
Analysis and Optimization of Explicitly
Parallel Programs

by

Diego Novillo Ronald C. Unrau Jonathan Schaeffer

Technical Report TR 98-11
August 1998

DEPARTMENT OF COMPUTING SCIENCE
University of Alberta

Edmonton, Alberta, Canada

Contents

1 Introduction 1

2 Related work 3

3 Language model 4

4 Mutual exclusion analysis 4
4.1 Concurrent Control Flow Graph . 5
4.2 Building the concurrent control flow graph of a program 8

4.2.1 Control structures . 8
4.2.2 Conflict analysis . 8
4.2.3 Synchronization analysis . 9

4.3 Mutex structures . 9

5 The CSSA form 14
5.1 Computing guaranteed partial execution ordering 14
5.2 Computing the sequential SSA form 16
5.3 Placing � functions . 18
5.4 Time complexity of the CSSA algorithm 18

6 The CSSAME form 19
6.1 Consecutive kills . 19
6.2 Protected uses . 20
6.3 Modifying � functions inside mutex bodies 21
6.4 Computing the CSSAME form . 22
6.5 Time complexity of the CSSAME algorithm 24

7 Optimizing explicitly parallel programs 24
7.1 Constant propagation . 24
7.2 Concurrent dead code elimination . 25
7.3 Lock independent code motion . 28

7.3.1 Moving lock independent control structures 32
7.4 Mutex body localization . 33

7.4.1 Single writer, multiple readers code motion 38
7.4.2 Relaxing lock independence requirements 38

7.5 Code sinking . 39
7.6 Lock picking . 41
7.7 Lock partitioning . 44

i

8 Applying the framework to real programs 45
8.1 Implementation . 47

9 Conclusions and Future work 48

List of Algorithms

4.1 Build a concurrent control flow graph. 8
4.2 Concurrency relation. 9
4.3 Conflict analysis. 10
4.4 Synchronization analysis. 10
4.5 Identification of mutex structures. 13
5.1 CSSA algorithm. 15
5.2 Guaranteed Partial Execution Ordering. 15
5.3 Place � functions. 16
5.4 Build FUD chains. 17
5.5 Place � functions. 18
6.1 Rewrite � functions. 23
6.2 CSSAME algorithm. 23
7.1 Concurrent reaching definitions. 28
7.2 Lock independent code motion (LICM). 31
7.3 LICM for control structures. 34
7.4 Localization test (localizable) . 36
7.5 Mutex body localization . 37
7.6 Code sinking. 42
7.7 Lock partitioning. 46

ii

Analysis and Optimization of Explicitly Parallel
Programs

Diego Novilloy Ronald C. Unrauz Jonathan Schaeffery
yfdiego,jonathang@cs.ualberta.ca

Department of Computing Science
University of Alberta

Canada

zrunrau@cygnus.com
Cygnus Solutions Ltd.

Sunnyvale, CA
U.S.A.

A shorter version of this document has been submitted to the Journal of Parallel
and Distributed Computing Special Issue on Compilation and Architectural

Support for Parallel Applications (1999)

Abstract
Most current compiler analysis techniques are unable to cope with the semantics in-
troduced by explicit parallel and synchronization constructs in parallel programs. In
this paper we introduce new analysis and optimization techniques for compiling ex-
plicitly parallel programs that use mutual exclusion synchronization. We introduce
the CSSAME form, an extension of Concurrent Static Single Assignment (CSSA) that
incorporates mutual exclusion into a data flow framework for explicitly parallel pro-
grams. We show how this analysis can improve the effectiveness of constant propaga-
tion in a parallel program. We also present a modification to a sequential dead code
elimination algorithm to work on explicitly parallel programs.
Finally, we introduce new optimization techniques specifically targeted at explicitly
parallel programs. These techniques apply optimizing transformations to a program by
taking advantage of its parallel and synchronization structure. We prove the correctness
of these transformations and provide algorithms that implement them. The techniques
presented in this paper have been implemented by extending the SUIF compiler system.

1 Introduction

Although recent advances in parallelizing compilers and data-parallel languages have
been impressive, there are important problem domains for which parallelizing the best
sequential algorithm yields sub-optimal performance relative to an implementation that
is explicitly parallel from the outset. Furthermore, popular high-level programming lan-
guages like Java incorporate parallel constructs at the language level. For these reasons,

1

1 INTRODUCTION 2

we believe that there is a need for compilers that optimize these programs, and that the
demand for such compilers will increase.

There are two important issues that must be addressed by compilers that optimize
explicitly parallel programs. First, these compilers should take advantage of the vast
number of optimizations developed for sequential languages. Unfortunately, this is not
a trivial task. Sequential optimization techniques cannot be directly applied to explicitly
parallel programs because they may generate incorrect transformations [18]. There-
fore, these techniques must be adapted to work on explicitly parallel programs. Second,
these compilers must have an innate knowledge of the parallel constructs, synchroniza-
tion operations and shared memory semantics present in explicitly parallel programs.
Understanding how these three elements interact not only allows a safe translation of
sequential optimizations but also provides opportunities for new optimizations of ex-
plicitly parallel programs.

The main goal of our work is to develop a unified analysis and optimization frame-
work that allows the translation of sequential optimization techniques to explicitly par-
allel code and the development of new optimizations that take advantage of the parallel
structure of these programs. In this paper we give a first step towards that goal. We
present an analysis framework for explicitly parallel programs with mutual exclusion
synchronization and interleaving memory semantics based on the Static Single Assign-
ment form. We adapt sequential optimization techniques to work on explicitly parallel
programs and develop new optimization techniques that take advantage of the parallel
and synchronization structure of these programs. Specifically, we

1. extend the concurrent control flow graph used by Lee et al. [15] (Section 4.1)
and show how to detect mutual exclusion synchronization in a parallel program
(Section 4.3),

2. introduce the CSSAME1 form, an extension to the CSSA form [15] to account for
the semantics introduced by mutual exclusion synchronization (Section 6),

3. show how CSSAME can improve the effectiveness of the Concurrent Sparse Con-
ditional Constant (CSCC) propagation algorithm [15] (Section 7.1),

4. adapt a sequential dead code elimination algorithm to work on explicitly parallel
programs (Section 7.2),

5. introduce new optimization techniques for explicitly parallel programs: lock inde-
pendent code motion (Section 7.3), mutex body localization (Section 7.4), single-
writer multiple-readers code motion (Section 7.4.1), code sinking (Section 7.5),
lock picking (Section 7.6) and lock partitioning (Section 7.7).

1Pronounced sesame.

2 RELATED WORK 3

2 Related work

Recent developments in this area have started to uncover the potential benefits of anal-
ysis and optimization techniques for explicitly parallel programs. Shasha and Snir pro-
posed an analysis technique called cycle detection that allows re-ordering of memory
references in a program to increase concurrency while maintaining the sequential con-
sistency dictated by the code [20]. Krishnamurthy and Yelick extended cycle detection
analysis to incorporate additional information from synchronization in the program [13].
Although their work supports post-wait, barrier and mutual exclusion synchronization,
they only focus on optimizing remote memory references on a specific class of explicitly
parallel programs.

Grunwald and Srinivasan developed data-flow equations to compute reaching def-
inition information on explicitly parallel programs with cobegin/coend parallel
sections [7]. However, their work can only tolerate the weak memory consistency
model dictated by the PCF Fortran standard. Parallel sections are required to be data
independent; memory updates are done at specific points in the program using the
copy-in/copy-out model. Their work only deals with event-based synchroniza-
tion using set and wait operations. The same memory and synchronization model is
used by the Static Single Assignment (SSA) framework developed by Srinivasan, Hook
and Wolfe for explicitly parallel programs [22].

Stronger memory models have also been considered. Knoop, Steffen and Vollmer
developed a bitvector analysis framework for parallel programs with shared memory and
interleaving semantics [12]. They show how to adapt standard optimization algorithms
to their framework. However, they do not incorporate synchronization operations in
their analysis. Lee, Midkiff and Padua propose a Concurrent SSA framework (CSSA)
for explicitly parallel programs and interleaving memory semantics [15]. Their work
only considers event-based synchronization operations and imposes some restrictions
on the input program.

Despite the growing interest in this area, existing techniques are still in their prim-
itive stages, especially when compared to their sequential counterparts. A major lim-
itation of most existing analysis and optimization techniques is the restricted knowl-
edge about synchronization in the program. With the exception of Krishnamurthy and
Yelick's work, existing analysis frameworks only recognize a subset of event-based syn-
chronization (i.e., set and wait, usually with no clear). We see this as a severe
limitation because event synchronization can only be used to describe a small class of
parallel algorithms. Our work extends Lee et al.'s to incorporate mutual exclusion anal-
ysis for explicitly parallel programs.

4 MUTUAL EXCLUSION ANALYSIS 4

3 Language model

There are a variety of models of parallelism, memory semantics and synchronization
methods. In this section we define the model we use and the assumptions we make
about the underlying execution environment.

An explicitly parallel program starts as a single thread of computation. New threads
are logically created when execution reaches a parallel section. Although the creation,
placement and scheduling of threads is not significant for our research, the compiler
must be able to recognize parallel sections in the code. In this paper we assume the
following:

1. Parallelism. The focus of this paper is task-parallel programs. Parallel sections
are specified using the cobegin/coend construct (Figure 1).

2. Memory model. Threads run in a shared address space with interleaving semantics
(i.e., updates to shared memory made by one thread are immediately visible to
other threads). Programs share memory via shared variables. Pointers, arrays and
aliasing issues will not be considered in this paper.

3. Synchronization. Both event-based and mutual exclusion synchronization are sup-
ported. Mutual exclusion is used to serialize references to shared variables in the
program. We will assume, without loss of generality, that programmers use stan-
dard lock and unlock instructions to serialize access to shared variables. Event
synchronization is supported using set and wait instructions. All the support
for event synchronization is derived from the algorithms in [14].

4 Mutual exclusion analysis

In an explicitly parallel program with interleaving memory semantics, the use of a
shared variable v can be reached by any definition of v in another concurrent thread.
However, mutual exclusion may prevent some variable definitions from being visible in
other threads. For example, consider the program in Figure 12. If we ignore the mutual
exclusion regions created by the locks we will conclude that the definition for variable
a in thread T� can reach both uses of a in thread T�. However, the synchronization used
in the program serializes the references to a so that the assignment to a in T� cannot
reach the second use of a in T�. Therefore, the call to function g�� in T� will always be
executed with a � �.

2Unless otherwise stated, the example programs presented in this paper are to be considered complete
programs.

4 MUTUAL EXCLUSION ANALYSIS 5

cobegin �� Begin concurrent execution ��
T�: begin �� Launch thread T� ��

if (b � 0) f
b = 3 � a;

g
lock(L);
a = a + b;
unlock(L);

end

T�: begin �� Launch thread T� ��

f(a);
lock(L);
a = 3; �� This kills the assignment to a in T� ��

b = b + g(a); �� Variable a is always 3 ��
unlock(L);

end
coend

Figure 1: Mutual exclusion can reduce data dependencies across threads in a parallel program.

The following sections describe the data structures and algorithms used to identify
mutual exclusion synchronization in an explicitly parallel program. Section 4.1 de-
scribes concurrent control flow graphs and Section 4.3 describes the algorithm used to
identify mutual exclusion synchronization.

4.1 Concurrent Control Flow Graph

We extend the Concurrent Control Flow Graph (CCFG) [15] to represent mutual exclu-
sion synchronization. In particular, we incorporate undirected mutex synchronization
edges which represent mutual exclusion constraints but do not enforce a specific execu-
tion order. We also extend the concept of concurrent basic block so that each lock and
unlock operation is represented by a separate node in the CCFG. Mutex synchroniza-
tion edges join lock and unlock nodes that operate on the same variable in concurrent
threads. An example of a CCFG is shown in Figure 2 (some conflict edges have been
removed to improve readability).
Definition 4.1 (shared variable conflicts) Two variable references in different threads
conflict if both reference the same variable, one of them is a write reference and the
threads can execute concurrently. �

Definition 4.2 (concurrent basic block) A concurrent basic block is a basic block [1]
with the following additional properties

1. Only the first statement of the block can be a wait statement or contain a use of
a conflicting variable.

4 MUTUAL EXCLUSION ANALYSIS 6

a = 0;
b = 0;
cobegin

T�: begin
lock(L);
a = 5;
b = a + 3;
if (b � 4) f

a = a + b;
g
x = a;
unlock(L);

end

T�: begin
lock(L);
a = b + 6;
y = a;
unlock(L);

end
coend
print(x, y);

cobegin

lock(L);

a = 5;

b = a + 3;

y = a;

UD(a)

if (b > 4)

a = a + b;

endif

DU(a)

x = a;

unlock(L);

lock(L);

coend

a = b + 6;
DU(b)

unlock(L);

EntryG

ExitG

begin0 begin1

end0 end1

Control flow edge

Conflict edge

Mutex edge

Figure 2: A parallel program and its Concurrent Control Flow Graph.

