAH + 0 (h3)AaAH +
8a8H

(3.10)

Since the assumption of modeling open pit mines with the original elliptical frustum 

model given by equation (3.2) caused a considerable error in volume calculations, the 

modified elliptical frustum represented in section 3.3.1 is used for open pit geometry 

modeling. Subsequently, the modified geometrical open pit model was developed as a 

function with five variables. At this stage the goal is to design a production process to 

make infinitesimal changes in equations (3.9) with respect to changes in dependent 

variables of the function ^2. The result will be sequential A V s  with respect to any 

changes in production time, A t . The overall slopes in different regions Om , 6m , 0SW, 0SE 

are assumed to be constant over each region. The changes in parameters of the function 

0](Fs,Fc ,A,U,CT,y l ) , will have a direct effect on A V , which are defined in terms of 

Aaw,AaB,AbN,Abs and Ah. Thus, V will be a function of five parameters aw,aE,bN,bs 

and h. It is assumed that V (a w, aE bN, bs , h) is an analytic function, so that all of its

derivatives exist. As a result, V can be represented by its corresponding Taylor series 

expansion in five variables. The generalized Taylor series expansion for a real function in 

n variables is given by Abramowitz (1972) in equation (3.11).

Accordingly, a Taylor series expansion of function V (aw, aEbN ,bs ,h) in five variables is 

given by equation (3.12) as:

(3.11)

V (aw + A aw, aE + A aE, bN + A bN, bs + A bs , h + Ah) = (3.12)
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2

Using the second order approximation in equation (3.12) will yield to equation (3.13).

V(aw + A aw,aE + A aE,bN + A bN,bs + Abs ,h + Ah) =

8V dV dV 8V 8V 1 d2V
V(aw,aB,bN,-bs , h ) + - — Aaw + —  AaE + —  AbN + —  Abs + - - A h  + - — T (Aaw) 

aaw oaE obN obs oh 2 oaw
1 d2V , 2 1 d2V 2 1 3 2U l d 2V /A1^2 d2V

+  ~ T T " ( A<3/ i )  + - T 7 T ( A ^ )   ̂ +  p ' pi ^ a f A a w2 oaE 2 obN 2 obs 2 oh oaEoaw
d2V d2V d2V d2V d2V

+ AarAbh, +  Aa„Abv + Aa„Ah +---------- AawAbh, + ----------AawAb,
-*vj t  N  — C  w O  ^  7 £  /" t ^  7 r r  I v  * \ i  W ooaEobN oaEobs oaEoh oawobN oawobs

d2V d2V d2V d2V ,+ —— — AawAh + ———— AbNAbn + — —— AbNAh + — —— Ab^Ah + 0 ( h )  (3.13)
dawdh w dbNdbs N s dbNdh N dbsdh s

According to equation (3.13), the changes in volume at any specific period of time, At, 

could be captured as a set of partial differential equations. The boundary conditions 

underlying equation (3.13) are the initial box cut and final pit limits dimensions. The first 

and second orders and the cross term partial derivatives in equation (3.13) are derived 

from equation (3.1) and presented in Appendix A. There is the need for functions of time 

representing Aaw, Aar:, Abh, , Abs , and Ah. Functional approximation of the simulation

results of DOPS is used to generate the additional conditions required to convert the set 

of PDEs to a system of ODEs. DOPS returns the feasible mining increments 

Aaw, AaE, Abs , AbN and Ah at the end of each period of production. As a result there 

will be annual tabular data for the increments over the life of mine. Trend analysis and 

curve fitting techniques are employed to approximate the periodic functions for 

increments Aaw,AaE,Abs ,AbN and Ah over the mine life. The increments are 

represented as functions of time. Substitution of the approximated incremental functions 

of Aaw,AaE,Abs ,AbN and Ah in equation (3.13) and substituting the results of

differentiation of partial derivatives represented in Appendix A in equation (3.13), 

converts the set of PDEs into a system of ODEs with time as the only independent 

variable. Thus, the changes in the volume of the frustum, as well as, the changes in depth, 

major, and minor axes of the frustum will be represented as a function of time in the form 

of equations (3.14) to (3.19)
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dt

d a w

dt

daE
dt

dbs

dt

M V ,t) ;  V(t0) = V0, F(f„) = Fp i t  _ iim it

W-max

fs  (®E > Os &E (to ) — aE0 ’ ^E (fn ) ~ ®E -max

db N

dt

dh
dt

fn (^s »0» bs (t0) — bso, bs (tn ) — bs_n

0» bN(t0) -  bm , bN(tn) -  bN_

f 6(h,t); h(t0) = h, h(tn) = hn

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

The set of equations (3.14) to (3.19) with the respective boundary conditions can be 

illustrated as equation (3.20):

dU
dt

= A.U + B (3.20)

Where:

~V 
a,w
Cl c

u  = (3.21)
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dV
dt
da w

dt 
daE

dU_ _ dt 
dt dbE

dt 
dbN

dt 
dk  
dt

(3.22)

The system of ODEs illustrated by equation (3.20) is integrated over time by 

numerical methods to capture the behavior of the pit shell expansion and it will result in a 

practical guide for the short-term production plan and the trajectories of aw,a E,bN,bs 

and h .

The first step in investigating the dynamics of the continuous-time system described 

by the system of ODEs by equation (3.20) is integration to obtain trajectories. Since most 

ordinary differential equations are not soluble analytically, numerical integration is the 

choice to obtain information about the trajectory. Many different methods have been 

proposed and used to solve accurately various types of ordinary differential equations. 

However, only a handful, such as the Adams-Bashforth-Moulton, Backward 

Differentiation Formulae and Runge-Kutta (R-K), are known and used universally 

(Henrici, 1962; Gear, 1971; Lambert, 1973; Stetter, 1973; Hall and Watt, 1976; Butcher, 

1987). All these methods discretize the differential system to produce a difference 

equation or map. The objective of numerical methods are similar; they aim at 

corresponding the dynamics of the map to the dynamics of the differential equation 

(Cartwright and Piro, 1992). The R-K methods are arguably the most well known and 

used methods for numerical integration (Dekker and Verwer, 1984; Hairer et al., 1989; 

Saatdjian, 2000; Epperson, 2002; Chapra and Canale, 2006).
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Stability horizons for R-K methods are known for linear and nonlinear ODEs. 

Therefore, if used with the right step-sizes, the R-K methods produce consistent and 

stable solutions and are convergent. The R-K algorithm used in this work is built on a 

single-step, explicit R-K (4, 5) embedded algorithm.

MATLAB uses explicit Runge-Kutta codes in its ode45 suite, which are used in 

integrating equation (3.20) in COPS. The solution of the continuous system returns the 

trajectories of changes in major, minor and depth of the frustum as well as the volume of 

materials transferred. The solution is passed to the economic expansion model. The 

scheme will return the blocks in the push-back design, net present value of the simulated 

schedule, and the volume of ore and waste.

3.3.3 Economic Pit Expansion Model (EPEM)

A useful planning model must be able to relate the dynamics of the open pit with the 

geological and economic block model. Such a model must yield the amount of ore, 

stockpile, and waste material moved on a bench-by-bench basis for each period of the 

mining operation. It must also report sufficient information about the ore grade, stockpile 

material, contaminant elements, and economics of the pushback design. The EPEM fits 

the expanding frustum on the economic and geologic block model and returns the pit 

present value, average ore grade, waste, and stockpile material at any desired period of 

production. Figure 3.9 illustrates the EPEM and it fits the center of the top ellipse of the 

frustum on the excavation starting point. The procedure starts searching the economic 

block model level by level. In each level, the distance between the center of the ellipse 

and the current block denoted by equation (3.24), is compared to the length of the radii of 

the ellipse in equation (3.29). Then a decision is made as to whether or not block is inside 

the frustum, as in Figure 3.9. The EPEM records the ore, waste, and stockpile material as 

well as the economic value for that period of mining. In the following formulas: 

C(x0,y 0) = center of the ellipse; (x0,_y0)= starting point of extraction; a tj= the angle

between the center of the ellipse, C(x0, y0) and block (i,j) as in equation (3.23);

k=0,l,...,n-l number of levels in the block model; and h = bench height. d=  the 

distance between the center of each block and the center of the ellipse as in equation

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 3 Theoretical Framework

(3.24); r = the distance between the center of the ellipse to the perimeter of it in the 

direction of d as in equation (3.29).

Figure 3.9 Economic pit expansion model

Figure 3.10 Economic pit expansion model, cross section view along frustum major axis
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a u = arctan(
xv - x 0 ) (3.23)

J  = [(xy. - x 0)2+ ( ^ - ^ o ) 2] /

The equation of the ellipse is as follows:

(3.24)

(x -x 0) | ( y - y 0) _ 1 (3.25)

In polar coordinates, the angle a tJ in equation (3.23) is called the eccentric angle.

Substituting the polar equations into Cartesian coordinates in equation (3.25) and solving 

for r will yield in equation (3.29).

z = k x h  + (h /  2) (3.26)

ak = a -
tan(9

r = (

tan#

■t 2 2
bk ■a k

bk 2. cos2 a  ij + a l . sin2 a tj
) A

(3.27)

(3.28)

(3.29)

The procedure compares r from equation (3.29) with d  from equation (3.24) to decide if 

the block is in the current pit or not. The procedure finally returns the volume.of ore, 

waste, stockpile material, and their respective grades, and the economic value of the 

suggested pushback.

The primary implementation of EPEM in MATLAB demonstrated a reasonable run 

time for block models representing medium size deposits. The increase in the number of 

blocks in the model causes a longer search time for EPEM. Therefore, there is need for 

spatial data structures (Samet, 1990; Samet, 1990) to enhance the algorithm efficiency.
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Start

Set C ( x 0 , y 0 ) , z 0  
Extraction starting point

Calculate

Set i  —z + 1

Calculate Z

Record block (i,j,S£) as waste 
T otal_cost=T otal_cost +COSt

Record block (i,j,J$) as ore 
T otal_rew=T otal_rev + R e v

Record block (ij.Jp  as stockpile 
T otal_cost-=T otal_cost + c o s i

Figure 3.11 Economic pit expansion flowchart

3.4 Agent: Intelligent Open Pit Agent (IOPA) Structure

The aim of this section is to give an understanding of how IOPA interacts with other 

entities and processes of the RL conceptual model, which characterizes the IOPS 

framework. The process of developing and building the IOPA architecture based on 

mathematically idealized forms of the RL problem are investigated and adapted from 

Wooldridge and Jennings (1995), Sutton and Barto (1998), and Wooldridge (2002).
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Wooldridge and Jennings (1995) defined an agent as a computer system that is 

positioned in some environment, and that is capable of autonomous action in this 

environment in order to meet its design objectives. Figure 3.1 gives an abstract view of 

an agent. In most domains of reasonable complexity, an agent will not have complete 

control over its environment. The agent have available a range of actions that can be 

executed to modify the environment, which may appear to respond non-deterministically 

to the execution of these actions.

The reinforcement learning problem is meant to be a straightforward framing of the 

problem of learning from interaction to achieve a goal. In this study the agent, IOPA is 

the learner and decision-maker. The phenomenon it interacts with, comprising everything 

outside it, is called the environment, including the economic block model and OPPS. 

These models interact continually as IOPA selects actions, which are defined in terms of 

the changes in the push-back parameters and as the result, changes in the pit geometry. 

The simulation and the environment respond to those actions and present new possible 

geometries of the open pit to the IOPA. The environment also responds with rewards, 

which is the cash flow of each simulated production period. The primary goal o f IOPA is 

to maximize the NPV of the venture overtime. This means maximizing not only the 

immediate reward, which is the cash flow of the next production period, but also the 

cumulative reward in the long run, which is the NPV.

Figure 3.12 illustrates the IOPA architecture. The pit geometry evolution is viewed 

as a series of snapshots over of time. The IOPA and the environment interact at each 

sequence of discrete time steps, t = I,..., n. The simulation of the environment starts with 

the initial box cut, and the agent starts by choosing an action to perform on that state. As 

a result of this action, the simulation and the environment can respond with a number of 

possible states. However, only one state will actually result. On the basis of this second 

state of the environment, the agent again chooses an action to perform. The environment 

responds with one of a set of possible actions available, afterward the agent chooses 

another action. This process is repeated until the simulation of the open pit layouts 

reaches the optimized open pit limits.
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Aaw, AaE, Abs , AbN Ah
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Figure 3.12 IOPS model as an RL architecture

More specifically, the IOPA and OPPS interact at each sequence of discrete time 

steps, t = 1,2,..., f t. At each time step t,  IOPA receives the geometric state of the open pit

layout, st e S , where S  is the set of possible states. On the basis of S , IOPA selects an

action, at e A{st) , where A(st) is the set of changes possible in the pit geometry in state

s , . One time step later, in part as a consequence of its action, and interaction with EPEM,

the agent receives a numerical reward, which is the cash flow of that period o f mining
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operation, rl+x e R .  As a result, IOPA finds itself in a new state, j (+1 . At each time step, 

the agent implements a mapping from states to probabilities of selecting each possible 

action. This mapping is called the agent's policy and is denoted by, n l , where nt{s,a) is 

the probability that at = a if st = s . RL methods specify how the agent changes its policy

as a result of its experience. The agent's goal, roughly speaking, is to maximize the total 

amount of reward it receives over the long run.

3.5 Reinforcement Learning: IOPS Theoretical Framework

Reinforcement learning (Millington, 1991; Sutton, 1992; Kaelbling, 1996; Sutton 

and Barto, 1998) is learning how to map situations to actions in order to maximize a 

numerical reward signal. The learner is not told which actions to take, as in most forms of 

machine learning, but instead it must discover which actions yield the most reward by 

trying them. The most important distinguishing features of reinforcement learning are 

two characteristics—trial-and-error search and delayed reward.

