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Abstract

Cholera remains epidemic and endemic in the world, causing thousands of deaths

annually in locations lacking adequate sanitation and water infrastructure. Yet its

dynamics are still not fully understood. An indirectly transmitted infectious disease

model, called an iSIR model, was recently proposed for cholera. This model includes

a new incidence term for indirect transmission. The analysis of the iSIR model was

preliminary and here we present a thorough stability and sensitivity analysis. We

introduce a new disease model, called an iSIBP model, using the new incidence

term, and including bacteriophage. Our findings highlight the importance of the

relationship among the water contamination parameter and the carrying capacity

and minimum infectious dose of the pathogen, relating to the partial global results

for the iSIR model, and the existence of limit cycles in the iSIBP model. This thesis

provides a theoretical basis for further mathematical and experimental work.
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Chapter 1

Introduction

1.A Background Information

1.A.1 Biology and motivation

The study of diseases spreading through human populations has received atten-

tion from mathematicians since the seminal papers of Kermack and McKendrick

in the 1920s [39]. However, such attention has mostly been confined to diseases

which spread directly, meaning that the primary mode of transmission is from per-

son to person. Diseases can be classified as existing exclusively or partially within

humans [79], and those that have a significant portion of their life cycles outside

of human hosts tend to have multiple routes of transmission and more complicated

epidemiological dynamics. We will be focusing on this second type of disease in

this thesis. Such diseases can be viral in nature, like rotavirus disease or hantavirus

pulmonary syndrome [19,82]; bacterial, such as cholera or legionellosis [23]; or par-

asitic, such as schistosomiasis, cryptosporidiosis or giardiasis [11, 63, 78]. The main

complicating issue is that ecological factors coming from the nonhuman portion of
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the life cycles of the pathogens need to considered.

Cholera and Background

Cholera is an example of a disease where the pathogen causing it has a significant

portion of its life cycle outside of human hosts, and that spreads indirectly or in

some cases directly. It has garnered particular attention, especially lately, from a

mathematical point of view. Cholera is a diarrhoeal disease caused by the serogroups

O1 and O139 of the bacterium Vibrio cholerae (V.cholerae). When this bacteria is

consumed by humans, it produces an enterotoxin (called cholera toxin) in the small

intestine [56, 80]. This causes severe diarrhea, which if untreated by antibiotics or

rehydration therapy, can cause death. Historically, the mortality rate was 20% or

higher [4, 60] but, if proper treatments are available, the mortality rate in modern

times is less than 1% [75].

Since 2007 there have been outbreaks in India, Bangladesh, Congo, Iraq, Zimbabwe,

Vietnam, Nigeria and Haiti [73], leading to several million cases per year [65]. The

bacteria Vibrio cholerae exists in coastal waters almost everywhere in the world [44]

and in areas such as the Ganges Delta, which includes Bangladesh and India, the

disease is endemic. While it has not been a real problem in developed nations with

modern sanitation and water treatment since the 19th century, including countries

in North America and Europe, in 1991 it returned to South America after a 100-

year absence [44]. This highlights the importance of understanding the dynamics of

V.cholerae and cholera. Another reason why it is important to study V.cholerae is

that because it exists naturally in the aquatic environment of so many places, when

natural disasters or political turmoil lead to compromised water utilities, the disease

can make a quick return. In countries lacking resources to deal with such outbreaks,

it is obviously essential to understand the most efficient and effective way to quell

2



outbreaks, and it is often precisely in such countries that cholera tends to be an

issue. As a result of the continuing problem of cholera, large sets of data dating

back many decades have been amassed, which helps any type of research effort, and

provides a fruitful background for mathematical and statistical modeling [62].

Much work has been done focusing on the area of Bangladesh where the disease is

endemic and research institutes like the International Center for Diarrhoeal Disease

Research (ICDDR) collect a lot data and have performed many studies. In an en-

demic area, the question of infection-caused immunity naturally arises. Most adults

in such regions have a partial immunity to V.cholerae O1, which leaves children

as the primary susceptible category [55]. However, this immunity does not transfer

to the newer O139 serogroup [12]. It has been proposed that such partial immu-

nities to the different serogroups, may explain the somewhat cyclical outbreaks of

cholera [40].

As mentioned above, the serogroups O1 and O139 of V.cholerae are the causative

agents of cholera. In addition to these two toxigenic serogroups, there are more than

200 others which are not toxic to humans [44]. The O1 serogroup can be further

divided into V.cholerae O1 Classic and V.cholerae O1 El Tor. There have been 7

pandemics that have swept the world since the 19th century, with O1 Classic being

the cause of the 5th and 6th, and O1 El Tor responsible for the 7th pandemic which

originated in Indonesia [20]. El Tor has mostly replaced O1 Classic as the cause of

outbreaks. In 1992, O139 Bengal first emerged and looked to be replacing El Tor in

turn [76]. It is known now that both O1 El Tor and O139 Bengal cause outbreaks

in the Ganges Delta region [20]; within this region, in some places one or the other

dominates but they have also been known to cause outbreaks in the same place at

the same time [68]. The fact that there are two types of V.cholerae which cause

cholera outbreaks is significant because they are similar but not identical in im-

portant physical ways (size and shape) [37, 77], which would have consequences for
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antibody resistance and methods of treating the two types. Furthermore, the tem-

poral dynamics are known to be different (timing of outbreaks and relationship with

rainfall, etc.) [6, 51], which would need to be considered when evaluating methods

of intervention in preventing and dealing with outbreaks.

The aquatic reservoir

In 1854, Pacini first discovered the link between cholera as a disease and bacteria

in the water. However, his results were not accepted at the time because it was not

believed that cholera was contagious [44,59]. In 1884, one year after Pacini’s death,

Koch rediscovered the link between cholera and the bacteria which he named Vibrio

cholerae [44]. At the same time as Pacini’s work, when the 2nd pandemic reached

England, physician John Snow famously connected a cholera outbreak in Soho to

a single shallow well [64]. Despite this long awareness and association with water,

there has historically been much debate between ‘localists’ and ‘contagionists’ as to

whether environmental factors or human activities respectively are more important

to the epidemiology of cholera. In 1977 Colwell et al. [14] were the first to find that

V.cholerae could exist independently of humans in acquatic environments. Prior to

this, the bacteria was not thought to be capable of surviving for long periods in

the water, assumed to be sustained only through human contamination. However,

V.cholerae was not found in the environment at levels that could account for out-

breaks, and also not found during inter-epidemic times. Following new methods for

detecting the bacteria in samples [31], the long standing idea that V.cholerae can

survive naturally in aquatic environments is now accepted [38]. Whether naturally

existing aquatic bacteria are the driving cause behind outbreaks in endemic areas is

however still debated.

The exact mechanism behind V.cholerae living in aquatic ecosystems was and re-
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mains cause for further study. It has been found to live in conjunction with zoo-

plankton [1, 16,72], phytoplankton [27,67] and other biotic and abiotic detritus [3].

Providing further difficulties in detecting V.cholerae in the water is its ability to

change physiologically and morphologically in different situations. In times of low

nutrient concentration, it is able to change its production of fatty acids and its

shape [5,26,29,57]. This complicates the detection methods used in trying to deter-

mine its natural densities. It is also able to enter a viable but not culturable form

(VNC or VBNC), the exact reason for which is unclear [15, 20, 32, 33, 58]. In this

form, bacterial cells are more difficult to detect, and so this form could also ex-

plain why V.cholerae is usually found at lower levels than expected. Recently, it has

been discovered that V.cholerae enters this form after passing through the diges-

tive system of human hosts and entering the aquatic reservoir [55], whereas earlier

experiments demonstrated that the human digestive tract could in fact reverse this

transition [17]. Whether or not V.cholerae is always able to revert back from this

form is not clear, nor whether they remain infectious. This raises questions to the

exact role of human contamination of the aquatic reservoir during epidemics.

Uncertainty regarding the exact role of the aquatic component in the lifecycle of

V.cholerae has in the past helped fuel the debate between ‘contagionists’ and ‘lo-

calists’. Empirically it has been demonstrated that there is a correlation between

increases in aquatic V.cholerae preceeding outbreaks of cholera [24, 45, 47]. Fur-

thermore, the primary mode of transmission is now thought to be indirect through

water or contaminated food, and not person to person [38], although person to per-

son transmission is possible. Also, in a study by Alam et al. [2] on outbreaks of

cholera in Mathbaria, Bangladesh, it was found that despite two years of outbreaks

caused by V.cholerae O1 El Tor, in 2005 the outbreaks were caused by V.cholerae

O139. As O139 was found in the environment in 2004 but it was O1 El Tor causing

outbreaks, the significance of aquatic reservoirs in cholera outbreaks is supported.
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These ideas suggest the importance of explicitly including aquatic bacterial levels

in models for cholera outbreaks, which most modern models do in some form.

Minimum Infectious Dose

Also relevant to include in any model of cholera epidemiology is the idea of a mini-

mum infectious dose (MID). Unlike viral diseases, bacteria have to enter the human

body in higher concentrations to overwhelm the natural immune response [52]. In

1974, Cash et al. [10] performed an experiment using healthy North American males,

to try to determine an exact number for this minimum infectious dose. They found

that between 108 and 1011 bacterial cells were required when issued in saline so-

lution, but only 104 to 108 cells were required when administered with a buffer to

neutralize stomach acid. It should be noted however, that as the volunteers were

from North America where the disease is not endemic, they would have lacked any

sort of natural immunity which is thought to be present where cholera outbreaks

regularly occur. There is disagreement on the actual level of this MID, but the ex-

istence of one is accepted [17, 30, 38, 41, 75]. Thus cholera models should include a

minimal infectious dose in some way.

Multiple outbreaks and periodicity

In the Ganges Delta area, it is well documented that there are multiple outbreaks

every year. The pattern has been described heuristically as having 2 main peaks.

The first occurs between September and December following the monsoon rains,

and the second smaller outbreak occurs in the dry season between March and June

[20,33,46,62].

The existence of this bimodal pattern has lead some to associate the differences in
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the seasons in terms of weather and other conditions with outbreaks. Some have

linked it with surface sea temperatures and height [8, 45] and others have gone

further and found correlations between outbreaks and ENSO patterns- that is the

Southern Oscillation weather pattern which has a period of 4 years [62]. The thought

is that such abiotic factors could cause plankton blooms, which would in turn in-

crease levels of V.cholerae attached to the plankton and then cause outbreaks. While

there certainly seems to be a correlation between these factors and outbreaks, one

notable objection is that the different serogroups O1 and O139 are not synchronized

in their responses to these factors [20,21]. This would suggest that either the differ-

ent serogroups react differently to the same seasonal influences, or that seasonality

cannot fully explain the nature of the outbreaks.

While it is typically said that there are two outbreaks a year in Bangladesh, the data

is not strongly periodic in the exact timing of the peaks and there are considerable

differences in the timing and strength of outbreaks year to year [8, 40]. Precisely

when the September-December outbreak begins after the monsoon rains is noncon-

stant [25]. The model I present in Chapter 3 has a region in the parameter space

which leads to chaotic behaviour. This could explain the irregularity in the seasonal

patterns and the different patters of outbreak amongst different countries, espe-

cially if the positive relationship between bacterial proliferation and temperature is

considered [69].

Hyperinfectivity

Further contributing to the complicated epidemiology of cholera is the existence of

a hyper-infectious state of V.cholerae O1 El Tor, found in laboratory settings [49].

Hartely et al. [28] found that for up to 5 hours after passing through a human host,

the bacteria was many times more infectious than otherwise. This was quantified in
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that the dose which caused infections on average 50% of the time (the ID50), was

much lower for V.cholerae in this hyperinfectious state than normally. Incorporating

this idea into models has been found to better fit the explosive nature of cholera

outbreaks [46] but whether these laboratory findings are relevant to natural con-

ditions is not clear [55]. Also as mentioned previously, the tendency for V.cholerae

to enter a VBNC state after exiting human hosts, would seem to complicate this

matter.

The role of bacteriophage

It has been proposed that bacteriophage might be another important aspect of

the ecology of V.cholerae that needs to be included in models of cholera out-

breaks [47, 71]. Bacteriophage are viruses that prey on bacteria, so the two exist in

a predator-prey relationship. Just as there are different subgroupings of V.cholerae,

there are corresponding different types of bacteriophage (phage) which consume

them. It has been found that humans, in addition to contaminating the water sup-

ply with bacteria when infected, also contaminate the water supply with phage,

sometimes of matching type [54, 81]. When both bacteria and matching phage are

present within a single human host, the phage do not, or are unable to, completely

remove the bacteria. They do, however, appear to increase the required infectious

dose of bacteria [81]. The presence of phage in the aquatic reservoir has been in-

versely correlated to cholera outbreaks, suggesting that phage are responsible for

ending epidemics [21,22].

1.A.2 Mathematical models

The main mathematical models that make use of ordinary differential equations

are those built upon the Capasso and Paveri-Fontana model [9] and the Codeço
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Holling I Holling II Holling III

(aBS)
(
a B
B+HS

) (
a Bn

Bn+HnS
)
n = 2, 3, ...

Tien (2010) [74] Codeco (2001) [13]
Mukandavire (2011) [50] Mukandavire (2011) [50]

Bertuzzo (2008) [7]
Hartley (2006) [28] Jensen (2006) [35]

Table 1.1: Summary of the incidence terms in other cholera models.

model [13]. Hartley et al. [28] incorporated a hyperinfectious route of transmission to

the Codeço model and Joh et al. [36],Tian et al. [73], Jensen et al. [35] and Mukanvire

et al. [50] have further built on and branched off from these models. Most models use

a Holling I (or mass action) incidence term, which is perhaps unsuitable for non-viral

diseases, or a Holling II incidence term, which can overestimate the infectivity of low

levels of bacteria. Table 1.1 groups the main cholera models according to incidence

term type. Joh et al. [36] first proposed a threshold infection term which will be used

in Chapters 2 and 3, and it is unique to all other models listed previously. Below is

a summary of the main mathematical models for cholera.

Codeço Model

The first modern cholera ODE model was created in 2001 by Codeço [13]. While the

Capasso and Paveri-Fontana model [9] consisted of two equations, with one for the

infected compartment and the other for the aquatic bacterial community, Codeço

included the susceptible population and recovered population in the model as well.

Denote S, I and R as the susceptible, infected and recovered compartments from

standard SIR models. The recovered compartment is not stated explicitly, as the

population is assumed to be of constant size and so the dynamics of the recovered

compartment follow directly from the rest of the system noting that H = S+ I+R,
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where H is the total population. The model is written

Ṡ = n(H − S)− aλ(B)S,

İ = aλ(B)S − rI,

Ḃ = B(nb −mb) + eI.

The birth and death rate are the same and denoted n. The parameter r represents

recovery rate, and include natural recovery and death. Bacteria have a net growth

rate of proliferation nb minus mortality mb, and human contamination increases

bacteria levels at a rate e proportional to the size of the infected class. The infective

term consists of the maximum rate of exposure to contaminated water, a, multiplied

by λ(B) = B
K+B which is a Holling II response curve. The use of such a term

would overestimate the infectivity of low levels of bacteria, contrary to the idea of

a minimum infectious dose, which we think is important.

Key features of the model are that the aquatic reservoir is represented very simply

with a linear growth term and linear shedding contribution. This was because the

ecological dynamics of V.cholerae were not well understood at the time (they are

still not completely understood), so Codeço started with the simplest way to model

the bacteria population. Unless net growth is naturally zero (nb = mb), the bacterial

population will die out exponentially in the absence of human shedding if nb < mB,

or tend to infinity if nb > mb.

The oscillations in this system die out over time, so in order to simulate the periodic

behaviour of outbreaks observed in some endemic areas, periodic contact rates,

shedding rates and net growth rates of bacteria were also included. In reality, all

three are likely periodic at the same time, but not necessarily with the same period.

In chapter 3, we will demonstrate periodic behaviour with a system that is still

autonomous.
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Hyperinfection model

To account for the laboratory findings of a hyperinfectious state, Hartley et al. [28]

added an additional bacterial compartment to the Codeço model, and also explicitly

included the recovered class in the model (although this doesn’t change anything

as this category was implied previously). The human population is assumed to be

of constant size and there is assumed to be no disease-induced mortality, as in the

previous model. Removal of susceptibles to the infected class occurred with the same

Holling II response curve as in the Codeço model, but infections were caused either

by hyperinfectious bacteria BH or normal bacteria BL. The half saturation constant

for the hyperinfectious class was smaller to represent a lower MID leading to greater

infectivity, and the contact rate could also be varied independently.