2. Only the last statement of the block can be a set statement or contain a definition
of a conflicting variable.

3. The following synchronization operations will be the only statement in the block:
lock and unlock.

4. The following instructions will be the only statement in the block: cobegin and
coend. �

Definition 4.3 (conflicts between concurrent basic blocks) Two concurrent basic blo-
cks a and b in different threads conflict if they can execute concurrently and contain
conflicting variable references. �

Definition 4.4 (Concurrent Control Flow Graph) A Concurrent Control Flow Graph
(CCFG) is a directed graph G � hN� E� EntryG� ExitGi such that:

1. N is the set of nodes in the graph. Each node in N corresponds to a concurrent
basic block.

2. EntryG and ExitG are the unique entry and exit points of the program (nodes
labeled Entry and Exit in Figure 2).

4 MUTUAL EXCLUSION ANALYSIS 7

3. E � Ect

S
Esy

S
Ecf is the set of edges in the graph such that:

(a) Ect is the set of control flow edges. These edges have the same meaning as
in a sequential Control Flow Graph (solid lines in Figure 2).

(b) Esy � Emutex

S
Edsync is the set of synchronization edges. Two different

kinds of synchronization are recognized:

i. Emutex is the set of mutex synchronization edges representing mutual
exclusion constraints. Mutex synchronization edges are undirected edges
between related lock and unlock operations (dashed lines in Figure
2).

ii. Edsync is the set of directed synchronization edges representing order-
ing constraints. These edges join related set and wait statements in
different threads.

(c) Ecf is the set of conflict edges. Conflict edges are directed edges that join
any two concurrent basic blocks that conflict. The labels on conflict edges
represent the memory operations done at each end of the edge. Each label
has the format TH(v). The first letter (T) represents the memory operation
done at the tail of the edge. The second letter (H) represents the operation
done at the head of the edge. The third letter (v) represents the variable
referenced by both operations. Memory operations include definitions (D)
or uses (U) (dotted lines in Figure 2). �

Given a concurrent control flow graph G � hN� E� EntryG� ExitGi and two nodes
x� y � G, we will use the following concepts in subsequent sections:
Definition 4.5 (entry and exit nodes) Given a thread T , beginT is the entry node for
T , endT is the exit node for T , cobeginT is the cobegin node for the innermost co-
begin/coend structure containing T , and coendT is the corresponding coend node
for cobeginT . �

Definition 4.6 (control path) A path from x to y is a control path if it only contains
edges in Ect. �

Definition 4.7 (dominance) Node x dominates node y, denoted xDOM y, if every con-
trol path from EntryG to y contains x. Node x is in the set of dominators of y, denoted
x � DOM �y�. Node y is in the set of nodes dominated by x, denoted y � DOM���x�.

�

Definition 4.8 (strict dominance) Node x strictly dominates node y, denoted x SDOM

y, if x DOM y and x �� y. Node x is in the set of strict dominators of y, denoted
x � SDOM �y�. Node y is in the set of nodes strictly dominated by x, denoted y �
SDOM���x�. �

4 MUTUAL EXCLUSION ANALYSIS 8

Definition 4.9 (post-dominance) Node y post-dominates node x, denoted y PDOMx,
if every control path from x toExitG contains y. Node y is in the set of post-dominators
of x, denoted y � PDOM �x�. Node x is in the set of nodes post-dominated by y,
denoted x � PDOM���y�. �

Definition 4.10 (strict post-dominance) Node y strictly post-dominates node x, de-
noted y SPDOMx, if y PDOMx and x �� y. Node y is in the set of strict post-
dominators of x, denoted y � SPDOM �x�. Node x is in the set of nodes strictly
post-dominated by y, denoted x � SPDOM���y�. �

4.2 Building the concurrent control flow graph of a program

The algorithm used to build the concurrent control flow graph for an explicitly parallel
program P consists of three phases: placement of control structures, conflict analysis
and synchronization analysis. The following sections describe each of these phases in
detail.

Algorithm 4.1 Build a concurrent control flow graph.
INPUT: An explicitly parallel program P
OUTPUT: The concurrent control flow graph G � hN� E� EntryG� ExitGi for P

1: Build maximal basic blocks and control edges (Section 4.2.1).
2: Add conflict edges (Algorithm 4.3).
3: Add synchronization edges (Algorithm 4.4).

4.2.1 Control structures

Graph nodes and control edges are created using a slightly modified version of a standard
algorithm to build control flow graphs. The basic algorithm is an extension to the control
flow graph building algorithm provided by the Machine SUIF CFG library [10]. The
modification allows the original algorithm to recognize the cobegin/coend construct.
The algorithm is conceptually very simple and it will not be discussed further in this
document.

This step builds maximal basic blocks [1], not concurrent basic blocks. Subsequent
phases of the algorithm will split the maximal basic blocks to create concurrent basic
blocks and incorporate conflict and synchronization edges to the base graph.

4.2.2 Conflict analysis

This phase traverses the graph looking for nodes that can execute concurrently and ac-
cess the same memory location in a conflicting manner. These nodes are marked con-

4 MUTUAL EXCLUSION ANALYSIS 9

flicting and split up to create concurrent basic blocks. Finally, conflict edges are created
to join the conflicting nodes (Algorithm 4.3).

When analyzing two nodes a and b for conflicts or synchronization we must deter-
mine whether a and b belong to concurrent threads. That is, barring synchronization
and control flow constraints, could a and b execute concurrently? This information is
used to avoid placing conflict and synchronization edges across non-concurrent threads.
Algorithm 4.2 computes the concurrency relation. The algorithm assumes the existence
of two data structures:

1. Thread�n� is the thread that contains node n. Threads are assumed to have a
unique id computed automatically by the compiler. The sequential parts of the
program are always executed by thread �.

2. ParAncestors�n� is the set of cobegin nodes that can be reached in a back-
wards traversal of the dominator tree from node n to the entry node of the CCFG.

Algorithm 4.2 Concurrency relation.
INPUT: Two concurrent basic blocks a� b � G � hN� E� EntryG� ExitGi.
OUTPUT: TRUE if a and b can execute concurrently, FALSE otherwise.

1: function conc�a� b�
2: /* If a or b are in a sequential region, they cannot be concurrent. */
3: if Thread�a� � � �Thread�b� � � then
4: return FALSE

5: end if
6:
7: /* If a and b have a common cobegin node in their */
8: /* ParAncestors set and they are on different threads */
9: /* and they are not the same node, they are concurrent. */
10: if �n � ParAncestors�a� s.t. n � cobegin � a �� b � Thread�a� �� Thread�b� then
11: return TRUE

12: end if
13:
14: /* None of the previous tests succeeded. The nodes are not concurrent. */
15: return FALSE

4.2.3 Synchronization analysis

This phase adds synchronization edges according to Definition 4.4 (Algorithm 4.4). The
algorithm uses the same data structure ParAncestors�n� used in algorithm 4.2.

4.3 Mutex structures

The concepts and algorithms described in this section are based on the non-concurrency
analysis techniques developed by Masticola and Ryder [16]. Our work differs from
theirs in the following aspects:

4 MUTUAL EXCLUSION ANALYSIS 10

Algorithm 4.3 Conflict analysis.
INPUT: An incomplete concurrent control flow graph G � hN� E� EntryG� ExitGi with no conflict edges.
OUTPUT: The CCFG G given as input with conflict edgesEcf added.

1: Ecf � �
2: foreach a � N do
3: foreach b � N do
4: if conc�a� b� � TRUE � a and b conflict then
5: Ecf � Ecf

S
f�a� b�g

6: end if
7: end for
8: end for
9: foreach �a� b� � Ecf do
10: Split blocks a and b to comply with definition 4.2.
11: end for

Algorithm 4.4 Synchronization analysis.
INPUT: An incomplete concurrent control flow graph G � hN� E� EntryG� ExitGi with no synchronization edges.
OUTPUT: The graphG with synchronization edgesEsy � Emutex

S
Edsync added.

1: Emutex � �
2: Edsync � �

3:
4: /* Join related locks and events. */
5: foreach a � N do
6: foreach b � N do
7: if conc�a� b� � TRUE then
8: if a � lock�l� � b � unlock�l� then
9: Emutex � Emutex

S
f�a� b�g

10: else if a � set�s� � b � wait�s� then
11: Edsync � Edsync

S
f�a� b�g

12: end if
13: end if
14: end for
15: end for
16:
17: Esy � Emutex

S
Edsync

4 MUTUAL EXCLUSION ANALYSIS 11

� Our analysis targets locks instead of binary semaphores.

� Our analysis gathers data flow information for the purposes of program optimiza-
tion instead of deadlock detection.

� Even though the notation is similar, there are differences in the definitions and
the algorithms used. In particular, we use a simpler notion of mutex body that
is not based on the concept of strict interval defined by Masticola in [17]. Strict
intervals require other structural conditions needed for deadlock analysis. For
instance, strict intervals do not include ambiguous or illegal mutex bodies. If at
the end of the mutex analysis there is at least one unmatched lock operation
for a lock variable L, the whole set of mutex bodies for L will be discarded. In
our case, we allow mutex structures with ill-formed mutex bodies. Our data-flow
analysis will still be correct because illegal mutex bodies in a mutex structure will
not be considered when reducing data dependencies. Our analysis algorithms only
ignore illegal mutex bodies, not the whole mutex structure.

� We do not consider mutex bodies that contain parallel structures and mutex bodies
that are not completely contained in a single thread body. Such mutex bodies will
be ignored and not affected by our optimizations.

Definition 4.11 (mutex body) Given a CCFG G � hN� E� EntryG� ExitGi, a syn-
chronization variable L and two nodes n� x � G, the set BL�n� x� � SDOM���n�

T

PDOM���x� is a mutex body for L if the following conditions are met:

1. n � lock(L) and x � unlock(L),

2. n DOMx and x PDOMn, and

3. �a � BL�n� x� such that a �� n � a �� x � a cannot be any of the following:
lock(L), unlock(L), cobegin or coend.

A mutex body defines a single-entry, single-exit region of the graph delimited by
nodes n and x. The mutex body includes all the nodes strictly dominated by n and post-
dominated by x (i.e., node n is not included in BL�n� x�). Notice that this definition
may not account for all possible mutual exclusion sections in the code. For instance,
the code fragment in Figure 3 will not be classified as a mutex body because the lock
operations are not guaranteed to execute (i.e., the region does not have a unique entry
and a unique exit point). In this particular case, more detailed analysis might reveal
that both conditionals have the same value for every possible execution of the program.
However, we currently do not deal with these ambiguously determined mutex bodies,
but instead our compiler will issue a warning message when processing the code in
Figure 3.

4 MUTUAL EXCLUSION ANALYSIS 12

if (cond�) f lock(L); g
statements;
if (cond�) f unlock(L); g

Figure 3: An ambiguous mutex body.

Definition 4.12 (mutex structure) A mutex structure for a synchronization object L,
denoted ML, is the set of all mutex bodies BL�n� x� in the program. �

Definition 4.13 (pure mutex structure) A mutex structureML is pure if for every lock-
(L) node n there exists an unlock(L) node x such that n and x are a mutex body for
L. Otherwise, the mutex structure ML is impure. �

Algorithm 4.5 returns the set of all the mutex structures in an explicitly parallel
program. There are four main steps in the algorithm:

1. Lines 1–11 traverse the CCFG looking for all the lock and unlock nodes. Two
sets are associated with each lock variable Li, the set of nodes that lock Li (plocki)
and the set of nodes that unlock Li (punlocki). This step complies with condition 1
of Definition 4.11. This step can be computed in O�m � me� time, where m is
the number of lock variables used in the program and me is the number of lock
and unlock nodes in the CCFG.

2. Lines 12–14 call two standard algorithms to build the dominator and post-dominator
trees for G [9]. These trees are required to determine dominator information
later on. The computation of dominator and post-dominator trees can be done
in O�jEctj� [9].

3. Lines 15–24 traverse the lock and unlock sets for each variable Li looking for
pairs of nodes that comply with condition 2 of Definition 4.11. This finds all the
pairs of nodes �n� x� such that n DOMx and x PDOMn. Notice that this step
might produce illegal mutex bodies. For instance, consider the following code
fragment:

�p�� lock(L);
� � �
�p�� unlock(L);
� � �
�p�� lock(L);
� � �
�p�� unlock(L);

The code only defines two distinct mutex bodies �p�� p�� and �p�� p��. However,
this step will identify a third mutex body, �p�� p��. The extra mutex body �p�� p��
will be removed by the next step. This step can be computed in O�m�me�� time.

4 MUTUAL EXCLUSION ANALYSIS 13

Algorithm 4.5 Identification of mutex structures.
INPUT: A CCFG G � hN� E� EntryG� ExitGi, a set L � fL�� L�� � � � � Lmg containing all the lock variables used in the

program and a set Nme containing all the nodes that contain a lock or an unlock instruction.
OUTPUT: A set of mutex structuresM � fM��M�� � � � �Mmg whereMi is the set of mutex bodies for lock variable L i.