One of the challenges that arise in reinforcement learning and not in other kinds of 

learning is the trade-off between exploration and exploitation. To obtain a large reward, a 

reinforcement learning agent must prefer actions that it has tried in the past and found to 

be effective in producing reward. But to discover such actions, it has to try actions that it 

has not selected before. The agent has to exploit what it already knows in order to obtain 

reward, but it also has to explore in order to make better action selections in the future. 

The dilemma is that neither exploration nor exploitation can be pursued exclusively 

without failing at the task. The agent must try a variety of actions and progressively favor 

the best action. On a stochastic task, each action must be tried many times to gain a 

reliable estimate of its expected reward.

3.5.1 Elements of IOPS as an RL Problem

Figure 3.2 and Figure 3.12 demonstrate the main IOPS architecture as an RL 

problem. Beyond the agent and the environment, one can identify four main sub-elements
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of a reinforcement learning system: a policy, a reward function, a value function, and a 

model of the environment.

A policy defines the learning agent's way of behaving at a given time. Roughly 

speaking, a policy is a mapping from perceived states of the environment to actions to be 

taken in those states. In IOPS, the policy is the schedule for expanding the open pit, 

which the agent recommends at the end of each period of mine production. The policy is 

the core of a reinforcement learning agent in the sense that it alone is sufficient to 

determine behavior. In general, the policies may be based on stochastic variables.

A reward function defines the goal in a reinforcement learning problem. Roughly 

speaking, it maps each perceived state of the environment to a single number, a reward, 

indicating the intrinsic desirability of that state. In IOPS, the IOPA’s sole immediate 

objective is to maximize the cash flow of the operation at the next period of extraction. 

The reward function may serve as a basis for altering the policy. For example, if  an action 

selected by the policy is followed by low reward, then the policy may be changed to 

select some other action in that situation in the future. In general, reward functions may 

be stochastic.

Whereas a reward function indicates what is good in an immediate sense, a value 

function specifies what is good in the long run. Roughly speaking, the value o f a state is 

the total amount of reward an agent can expect to accumulate over the future, starting 

from that state. Whereas rewards determine the immediate, intrinsic desirability of 

environmental states, values indicate the long-term desirability of states after taking into 

account the states that are likely to follow, and the rewards available in those states. For 

example, an immediate open pit mine short-term schedule might yield a low cash flow 

for the next year but still have a high value because it is regularly followed by other long 

term prediction that yield a high NPV.

The fourth and final element of reinforcement learning systems is a model of the 

environment. In IOPS architecture, OPPS mimics the behavior of the open pit expansion 

with discrete and continuous-time simulation. Given a state and an action, OPPS predicts 

the resultant next state of the open pit geometry and the derived cash flow. The following
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sections contain a more detailed discussion on the elements of the RL problem as defined 

in IOPS.

3.5.1.1 Rewards and Return

In IOPS, the purpose or goal of the agent is formalized in terms of a special reward 

signal, which passes from the open pit expansion simulation to the IOPA. At each time 

step, the reward is the cash flow for that period of the mining operation, denoted by 

rt e R. Informally, the agent's goal is to maximize the total amount of reward it receives.

This means maximizing not just the immediate reward, but also the cumulative reward in 

the long run, which is the NPV of the venture. So far we have been imprecise regarding 

the objective of learning. In general, the goal is to maximize the expected return, where 

the return, Rt by equation (3.30), is defined as a specific function of the immediate reward 

sequence. In equation (3.30), y  is the discount factor and is a number between 0 and 1. 

The discount factor describes the preferences of an agent for current rewards over future 

rewards. When y is close to 0, rewards in the distant future are viewed as insignificant, i 

in equation (3.31) is the interest rate for time slice, t .

If y  = 0, the agent is "myopic" in being concerned only with maximizing immediate 

rewards: its objective in this case is to leam how to choose at so as to maximize only 

rt+]. But in general, acting to maximize immediate reward can reduce access to future 

rewards so that the return may actually be reduced. As y approaches 1, the objective 

takes future rewards into account more strongly: the agent becomes more farsighted.

T
Rt = rt+x+ y r t+2 + y 2rt+, + ... +A+*+1 = A,+w (3.30)

1
(3.31)
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3.5.1.2 IOPS Action Selection Rule

The simplest action selection rule is to select the action or one of the actions with 

highest estimated action value, that is, to select the push-back at time step t with the 

highest cash flow. This method always exploits current knowledge to maximize 

immediate reward; it spends no time at all sampling apparently inferior actions to see if 

they might really be better. A simple alternative is to behave greedily most of the time, 

but every once in a while, say with small probability s , instead select an action at 

random, independently of the cash flow estimates of the push-back. This method of using 

near-greedy action selection rule is called the s-greedy method and it is the action 

selection algorithm in IOPS (Sutton and Barto, 1998).

3.5.1.3 Markov Property Assumption

IOPS is formulated as an episodic task where there is a final time step T , which is 

when the simulation reaches the final pit limits. The IOPA-OPPS interaction breaks 

naturally into sub-sequences, which are called episodes, Each episode ends in the special 

state of the open pit, the ultimate pit limits. In RL terminology this is called terminal 

state, which is followed by a reset to the initial box cut of the open pit expansion. In 

episodic tasks there is a need to distinguish the set of all non-terminal states, denoted S , 

from the set of all states plus the terminal state, denoted S +.

In probability theory, a stochastic process has the Markov property if the conditional 

probability distribution of future states of the process, given the present state, depends 

only upon the current state. A reinforcement learning task that satisfies the Markov 

property is called a Markov decision process, or MDP (White, 1978; Hartley et al., 1980; 

Altman, 1999; Ratitch, 2005). If the state and action spaces are finite, then it is called a 

finite MDP. The IOPS architecture is based on Markov property, specifically the current 

state of the pit, which is the present status of the spanning frustum, and only depends on 

the previous state. This is called a first-order Markov process; the laws describing how 

the open pit state evolves over time are contained entirely within the conditional 

distributionp(Sl\S,_l) in equation (3.32). A particular finite MDP is defined by its state
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and action sets and by the one-step dynamics of the environment. Given any state and 

action, s and a , the probability of each possible next state, s ' , is given by equation

These quantities are called transition probabilities. Similarly, given any current state 

and action, 5 and a , together with any next state, s', the expected value of the next 

reward is given by equation (3.33). The quantities, P“. and i?°., completely specify the 

most important aspects of the dynamics of a finite MDP.

3.5.1.4 IOPS Value Functions

Almost all reinforcement learning algorithms are based on estimating value

state or how good it is to perform a given action in a given state. The notion of "how 

good" here is defined in terms of expected return. Accordingly, value functions are 

defined with respect to particular policies. Figure 3.13 illustrates a schematic of the OPPS 

simulation at a discrete time step t and the open pit current status of S . For illustration 

clarity purposes it is assumed that there are just three push-backs av a2, a3 that satisfy the 

targets of the next production period. Following one of the push-back designs the open 

pit will expand to the status of s\, s2, or „y3. The value of state s under policy n , denoted

by V*(s), is the expected return or the NPV, when starting in s and following n  

thereafter until reaching the final pit limits. For the MDP representing the open pit 

dynamics in Figure 3.12, V*(s) can be defined as equation (3.34).

(3.32).

(3.32)

(3.33)

functions-functions of states that estimate how good it is for the agent to be in a given

V‘ (s) = E,{R, Is, =s} = E , { Y . l y r,M  1 s, =s) (3.34)
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\'X

Q n { s ,d )

Figure 3.13 Schematic o f OPPS simulation at a discrete time step t

Ek { } denotes the expected NPV given that the agent follows policy and t is any time 

step. The function V* is called the state-value function for policy n .

Similarly, the value of taking action a in state 5 under a policy 7t, denoted 

Qn (s, a) is defined as the expected NPV of the operation starting from 5, taking the 

action a , and thereafter following policy n . Qn is called the action-value function for 

policy n  given by equation (3.35).
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Q* (s, a) = En {R, | st = s, at =a} = En{]T”=o ykrt+k+l | s, = s, a, = a} (3.35)

A fundamental property of value functions used throughout reinforcement learning and

dynamic programming is that they satisfy particular recursive relationships. For any 

policy n  and any state s, the following consistency condition in equation (3.36) holds 

between the value of s and the value of its possible successor states.

Equation (3.36) is the Bellman equation for Vn (Bellman, 1957; Bellman and Dreyfus, 

1962; Bellman and Kalaba, 1965; Bellman, 1968). It expresses a relationship between the 

value of a state and the values of its successor states. Figure 3.14 demonstrates the 

backup diagrams for the open pit expansion model illustrated in Figure 3.13. We are 

looking ahead from one state to its three possible successor states, as suggested by Figure 

3.14a. Each big circle represents a state and each solid circle represents a state-action 

pair. Starting from state s , the root node at the top, the IOPA could take any o f some set 

of actions. From each of these, the environment could respond with one of several next 

states, s ,  along with a reward,r. The Bellman equation (3.36) averages over all the 

possibilities, weighting each by its probability of occurrence. It states that the value of the 

start state must equal the discounted value of the expected value of the next state, plus the 

reward expected along the way.

3.5.1.5 Optimal Value Functions

Solving a reinforcement learning task is finding a policy that achieves a lot of reward 

over the long run. For finite MDPs, we can precisely define an optimal policy in the 

following way. Value functions define a partial ordering over policies. A policy n  is 

defined to be better than or equal to a policy n  if its expected return is greater than or

(3.36)
a
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Taken with probability
of 7c(s9a )

Q n { s ,d )  *

Figure 3.14 Backup diagrams for Figure 3.13

equal to that of n  for all states. In other words, n  > n  if and only if Vn (s) > Vn (.s') for 

all s e S . There is always at least one policy that is better than or equal to all other 

policies. This is an optimal policy. Although there may be more than one, we denote all 

the optimal policies by n  . They share the same state-value function, called the optimal 

state-value function, denoted by V*, and defined as equation (3.37) for all s e S .

V \s )  = maxV*(s) (3.37)7r

Optimal policies also share the same optimal action-value function, denoted by Q* for all 

s e S  and a e A(s), and defined as equation (3.38).

Q* (s,a) = max 0"  (s, a) (3.38)
7t

For the state-action pair (s ,a ), equation (3.38) gives the expected return for taking action

a in state 5 and thereafter following an optimal policy. Thus, Q* can be written in terms

of V* as in equation (3.39).
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Q \s ,a )  = E{rl+X + y V \ s l+]) \s ,=s ,a t = a} (3.39)

This is the Bellman optimality equation for V* (Bellman, 1957; Bellman and Dreyfus, 

1962; Bellman and Kalaba, 1965; Bellman, 1968). Intuitively, the Bellman optimality 

equation expresses the fact that the value of a state under an optimal policy must equal 

the expected return for the best action from that state as illustrated in equation (3.40).

V* (s) = max Qn (s, a)
a e A ( s )

= max {i?( | st -  s, at = a]

= max Ex, j]£  /  rl+k+l | = 5, at = a J

= max E%. | r (+] + \st =s,at = a j

= max E |r (+1 + yV* (j |+1) | st =s,a,= a}

= max V Pa, f +yV*(s')} (3.40)
a e A c o - y *  L  J

Equation (3.40) is a form of the Bellman optimality equation for V*. The Bellman 

optimality equation for Q* is given by equation (3.41).

Q (s,a) = E \rM + y m ^ Q  ( s „ „ a ) |i ,  - s ,a ,  =a[

=  ' Z P»'lR°-.+ rm f xQ ' ( s ’a)] (3-41)
s

For finite MDPs, equation (3.40) has a unique solution independent of the policy. The 

Bellman optimality equation is actually a system of equations, one for each state. Thus, if 

there are N  states, then there are N  equations in N  unknowns. If the dynamics of the

environment are known P a ■ and R a , then in principle one can solve this system of
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equations for V* using any of the methods used for solving systems of nonlinear 

equations.

Explicitly solving the Bellman optimality equation represented by equation (3.40) 

provides one route to finding an optimal policy for solving the reinforcement learning 

problem. However, this solution is rarely directly useful. Sutton and Barto (1998) explain 

that this solution relies on at least three assumptions that are rarely true in practice. These 

assumptions are: (i) accurate knowledge of the dynamics of the environment; (ii) enough 

computational resources to complete the computation of the solution; and (iii) the 

Markov property. In the IOPS framework, we are not able to implement the direct 

solution because of the dimension of the problem. For instance, assume that at the end of 

each production period, there are 30 different possible scenarios of push back designs, 

which satisfies the production targets. Specifically, this means that at each state there are 

30 possible actions to take. If we are modeling a mine with 20 years mine life then we 

will have 3020 states, it would take hundreds of years on today's fastest computers to 

solve the Bellman equation for V*, and the same is true for finding Q*.

3.5.2 Review on Solution Methods to the RL Problem

Sutton and Barto (1998) presented three fundamental classes of methods for solving 

the reinforcement learning problem: (i) dynamic programming (DP); (ii) Monte Carlo 

(MC) methods; and (ii) temporal-difference (TD) learning. All of these methods solve the 

full version of the RL problem. Each class of methods has its strengths and weaknesses. 

Dynamic programming methods are well developed mathematically, but require a 

complete and accurate model of the environment. Monte Carlo methods do not require a 

model and are conceptually simple, but are not suited for step-by-step incremental 

computation. Finally, temporal-difference methods do not require any model and are 

fully incremental, but they are more complex to analyze.