All human shedding contributed to the hyperinfectious bacteria only, which trans-

formed to normal bacteria linearly. Normal bacteria then had a linear death term,

meaning that in the absence of human shedding, bacteria of either form would die

out exponentially. This captures the idea that only bacteria that have recently en-

tered the aquatic environment are relevant to outbreaks, a modeling choice which

we do not agree with. Also, as before, the use of a Holling II infection term would

overestimate the infectivity of very low levels of bacteria, going against the idea of

a minimum infectious dose which is an idea we think is important to include.

Model for nonendemic regions

In 2011, Mukandavire et al. [50] extended the model of Hartley et al. [28] to model

outbreaks in Zimbabwe, where the disease is not endemic. As Zimbabwe is not a

coastal nation, V.cholerae are not thought to naturally exist in the aquatic reservoir,

meaning that the emphasis should be placed on the human causes of epidemics.

11



Unlike in Hartley et al. [28], there is only one category of bacteria, which increases

proportionally to the infected class and dies out linearly. Hyperinfectivity is ac-

counted for with a Holling I (or mass action) term, βhSI, and infections from non-

hyperinfectious bacteria are caused through the reservoir with a Holling II term,

βeS
B

K+B . Here the linear terms for the bacteria compartment are perhaps more re-

alistic because V.cholerae is not thought to live naturally in the aquatic environment

of Zimbabwe, so exponential decay in the absence of human shedding is likely. The

models we will present in Chapter 2 and 3 are intended for endemic areas, where

bacteria exist naturally without humans, so this difference is justified. However, the

Holling I infection term for hyperinfectious cases, and Holling II for environmental

infection both would overestimate infectivity when bacteria exist at low levels.

Bacteriophage model

To include the role of bacteriophage which has been suggested by experimentalists as

important, Jensen et al. [35] further modified the Codeço model to include a phage

compartment, P, and divided infectives into bacteria infected (I1) and bacteria and

phage infected (I2) individuals. Bacterial shedding thus comes from both classes of

infectives, but phage shedding is from I2 only. Phage infection is proportional to

bacteria infection, and the phage dependent term has a 50% infectious dose (or ‘half

saturation constant’) of l. Bacteria (V) are assumed to experience logistic growth

with carrying capacity Kv, and predation by phage occurs via a Holling I response
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(βγBP ).

Ṡ = −π
(

V

C(α)K + V

)a
S − δS + δN

İ1 = π

(
l

l + P

)(
V

C(α)κ+ V

)a
S − (µ1 + δ)I1

İ2 = π

(
P

l + P

)(
V

C(α)κ+ V

)a
S − (µ2 + δ)I2

Ṙ = µ1I1 + µ2I2 − δR

V̇ =

[
m

(
1− B

Kv

)
− δP

]
B + c(I1 + I2)

Ṗ = (βγB − δ)P + αcI2

The infection term −π
(

V
C(α)K+V

)a
S is Holling III in form as a = 7 in their anal-

ysis. The sigmoidal shape is intended to capture the low infectivity at low levels of

bacteria, but there are still infections at very small levels which could overestimate

the number of infections in the long run.

The focus of this model was to determine the ability of phage to end outbreaks or

indirectly cause outbreaks by being reduced in number. Both of these abilities were

demonstrated in the analysis. However, they did not examine the role, or existence,

of limit cycles caused by the predator-prey relationship of phage and bacteria, which

is something we will pay attention to in Chapter 3.

1.A.3 Outline

In chapter 2, we will present a modified SIR model with aquatic reservoir for bacteria.

This model was first proposed by Joh et al. [36], but we will offer a more complete

stability and sensitivity analysis. The main difference from other SIR models which

incorporate an aquatic reservoir is a new ‘indirect’ infection term which explicitly

includes a minimum infectious dose. This infection term is a piecewise continuous
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function which is zero below the minimum infectious dose (MID) threshold and

a Holling II response curve above the threshold. Similar to Jensen et al. [35], we

also allow bacteria to exist naturally under logistic growth. We will demonstrate

the existence of a unique endemic equilibrium which can be globally asymptotically

stable given a certain relationship between the minimum infectious dose and the

bacterial carrying capacity. Also, a sensitivity analysis is presented which reveals a

stronger association between the carrying capacity and peak outbreak times and the

magnitude of outbreaks, than the shedding rate and peak times and magnitudes.

This has implications in the importance of control strategies focusing either on

limiting human contamination and access to water supplies or lowering the natural

levels of environmental bacteria.

In chapter 3, this new indirect infection term is included in a model, that following

Jensen et al. [35], includes phage levels and phage predation of bacteria, through

an additional compartment. The existence of limit cycles in the absence of any hu-

man shedding demonstrates that cycles in the bacteria-phage community can cause

cyclical outbreaks in the human population. These cycles can match the period of

the observed dynamics and do not require time-dependent seasonal forcing. Addi-

tionally, the existence of a chaotic region in the parameter space is demonstrated.

This region could account for the inexact periodicity of cholera outbreaks in certain

endemic regions, and the noncyclic behaviour in other regions where outbreaks lack

an exact pattern.

14



Chapter 2

The iSIR Model

2.A Introduction

Cholera is a disease of the intestinal tract that can cause severe diarrhoea, lead-

ing to dehydration and death if left untreated. It is caused by the bacteria Vibrio

cholerae and is treatable if caught within 1-2 days of symptoms first appearing.

Historically, the mortality rate was greater than 20% [4,60]. With modern methods

of treatment (antibiotics and rehyrdation therapy) the mortality rate is less than

1% if treated quickly enough [75]. Thus in places with adequate health care and

access to antibiotics, cholera is not much of a problem. However, in countries where

such health services are lacking in a permanent sense or because of natural disasters

reducing their availability, cholera outbreaks are still a concern with several million

cases per year [65]. Dhaka, the capital of Bangladesh, for example has two outbreaks

of cholera per year [34] that occur with the changes in seasons and the amount of

rainfall, both of which affect the quality of the water supply.

However, the dynamics of cholera are not completely understood. Recently a new
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indirect transmission model, called an iSIR model (meaning indirect SIR model),

was proposed by Joh et al. [36]. The iSIR model has a threshold in the incidence

term, representing a minimum infectious dose (MID). If bacterial levels are below the

threshold, they cannot overcome the natural immune response of the average person

and no infections are caused. Above the threshold infections occur according to a

Holling II response curve, which is a more accurate reflection of cholera transmission.

This chapter continues the analysis of the iSIR model, first presented by Joh et

al. [36]. The model is derived, and a forwardly invariant domain is determined.

Then a local stability analysis is performed and some global stability results are

obtained. Lastly, a sensitivity analysis and discussion of the results are presented.

2.B Derivation of the iSIR Model

One of the key differences of the iSIR model, proposed in Joh et al. [36], compared to

standard SIR models is the incidence term. The rough idea is that humans consume

bacteria constantly but do not always get sick. Unlike with viruses where only a

small amount of exposure is required, for certain types of bacteria a significant

amount of bacterial cells need to be ingested in order to override the body’s immune

response [52]. This threshold has been measured by the likes of Cash et al. [10] and

others [30, 38, 41] to be at least 104 cells. Simply using Holling I ( or mass action)

infection terms or Holling II terms overestimates the infectivity of low levels of

bacteria.

The incidence term that will be used in this thesis is α(B)S where α(B) is the

bacterial density dependent component, and the S term is present for the same

reasons as with standard SIR models. The indirect part of the incidence term is

defined as
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α(B) =

 0, B < c

a(B−c)
(B−c)+H , B ≥ c.

When the bacterial density is below the threshold c, there will be no infections even

with a nonzero amount of susceptibles, and after the bacterial density is above that

threshold, infections will occur via a Holling II response, as shown in Figure 2.1.

Figure 2.1: If bacteria levels are beneath the threshold c, α(B) is zero (no infections).
If bacteria levels are above c, then α(B) is a Holling II curve.

The value of the minimum infectious dose c depends on the type of disease and the

immune system of the patient, but here we use it to represent the average immune

capability of a population. As V.cholerae exist naturally in the aquatic environ-

ment, the iSIR model uses logistic bacterial growth in the absence of any infected

people, in contrast to most other models which have linear terms for the bacterial

growth and death [13, 28, 74]. The latter leads to exponential decay in the absence

of infectives, which is consistent as many of those models assume that the aquatic

reservoir of V.cholerae is not relevant to the cause of outbreaks, and so only the

short term dynamics of freshly shed V.cholerae are considered. In nonendemic areas,

where V.cholerae does not naturally exist in the environment, this form of bacterial
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growth makes more sense than logistic growth, as used by Mukandavire et al. [50] in

a study on recent outbreaks in Zimbabwe. However, most other models are intended

for endemic areas, and so linear growth terms are perhaps too simple.

The iSIR model has a positive contribution to the bacteria level when there are

sick people shedding bacteria back to the reservoir. This occurs biologically with

infected individuals contaminating the water supply through their V.cholerae laden

feces. The dynamics are summarized in Figure 2.2.

Figure 2.2: A flow diagram demonstrating the relationship between Susceptibles
(S), Infectives (I), Recovered (R) and Bacteria (B). Humans have death rate µ,
contribute to the bacterial reservoir at rate ξ, recover at rate δ and are infected at
rate α(B).

The variables S, I and R in Figure 2.2, are defined in the usual way as susceptible,

infected and recovered categories of the human population. The variable B represents

the density of bacteria in the aquatic reservoir. The first three equations sum to zero,

thus the human population is of constant size. The equations for the model are as
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follows:

dS

dt
=− α(B)S − µS + µN, (2.1a)

dI

dt
=α(B)S − µI − δI, (2.1b)

dR

dt
=δI − µR, (2.1c)

dB

dt
=rB

(
1− B

K

)
+ ξI, (2.1d)

N =S + I +R. (2.1e)

This model was first proposed in Joh et al. [36], though the analysis was preliminary

and here we will present a thorough examination of its dynamics. The parameters

are described in Table 2.1, which also states the range of their values for use in

numerical simulations, taken from Jensen et al. [35], with the MID range taken

from Cash et al. [10].

Parameter Values Description Units

r 0.3-14.3 Maximum per capita
pathogen growth efficiency

day -1

K 106 Pathogen carrying capacity cell litre -1

H 106 − 108 Half-saturation pathogen den-
sity

cell litre -1

a 0.1 Maximum rate of infection day -1

δ 0.1 Recovery rate day -1

ξ 10 - 100 Pathogen shed rate cell litre -1 day -1

µ 5× 10−5 − 5× 10−4 Per capita human birth/death
rate

day -1

N 106 Total Population persons
c ≈ 106 [10] MID cell litre -1

Table 2.1: Parameter values from Jensen et al. [35]
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2.C Mathematical Results

We can nondimensionalize the system as follows:

S =
S

N
, I =

I

N
,B =

B

K
,

τ = µt,A =
a

µ
,C =

c

K
,p =

µ+ δ

µ
,q =

ξN

µK
,R =

r

µ
,λ =

H

K
.

We redefine the per capita infection rate α accordingly as

α(B) =

 0, B < C,

A(B−C)
(B−C)+λ , B ≥ C.

The boldface is now dropped and we arrive at the following nondimensionalized iSIR

system:

dS

dτ
= −α(B)S − S + 1, (2.2a)

dI

dτ
= α(B)S − pI, (2.2b)

dB

dτ
= RB(1−B) + qI. (2.2c)

2.C.1 Forward invariance

First note that in dimensional terms, if S = 0, then Ṡ = N > 0 and so S(t) > 0 for

t > 0. If I = 0, then İ = α(B)S and because α(B) ≥ 0 by definition, then I ≥ 0 as

well. The third equation of (2.1) gives us that Ṙ = δI when R = 0, thus R(t) ≥ 0.

As S + I +R = N , we get that S, I,R ≤ N in the usual way. This transfers over to

the nondimensional quantities of S, I and R, the last of which we typically exclude.
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We have that 0 ≤ S + I ≤ 1 in particular.

Figure 2.3: The derivative of the Bacteria vs. Bacteria Population. When above
Bmax, the derivative becomes negative. When B is zero, the derivative is positive.

Once again we drop the boldface for convenience. Looking at the third equation of

the nondimensional system we can make note thatRB(1−B)+qI ≤ RB(1−B)+q as

I ≤ 1. Define F (B) := RB(1−B) + q which has roots B1,2 =
R±
√
R2+4Rq
2R and note

the smaller root B1 =
R−
√
R2+4Rq
2R < 0 because of the positivity of the parameters.

The other root B2 is clearly positive and is denoted as Bmax =
R+
√
R2+4Rq
2R > 1.

The graph of F (B) is pictured in Figure 2.3.

When B = 0, we see that Ḃ = qI and thus B(τ) ≥ 0 for τ > 0. If B(0) ∈ [0, Bmax)

then B(τ) ∈ [0, Bmax) for any τ > 0. The invariant region is pictured in Figure 2.4

and we summarize with a proposition.

Proposition 1 (Feasible Region): The set

Ω = {(S, I,B) : 0 ≤ S + I ≤ 1, 0 ≤ B ≤ Bmax}

defines a forward invariant region of system (2.2).
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Figure 2.4: The forward invariant region of system (2.2).

2.C.2 Equilibria of the system

Clearly E0 = (1, 0, 0) is a steady state of (2.2) and biologically it corresponds to a

disease-free and bacteria-free population. When C ≥ 1, this means ᾱ(1) = 0 and

E1 = (1, 0, 1) is an equilibrium corresponding to a disease-free state with bacteria at

carrying capacity. When C < 1 we get that ᾱ(1) 6= 0 and so E1 = (1, 0, 1) is not an

equilibrium and (2.2) has no equilibrium (S∗, I∗, B∗) with B∗ ≤ C except E0. The

more complicated steady state E∗ = (S∗, I∗, B∗) arises when B∗ > C which causes

ᾱ(B∗) 6= 0. Thus, system (2.2) implies that

S∗ =
B∗ − C + λ

(A+ 1)(B∗ − C) + λ
,

I∗ =
1

p

(
A(B∗ − C)

(A+ 1)(B∗ − C) + λ

)
=
R
q
B∗(B∗ − 1).

The expressions for I∗ can be combined to form the equation

B∗(B∗ − 1)

(
B∗ −

(
C − λ

A+ 1

))
=

q

pR
A

A+ 1
(B∗ − C). (2.3)
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Define F1(B) = f(B)− g(B) where f(B) = B(B − 1)
(
B − C + λ

A+1

)
and g(B) =

q
pR

A
A+1(B − C). Denote B3 = C − λ

A+1 so that if C < 1 we see that

F1(B3) =
q

pR
A

A+ 1

λ

A+ 1
> 0,

F1(C) = C(C − 1)

(
λ

A+ 1

)
− 0 < 0.

Therefore there exists a root B1 ∈ (B3, C). However, as B1 < C then ᾱ(B1) = 0 and

equation (2.3) does not apply. As f(B) is a cubic with positive coefficient on the

cubic term, and g(B) is a line with positive slope, there also exists a root B2 < 0,

which obviously is not biologically relevant as it is negative and it is not within the

feasible region Ω. Lastly,

F1(1) =− q

pR
A

A+ 1
(1− C) < 0,

F1(Bmax) =(Bmax − C)

[
q

R
− q

R
1

p

A

A+ 1

]
+
q

R
λ

A+ 1
> 0.

The latter is true as p > 1, Bmax > 1, and thus we conclude that there exists

B∗ ∈ (1, Bmax) when C < 1 and it is the unique positive solution to (2.3), giving us

a unique interior equilibrium E∗ = (S∗, I∗, B∗).

Note that limC→1− B
∗(C) = 1, as the x-intercept of g(B) is 1 when C → 1− and

f(1) = 0. As C increases over the value 1, E∗ becomes E1 or vice versa if C is

decreased.

We conclude that when C ≥ 1, f(B) and g(B) are as in Figure 2.5 and there are

0, 1 or 2 roots of Equation (2.3) with bacteria values greater than the minimum

infectious dose (C). For these values B+
1,2, we find S+

i and I+i in the same way as

with E∗, leading us to two distinct equilibria E+
1,2.
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Figure 2.5: The left and right hand sides of Equation ?? when C ≥ 1. There can be
0, 1 or 2 intersections with bacteria values above the MID.

