
University of Alberta

S o r t i n g U s i n g SIM D R e g i s t e r s

by

Timothy Michael Furtak

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the
requirements for the degree of Master of Science.

Department of Computing Science

Edmonton, Alberta
Fall 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Library and
Archives Canada

Bibliotheque et
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 978-0-494-33243-6
Our file Notre reference
ISBN: 978-0-494-33243-6

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

Most contemporary processors offer some version of Single Instruction Multiple Data (SIMD) ma­

chinery — vector registers and instructions to manipulate data stored in such registers. The central

idea of this thesis is to use these SIMD resources to improve the performance of the tail of recursive

sorting algorithms by quickly sorting short sequences of elements. Data is loaded into the vector

registers, manipulated in-register, and the result stored back to memory.

Three such sorting algorithms, as well as extensions for heapsort using d-heaps and for partition­

ing elements a la quicksort, are presented. Implementations on two different SIMD machineries —

x86-64’s SSE2 and G5’s AltiVec — demonstrate that this idea delivers significant speed improve­

ments. These improvements are orthogonal to the gains obtained through empirical search for a

suitable sorting algorithm [21].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

1 Introduction 1
1.1 Commodity Vector H ardw are ... 3

1.1.1 G5 A ltiV e c ... 3
1.1.2 X 8 6 -6 4 S S E 2 ... 3
1.1.3 Floating Points and In te g e r s ... 4

1.2 Related W o r k .. 4

2 SIMD Vector Sorting Algorithms 6
2.1 Sorting N e tw o rk s .. 6

2.1.1 Supporting H ardw are... 7
2.1.2 More Related W o rk ... 8

2.2 Two-Pass Sorting with S tream s... 9
2.2.1 Second Pass with Insertion S o r t .. 9
2.2.2 Second Pass with M e rg e so rt... 10
2.2.3 Unaligned A rray s... 12

2.3 One-Pass S o r t in g .. 14
2.3.1 Searching to Align Vector E le m e n ts ... 14
2.3.2 Example Search .. 17
2.3.3 V arian ts... 18

2.4 Synchronous Data M ovem ent.. 20
2.5 Vectorizing ArgMin and A rgM ax... 22

2.5.1 SIMD ArgMin/ArgMax ... 22
2.5.2 Application to d -H eap s ... 23
2.5.3 H e a p s o r t 24

2.6 S u m m a ry ... 25

3 Quicksort 26
3.1 Scalar Partitioning ... 26

3.1.1 Binary P a r ti t io n s .. 27
3.1.2 Ternary Partitions.. 28

3.2 Vector O ptim izations... 28
3.2.1 Exploiting Special C a s e s ... 31

3.3 Pivot S e le c t io n ... 32
3.4 T h re sh o ld in g .. 32

3.4.1 Searching for a T h re s h o ld .. 34
3.5 Unaligned Arrays R e d u x .. 36

4 Experimental Evaluation 39
4.1 O v e rv ie w ... 39

4.1.1 Naming C onventions.. 39
4.1.2 D a ta ... 40

4.2 Hardware S p e c if ic s .. 40
4.2.1 S o f tw a r e .. 40

4.3 Low-Level Algorithm Timing 41
4.3.1 M ethodo logy ... 41
4.3.2 R e s u l t s ... 41

4.4 Q u ic k s o r t ... 43
4.4.1 M ethodo logy ... 43
4.4.2 R e s u l t s ... 44

4.5 H eapsort.. 46
4.5.1 M ethodo logy 46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.5.2 R e s u l t s .. 47
4.6 S u m m a ry .. 48

5 Conclusions and Future Work 49
5.1 Future W o rk ... 49

Bibliography 51

A Quicksort Thresholds 53

B Quicksort Timing 58

C Heaps 79

D Source Code 84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

2.1 SSE2 instructions used in the example of Fig. 2 . 7 .. 18

4.1 Low-level vector sorting algorithms s tu d ie d 40
4.2 Processor cache and register features... 40

A. 1 Quicksort thresholds for Core 2 Duo (overclocked)..................................... 54
A.2 Quicksort thresholds for Pentium 4 .. 55
A.3 Quicksort thresholds for Athlon 64.. 56
A.4 Quicksort thresholds for G 5... 57

C. 1 Heapsort times for the Core 2 Duo, uniform distribution, normalized by array size. 80
C.2 Heapsort times for the Pentium 4, uniform distribution, normalized by array size. . 81
C.3 Heapsort times for the Athlon 64, uniform distribution, normalized by array size. . 82
C.4 Heapsort times for the G5, uniform distribution, normalized by array size................. 83

D. 1 SSort and RSort object file sizes for varying array sizes... 87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