The term dynamic programming (DP) refers to a collection of algorithms that can be 

used to compute optimal policies given a perfect model of the environment as a Markov 

decision process (Bellman and Kalaba, 1965; Bertsekas, 1976; Puterman, 1978; Denardo, 

1982; Puterman, 1994; Bertsekas, 1995; Bather, 2000). Classical DP algorithms are of
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limited utility in reinforcement learning both because of their assumption of a perfect 

model and because of their great computational expense. If we ignore a few technical 

details, then the (worst case) time DP methods take to find an optimal policy is 

polynomial in the number of states and actions. If n and m denote the number of states 

and actions, a DP method is guaranteed to find an optimal policy in polynomial time even 

though the total number of (deterministic) policies is m" . DP is sometimes thought to be 

of limited applicability because of the curse o f dimensionality (Bellman, 1957). The fact 

that the number of states often grows exponentially with the number of state variables. 

Large state sets do create difficulties, but these are inherent difficulties of the problem, 

not of DP as a solution method.

Monte Carlo methods (Michie and Chambers, 1968; Narendra and L.Thathachar, 

1974; Barto and Duff, 1994; Singh and Sutton, 1996) require only experiences of the 

model. They sample sequences of states, actions, and rewards from on-line or simulated 

interaction with an environment. Learning from on-line experience is striking because it 

requires no prior knowledge of the environment's dynamics, yet it can still attain optimal 

behavior. Learning from simulated experience is also powerful. Although a  model is 

required, the model need only generate sample transitions, not the complete probability 

distributions of all possible transitions that is required by dynamic programming DP 

methods. Monte Carlo methods are based on averaging sample returns. They are used 

only for episodic tasks. That is, we assume experience is divided into episodes, and that 

all episodes eventually terminate no matter what actions are selected. It is only upon the 

completion of an episode that value estimates and policies are changed. Monte Carlo 

methods are thus incremental in an episode-by-episode sense, but not in a step-by-step 

sense. The Monte Carlo methods learn value functions and optimal policies from 

experience in the form of sample episodes.

Temporal-difference (TD) learning (Werbos, 1987; Sutton, 1988; Watkins, 1989; 

Pellegrini, 1991; Sutton, 1992; Watkins and Dayan, 1992; Tsitsiklis, 1997) is a 

combination of Monte Carlo ideas and dynamic programming (DP) ideas. Like Monte 

Carlo methods, TD methods can learn directly from raw experience without a  model of 

the environment's dynamics. Like DP, TD methods update estimates based in part on
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other learned estimates, without waiting for a final outcome (they bootstrap). TD methods 

are the core of IOPS architecture. The theory is discussed in the next section.

3.5.3 Temporal-Difference Learning

Both TD and Monte Carlo methods use experience to solve the prediction problem. 

Given some experience following a policy n , both methods update their estimate V of 

Vn . If a non-terminal state st is visited at tim er, then both methods update their estimate 

V(st) based on what happens after that visit. Roughly speaking, Monte Carlo methods 

wait until the return following the visit is known, then use that return as a target for 

V(st). A simple every-visit Monte Carlo method suitable for non-stationary 

environments is given by equation (3.42),

R, is the actual return following time t and a  is a constant step-size parameter. Whereas 

Monte Carlo methods must wait until the end of the episode to determine the increment 

to Vfa) (only then is Rt known), TD methods need wait only until the next time step. At 

time t + 1 they immediately form a target and make a useful update using the observed 

reward rt+l and the estimate V(sl+l) . The simplest TD method, known as TD(0), is:

V{st) ^ V { s t) + a[Rt -V { Sl)] (3.42)

V(st) <- V(s,) + a[n+]+rV(s!+l) -V (s t)l (3.43)

Initialize V(s) arbitrarily 
Repeat (for each episode):

Initialize s
Repeat (for each step of episode):

a < r -  action given by n  for.?
Take action a; observe, r , and next state, s' 
V(st) ^  V(st) + a[rl+1 +r V(st+l) -V (s t)] 

s <- s 
Until s is terminal

Figure 3.15 Tabular TD(0) for estimating Vn
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In effect, the target for the Monte Carlo update is Rt , whereas the target for the TD

update is r(+I + yVt (^+,). Because the TD method bases its update in part on an existing

estimate, it is a bootstrapping method, like DP. Figure 3.15 specifies TD(0) in procedural 

form.

3.5.3.1 Q-Leariiing: Off-Policy TD Control Algorithm Core of IOPS

One of the most important breakthroughs in reinforcement learning was the 

development of an off-policy TD control algorithm known as Q-learning (Watkins, 

1989). Its simplest form, one-step Q-learning, is defined by equation (3.44).

0 ( M ) < - 0 ( M )  + a[>;+1 + /m a x a. Q(st+],al+l) -Q (s t,at)] (3.44)

In this case, the learned action-value function, Q , directly approximates Q*, the optimal 

action-value function, independent of the policy being followed. This dramatically 

simplifies the analysis of the algorithm and enabled early convergence proofs. The policy 

still has an effect in that it determines which state-action pairs are visited and updated. 

However, all that is required for correct convergence is that all pairs continue to be 

updated. The Q-leaming algorithm is shown in procedural form in Figure 3.16.

Initialize Q(s,a) arbitrarily 
Repeat (for each episode):

Initialize S
Repeat (for each step of episode):

Choose a from s using policy derived from Q(s -  greedy) 
Take action a, observe r,sl+]
Q ( s , Q { s t,<*,) + a[rM + y max^. Q{st+l,al+]) - Q(s,,at)]

s, <“  •Vi 
Until s is terminal

Figure 3.16 Q-Learning an off-policy TD control algorithm, the basis of IOPS framework
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3.6 Summary and Remarks

The modeling effort and theoretical architecture required for ‘Intelligent Open Pit 

Optimal Production Simulator’ (IOPS) has been presented in this chapter. The long-term 

open pit planning is formalized by reinforcement learning (RL). The interaction of three 

fundamental entities of RL problem—environment, intelligent agent, and simulation 

captures the stochastic dynamic expansion of open pit layouts in time and space. IOPS 

include independent and interrelated models, using off-policy TD control algorithm 

known as Q-learning to maximize the net present value of the mining venture.

The environment consists of geological block model (GBM) and economic block 

model (EBM). The intelligent open pit agent (IOPA) interacts with the environment by 

means of the open pit production simulator (OPPS). OPPS comprises geometrical open 

pit model (GOPM); discrete open pit simulator (DOPS); economic pit expansion model 

(EPEM); and continuous open pit simulator (COPS). The simulator mimics the stochastic 

dynamic expansion of open pit layouts using discrete incremental push-backs in different 

directions. The interactions of EPEM with DOPS returns the pit’s NPV following the 

simulated schedule. The COPS models the dynamics of open pit geometry and the 

subsequent material movement as a continuous system described by time-dependent 

differential equations. A set of PDEs capture the time-related behavior of the open pit 

mining systems. Functional approximation of the discrete simulated push-backs, 

generated by DOPS, provides the means to convert the set of PDEs to a system of ODEs. 

Numerical integration with Runge-Kutta scheme yields the trajectory of the pit geometry 

over time with the respective volume of materials transferred and the resulting NPV.

In order to achieve the objectives, a theoretical modeling framework was established 

comprising the necessary assumptions and limitations based on reinforcement learning. 

This framework establishes the essential components of the IOPS architecture. These 

models are combined into appropriate algorithms for further application analysis 

requirements, classes and objects identification, and UML diagram design.
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CHAPTER 4 
ALGORITHM DEVELOPMENT, APPLICATION 

DESIGN, AND IMPLEMENTATION

4.1 Foreword

The mathematical modeling and theoretical architecture development resulted in the 

IOPS mathematical models, discussed in Chapter 3. This chapter deals with utilizing the 

models in a finite set of procedural instructions, algorithms, and numerical methods in 

order to accomplish the research objectives. The design and implementation of IOPS 

starts with class design and object identification. There are three basic objects: agents, 

environments, and simulations. The intelligent learning agent interacts with the economic 

block model as the environment.' The simulation manages the interaction between the 

agent and the environment and collects data. The numerical reward is a number 

representing a push-back’s cash flow, the actions and states are instances of classes 

derived from the abstract classes respectively.

MATLAB (MathWorks, 2005) uses explicit Runge-Kutta codes in its ode45 suite, 

which are used in integrating ODE equations in the COPS. The solution of the continuous 

system returns the trajectory of changes in the major, minor and depth axes of the frustum 

model, as well as, the volume of materials. The solution is passed to the economic 

expansion model. The scheme will return the blocks in the push-back design, net present 

value of the simulated schedule, and the volume of ore and waste.

The Java Reinforcement Learning Library, JavaRL, (Kerr et al., 2003) was chosen as 

the core of the IOPS application implementation. Java programming language version

1.4.2 (Sun Microsystems, 1994-2006) and MATLAB version 7.04 (MathWorks, 2005) 

were selected as the platform for programming. The IOPS graphical user interface (GUI) 

was implemented using IntelliJ IDE (JetBrains, 2000-2006). The user interface facilitates 

the process of setting the block model, pit, production, and simulation parameters.
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4.2 Algorithm Developm ent

The modeling effort in Chapter 3 has culminated in the development of ‘Intelligent 

Open Pit Optimal Production Simulator’ (IOPS) architecture based on reinforcement 

learning (RL). These models have to be combined in appropriate algorithms for further 

application analysis requirements.

O PPSSim ulationE nvironm ent

G O PM
EBM

E PE M

NO
Agent IO PA

Reached final 
pit limits ?

YES

simulation iterations'""^ YES 
com pleted?

NO

Stop

DOPS

CO PS

Initialize variables

return the optim al 
long-term  schedule

Geostatistical ore-body 
model

return the optim al 
continuous-tim e  

schedule

Set the num ber o f  ■, 
sim ulation iterations N

Figure 4.1 IOPS general flow chart
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Figure 4.1 demonstrates the flow diagram of the IOPS framework in its broadest 

perspective. The algorithm starts with the interaction of two entities of the RL problem, 

the environment and the simulation. Open pit production simulator (OPPS) employs the 

geometrical open pit model (GOPM) and the discrete open pit simulation (DOPS) 

framework to stochastically simulate the next practical push-backs. The cash flows of the 

simulated push-backs are returned by the economic pit expansion model (EPEM). The 

intelligent agent, IOPA, employs Q-leaming and epsilon-greedy algorithm to choose the 

next suitable push-back among all the simulated results. The algorithm then updates the 

action value estimates Q(s, a ) . These components interact continually, as the agent 

selects actions and the simulation and environment respond to those actions and present 

new push-backs to the agent. The simulation continues until the simulated push-back 

design reaches the final pit limits.

Afterward, the algorithm resets all the variables and starts a new episode of 

simulation from the initial pit. The IOPA objective is to maximize the NPV of the 

operation over time. In the Q-leaming algorithm, the learned action-value function, Q,

directly approximates Q*, the optimal action-value function, independent of the chosen 

policy. The algorithm results in the optimal open pit long-term schedule. Subsequently, 

the discrete optimal push-back design is transferred to the continuous open pit simulator 

(COPS), where the specification of the continuous-time open pit dynamics is captured as 

a system of PDEs. The numerical solution to these set of equations yields the short range 

plan of the mining operation. The general perspective of the IOPS algorithm presented 

will be scrutinized in detailed algorithms in the following sections.

4.2.1 Intelligent Open Pit Optimal Production Simulator (IOPS)

Figure 4.2 illustrates the detailed flow chart of IOPS emphasizing on Q-leaming 

algorithm (Watkins, 1989; Watkins and Dayan, 1992). The Q-leaming algorithm is 

further described in a 5-step procedure. The great advantage of this algorithm is that the 

learned action-value function, Q , directly approximates Q*, the optimal action-value 

function, independent of the followed policy. This dramatically simplifies the analysis of
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the algorithm. The policy still has an effect in that it determines which state-action pairs 

are visited and updated in the process.

start
Initialize Q(s,a) Set 7 = 1 

j

Step 1
m =numo

1 r
Set t = 1 

t =  l,...,n  
n = mine life in year

Aawi, AaE , A bm, Abs

DOPS

Set j
number o f simulated 
push-backs

Step 3

V'(s)

Step 4

rt — cash flews o f  
simulated push-backs s  f 

i — 1

g -  greedy

stochastic push-back design

g , ( s ,a ) »  g  [s.a)  action value estim ates

Step 5

Implement the chosen 
push-back

Observe the cash flow T 
and next pit status s '

Update
Q(s, a)-(-Q(s, a) + TD(error)

a [ r  +  r m ax . Q ( s , a ) ~ Q ( s , a )]

update

Return maximum NPV & respective

Set t = t + \

Set j  = 7 + 1

stop ~y
A V, , Aam ,AaB,Abm, A bB, Ah,

)4 return Q{s, a)
r as optimal schedule YES

Figure 4.2 Q-leaming algorithm flow diagram
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Step 1

The algorithm starts with (i) arbitrarily initializing the Q(s, a) , which is the expected 

discounted sum of future monetary returns of expanding the open pit from status S to the 

S' by choosing the push-back a and following an optimal policy thereafter; (ii) set the 

number of simulation trials that the algorithm is run. In other words the number of times 

that the open pit dynamics are simulated from the initial box cut to the final pit limits.

Step 2

The DOPS algorithm is called to capture the open pit layout evolution as a result of the 

material movement throughout the mine life. The DOPS stochastically simulates a 

number of practical push-back designs for the next production period. The result of the 

simulation is k push-backs av a2,...,ak that satisfy the next production period targets. 

Following one to the push-back designs the open pit will expand to the status 

o fs j ,^ ,—, ^  • The value of state s under policy ;r, denoted V*(s) is the expected return 

or the NPV, when starting in s and following n  thereafter until reaching the final pit 

limits.

Step 3

Simulated push-backs al,a2,...,ak are transferred to the EPEM, where the cash-flows 

r^r2,...,rk of following those schedules are returned.