As C is greater than 1, it is larger than all of the roots of f(B). Thus, f(B) is

concave up on [C,∞) and f ′(B) ≥ f ′(C) > 0 for B ∈ [C,∞). If the slope of g(B)

is less than f ′(C), there will be no endemic equilibria, as g(B) will always be below

f(B) and there will be no intersections. Defining ζ = q
pR and working backwards,

we see that

ζ < f ′(C),

=⇒ ζ
A

A+ 1
< f ′(C),

=⇒ g′(B) < f ′(C),

meaning that

ζ < f ′(C) (2.4)

is a sufficient condition for there being no internal equilibria when C ≥ 1. In dimen-

sional parameters, ζ =
(
ξN
µ+δ

) ( µ
rK

)
, and so ζ is proportional to the shedding rate

ξ. This motivates the definition of the condition for no internal steady states, as we
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shall see later. We summarize with a proposition.

Proposition 2 (Existence of equilibria): The equilibrium E0 = (1, 0, 0) always

exists in Ω.

• When C < 1 (equivalently c < K), there exist two equilibria, E0 on ∂Ω and a

unique endemic equilibrium E∗ in Ω̊.

• When C ≥ 1 (equivalently c ≥ K), then E1 = (1, 0, 1) is also an equilibrium

and there can be up to two internal equilibria E+
1,2.

– If ζ < f ′(C), there are no internal equilibria, and only E1 and E0 exist.

2.C.3 Local stability of E0, E1 and E∗

We calculate the jacobian to analyze the local stability of each of the equilibria. For

the simpler case of B ≤ C,

J1(S, I,B) =


−1 0 0

0 −p 0

0 q R− 2RB

 ,

and for B > C,

J2(S, I,B) =


−A(B−C)
(B−C)+λ − 1 0 −Aλ

[(B−C)+λ]2
S

A(B−C)
(B−C)+λ −p Aλ

[(B−C)+λ]2
S

0 q R− 2RB

 .

When C ≥ 1, the equilibria are E0 = (1, 0, 0), E1 = (1, 0, 1) and up to two E+
i =

(S+
i , I

+
i , B

+
i ). For C ≥ 1, we use J1 and find that E0 has eigenvalues −1,−p and R,

which indicates that E0 is a saddle point equilibrium, as all parameter values are
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assumed positive. E1 in this case has eigenvalues −1,−p and −R and thus we can

conclude that when C ≥ 1, the equilibrium (1, 0, 1) is locally asymptotically stable:

that is, the disease-free equilibrium is locally asymptotically stable. Also, for C < 1,

E0 is a saddle point equilibrium for the same reasons.

Now considering E∗ and using the nondimensionalized system (2.2), we obtain

S∗ =
B∗ − C + λ

(A+ 1)
(
B∗ − C + λ

A+1

) =
B∗ − C + λ

(A+ 1)
(

q
pR

A
A+1(B∗ − C) 1

B∗(B∗−1)

)
S∗ =

pR
Aq

B∗

B∗ − C
(B∗ − 1)(B∗ − C + λ).

We will use γ for eigenvalues as the traditional λ is already used elsewhere. We can

compute

det(γI − JE∗) = det


γ + A(B∗−C)

(B∗−C)+λ + 1 0 Aλ
[(B∗−C)+λ]2

S∗

−A(B∗−C)
(B∗−C)+λ γ + p −Aλ

[(B∗−C)+λ]2
S∗

0 −q γ +R(2B∗ − 1)



=

(
γ +

A(B∗ − C)

B∗ − C + λ
+ 1

)[
(γ + p)(γ +R(2B∗ − 1))− Aλq

(B∗ − C + λ)2
S∗
]

+
A2λq

(B∗ − C + λ)3
(B∗ − C)S∗.

Define F2(γ) := det(γI−JE∗), h := A B∗−C
B∗−C+λ + 1 and m := Aλq

(B∗−C+λ)2
S∗. Later we

will make use of the following alternate forms of these definitions:

h = A

(
B∗ − C

B∗ − C + λ
+

1

A

)
=

(A+ 1)(B∗ − C) + λ

B ∗ −C + λ
> 1
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and

m =
Aλq

(B∗ − C + λ)2
pR
Aq

B∗

B∗ − C
(B∗ − 1)(B∗ − C + λ) = pR λ

B∗ − C + λ

B∗ − 1

B∗ − C
B∗.

We can rewrite the characteristic equation with these new expressions taken into

account as follows

F2(γ) =(γ + h)[(γ + p)(γ +R(2B∗ − 1))−m] +
A2λq

(B∗ − C + λ)3
(B∗ − C)S∗

=(γ + h)[γ2 + (R(2B∗ − 1) + p)γ + pR(2B∗ − 1)−m] +
A2λq

(B∗ − C + λ)3
(B∗ − C)S∗

={γ3 +R(2B∗ − 1 + p)γ2 + [pR(2B∗ − 1)−m]γ + hγ2 + h(R(2B∗ − 1) + p)γ

+ [pR(2B∗ − 1)−m]h}+
A2λq

(B∗ − C + λ)3
(B∗ − C)S∗.

The Routh-Hurwitz coefficients of the above expression are

b3 = 1,

b2 = R(2B∗ − 1) + p+ h,

b1 = pR(2B∗ − 1)− b+ h(R(2B∗ − 1) + p),

b0 = [pR(2B∗ − 1)− b]h+ A2λq
(B∗−C+λ)3

(B∗ − C)S∗,

and note that the Routh-Hurwitz stability criterion requires

b1, b2, b3 > 0 and b2b1 > b3b0

as a sufficient condition for stability of the equilibrium. Clearly b2 and b3 are positive,

and if pR(2B∗ − 1)−m > 0 then b1, b0 > 0. As C < 1 for the internal equilibrium

E∗ to exist, B∗ − 1 < B∗ − C so that B∗−1
B∗−C < 1.

Thus

m = pR λ

B∗ − C + λ

B∗ − 1

B∗ − C
B∗ < pRB∗
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and so

pR(2B∗ − 1)−m > pR(2B∗ − 1)− pRB∗ = pR(B∗ − 1) > 0,

which means b1, b0 > 0.

As for the second condition b2b1 > b3b0, we have the following expression

b1b2 =[(h+ p)R(2B∗ − 1) + hp−m][R(2B∗ − 1) + (p+ h)]

=(h+ p)R2(2B∗ − 1)2 + (h+ p)2R(2B∗ − 1) + (hp−m)R(2B∗ − 1)

+ (h+ p)(hp−m).

We can define

B1 = 2hpR(2B∗ − 1)− hm,

B2 = pR2(2B∗ − 1)2 −mR(2B∗ − 1),

B3 = p2R(2B∗ − 1)− pm,

B4 = hR2(2B∗ − 1)2 + h2R(2B∗ − 1) + h2p+ hp2 + hpR(2B∗ − 1).

Using the definition of S∗, we can express

b3b0 = b0

= [pR(2B∗ − 1)−m]h+
A2λq

(B∗ − C + λ)3
(B∗ − C)

pR
Aq

B∗

B∗ − C
(B∗ − 1)(B∗ − C + λ)

= [pR(2B∗ − 1)−m]h+AλpR B∗

(B∗ − C + λ)2
(B∗ − 1).
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Now we check to see if the inequality b1b2 > b0 is satisfied by noting that

(B∗ − C)(2B∗ − 1) > (B∗ − 1)B∗

⇒ B∗ − C
B∗ − C + λ

(2B∗ − 1) +
1

A
(2B∗ − 1) > (B∗ − 1)

B∗

B∗ − C + λ

⇒ ApR
(

B∗ − C
B∗ − C + λ

+
1

A

)
(2B∗ − 1) > ApR(B∗ − 1)

B∗

B∗ − C + λ

⇒ hpR(2B∗ − 1) > ApRλ(B∗ − 1)
B∗

(B∗ − C + λ)2

⇒ 2hpR(2B∗ − 1)− hm > hpR(2B∗ − 1) +ApRλ B∗

(B∗ − C + λ)2
(B∗ − 1)− hm.

The left-hand side of the above inequality is precisely B1 and the right-hand side is

b0. Recall that m < pRB∗, and so

pR2(2B∗ − 1)2 −mR(2B∗ − C) > pR2(2B∗ − 1)2 − pR2B∗(2B∗ − 1) > 0

and

p2R(2B∗ − 1)− pm > p2R(2B∗ − 1)− p2RB∗ = p2R(B∗ − 1) > 0.

Thus B2, B3 > 0 and clearly B4 > 0. Lastly,

b1b2 =

4∑
1

Bi > B1 > b0.

Thus the Routh-Hurwitz conditions are satisfied and E∗ is locally asymptotically

stable.

2.C.4 Local stability of E+
1,2

When E+
i exist things are more complicated as we lack exact expressions for the

equilibrium quantities, and so the local stability is difficult to find analytically.
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Numerically it can be demonstrated that E+
1 (with B+

1 < B+
2 ) is often a saddlenode

equilibrium, and E+
2 is often a stable spiral. For example, this can be seen with

parameters A = 1e3, C = 1.1, p = 1112, q = 1e7,R = 3e3 and λ = 1, which leads to

B+
1,2 = 1.1001, 2.301 and E+

1,2 have eigenvalues γ1 = 104 ∗ (−0.0001, 9.2989,−9.7702)

and γ2 = 104 ∗ (−0.0633 ± 0.0432i,−1.1200). These nondimensional parameters

correspond to reasonable dimensional parameters as given previously in Table 2.1.

Figure 2.6: Phase diagram of the bistability of (2.1) with parameters δ = 0.0999,
K=1e6, a=0.09, H=1e6, c=1.5e6, N=1e7, r=0.27, µ = 9e − 5, ξ = 90. The dimen-
sional internal and boundary equilibria E+

2 and E1 are locally stable and marked
with asterisks. In this case, the basin of attraction for E+

2 is much larger than that
of E1.

This means that there can exist solutions spaces where the equilibria E1 and E+
2 are

both locally stable and a situation of bistability occurs, as observed in Figure 2.6.

Almost every solution will approach either the endemic equilibrium or the disease-

free equilibrium, depending on initial conditions. Numerically we observe that the

basin of attraction is much larger for the endemic equilibrium E+
2 , meaning that a

greater range of initial conditions will lead to an endemic steady state rather than a

disease free-one. So, E0 is always locally stable, E1 and E∗ are locally stable when

they exist, and numerically we see that E+
1 is often unstable and E+

2 is often locally

stable. We summarize the preceding local stability results with a theorem.
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Theorem 1 (Local Stability): System (2.2) has between two and four equilibria.

• When C < 1 (equivalently c < K), E0 = (1, 0, 0) is unstable and a unique

endemic equilibrium E∗ exists and is locally asymptotically stable.

• When C ≥ 1 (equivalently c ≥ K), then E0 = (1, 0, 0) is unstable and

E1 = (1, 0, 1) is an equilibrium and is locally asymptotically stable. Up to

two internal equilibria, E+
1,2, can also exist.

2.C.5 Global stability of E1 and E∗

We wish to invoke a theorem of Hal Smith in regards to monotone dynamical systems

and global stability. Because of the threshold parameter, the jacobian of (2.2) will

have two different forms with α(B) = 0 or not. Either way, the jacobian is of the

form

J(S, I,B) =


∗ + −

+ ∗ +

− + ∗

 ,

which is sign stable and sign symmetric in the off-diagonal entries. As demonstrated

in Figure 2.7, every closed loop has an even number of edges with + signs and so

the system is monotone as defined in Smith [70] in Ω with respect to the partial

ordering

Km = {(S, I,B) : S ≥ 0, I ≤ 0, B ≥ 0}. (2.5)

Our argument is as follows: an application of monotone dynamical system theory

states that if system (2.2) has a positive periodic orbit in domain Ω, then there

exists an unstable equilibrium in Ω (Prop. 4.3 [70]). When C ≥ 1 and condition

(2.4) is satisfied (ζ < f ′(C)), then there are only E0 and E1, neither of which is
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Figure 2.7: The relationship between the three main compartments in the model.

an interior equilibrium. Hence system (2.2) will not have any periodic orbits in Ω.

As (2.2) is competitive, it reduces to a two-dimensional system [70]. Because of the

absence of limit cycles and by the Poincare-Bendixson theory, the local stability of

E1 implies that E1 is globally asymptotically stable.

Define

H1 = {(S, I,B) : B ≤ C, 0 < S + I ≤ 1},

H2 = {(S, I,B) : C < B < Bmax, 0 < S + I ≤ 1},

and note that H1 ⊂ Ω, H2 ⊂ Ω with Ω = H1
⋃
H2. We will show that when C ≥ 1

and ζ < f ′(C), after some τ0 all solutions will stay entirely in H1 and we can apply

our argument about the global asymptotic stability of E1.

First we require a result from Hal Smith [70] about competitive systems noting first

that �m and ≤m are order relations with respect to Km defined in (2.5).

Lemma 1 (Prop 4.3 p.44 Smith [70]): Let γ be a non-trivial periodic orbit of a

competitive system in D ⊂ R3 and suppose there exists p, q ∈ D such that p�m q

and [p, q] = {y ∈ D : p ≤m y ≤m q} ⊂ D. Then W is an open subset of R3

consisting of two connected components, one bounded and one unbounded. The

bounded component, W (γ), is homeomorphic to the open ball in R3. W (γ) ⊂ [p, q],

is positively invariant and its closure contains an equilibrium.
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Now we require some results about the behaviour of solutions of (2.2) with respect

to H1 and H2.

Lemma 2: If C ≥ 1 and ζ < f ′(C), then for all solutions x(τ) = (S(τ), I(τ), B(τ))

of (2.2), if there exists some τ0 such that x(τ0) ∈ H2, then there exists some τ1 > τ0

such that x(τ1) ∈ H1.

Proof. Assume x(τ) ∈ H2 for some τ = τ1. Assume for contradiction that x(τ) ∈ H2

for all τ > τ1. Then by Monotone Dynamical Systems (MDS) Theory we can reduce

this 3d system to a 2d system, as it is competitive, and by the Poincare-Bendixson

Theorem we can conclude all omega limit sets are limit cycles or equilibria.

As there is not an interior equilibria in H2, we can conclude by Lemma 1 that there

are not any limit cycles in H2. As there are also no equilibria of any type in H2, we

conclude that x(τ) exits H2 at some τ2 > τ1. This contradicts our assumption that

x(τ) ∈ H2 for all τ > τ1 and our Lemma is proven.

Lemma 3: If C ≥ 1 and ζ < f ′(C), then for all solutions x(τ) of (2.2), if there

exists s0, s1 such that s1 > s0 where x(s0) ∈ H2 and x(s1) ∈ H1, then x(τ) ∈ H1

for τ > s1.

Proof. Suppose there exists s0 and s1, 0 < s0 < s1 such that x(s0) ∈ H2 and

x(s1) ∈ H1. There exists τ0 ∈ (s0, s1) such that B(τ0) = C and Ḃ(τ0) < 0. Suppose

there exists τ1 > τ0 where B(τ1) = C, Ḃ(τ1) > 0, meaning that x(t) is re-entering

H2. Choose the first such time τ1 and note

Ḃ(τ1) = RC(1− C) + qI(τ1) > 0,

Ḃ(τ0) = RC(1− C) + qI(τ0) < 0.

This means that I(τ1) > I(τ0) but B(τ) ≤ C on τ0 < τ < τ1 and so İ = −pI < 0.
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This is a contradiction, so there can be no such τ1 as supposed and the Lemma is

proven.

Thus no solutions can stay in H2 as τ →∞ and once H1 is entered from H2, H1 is

forward invariant. This captures the behaviour of all solutions x(τ).

We can now conclude that E1 is globally asymptotically stable.

Proposition 3 (Global Stability of E1): When C ≥ 1 and ζ < f ′(C), E1 = (1, 0, 1)

is an equilibrium of (2.2) and it is globally asymptotically stable.

Proof. When C ≥ 1 and ζ < f ′(C), by Lemmas 2 and 3, all solutions eventually

exist entirely in H1 and as there are no interior equilibria (because ζ < f ′(C)), by

Lemma 1 there are no limit cycles in H1. Monotone Dynamical Systems theory says

that (2.2) reduces to a 2-dimensional system, and so by the Poincare-Bendixson

theorem all omega-limit sets are limit cycles or equilibria. As there are no limit

cycles in H1 and no interior equilibria, by the local stability of E1, we conclude that

it is globally asymptotically stable.

Now we consider the global stability of E∗. As (2.2) is monotone, it verifies the

Poincare-Bendixson property: every compact omega-limit set without equilibria is

a closed orbit. For systems with this property, a criterion on global stability has

been developed by Li, Wang and Muldowney [43] [42]. Note that the second additive

compound of a 3× 3 matrix, A = [aij ], is denoted A[2] and defined

A[2] =


a11 + a22 a23 −a13

a32 a11 + a33 a12

−a31 a21 a22 + a33

 .