1: /* Find nodes in G that lock and unlock eachL i. */
2: foreach lock variableLi do
3: foreach n � Nme do
4: if n � lock�Li� then
5: add n to plocki
6: end if
7: if n � unlock�Li� then
8: add n to punlocki

9: end if
10: end for
11: end for
12: /* Build the dominator and post-dominator trees for G. */
13: call buildDomTree(G)
14: call buildPDomTree(G)

15: /* Find candidate mutex bodies. */
16: foreach lock variableLi do
17: foreach n � plocki do
18: foreach x � punlocki do
19: if n � DOM �x� and x � PDOM �n� then
20: add �n�x� to the set of candidatesM i

21: end if
22: end for
23: end for
24: end for
25: /* Remove illegal mutex bodies from eachM i. */
26: foreach �n� x� �Mi do
27: foreach nodem such that (n SDOMm) and (x SPDOMm) do
28: if (m � lock�Li�) or (m � unlock�Li�) or (m � cobegin) or (m � coend) then
29: remove �n� x� from Mi

30: end if
31: end for
32: /* Check if Mi is pure or impure. If all the lock operations for Li */
33: /* form a mutex body then M i is pure. */
34: if jplocki j = jpunlocki j = jMij then
35: pure�Mi� � TRUE

36: else
37: pure�Mi� � FALSE

38: end if
39: end for
40: M � fM��M�� � � � �Mmg
41: return M

5 THE CSSA FORM 14

4. Lines 25–32 enforce condition 3 of Definition 4.11. That is, it removes any body
found by the previous step that contains lock or unlock nodes for the same
variable (other than the entry and exit nodes for the body). Notice that the mutex
body is completely defined by the pair of nodes �n� x�. All we have to do to
determine if a node a � G belongs to the mutex body is check whether n SDOM a

and x SPDOM a. This step can be computed in O�m�mbsz �, where mbsz is the
average number of nodes in each mutex body of the program.

In general, we expect that the number of lock variables (m), the number of lock and
unlock operations (me) and the size of mutex bodies (mbsz) to be significantly smaller
than the number of control edges (jEctj) and nodes in the program (jN j). Therefore,
the execution time of this algorithm should be dominated by the computation of the
dominator and post-dominator trees.
Lemma 4.1 (correctness of the mutex structure algorithm) The set M returned by
Algorithm 4.5 contains mutex structures for every lock variable in the program. �

PROOF The algorithm follows the definition as described previously in steps 1–4. �

5 The CSSA form

A program in SSA form has the property that each use of a variable is reached by ex-
actly one definition. When the flow of control causes more than one definition to reach
a particular use, a � function is introduced to resolve the ambiguity. The � function
merges all the incoming reaching definitions to create a new definition for the variable
[6]. In a parallel program, the single assignment property is disrupted by the presence
of concurrent definitions to the variable. The CSSA framework solves this ambiguity
with � functions. Each � function has n � � arguments; the unique incoming control
flow edge and the n incoming conflict edges.

This section describes the algorithms needed to build the CSSA form as described
in [15]. Algorithm 5.1 computes the CSSA form of a program. The algorithms to
place � functions and build factored use-def chains compute the sequential SSA form
as described in [24]. Note that all the algorithms in this section are unmodified versions
of the original references. They are only included to simplify the discussion of the
complexity analysis of the CSSAME algorithm.

5.1 Computing guaranteed partial execution ordering

For each node n in the CCFG of the program, Algorithm 5.2 computes prec�n�, the
set of nodes guaranteed to execute before n. This information is used when placing �

functions to avoid adding an argument when two nodes are guaranteed to execute in a
specific order.

5 THE CSSA FORM 15

Algorithm 5.1 CSSA algorithm.
INPUT: An explicitly parallel program P and its CCFG
OUTPUT: The program P in CSSA form

1: Find guaranteed execution ordering using Algorithm 5.2.
2: Build sequential SSA form using Algorithms 5.3 and 5.4.
3: Place � functions using Algorithm 5.5.

Algorithm 5.2 Guaranteed Partial Execution Ordering.
INPUT: A Parallel Flow Graph G � hN� E� EntryG� ExitGi
OUTPUT: prec�n� for each node n � N

1: /* Fold loop bodies into a representative node. */
2: /* Loop�n� is a function that returns the set of nodes in a loop whose header is n. */
3: Build a sub-graph of G such that:

N � � N � fn � m�n � N � n � Loop�m��m is a loop header�m �� ng
E� � �Ect 	 Edsync�� f�m�n� � m�n � N � �m �� N � � n �� N ��g

4: foreach n � N � do
5: prec�n� � �
6: end for

7: Initialize work queueQ with the successors of EntryG
8: while Q �� � do
9: Remove some node n fromQ
10: precold � prec�n�
11: if n is coend then
12: precct�n� �

S
�m�n��Ect

prec�m�	 fng

13: else
14: precct�n� �

T
�m�n��Ect

prec�m�	 fng

15: end if

16: precsy �
T
�m�n��Edsync

prec�m�	 fng

17: prec�n� � precct�n� 	 precsy�n�

18: if precold �� prec�n� then
19: Put control flow and synchronization successors of n in Q
20: end if
21: end while

22: foreach n � N � N � do
23: /* header�n� is a function that returns the header node */
24: /* of the outermost loop enclosing n */
25: prec�n� � prec�header�n��
26: end for

5 THE CSSA FORM 16

5.2 Computing the sequential SSA form

The CSSA algorithm calls for the computation of the sequential SSA form for the pro-
gram. We compute the sequential SSA form using factored use-def chains [24]. Al-
gorithm 5.3 adds � functions to the graph and Algorithm 5.4 builds the use-def chains
that link every variable use to its unique control reaching definition. These algorithms
assume the existence of the following data structures:

1. child�n� is the set of dominator children for node n.

2. succ�n� is the set of successors of node n.

3. whichPred�n � m� is an index telling which predecessor of m corresponds to
the control edge from n.

4. DF �n� is the dominance frontier for node n � G.

5. D�v� is the set of nodes in G that contain a definition for variable v.

6. Symbols is the set of variables used in the program.

Algorithm 5.3 Place � functions.
INPUT: A Parallel Flow Graph G � hN� E� EntryG� ExitGi
OUTPUT: Graph G with � functions added at join nodes

1: foreach n � N do
2: inWork�n� �

3: added�n� �

4: end for

5: workList � �

6: foreach v � Symbols do
7: foreach n � D�v� do
8: workList� workList 	 fng
9: inWork�n� � v
10: end for

11: while workList �� � do
12: Remove some node n from workList
13: foreach w � DF �n� do
14: if added�w� �� v then
15: Add � function for v at w
16: added�w� � v
17: if inWork�w� �� v then
18: workList� workList 	 fwg
19: inWork�w� � v
20: end if
21: end if
22: end for
23: end while
24: end for

5 THE CSSA FORM 17

Algorithm 5.4 Build FUD chains.
INPUT: A Parallel Flow Graph G � hN� E� EntryG� ExitGi with � functions added
OUTPUT: The graph with factored use-def chains

1: foreach v � Symbols do
2: currDef�v� �

3: end for
4: call search�EntryG�

5: procedure search�x�
6: foreach variable use or def or � function r � x do
7: m� variable referenced at r
8: if r is a use then
9: chain�r� � currDef�m�
10: else if r is a def or a � function then
11: saveChain�r� � currDef�m�
12: currdef�m� � r
13: end if
14: end for

15: foreach y � succ�x� do
16: j � whichPred�x � y�
17: foreach � function r in y do
18: m� variable referenced at r
19: �� chain�r�	j
 � currDef�m�
20: end for
21: end for

22: foreach y � child�x� do
23: call search�y�
24: end for

25: foreach variable use or def or � function r � x in reverse order do
26: m� variable referenced at r
27: if r is a def or a � function then
28: currDef�m� � saveChain�r�
29: end if
30: end for

5 THE CSSA FORM 18

5.3 Placing � functions

The final phase of the CSSA algorithm traverses the graph placing � functions at every
node that contains one or more conflicting variable uses. Algorithm 5.5 adds the required
� functions to the graph.

Algorithm 5.5 Place � functions.
INPUT: A Parallel Flow Graph G � hN� E� EntryG� ExitGi with FUD chains
OUTPUT: The graphG with � functions added

1: foreach b � N do
2: foreach DU conflict edge e � �a� b� do
3: v � variable defined in a
4: if b does not have a � function for v then
5: Insert a new � function for v in b
6: u� conflicting use of v in b
7: ��v�	�
� chain�u�
8: end if
9: if n �� prec�s� then
10: d� conflicting def of v in s
11: append d to ��v�
12: end if
13: end for
14: end for

5.4 Time complexity of the CSSA algorithm

The computation of the CSSA form is done in three phases. The first phase computes
guaranteed partial execution ordering for all the nodes in the graph (Algorithm 5.2. In
the worst case, every node will have to be compared to every other node in the graph.
Hence, computing partial orderings can be done in O�jN j��.

The second phase computes the sequential SSA form for the program (Algorithms
5.3 and 5.4). This algorithm computes the SSA form in O�r�� time, where r is the
maximum of the number of nodes (jN j), number of control edges (jEctj), number of
assignments and number of variable references in the program [3, 6]. Note that it is
possible to place � terms using the linear time algorithms in [11] and [21]. We use the
algorithms from [24] solely because they are easier to implement.

The third phase of the computation of the CSSA form places � functions at the con-
current join nodes of the graph [15]. By examining the � placing algorithm (Algorithm
5.5) we conclude that this phase can be computed in O�jN j�� time.

In conclusion, the CSSA form can be computed in O�jN j�� time when using the
linear time algorithms for placing � functions. If the traditional � placing algorithms
are used, then the CSSA form can be computed in O�r�� time. We shall use the latter
bound for the remainder of this document.

6 THE CSSAME FORM 19

6 The CSSAME form

Mutual exclusion analysis identifies memory interleavings that are not possible at run-
time due to the synchronization structure of the program. This analysis allows the com-
piler to reduce the number of incoming conflict edges to nodes in the CCFG that use
shared variables. This section describes our refinements to the CSSA framework [15].
We call this new form CSSAME (Concurrent SSA with Mutual Exclusion synchroniza-
tion). While CSSA only recognizes set/wait synchronization, CSSAME extends it
to include lock/unlock synchronization. Note that although we include lock vari-
ables in our analysis, for clarity of presentation we will not use SSA numbering for lock
variables in the example programs. Since lock operations typically read and write the
lock and unlock operations only write the lock, an implementation should create �
functions for every lock node in the graph.

The key observation that gives rise to the CSSAME form is that � functions inside
mutual exclusion sections might have one or more arguments for memory interleavings
that cannot occur at runtime. We have developed two sufficient conditions, called con-
secutive kills and protected uses, for the removal of arguments from � functions inside
mutex bodies. Both removal conditions can be easily implemented as predicates called
by the compiler when analyzing mutex bodies.

6.1 Consecutive kills

If a variable is defined more than once inside a mutex body b, the only definitions that
can be observed by other mutex bodies (in the same mutex structure) are those that reach
the exit node of b. This is because all the mutex bodies in the same mutex structure are
serialized and execute atomically. This situation is illustrated in Figure 4(a).
Definition 6.1 (reachability) Given a CCFG G, a definitionDv for a variable v reaches
node n � G if there is a control path from the node containing Dv to n such that there
is no other definition of v along that path [1]. �

Theorem 6.1 (consecutive kills) Let ML be a mutex structure for lock variable L. Let
DB
a be a definition for a shared variable a inside a mutex body BL�n� x� � ML. If DB

a

does not reach node x then DB
a can be removed from all the � functions in any other

mutex body B �
L�n

�� x�� �ML that have DB
a as an argument. �

PROOF Let UB�

a be any use of a in B�
L�n

�� x��. Let d be the node containing DB
a . Let

u be the node containing UB�

a . Since d and u are inside mutex bodies in the same
mutex structure they cannot execute concurrently. Therefore, for every execution of the
program that includes both mutex bodies there can only be two possible partial orderings
between them:

1. BL�n� x� executes to completion before B�
L�n

�� x��. Even though node d executes

6 THE CSSAME FORM 20

cobegin
T�: begin

lock(L);
a� = . . .
. . .
a� = . . .
unlock(L);

end

T�: begin
lock(L);
. . .
�� Definition a� cannot ��
�� reach this use. ��
a� = �(a�, a�, a�);
 a� = �(a�, a�);
. . . = a�;
unlock(L);

end
coend

(a) Consecutive kills

cobegin
T�: begin

lock(L);
. . .
a� = . . .
�� Definition a� protects further ��
�� uses of a in this mutex body. ��
a� = �(a�, a�);
 a� = �(a�);
. . . = a�;
unlock(L);

end

T�: begin
lock(L);
. . .
a� = . . .
unlock(L);

end
coend

(b) Protected uses

Figure 4: Removing memory conflicts.

before node u, the definition DB
a cannot reach UB�

a because it is always killed by
some other definition before it reaches the exit node of BL�n� x�.

2. B�
L�n

�� x�� executes to completion before BL�n� x�. Node u executes before node
d, therefore DB

a cannot reach UB�

a .