2.1 A 4-element sorting network.................................. 7
2.2 SIMD Stream sorting (SSort) algorithm............................ 10
2.3 ISort sorting algorithm... 11
2.4 MSort sorting algorithm... 12
2.5 Wrapper function for sorting unaligned arrays... 13
2.6 An 8-element sorting network, with breaks indicated between layers........................... 15
2.7 SSE2 in-register alignment instructions for a 4-element sorting network...................... 19
2.8 Alternate instruction sequence for a 4-element sorting network..................................... 20
2.9 Key-pointer comparator using GCC AltiVec vector intrinsics... 21
2.10 Key-pointer comparator using x86 GCC vector intrinsics.. 22

3.1 Scalar binary partitioning function S I ... 28
3.2 Scalar ternary partitioning function S2.. 29
3.3 Partition cleanup step... 31
3.4 Vector binary partitioning function V I. 33
3.5 M Sortl6 thresholds for 20000 elements on different architectures................................ 36
3.6 RSort thresholds for 20000 elements on different architectures. 37
3.7 ISort8 thresholds for 20000 elements on different architectures................................... 38

4.1 Low-level algorithm cycle counts on the Core 2 Duo... 42
4.2 Low-level algorithm cycle counts for MSort on the Core 2 Duo................................... 43
4.3 Low-level algorithm cycle counts on the Athlon 64.. 44
4.4 Low-level algorithm cycle counts for MSort on the Athlon 64..................................... 45
4.5 Low-level algorithm cycle counts for MSort on the G5.. 46
4.6 Low-level algorithm cycle counts for MSort on the Pentium 4 47

B. 1 Core 2 Duo quicksort cycle counts - large uniform distribution................................... 59
B.2 Core 2 Duo quicksort cycle counts - small uniform distribution.................................. 60
B.3 Core 2 Duo quicksort cycle counts - increasing distribution... 61
B.4 Core 2 Duo quicksort cycle counts - decreasing distribution.. 62
B.5 Core 2 Duo quicksort cycle counts - pipe organ distribution.. 63
B.6 G5 quicksort wall-clock times - large uniform distribution... 64
B.7 G5 quicksort wall-clock times - small uniform distribution.. 65
B.8 G5 quicksort wall-clock times - increasing distribution... 66
B.9 G5 quicksort wall-clock times - decreasing distribution.. 67
B.10 G5 quicksort wall-clock times - pipe organ distribution... 68
B .l l Pentium 4 wall-clock times - large uniform distribution.. 69
B.12 Pentium 4 wall-clock times - small uniform distribution.. 70
B . 13 Pentium 4 wall-clock times - increasing distribution.. 71
B.14 Pentium 4 wall-clock times - decreasing distribution.. 72
B.15 Pentium 4 wall-clock times - pipe organ distribution.. 73
B.16 Athlon 64 cycle counts - large uniform distribution.. 74
B.17 Athlon 64 cycle counts - small uniform distribution.. 75
B. 18 Athlon 64 cycle counts - increasing distribution.. ... 76
B. 19 Athlon 64 cycle counts - decreasing distribution... 77
B.20 Athlon 64 cycle counts - pipe organ distribution.. 78

D. 1 Support functions for finding the minimum element in an array.............................. 85
D.2 Vector code to find the minimum element from an array o f 12 key-pointer pairs. . . 86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Symbols

Sorting algorithms

Algorithm Description
DTSL DTSL’s scalar sorting network, implemented using i f statements.
S S o r t SIMD sorting network which sorts 4 interleaved streams of equal length.
I S o r t Insertion sort applied as a second pass after 1 or more SSort executions.
M S ort Mergesort applied to the streams from 1 or more SSort executions.
R S o r t 1-pass SIMD sorting network using realignment instructions.
I S o r t X ISort algorithm with X streams.
M S o rtX MSort algorithm with X streams.
DTSL - Y DTSL’s sorting network applied at Y threshold.
I S o r t X - Y ISort algorithm with X streams applied at Y threshold.
M S o rtX - Y MSort algorithm with X streams applied at Y threshold.
R S o r t - y One-pass RSort algorithm applied at Y threshold.
I n s - Y Standard insertion sort applied at Y threshold.

Partitioning algorithms

Algorithm Description
S I Scalar binary partitioning function.
S2 Scalar ternary partitioning function.
V I SIMD binary partitioning function.
V2 Algorithm VI with an initial vectorized check for correctly partitioned elements

at both ends of the array.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

Sorting is a classical problem within computing science, with applications to a number of computa­

tional tasks. With the exception of such sorting algorithms as Bogosort1 (and barring execution on a

quantum computer), running time also tends to be a concern. Naturally, a large body of work exists

relating to the topic of sorting algorithms and their execution on modern computers and theoretical

computational models.