Lemma 4 (Theorem 2.5 [43]): Let ẋ = F (x)(F ∈ C1) be a system defined on an
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open convex subset G ⊂ R3 having a compact global attractor in G. Assume that

1) The Poincare-Bendixson property holds.

2) There is a unique equilibrium in G which is locally asymptotically stable.

3) For each periodic orbit p(t) in G, the linear system

Ẏ =
∂F [2]

∂x
(p(t))Y

is asymptotically stable.

Then the equilibrium is globally asymptotically stable in G.

In order to apply this result, we have to study the asymptotic stability of the linear

equation

Ẏ = J [2](p(t))Y (2.4)

where p(t) is any periodic solution of (2.2) in Ω. Given our definition of JE∗ , the

second additive compound of JE∗ is

J [2] =


−f0(B)− 1− p f ′0(B)S f ′0(B)S

q −f0(B)− f ′1(B)− 1 0

0 f0(B) −p− f ′1(B)

 ,

where f0(B) = A(B−C)
B−C+λ and f ′1(B) = 2RB −R.

Typically verifying the stability of such a system is nontrivial, but for (2.4) we have

a linear, periodic, cooperative, irreducible system with respect to the cone

K1 = {(S, I,B) : S ≥ 0, I ≥ 0, B ≥ 0}
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which suggests we use a comparison result.

Lemma 5: (Proposition 3 [66]) Let Ẏ = Ai(t)Y for i = 1, 2 be two linear, periodic,

cooperative and irreducible systems (with the same period) such that A2(t)−A1(t)

has nonnegative coefficients. If Ẏ = A2(t)Y is asymptotically stable, then Ẏ =

A1(t)Y is too.

For our case, obviouslyA1 = J [2](p(t)) and for A2 we choose a constant matrix whose

entries bound those of A1 independently of the periodic orbit and denote the matrix

J̄ where

J̄ =


−1− p− f0(1) f ′0(1) f ′0(1)

q −f0(1)− f ′1(1)− 1 0

0 f0(Bmax) −p− f ′1(1)

 .

The characteristic equation, P (γ), of J̄ is

P (γ) = [γ+1+p+f0(1)][γ+1+f0(1)+f ′1(1)][γ+p+f ′1(1)]−qf ′0(1)[γ+p+f ′1(1)+f0(Bmax)].

Expanding this out we can write

P (γ) = a3γ
2 + a2γ

2 + a1γ + a0,

with coefficients

a3 = 1,

a2 = 2(1 + p+ f0(1) + f ′1(1)),

a1 = [2 + 2f0(1) + p+ f ′1(1)](p+ f ′1(1)) + [1 + p+ f0(1)](1 + f0(1) + f ′1(1))− qf ′0(1),

a0 = [1 + p+ f0(1)](1 + f0(1) + f ′1(1))[p+ f ′1(1)]− qf ′0(1)[p+ f ′1 + f0(Bmax)].
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To use the Routh-Hurwitz conditions, we require that ai > 0 and that a1a2 > a3a0.

First consider the positivity of the coefficients. We make the assumption that

(p+ 1)2 > qAλ−1(p+A). (2.5)

Only the positivity of a1 and a0 require checking.

a0 >p+ pf ′1(1) + p2f ′1(1) + pf ′1(1) + pf ′1(1)f ′1(1) + f ′1(1)f ′1(1)

− qAλ−1(p+ f ′1(1) +A))

=(p+ 1)2f ′1(1) + p2 + p+ pR2 +R2 − qAλ−1(p+ f ′1(1) +A)).

Noting thatf ′1(1) = R = r
µ it is reasonable to assume that R > 1 as µ is the human

birth/date rate and will be very small. Also r, the maximum bacterial growth rate,

is often greater than 1. Finally, by definition p > 1 thus

a0 >(p+ 1)2R+ p2 + p+ pR2 +R2 − qAλ−1(p+R+A))

>(p+ 1)2R+ (p+ 1)2 − qAλ−1(p+A)− qAλ−1R

and so a0 > 0 by assumption (2.5). The positivity of a1 follows similarly,

a1 > (2 + p)p+ (1 + p)− qAλ−1 > (1 + p)2 − qAλ−1.
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and by (2.5), a1 > 0 too. Now we can consider 4 = a1a2 − a3a0,

4 =2(1 + p+ f0(1) + f ′1(1)){(1 + f0(1) + p)(p+ f ′1(1))

+ [1 + p+ f0(1)][1 + f0(1) + f ′1(1)]}+ [1 + p+ f0(1)](1 + f0(1) + f ′1(1))[p+ f ′1(1)]

+ 2f ′1(1)[1 + f0(1) + f ′1(1)](p+ f ′1(1)) + qf ′0(1)[−2− p− 2f0(1)− f ′1(1) + f0(Bmax)],

4 >2(1 + p+ f0(1) + f ′1(1))(1 + p)p+ (1 + p)− qf ′0(1)[2 + 2p+ f0(1) + 2f ′1(1)]

= 2(1 + p+ f0(1) + f ′1(1))
[
(1 + p)2 − qf ′0(1)

]
.

Note that (1 + p)2 − qf ′0(1) > (1 + p)2 − qAλ−1 and so by our assumption (2.5) we

have that a2a1 > a3a0. Lastly considering H1 and H2 as before, note that if C < 1

then Ḃ(B = C) = RC(1− C) + qI > 0, so eventually all trajectories exist entirely

in H2. In particular, any attracting limit cycles are contained in H2. We restate the

previous results in a proposition.

Proposition 4 (Behaviour of limit cycles and Global Stability of E∗): When C < 1,

E∗ is an equilibrium of (2.2). Any limit cycle, if it exists, should be entirely in H2,

and if (p+ 1)2 > qAλ−1(p+A), then E∗ is globally asymptotically stable.

Recalling that C = c
K , we can summarize our results about the equilibria in this

section with the following theorem.

Theorem 2 (Global Stability): System (2.2) always has at least two equilibria.

• If C < 1 (equivalently c < K), the equilibria are E0 = (1, 0, 0) which is unsta-

ble and E∗ = (S∗, I∗, B∗) which is locally asymptotically stable. Furthermore,

if (p+ 1)2 > qAλ−1(p+A), then E∗ is globally asymptotically stable.

• If C ≥ 1 (equivalently c ≥ K), the equilibria are E0 = (1, 0, 0) which is

unstable, E1 = (1, 0, 1) which is locally asymptotically stable and up to two

internal equilibria E+
1,2.
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–Further, if ζ < f ′(C) only E0 and E1 exist, and E1 is globally asymptotically

stable.

Note that if the MID is greater than K and ζ is low enough to satsify condition (2.4),

the disease-free equilibrium E1 is globally asymptotically stable. As nondimensional

ζ and the shedding parameter ξ are proportional, this means that with a nonzero

but sufficiently small shedding rate, the disease-free equilibrium is inevitable. This is

in contrast to the case where the MID is less than the carrying capacity of bacteria,

and the bacteria exist at levels which naturally cause new infections. In this case,

if other parameters agree, the endemic steady state E∗ is globally asymptotically

stable for any nonzero shedding rate ξ. Thus if efforts are taken to decrease K and

ξ in conjunction, a disease-free globally stable steady state can be attained with a

shedding rate that could otherwise lead to an endemic steady state.

2.D Numerical Simulations

Stability was discussed nondimensionally previously but numerical examples are

presented in the following diagrams in dimensional parameters. In Figure 2.8, where

C < 1, the endemic equilibrium is stable. Bacteria are existing above their carrying

capacity of 106 cellsL and there is a nonnegligible infected population at a level of 1235

out of 106 individuals.

In Figure 2.9, we see that if c ≥ K (C > 1) with a small ξ value, meaning the min-

imum infectious dose is larger than the carrying capacity, then there is no endemic

equilibrium. Thus the system moves towards the disease free state. Intuitively, this

means that it takes more than the ‘natural level’ of bacterial density in the water

supply to make anyone sick and shedding is low, so no one becomes sick.
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Figure 2.8: An endemic trajectory of (2.1), where an epidemic dies down and then
approaches an endemic equilibrium. Parameters are δ = 0.1,K = 1e6, a = 0.1, H =
1e8, c = 4e5, N = 1e6, r = 0.3704, µ = 5e − 5, ξ = 10 with I∗ = 790 and B∗ =
1, 020, 886 > K = 1e6.

Figure 2.9: A phase diagram of dimensional (2.1), with C > 1, showing trajectories
with different inital conditions converging to the disease free steady state E1. Param-
eter values δ = 0.1,K = 1e6, a = 0.1, H = 1e8, c = 2e6, N = 1e6, r = 0.3704, µ =
5e− 5, ξ = 10.

Figure 2.10 demonstrates that when the minimum infectious dose is less than the

carrying capacity, c < K, then the internal endemic steady state is attracting. In it,

a wide range of initial conditions all follow a similar path towards the endemic steady
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Figure 2.10: A phase diagram of the dimensional system (2.1), with C < 1, showing
many different trajectories approaching the endemic steady state, marked with a
solid circle. The disease free steady state (0, 0) is not shown. Parameters used δ =
0.1,K = 1e6, a = 0.1, H = 1e8, c = 5e5, N = 1e6, r = 0.3704, µ = 5e− 5, ξ = 10.

state after each trajectory first experiences an outbreak. This means that if the MID

is small enough that a normal bacterial density can make any individual sick, then

the disease will persist in the community if only at a low level. As mentioned, a

strong epidemic always occurs with a high outbreak peak.

2.E Sensitivity Analysis

In this section, we compute and analyze the normalized forward sensitivity indices

of different quantities to the parameters of the system by computing

S.I. =
∂x∗

∂p

p

x∗

where x∗ is the quantity being considered, and p is some parameter which x∗ depends

upon. Sensitivity indices can be positive or negative which indicates the nature of

the relationship, and it is the magnitude that ranks the strength of the relationship
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as compared to the other parameters.

2.E.1 Sensitivity of the outbreak peak

The sensitivity indices of the amplitude of the outbreak peak show how the first

epidemic depends on the parameters as seen in Table 2.2. This table has three

columns because there is a noticeable difference in the sensitivity indices when the

bacteria started out above or below the carrying capacity.

Parameter Sensitivity B(0)< K Sensitivity B(0)>K

δ -1.2024 -0.5296 Recovery rate
K 1.8773 1.1334 Bacteria carrying capacity
a 1.1980 0.9822 Contact rate
H -1.1905 -0.9623 Half Saturation constant
c -0.9324 -0.4196 Minimum Infectious Dose
r -0.2305 -0.5267 Logistic bacteria growth
µ -5.5e-004 -2.5830 e-004 Human birth/death
ξ 0.2352 0.0636 Shedding rate

Table 2.2: The sensitivity of the magnitude of the peak outbreak to the parameters.
Two columns for the initial density of bacteria below or above its carrying capacity
K.

The carrying capacity K has the strongest relationship to the magnitude of the

outbreak peak. The positive value tells us that a higher carrying capacity would

lead to a more severe epidemic. In contrast to the shedding rate ξ which has among

the lowest of sensitivity indices, K would thus be an important parameter to control

in order to reduce the harm of an outbreak.

A negative relationship between r and the peak magnitude might seem counter

intuitive, but the per capita growth rate of bacteria at any given time is r
(
1− B

K

)
and during the peak the bacteria exist over their natural carrying capacity, so the

growth rate would be negative and thus there is a negative relationship between r

and the peak amplitude.
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The sensitivity index with respect to the human birth/death rate µ is very low in

comparison to all the others. This makes sense, because the initial peak of an epi-

demic occurs relatively quickly after the introduction of sick people or introduction

of high levels of bacteria and the birth and death of new susceptibles would not be

on the same time scale.

A negative relationship between the minimum infectious dose (MID) c and peak

amplitude is consistent with our understanding of the disease dynamics, because a

larger MID means it would take a higher bacterial density to cause any infections

at all. Thus a higher MID would mean less infections and a smaller outbreak peak.

The recovery rate δ has a strong negative relationship to the peak outbreak level as

a higher δ leads to few infectives by definition.

2.E.2 Sensitivity of the outbreak peak time

Parameter Sensitivity B(0)< K Sensitivity B(0)>K

δ 0.0772 -6.7542 Recovery Rate
K 0.4392 4.8433 Bacteria carrying capacity
a -0.2177 -0.3361 Contact Rate
H 0.2159 0.3264 Half Saturation constant
c 0.9319 0.0928 Minimum Infectious Dose
r -0.6327 3.9216 Logistic Bacteria growth
µ 3.5491e-005 4.3194e-005 Human birth/death
ξ -0.2269 -0.1425 Shedding rate

Table 2.3: The sensitivity of the time of the outbreak maximum to the parameters.

Once again we see from Table 2.3 that the carrying capacity K has a large influence

on the dynamics of the system. It has one of the largest sensitivity indices, being

many times greater than that of the shedding rate ξ. This suggests that K is a more

important quantity to control to prevent outbreaks. The positive relationship means

a smaller carrying capacity would lead to a quicker outbreak as well as a smaller
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one as we saw in the last section.

Noticeable is the lack of effect of µ, as with the amplitude of the peak. It has such

a negligible effect for the same reasons as outlined previously.

The relationship between contact rate a and the time of the maximum outbreak is a

negative relationship, because a higher contact rate causes more new infections and

so the timing of the maximum would be attained earlier than otherwise.

The recovery rate δ is interesting because its effect changes sign as well as magnitude

considerably with different values of B(0) in relation to carrying capacity. When

B(0) > K the effect of δ is greatest and negative. A higher value of δ would mean

individuals would be infected, and thus infectious, for less time, so the outbreak

should not be as severe and would occur earlier than otherwise. As the magnitude

of δ is so small when it is positive, the positive relationship does not yield insight

into the relationship of outbreak time and recovery rate.

The per capita growth rate is r
(
1− B

K

)
and so when B > K this growth rate is

negative. If B(0) < K then the growth rate will be positive in the beginning of the

outbreak, so a larger r would mean a higher growth rate, and thus the epidemic

would peak earlier. This is supported by the negative relationship with r and peak

time when B(0) < K. If however B(0) > K, the per capita growth rate will be

negative from the start, and as B will remain above K for all time, the growth rate

will always be negative. So a larger r value would mean slower growth, and the

epidemic wave would take longer to reach a maximum. This is supported by the

strong positive relationship of r and peak time when B(0) > K as can be seen in

Table 2.3.
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Parameter Sensitivity of S∗ Sensitivity of I∗ Sensitivity of B∗

δ 0.0321 -0.9453 -0.0780 Recovery Rate
K -1.9877 -0.1036 1.0666 Bacteria carry-

ing capacity
a -1.0314 -0.0611 0.0402 Contact Rate
H 1.0260 0.0606 -0.0399 Half Satura-

tion constant
c 0.9932 0.0225 0.0014 Minimum In-

fectious Dose
r 0.0323 -0.0329 0.0474 Logistic Bacte-

ria growth
µ 0.8472 0.8177 0.0811 Human

birth/death
ξ -0.0323 0.0123 -0.0179 Shedding rate

Table 2.4: The sensitivity of the components of the endemic equilibrium.

2.E.3 Sensitivity of the endemic steady state

We can look at the sensitivity of one of the interior equilibria E∗ with respect to

the parameters when E∗ exists. Here we only look at B(0) < K as the other case

has similar sensitivity results, and we assume the other endemic steady states would

yield similar results.

The final size of the susceptible population is most sensitive to the carrying capacity

K and contact rate a, with a negative relationship in both cases. This is because

a higher contact rate causes more infections and a higher carrying capacity causes

more bacteria which indirectly leads to more infections. A higher shedding rate would

cause more infections which is confirmed with the negative relationship between S∗

and ξ. But S∗ is many times less sensitive to ξ than to K which again points to

K as the more important parameter to focus on in disease control. The minimal

infectious dose (MID) c is nearly as sensitive as the contact rate, but has a positive

relationship as a higher MID would lead to fewer infections and a higher S∗. There

is a weak relationship with δ but as our model does not allow for reinfection, this
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accounts for the small magnitude of the sensitivity.

The endemic level of infective individuals is most sensitive to the recovery rate

δ and the birth/death rate µ. The strong negative relationship with δ is because

recovery is the main way that infectives leave the infected component of our model.

The relationship with µ is complicated in that the birth rate and death rate are the

same in our model. So a larger µ means more deaths and thus more infectives leaving

the infected component, but also more newly born susceptibles to possibly enter the

infected class. The positive relationship means that the positive effect of births is

more important to I∗ than the negative effect of deaths. The shedding rate ξ has

a weak relationship with I∗ but the positive relationship is as expected because a

larger ξ leads to more infectives and a higher I∗ value.