Since it is impossible for the definition DB
a to reach the use UB�

a then the argument
representing DB

a for the � function in UB�

a is not necessary. Therefore, it can be safely
removed and the DU(a) conflict edge between d and u can be eliminated from the
CCFG. �

6.2 Protected uses

The second conflict removal opportunity is for uses that cannot be affected by definitions
in other mutex bodies because they are protected by a local definition. Suppose that a
conflicting variable a is used inside a mutex body B but its control reaching definition
is inside B (Figure 4(b)). Since a is defined inside the mutex body, definitions made in
other mutex bodies are killed by the internal definition of a.
Definition 6.2 (upward exposure for mutex bodies) Given a mutex bodyB, a use UB

v

in B for a variable v is upward-exposed [1] from B if UB
v may use a definition outside

of B. �

6 THE CSSAME FORM 21

Theorem 6.2 (protected uses) Let ML be a mutex structure for lock variable L. Let
UB
a be a conflicting use for a shared variable a inside a mutex body BL�n� x� � ML. If

UB
a is not upward-exposed from BL�n� x� then the arguments for the � function for a

coming from any other mutex body B �
L�n

�� x�� �ML can be removed. �

PROOF Let DB�

a be a definition for variable a in mutex body B �
L�n

�� x��. Let d be the
node in B�

L�n
�� x�� that contains the definition DB�

a . Let u be the node in mutex body
BL�n� x� that contains the use UB

a . Since d and u are inside mutex bodies in the same
mutex structure they cannot execute concurrently. Therefore, for every execution of the
program that includes both mutex bodies there can only be two possible partial orderings
between them:

1. BL�n� x� executes to completion before B�
L�n

�� x��. This means that node u exe-
cutes before node d, therefore DB�

a cannot reach UB
a .

2. B�
L�n

�� x�� executes beforeBL�n� x�. SinceUB
a is not upward-exposed fromBL�n� x�,

any definitions of a made before BL�n� x� starts executing are guaranteed to be
killed by some other definition inside BL�n� x�. Therefore, DB�

a cannot reach UB
a .

Since the definition DB�

a cannot reach the use UB
a then the argument representing

DB�

a for the � function in UB
a is not necessary. Therefore, it can be safely removed and

the DU(a) conflict edge between d and u can be eliminated from the CCFG. �

6.3 Modifying � functions inside mutex bodies

Using the properties of consecutive kills and protected uses inside mutex bodies, we can
now examine every mutex body of the program trying to remove arguments from each
of its � functions. Algorithm 6.1 traverses all the mutex bodies in the graph looking for
� functions to rewrite. There are three main steps to the algorithm:

1. Lines 1–6 traverse all the mutex bodies in the program. For each mutex body b, it
invokes the analysis routine in lines 7–27.

2. Lines 9–20 analyze all the � functions inside a mutex body b. For each � function,
each of its arguments d is analyzed for compliance with Theorems 6.1 and 6.2.

Checking for protected uses is a simple matter of checking whether the control
reaching definition for the � function is dominated by the mutex body's entry
node (since dominance and post-dominance information is already computed and
stored in bitvectors, this can be computed in essentially constant time).

Checking for consecutive kills can be done in O�jconfdefs j�� time, where the
value jconfdefs j represents the number of conflicting definitions made in the pro-
gram. To check if a definition d reaches the exit node of a mutex body we traverse

6 THE CSSAME FORM 22

the post-dominator tree for d looking for a definition that post-dominates d and
is post-dominated by the mutex body's exit node (i.e., we check whether there is
another definition d� in the path from d to the exit node that kills d).

3. Lines 21–25 remove any � functions with no arguments for conflicting references.

Examining the nesting structure of the � rewriting algorithm we conclude that the
total time complexity of the algorithm is O�m�mb�mbsz�j�j�jconfdefsj��, werem
is the number of lock variables in the program, mb is the total number of mutex bodies
in the program, mbsz is the average number of nodes that each mutex body contains, j�j
is the number of � functions in the program and jconfdefsj is the number of conflicting
definitions in the program. A worst case scenario with a conflicting definition in every
node and a conflicting use in every node will yield a time complexity of O�jN j��.
Lemma 6.1 (correctness of the � rewriting algorithm) The only arguments from �

functions removed by Algorithm 6.1 represent memory interleavings that cannot occur
at runtime. �

PROOF The algorithm only examines � functions inside mutex bodies. For each �

function found it checks all the arguments that come from other mutex bodies in the
same mutex structure. These are the only potential candidates for removal because they
represent memory references protected by the same lock (line 15).

If d complies with one of the two sufficient conditions given by Theorems 6.1 and
6.2 then it may be safely removed because the definition represented by d cannot reach
that particular use.

Finally, if after this analysis is done a � function p contains exactly one argument,
it must be the argument for the incoming control edge to the node because this is the
only argument that is never removed by Algorithm 6.1. Hence, this � function p can be
removed from the graph. Before removing p, the algorithm updates the use-def pointer
of the use affected by p (chain(u)) so that it points to p's control reaching definition (line
23). �

6.4 Computing the CSSAME form

Algorithm 6.2 transforms an explicitly parallel program P to its CSSAME form. The
algorithm is a direct extension of the CSSA algorithm [15]. Steps 2 and 4 incorporate
the modifications needed to handle mutual exclusion synchronization.

The algorithm starts by building the concurrent control flow graph for P using the
algorithms described in Section 4.2. Once the CCFG has been built, the algorithm cre-
ates the mutex structures for the mutual exclusion synchronization used in the program.
The next step builds the CSSA form using the algorithms described in Section 5. Once
the CSSA form has been computed, � functions are modified using Algorithm 6.1.

6 THE CSSAME FORM 23

Algorithm 6.1 Rewrite � functions.
INPUT: A CCFG G � hN� E� EntryG� ExitGi in CSSA form
OUTPUT: The graphG in CSSAME form

1: /* Traverse all the mutex bodies in the graph looking for � functions to rewrite. */
2: foreach lock variableLi do
3: foreach mutex body b �MutexStruct�Li� do
4: call rewrite�b�
5: end for
6: end for

7: /* Examine all the � functions in b. */
8: procedure rewrite�b�
9: foreach node n � b do
10: foreach � function p � n do
11: v is the variable referenced by p
12: /* If an argument of the � function p complies with Theorems 6.1 or 6.2, */
13: /* then we may safely remove the argument from p function. */
14: foreach argument d of p coming from a conflict edge do
15: if d comes from another mutex body b � �MutexStruct�b� then
16: if (the use of v is not upward-exposed from b) or (d does not reach the exit node of b �) then
17: removed from p
18: end if
19: end if
20: end for

21: /* If p is left with only one argument, remove p. */
22: if p has only one argument then
23: chain�u� � first argument of p
24: remove p from n
25: end if
26: end for
27: end for

Algorithm 6.2 CSSAME algorithm.
INPUT: An explicitly parallel program P
OUTPUT: The program P in CSSAME form

1: Build the CCFG G for P using Algorithm 4.1.
2: Identify mutex structures using Algorithm 4.5.
3: Compute the CSSA form for the graph using Algorithm 5.1.
4: Rewrite � functions using Algorithm 6.1.

7 OPTIMIZING EXPLICITLY PARALLEL PROGRAMS 24

Theorem 6.3 (correctness of the CSSAME algorithm) A program in CSSAME form
is also in CSSA form and retains the single assignment property: every use is reached
by exactly one definition. �

PROOF The CSSAME form is a direct extension of the CSSA form. The computation of
the CSSA form is done using existing algorithms known to be correct [14, 24]. Lemma
6.1 proves that the only transformation done to the underlying CSSA form does not alter
the single assignment property. Therefore, a program in CSSAME form is also in CSSA
form and retains the single assignment property. �

6.5 Time complexity of the CSSAME algorithm

Computing the CSSAME form does not increase the complexity of the CSSA algorithm
significantly. The two major modifications to the original algorithm are steps 2 (compu-
tation of mutex structures) and 4 (rewriting of � functions). As discussed in Section 4,
the identification of mutex structures can be done in O�jEctj� time. The CSSA form is
computed in O�r�� time, where r is the maximum of the number of nodes (jN j), num-
ber of control edges (jEctj), number of assignments and number of variable references in
the program (Section 5.4). Finally, rewriting � functions can be done in O�jN j�� time.
Therefore, the CSSAME algorithm has a worst time complexity of O�jN j��.

7 Optimizing explicitly parallel programs

Using the CSSAME form, new optimizations opportunities are now available. This
section describes eight optimization techniques. The first two are adaptations of well-
known sequential optimizations: constant propagation (Section 7.1) and dead code elim-
ination (Section 7.2). The other six are new optimizations specifically designed for
explicitly parallel programs: lock independent code motion (Section 7.3), mutex body
localization (Section 7.4), single-writer multiple-readers code motion (Section 7.4.1),
code sinking (Section 7.5), lock picking (Section 7.6) and lock partitioning (Section
7.7).

7.1 Constant propagation

Lee et al. [15] adapted the sequential Sparse Conditional Constant propagation (SCC)
algorithm [23] to work with explicitly parallel programs; Concurrent Sparse Conditional
Constant propagation (CSCC). We will use the program in Figure 2 to show how our
extensions to the original CSSA framework can be used to improve the constant propa-
gation algorithm when mutual exclusion is taken into account. Figure 5(a) is the original
CSSA form without mutual exclusion extensions. Figure 5(b) shows the CSSAME form

7 OPTIMIZING EXPLICITLY PARALLEL PROGRAMS 25

built using the algorithms in Section 6. Notice that the CSSAME form has fewer � func-
tions than the CSSA form.

We now apply the CSCC algorithm to both the original CSSA form and the new
CSSAME form. Notice that since CSSA does not recognize the mutual exclusion se-
mantics of the program, the constant propagation algorithm cannot propagate any con-
stants. On the other hand, translating the program to CSSAME allows the compiler to
remove all the � functions for variable a in thread T�. The key factor that allows the
compiler to do this optimization is the assignment to variable a in thread T� immedi-
ately after the lock operation. Since all the statements in thread T� execute indivisibly,
uses of variable a after the first assignment cannot possibly be affected by definitions
of a made by thread T�. This allows the compiler to propagate constants inside thread
T� as if it were a sequential program. Figure 5(c) shows the results of applying the
CSCC algorithm using CSSAME. Notice that we also include the results of the constant
folding and unreachable code elimination. Both passes are possible using information
gathered by the constant propagation algorithm [23]. Since we have not modified the
CSCC algorithm, the optimizations performed are still correct as proved in [15].

7.2 Concurrent dead code elimination

Dead code refers to program statements that have no effect on the program output [6].
Although it is not common for the programmer to introduce dead code intentionally,
dead code may be generated by optimizing transformations [1]. We introduce the Con-
current Dead Code Elimination algorithm (CDCE), an extension of the dead code elim-
ination algorithm proposed by Cytron et al. [6] to work on explicitly parallel programs.
The algorithm starts by marking as dead all the statements of the program except those
that are assumed to affect the program output such as I/O statements or assignments to
variables outside the current scope. This initial set of live statements is used to seed the
work list maintained by the algorithm. The list is updated with every new statement that
is marked live. When the list empties, all the statements still marked dead are removed
from the program. A statement will be marked live if it satisfies one of the following
conditions [6]:

1. The statement is assumed to affect the program output. Examples include I/O
statements, calls to procedures that may have side effects, etc.

2. The statement contains a definition that reaches a use in a statement already
marked as live.

3. The statement is a conditional branch and there is a live statement that is control
dependent on this conditional branch.

7 OPTIMIZING EXPLICITLY PARALLEL PROGRAMS 26

a� = 0;
b� = 0;
cobegin

T�: begin
lock(L);
a� = 5;
a� = �(a�, a�);
b� = a� + 3;
if (b� � 4) f

a� = �(a�, a�);
a� = a� + b�;

g
a	 = �(a�, a�);
a
 = �(a	, a�);
x� = a
;
unlock(L);

end

T�: begin
lock(L);
b� = �(b�, b�);
a� = b� + 6;
a� = �(a�, a�, a�);
y� = a�;
unlock(L);

end
coend
a�� = �(a	, a�);
print(x�, y�);

(a) CSSA form

a� = 0;
b� = 0;
cobegin

T�: begin
lock(L);
a� = 5;

b� = a� + 3;
if (b� � 4) f

a� = a� + b�;
g
a� = �(a�, a�);

x� = a�;
unlock(L);

end

T�: begin
lock(L);
b� = �(b�, b�);
a� = b� + 6;

y� = a�;
unlock(L);

end
coend
a� = �(a�, a�);
print(x�, y�);

(b) CSSAME form

a� = 0;
b� = 0;
cobegin

T�: begin
lock(L);
a� = 5;

b� = 8;

a� = 13;

a� = 13;

x� = 13;
unlock(L);

end

T�: begin
lock(L);
b� = �(b�, b�);
a� = b� + 6;

y� = a�;
unlock(L);

end
coend
a� = �(a�, a�);
print(x�, y�);

(c) Constant propagation using the
CSSAME form

Figure 5: Constant propagation for the program in Figure 2.

7 OPTIMIZING EXPLICITLY PARALLEL PROGRAMS 27

The CDCE algorithm makes two modifications to the sequential algorithm:

� Condition 2 of Cytron et al.'s algorithm calls for the computation of reaching
definition information for each live statement of the program. The rationale is
that if statement s is live then any other statement that makes definitions with
reached uses in s must also be marked live. We incorporate reaching definition
and reached uses information in our CSSAME framework. We have adapted the
corresponding sequential algorithms [24] by incorporating additional tests for �
functions when traversing the SSA use-def chains.