Step 4

The epsilon greedy algorithm demonstrated by Figure 4.3 is called. The action selection 

rule is to select the action or one of the actions with highest estimated action value, that 

is, to select the push-back at time step t with the highest cash flow. The algorithm 

behaves greedily most of the time, but every once in a while, say with small 

probability s , instead select an action at random, uniformly, independently of the action- 

value estimates of the push-back. Subsequently the chosen push-back is implemented and 

the agent finds itself in pit status S' and observes the cash flow r .
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Step 5

After being initialized to arbitrary numbers, Q-values are estimated on the basis of 

experience. Update Q(s,a) based upon the previous experience as follows:

Q(sl,a()< -Q (st,at) + a [r^ + y m zx c. Q(st+Vat+X)-Q {sn at)\ (4.1)

This algorithm is guaranteed to converge to the correct Q-values with the probability one 

if the environment is stationary and depends on the current state and the action taken in it. 

Every state-action pair continues to be visited, and the learning rate is decreased 

appropriately over time. Once these values have been learned, the optimal action from 

any state is the one with the highest Q-value.

start

a, = a r g m a x < 2 ,(s ,a )  

at =  a'  => explo ita tion  

at *  a, exploration

Random action with 
probability o f  £

Stop

IOPA
Q-l.earning

EPEMDOPS

£ -  greedy

return the 
optim al schedule

7j -  cash flows o f  
simulated push-backs s .

Figure 4.3 Epsilon greedy algorithm flow chart
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4.2.2 Discrete Open Pit Simulator (DOPS)

Discrete simulation is used to capture the open pit layout evolution as a result of the 

material movement throughout the mine life. DOPS is developed to simulate the dynamic 

expansion of the open pit geometry, using Monte Carlo simulation based on GOPM. The 

pit status is observed as snapshots over discrete time steps through mine life, i = \,...,n. 

At each time step, the DOPS stochastically simulates several practical push-backs, which 

satisfy the next production targets. The simulation results are a series of equally probable 

realizations of changes in GOPM frustum dimensions at each time step over the mine 

life. Figure 4.4 illustrates the five main steps of the DOPS algorithm.

Step 1

The simulation starts with the initialization of variables: (i) setting the initial box cut 

dimensions aW0,aE0,bS(l,bN0 and h0; (ii) initializing the optimized final pit limits

bs-max’ Vmaxand P )  setting the overall pit slopes in different

regions 0NW, dNE, 0SW, dSE; (iv) setting the maximum number of benches, which is

practically possible to deepen the pit each year; (v) setting the mean, minimum, and 

maximum annual acceptable production; (vi) inputting the geological and economic 

block model files; and (vii) setting the number of possible push-backs at each time step. 

The amount of ore, waste and stockpile materials in the final pit limits are reported based 

on bench-by-bench and tonnage grade curves. The life of mine is estimated with due 

respect to the annual targeted production rate and the mining and milling constraints. The 

overall pit slopes, the minimum required mining width and the feasible starting points for 

the initial box cut are generated based on the coordinates and dimensions of the final pit 

limits.

Step 2

The simulation carries on with an increment distribution generator, which uses an integer 

random number generator to produce the number of benches that the pit will expand each 

year during the life of mine. The number of benches can be between zero and the 

maximum number of benches, which is practically possible to deepen the pit each year.
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Figure 4.4 DOPS flowchart

Step 3

A table is generated for different values of random variables Aaw, AaE, AbN and Abs 

increments. It starts with the minimum increment possible and it increases with a fixed
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step size to the maximum possible increment in each direction. The volume of material 

for each possible expansion (VM - V/) is calculated and substituted in the table. The

annual increments, which resulted in an acceptable production rate, are returned by the 

routine. A normal probability density function (PDF) is fitted on the pit incremental data. 

Aaw,AaE,AbN,Abs are sampled from the approximated probability distribution 

functions and the respective AVi is calculated for the sampled increments.

Step 4

If the volume of material is in the acceptable production range, it will be recorded, if not 

Aaw,AaE,AbN,Abs will be modified until AVi will be in the acceptable range. A 

simulation with sufficient number of iterations will return several scenarios of push-backs 

at each discrete time step.

Step 5

The results are passed on to the economic pit expansion model (EPEM). The scheme 

returns the cash flow of the different push-back scenarios. The monetary value of push- 

back designs are used as the numerical reward in IOPA to choose the best action.

4.2.3 Continuous Open Pit Simulator (COPS)

COPS is a simulation model based on the modified open pit geometrical model, and 

a system of PDEs capturing the continuous-time open pit dynamics. The specification of 

the continuous-time open pit dynamics as a system of PDEs with the respective boundary 

conditions represented in Chapter 3 does not allow a unique solution to the long term 

scheduling problem. There are possibly infinitely many solutions to the set of PDEs or in 

other words there are many pushback designs that can deplete the ore-body from the 

initial box cut to the final pit limits. Where general ODEs have solutions that are families 

with each solution characterized by the values of some parameters, for a PDE the 

solutions often are parameterized by functions, informally put, this means that the set of 

solutions is much larger. Therefore, there is a need for additional information and
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conditions to obtain a unique solution to the continuous-time open pit expansion model, 

which satisfies the management objectives over time.

The interaction of DOPS, EPEM, GOPM, and Q-leaming algorithm returns the 

optimal long-term schedule. Accordingly, it records the discrete changes in the open pit 

geometry which maximizes the NPV. The optimal long-term plan yields the additional 

and auxiliary conditions needed to convert the set of PDEs to a set of ODEs. The DOPS 

and Q-leaming output is the input for COPS where the set of PDEs are converted into a 

set of ODEs and are solved by Runge-Kutta integration scheme. Figure 4.5 demonstrates 

the continuous simulator flowchart. The optimal schedule output of the Q-leaming 

algorithm is used as the input for the continuous simulation model.

Step 1

The best curve fit is used to approximate functions of the incremental push-backs 

AaE, Aaw, AbN, Abs and Ah generated by Q-learning. Substitution of the approximated

incremental functions in equation (3.13) and substituting the results of differentiation of 

partial derivatives in equation (3.13), converts the set of PDEs into a system of ODEs 

with time as the independent variable, in the form of equation (3.20).

Step 2

Defining the set of ODEs capturing the dynamics of the open pit following the optimal 

long-term plan resulted from the Q-leaming algorithm.

Step 3

Numerical integration of the system of ODEs will result in continuous format of changes 

in dimensions of the open pit with its respective volume of ore, waste, stockpile material 

and the net present value of the venture. The first step in investigating the dynamics of 

the continuous-time system described by the system of ODEs by equation (3.20) is 

integration to obtain trajectories. Since most ordinary differential equations are not 

soluble analytically, numerical integration is the choice to obtain information about the 

trajectory. Many different methods have been proposed and used to solve accurately 

various types of ordinary differential equations. However there are a handful o f methods 

known and used universally (i.e., Runge-Kutta, Adams-Bashforth-Moulton and
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Figure 4.5 COPS flowchart

Backward Differentiation Formulae methods). All these methods discretize the 

differential system to produce a difference equation or map. The numerical methods have
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the same aim; that the dynamics of the map should correspond closely to the dynamics of 

the differential equation (Cartwright and Piro, 1992).

Step 4

The solution of the continuous system returns the trajectories of changes in major, minor 

and depth of the frustum as well as the volume of materials transferred. The solution is 

passed to the economic pit expansion model (EPEM). The scheme will return the blocks 

in the push-back design, net present value of the long-term optimal schedule, and the 

volume of ore and waste in the short-range plans.

4.3 IOPS Design and Implementation

The primary survey of reinforcement learning literature revealed that the Standard 

Interface for Reinforcement Learning in C++ (Sutton and Santamaria) is the accepted 

platform for implementing reinforcement learning simulations. The Java Reinforcement 

Learning Library, JavaRL, (Kerr et al., 2003) is an adaptation of the C++ standard. JavaRL 

is comprised of three core classes, which correspond to the three basic entities of the RL 

problem. These three classes are Agent, Environment, and Simulation. The package 

contains Agent subclasses that employ various TD learning-based algorithms (including 

SARSA and Watkin's Q-Leaming) with various memory models (including neural 

networks and look-up tables).

The library includes valuable supplemental code as well. This code includes 

interfaces and classes for implementing the communication between agents and 

environments. The library contains Action and State interfaces for this purpose. A 

wrapper class, ActionResult, is also provided for concisely describing the environment’s 

response to an agent’s action; an ActionResult instance contains a double reward value 

and a State instance.

Perhaps the most useful additions to the standard interface are the provided Agent 

subclasses for programming agents that employ temporal-difference (TD) learning. These 

subclasses are easily adaptable to most of memory models for agents. Selected TD 

control algorithms are implemented in full for agents with tabular forms of memory.
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The JavaRL standard interface serves as the kernel of IOPS application. Thus, we 

now refocus our attention on the three core classes of the interface. We briefly outline the 

three primary methods that appear in each of these classes. Figure 4.6 illustrates the static 

class UML diagram of IOPS application based on JavaRL library (Kerr et al., 2003).

Agent

1

Simulation

TDAgent

I

I
DOPSimulation

TDAgentTab

TDAgentTabQL

Environment

7 7

«interface* 
Action

«interface»
State

BlockModelEnvironment
PushBackAction OpenPitState

Iterator

ActionResult

lOPSActlterator lOPSStatelterator

I
EPEMActionResult

TDAgentTabQLIOPS
CashFlowEPEMActionResult

Figure 4.6 IOPS class UML diagram

4.3.1 IOPS Classes

Agent.java -  This is an abstract class for implementing all agents. An agent is an entity 

that interacts with the environment, receiving states and selecting actions. Specific agents 

are instances of subclasses of Agent.

TDAgent.java -  This abstract class implements some of an agent's methods for learning 

the optimal policy for a reinforcement learning problem using a temporal-difference 

control algorithm and an arbitrary memory model.
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TDAgentTab.java -  This class implements the agent's methods for learning using a 

temporal-difference control algorithm and look-up tables as memory. The agent seeks to 

learn the optimal policy by approximating the optimal action-value function, Q*.

TDAgentTabQL.java -  This abstract class implements the agent's methods for learning 

the optimal policy for a reinforcement learning problem using Watkin's Q(lambda)- 

learning on-policy control algorithm with eligibility traces and tabular memory.

TDAgentTabQLIOPS.java -  This class implements the agent's methods for learning 

and solving the maximization problem of the open pit planning represented by a 

simulation model using the Q-Leaming temporal-difference control algorithm. The agent 

seeks to learn the optimal policy by approximating the optimal state-action function, 

Q * (state, action) , using look-up tables as memory and an £ - greedy policy.

Simulation.java -  This class implements the interface, and manages the interaction, 

between the agent and the environment.

DOPSimuIation.java -  This class runs the simulations for the open pit stochastic 

dynamics. It also interacts with the EPEM model to return the cash flow and interacts 

with the agent class.

Environmentjava -  This is an abstract class for implementing the environment. An

environment defines the problem to be solved. It determines the dynamics of the

environment, the rewards, and the trial terminations.

BIockModeIEnvironment.java -  This class represents the economic block model. A 

block model object is instantiated based on the input file.

Action.java -  This is an interface for the output of an agent.

PushBackAction.java -  This class creates PushBackAction objects to represent the 

possible moves (actions) an agent can select in the planning problem.

State.java -  This is an interface for implementing the input (i.e. sensory information) 

that an agent receives from the environment.

OpenPitState.java -  This class constructs a representation of the state input that an agent 

receives from the environment.
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ActionResult.java -  This class combines a State instance and a numerical reward to 

form a single object that describes the results of taking a specific action in a specific 

state.

EPEMActionResult.java -  This class is inherited from the ActionResult and utilizes the 

EPEM model to return the cash flow of the simulated push backs.

IOPSActlterator.java -  A class for creating and using an iterator that returns all 

possible actions for the agent for the learning problem.

IOPSStatelterator.java -  A class for creating and using an iterator that returns all 

possible PitStates the agent may receive for the pit reinforcement learning problem.

4.3.1.1 The Agent Class

The Agent class is one of the three core classes of the standard Java interface. It is 

the abstract class for implementing all RL agents. As mentioned, RL agent interacts with 

an environment by selecting actions and consequently receiving numerical rewards and 

state descriptions from the environment. The immediate numerical reward quantifies the 

short-term desirability of an action, which in IOPS is the cash flow of the simulated push- 

back. The State describes the new state of the environment, and thus, the potential for 

future rewards. Ideally, the agent learns from these consequences to select the actions that 

are most desirable in the long-term. By learning this optimal mapping, or policy, from 

each state of the environment to the action that yields the greatest reward in the long

term, the agent learns to optimally complete the assigned task.

The Agent class contains three abstract methods: init, startTrial, and step. We 

implemented an Agent subclass TDAgentTabQLIOPS and defined these three methods. 

The TDAgentTabQLIOPS subclass implements Q-learning algorithm to approximate 

action-value, or Q, functions. The init method initializes the IOPA agent. This 

initialization typically requires the construction of one or more data structures for the 

agent’s memory. The init method can either preload past memory or reset the agent’s 

memory to its original, naive condition. This method is called once when the RL 

simulation first begins.
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The startTrial method prepares the agent for the start of a new episode of simulation 

from the initial open pit box cut, within an ongoing simulation. The method creates and 

returns the first action of the agent in the trial. This first push-back is determined by the 

agent’s current policy and the first state of the trial, which is passed as a parameter to the 

method. The startTrial method is called at the beginning of each trial.