The endemic level of the bacteria population is most sensitive to the bacterial carry-

ing capacity K and has a positive relationship to it as expected. A higher K means

more bacteria and as B∗ > K (equivalent to B∗ > 1 in nondimensional form) the

relationship is positive. The shedding rate has a small sensitivity which suggests

that the logistic part of dB
dt is more important to the endemic level of B∗. As such

the relationship with the MID is also minimal. The strong relationship with K and

weak one with ξ also again suggests the important of K instead of ξ as a control

measure. This could mean, for example, that monitoring the bacterial levels in wa-

ter reservoirs is more important than simply controlling or restricting access to the

water supply to avoid contamination.

2.F Discussion

Cholera has the potential to quickly spread over large areas and can cause many

deaths. Thus a full understanding of the dynamics is essential to effectively re-

46



spond to outbreaks. With the continuing outbreaks there is the opportunity for

mathematical modeling to help decipher these dynamics and provide suggestions

for governments and health care bodies in effective intervention. An estimate for

the basic reproductive number in regions affected by cholera would give important

information for controlling future outbreaks and for creating surveillance programs.

The potential for amplification in environmental reservoirs and the indirect trans-

mission of the disease make this a nontrivial task. Here we have shown that with

C = c
K ≥ 1, the disease free equilibrium can be globally asymptotically stable.

However as bacteria are existing at a nonzero level, if environmental factors change

and alter the carrying capacity enough to make C < 1, then there can be outbreaks.

If other parameters are in agreement, an endemic equilibrium is globally asymptot-

ically stable. This change to carrying capacity could be seasonally caused as with

different amounts of rain in areas like Bangladesh, or it could be a more permanent

change due to natural disasters as in Haiti.

An important thing to note about the relationship between c and K is that if c < K

ie) the minimum infectious dose is less than the carrying capacity, then the unique

endemic equilibrium can be globally stable. It is globally stable for any nonzero value

of the shedding parameter ξ. If however, the minimum infectious dose is greater

than the natural carrying capacity, if ξ is low enough, causing the nondimensional

ζ to be sufficiently small, then the disease free equilibria becomes globally stable.

This highlights the importance of being aware of the value of the natural carrying

capacity, because decreasing the shedding rate can eliminate the possibility of an

endemic steady state, if the MID is larger than the carrying capacity. If the MID was

less than the carrying capacity, the unique endemic steady state could be globally

asymptotically stable for the same shedding rate. So ideally, efforts need to be taken

to reduce both shedding, and in conjunction with this, the bacteria levels in the

reservoir.
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Our sensitivity analysis suggests that control measures influencing the carrying ca-

pacity K will be more effective in minimizing the epidemic than those concentrating

on influencing the shedding rate. While improving the sanitation infrastructure of

an area is the obvious step to take to control outbreaks, monitoring and controlling

the bacterial levels in the water itself is more important. Improving the infrastruc-

ture would surely help control the bacteria levels in the water by decreasing the

amount of human contamination, but V.cholerae exist independently of humans

and so other factors that influence the natural levels of bacteria in the water need

to be considered as well in intervention strategies. As mentioned above, controlling

both parameters is important and likely to be the most effective, but the carrying

capacity K is the more influential of the two on its own.

The original paper of the iSIR model [36] provided some preliminary mathematical

results. This analysis adds on to that work, and demonstrates the local stability for

most equilibria analytically. In addition, we present the results of dissipativity and

determine conditions for global stability.

Further steps to take with this model would be to refine the condition on the global

stability of the endemic equilibrium. The condition imposed might not be required,

and a biological explanation is in order. Also, a seasonal carrying capacity could be

included to simulate the cycles of cholera which occur in regions like Bangladesh.

Further altering the model to include bacteriophage is another possibility, with the

idea being that the cycles observed in the human population are caused by cycles

in the micro scale of bacteria and bacteriophage as has been suggested by Faruque

et al. [21] and others.
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Chapter 3

The iSIBP Model

3.A Introduction

Cholera has long been associated with water sources, and recently the ecological dy-

namics of V.cholerae have begun to be considered as important to the epidemiology

of cholera. Previously, V.cholerae was difficult to detect in the aquatic environment,

due to the existence of a viable but not culturable state (VBNC or VNC), but mod-

ern detection techniques suggest that in endemic areas V.cholerae exist naturally

even in interepidemic times, and that monitoring natural V.cholerae levels can be

a useful tool in predicting outbreaks [24,47].

It has been suggested that it is important to acknowledge the role of bacteriophage

when considering V.cholerae ecology [21, 22, 54, 81]. The general understanding is

that bacteriophage (phage) and bacteria exist in a predator-prey relationship, so

cycles that are naturally generated by the relationship could account for the cyclical

outbreaks of cholera in endemic regions. In 2006, Jensen et al. [35] created a mathe-

matical model which included a phage component and were able to demonstrate that
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bacteriophage are capable of ending outbreaks of cholera by decreasing V.cholerae

levels, among other results. We will integrate the transmission term from the previ-

ous chapter which explicitly accounts for the minimum infectious dose (MID), and

focus more on the existence and role of limit cycles in the epidemiology of cholera

in our alteration of the model created by Jensen et al. [35].

We will demonstrate the importance of the relationship between the minimum infec-

tious dose and the carrying capacity in relation to the existence of these cycles and

endemic equilibria; that the cycles are driven by the bacteria-phage system and not

the other way around; and we will demonstrate the existence of a chaotic region in

parameter space, which could account for the different nature of outbreaks observed

around the world.

In this chapter the iSIBP model is derived, and a forwardly invariant domain is

calculated. The system is considered with no shedding present, and a local analysis

is performed and limit cycles are located. Then shedding is included and a simi-

lar analysis is performed. Lastly, the existence of chaos is explored, followed by a

discussion of the mathematical results and their biological significance.

3.B Derivation of the iSIBP Model

Bacteria and bacteriophage exist in a predator-prey relationship. We capture this

dynamic by using a Holling II predation term γ B
K1+B

P , where γ is the maximum

predation rate, B and P represent bacteria and phage densities respectively, and

K1 is the half saturation constant of predation (the bacterial level at which preda-

tion occurs at half of the maximum rate). We assume that the bacteria population

experiences logistic growth in the absence of predation and human influence, with

carrying capacity K and maximum growth rate r as in the previous chapter. This
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motivates the following model, which assumes no infection-derived immunity for

simplicity

dS

dt
=− α(B)S + µI, (3.1a)

dI

dt
=α(B)S − µI, (3.1b)

dB

dt
=rB

(
1− B

K

)
− γ B

K1 +B
P + ξI, (3.1c)

dP

dt
=βγ

B

K1 +B
P − δP + φξI, (3.1d)

N =S + I. (3.1e)

The incidence term we use is α(B)S where α(B) is the bacterial density dependent

component. The ‘indirect’ part of the incidence term α(B) is defined

α(B) =

 0, B < c

a(B−c)
(B−c)+H , B ≥ c.

Unlike in larger scale predator prey dynamics, where β would be a measure of the

conversion rate of prey into predators, often less than unity, β here represent a ‘burst

size’, as each predated bacteria cell will give rise to many new phage cells.

Human contamination of the water supply through infected feces contributes to both

bacteria and phage levels and is called ‘shedding.’ Bacteria and phage shedding rates

need not be the same so the rate for bacteria is ξ and for phage it is φξ where φ is

some constant.

In the absence of predators and humans, bacteria will exist at their carrying capacity

K. We assume that phage and bacteria can live naturally without human interfer-

ence, as in interepidemic times, and so it is assumed that βγ > δ. If this is not so,

phage would die out in the absence of human shedding. This maximum predation
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rate γ is difficult to measure, and for numerical solutions is chosen to satisfy this

inequality. The half saturation constant for the predation term, K1, was assumed

to be less than the natural carrying capacity K so that predation does not always

occur near the maximal rate. For numerical simulations, parameters are taken from

the literature and the ranges are given in Table 3.1.

Parameter Values Description Units

r 0.3-14.3 Maximum per capita
pathogen growth efficiency

day -1

K 106 Pathogen carrying capacity cell liter -1

H 106 − 108 Half-saturation pathogen den-
sity

cell liter -1

a 0.1 Maximum rate of infection day -1

ξ 10 - 100 Pathogen shed rate cell liter -1 day -1

µ 0.1 Human recovery rate day -1

N 106 Total Population persons
c ≈ 106 MID cell liter -1

β 80-100 Phage burst size virions day -1

γ – Phage absorption rate liter virion -1 day -1

δ 0.5-7.9 Phage death rate virions day -1

φ 10−6 − 1 Mean phage shed rate virions cell -1

K1 – Half saturation bacteria pre-
dation density

cell

Table 3.1: Parameter values from Jensen et al. [35] and Cash et al. [10]

3.C Forward Invariance

We would like to define a forwardly invariant set in which solutions of (3.1) will be

bounded. From the first two equations of (3.1) we see that Ṡ(S = 0) = µI but as

S + I = N , we can write Ṡ(S = 0) = µN > 0. Thus S(t) > 0 for t > 0. Even

though there is no birth or death in this system, if the entire population were to be

infected then there would be people recovering and moving back into the susceptible

category.
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Similarly, İ(I = 0) = α(B)S ≥ 0 as we just saw that S(t) > 0 for t > 0 and α(B) ≥ 0

by definition. As S > 0 and I ≥ 0, then as there are only two compartments for

humans, S ≤ N and I < N .

The BP subsystem is more complicated as for upper bounds, but first note that

Ḃ(B = 0) = ξI thus B(t) ≥ 0. Similar to the previous section

Ḃ =rB

(
1− B

K

)
− γ B

K1 +B
P + ξI,

<rB

(
1− B

K

)
+ ξN

and so we can define

Bmax =
rK +K

√
r2 + 4r

K ξN

2r

where if B(0) ∈ [0, Bmax) then B(t) ∈ [0, Bmax) for t ≥ 0.

Lastly, consider Ṗ (P = 0) = φξI ≥ 0 and so P (t) ≥ 0 for all t > 0. The upper

bound of P (t) requires the following lemma.

Lemma 6: Define positive constants u and v such that ((r+u)β)2K
4rβ < v. Then for all

values of B, the following is true

0 <
r

K
βB2 − ((r + u)β)B + v.

Proof. Defining constants u and v as above, we see that

((r + u)β)2K

4rβ
< v,

⇐⇒((r + u)β)2 − 4r

K
βv < 0,

⇐⇒0 <
r

K
βB2 − ((r + u)β)B + v.
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The last two lines are equivalent as the coefficients of the quadratic in the latter are

simply arranged as an expression for the discriminant of the quadratic in the former

line.

We can now show that B and P are bounded above, although it was already demon-

strated that B is bounded. Consider

d

dt
(βB + P ) = rβB − r

K
B2β + βξI − ωP + φξI,

< rβB − r

K
B2β − ωP + (β + φ)ξN.

And by invoking Lemma 6, we see further that

d

dt
(βB + P ) < −uβB − ωP + (β + φ)ξN + v,

< −d(βB + P ) + (β + φ)ξN + v,

where U := min{u, ω}, which implies that βB + P is bounded. Defining V :=

(β + φ)ξN + v, we can write

lim sup
t→∞

βB(t) + P (t) ≤ U

V
or βB(t) + P (t) ≤ max

{
B(0) + P (0),

U

V

}
.

We summarize the above results with a proposition

Proposition 5 (Feasible Region): The set

Γ = {S, I,B, P ≥ 0 : S + I = N, βB(t) + P (t) ≤ U

V
,B < Bmax}

defines a forwardly invariant region of system (3.1), where V := (β + φ)ξN + v and

U := min{u, ω}, with u, v > 0 satisfying ((r+u)β)2K
4rβ < v .
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3.D Existence and Stability of Equilibria with no Shedding

3.D.1 Existence of equilibria

In countries with modern sanitation infrastructure, human contamination of the

water supply (shedding) is very low; in the ideal case, shedding is completely absent.

We can determine the number and stability of steady states of (3.1) without shedding

by substituting ξ = 0 and further noting that as S = N − I, the first equation is

not necessary, leaving us with the following

dI

dt
=α(B)(N − I)− µI, (3.2a)

dB

dt
=rB

(
1− B

K

)
− γ B

K1 +B
P, (3.2b)

dP

dt
=βγ

B

K1 +B
P − δP. (3.2c)

If the bacteria level is below the minimum infectious dose, then α(B) = 0. The first

equation of (3.2) implies that I∗ = 0 in this case, and so S∗ = N as well. If I∗ = 0,

then equations 2 and 3 of (3.2) at steady state become

0 = rB

(
1− B

K

)
− γ B

K1 +B
P and 0 =

(
βγ

B

K1 +B
− δ
)
P.

Equation 2 of (3.2) at steady state can be solved for P , which is a quadratic in B.

Define P = F1(B) = r
γK (K −B)(K1 +B) having roots B = K and B = −K1. The

solution B = −K1 is not biologically relevant and also is not within our invariant

region Γ, as defined in the previous section. The other root, B = K, of F1(B)

satisfies α(K) = 0 only if K ≤ c. Equation 3 at steady state can be solved as well;

either P = 0 or B = B1 := δK1
βγ−δ ; with the latter being relevant only if B1 ≤ c
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and α(B1) = 0. To satisfy both equations at once, either (B,P ) = (0, 0), (K, 0) or

(B1, P1), where P1 = F1(B1).

Thus when α(B) = 0, there are three possible steady states, all of which are disease

free. The simplest equilibrium point occurs when S = N , I = 0, B = 0 and P =

0. The disease-free, bacteria-free and phage-free equilibrium E0 = (N, 0, 0, 0) is

always an equilibrium of (3.2) for all parameter values. The disease-free, phage-

free equilibrium denoted EK = (N, 0,K, 0) is an equilibrium if K ≤ c. Similarly, if

B1 ≤ c then α(B1) = 0 and the disease-free equilibrium E1 = (N, 0, B1, P1) exists.

However, for the positivity of P1, we require that B1 < K. Note that if B1 = K,

then P1 = 0 and E1 is simply EK .

The case of equilibria when α(B) 6= 0 is more complicated, but it can be shown that

there are up to two additional equilibria denoted E+
1,2 = (S∗1,2, I

∗
1,2, B

∗
1,2, P

∗
1,2) where

all of the entries are strictly positive, making E+
1,2 the only interior equilibria if they

exist. If α(B∗) 6= 0, first note that B∗ > c by definition. Dropping the asterisk on

B, Equation 1 of (3.2) at equilibrium implies

0 = −a (B − c)
B − c+H

S + µI,

0 = −a (B − c)
B − c+H

(N − I) + µI,

I∗ = G1(B
∗) := Na

(B − c)
(a+ µ)(B − c) + µH

.

So for each equilibrium value B∗ such that α(B∗) 6= 0, there exists a unique value

I∗ = G1(B
∗). To find B∗ and P ∗, it is of no consequence that I∗ 6= 0 because

with ξ = 0, Equations 2 and 3 of (3.2) do not contain terms including I. Thus the

nontrivial values of (B,P ) that satisfy Equations 2 and 3 at steady state are the

same as before: (B,P ) = (K, 0) and (B1, P1), but now K > c is required so that

α(K) 6= 0 and B1 > c so that α(B1) 6= 0. For the positivity of P1 it is still necessary

that B1 < K.
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Summarizing, there are up to two endemic equilibria of (3.2), E∗K = (S∗K , I
∗
K ,K, 0)

and E∗1 = (S∗1 , I
∗
1 , B1, P1), where I∗K = G(K), I∗1 = G1(B1) and S∗i = N − I∗i with

the condition that K > c and c < B1 < K for E∗K and E∗1 to exist, respectively. As

in the nonendemic equilibria case, if B1 = K this would mean P1 = 0 and E∗K = E∗1 ,

leaving only one endemic equilibrium.

3.D.2 Linearization

Due to the threshold in the infection term, linearization yields two cases, one for

B∗ ≤ c with α(B∗) = 0, denoted Jac1, and one for B∗ > c with α(B∗) 6= 0, denoted

Jac2. The conditions surrounding the existence of the particular equilibrium point

will determine which jacobian to use and there are never cases where both would

apply. The jacobians are written:

Jac1(I,B, P ) =


−µ 0 0

0 r − 2 r
KB −

γK1

(K1+B)2
P −γ B

K1+B

0 βγ aH
(B−c+H)2

P βγ B
K1+B

− δ

 ,

and

Jac2(I,B, P ) =


−α(B)− µ (N − I) aH

(B−c+H)2
0

0 r − 2 r
KB −

γK1

(K1+B)2
P −γ B

K1+B

0 βγ aH
(B−c+H)2

P βγ B
K1+B

− δ

 .