This thesis addresses the automatic generation of efficient code to sort short sequences of values.

The idea is that an ahead-of-time optimizer searches for fast code for several sequence lengths

and machine configurations. Then the compiler can simply instantiate such code when generating

an optimized library. While algorithm-specific optimizations and empirical search have long been

used both for scientific computation and for large parallel machines [8, 9, 34, 36], only recently

these techniques were applied to integer-intensive, symbolic computation. Li et al. developed the

Dynamically Tuned Sorting Library that adapts to the characteristics of the input to be sorted [21].

The main contribution of this thesis is the insight that the resources implemented in contemporary

processors to enable SIMD computations can be put to good use to improve the performance of

sorting short sequences. As demonstrated in this work, the effective use of these SIMD resources

improves performance through the reduction of memory references, branches, and the increase in

instruction level parallelism.

The initial inspiration for this work was the need for fast sorting of short sequences in the im­

plementation of graphics rendering in interactive video-game applications. In such applications it is

often necessary to decide, for each pixel of the image, what is the order of the elements that should

be displayed [4]. Even though such Z-buffer (depth-buffer) pixel-ordering computations are typi­

cally handled by a specialized Graphics Processing Unit (GPU), partially transparent polygons must

often first be sorted elsewhere, and there are plenty of similar ordering computations that are done

Randomly permute the array o f elements. Check if the array is sorted. Repeat while not.

A version of this chapter has been published.
Furtak, Amaral, Niewiadomski 2007. Proceedings o f the Nineteenth Annual ACM Symposium on Parallel Algorithms and
Architectures. 348-357.

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

by the Central Processing Unit (CPU) in computer games. For instance, sorting is used to charac­

terize the intensity of the various light sources that illuminate a character. Moreover, contemporary

video-game application have at their disposal a rich supply of SIMD registers and instructions. For

example, the PowerPC-based XBox 360 hardware features 128 AltiVec registers on each of its three

cores along with an expanded set of AltiVec instructions. In addition to interactive video-game

applications, sorting of short sequences is also present in particle-physics simulation applications.

Thus, using SIMD registers and instructions to sort small sequences is natural. Once a solution

was created, applying it to the sequences that must be sorted at the tail-end of standard recursive

sorting algorithms was the next logical step. The experimental evaluation of the vector-register-

based sorting algorithms presented in this thesis use commodity processors (x86-64 and G5) and

extensions to the DTSL library because these machines and algorithms are more readily available

and exploitable than proprietary video-game hardware and software.

The algorithms presented are effective for sorting moderately-sized sequences of elements, as

well as for sorting large sequences using quicksort. Additionally, we present SIMD algorithms for

computing the index of a minimum (maximum) element. The elements being operated upon may

be floating-point or integer values (keys), or “key-pointer pairs”, comprised of a key and a memory

address. The techniques for enabling the sorting of key-pointer pairs are then used to speed up

sift-down operations in d-heaps, which are then used in the context of heapsort. These algorithms

are described in Chapter 2. The integration of these sorting techniques with Quicksort, and SIMD

functions for quicksort partitioning are discussed in Chapter 3. Finally, experimental results are

given in Chapter 4 and conclusions in Chapter 5.

The main contributions of this thesis are:

• three algorithms that use the SIMD machinery of contemporary processors for efficient in­

register sorting of short sequences;

• two partitioning algorithms that use SIMD instructions to split arrays into “low” and “high”

sub-arrays;

• a method to use iterative-deepening search to find fast instruction sequences to move data

within the SIMD registers;

• a method to use SIMD instructions to compute the minimum element in an array, with appli­

cations to d-heaps and heapsort;

• and an extensive experimental study on four different processors that demonstrate up to 30%

improvement in the performance of quicksort for moderate- to large-sized arrays, and up to

20% in heapsort.

A preliminary version of this work appeared in [11], Source code for the techniques within may

be found online at [10],

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.1 Commodity Vector Hardware

Most contemporary processors offer some version of SIMD machinery — vector registers and in­

structions to manipulate data stored in such registers. Although the techniques and algorithms pre­

sented in this thesis may be applied to a fairly broad class of such vector machinery (modulo practical

speed concerns), for concreteness we will restrict ourselves to the x86-64 SSE2 and the G5 AltiVec

instruction set architectures.

These ISAs provide 128-bit wide vector registers. Depending on the instruction being executed,

the data in these registers may be interpreted as 2 (64-bit) double-precision floating point numbers,

4 (32-bit) single-precision floating point numbers, 4 (32-bit) integers, etc. In keeping with SSE2,

which offers fewer options for data types, we will be working with 32-bit granularity.