The step method is the third method of the Agent class. It is the method where all 

learning and decision-making occurs for the IOPA agent. As parameters, the method 

receives a State instance and a double reward, which describe the consequences of taking 

the previous action. If the agent learns in any way with experience, then this method 

implements this learning. The method then returns the agent’s next action, as determined 

by the agent’s current policy. This method is called once on each step of the simulation.

4.3.1.2 The Environment Class

In IOPS framework, the environment is the economic block model of ore reserve that 

the IOPA agent interacts with and seeks to learn about through OPPS simulation. The 

economic block model responds to the agent’s action by outputting a numerical reward, 

which is the cash flow of the simulated push-back. The Environment class contains the 

same three abstract methods as the Agent class. We implemented an Environment 

subclass BlockModelEnvironment and defined these three methods.

The init method initializes an instance of the Environment subclass. The method is 

responsible for constructing and initializing the data structures containing the economic 

block model. The startTrial method prepares the DOPS for the start of a new trial within 

an ongoing simulation. The method must create and return the first State of the new trial. 

This method is called at the beginning of each trial.

The step method is the third method in the Environment class. This method receives 

the agent’s most recent action as a parameter and it returns the immediate reward for this 

action, which is the cash flow of the simulated push-back.
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4.3.1.3 The Simulation Class

The Simulation class is the third and final abstract class of the standard Java 

interface. DOPSimulation an instance of this class manages the interactions between the 

IOPA agent and the block model environment. This class contains complete 

implementations of the init, startTrial, and step methods for DOPS simulations. Each of 

these methods calls the Agent and Environment instances’ versions of the same method, 

often using the return value of one of the calls as the parameter for the other. The classes 

also contain methods that run the simulation for a set number of steps or trials. All the 

discrete simulation and EPEM models are defined in collectData method.

4.4 IOPS G raphical User Interface

The IOPS graphical user interface (GUI) was implemented using IntelliJ IDE 

(JetBrains, 2000-2006). The program requires the block model file as the input. The 

following block model parameters can be set through the block model specification tab 

illustrated in Figure 4.7.

Block dim ensions -  the dimension of small blocks in X, Y, and Z directions are 

specified in meters at this node.

Him k M»(li>l Spcr iln'oliiin 

X Y:

Model 11 .imi'Wui h Lumen

Model 11 •imuwui k Hi min

Nniili I *iM 

_ | South East |43South We

Figure 4.7 IOPS block specification tab
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Model framework dimensions -  the number of blocks in X, Y, and Z direction in the 

main model framework are denoted at this panel.

Model frame work origin -  the coordinates of the origin of the block model

Slope specification -  Overall stable slope recommended by geo-mechanical studies in 

each region in degrees.

The following pit geometry and production parameters can be set through the open 

pit specification tab illustrated in Figure 4.8.

Initial box cut dimensions -  the dimensions of the initial box cut in meter, representing 

the boundary condition for the differential equations.

Final pit limits dimensions -  the final pit limits dimensions in meter, captured by the 

modified frustum geometrical model.

Minimum mining width -  the minimum possible mining width at the bottom of the pit.

Production targets -  maximum and minimum acceptable annual production targets in 

million tonnes.

Inn Ml I lux  m l  D im en sion s

I iiml I 'il L u n its D im en siu n s

bS:260 36011040

Minimum Mmimj irtmlt 11

bSitiin. , >uoCmiii 0

Pm dui Mini Tilrji I s  

M dxnnum Annual Pi u i I u l H o i i  ■ Ml) Annual P roduction  >Mn: 2

Minimi s i  ,n I inti Point

'X: fi 01 COO , Y: 6003-10 |

Figure 4.8 open pit specification tab
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Mining starting point -  the approximate coordinates of the mining starting point, the 

program simulates different starting point in each simulation episode.

The following parameters can be set through the Q-Learning parameters tab 

demonstrated in

Figure 4.9.

Epsilon -  The probability that the agent "explores" by choosing a random action from the 

current state as opposed to "exploiting" its current knowledge and greedily selecting the 

state of highest estimated value.

Alpha -  The learning rate for a TDAgent.

Gamma -  The discount rate for delayed rewards; a number in [0,1] used to quantify the 

current value of future rewards.

Lambda- The trace-decay parameter; a number in [0,1]. If lambda = 0, eligibility traces 

are not used.

Number of Trials -  This defines the number of simulation iterations in a given 

experiment. It is actually the number of episode the agent simulates the dynamics of the 

open pit while learning through experience.

Maximum Steps Per Trial -  This defines the maximum number of steps that will be 

taken in a given trial within an experiment.

r[iMlon i Alpha i GcimtTM I I /irritirt i  1

Numhc-i nr Sim ulation T

p e r i  i fill'

Figure 4.9 Q-Leaming specification tab
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4.5 Summary and Remarks

In summary, the models developed in Chapter 3 are used as the basis for the 

development of IOPS algorithm and subroutines. The algorithm starts with the interaction 

of two entities of the RL problem, the environment and the simulation. DOPS 

stochastically simulate the next feasible push-backs. The cash flows of the simulated 

push-backs are returned by the EPEM. The intelligent agent, IOPA, employs Q-leaming 

and epsilon-greedy algorithm to choose the next suitable push-back among all the 

simulated results. The algorithm then updates the action value estimates Q(s, a) . The 

simulation continues until the simulated push-back design reaches the final pit limits. 

Afterward the algorithm resets all the variables and starts a new episode of simulation 

from the initial box cut.

The IOPS application is implemented in Java (Sun Microsystems, 1994-2006) and 

MATLAB (MathWorks, 2005) environment. This exercise consisted of class and object 

identification based on the Java Reinforcement Learning Library, JavaRL, (Kerr et al., 

2003). The second half of this chapter dealt with the IOPS class UML diagrams and GUI 

development. The block model specifications, open pit production requirements, and the 

learning parameters are set through The IOPS user interface.
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CHAPTER 5 
EXPERIMENTAL DESIGN AND 

EXPERIMENTATION

5.1 Foreword

The verification and validation of the models are the next logical steps in this study. 

This chapter focuses on experimental design and experimentation. The mathematical and 

numerical models presented in Chapter 3 were transformed to algorithms and have been 

implemented as the IOPS application in Chapter 4. The Whittle software based on LG 

(Lerchs and Grossmann, 1965) algorithm was used to design the optimized final pit limits 

of an actual iron ore mine. The blocks within the boundary of the optimal pit were 

imported to the IOPS for the subsequent optimal long-term planning.

Verification and validation of the results are analyzed by comparing the results of the 

IOPS with Milawa algorithm used in Whittle software (Gemcom Software International, 

1998-2005). The worst-case, best-case, and Milawa algorithms of Whittle are compared 

to the best case and the practical annual long-term schedule generated by the IOPS. The 

experiments compared the annual stripping ratio, average grade, annual waste and ore 

production, and the respective NPV.

COPS is used as a framework for experiments that are the basis for the mine tactical 

plans. The specification of the continuous-time open pit dynamics as a system of PDE’s 

with the respective boundary conditions allow a unique solution to the long term schedule 

generated by the IOPS. COPS produces the trajectories of the changes of the open pit 

geometry in time and the respective amount of ore, waste, stockpile material, and the 

NPV of the operation over time. The results of the IOPS and COPS are compared to 

validate the employed numerical solutions.
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5.2 Verification and Validation

Verification is one aspect of testing a product's fitness for a designed purpose. 

Whereas, verification deals with whether the design or the system has been built to meet 

the set of requirements or specifications, validation is concerned with determining 

whether the engineering process has produced the required product or design/system. 

Verification is the comparison of configuration items, components, subsystems, systems 

to their requirements to ensure correctness. Validation is the complementary aspect. 

Often one refers to the overall checking process as V & V.

At this stage we validate the IOPS models and implementation by answering the 

question that, did we build the right model? Or in other words does IOPS do what it was 

designed to do? To verify the IOPS implementation we would answer the question that, 

did we implement the model right? Or in other words does the developed application 

conform to the specifications?

As discussed in Chapters 3 and 4, the kernel of the IOPS architecture is the Q- 

leaming algorithm. In this algorithm, the learned action-value function, Q,  directly

approximates Q*, the optimal action-value function, independent of the policy being 

followed. This dramatically simplified the analysis of the algorithm and enabled early 

convergence proofs. The policy still has an effect in that it determines which state-action 

pairs are visited and updated. However, all that is required for correct convergence is that 

all pairs continue to be updated. Watkins and Dayan (1992) proved that the discrete case 

of Q-leaming will converge to an optimal policy. If each pair (x, a) is visited an infinite 

number of times, then for lookup tables, Q-learning converges to a unique set of values 

Q(x, a) = 0* (x, a) , which define a stationary deterministic optimal policy. Q-leaming is 

an asynchronous algorithm. Each Q(x, a) is updated one at a time, and the control policy 

may visit them in any order, so long as it visits them an infinite number of times. Watkins 

(1989) describes this algorithm as "incremental dynamic programming by a Monte Carlo 

method”.
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5.3 Experimental Design Framework for IOPS architecture

The problem solving methodology employed in IOPS framework consists of a 

solution paradigm based on Q-leaming algorithm (Watkins, 1989), expected solution 

criteria and assumptions. In order to obtain reliable experimental results, the 

reinforcement learning paradigm employed in solving the problem must be able to 

capture the tme definition or nature of the open pit planning problem, the data involved, 

some basic data structures, file management issues, tasks and subtasks involved in 

solving the problem as well as a generic control regime. The assumptions are based on 

prior knowledge of practical mining environments and the RL framework.

The general experimentation methodology employed in this study is outlined in 

Figure 5.1. The numerical models presented in Chapter 3 and the IOPS algorithm and 

application developed in Chapter 4 are validated through two case studies using data 

from an actual gold-copper mine and an iron ore mine.

In the study an iron ore geological block model is estimated by Kriging (Krige, 

1951). Estimation is locally accurate and smooth, appropriate for visualizing trends and 

does not assess of global uncertainty, because there is just one model of the ore-body. If 

sequential Gaussian simulation was used to build the model, then there would be a 

number of realizations of that were equally probable. Simulation reproduces histogram, 

honors spatial variability, and allows an assessment of uncertainty with alternative 

realizations of reality.

The optimized pit limits are designed using LG (Lerchs and Grossmann, 1965) 

algorithm. Subsequently the best-case and the practical annual long-term schedule 

generated by IOPS and the shells node in Whittle Four-X are compared. The experiments 

will compare the annual production, stripping ratio, average grade, and the respective 

NPV. The results of the experiments design will be subjected to sensitivity and statistics 

analysis. Although optimality is not guaranteed mathematically with the parametric 

analysis in Whittle 4-X, but it is a strong tool for identifying high grade ore clusters in the 

model and is the standard tool used in industry today.
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Figure 5.1 Design, optimization, and planning experiments
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5.4 Case Study: Gol-E-Gohar Iron Ore Mine

Gol-E-Gohar iron ore deposit is situated in the province of Kerman, Iran, almost in 

the center of an imaginary triangle with its comers on the cities of Kerman, Shiraz, and 

Bandar Abbas. The mine is located approximately 1740 m above sea level in an area of 

planer topography. The aero magnetic survey carried out in 1974 indicated six separate 

anomalous areas in the immediate surroundings of the area of study. The iron ore deposit 

is explored with 159 exploration drill holes and 113 infill drill holes totaling 6000m of 

drilling illustrated in Figure 5.2.

The ore-body is one of several magnetite iron ore-bodies situated in an east-west 

trending belt of indeterminate age. The ore-bodies occur within a belt of metamorphic 

schist and gneisses. An idealize cross section of the deposit looking west is illustrated in 

Figure 5.3. Three types of ore, top magnetite, oxide and bottom magnetite are classified 

in the deposit. The processing plant is based on magnetic separators so the main criterion 

to send material from mine to the concentrator is weight recovery. It is predicted that if 

all the mineable reserve is extracted the total concentrates produced will have an average 

grade of 0.49% sulphur and 0.037% phosphoms and the average anticipated weight 

recovery will be about 66%.

100400

599900
100.200 Northing

600700

Figure 5.2 Iron ore deposit borehole locations
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The deposit is divided by a 100m x 100m local grid. The geological sections are 

referred to as profile lines (north-south cross sections through the ore-body) and reference 

lines (east-west cross sections through the ore-body). Profile lines are available at 100m 

intervals from 100400-east to 102300-east, supplemented by intermediate sections in the 

central pit area. Reference lines are maintained at 100m intervals from 599900-north to 

600700-north, supplemented by denser coverage in the central area. A large block of 

1900mx 800mx225m was defined from 100400-east to 102300-east on the X axis; from 

599900-north to 600700-north on the Y axis and from level 1515m to 1740m on Z axis in 

a way that includes all the ore-body and the related waste and overburden blocks. Figure

5.4 and Figure 5.5 demonstrate the first topography of the area of study before that any 

mining activity starts.

Kriging (Krige, 1951), as a procedure of constructing a minimum error variance 

linear estimate, has been used to build the geological block model. The initial model 

contains 152,000 blocks that makes an array with dimensions of 95x80x20 blocks. 

About 18% of these blocks are located above the first topography of the mine and are 

flagged as air blocks and almost 124,000 blocks are flagged as overburden, waste, and 

ore. The primary examination of the geological block model revealed that three top levels

P re s e n t  S u r fa c e

Young S ed im ents

□ RE

S o u t h N o r t h

Figure 5.3 Idealize schematic cross section of the deposit looking toward west
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Figure 5.4 First topography of the area of study

Figure 5.5 3D view of the first topography

o f  the
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of the block model are all air blocks and two bottom levels of the data are in waste. The 

block model was modified and the aforementioned blocks were omitted from the model. 

The modified model is based on small blocks representing a volume of rock equal to 

20m xl0m xl5m , which is approximately equal to the production of the mine per day. 