The differences between Jac1 and Jac2 are all within the first row due to the nonzero

α(B) in the case of B∗ > c. On the invariant set Γ the jacobians are both of the
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form

Jac(I,B, P ) =


∗ + +

+ ∗ −

+ + ∗


which is sign stable but not sign symmetric. Thus unlike our model in the previous

chapter, the system is not monotone on an invariant set.

3.D.3 Stability of the disease-free, bacteria-free, phage-free equilibrium E0

Consider Jac1 for E0 = (N, 0, 0, 0) as B0 = 0 < c. The result is a diagonal matrix

J1(0, 0, 0) =


−µ 0 0

0 r 0

0 0 −δ

 ,

with eigenvalues λ = −µ,−δ < 0 and r > 0. This means that the disease-free,

bacteria-free and phage-free equilibrium E0 is a saddlenode equilibrium with a one-

dimensional unstable manifold.

3.D.4 Stability of the disease-free, phage-free equilibrium EK

For the disease-free, phage-free equilibrium EK = (N, 0,K, 0) to exist, it is necessary

that K ≤ c so that α(K) = 0 and so we use J1 to consider the local stability, writing

Jac1(0,K, 0) =


−µ 0 0

0 −r −γ K
K1+K

0 0 βγ K
K1+K

− δ

 .
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Note that as the matrix is triangular, the eigenvalues are

λ = −µ,−r, βγ K

K1 +K
− δ.

If βγ K
K1+K

−δ < 0, then all eigenvalues are negative and EK is a stable equilibrium,

but if βγ K
K1+K

−δ > 0, then EK is a saddlenode equilibrium with a one-dimensional

unstable manifold. Rearranging to solve for K

EK stable ⇐⇒ K <
δK1

βγ − δ
= B1.

Note that B1 < K is required for E1 to exist, so the existence of E1 and the stability

of EK are contrary notions.

3.D.5 Stability of the disease-free equilibrium E1

This equilibrium is also a boundary equilibrium but is perhaps more realistic as

it has a nonzero phage level. The bacteria level is defined B1 = δK1
βγ−δ and P1 =

F1(B1) = r
K (−B1 +K)(B1 +K1). For E1 = (N, 0, B1, P1) to exist, B1 ≤ c to ensure

α(B1) = 0 and B1 < K for P1 > 0. Note that the bacterial level here is less than

that of EK . Here we again use Jac1, writing

Jac1(0, B1, P1) =


−µ 0 0

0 r − 2 r
KB1 − γK1

(K1+B1)2
P1 −γ B1

B1+K1

0 βγ K1
(K1+B1)2

P1 βγ B1
B1+K1

− δ


but note that in the last entry of Jac1(0, B1, P1)

βγ
B1

B1 +K1
− δ =

βγδK1

(βγ − δ)K1 + δK1
− δ =

βγδK1

βγK1
− δ = 0
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so that

Jac1(0, B1, P1) =


−µ 0 0

0 r − 2 r
KB1 − γK1

(K1+B1)2
P1 −γ B1

B1+K1

0 βγ K1
(K1+B1)2

P1 0

 .

The matrix is slightly more complicated, so we will use a lemma from McCluskey

and van den Driessche [48] with regard to three-dimensional matrices.

Lemma 7 (Lemma 3, McCluskey and van den Driessche (2003)): Let A by a 3× 3

matrix with real entries. If tr(A), detA and detA[2] are all negative, then all of the

eigenvalues of A have negative real part.

The converse of Lemma 7 is also true, which is apparent if you note that the eigen-

values of the second additive compound matrix A[2], for a 3× 3 matrix A, are just∑
λi + λj for i < j with λi being the eigenvalues of A.

Defining J(2, 2) = r− 2 r
KB1− γ K1

(K1+B1)2
P1, the second additive compound of Jac1

at E1 is

Jac
[2]
1 (0, B1, P1) =


−µ+ J(2, 2) −γ B1

B1+K1
0

βγ K1
(K1+B1)2

P1 −µ 0

0 0 J(2, 2)

 .

The determinant of Jac1(E1) is

det Jac1(E1) = −µdet

 J(2, 2) −γ B1
B1+K1

βγ K1
(K1+B1)2

P1 0

 ,
= −µγ B1

B1 +K1
βγ

K1

(K1 +B1)2
P1,

< 0,
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so it will always satisfy its role in the antecedent of Lemma 7. The trace is given

tr(Jac1(0, B1, P1)) = −µ+ J(2, 2),

and consider

J(2, 2) = r − 2
r

K
B1 − γ

K1

(K1 +B1)2
P1

= r − 2
r

K
B1 − γ

K1

(K1 +B1)2
r

γK
(−B1 +K)(B1 +K1)

= r − 2
r

K
B1 − r

K1

(K1 +B1)

K −B1

K

= r

(
1− 2

B1

K
− K1

(K1 +B1)

K −B1

K

)
= r

(
K(K1 +B1)− 2B1(K1 +B1)−K1(K −B1

K(K1 +B1)

)
=

rB1

K(K1 +B1
(K − (K1 + 2B1)).

Thus sgn(J(2, 2)) = sgn(K − (K1 + 2B1)), where

K − (K1 + 2B1) = K −
(
K1 +

2δK1

βγ − δ

)
= K −K1

(
βγ + δ

βγ − δ

)
.

We conclude about the trace that

J(2, 2) < 0 ⇒ tr(Jac1) < 0,

J(2, 2) > 0,−µ+ J(2, 2) < 0 ⇒ tr(Jac1) < 0,

J(2, 2) > 0,−µ+ J(2, 2) > 0 ⇒ tr(Jac1) > 0.
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Lastly we need to consider the sign of det Jac
[2]
1 (E1), which is written

det Jac
[2]
1 (E1) = J(2, 2) det

 −µ+ J(2, 2) −γ B1
B1+K1

,

βγ K1
(K1+B1)2

P1 −µ


= J(2, 2)

{
[−µJ(2, 2)][−µ] +

(
βγ

K1

(K1 +B1)2
P1

)(
γ

B1

B1 +K1

)}
.

We can see that if J(2, 2) < 0, then det Jac
[2]
1 < 0 and if J(2, 2) > 0 but J(2, 2)−µ <

0, then det Jac
[2]
1 > 0. The last case of J(2, 2) > 0 and J(2, 2) − µ > 0 is not

necessary for our purposes. To summarize about the trace and determinant of the

second additive compound matrix

J(2, 2) < 0 ⇒ trJac1(E1) < 0

and det Jac
[2]
1 (E1) < 0,

J(2, 2) > 0 ⇒ trJac1(E1) > 0

or det Jac
[2]
1 (E1) > 0

and because det Jac1(0, B1, P1) < 0 all the time, by Lemma 7

E1 is stable ⇐⇒ J(2, 2) < 0

⇐⇒ K <
βγ + δ

βγ − δ
K1 = B1 + βγ

K1

βγ − δ
.

Define B3 := B1 + βγ K1
βγ−δ and note that as we assume βγ > δ it follows that

B3 > 2B1.

3.D.6 Stability of the phage-free endemic equilibrium E∗K

Consider E∗K = (S∗K , I
∗
K ,K, 0) where K > c. Thus we need to use Jac2 unlike the

previous cases, but we again make use of the McCluskey and van den Driessche [48]
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Lemma which requires the use of the jacobian itself, namely

Jac2(I
∗
K ,K, 0) =


−α(K)− µ (N − I∗K) aH

(B−c+H)2
0

0 −r −γ K
K1+K

0 0 βγ K
K1+K

− δ


and

Jac
[2]
2 (E∗K) =


−α(K)− µ− r −γ K

K1+K
0

0 −α(K)− µ+
(
βγ K

K+K1
− δ
)

(N − I∗) aH
(K−c+H)2

0 0 −r +
(
βγ K

K+K1
− δ
)
 .

We can compute the trace and determinant of Jac2 and the determinant of Jac
[2]
2

evaluated at E∗K to determine the stability of E∗K , finding that

tr(Jac2(E
∗
K)) = −α(K)− µ+

(
βγ

K

K +K1
− δ
)

with

det Jac2(E
∗
K) =[−α(K)− µ] det

−r −γ K
K1+K

0 βγ K
K1+K

− δ


− (N − I∗1 )

aH

(K − c+H)2
det

0 −γ K
K1+K

0 βγ K
K1+K

− δ


=[−α(K)− µ][−r]

[
βγ

K

K1 +K
− δ
]
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and

det Jac
[2]
2 (E∗K) =[−α(K)− µ− r] det

−α(K)− µ+ βγ K
K1+K

− δ (N − I∗1 ) aH
(K−c+H)2

0 −r + βγ K
K1+K

− δ


+ γ

K

K1 +K
det

0 (N − I∗1 ) aH
(K−c+H)2

0 −r + βγ K
K1+K

− δ


=[−α(K)− µ− r]

[
−α(K)− µ+ βγ

K

K +K1
− δ
] [
−r + βγ

K

K1 +K
− δ
]
.

Common to all three expressions is that if βγ K
K+K1

− δ < 0, then they are each

negative. And if βγ K
K+K1

− δ > 0, then det Jac2 at E∗K is positive. Solving for K,

we see that

βγ
K

K +K1
− δ ⇐⇒ K < B1

and so

E∗K is stable ⇐⇒ K < B1.

Note that the stability condition of E∗K is contrary to the existence condition for E∗1

and so there can only ever be at most one locally stable endemic equilibrium point

at a time.

3.D.7 Stability of the interior endemic equilibrium E∗1

Lastly, consider the local stability of interior endemic equilibrium E∗1 = (I∗1 , B1, P1)

which exists if c < B1 < K. Because B1 > c, again Jac2 is used to evaluate the local
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stability. We write

Jac2(I
∗
1 , B1, P1) =


−α(B1)− µ (N − I∗) aH

(B1−c+H)2
0

0 r − 2 r
KB1 − γ K1

(K1+B1)2
P1 −γ B1

K1+B1

0 βγ K1
(K1+B1)2

P1 βγ B1
B1+K1

− δ


and note that as previously demonstrated βγ B1

B1+K1
− δ = 0 and we can write

J(2, 2) = r−2 r
KB1−γ K1

(K1+B1)2
P1. Thus the Jac2 and its second additive compound

are

Jac2(I
∗
1 , B1, P1) =


−α(B1)− µ (N − I∗) aH

(B1−c+H)2
0

0 J(2, 2) −γ B1
K1+B1

0 βγ K1
(K1+B1)2

P1 0


and

Jac
[2]
2 (I∗1 , B1, P1) =


−α(B1)− µ+ J(2, 2) −γ B1

K1+B1
0

βγ K1
(K1+B1)2

P1 −α(B1)− µ (N − I∗) aH
(B1−c+H)2

0 0 J(2, 2)

 .

The trace and determinant are straightforward to compute, with

tr(Jac2(I
∗
1 , B1, P1)) = −α(B1)− µ+ J(2, 2)

65



and

det Jac2(I
∗
1 , B1, P1) =(−α(B1)− µ) det

 J(2, 2) −γ B1
B1+K1

βγ K1
(K1+B1)2

P1 0


− (N − I∗1 )

aH

(B1 − c+H)2
det

0 −γ B1
B1+K1

0 0


=[−α(B1)− µ]γ

B1

B1 +K1
βγ

K1

(K1 +B1)2
P1 < 0.

So the determinant is always negative, and the trace can be negative if J(2, 2) < 0.

Lastly, consider

det Jac
[2]
2 (I∗1 , B1, P1) =J(2, 2) det

−α(B1)− µ+ J(2, 2) −γ B1
B1+K1

βγ K1
(K1+B1)2

P1 −α(B1)− µ


−(N − I∗1 )

aH

(B1 − c+H)2
det

−α(B1)− µ+ J(2, 2) −γ B1
B1+K1

0 0


=J(2, 2)

{
[−α(B1)− µ+ J(2, 2)][−α(B1)− µ]

+ βγ
K1

(K1 +B1)2
P1γ

B1

B1 +K1

}
,

which appears complicated but the important part is that J(2, 2) < 0 implies that

it is negative. Furthermore, 0 < J(2, 2) < α(B1)+µ implies that det Jac
[2]
2 (E∗1) > 0,

and J(2, 2) > α(B1) + µ implies that both det Jac
[2]
2 (E∗1) > 0 and tr(E1) > 0. We

saw previously that J(2, 2) < 0 is equivalent to B1 < B3, thus

E∗1 is stable ⇐⇒ B1 < B3 = B1 +
βγ

βγ − δ
.
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3.D.8 Local stability summary, bifurcation diagrams and numerical simulations

Noting that there are at most 2 equilibria that exist at any one time other than E0,

and writing ‘un’ for ’locally unstable’ and ‘s’ for ’locally asympototically stable’, we

can summarize the preceding local stability results with a proposition.

Proposition 6 (Local stability of the non-shedding case): E0 always exists and is

locally stable for all parameter values.

If c < K and c ≥ B1

B3 ≤ K implies E1(un) and E∗K(un) exist,

K < B3 implies E1(s) and E∗K(un) exist

and c < B1

K < B1 implies E∗K(s) exists

B1 < K < B3 implies E∗K(un) and E∗1(s) exist

B3 ≤ K implies E∗K(un) and E∗1(un) exist.

If c ≥ K and c ≥ B1

K < B1 implies EK(s) exists

B1 < K < B3 implies EK(un) and E1(s) exist

B3 ≤ K implies EK(un) and E1(un) exist

and c < B1

as B1 < B3 then EK(s) exists.

The results of Proposition 6 are perhaps better understood as a bifurcation diagram.

Figure 3.1 demonstrates the changes in stability as the carrying capacity K is varied.

The upper diagram is for the case when the minimum infectious dose c is greater
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than B1, which means that only E1 can exist, and not E∗1 . The lower figure has

c < B1, which reverses the situation.

If K = B3, implying J(2, 2) = 0, then computing det[λI − Jac1(E1)] we find,

det


λ+ α(B1) + µ 0 0

0 λ −γ B1
B1+K1

0 βγ K1
(K1+B1)2

P1 λ


= (λ+ α(B1) + µ)

{
λ2 + βγ

K1

(B1 +K1)2
P1

γB1

B1 +K1

}
,

which has one real negative and two purely imaginary roots. We conclude that E1

undergoes a Hopf bifurcation as K passes B1, and E1 changes from locally stable

to unstable. In Figure 3.2, we demonstrate the existence of limit cycles occuring as

a result of the unstable E1.

The stability conditions for the endemic equilibrium E∗1 are the same as for E1 and

it also undergoes a Hopf bifurcation when it exists and K increases passed B3. The

only difference in the calculation of the eigenvalues of Jac2(E
∗
1) is that the second

entry in Jac2 is nonzero, but as ξ = 0, the zeros in the first column reduce the

calculation of the eigenvalues of Jac2(E
∗
1) to that shown above.

When E1 or E∗1 is unstable and the carrying capacity K is less than the MID

(c), cycles are observed numerically in the bacteria-phage system (BP) but not the

susceptible-infected (SI) system. If K is sufficiently larger than c, implying that the

MID is at a level such that bacteria at carrying capacity would cause infections, the

cycles exist in both the SI and BP systems with the infected population peaking 4

days after and the phage population 8 days after in Figure 3.2. While these cycles

are far too short to match real world situations, as the infected class peaks occurred

after the bacteria class, and because with shedding at zero the BP system influences

the SI system unidirectionally, their existence does support the idea that cycles
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Figure 3.1: Bifurcation diagrams when ξ = 0 and there is no shedding. Limit cycles
exist when E1 and E∗1 undergo Hopf bifurcations, and are denoted L.C.
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Figure 3.2: Cycles in Phage, Bacteria and Infected populations. The Bacteria peak
ends first, followed by the Infected 4 days later and Phage 8 days later. Parameters
are r = 3,K = 7.3e6, γ = 0.02,K1 = 1.6e6, β = 80, δ = 1, ξ = 0, a = 0.1, c =
7.1e6, µ = 0.1 and H = 1e6.

that naturally occur are bottom-up and not top-down in cause. When shedding is

included, the cycles lengthen to relevant levels as we shall see in the next section.