� A cobegin statement will be marked live if there is at least one statement in
two or more of its threads marked live. If the transformation leaves only one
thread with live statements, the cobegin/coend construct will be replaced by
the sequential code corresponding to the live thread. Serializing this live thread
will cause all the synchronization operations in the thread to become dead. Hence,
they can be safely removed.

These modifications to the sequential DCE algorithm are necessary to account for
the concurrent activity in the program. Since reaching definition and reached uses in-
formation will be computed using both � and � functions, a live use u in one thread,
will keep concurrent definitions that reach u alive. Furthermore, the reduction of depen-
dencies made possible by CSSAME directly benefits the elimination of dead code in the
program. Most notably, the detection of consecutive kills inside a mutex body (Theorem
6.1) will help the detection of dead code inside mutex bodies.

To show the effects of CDCE, consider the program in Figure 2 after constant prop-
agation has been performed (Figure 5(c)). As can be seen in the example program, all
the assignments to variable a in T� are dead because they do not affect the output of
the program (i.e., they do not reach any other use of a in the program). On the other
hand, the assignment to b in T� cannot be considered dead because it is used by T�. Note
that a sequential dead code elimination algorithm would have erroneously marked the
assignment to b dead because it lacks the appropriate reaching definition information.
Figure 6(a) shows the result of a dead code pass on the code in Figure 5(c).
Theorem 7.1 The concurrent dead code elimination algorithm is correct. It only re-
moves code that has no effect on program output. �

PROOF We will show that the CDCE algorithm does not mark dead statements that are
really live. Since the sequential version is known to be conservative, we only need to
consider the two modifications we have introduced.

Let Dv be a definition of variable v in thread T�. Let Uv be a use of v in thread T�.
Assume that there is a conflict edge between the node containing Dv and the node hold-
ing Uv (i.e., the threads are concurrent and no synchronization prevents both memory

7 OPTIMIZING EXPLICITLY PARALLEL PROGRAMS 28

operations from executing concurrently). Since the reaching definition information in-
cludes definitions reaching through conflict edges, if the statement holding Uv is marked
live then the statement that containsDv will also be marked live. The second condition is
guaranteed by simply considering cobegin/coend structures as conditional branches.

�

The basic algorithm is the same, only the supporting data structures are different. In
particular, for each statement s, De�ners�s� returns a set of statements that define vari-
ables used by s. In the sequential case, this corresponds to the set of reaching definitions
of the variables used in s. In the parallel case, the computation of reaching definitions
must also follow use-def chains through � functions.

Algorithm 7.1 Concurrent reaching definitions.
INPUT: A CCFG G in CSSAME form
OUTPUT: The set of reaching definitions for each variable used in the program and the set of reached uses for each variable

defined in the program

/* marked �d� is used to mark visited definitions */
/* uses�d� is the set of uses reached by d */
foreach variable definition d in the program do
marked �d� �

uses�d�� �

end for
foreach variable use u in the program do
defs�u� � �
call followChain(chain(u), u)

end for

/* Recursively follow use-def chains set up by the CSSAME algorithm */
procedure followChain�d� u�
if marked �d� � u then

return
end if
marked �d�� u
/* If the reference d is a definition, add it to the set of */
/* reaching definitions for u, and add u to the set of reached uses of d */
if d is a definition for u then

Add d to defs�u�
Add u to uses�d�

end if

/* If the reference d is a � or a � function, follow the arguments */
if (d is a � function) or (d is a � function) then

foreach function argument j do
call followChain(j, u)

end for
end if

7.3 Lock independent code motion

Because of the sequential semantics imposed by mutual synchronization operations, it is
desirable to minimize the time spent inside mutex bodies in the program. To achieve this

7 OPTIMIZING EXPLICITLY PARALLEL PROGRAMS 29

b� = 0;
cobegin

T�: begin
lock(L);
b� = 8;
x� = 13;
unlock(L);

end

T�: begin
lock(L);
b� = �(b�, b�);
a� = b� + 6;
y� = a�;
unlock(L);

end
coend
print(x�, y�);

(a) CDCE for program in Figure 5(c).

lock(L);

unlock(L);

begin�

pre-mutex�

b� = ��b�� b��;
a� = b� � �;
y� = a�;

post-mutex�

end�

(b) Location of pre and post-
mutex nodes for thread T�.

b� = 0;
cobegin

T�: begin
x� = 13;
lock(L);
b� = 8;
unlock(L);

end

T�: begin
lock(L);
b� = �(b�, b�);
a� = b� + 6;
unlock(L);
y� = a�;

end
coend
print(x�, y�);

(c) Program from Figure 6(a) after LICM.

Figure 6: Concurrent Dead Code Elimination and Lock Independent Code Motion.

goal we can optimize the code inside mutex bodies as much as possible. Alternatively,
we can minimize the amount of code executed inside a mutex body by moving code that
does not need to be locked outside the mutex body. In this section we will explore ways
of performing safe code motion on mutex bodies.

To determine what code can be safely moved outside a mutex body we must find
those interior statements that are not affected by the presence of the lock. We call these
lock independent statements. This is similar to the concept of loop-invariant code for
standard loop optimization techniques [1]. However, the conditions that make a state-
ment lock independent are different than those that make it loop invariant. Loop invari-
ant computations are basically unaliased assignments with all their operands constant or
with reaching definitions outside the loop. Lock independent code computes the same
result whether it is inside a mutex body or not. For instance, a statement that references
variables private to the thread will compute the same value whether it is executed inside
a mutex body or not. This is also true if the statement references variables not modified
by any other concurrent thread in the program.
Definition 7.1 (lock independence) A statement inside a mutex body is lock indepen-
dent if the variables it references cannot be modified concurrently3. �

Although lock independence is a necessary condition for code motion, it is not suffi-
cient because the motion should also preserve all the control and data dependencies for

3Under some conditions it is possible to relax this restriction to allow concurrent modifications.

7 OPTIMIZING EXPLICITLY PARALLEL PROGRAMS 30

the statement. For instance, if the statement is inside a loop it cannot be moved out un-
less it is also loop invariant. To perform code motion we need to modify the flow graph
to add two special nodes that will act as landing pads for statements moved out of each
mutex body BL�n� x�. We call these two nodes the pre-mutex and post-mutex node. The
pre-mutex node is placed as an immediate strict dominator of n, while the post-mutex
node is placed as an immediate strict post-dominator of x (Figure 6(b)). Theorem 7.2
provides a sufficient condition for moving statements outside mutex bodies.
Theorem 7.2 (lock independent code motion) Let s be a statement inside a mutex
body BL�n� x�. Let Us be the set of variables used by s. Let Ds be the set of vari-
ables defined by s. Let a be the node containing s.

1. If (1) s is lock independent, (2) a dominates x, and (3) no statement between the
lock statement in n and s contains a data dependency with variables in Ds

S
Us,

then s can be moved to the pre-mutex node of BL�n� x�.

2. If (1) s is lock independent, (2) a dominates x, and (3) no statement between s and
the unlock statement in x contains a data dependency with variables inDs

S
Us,

then s can be moved to the post-mutex node of BL�n� x�. �

PROOF

1. To prove that it is safe to move s to the pre-mutex node of B we must determine
whether the data and control dependencies in s will be affected by the motion:

(1) Since s is lock independent, no variable in Ds and Us is in conflict. Therefore,
moving s would not introduce memory conflicts.

(2) Since a dominates the exit node x, moving s will not modify any control
dependencies because s executes for every execution of the mutex body.

(3) Finally, since no statement between lock and s contains a data dependency
with variables in Ds

S
Us, moving s to the pre-mutex node will not introduce new

data dependencies nor modify existing data dependencies in the program.

Given that none of the data and control dependencies of s are affected by the
motion, we conclude that it is safe to move s to the pre-mutex node of B.

2. Proving the second part of the theorem is similar. In particular, conditions (1) and
(2) are identical so they will not be repeated here.

(3) Since no statement between s and unlock contains a data dependency with
variables in Ds

S
Us, moving s to the post-mutex node will not introduce new

data dependencies nor modify existing data dependencies in the program.

Given that none of the data and control dependencies of s are affected by the
motion, we conclude that it is safe to move s to the post-mutex node of B. �

7 OPTIMIZING EXPLICITLY PARALLEL PROGRAMS 31

Algorithm 7.2 Lock independent code motion (LICM).
INPUT: A CCFG G � hN� E� EntryG� ExitGi in CSSAME form with pre and post-mutex nodes inserted in every mutex

body
OUTPUT: The graph with lock independent code moved to the corresponding pre-mutex and post-mutex nodes

1: foreach lock variableLi do
2: foreach mutex bodyBLi�n� x� �MutexStruct�Li� do
3: /* First do a forward search looking for statements to move to the pre-mutex node. */
4: /* This phase might also find statements that can be moved to the post-mutex node. */
5: foreach statement s � BLi�n�x� in forward order do
6: if isMovable�s�BLi�n� x�� then
7: if premutex �s� then
8: move s to the pre-mutex node
9: else
10: move s to the post-mutex node
11: end if
12: end if
13: end for
14: /* Now do a backward search looking for statements to move to the post-mutex node. */
15: /* This is needed because the previous pass might not have moved some down-movable */
16: /* statements that were blocking each other. */
17: foreach statement s � BLi�n� x� in reverse order do
18: if isMovable�s� BLi�n� x�� then
19: /* Notice that this phase can only find down-movable statements. */
20: move s to the post-mutex node
21: end if
22: end for

23: /* If the mutex body is empty then remove the locking operations. */
24: if SDOM���n�

T
SPDOM���x� � � then

25: removen and x from the graph
26: end if
27: end for
28: end for
29: return

30: function isMovable�s�BL�n� x��
31: movable�s�� FALSE

32: premutex �s� � FALSE

33: postmutex �s�� FALSE

34: a� node containing s
35: /* Only consider lock independent statements in nodes that dominate x */
36: if aDOMx and s is lock independent then
37: Us � variables used in s
38: Ds � variables defined in s
39: /* Check if s can be moved to the pre-mutex node. */
40: if no statement between lock(L) and s has a dependency with variables in D s

S
Us then

41: movable�s� � TRUE

42: premutex �s�� TRUE

43: end if
44: /* Check if s can be moved to the post-mutex node. */
45: if no statement between s and unlock(L) and s has a dependency with variables in D s

S
Us then

46: movable�s� � TRUE

47: postmutex �s� � TRUE

48: end if
49: end if
50: return movable�s�
51: end

7 OPTIMIZING EXPLICITLY PARALLEL PROGRAMS 32

Algorithm 7.2 implements the concepts described previously. The algorithm makes
two passes over all the statements inside a mutex body. The first pass (lines 10–20) tra-
verses all the statements starting at the lock(L) operation trying to move statements
to the pre-mutex node. Each statement is analyzed by the function isMovable (lines
30–51) which determines whether the given statement complies with the LICM require-
ments (Theorem 7.2). Since each statement has to be compared with all its predecessors
and successors in the mutex body, this phase can be performed in O�jSj�� time (S is the
set of all statements in the program).

Notice that it might be possible that a statement can be moved to both the pre-mutex
and the post-mutex nodes. In that case a cost model should determine which node
is more convenient. We will base our cost model on the effects of lock contention.
Suppose that there is high contention on a particular lock. All the statements moved to
the pre-mutex node will not be affected by it because they execute before the acquisition
of the lock. However, statements moved to the post-mutex node will be delayed if there
is contention because they execute after the lock has been released. Therefore, when
a statement can be moved to both the pre-mutex and post-mutex nodes, the pre-mutex
node is selected.

The second pass (lines 21–29) does a backward traversal of the statements in the
mutex body to circumvent the following problem: suppose that two statements s� and
s� can be moved to the post-mutex node and s� is the predecessor to s� in a forward
traversal. When the algorithm encounters s� it will conclude that it cannot be moved
to the post-mutex node because s� is blocking it. However, since s� can be moved to
the post-mutex node, s� should also be moved. This situation is avoided by doing a
backward traversal on the mutex body. Similarly to the previous phase, this pass can be
computed in O�jSj�� time.

Finally, if the mutex body is empty at the end of the transformation, the lock and
unlock nodes are removed (lines 30–33). The total time complexity for the LICM
algorithm is then O�m � mb � �jSj� � jSj��� which can be approximated to O�m �
mb � jSj��. As before, we expect m (number of lock variables) and mb (number of
mutex bodies in the program) to be relatively small compared to jSj.

Applying these conditions to the program in Figure 6(a) we obtain the equivalent
program in Figure 6(c). Notice that both assignments to variables x and y can be safely
moved out of each mutex body because there are no conflicting definitions in their sib-
ling threads. Also, notice that even though the statement x� � �� can be moved to both
landing pads, it is more convenient to move it to the pre-mutex node.

7.3.1 Moving lock independent control structures

In this section we will consider an extension to the base LICM algorithm to allow whole
control structures to be hoisted out of mutex bodies. The basic mechanism is straightfor-

7 OPTIMIZING EXPLICITLY PARALLEL PROGRAMS 33

ward. Before executing Algorithm 7.2 to perform code motion on individual statements,
Algorithm 7.3 is executed to attempt moving control structures first.