This model contains 114,000 blocks that makes a model framework of dimensions 

95x80x15. Figure 5.6 illustrates a multi cross section of the deposit along sections 

101800-east; 600170-north; and elevation of 1620m.

The block model contains almost 243 million tonnes of indicated recourse of iron ore 

with the average grade of 63%. Table 5.1 summarizes the ore and waste in the geological 

block model. Figure 5.7 illustrates the average grade, total amount of ore and total 

amount of Fe on a bench by bench basis.

600700

100200

Northing

Easting599900
100400

Figure 5.6 3D view of the deposit
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Table 5.1 Summary of the ore and waste in the geological block model

Rock
Type

Blocks in 
model Total (Mt)

Total Fe 
element 

(Mt)

Grade % 

Min

Grade % 

Avg

Grade % 

Max

Ore 19328 243.533 159.140 13 63.5 89

Waste 94672 1192.867 - - - -

B e n c h  #  v s  a v e r a g e  g r a d e  
in b lo c k  m o d e l

50 60 70 80

A v e r a g e  g r a d e  (% m a ss )

B e n c h  #  v s  t o n n a g e  o f  Ore 
in b lo c k  m o d e l

15
14
13
12
11
10

9

8
7
6
5
4
3
2
1

A

10.00 30 .000.00 20.00

___________ T o ta l (M t)_____________

Total ore (Mt) Total Fe (Mt)

Figure 5.7 bench by bench report of the geological block model

5.4.1 Iron Ore Optimized Final Pit Limits Design

Lerchs and Grossmann (1965) have used the graph theory for optimum design of 

open pit mines. The objective of their studies was defined as the design of the contour of 

a pit so as to maximize the difference between the total mine value of ore extracted and 

the total extraction cost of ore and waste. The LG algorithm is mathematically proven to 

generate a rigorous optimum solution, based on maximum undiscounted cash flow as the 

criterion for optimization. The Whittle software (Gemcom Software International, 1998- 

2005), which have been utilized in this study is based on LG algorithm. The software is
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the standard current tool used in industry. The method works on a block model of the ore 

body, and progressively constructs lists of related blocks that should, or should not, be 

mined. The final lists define a pit outline that has the highest possible total value, subject 

to the required pit slopes.

Figure 5.8 illustrates the geological block model imported to the Whittle software 

environment. Slope stability and geo-mechanical studies suggested a 43 degree overall 

slope in all regions. The average slope error in Whittle model is 0.9 degree and there are 

35 possible structure arcs per block in the model which in total makes 3,075,666 arcs or 

edges in the graph model. The Pit Shells (Figure 5.8) node in Whittle represents a set of 

pit shells generated by economic parametric analysis using the LG algorithm. This 

process reads in the block model from the Block Model node, pit slope constraints from 

Slope Set node, calculates block values using the economic and operational data 

contained in this node, and produces optimal pit outlines. The economic and mining 

parameters are based on: (i) mining cost = $2/tonne; (ii) processing cost = $2/tonne; (iii) 

selling price = $ 15/tonne (Fe); (iv) maximum mining capacity = 20 Mt/year; (v) 

maximum milling capacity =15 Mt/year; (vi) density of ore and waste = 4.2 tonne / m3; 

and (vii) annual discount rate = 10%.

It is usual to produce multiple pit outlines in a single run and this process is 

controlled by the revenue factors in the optimization tab. The program finds a sequence 

of optimal push-backs based on varying the profitability of the deposit. A pushback is the 

incremental change in the geometry of the pit that results from a change in net block 

value. The underlying theory is that a sequence of push-backs can be identified as mining 

limits over time that will maximize the project’s NPV. In the generation of the pit shells, 

revenue factors in the range of 0.45 to 1.4 were used with variable geometric step sizes to 

scale base case price up and down, in order to control what nested pits are to be 

produced.

It should also be considered that selection of a final pit has direct impact on the 

expected economic ore reserve. If the pit selected is markedly different from the 

optimum, it can result in less than optimal selection of mine and mill capacity. Leading to 

loss of capital efficiency and hence to lower project value. In general in homogenous ore-
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bodies there is no obvious choice of pushback and a sequence of revenue factors will 

produce a steadily larger set of push-backs associated with deeper or lower grade ore. 

Alternatively, in complex geometry, multiple ore zones and mineral concentration may 

result in a corresponding number of highly distinct push-backs. As a result, there will be 

no change in pushback geometry over a wide interval of revenue factors but once the 

deposit value is sufficiently great, the ore value for a more deeply covered portion of the 

deposit will exceed stripping costs resulting in a major expansion of the pit.

The sequences of pit expansions are the basis of mine planning with Whittle and they 

correspond roughly to the manner in which the pit geometry will evolve over time. In 

terms of maximizing NPV, the lowest revenue factor that produces a pit sufficiently large 

to justify mining should also be the portion of the deposit to be mined first. Likewise, by 

increasing the revenue factor sufficiently above that required by the first pushback, a 

second pushback will be found and so forth until a sequence of push-backs are identified 

which identify the highest NPV evolution of the pit over time.

[lie

H

Whittle C:lW hiltie\FX34\projectslGo!Gohar2B\GolGohar28.f3tp

Node Tools Help

^  3i! E& ^  & Pi
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Figure 5.8 Whittle interface
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The results of the Shells Node generated 77 nested pits with the respective total 

amount of ore, waste, and the NPV illustrated by Figure 5.9. There is a need for a general 

long-term push-back design to choose the final pit with the highest NPV among the 77 

shells generated.

Estimation of a project’s NPV requires that timing of cash flow be accurately known 

in order to apply an appropriate discount factor. This immediately introduces a problem 

for pit optimization software because the year of mining for any block of ore or waste 

will not be known until the mine production has been scheduled. The LG algorithm, 

which is the basis for Whittle software treats all mining activities as though they occur 

simultaneously, with no discount factor applied. This usually results in the selection of a 

final pit that is larger than the true maximum NPV pit.

S i x t h
U 7 0

Pit by P it G raph
F o u r t h  

#  5 9

T h i r d
# 4 3

S e c o n d  
# 25

F i r s t  P u s h b a c k  
P i t  s h e l l  17

Milawa
NPV

W orst Caes

0 10 20 30 40 50 60 70
Pit NO.

Discounted VSkie (ShQ Tonnage Out)
■  Discounted open pit value for Best Case. E] Tonnage input to processing for Best Case. 
V  Discounted open pit value ter Specified Case. (H Tonnage of waste rook.
*• Discounted open pit value for Worst Case.

Figure 5.9 Push-backs selection in pit by pit analysis
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Calculating the NPV requires knowing the relative time difference between blocks 

mined within a particular pit shell. This is dependent on the mill and mine capacities, 

practical sink rate (benches mined per year) and the equipment that can be practically 

operated within a specific cutback. In pits with high marginal stripping ratio and extreme 

changes in topography, the timing differences in final pit push-backs can be substantial. It 

is therefore important to have a reasonably accurate mining schedule in order to properly 

select the optimum pit.

In terms of production scheduling, the series of nested pits provides limits on where 

to mine and when, but they do not identify a production schedule in terms of the optimal 

extraction period for a block. Instead, the nested pits can be used to define the feasible 

region of production scheduling problem. Whittle provides a number of methods that 

work with the set of nested pits to provide a feasible production schedule: best case, 

worst case, and Milawa NPV.

The best case schedule is associated with completely mining a pushback before 

proceeding to the first bench in the subsequent pit. In this manner the highest valued ore 

is mined as early as possible maximizing NPV. When there is insufficient mining width 

between push-backs this may not be possible. Thus, the best case may not be feasible 

without modifying the bench width between push-backs and thereby violating the 

optimality of the push-backs.

In the worst case schedule the entire bench across all push-backs is mined prior to 

proceeding to the second bench. This amounts to pre-stripping the entire deposit, defers 

ore production and thereby minimizes cash flow by placing stripping cost up front while 

delaying positive revenue.

Milawa defines a variable bench interval between subsequent push-backs such that 

once a fixed number of benches have been mined out in the interior push-back then 

mining can commence on the next pushback. Thus, there is always a vertical lag of so 

many benches between push-backs. Milawa allows the lag to vary between push-backs 

and then searching for the combination of lags which is optimal either in the sense of 

cash flow or of balancing the removal of ore and waste.
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P i t  S h e l l s
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Figure 5.10 Incremental pit shells NPV

Figure 5.9 illustrates the pit by pit analysis of 77 pit shells with their respective NPV 

for the best case, worst case, and Milawa algorithm. The appropriate push-backs are 

chosen in a way that the annual production targets are met in the long-term plan. The 

selected phases are represented by pits 17, 25, 43, 59, 65 and the final pit expected 

around pit 70. Successive schedules are run to different final pits from the first push-back 

to the pit shell number 77 in incremental steps of 1. Figure 5.10 demonstrates the pit 

shells 60 to 77 and their relevant NPV. Figure 5.11 illustrates the pit shell 68 with 220 

million tonnes of ore and 179 million tonnes of waste and an NPV of $430,734,000, for 

the Milawa schedule. The pit shell has the highest NPV among all other pit shells and is 

chosen as the final pit limits for the production scheduling stage.
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Figure 5.11 Pit shell 68, the optimized final pit limit

5.4.2 Whittle Long-Term Schedule

The optimal long term schedule is planned within the boundary of final pit limits 

designed by LG algorithm in the last section. For scheduling purposes, it is necessary to 

set limits on the throughputs for mining, and processing. In this case, the operational 

scenario includes the following limits: a processing limit of 15 million tonnes per annum 

and a total mining limit (ore and waste) of 20 million tonnes per year. The revenue 

factors are set ranging from 0.45 to 1.4. The increment on the revenue factor was refined 

in several passes to more clearly identify a set of critical push-backs having sufficient 

tonnage for mining. The Pit by Pit tool was used to identify the maximum valued pit as 

the pit shell 68 (Figure 5.11) and the sequence of critical push-backs were chosen as 17, 

25, 43, 59, 65, and 68 as the basis for production scheduling.

The worst and best case schedules within the nested pits are generated. The worst 

case scenario demonstrates an NPV of $155,753,000, where the best case has an NPV of
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Figure 5.12 Best case and worst case schedule
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$457,676,000. These schedules are shown in Figure 5.12 with the respective annual cash 

flows. In both cases, there is little control over the production stream as the amounts of 

ore and waste are fixed by the geometry of the push-backs in combination with the best 

and worst case scenario. What can clearly be seen is the pre-stripping and revenue 

deferment that results from the worst case and the erratic ore and waste production, 

typical of the best case schedule. This probably would not be acceptable even if sufficient 

working room is available between push-backs. Thus, the best case is not feasible without 

modifying the bench width between push-backs and thereby violating the optimality of 

the designed push-backs.

The Milawa algorithm is used to generate a feasible schedule. The algorithm does 

not generate and evaluate all feasible schedules, as the number of feasible schedules in 

any analysis is extremely large. Rather, it strategically samples the feasible domain and 

gradually focuses the search until it converges on its solution.
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Figure 5.13 Milawa schedule
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The algorithm is set to use push-backs to pits 17, 25, 43, 59, 65, and 68. This 

represents a solution with an NPV of $430,734,000 (Figure 5.13), which provides a 

compromise between practicality and the highest theoretical NPV. Figure 5.14 shows 

cumulative ore vs. waste by production period plotted for each of the three scheduling 

scenarios.

Figure 5.15 illustrates how sensitive the discounted pit value is to variations of 

product selling price and mining and processing costs. The variation of parameters is set 

in the range of -10 to 10 percent. The most sensitive variable in this study is the metal 

price causing the NPV to fluctuate between $330 million and $530 million.
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Figure 5.14 Cumulative ore vs. waste by production period
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Figure 5.15 Sensitivity analysis of discounted pit value to selling price and costs 

5.4.3 IOPS Long-Term Schedule

The IOPS starts with the interaction of two entities of the RL problem. The blocks 

within the final pit limits and the simulation of push-backs. DOPS stochastically 

simulates the next feasible push-backs. The cash flows of the simulated push-backs are 

returned by the EPEM. The intelligent agent, IOPA, employs Q-leaming and epsilon- 

greedy algorithm to choose the next suitable push-back among all the simulated results. 

The algorithm then updates the action value estimates Q(s, a) . The simulation continues 

until the simulated push-back design reaches the final pit limits. Afterward the algorithm 

resets all the variables and starts a new episode of simulation from the initial box cut.

Figure 5.16 illustrates the blocks within the boundary of the optimized final pit limits 

designed by LG algorithm imported to the IOPS. The blocks within each region of the 

modified geometrical model are demonstrated in different colors.
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Figure 5.16 Final pit limits captured by the modified geometrical model

Through the planning phase the conditions and parameters are kept identical to the 

Whittle case study. The IOPS parameters are set at the initialization stage as follows 

(Figure 5.17):

Initial box cut dim ensions -  the dimensions of the initial box cut in meter, representing 

the boundary condition for the differential equations in COPS.

aw0 = 20m;aE0 = 20m;bN0 = 20m;bs0 = 20m and h0 =\5m

Final pit lim its dim ensions -  the final pit limits dimensions in meter, captured by the 

modified frustum geometrical model.

aw =1040m;aE =440m;bN0 =260m;bso =360m and h0 =210m

M inim um  m ining w idth -  the minimum possible mining width at the bottom of the pit

aw =30 m;aF =30 m;bN =30 m;bK =30 m
' ' m i n  ^■'trrin '" 'm in  ^ m in

Production targets -  maximum and minimum acceptable annual production targets in 

million tonnes.

mean _ production = 20M t ; min_ production = 19M t; max_ production = 21 Mt

M ining starting point -  the approximate coordinates of the mining starting point, the 

program simulates different starting point in each simulation episode based on the 

coordinated = 101600 and Y = 600340
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Maximum number of benches mined per year -  3 benches 

Q-Learning parameters are set as follows:

Epsilon -  The probability that the agent "explores" as opposed to "exploiting", e = 0.01 

Alpha -  The learning rate for a TDAgent, a  = 0.01 

Gamma -  The discount rate for delayed rewards, y = 0.1

Lambda- The trace-decay parameter is a Boolean number. X -  0 eligibility traces are 

not used.