3.E Existence and Stability of Equilibria with Shedding

3.E.1 Existence of equilibria

The complete absence of human contamination of the water supply is the ideal,

but it is certainly not the reality anywhere and particularly not in places where

the disease is endemic. Noting that the first equation of (3.1) is not necessary as
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S + I = N , we can rewrite it as follows

dI

dt
=α(B)(N − I)− µI,

dB

dt
=rB

(
1− B

K

)
− γ B

K1 +B
P + ξI, (3.3)

dP

dt
=βγ

B

K1 +B
P − δP + αξI.

From Equation 1, at a steady state if α(B) = 0 then I∗ = 0. In this case equations

2 and 3 become the same as in the last section, meaning that

0 = βγ
B

K1 +B
P − δP

0 =

(
βγ

B

K1 +B
− δ
)
P.

Thus, the same endemic equilibria E0 = (N, 0, 0, 0), EK = (N, 0,K, 0 and E1 =

(N, 0, B1, P1) exist as before, with the same conditions. Namely that K ≤ c for EK

to exist, and B1 ≤ c with B1 < K for E1 to exist.

As ξ is not in Equation 1 of (3.3), it is then identical to its analogue in (3.2). So if

α(B) 6= 0 at steady state, then I∗ = G1(B
∗) = Na (B∗−c)

(a+µ)(B∗−c)+µH . Equations 2 and

3 of (3.3) become

0 = βγ
B

K1 +B
P − δP + αξI∗

0 =

(
βγ

B

K1 +B
− δ
)
P + αξI∗
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and the latter can be solved to attain a P ∗ value, writing G1(B
∗) for I∗

P ∗ =
−αξI∗

βγ B
K1+B

− δ
=
−αξG1(B

∗)

βγ B
K1+B

− δ

=
−αξG(B∗)(K1 +B)

βγB∗ − δ(K1 +B∗)
.

This expression for P ∗ provides a condition for B∗ as the denominator must be

strictly negative in order to have a well defined and positive value for P ∗. We see

that

βγ
B

K1 +B
− δ < 0

⇒B∗ < (K1 +B∗)
δ

βγ
= K1

δ

βγ
+B∗

δ

βγ
,(

1− δ

βγ

)
B∗ < K1

δ

βγ
,

B∗ <
K1δ

βγ − δ
= B1

is another condition for any equilibrium with α(B∗) 6= 0. So we have an expression

that gives a unique P ∗ for each value ofB∗. Solving Equation 2 of (3.3) at equilibrium

for B∗ will then possibly lead to endemic equilibria E∗ . Dropping the asterisks on

B∗ for convenience,

0 = rB

(
1− B

K

)
+ ξI∗ − γ B

K1 +B
P ∗

0 = rB

(
1− B

K

)
+ ξG(B) + γ

B

K1 +B

φξG(B)(K1 +B)

βγB − δ(K1 +B)

0 = rB

(
1− B

K

)
+ ξG(B) + γB

φξG(B)

βγB − δ(K1 +B)

0 = rB

(
1− B

K

)
+

[
1 + γφ

B

(βγ − δB − δK1)

]
ξ

Na(B − c)
(a+ µ)(B − c) + µH

0 = F (B) +G(B) (1.4)
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where

F (B) =rB

(
1− B

K

)
[(a+ µ)(B − c) + µH][(βγ − δ)B − δK1)]

G(B) =Naξ[γ(φ+ β)B − δK1](B − c).

Note that F (B) is a quartic with roots 0, K, B2 := c − µH
a+µ and B1, which was

defined previously as B1 = δK1
βγ−δ , that opens downwards. The three roots of 0, B1

and K are nonnegative, but B2 could be negative or zero with realistic parameters.

To find solutions to 0 = F (B) + G(B) we will plot F (B) and −G(B) to look for

intersections. As such note that −G(B) is a downward opening parabola, with roots

c and b1 := δK1
γ(φ+β)−δ .

The roots of the two functions have some obvious relationships which limit the

number of possibilities we need to consider when plotting them. Consider b1 and

B1 which are clearly related. We assume βγ − δ > 0 and as φ > 0, being part of

the shedding term for the phage population φξ, it is clear that 0 < b1 < B1. Also

B2 < c as all parameter values are positive. Previously we found that c < B∗ < B1

to ensure P ∗ > 0 and α(B∗) > 0, so this imples c < B1 is a condition for any B∗ to

exist.

Between the third and fourth roots of F , we see that F (B) > 0, whatever those

roots may be. If the largest root is B1, then we find a problem if c is the next largest

of {b1, c,K,B1, B2}. As −G(c) = 0 with −G(B) < 0 for B ≥ c, and F (c) > 0, then

clearly no intersections can occur until B > B1 when F (B) is no longer nonnegative.

Any such intersection would be inadmissible as B∗ > B1 for that B∗. Also, any

intersections between F and −G with B < c are also inadmissible as we require

B∗ > c. Hence, if c < B1 and {c,B1} are the largest of {b1, c,K,B1, B2} then there

will be no endemic equilibria.
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Case Subcase Ordering

Ia)
0 < B2 < B1 < K i)B2 < b1 < B1 B2 < b1 < c < B1

B2 < c < b1 < B1

ii)0 < b1 < B2 b1 < B2 < c < B1

Ib)
0 < B2 < K < B1 i) b1 > K K < c < b1 < B1

c < K < b1 < B1

ii) B2 < b1 < K B2 < b1 < c < K
B2 < c < b1 < K

iii) b1 < B2 b1 < B2 < c < K < B1

I c)
K < B2 < B1 i) B2 < b1 < B1 B2 < c < b1 < B1

II a)
B2 < 0 < B1 < K i) b1 < B1 b1 < c < B1 < K

c < b1 < B1 < K

II b)
B2 < 0 < K < B1 i)K < b1 K < c < b1 < B1

c < K < b1 < B1

ii) b1 < K b1 < c < K < B1

c < b1 < K < B1

Table 3.2: Possible ordering of {B2, B1,K, b1, c}. The first column determines the
order of {B2, B1,K}, the second places b1 in that ordering, and the third column
places c within the ordering.
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The possible orderings of {B2, B1,K, b1, c} are outline in Table 3.2. There are only 9

combinations of {B2, B1,K, b1} and 15 orderings of all of the roots of F and G when

all of the restrictions are considered. From this we can plot all possible configurations

of F and G as in Figures 3.3 and 3.4. There can be up to 4 equilibria at one time

depending on the relationships among the parameters. From Figures 3.3 and 3.4,

we see that when there are two internal equilibria, the values of B∗1,2 are between

the second and third entries in the ordering of {c,K, b1, B1}. Also, note that E1 and

E+
1,2 cannot exist at the same time as their conditions for existence are contrary.

We can summarize these results with a proposition.

Proposition 7 (Existence of Equilibria): The equilibrium E0 = (N, 0, 0, 0) always

exists.

If c ≥ K and B1 ≤ c,

if also B1 > K, then only EK exists.

if B1 ≤ K then EK and E1 exist.

and B1 > c,

if c < b1 then there are up to B∗1,2 ∈ (c, b1) and EK .

if c > b1 then there are no internal equilibria but EK exists.

If c < K and B1 > c

then B∗ exists between the second and third

in the ordering of {c,K, b1, B1}.

and B1 ≤ c

there are no internal equilibria and E1 is an equilibrium.
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Figure 3.3: In each graph above there are at most two intersections between the
quartic (in black) and the quadratics (in red, blue or green). Relevant intersections
need to be greater than c, but less than B1.
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Figure 3.4: The cases where B2 is negative and in each graph above there are at
most two intersections between the quartic (in black) and the quadratics (in red,
blue or green). Relevant intersections need to be greater than c, but less than B1.
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3.E.2 Linearization

Due to the threshold in α(B), we will have two linearizations of (3.3) with the first

having α(B) = 0 denoted J1

J1(I,B, P ) =


−µ 0 0

ξ r − 2 r
KB −

γK1

(K1+B)2
P −γ B

K1+B

φξ βγ aH
(B−c+H)2

P βγ B
K1+B

− δ

 ,

and the second linearization applies when α(B) 6= 0, denoted J2

J2(I,B, P ) =


−α(B)− µ (N − I) aH

(B−c+H)2
0

ξ r − 2 r
KB −

γK1

(K1+B)2
P −γ B

K1+B

αξ βγ aH
(B−c+H)2

P βγ B
K1+B

− δ

 .

3.E.3 Stability of disease-free, bacteria-free, phage-free equilibrium E0

Consider J1 for E0 = (N, 0, 0, 0) as B0 = 0 < c. The result is a triangular matrix

J1(0, 0, 0) =


−µ 0 0

ξ r 0

αξ 0 −δ

 ,

with eigenvalues −µ,−δ < 0 and r > 0. This means that the disease free, bac-

teria free and phage free equilibrium E0 is a saddlenode equilibrium with a one-

dimensional unstable manifold.
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3.E.4 Stability of the disease-free phage-free equilibrium EK

For the boundary (or disease-free, phage-free) equilibrium EK = (N, 0,K, 0) to

exist, it is necessary that K ≤ c so that α(K) = 0, and so we only have to use J1 to

consider the local stability. So consider

J1(0,K, 0) =


−µ 0 0

ξ −r −γ K
K1+K

αξ 0 βγ K
K1+K

− δ


and

J
[2]
1 (0,K, 0) =


−µ− r

(
−γ K

K1+K

)
0

0 −µ+ βγ K
K1+K

− δ 0

−αξ ξ −r +
(
βγ K

K1+K
− δ
)


and note that

tr(J1(0,K, 0)) = −µ− r +

(
βγ

K

K1 +K
− δ
)
,

det J1(0,K, 0) = µr

(
βγ

K

K1 +K
− δ
)
,

det J
[2]
1 = (−µ− r)

(
−µ+ βγ

K

K1 +K
− δ
)(
−r + βγ

K

K1 +K
− δ
)
.

If βγ K
K1+K

− δ < 0 this implies that tr(J1), det J1 and det J
[2]
1 are all negative, but

if βγ K
K1+K

− δ > 0 then detJ1 > 0. By Lemma 7 this means that EK is stable if,

and only if βγ K
K1+K

< 0. Rearranging to solve for K,

EK is stable ⇐⇒ K <
δK1

βγ − δ
= B1.

Note that B1 < K is required for E1 to exist, so the existence of E1 and the stability

of EK are contrary notions.
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3.E.5 Stability of the disease-free equilibrium E1

This equilibrium is also a boundary equilibrium but is perhaps more realistic as

it has a nonzero phage level. The bacteria level is defined B1 = δK1
βγ−δ and P1 =

F1(B1) = r
K (−B1 +K)(B1 +K1). For E1 = (N, 0, B1, P1) to exist, B1 ≤ c to ensure

α(B1) = 0, and B1 < K for P1 > 0. Note that the bacterial level here is less than

in the EK equilibrium and recall that if B1 = K then P1 = 0 and E1 is simply EK .

Here we again use J1

J1(0, B1, P1) =


−µ 0 0

ξ r − 2 r
KB1 − γK1

(K1+B1)2
P1 −γ B1

B1+K1

αξ βγ K1
(K1+B1)2

P1 βγ B1
B1+K1

− δ


but note that in the last entry of J1

βγ
B1

B1 +K1
− δ =

βγδK1

(βγ − δ)K1 + δK1
− δ =

βγδK1

βγK1
− δ = 0

so that

J1(0, B1, P1) =


−µ 0 0

ξ r − 2 r
KB1 − γK1

(K1+B1)2
P1 −γ B1

B1+K1

αξ βγ K1
(K1+B1)2

P1 0

 .

Defining J(2, 2) = r − 2 r
KB1 − γ K1

(K1+B1)2
P1 again as in the previous non-shedding

case, the second additive compound matrix of J1 is

J
[2]
1 (0, B1, P1) =


−µ+ J(2, 2) −γ B1

B1+K1
0

βγ K1
(K1+B1)2

P1 −µ 0

−αξ ξ J(2, 2)

 .
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The determinant of J1 is

det J1(0, B1, P1) = −µ det

 J(2, 2) −γ B1
B1+K1

βγ K1
(K1+B1)2

P1 0


= −µγ B1

B1 +K1
βγ

K1

(K1 +B1)2
P1

< 0

so it will always satisfy the antecedent of Lemma 7. The trace is given

tr(J1(0, B1, P1)) = −µ+ J(2, 2)

As before J(2, 2) < 0 if, and only if, K < B3 = B1 + βγK1

βγ−δ . Thus we can conclude

about the trace that

J(2, 2) < 0 ⇒ tr(J1) < 0,

J(2, 2) > 0,−µ+ J(2, 2) < 0 ⇒ tr(J1) < 0,

J(2, 2) > 0,−µ+ J(2, 2) > 0 ⇒ tr(J1) > 0.

Lastly consider the sign of detJ
[2]
1

det J
[2]
1 (0, B1, P1) = J(2, 2) det

 −µ+ J(2, 2) −γ B1
B1+K1

βγ K1
(K1+B1)2

P1 −µ


= J(2, 2)

{
[−µ+ J(2, 2)][−µ] +

(
βγ

K1

(K1 +B1)2
P1

)(
γ

B1

B1 +K1

)}
,

where it is clear that if J(2, 2) < 0 then det J
[2]
1 < 0 and if J(2, 2) > 0 but J(2, 2)−

µ < 0 then detJ
[2]
1 > 0. The last case of J(2, 2) > 0 and J(2, 2) − µ > 0 is not

necessary for our purposes. To summarize about the trace and determinant of the
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second additive compound matrix

J(2, 2) < 0 ⇒ trJ1(0, B1, P1) < 0

and det J
[2]
1 (0, B1, P1) < 0,

J(2, 2) > 0 ⇒ trJ1(0, B1, P1) > 0

or det J
[2]
1 (0, B1, P1) > 0,

and because det J1(0, B1, P1) < 0 all the time, by Lemma 7

E1 is stable ⇐⇒ J(2, 2) < 0

⇐⇒ K <
βγ + δ

βγ − δ
K1 = B1 + βγ

K1

βγ − δ

writing as previously B3 = B1 + βγ K1
βγ−δ .

3.E.6 Stability of endemic equilibria E∗ and E∗1,2

The stability of the endemic steady states was found numerically. If c > b1 and

c < B1, there is a unique endemic equilibrium, E∗. Using parameter values r =

1, γ = 0.02,K1 = 3.6e5, β = 80, δ = 1, ξ = 50, φ = 1, a = 0.1, H = 1e6, C = 5.9e5

and µ = 0.1, will achieve such a relationship. If K = 7e5 > c or larger, EK does

not exist and E0 and E∗ are the only equilibria. Limit cycles are observed and if

B∗ and its eigenvalues are computed numerically, we see that E∗ is a saddlenode

equilibrium with a two-dimensional unstable manifold.

If K = 4e5 < c = 5e5, with all other parameters the same, then K < c < b1 and

two endemic equilibria exist, along with E0 and EK . In this case they are both

saddlenode equilibria, where E∗1 (with the smaller B∗ value) has a one-dimensional

unstable manifold, and the other has a two-dimensional unstable manifold. If K =
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5.9e5 > c or greater, there is a unique endemic equilibria and EK no longer exists.

As before, it is a saddlenode with two dimensional unstable manifold.

Lastly, if K1 is decreased to K1 = 1.6e6, with all other parameters as before, if c > b1

and the endemic equilibrium is unique, it is again a saddlenode with two dimensional

unstable manifold. If instead c < b1, then when the two internal equilibria exist, E∗1

(with the smaller B∗) is a saddlenode with one dimensional unstable manifold as

before. The larger however, is stable as its eigenvalues all have negative real part.

Finally, if K > c, for example K = 2.2e6 or higher, there is a unique endemic

equilibrium E∗ which is locally stable as all eigenvalues have negative real part.

3.E.7 Local stability summary, bifurcation diagrams and numerical simulations

We can summarize the local stability results of the previous sections with a propo-

sition, writing ‘un’ for locally unstable, and ‘s’ for local asymptotic stability.

Proposition 8 (Local Stability): The equilibrium E0 is always locally unstable.
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If c ≥ K and B1 ≤ c,

if K > B3, then E1(un) and EK(un).

if B1 < K < B3 then E1(s) and EK(un).

if K < B1 then EK(s).

and B1 > c,

if c < b1 then there are up to E∗1,2 and EK(s),

with B∗i ∈ (c, b1).

if c > b1 then there are no internal equilibria but EK(s).

If c < K and B1 > c,

then E∗ exists,

with B∗ between the second and third in the ordering of {c,K, b1, B1}.

and B1 ≤ c,

if K > B3, then E1(un).

if K < B3, then E1(s).