The algorithm starts by identifying sub-graphs in G containing control structures
(line 2). This computation is performed using standard interval analysis techniques [1].
Basically, control structures have similar properties as mutex bodies, they form a single-
entry, single-exit region of the graph. An entry node dominates all the nodes in the
control structure. An exit node post-dominates all the nodes in the control structure.

Once the sub-graphs have been identified, each sub-graph H whose header node
(headH) dominates the mutex body's exit node (x) is analyzed (Lines 4–25). The analy-
sis process is basically the same as the base LICM algorithm with one notable difference.
The 4 conditions in theorem 7.2 must be slightly modified to mask out the enclosing con-
trol structure. In particular, condition (2) is not necessary for the interior nodes of H ,
only the header node of H (headerH) should dominate the mutex body's exit node (x).
Condition (3) is the same but it must not be checked against statements inside H . Oth-
erwise, it could generate false positives that would impede moving H outside the mutex
body.

The algorithm keeps two counters to keep track of the potential destinations for each
statement. After analyzing all the statements in H the counters are compared against
the total number of statements (Lines 26–44). A mismatch means that some statements
cannot move in that particular direction. The sub-graph can only be moved if all the
interior statements can be moved in the same direction. Finally, the same cost analysis
used in the LICM algorithm is performed, if H can be moved in both directions, it will
be hoisted to the pre-mutex node.

7.4 Mutex body localization

In this section we will discuss a transformation technique that may enhance the oppor-
tunities for further optimization of the program. Consider a mutex body B that modifies
a shared variable a (Figure 7(a)). With the exception of the definition reaching the exit
node of B, all the modifications done to a inside the mutex body can only be observed
by the thread.

Given these conditions, it is possible to create a local copy of a and replace all the
references to a inside the mutex body to references to the local copy (Figure 7(b)). We
call this transformation mutex body localization. The basic transformation is straight-
forward:

1. At the start of the mutex body a local copy of the shared variable is created if there
is at least one upward-exposed use in the mutex body.

2. At the end of the mutex body, the shared copy is updated from the local copy of
the variable if there is at least one definition of the variable inside the mutex body.

7 OPTIMIZING EXPLICITLY PARALLEL PROGRAMS 34

Algorithm 7.3 LICM for control structures.
INPUT: A CCFG G � hN� E� EntryG� ExitGi in CSSAME form
OUTPUT: The graph with lock independent control structures moved to the corresponding pre-mutex and post-mutex nodes

1: foreach lock variableLi do
2: foreach mutex bodyBLi�n� x� �MutexStruct�Li � do
3: /* Build sub-graphs for all the control structures in the mutex body */
4: build sub-graphs for BLi�n�x�

5: /* Traverse sub-graphs checking if all the interior statements are group movable */
6: foreach subgraphH do
7: if headH DOMx then
8: movableH � TRUE

9: stmts � �
10: foreach statement s in H do
11: /* Use Theorem 7.2 to determine if s is movable */
12: /* Note that we alter the conditions slightly */
13: /* to mask out the control structure containing s. */
14: stmts � stmts � �
15: call isMovable(s)
16: if movable s then
17: /* Increment counters for potential destinations */
18: if premutex s then
19: pre � pre � �
20: else
21: post � post � �
22: end if
23: else
24: /* If s cannot move, then H cannot move. */
25: movableH � FALSE

26: end if
27: end for

28: if movableH then
29: /* H can only go to a landing pad if all the statements can. */
30: /* Compare the destination counters to see if we can moveH . */
31: premutexH � FALSE

32: postmutexH � FALSE

33: if pre � stmts then
34: premutexH � TRUE

35: end if
36: if post � stmts then
37: postmutexH � TRUE

38: end if
39: if premutexH = FALSE and postmutexH = FALSE then
40: movableH � FALSE

41: end if
42: if movableH then
43: moveH using the same analysis used in Algorithm 7.2
44: end if
45: end if
46: end if
47: end for
48: end for
49: end for

7 OPTIMIZING EXPLICITLY PARALLEL PROGRAMS 35

lock(L);

a = 0;
while (a �= X) f

a = a + Y;
g

unlock(L);

(a) A mutex body before localization

lock(L);
�� p a is a local variable ��
�� generated by the compiler ��
p a = 0;
while (p a �= X) f

p a = p a + Y;
g
a = p a;
unlock(L);

(b) After localization

Figure 7: Mutex body localization.

3. All the interior references to the shared variable are modified so that they reference
the local copy.

Notice that this transformation is legal provided that the affected references are al-
ways made inside mutex bodies. Otherwise, the transformation might prevent memory
interleavings that were allowed in the original program. Algorithm 7.5 makes local
copies of a variable a inside a mutex body BL�n� x� if the variable can be localized. To
determine whether the variable a can be localized it calls Algorithm 7.4 which returns
TRUE if a can be localized inside mutex body BL�n� x�. The localization algorithm re-
lies on two data structures that can be easily built during the � rewriting phase of the
CSSAME algorithm (Algorithm 6.1):

1. exposedUses�n� is the set of upward-exposed uses from the mutex bodyBL�n� x�.
This set is associated with the entry node n.

2. reachingDefs�x� is the set of definitions that can reach the exit node x ofBL�n� x�.
Notice that since the program is in CSSAME form this set is actually one defini-
tion per variable. If more than one definition of a variable can reach node x, they
will be represented by a single � function.

Algorithm 7.5 starts by checking whether the variable can be localized (lines 1–4).
It then checks where are the local copies needed. If there are upward-exposed uses of a,
a copy is needed at the start of the mutex body (lines 5–16). If there are definitions of a
reaching the exit node, the shared copy of a must be updated before exiting the mutex
body (lines 17–29). The final phase of the algorithm updates the interior references to
a to be references to p a (lines 30–34). After this phase, the CSSAME form for the
program has been altered and it should be updated. The simplest way to do this is to run
the CSSAME algorithm again (Algorithm 6.2). However, this might be expensive if the
localization process is repeated many times.

7 OPTIMIZING EXPLICITLY PARALLEL PROGRAMS 36

An alternate solution is to incrementally update the CSSAME form after the variable
has been localized. The following are some guidelines that should be considered when
performing an incremental update of the CSSAME form:

1. If the local copy is created at the start of the mutex body, the statement p a � a

contains a use of a. This use of a will have the same control reaching definition
that the upward-exposed uses of a have. Notice that all the upward-exposed uses
of a have the same control reaching definition.

Since this statement has a conflicting use of a, it requires a � function. The argu-
ment list to this � function is the union of all the arguments to all the � functions
for a inside the mutex body. Notice that the only � functions for a should be for
upward-exposed uses of a. This is because the program is in CSSAME form and
all conflicting references to a are made inside mutex bodies of the same mutex
structure (i.e., a is localizable).

2. All the � functions for a inside the mutex body must disappear because all the
interior references to a are replaced by references to p a.

3. All the interior � terms for a must be converted into � terms for p a.

4. If the shared copy is updated at the end of the mutex body, the statement a � p a

contains a use of p a whose control reaching definition should be the definition of
p a reaching the exit node x.

Algorithm 7.4 Localization test (localizable)
INPUT: A variable a and mutex bodyBL�n� x�
OUTPUT: TRUE if a can be localized in BL�n� x�, FALSE otherwise

1: ML � mutex structure containingBL�n� x�
2: /* Check every conflicting reference r to a in the program. All the conflicting */
3: /* references to a must occur inside mutex bodies of ML, otherwise a is not localizable. */
4: foreach conflicting reference r � Refs�a� do
5: /* If we cannot find r in any of the mutex bodies of ML, then a is not localizable. */
6: protected � FALSE

7: foreach mutex bodyB �

L�n
�� x�� �ML do

8: if n� SDOMNode�r� and x� SPDOMNode�r�) then
9: protected � TRUE

10: end if
11: end for
12: if not protected then
13: return FALSE

14: end if
15: end for
16: /* All the references to a are protected. Therefore, a is localizable. */
17: return TRUE

7 OPTIMIZING EXPLICITLY PARALLEL PROGRAMS 37

Algorithm 7.5 Mutex body localization
INPUT: (1) An explicitly parallel program P in CSSAME form, (2) A variable a to be localized, (3) A mutex bodyBL�n� x�
OUTPUT: BL�n� x� with variable a localized

1: /* Check if a can be localized (Algorithm 7.4) */
2: if not localizable �a�BL�n� x�� then
3: return
4: end if
5: /* Check for upward-exposed uses of a. Since the program is in CSSAME form, */
6: /* upward-exposeduses have already been computed (Algorithm 6.1). If there are */
7: /* upward-exposeduses of a then we need to make a local copy of a at the start of B L�n� x�. */
8: needEntryCopy � FALSE

9: foreach use u � exposedUses �n� do
10: if u is a use of a then
11: needEntryCopy � TRUE

12: end if
13: end for
14: if needEntryCopy then
15: insert the statement p a � a at the start of the mutex body
16: end if
17: /* Check if any definition of a reaches the exit node of BL�n� x�. */
18: /* Since the program is in CSSAME form, the definitions that reach the exit nodex */
19: /* have already been computed (Algorithm 6.1). If a definition */
20: /* of a reaches x, we need to make a copy of a before leaving the mutex body. */
21: needExitCopy � FALSE

22: foreach definition d � reachingDefs�x� do
23: if d is a definition of a then
24: needExitCopy � TRUE

25: end if
26: end for
27: if needExitCopy then
28: insert the statement a � p a at the end of the mutex body
29: end if

30: /* Update references to a inside the mutex body to reference */
31: /* the local version pa instead of the shared version a. */
32: foreach reference to a inside BL�n� x� do
33: replace a with p a
34: end for
35: update CSSAME information for all references to p a insideBL�n� x�

7 OPTIMIZING EXPLICITLY PARALLEL PROGRAMS 38

As mentioned before, this transformation by itself does not necessarily improve the
performance of a program but it opens up new optimization opportunities. The main
effect of localization is that it might uncover more lock independent code. For instance,
if a thread contains read-only references to a variable v, localizing v will make those
reads into lock independent operations which in turn might make the whole statement
lock independent. It could also be possible to split the mutex body so that only the
creation of the local copies and the updates to shared memory are protected by the
lock. Some of these transformations need to be evaluated with appropriate cost models
to determine their usefulness. In the following sections we will describe two related
optimizations that take advantage of the effects of mutex body localization.

7.4.1 Single writer, multiple readers code motion

Suppose that a parallel program exhibits an access pattern to a shared variable v such
that

1. v is read and written by exactly one thread Tw and it is read-only in all of the
threads concurrent with Tw (i.e. there is a single writer and multiple readers for
v), and

2. all the references to v are atomic with respect to the operation being performed
(i.e., v is not an aggregate data type that may require multiple memory operations
to update or retrieve).

We will also assume that variable v is accessed inside critical sections of the code
(otherwise the optimization is clearly unnecessary). Under these circumstances it is
possible to localize the references to v in Tw so that atomicity can be maintained without
the requirement of locks.

For example, consider the program in Figure 8(a). Thread T� computes a value for a,
checks a bound and updates a if necessary (assume that global variables X and Y have
no conflicts). Both threads T� and T� read a but never modify it. The synchronization on
a is necessary to prevent threads T� and T� from reading intermediate values of a while
T� computes. Suppose that we localize variable a inside T� to obtain the equivalent
program in 8(b). Since X and Y contain no conflicts and the references to a have been
localized, all the statements inside the mutex body are now lock independent and can be
moved out to obtain the program in Figure 8(c).

7.4.2 Relaxing lock independence requirements

The optimized program in Figure 8(c) contains no lock independent statements accord-
ing to Definition 7.1. However, because of the memory semantics assumed in our model

7 OPTIMIZING EXPLICITLY PARALLEL PROGRAMS 39

X = . . .
Y = . . .
cobegin

T�: begin
. . .
lock(L);
a = 0;
while (a �= X) f

a = a + Y;
g

unlock(L);
end

T�: begin
lock(L);
. . . = a;
unlock(L);

end

T�: begin
lock(L);
. . . = a;
unlock(L);

end
coend

(a) Original program

X = . . .
Y = . . .
cobegin

T�: begin
. . .
lock(L);
p a = 0;
while (p a �= X) f

p a = p a + Y;
g
a = p a;
unlock(L);

end

T�: begin
lock(L);
. . . = a;
unlock(L);

end

T�: begin
lock(L);
. . . = a;
unlock(L);

end
coend

(b) After localization

X = . . .
Y = . . .
cobegin

T�: begin
. . .
p a = 0;
while (p a �= X) f

p a = p a + Y;
g
lock(L);
a = p a;
unlock(L);

end

T�: begin
lock(L);
. . . = a;
unlock(L);

end

T�: begin
lock(L);
. . . = a;
unlock(L);

end
coend

(c) After LICM

X = . . .
Y = . . .
cobegin

T�: begin
. . .
p a = 0;
while (p a �= X) f

p a = p a + Y;
g

a = p a;

end

T�: begin

. . . = a;

end

T�: begin

. . . = a;

end
coend

(d) After relaxing lock inde-
pendence

Figure 8: Effects of localization in the presence of single writer, multiple readers patterns

we can mark as lock independent certain statements that do not fit the criteria for lock
independence.