Number of Trials -  Defines the number of simulation iterations in a given experiment. 

In this experiment it is set to 3000.

Maximum Steps Per Trial -  This defines the maximum number of steps that will be 

taken in a given trial within an experiment which is equal to 10 in this study.

Cut DimensionsInitial

aWO: U3 ' bSU:

Final Pit Limits Dimensions

 J bS: 1360 ~1 h: [rmaE: 440

Minimum Mining Width

Production Targets

Maximum Annual Production (Ml): 11J Minimum Annual Production (Mt): <21

V: 600340

Figure 5.17 Parameter initialization

IOPS was used to run Q-leaming simulation with 3000 iterations with different scenarios 

of mining starting points. The best-case scenario proposed a starting point at 10160-east 

and 600340-north, which is located inside the smallest pit generated with nested pits by 

Whittle. Figure 5.18 illustrates the annual changes in the dimensions of the modified
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geometrical model aw,aE,bN,bs , and h . Figure 5.19 to Figure 5.22 demonstrate the 

push-backs of the optimal IOPS schedule.

Wm

. .. . .1;

Figure 5.18 Annual changes in the dimensions of the open pit aw,aE,bN,bs and h (m)
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Figure 5.19 Push-backs years 1 to 6
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PuthMckt y*«r* 10 to 12

Figure 5.20 Push-backs years 7 to 12
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Figure 5.21 Push-backs years 13 to 18
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Figure 5.22 Push-backs years 19 to 21

The optimized final pit limits shows the total amount of 399 million tonnes of 

material consisting of 220 million tonnes of ore and 179 million tonnes of waste. The 

experiment was based on a maximum mining capacity of 20 Mt/year and a maximum 

milling capacity of 15 Mt/year. Two scenarios have been experimented with IOPS. In the 

first case, the minimum mining width was not considered as an input parameter. This 

scenario is almost equivalent to the best case schedule of Whittle software, where the 

push-backs generated are too narrow to mine practically. The IOPS long-term schedule 

for the best case yielded an NPV of $454,786,000. In the second scenario, the minimum 

mining width for the bottom of the pit was considered as an ellipse with major and minor 

axis of 60m. The IOPS long-term schedule for the practical case resulted in an NPV of 

$438,254,000.

The practical case is the basis of the mine strategic plan, the next step is to break it 

into operating and achievable targets within the framework of a tactical plan. In the next 

section, the COPS is used based on the same conditions underlying the strategic plan, to 

define periodic targets within a shorter time framework and as a continuous time solution.
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5.4.4 COPS Continuous-Time Schedule

The continuous-time open pit production simulator is developed and implemented in 

MATLAB. The open pit geometry is captured using modified elliptical frustum. The 

output of IOPS is the input to COPS. The COPS models the dynamics of open pit 

geometry and the subsequent material movement as a continuous system described by 

time-dependent, nonlinear differential equations. A set of PDE’s capture the time related 

behavior of the open pit mining systems. Function approximation of the discrete 

simulated push-backs generated by IOPS, provides the means to convert the set of PDE’s 

to a system of ODEs. Numerical integration with Runge-Kutta scheme yields the 

trajectory of the pit geometry over time with the respective volume of materials 

transferred and the NPV of the mining operation.

The annual incremental push-backs generated by IOPS represents the discrete 

changes of Aaw, AaE, AbN, Abs , and Ah. The COPS requires the abovementioned 

increments to be represented as functions of time to be able to capture the dynamics of 

the open pit expansion as a continuous system captured by time-dependent, differential 

equations. Function approximation of simulation results of IOPS is used to yield the 

additional conditions needed to convert the set of PDE’s to a system of ODEs. Trend 

analysis and curve fitting are employed to approximate functions for increments 

Aaw,AaE,Abs ,AbN and Ah over the mine life. To obtain reliable results goodness of fit

statistics for all the approximations are evaluated by residuals as the differences between 

the response data and the fit to the response data at each predictor value. The sum of 

squares due to error, SSE, (Marquardt, 1963) is evaluated as well to obtain the best fit.

Table 5.2 to Table 5.5 illustrate the sum of squares due to error and R-square results 

of different fits. Figure 5.23 to Figure 5.27 demonstrate function approximations on the 

push-backs data, along axes aw, aE, bN, bs and h.
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Table 5.2 aE  the sum of squares due to error

Type SSE R-square

Exponential 1260.2 0.9859
Gaussian 1217.6 0.9864
Smoothing Spline 653.4 0.9927

Data and Fits

m ax_aE_array
Exp

G aussian  
Sm oothing Split

pushltackb along aE axis and the best lit

O  aE increm ents
 G aussian

Pred bnds (G aussian)

Figure 5.23 a E  function approximation residuals and the best fit

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 5 Experimental Design

Table 5.3 aW  the sum of squares due to error

Type SSE R-square

Polynomial 2523.6 0.9971
Gaussian 853.5 0.9990
Smoothing Spline 156.3 0.9998

aW  increm ents 
G aussian  
Sm ooth Spline 
Polynomial

O  aW  pushbacks
 G aussian
—  Pred  bnds (G aussian)

Figure 5.24 aW  function approximation residuals and the best fit
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Table 5.4 bN the sum of squares due to error

Type SSE R-square

Power 1642.0 0.9813
Gaussian 286.4 0.9967
Exponential 318.7 0.9963

Data arid F its

300

O  max_bN_array 
 Power

Exp

2 4 16 206 8 10 1B12 14
Residuals

10

0

-10

-20
18162 4 6 8 10 12 14 20

pushbacks along bN and the best fit

300

250

E

200

100

16 184 8 10 12 202 6 14

m r

Figure 5.25 bN function approximation residuals and the best fit

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 5 Experimental Design

Table 5.5 bS  the sum of squares due to error

Type SSE R-square

Polynomial 1525.0 0.9815
Gaussian 297.8 0.9945
Exponential 418.6 0.9921

Exp
G aussian
Polynomial

Exp
G aussian
Polynomial

pushbacks along bS and the best fit

340

i

3O.

58

O  m ax_bS_array
 G aussian

Pred bnds (G aussian)

42 10 12 14 16 18 206 8
year

Figure 5.26 bS  function approximation residuals and the best fit
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Table 5.6 h the sum of squares due to error

Type SSE R-square

Exponential 422.6 0.9947
Power 3522.2 0.9561
Polynomial 340.8 0.9957

height
Exp
Power
Polynomial

pit depth and the best fit

height
Polynomial
Pred bnds (Polynomial)

Figure 5.27 h function approximation residuals and the best fit
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The best fit analysis recommends Gaussian functions for Aaw, AaE, and Abs , and

exponential functions for AbN and polynomial for Ah . The substitution of the

approximated functions in equation (3.13) converts the set of PDE’s to a system of 

ODEs.

aE - discrete vs continuous simulation
450

400

350

.tt 300

250

200
 continuous
O discrete

1500-
25

time (year)

aW  - discrete vs continuous simulation
1100

1000

900; O q

800

600

500

400  continuous
o  discrete

300

time (year)

Figure 5.28 changes in aE anda^ , COPS vs. IOPS
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bN - discrete vs continuous simulation
3 0 0

2 5 0

200

r  150
JO

1 0 0 !

 continuous
O discrete

2 5
time (year)

bS-di ys continuous simulation
3 8 0

3 6 0 '

3 4 0 -

3 2 0

- p  3 0 0

2  2 8 0

o o,2 4 0

 continuous
o  discrete

220

time (year)

Figure 5.29 changes in bN and bs COPS vs. IOPS

COPS uses the MATLAB’s standard solver for ordinary differential equations ode45 

suite. This function implements explicit Runge-Kutta (Cartwright and Piro, 1992) method 

with variable time step for efficient computation. Numerical integration with Runge- 

Kutta scheme yields the trajectory of changes in open pit geometry and the volume of 

material transferred over mine life.
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h - discrete vs continuous simulation

200

150

100

 continuous
O discrete

time (year)

Figure 5.30 changes in h, COPS vs. IOPS

Volume of material transferedx 10

time (year)

Figure 5.31 COPS volume o f material transferred over mine life

Figure 5.28, Figure 5.29, and Figure 5.30 illustrate the trajectory of changes in the open 

pit geometry compared to the results of the optimal discrete plan generated by IOPS. The 

volume of rock in the frustum that captures the final pit limits are equal to 

8.2056 x l0 7m3 whereas, the results of the solution to the differential equations
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demonstrates a volume of 8.3203 x l0 7m3 over the mine life. The linear format of Figure 

5.31 demonstrates that the solution of the differential equations produces a schedule with 

a constant annual rock excavation rate. The interaction of the continuous changes in 

dimensions of the open pit with EPEM returns the volume of ore, waste and the net 

present value of the mining operation over the mine life. The COPS schedule under the 

similar circumstances with IOPS and Whittle resulted in an NPV of $432,350,000 over 

the 21 year time span.

5.4.5 Comparison of IOPS vs. Whittle Schedule

A comparative analysis of the extraction sequence is carried out to validate the 

results. The comparison is made between Milawa algorithm using Whittle Four-X and the 

IOPS. Figure 5.32 illustrates the annual production plan of IOPS and Whittle. The 

objective was to find a subset of pits that will approximate the best case scenario while 

providing sufficient working space and material for scheduling between push-backs.

In Whittle, the feasible solution space is the envelope bounded by the worst and best 

case scenario. The comparison of the annual schedule shows that the IOPS schedule has 

yielded a higher NPV than the Whittle schedule. Although balancing the feed to the 

processing plant was not an objective in this study but the IOPS also demonstrated a 

more steady flow of ore to the plant than Milawa (Figure 5.33). Whittle includes the 

Milawa balance mode to find a schedule with improved throughput balance. In this mode, 

the Milawa algorithm seeks to maximize the usage of production facilities early in the life 

of the mine instead of maximizing NPV.

Figure 5.34 illustrates the average annual grade of plant head grade. The IOPS 

schedule shows a more uniform grade to the mill than the Whittle schedule. The results 

drawn proves that the IOPS and the intelligent agent framework, in conjunction with 

stochastic simulation models presented provide a powerful tool for optimizing the long 

term planning of open pit mines while being able to address the random field and 

dynamic processes in mining environments.
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Annual production schedule IOPS
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Figure 5.32 Annual production IOPS vs. Whittle
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IOPS vs. Milawa ore production
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IOPS vs. Milawa concentrate production
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Figure 5.33 Annual ore and concentrate production, IOPS vs. Whittle
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IOPS vs, Milawa average grade
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Time (year)

IOPS Milawa

Figure 5.34 average annual grade IOPS vs. Whittle

5.4.6 Comparison of IOPS vs. COPS Schedule

COPS was used to capture the continuous-time related behavior of the open pit mine 

planning system by a set of PDE’s. Merely the specification of the PDE’s did not allow a 

unique solution to the problem because we must integrate an indefinite integral. The 

IOPS schedule was used to yield the additional and auxiliary conditions needed to 

convert the set of PDEs into a set of ODEs. IOPS uses the Q-leaming algorithm to find a 

discrete optimal solution to the long-term mine planning problem. Subsequently COPS is 

used to capture the long-term plan as a continuous-time schedule for tactical purposes. 

Figure 5.35 demonstrates the annual production schedule of IOPS and COPS. Figure 5.36 

compares the yearly ore and concentrate production of the two methods. Figure 5.37 

shows the annual cash flow and average grade of IOSP and COPS. These results prove 

that the numerical solution to the set of PDE’s was successful in capturing the long term 

schedule generated by IOPS.
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Annual production schedule IOPS simulation
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Figure 5.35 Annual production schedule, IOPS vs. COPS
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IOPS vs. COPS ore production
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IOPS vs. COPS concentrate production
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Figure 5.36 Ore and concentrate production, IOPS vs. COPS
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IOPS vs. COPS cashflow
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Figure 5.37 Cash flow and average grade, IOPS vs. COPS
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5.5 Summary and Remarks

The focal point of this chapter was verification and validation of the models, 

algorithms, and the IOPS application through a comparative analysis among Whittle, 

IOPS, and COPS. A case study involving an iron ore deposit with 114,000 blocks was 

carried out to verify and validate the model. Table 5.7 summarizes the block model 

information. The final pit limits were determined using LG algorithm using the shells 

node in Whittle software. There were 77 pit shells generated by varying the product price 

using a revenue factor ranging from 0.4 to 1.4. The pit shell 68 was chosen as the 

optimized final pit limits. The optimized final pit limits show the total amount of 399 

million tonnes of material consisting of 220 million tonnes of ore and 179 million tonnes 

of waste. IOPS deployed the modified geometrical open pit frustum model to capture the 

final pit with the dimensions of aw = 1040m;aE =440m;bwo =260m;bso =360m and

h0 =2\Om. Table 5.8 summarizes the final pit limits specifications designed by LG 

algorithm and exported to the IOPS.