In addition to the disease-free, bacteria-free and phage-free equilibrium E0, which

always exists and is always locally unstable, there are at most three other equilibria

for any given set of parameters. Note that E1 and EK are never both stable at

the same time, as the condition for the local stability of EK implies that E1 does

not exist. Of the two, E1 is more realistic as it has the phage population existing at

nonzero levels, which is certainly the case during inter-epidemic times. The existence

of a stable endemic equilibrium, either when E∗ is unique, or when it exists with

another, which is unstable, does not match the usual pattern of explosive outbreaks

of cholera, but if the B∗ level is low enough, perhaps it could be biologically relevant

for certain areas. Our main interest is when unstable equilibria exist and cause limit
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Figure 3.5: Bifurcation diagrams with all parameters positive and B1 < c, which
implies only nonendemic equilibria exist. Equilibrium E1 undergoes a Hopf bifurca-
tion when carrying capacity K increases passed B3, leading to limit cycles denoted
L.C.

cycles, as will be discussed below.

The results of Proposition 8 are perhaps better understood with bifurcation dia-

grams. Figure 3.5 shows the case when B1 < c, and only nonendemic equilibria are

possible. In the figure B3 < c, which means that both E1 and EK can be unstable

at the same time. If this was reversed and B3 > c, the difference would be that E1

would be unstable only when EK did not exist, and the two could not be unstable

for the same set of parameters.

Equilibrium E1 is only present in the upper diagram, and when the carrying capacity
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K = B3, we can calculate det[λI − J1(E1)], noting that J(2, 2) = 0 to see that

det[λI − J1(E1)] =


λ+ µ 0 0

−ξ λ γ B1
B1+K1

−φξ −βγ K1
(K1+B1)2

P1 λ


= (λ+ µ)

{
λ2 + βγ

K1

(K1 +B1)2
P1γ

B1

B1 +K1

}

and observe that J1(E1) has one negative eigenvalue and two purely imaginary

eigenvalues. Thus E1 undergoes a Hopf bifurcation as K increases passed B3 and

E1 switches from locally stable to unstable. With parameters in the region where

E1 is unstable, we find limit cycles to exist. If K < c, then these cycles exist only

in the BP community and do not cause any infections. Figure 3.6 demonstrates

such limit cycles, with period of only 14 days, and phage peaking 5 days after the

bacteria class does. If K > c by a large enough amount, meaning that the minimum

infectious dose is less than the normal carrying capacity of bacteria, the cycles enter

the human population as well and increase greatly in period. Unlike the case with

ξ = 0, the period of these cycles can even be approximately 180 days, which could

correspond to the biannual outbreaks observed in some endemic areas. Figure 3.7 is

an example of of such cycles with period of 181 days. The bacteria are the first to

peak, followed by the human infected population 3 days later, and the phage 1 day

after the infected class. As these cycles can exist at low levels and only enter the

human population when the bacteria levels increase passed the MID, and because

the bacteria peak before the infected human population, we conclude that the BP

system is ‘driving’ these limit cycles.

Figure 3.8 contains bifurcation diagrams for the cases of endemic equilibria. The

upper diagram is for when E∗ is unique, and numerically it is found to always be

unstable and causing limit cycles. The lower diagram is very similar, except up

to two E∗1,2 can exist. These are either both unstable, or the equilibrium with the
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Figure 3.6: The case when E1 is unstable and K < c. When the bacteria levels pass
the minimum infectious dose (MID), the cycles spread to the human population as
well. The period is approximately 14 days and the Phage peak 4 days the Bacteria.
The parameter values used were r = 1,K = 1.3e6, γ = 0.02,K1 = 2.5e5, β = 80, δ =
1, ξ = 50, φ = 1, a = 0.1, H = 1e6, C = 1.5e6 and µ = 0.1.

Figure 3.7: The case when E1 is unstable and K > c. When the bacteria levels pass
the minimum infectious dose (MID), the cycles spread to the human population as
well. The Infected class peaks 3 days after the Bacteria, and the Phage 4 days after.
The period is 181 days, which corresponds to biannual outbreaks in endemic areas.
The parameter values used were r = 1,K = 1.8e6, γ = 0.02,K1 = 2.5e5, β = 80, δ =
1, ξ = 50, φ = 1, a = 0.1, H = 1e6, C = 1.5e6 and µ = 0.1.
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Figure 3.8: Bifurcation diagrams with all parameters positive. Limit cycles exist
when E∗ is unique and unstable and are denoted L.C. When c > b1, E

∗ is always
unstable and there are cycles. When c < b1, these cycles exist when E∗ was unstable,
but are absent when it is stable. If there are two equilibria E∗1,2, they are either both
unstable, or the one with the smaller B∗i is unstable and the larger is stable. Limit
cycles are not observed with parameters in this range.
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Figure 3.9: The case when E∗ is unique and unstable with K > c. When the bacteria
levels pass the minimum infectious dose (MID), the cycles spread to the human
population as well. The Infected class peaks 3 days after the Bacteria, and the
Phage 6 days after. The period is 350 days, which corresponds to annual outbreaks
in endemic areas. The parameter values used were r = 1,K = 4.12e5, γ = 0.02,K1 =
2.5e5, β = 80, δ = 1, ξ = 50, φ = 1, a = 0.1, H = 1e6, C = 4.1e5 and µ = 0.1.

smaller B∗i value is unstable and the larger is stable. The unique E∗ in the lower

diagram could be either stable or unstable for realistic parameter values, and when

it is unstable, limit cycles are found to exist. These cycles range in period, but can

be found with periods of approximately 360 days, as in Figure 3.9, which correspond

to the annual outbreaks observed in some endemic areas.

3.F Chaos

In many countries that experience endemic cholera, there are annual cholera out-

breaks which appear to be periodic. However, in countries with similar sanitation

infrastructure, the outbreaks are much more frequent and lack an overwhelmingly

periodic structure. The general trend is that countries closer to the equator have

higher levels of outbreaks with greater frequency, while countries that are further
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from the equator typically have seasonal outbreaks [18]. An explanation for this

difference in outbreak type may lie in the existence of chaotic behaviour in (3.1) for

certain values of the shedding parameters ξ and φ in relation to the temperature

related parameter r.

The maximal growth rate of bacteria r is proportional to the values ξc and φc where

chaos first occurs. If this value of r is itself proportional to average temperatures, and

thus inverse to the distance from the equator, then warmer countries with a higher

r value could have chaotic behaviour of bacterial levels, and thus outbreaks, with

the same values of ξ and φ. A positive relationship between bacteria proliferation

and average temperature is known to exist, so this explanation is plausible [69].

Figure 3.10 demonstrates different trends in cholera outbreaks for countries at differ-

ent latitudes. Malaysia for example is the closest to the equator of the four countries

shown, at a latitude of 4o, and has a somewhat uniform distribution of monthly out-

breaks when summed over 32 years. The other three countries of Romania, Iran

and Zambia, which are at a distance of at least ±13o from the equator, have much

stronger trends in what month cholera outbreaks typically occur. For Romania and

Iran, which are both in the Northern Hemisphere, outbreaks typically occur between

August and November. In Zambia, which is in the Southern Hemisphere, outbreaks

occur most often between February and May. A larger value of the maximal bacte-

rial growth rate r for countries closer to the equator, which also corresponds to a

lower value of ξc and φc, could explain why the outbreaks in warmer countries occur

less seasonally than in countries further away from the equator.

In Figures 3.11 and 3.12, the shedding parameter ξ is increased and the period of

the limit cycles is measured (the other parameters are chosen to make limit cycles

exist). In both Figures, it is the unstable E1 which causes the cycles, but an unstable

E∗ can also be used. A trajectory is plotted for each set of parameters, and the last
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Figure 3.10: Sums of monthly cholera outbreaks over the last 32 years in countries
at different latitudes, adapted from Emch et al. [18].

Figure 3.11: Chaotic behaviour with an r value (maximum bacterial growth rate)
of 1. On the left is a zoomed in look at the pre-chaos interval of the graph on the
right. The remaining parameters are K = 1e6, γ = 0.021,K1 = 1/4K,β = 100, δ =
1, φ = 0, a = 0.1, C = 5e5, µ = 0.1, H = 1e6.

91



Figure 3.12: Chaotic behaviour with an r value (maximum bacterial growth rate)
of 5. The remaining parameters are K = 1e6, γ = 0.021,K1 = 1/4K,β = 100, δ =
1, φ = 0, a = 0.1, C = 5e5, µ = 0.1, H = 1e6.

10 local maximums are found numerically, and used to find the period of the cycle.

There are certain intervals for ξ, however, where the trajectory is not periodic, but

rapidly oscillates with varying amplitude and period. In these intervals the ‘period’,

has many values for each ξ value. We will show below that these intervals produce

chaotic behaviour.

In Figure 3.11, the maximal growth rate is comparatively low, and the chaotic

interval occurs for lower values of ξ. When the ξ value is small, the limit cycles

initially decrease in amplitude (not shown) as well as period length, as pictured.

There is a certain value where period doubling first appears, and the populations

go through cycles with the a similar period as previously, but alternating in height.

When the shedding rate is increased further passed a threshold ξc, chaotic behaviour

emerges. With a higher value of r, the chaotic window is shifted to the right as in

Figure 3.12 where r = 5 on the left and r = 10 on the right, both being values

within the range suggested in the literature [35]. Thus the same values of ξ and φ

could cause chaotic or periodic trajectories for different values of r.

From Figure 3.11 and 3.12, the erratic behaviour of the period lengths suggest

92



Figure 3.13: Lyapunov Exponents for (3.1). The shedding rate ξ was chosen from
the interval [5,15] with all parameters as in Figure 3.11. The largest is positive which
is enough to determine the trajectory is chaotic.

chaos, which can further be confirmed by looking at the trajectories. If the ξ value

is taken from this erratic interval (about (3.6-16) in Figure 3.11) the trajectories

rapidly oscillate with varying period and amplitude as time increases, lacking any

clear pattern. This however is not enough to determine if the behaviour is chaotic:

we should consider the Lyapunov Exponents. When there is chaos, trajectories with

very close starting points will not remain close together as time is increased. In

Figure 3.13, we see that, due to the positivity of the largest Lyapunov exponent,

the behaviour is in fact chaotic.

3.G Discussion

We have presented a model, the iSIBP model, which is an alteration of the one

in Jensen et al. [35]. This model explicitly includes the dynamics of bacteriophage
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and bacteria and also contains a new indirect infection term which accounts for a

minimum infectious dose of the pathogen V.cholerae. Unlike Jensen et al. [35] we

focused on the existence of stable limit cycles, in order to account for the periodicity

observed in outbreaks of cholera in endemic areas. As these cycles exist in the

absence of human contribution to the bacteria and phage levels, and because the

bacteria cycles peak before the human cycles when they exist in both systems,

we conclude that it is the bacteria and phage which are driving the cycles, and

not the reverse situation. If the minimum infectious dose was less than the carrying

capacity of the bacteria, we observed that the bacteria cycles usually failed to surpass

the minimum infectious dose, so there were no new infections and the system was

disease free. However, if the natural carrying capacity was sufficiently larger than

the minimum infectious dose, these cycles were able to enter the human population,

which highlights the importance of understanding the relationship between the two.

Additionally, if the phage levels could be enhanced in some way to keep the bacteria

below this minimum infectious dose, then the cycles would remain in the bacteria

and phage system alone. This idea links back to the 1930s when the use of injections

of bacteriophage was explored as a treatment of cholera by limiting V.cholerae levels

within the human host [4, 60].

Additionally, a chaotic region in the parameter space was identified. The existence

of chaotic behaviour could explain the lack of clear periodicity in some endemic

areas, with seasonal or other factors increasing the height of these chaotic peaks

annually or biannually and creating a pseudo-periodic pattern. The exact role of

these external factors would be difficult to determine, given the sensitivity of such a

system. As the existence of this chaotic parameter region can be positively correlated

with the proliferation rate of V.cholerae and overall climate, it could also explain

the unpredictable nature of outbreaks in countries nearer the equator.

Future work on the iSIBP model could be to explicitly include the role of infection-
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derived immunity through the use of a recovered class, even though immunity is

somewhat accounted for in the value of the minimum infectious dose. Exact con-

ditions for the existence of limit cycles would be valuable as well as a definitive

relationship between the amplitude and period of the cycles to other parameters in

the system. This would be useful in establishing useful connections between simu-

lations and the data. Furthermore, including a second disease-causing serogroup of

V.cholerae would increase the realism of the model for use in regions where out-

breaks caused by serogroups O1 and O139 occur simultaneously.
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Chapter 4

Discussion and Further Directions

4.A Discussion

In this thesis, two models for cholera dynamics were presented that utilized a new

infection term specifically suited to indirectly transmitted diseases. The complicated

life cycle of Vibrio cholerae, the causative agent of cholera, merits an explicit con-

sideration of its natural aquatic environment when considering the epidemiology of

the disease. The relationship between the minimum infectious dose, which is at the

heart of the indirect infection term, and the natural carrying capacity of the bac-

teria in its aquatic environment, is demonstrated to be of the utmost importance.

Mathematical and numerical investigations have revealed a number of biologically

and mathematically significant results.

Investigation of the iSIR model reveals the existence of globally stable endemic and

disease-free equilibria, determined through the relationship between the minimum

infectious dose, c, the carrying capacity of the bacteria, K, and the shedding rate

ξ. Should the average health and immune system capabilities of the population
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be sufficient to tolerate bacterially contaminated water, and the shedding rate be

sufficiently small, the human and bacteria populations will exist independently of

each other. This case reflects both interepidemic periods where cholera outbreaks

are common, and also the situation in regions where cholera outbreaks are not

experienced. Should however the carrying capacity be sufficiently high (enough to

overwhelm the average immune response of the human population), an endemic

steady state will exist that can be globally stable. If this situation is only temporary,

the iSIR model can thus account for isolated outbreaks of cholera, and if it persists,

the model is suitable for regions where cholera cases are constant occurrences.

Sensitivity analyses suggest the effectiveness of reducing the carrying capacity K to

lessen the severity of cholera outbreaks, when they occur, and this reduction was

found to be more influential than simply decreasing human contamination of the

water supply alone. This raises an interesting point for discussions of disease control

in that alternative measures of outbreak reduction that do not necessarily restrict

access to the water supply should also be considered.

The existence of stable bacteria- and phage-driven limit cycles in the iSIBP model

demonstrates the importance of bacteriophage to cholera outbreaks. These cycles

can exist exclusively in the bacteria and phage system without causing infections, as

is likely the case in interepidemic times. It is only when the bacteria cycles cross the

minimum infectious dose threshold that infections are caused and the cycles enter

the human population as well. It appears to be necessary that the carrying capacity

be greater than the MID in order for this to occur, again highlighting the importance

in understanding the relationship between the two quantities. Further, these cycles

can be annual or biannual in their period length, matching the observed dynamics of

cholera in different regions. This would provide support for disease control measures

designed to enhance phage levels in some way in order to keep the bacteria levels

below this minimum infectious dose threshold.
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A chaotic region in the parameter space of the iSIBP model could explain the dif-

ferences in the interannual patterns of outbreaks of cholera in some endemic areas,

and the lack of any sort of annual pattern in other areas. The sensitivity of a system

with chaotic behaviour also accounts for the difficulty in definitely determining the

role of seasonal factors, which has been an ongoing problem in the study of cholera

epidemiology.

4.B Further Questions

Given the importance of the ordering of c and K to the disease dynamics, it is crucial

to experimentally find more accurate values for these quantities. Seasonal parameter

values could be included into the iSIR model in order to increase the length of the

time interval that the system can represent. Similarly, relaxing the assumption of

permanent immunity to temporary immunity through an explicit delay term, or

some simple route from the recovered category back to the susceptible one, would

also make the model more realistic and extend the time interval it could be used to

represent.

Besides the obvious refinement of the local stability analysis, the addition of a re-

covered category to the iSIBP model to explicitly include some form of disease

derived-immunity is a first step in making the model more useful. The minimum

infectious dose implicitly incorporates an idea of immunity, but does so in a nondy-

namic way. Including a second serogroup of V.cholerae would greatly complicate the

system with the required addition of at least one new compartment, but could prove

useful in simulating outbreaks where both serogroups are simultaneously active. Al-

ternate forms of phage predation could also be included, as when bacterial cells are

not destroyed outright in the creation of new phage cells, but instead infected and

left alive to less rapidly produce more phage. With a higher dimensional system, we
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can expect more mathematically complicated dynamics that could possibly reveal

new insights into the epidemiology.
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