Suppose that the same conditions for single writer, multiple readers hold for shared
variable v. Furthermore, we require that the writing thread writes to v only once (this
is guaranteed by the localization process described previously). Under these circum-
stances, all the statements that reference v can be safely marked as lock independent.
Using this relaxed criterion for lock independence we can further optimize the program
in Figure 8(c) to remove all the locks that protect variable a and obtain the equivalent
program in Figure 8(d).

7.5 Code sinking

Code sinking is a new code motion strategy designed to increase the granularity of
individual threads and avoid the sequential processing overhead for threads that do not
use computations made in sequential portions of the code. We will use a simple example
to illustrate the idea. Consider the program in Figure 9(a). The first three lines of the

7 OPTIMIZING EXPLICITLY PARALLEL PROGRAMS 40

a = 5;
b = 4;
c = 2;
cobegin

T�: begin
t = a � b;

end

T�: begin
v = c � 3;

end
coend
print(t, v);

(a) Before code sinking

cobegin
T�: begin

a = 5;
b = 4;
t = a � b;

end

T�: begin
c = 2;
v = c � 3;

end
coend
print(t, v);

(b) After code sinking

Figure 9: Code sinking optimization.

program compute new values for variables a, b and c. Thread T� uses variables a and
b and thread T� only uses c. Figure 9(b) shows the results of applying the code sinking
optimization to the program on the left. Since thread T� does not use variables a or b,
both assignments in the sequential section of the program can be moved inside T� so that
T� does not have to pay the sequential overhead for computations that it will not use.
The same reasoning is applied to thread T� when moving the assignment of variable c
to the body of thread T�.

Similar to other code motion strategies, code sinking can only operate on a statement
if all the original data and control dependencies are preserved after the move and no data
races are introduced in the program. We will describe a set of sufficient requirements
to guarantee the safety of this optimization. If the decision is made to sink a statement
s into a thread T , s will be moved to a special node called a landing pad for T . The
landing pad is inserted inside thread T so that its immediate dominator is beginT .
Theorem 7.3 (code sinking) Let d be the only definition of variable v made by a state-
ment s inside CCFG node a. Let u be a reached use for d inside CCFG node b in
thread T . Let p be the landing pad for T . It is safe to move s into p if all the following
conditions are met:
(1) a DOMbeginT ,
(2) there are no dependencies between d and references to v in threads concurrent with
T , and
(3) there are no dependencies between d and references to v along any path from a to
beginT . �

PROOF We will show that moving s into p under these conditions will not alter any data
or control dependencies in the program. We start by examining each of the conditions
independently:

7 OPTIMIZING EXPLICITLY PARALLEL PROGRAMS 41

(1) Since node a dominates node beginT then node a also dominates node bwhich means
that a and b cannot execute concurrently. Therefore d reaches u via control edges (i.e.,
the references do not conflict). Moving s into p does not affect the data and control
dependency between d and u because the landing pad p also dominates b.
(2) Since no other thread concurrent with T references v, moving s into p does not
introduce any data races in the program.
(3) Finally, since there are no dependencies for d along any path from a to beginT ,
moving d into p does not affect data dependencies with other references to d in the
program.

Given that the three conditions guarantee that the movement does not affect any data
or control dependencies and it does not introduce data races in the program, we conclude
that the transformation is safe. �

The previous conditions assume that statement s contains only one definition. This
can be generalized to statements containing multiple definitions provided that all defini-
tions meet the same requirements. Algorithm 7.6 performs code sinking on an explicitly
parallel program. The algorithm examines all the non-conflicting uses in every thread T
of the program. We are only interested in non-conflicting uses because conflicting uses
will have reaching definitions from concurrent threads. For each non-conflicting use u
found, the algorithm computes the set of reaching definitions for u. Each reaching def-
inition is examined to determine whether it complies with the three conditions required
by Theorem 7.3. The algorithm requires the following information:

� Con�icts�r� is the set of references that conflict with reference r.

� ReachingDefs�u� is the set of reaching definitions for reference u (Algorithm
7.1).

� ReachedUses�d� is the set of uses reached by d (Algorithm 7.1).

� Conc�a� b� returns TRUE if nodes a and b can execute concurrently (Algorithm
4.2).

7.6 Lock picking

It is sometimes possible to remove some synchronization instructions in the program
without affecting its correctness. In this section we will describe techniques that al-
low the compiler to detect and remove superfluous lock/unlock operations in the
program. We collectively refer to these techniques as lock picking strategies.

The success of these strategies largely depends on the quality of non-concurrency
information that the compiler is able to gather from the program. For instance, the

7 OPTIMIZING EXPLICITLY PARALLEL PROGRAMS 42

Algorithm 7.6 Code sinking.
INPUT: A CCFG G � hN� E� EntryG� ExitGi in CSSAME form
OUTPUT: The graph with some statements moved to their corresponding landing pad nodes

1: foreach thread T do
2: foreach node a � T do

3: /* Examine all the non-conflicting uses in a. */
4: foreach use u in a such that Con�icts�u� � � do

5: /* Check if any of the reaching definitions for u can be moved to T . */
6: RD� ReachingDefs�u�
7: foreach reaching definition rd � RD do

8: /* Check first condition. The node containing rd should dominate begin T . */
9: b� node containing rd
10: if bDOMbeginT then
11: hasConcurrentUses� FALSE

12: hasUsesBeforeThread� FALSE

13: RU � ReachedUses�rd�
14: foreach reached use ru � RU such that ru �� u do
15: b� node containing ru

16: /* Check second condition. The reached use ru should not be in a */
17: /* thread concurrent with T . */
18: /* Algorithm 4.2 computes the concurrency relation. */
19: if Conc�a � b� = TRUE then
20: hasConcurrentUses� TRUE

21: end if

22: /* Check third condition. The reached use ru should not be before */
23: /* the begin node of T . */
24: if beginT PDOM b then
25: hasUsesBeforeThread� TRUE

26: end if
27: end for

28: if (not hasConcurrentUses) and (not hasUsesBeforeThread) then
29: if T does not have a landing pad node then
30: insert a new landing pad for T
31: end if
32: move the statement containing d to the landing pad
33: end if
34: end if
35: end for
36: end for
37: end for
38: end for

7 OPTIMIZING EXPLICITLY PARALLEL PROGRAMS 43

cobegin
T�: begin T�: begin

.
lock(L); Wait(a);
.
unlock(L); lock(L);
.
Set(a); unlock(L);
end . . .

end
coend

(a) Lock picking by precedence. Mutex body in T � is
guaranteed to execute before mutex body in T �.

cobegin
T�: begin T�: begin

.
lock(X); lock(X);
if (a � b) f if (a � b) f

b = 3; b = 5 � a;
lock(Y); lock(Y);
z = z + 5; z = z � a;
unlock(Y); unlock(Y);

g g
unlock(X); unlock(X);
.

end end
coend

(b) Lock picking by inclusion. Mutex bodies for X al-
ways include mutex bodies for Y .

Figure 10: Two lock picking strategies.

compiler can use one of several techniques for computing guaranteed execution ordering
[4, 15, 17] to determine if an ordering exists between mutex bodies in the same mutex
structure. An algorithm for computing guaranteed execution ordering returns pairs of
nodes a and b such that a precedes b on every execution of the program.
Theorem 7.4 (lock picking by precedence) Let ML be a mutex structure with k mutex
bodies B�

L�n�� x��, B�
L�n�� x��, � � �, Bk

L�nk� xk�. If there exists a mutex body Bi
L�ni� xi�

such that �j �� i � xj precedes ni then the nodes ni and xi can be safely removed. �

PROOF If the exit nodes from all the sibling mutex bodies precede the entry node to
mutex body Bi

L�ni� xi� then all the mutex bodies in ML will execute to completion
before Bi

L starts executing. Therefore, it is not necessary for Bi
L to hold the lock L and

both ni and xi can be removed. �

Theorem 7.4 can be iteratively applied to all the mutex bodies in the same mutex
structure until no more partial orders can be guaranteed between the entry node of one
mutex body and all the exit nodes of its siblings. Consider the program in Figure 10(a).
Thread T� will wait until T� sets event a before trying to acquire the lock L. Since T�
sets a after it releases the lock L, it is not necessary for T� to lock L anymore. This
gives rise to a second opportunity for lock picking: orphaned mutex structures. Assume
that the locks in thread T� of Figure 10(a) have already been removed. Removing the
locks in thread T� has left the mutex structure for lock L with only one mutex body,
namely the one defined in T�. This is clearly unnecessary and the mutex body can be
safely removed. Notice that this analysis can only be applied to pure mutex structures,
otherwise the compiler would remove locks that might be needed at runtime.

Another opportunity for lock picking is the presence of nested mutex bodies. The
program in Figure 10(b) shows an example. Assume that both threads T� and T� are the

7 OPTIMIZING EXPLICITLY PARALLEL PROGRAMS 44

only two threads in the program and can execute concurrently. Notice that all the mutex
bodies for Y are nested inside mutex bodies for X . This makes the locking operations
on Y unnecessary because X already protects the same references protected by Y .
Theorem 7.5 (lock picking by inclusion) Let ML� be a mutex structure for lock L�.
Let ML� be a mutex structure for lock L�. If �Bi

L�
�ni� xi� � ML� �B

j
L�
�nj � xj� � ML�

such that nj � BL� and xj � BL� , then all the entry and exit nodes for mutex bodies in
ML� can be removed. �

PROOF Since nj and xj are included inside the mutex body Bi
L�
�ni� xi�, then acquiring

lock L� implies that lock L� is already held by the calling thread. Furthermore, lock L�

is always released before L�. This has two implications. First, acquiring L� will always
succeed because the access to L� is serialized by L�. Second, lock L� is always held
while mutex body BL� executes. Therefore, acquiring lock L� is not really necessary
and the entry and exit nodes for mutex bodies in ML� can be removed. �

7.7 Lock partitioning

Lock partitioning is a new optimization technique that examines all the mutex bodies
in a single mutex structure to determine whether they access the same set of variables.
Consider a program that uses a single lock L to serialize the access to variables a, b,
x and y. Assume that only one mutex body references x and y while the other mutex
bodies in the program reference a and b. We can safely replace L with two locks, one for
the mutex body referencing x and y and another one for the mutex bodies referencing
a and b. The key idea is that if the mutex bodies are accessing different sets of vari-
ables, then protecting all the references with a single lock is not necessary and restricts
concurrency in the program. Lock partitioning will determine how many disjoint sets of
variables are referenced by the different mutex bodies and replace the original lock with
one lock for each set of variables. In the following discussion we assume that the entry
nodes for all mutex bodies in the same mutex structure can execute concurrently. If the
control or synchronization structure of the program prevents the entry nodes from exe-
cuting concurrently then this analysis is clearly unnecessary. Therefore we shall assume
that mutex structures have already been pruned by a lock picking pass (Section 7.6).
Theorem 7.6 (lock partition) Let ML be a mutex structure with n mutex bodies B�

L,
B�
L, � � �, Bn

L. Let Vi be the set of variables accessed by mutex body Bi
L. Let V �

fV�� V�� � � � � Vng. If there exists a partition of V P � fP�� P�� � � � � Pmg such that
(1) �Pi � P � �Vk� Vl � Pi � Vk

T
Vl �� 	, and

(2) �Pi� Pj � P � �Vk � Pi� Vl � Pj � Vk
T
Vl � 	

then ML can be partitioned into m mutex structures ML��ML� � � � �MLm . �

PROOF Each partition Pi in P contains all the sets in V that access a common set of
variables (first condition). Furthermore, all the partitions in P access different variables

8 APPLYING THE FRAMEWORK TO REAL PROGRAMS 45

(second condition). Therefore, it is not necessary to use the same lock to protect all the
variables. Since each partition Pi references a common set of variables, all the mutex
bodies corresponding to the sets of variables in each Pi can be protected by a new lock
Li. No data races will be introduced by this change because there are no conflicting
references between the different partitions in P . �

Algorithm 7.7 applies the conditions described in Theorem 7.6 to partition mutex
structures in a program. The algorithm starts by collecting the variables referenced in
each mutex body Bi. The main loop of the algorithm builds the partitions. Each mutex
body Bi is compared to each of the existing partitions represented by the array P �	. If
there exists a P �j	 such that P �j	 has variables in common with Vi, then all the variables
in Vi are added to P �j	 and the mutex body Bi is added to the list of mutex bodies in
M �j	. Otherwise, the number of partitions, m, is incremented, Vi is used to initialize
P �m	 and Bi is used to initialize M �m	. At the end of this loop, if more than one
partition was created, the algorithm creates m new locks and assigns them to each of the
new mutex structures stored in M �	.