Table 5.7 Block model information

Variable Quantity

Number of blocks in model 114,000

Block dimensions (m) 20*10*15

model framework 95*80*15

Number of ore blocks in model 19328

Number of waste blocks in model 94672

Amount of ore in model (Mt) 243.53

Amount of waste in model (Mt) 4771.46

Total Fe in model (Mt) 154.14

Minimum grade of Fe (%) 13

Maximum grade of Fe (%) 89

Average grade of Fe (%) 63

Ore and waste density (tonne / cubic meter) 4.2
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Table 5.8 Final pit limits specifications, LG and IOPS

Variable Quantity

Revenue factor range (geometrical increments) 0.4 to 1.4

Number of pit shells generated by LG algorithm 77

Final pit limits pit shell 68

Amount of ore in the final pit (Mt) 220

Amount of waste in the final pit (Mt) 179

IOPS geometrical final pit dimensions (m) aw = 1040m; aE = 440m; bN = 260m; 
bs = 360m;h = 210m

Epsilon in IOPS (Q-learning parameter) 0.01

IOPS simulation iterations 3000

The best case and the practical extraction sequence from IOPS were compared to the 

worst-case, best-case, and Milawa algorithm using Whittle Four-X. Milawa algorithm 

employed in Whittle Four-X yielded an NPV of $430 million over a 21-year of mine life 

at a discount rate of 10% per annum; whereas IOPS yielded in an NPV of $438 million 

under the same circumstances and over the same mine life. Table 5.9 compares the NPV 

of the IOPS, Whittle, and COPS schedules.

Although optimality is not guaranteed with the parametric analysis in Whittle 4-X, it 

is a strong heuristic tool for identifying high grade ore clusters in the model and for 

maximizing the NPV. Whittle is the current standard and dominant software used in 

industry in open pit mine planning and design. The IOPS schedule shows a more uniform 

grade to the mill than the Whittle schedule. Although balancing the feed to the processing 

plant was not an objective in this study, IOPS also demonstrated a more steady flow of 

ore to the plant than Milawa. The results proves that IOPS and the intelligent agent 

framework, in conjunction with stochastic simulation models provide a powerful tool for 

optimizing the long term planning of open pit mines and it address the random field and 

dynamic processes in mining environments.
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Table 5.9 NPV comparison

Method NPV ($)

Worst case scenario Whittle 155,753,000

Best case scenario Whittle (impractical) 457,676,000

Best case scenario IOPS (impractical) 454,786,000

Feasible Whittle schedule (Milawa algorithm) 430,734,000

Practical IOPS schedule (Q-learning algorithm) 438,254,000

COPS continuous time schedule 432,350,000

Variable Quantity

Volume of final pit by geometrical model 8.2056xl07w3

Volume of final pit by differential equations 8.3203x10V
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CHAPTER 6 
SUMMARY, CONCLUSIONS, AND 

RECOMMANDATIONS

6.1 Sum m ary o f Research

Numerous attempts have been made to address the open pit optimization and long

term planning problem during the last 40 years. The major shortcomings of current 

planning and optimization techniques can be summarized as: (i) inability to solve large 

industrial problems; (ii) limitation in dealing with stochastic processes governing mining 

operation; (iii) inadequacy in referencing time aspect of the problem. These deficiencies 

can cause an open pit mining operation severely in terms of dollars, time, and strategic 

and tactical plans. In complex mining operations, small deviations from the optimal long

term plan could result in the loss of millions of dollars.

Consequently, an intelligent open pit optimal production simulator (IOPS), based on 

reinforcement learning, has been proposed as a comprehensive algorithm to address these 

problems. The outcome of the research demonstrated a strong promise towards improving 

the expected net present value on the mining investments. The developed algorithms can 

be the basis of the next generation of mine design software packages.

Figure 6.1 illustrates the mathematical models and algorithms, which have been 

developed and implemented. Reinforcement learning was used to capture the open pit 

long-term planning by the interaction of two basic entities: the intelligent open pit agent, 

IOPA, interacts with the block model by means of the open pit production simulator. The 

OPPS stochastically simulates the next feasible push-backs. The cash flows of the 

simulated push-backs are returned by the EPEM. The intelligent agent, IOPA, employs 

Q-leaming and epsilon-greedy algorithm to choose the next suitable push-back among all 

the simulated results. The algorithm then updates the action value estimates Q{s,a) . The 

simulation continues until the simulated push-back design reaches the final pit limits.
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Figure 6.1 Research summary, models and algorithms developed
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The IOPS finally returns the optimal long-term mine plan. Afterwards, the 

continuous open pit simulator, COPS, models the dynamics of the open pit geometry and 

the subsequent material movement as a continuous system described by time-dependent 

differential equations. A set of PDEs capture the time-related behavior of the open pit 

mining systems. Functional approximation of the discrete simulated push-backs, 

generated by IOPS, provides the means to convert the set of PDEs to a system of ODEs. 

Numerical integration with Runge-Kutta scheme yields the trajectory of the pit geometry 

over time with the respective volume of materials transferred and the NPV of the mining 

operation.

The Java Reinforcement Learning Library (JavaRL) (Kerr et al., 2003) was chosen 

as the core of the IOPS application implementation. Java programming language version 

1.4.2 (Sun Microsystems, 1994-2006) and MATLAB version 7.04 (MathWorks, 2005) 

were selected as the platform for programming. The IOPS graphical user interface (GUI) 

was implemented using IntelliJ IDE (JetBrains, 2000-2006). The user interface facilitates 

setting the block model, open pit, production, and simulation parameters.

Figure 6.2 illustrates the numerical applications of IOPS and COPS to verify and 

validate the research outcomes. A case study involving an iron ore deposit with 114,000 

blocks was carried out. The final pit limits were determined using the LG algorithm via 

the shells node in the Whittle software. There were 77 pit shells generated by varying the 

product price using a revenue factor ranging from 0.4 to 1.4. The pit shell 68 was chosen 

as the optimized final pit limits. The optimized final pit limits show the total amount of 

399 million tonnes of material consisting of 220 million tonnes of ore and 179 million 

tonnes of waste.

The long-term plans are analyzed by comparing the results of the IOPS with Milawa 

algorithm. Table 6.1 shows the NPV of the worst-case, best-case, and Milawa algorithms 

of the Whittle software and the best case and the practical annual long-term schedule 

generated by IOPS and COPS. The analysis were run over a 21-year of mine life at a 

discount rate of 10% per annum. Experiments also compared the annual stripping ratio, 

average grade, annual waste, and the ore and concentrate production.
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Chapter 5 
Numerical Application
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Table 6.1 Summary of the numerical application

Method NPV ($)

Worst case scenario Whittle 155,753,000
Best case scenario Whittle (impractical) 457,676,000
Best case scenario IOPS (impractical) 454,786,000
Feasible Whittle schedule (Milawa algorithm) 430,734,000
Practical IOPS schedule (Q-learning algorithm) 438,254,000
COPS continuous time schedule 432,350,000

6.2 Conclusions

A comprehensive literature review on the current body of knowledge on open pit 

mine planning algorithms established the frontier in this research sphere. The results of 

the literature survey approved that there has never been any previous attempt for defining 

the open pit long-term planning problem by the reinforcement learning paradigm. 

Therefore, this research endeavor is a ground-breaking effort to employ Q-learning 

algorithm in order to provide contributions, knowledge and novel understandings into 

mine planning and design domain.

All the research objectives outlined in Section 1.3 have been achieved within the 

research scope. The following conclusions were drawn from comparative analyses of the 

extraction sequence generated by Whittle and IOPS:

1. The intelligent optimal open pit production simulator (IOPS) significantly improves 

the discounted net pit value comparing to the Milawa algorithm, which is the standard 

tools in industry.

2. The efficiency and the convergence rate of the IOPS algorithm is directly related to 

the mining starting point. IOPS randomly checks different mining initial box cuts in 

the learning process. A prior knowledge of high grade ore clusters in the model can 

speed up the computations.

3. The smallest pit generated by the LG parametric analysis is the best mining starting 

point because it includes the ore with highest grade.

4. The IOPS schedule illustrated a more uniform head grade than the Whittle schedule.

5. The IOPS also demonstrated a more steady flow of ore to the plant than Milawa.
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6. Enforcing the practical mining constraints in mathematical models is crucial. The best 

case scenarios of the IOPS and Whittle, where the minimum mining widths are not 

enforced have resulted in optimistic results, which are impractical.

7. The sinking rate of the open pit, which is the maximum feasible number of benches 

deepen every year is a critical factor in long-term planning.

8. The net present value of the schedule is more sensitive to the product price than the 

mining and processing cost.

9. The intelligent agent framework, in conjunction with stochastic simulation models 

provide a powerful tool for optimizing the scheduling process while addressing the 

random field and dynamic processes in open pit mine planning.

The following conclusions were drawn from comparative analyses of the extraction

sequence generated by COPS and IOPS:

1. Comparative analysis of the NPV estimates from IOPS and COPS illustrates that the 

numerical solution of the PDEs, simulating the continuous-time open pit dynamics 

successfully captured the optimal long-term term plan generated by the IOPS.

2. The trajectories of the changes of the open pit geometry in time captured by COPS 

are smoother than the discrete simulation results. Hence, the respective NPV 

estimates of the schedule are less than the optimal schedule generated by IOPS over 

time.

3. The volume of rock in the frustum capturing the final pit limit is equal to 

8.20 5 6 x 1 0 7 «73 , whereas the results of the solution to the differential equations 

demonstrates a volume of 8.3203xl0?m3 over the mine life.

4. The solution of the differential equations produces a schedule with an almost constant 

annual rock excavation rate. This is a sign that COPS is capable of generating a 

uniform annual production rate.

5. COPS presented the flexibility to capture the long-term plan in terms of differential 

equations. Any changes in the schedule can be easily modified by new functional 

approximations and the numerical solution to the system of ODEs. This method 

reduces the necessity to deal with huge data bases over time.
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6.3 Contributions o f PhD Research

The following constitute the major contributions of research.

1. This is the first endeavor to develop optimization models of long-term open pit mine 

planning problem based on reinforcement learning, intelligent agents, stochastic, and 

continuous time simulation. This work contributes enormously to the body of 

knowledge on open pit mine planning and design and can be the foundation of the 

next generation of mine planning software packages.

2. The research has formulated robust mathematical models and comprehensive 

algorithms. It expands the frontiers of open pit planning and optimization by 

improving the expected net discounted value of a mining venture to a great extent 

compared to current software packages used in industry.

3. The original algorithm enables step-changes in the manner in which mines are 

planned and managed. This has been made possible by providing mathematical 

models of the open pit geometry, stochastic and continuous-time simulation models 

of the open pit dynamics, and an intelligent agent -  implementing Q-learning as the 

core of IOPS engine. The agent is able to learn optimal plans from experience in the 

form of sample simulation episodes of push-backs.

4. Unlike current mine planning algorithms, IOPS has the capability of dealing with 

mine planning parameters as stochastic variables.

5. This is a pioneering effort at modeling open pit geometry with modified elliptical 

frustum with five variables. The new model reduces considerable error in volume 

calculations. It also facilitates the process of saving the long term plan as incremental 

changes in the dimensions of the major and minor axes of the elliptical frustum rather 

than saving all the block coordinates for different scenarios.

6. A novel economic pit expansion model (EPEM), which interacts with the modified 

geometrical open pit model to return the monetary value of the mining operation.

7. The continuous time simulation model (COPS) is novel in various ways. First it 

captures the optimal long-term plan of an open pit mine as a system of PDEs. 

Secondly, it combines the functional approximation for capturing the optimal plan
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generated by IOPS. Afterwards, the approximations are used as the auxiliary 

conditions to numerically solve the differential equations.

6.4 Recom m endations for Further Research

Although the methods and algorithms developed in this thesis have provided a 

ground breaking methodology for open pit mine planning and optimization, still there 

should be extensive studies to expand the usefulness of the research to the mineral 

industry. The following areas could significantly improve and add to the body of 

knowledge in this research domain.

1. The main objective of this research work was concerned with maximizing the NPV of 

the mining operation over time. Another important consideration in open pit planning 

is to model the exploitation process and the mineral processing criteria 

simultaneously. One should always take this into account that neither pit limit 

optimization nor production scheduling optimization is a goal by themselves; they are 

parameters that are used to maximize the total mining procedure profitability. The 

basic demands of the processing plant are uniform grade feed material and maximum 

usage of the processing plant capacity. Uniformity should be both in quantity, 

amount, and quality, grade, to minimize idle times of the plant. In order to supply the 

demanded material, excavation sequence should be altered, which suggests that the 

optimum pit configuration is not only a function of monetary values but also of 

technical constraints. In order to reach these goals an optimization model based on 

multiple criteria decision making through goal programming (Ignizio, 1976; 

Schniederjans, 1995; Tamiz, 1996; Trzaskalik and Michnik, 2002; Tanino et al., 

2003), and multi-agent systems must be added to the IOPS framework (Weiss, 1999; 

Kraus, 2001; Tessier et ah, 2001).

2. The primary implementation of EPEM demonstrated a reasonable run time for block 

models representing medium size deposits. The increase in the number o f blocks in 

the model causes a longer search time for EPEM. Therefore, there is need for spatial 

data structures (Samet, 1990; Samet, 1990) to enhance the algorithm efficiency and 

accelerating the search.
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3. The core algorithm of IOPS engine was one-step Q-leaming algorithm (Watkins, 

1989). To make the algorithm learn with a faster rate, eligibility traces must be 

considered and developed in the main algorithm (Sutton, 1992), There are two ways 

to view eligibility traces. The more theoretical view is that they are a bridge from TD 

to Monte Carlo methods. The other way to view eligibility traces is more mechanistic. 

From this perspective, an eligibility trace is a temporary record of the occurrence of 

an event, such as the visiting of a state or the taking of an action. The trace marks the 

memory parameters associated with the event as eligible for undergoing learning 

changes. Thus, eligibility traces help bridge the gap between events and training 

information (Sutton and Barto, 1998).
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Appendix A - Partial Derivatives (Equation 3.13)
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