8 Applying the framework to real programs

The example programs presented in this paper are necessarily simple because they are
only meant to illustrate the potential effect of each transformation. We do not expect
experienced programmers to write code like the examples shown in the paper. However,
we expect these techniques to be useful in a number of situations. For instance, consider
a high-level programming language like Java. Due to the thread-safe characteristics of
the Java libraries, application programs may spend up to half their execution time per-
forming unnecessary synchronization [2]. The key reason for this overhead is that the
libraries are generic and are not specific to an individual application's context. Hence,
they have to be conservative in the assumptions they make. Therefore, when considered
within the context of an actual program it might turn out that most of the synchroniza-
tion operations are not necessary. Techniques like the lock picking strategies or lock
independent code motion will likely benefit these applications.

We also expect similar benefits for parallel programs generated via high-level pro-
gramming environments. We are currently investigating the application of these tech-
niques to a programming environment for object-oriented parallel programs based on
design patterns. These tools must generate conservatively correct code based on code
skeletons that might contain over-constrained synchronization. Similar to the previ-
ous case, machine generated code must be overly conservative for generality and safety.
Since design patterns contain a significant amount of semantic information, the compiler
can make a more informed decision when analyzing the code for memory conflicts and
synchronization. Key to the success of these approaches is the ability of the compiler

8 APPLYING THE FRAMEWORK TO REAL PROGRAMS 46

Algorithm 7.7 Lock partitioning.
INPUT: A CCFG G � hN� E� EntryG� ExitGi in CSSAME form
OUTPUT: The graph with some mutex structures partitioned

1: foreach lock variableL do
2: /* Determine variables referenced by each mutex body. */
3: foreach mutex bodyBi �ML do
4: Vi � set of variables referenced in Bi

5: end for

6: /* Main loop to build partitions. */
7: /* Variable m contains the number of partitions that access different variables. */
8: /* Each element of array P 	
 represents all the mutex bodies that access the same set of variables. */
9: /* Each element of arrayM 	
 contains a list of mutex bodies that access the same set of variables. */
10: m� �
11: P 	
�

12: M 	
�

13: foreach mutex bodyB i �ML do
14: found � FALSE

15: /* Check if Bi accesses variables referenced by some existing partition. */
16: /* Note that this loop will not execute for the first mutex bodyB i. */
17: for j � � to m do
18: if Vi

T
P 	j
 �� � then

19: P 	j
 � P 	j

S
Vi

20: add Bi to mutex structureM 	j

21: found � TRUE

22: end if
23: end for
24: /* If Bi does not have variables in common with other partitions then */
25: /* create a new partition for it. */
26: if found � FALSE then
27: m� m� �
28: P 	m
 � Vi
29: M 	m
 � Bi

30: end if
31: end for

32: /* Replace original lockL with m locks; one for each partition. */
33: /* This is only done if the previous analysis found more than one partition. */
34: if m � � then
35: for j � � to m do
36: foreach mutex bodyB�n�x� in mutex structure M 	j
 do
37: modify noden to reference lock L j

38: modify nodex to reference lockL j

39: end for
40: end for
41: end if
42: end for

8 APPLYING THE FRAMEWORK TO REAL PROGRAMS 47

to perform whole program analysis. Function inlining and IPA information will help
discover nested and ordered locking patterns for lock picking. This will also increase
the chance of finding lock independent code.

The memory model also plays a crucial role. Notice that the analysis and optimiza-
tion techniques developed for these memory semantics are also valid for weaker mem-
ory models. This is because the sequential memory model assumed in our work allows
more memory interleavings than weaker memory models. Assuming the worst case sce-
nario makes our analysis conservatively correct for other memory models. However,
realizing that a weaker memory model is being used might increase the optimization
opportunities. Consider for example a release consistent architecture [5]. Updates to
shared memory variables are only observable at synchronization points. This allows the
compiler to further eliminate conflict edges from the graph which will allow more opti-
mization opportunities. We are currently incorporating release consistency semantics to
the CSSAME model presented in this paper.

8.1 Implementation

The algorithms discussed in previous sections have been implemented4 in a prototype
compiler for the C language using the SUIF compiler system [8]. To avoid modify-
ing SUIF's front-end we added support for cobegin/coend and parloop parallel
structures via language macros. These macros re-define control structures of the C lan-
guage so that the compiler can recognize them at the intermediate language level. The
cobegin/coend structure is represented by a switch statement. A special index
variable helps the compiler distinguish a regular switch statement from a cobegin.
Each different case section will be executed by a different thread at runtime. Our sys-
tem leverages on the SUIF runtime system to execute the parallel program. SUIF's
runtime system is designed to run SPMD style programs. Our compiler annotates
cobegin statements to be executed in parallel and modifies the index variable to be
the thread id. Parallel loops are recognized using a similar technique. A parloop loop
is a for loop with a special index variable. Since SUIF directly supports parloop
style parallelism all the compiler has to do is mark selected for loops as parallel loops.
Although our analysis techniques do not address parallel loops yet, users can write data
parallel programs using our compiler. Currently, the compiler ignores parloop loops
when applying optimizing transformations.

Once the program has been parsed by the SUIF front-end, the compiler creates the
corresponding CCFG and its CSSAME form. Notice that we do not transform the input
program to CSSA form. Instead we use FUD chains in the flow graph and display the
source code annotated with the appropriate � and � functions (Variables are not renamed

4The implementation is available at http://www.cs.ualberta.ca/�diego/CSSAME/

9 CONCLUSIONS AND FUTURE WORK 48

but referenced using line number information in the corresponding � or � functions).
The CCFG implementation is an extension of the sequential Control Flow Graph library
provided by Machine SUIF [10]. The CCFG can be displayed using a variety of graph
visualization systems. The flow graphs in this paper were generated with the GraphViz
system [19]. The CSSAME form for the program can also be displayed as an option.

Besides optimization, mutual exclusion analysis can also be used to statically val-
idate synchronization patterns in the program. For instance, the compiler may issue
warning messages like unmatched lock and unlock operations or improperly nested
locks. A limited form of data race detection capability is also built-in for inconsistent
use of locks to protect shared variables. For instance, if modifications to a variable are
not always protected by the same lock, the compiler will warn the user about a potential
data race. A simple extension to Algorithm 4.5 allows the compiler to perform some
semantic checking on the synchronization structure of the program. At the end of the
algorithm, every lock or unlock node that is not part of a mutex body can be re-
ported as a warning to the user. The following are some example warnings issued by
our compiler when identifying mutex structures in the code:
(1) If there is a pair of nodes n � lock�Li� and x � unlock�Li� such that there is a
control path from n to x then:

� If n � DOM�x� but x �� PDOM�n�, then the lock may not be released on every
execution.

� If x � PDOM�n� but n �� DOM�x�, then the lock may not be held on every
execution.

(2) Any remaining nodes in plocki

S
punlocki are unmatched synchronization operations.

(3) After the CSSAME form is computed, any use inside a mutex body reached by con-
flict edges from nodes outside the mutex structure are references that are not protected
by locks.

9 Conclusions and Future work

We have shown how the CSSAME form is unique in allowing new optimization oppor-
tunities by taking advantage of the semantics imposed by mutual exclusion synchroniza-
tion. The reduction of memory conflicts across threads can improve the effectiveness
of scalar optimization strategies. Furthermore, we have introduced new optimization
techniques that are specifically targeted at explicitly parallel programs. We consider this
a step forward in fully exploiting optimization opportunities in explicitly parallel pro-
grams. We plan to develop new optimization techniques to take advantage of the parallel
and synchronization structure of these programs.

9 CONCLUSIONS AND FUTURE WORK 49

We are currently studying some multi-threaded applications to determine the effec-
tiveness of the conflict reduction techniques. We expect to find more cases of protected
uses than consecutive kills. We do not expect programmers to write code that deliber-
ately makes consecutive killing definitions. Rather, these will likely result from previous
optimization passes like constant propagation.

We are also investigating the representation of parallel loops in the CSSAME frame-
work. With the inclusion of parallel loops we will incorporate barriers to the set of
synchronization constructs recognized by CSSAME. Other research directions that we
have planned include: study the effects of different memory consistency models on
the CSSAME form (e.g., release consistency), study partial lock independence (akin to
partial redundancy and common subexpressions), apply IPA information to propagate
synchronization information and adapt other scalar optimizations using the CSSAME
form.

Acknowledgements

The authors would like to thank Steve MacDonald for his suggestions and helpful com-
ments during the preparation of this manuscript.

REFERENCES 50

References

[1] A. V. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques, and Tools.
Reading, Mass.: Addison-Wesley, Reading, MA, second edition, 1986.

[2] D. Bacon, R. Konuru, C. Murthy, and M. Serrano. Thin locks: Featherweight
synchronization for java. In ACM SIGPLAN '98 Conference on Programming
Language Design and Implementation, pages 258–268, Montreal, Canada, June
1998.

[3] M. M. Brandis and H. Moessenboeck. Single-pass generation of static single-
assignment form for structured languages. ACM Transactions on Programming
Languages and Systems, 16(6):1684–1698, November 1994.

[4] D. Callahan, K. Kennedy, and J. Subhlok. Analysis of event synchronization in a
parallel programming tool. In Proceedings of the Second ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming, pages 21–30, Seattle,
WA, March 1990.

[5] J. B. Carter, J. K. Bennett, and W. Zwaenepoel. Implementation and Performance
of Munin. In Proceedings of the 13th ACM Symposium on Operating Systems
Principles, pages 152–164, October 1991.

[6] R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck. Efficiently comput-
ing static single assignment form and the control dependence graph. ACM Trans-
actions on Programming Languages and Systems, 13(4):451–490, October 1991.

[7] D. Grunwald and H. Srinivasan. Data flow equations for explicitly parallel pro-
grams. ACM SIGPLAN Notices, 28(7):159–168, July 1993.

[8] M. Hall, J. Anderson, S. Amarasinghe, B. Murphy, S. Liao, E. Bugnion, and
M. Lam. Maximizing Multiprocessor Performance with the SUIF Compiler. IEEE
Computer, 29(12):84–89, December 1996.

[9] D. Harel. A linear-time algorithm for finding dominators in flow graphs and related
problems. In Symposium on Theory of Computing, pages 185–194, May 1985.

[10] G. Holloway and C. Young. The Flow Analysis and Transformation Libraries
of Machine SUIF. In Proc. 2nd SUIF Compiler Workshop, Stanford University,
August 1997. URL: http://www.eecs.harvard.edu/hube.

REFERENCES 51

[11] R. Johnson, D. Pearson, and K. Pingali. The program structure tree: Computing
control regions in linear time. In ACM SIGPLAN '94 Conference on Program-
ming Language Design and Implementation, pages 171–185, Orlando, Florida,
June 1994.

[12] J. Knoop, B. Steffen, and J. Vollmer. Parallelism for free: Efficient and optimal
bitvector analyses for parallel programs. ACM Transactions on Programming Lan-
guages and Systems, 18(3):268–299, May 1996.

[13] A. Krishnamurthy and K. Yelick. Analyses and Optimizations for Shared Address
Space Programs. Journal of Parallel and Distributed Computing, 38:130–144,
1996.

[14] J. Lee, S. Midkiff, and D. A. Padua. Concurrent static single assignment form
and concurrent sparse conditional constant propagation for explicitly parallel pro-
grams. Technical Report TR#1525, CSRD, University of Illinois at Urbana-
Champaign, July 1997.

[15] J. Lee, S. Midkiff, and D. A. Padua. Concurrent static single assignment form and
constant propagation for explicitly parallel programs. In Proceedings of the Tenth
Workshop on Languages and Compilers for Parallel Computing, August 1997.

[16] S. Masticola and B. Ryder. Non-concurrency analysis. In Proceedings of the
Fourth ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming, pages 129–138, San Diego, CA, May 1993.

[17] S. P. Masticola. Static Detection of Deadlocks in Polynomial Time. PhD thesis,
Department of Computer Science, Rutgers University, 1993.

[18] S. P. Midkiff and D. A. Padua. Issues in the optimization of parallel programs. In
1990 International Conference on Parallel Processing, volume II, pages 105–113,
St. Charles, Ill., August 1990.

[19] S. C. North and E. Koutsofios. Application of graph visualization. In Proceedings
of Graphics Interface '94, pages 235–245, Banff, Alberta, Canada, May 1994.
Canadian Information Processing Society. URL: http://www.research.att.com/-

north/graphviz/.

[20] D. Shasha and M. Snir. Efficient and Correct Execution of Parallel Programs
that Share Memory. ACM Transactions on Programming Languages and Systems,
10(2):282–312, April 1988.

REFERENCES 52

[21] V. C. Sreedhar and G. R. Gao. A linear time algorithm for placing �-nodes. In
22nd Annual ACM Symposium on Principles of Programming Languages, pages
62–73, New York, NY, USA, January 1995. ACM Press.

[22] H. Srinivasan, J. Hook, and M. Wolfe. Static single assignment for explicitly par-
allel programs. In 20th Annual ACM Symposium on Principles of Programming
Languages, pages 16–28, Charleston, S.C., January 1993.

[23] M. Wegman and K. Zadeck. Constant propagation with conditional branches. ACM
Transactions on Programming Languages and Systems, 13(2):181–210, April
1991.

[24] M. J. Wolfe. High Performance Compilers for Parallel Computing. Reading,
Mass.: Addison-Wesley, Redwood City, CA, 1996.