While specialized exceptions exist, the most common vector instructions perform the same log­

ical/arithmetic operation element-wise between two vectors. For example, a vector add instruction

would add the first element from one vector with the first element from another, similarly for the

second elements, etc.

SSE2 provides some (slower) instructions for storing/loading to/from memory addresses not

aligned on a 128-bit boundary, AltiVec does not. Misaligned loads using AltiVec must read two

128-bit vectors and then combine the desired elements via bit-/byte-wise rotation or some other data

movement (shuffle) instructions.

1.1.1 G5 AltiVec

Compared to SSE2, the AltiVec data movement instructions have greater flexibility at the expense

of increased setup requirements. Elements (bytes) from two source vectors may be copied anywhere

within a third destination register (possibly one of the sources), but the instruction itself requires a

fourth control vector to specify which source elements goes into which destination byte. Often this

fourth vector is known at compile time and can simply be loaded from an array in memory, although

for some cases it may/must be computed at runtime.

1.1.2 x86-64 SSE2

For our concerns, the majority of relevant x86-64 SSE2 instructions tend to be of a certain form.

These instructions take one source vector and one source-cum-destination register. Unlike the

AltiVec instructions which can select an arbitrary destination register distinct from the source(s),

using SSE2 if both source vectors need to be preserved then a copy of one must be made.

As alluded to by AltiVec’s flexibility, SSE2 shuffle instructions tend to be somewhat restrictive in

terms of which elements can be moved where. There are however a number of such data movement

instructions which cover common (de)interleaving operations, more so than for AltiVec. Thus a

potential advantage is that control vectors for combining elements are unnecessary, either because

the control is implicit in the instruction or it is given as an immediate operand in the assembly code.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

One drawback with SSE2 is that instructions for combining elements from two vectors often

place restrictions on how many elements from the source vectors must be selected (usually 2 from

each), and where they can be placed in the destination register.

1.1.3 Floating Points and Integers

Although the AltiVec vector instructions provide support for both 32-bit floating point elements

and 32-bit integers, SSE2 only support floating point values for certain arithmetic and comparison

instructions that we wish to use, namely min/max and magnitude testing. However, due to how the

IEEE Standard 754 floating point format is defined [15], for a large range of values (0 to 231 —

223 — 1) unsigned integer encodings may be treated as floating point encodings (and vice versa)

with respect to their ordering relations. This allows for somewhat limited (but potentially useful)

support for using the following techniques to sort integers on x86-64 architectures using current

SIMD instructions.

1.2 Related Work

Traditionally research for sorting on microprocessors has focused on two extremes. At one end there

is classical sorting, operating on one machine with no allowance for parallelism. At the other end,

one often assumes either a large number of distributed machines interconnected via some network

topology, or a vector processor.

For instance, mesh-connected processor arrays have been well studied [32],[13]. In these models

processors are arranged in a grid and communication is restricted to be between adjacent nodes.

The implementation of sorting in large-scale vector machines has also been extensively studied.

Siegel produced one of the earliest descriptions of how to implement Batcher’s sorting network, also

known as bitonic sorting, in SIMD machines [31], Bitton et al. provides an extensive description

o f such implementations [5]. The new contribution of this thesis is to demonstrate how the well-

known sorting networks can be implemented in the SIMD machinery of contemporary processors

and to indicate that code generators can instance such implementations to improve the performance

of recursive sorting algorithms and heaps.

The idea of making better use of register resources within the processor to reduce the number

of load or stores, in our case to put the SIMD resources to good use in sorting, is also explored by

Arge et al. [35]. Their idea of forming cache-load-sized runs with quicksort is similar to our idea

of switching to SIMD-register-based sorting at an appropriate threshold. The contrast is that we are

also benefiting from the SIMD machinery which allows more parallelism in the execution and the

elimination of branches, while they use the general-purpose registers and the storage available in a

cache line.

Recently compilers have been used more often to improve the code generation for SIMD ma­

chinery in contemporary processors. Ren et al.'s approach of using an optimization algorithm to

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

improve the data permutations is more general than our specific iterative-deepening search [29].

Nuzman et al. describes a compiler framework to generate vectorized code for interleaved data [23].

Additionally there has been a recent proliferation of commodity vector hardware in the form of

GPUs and their programmable shaders for processing vertices and texture fragments. Facilitating

this is increased GPU vendor support via software development kits for general purpose compu­

tations. Indeed GPUs have been used for matrix and FFT computations, dynamical simulations,

and other numerically intensive tasks. In [27] Purcell et al. introduce using the GPU to implement

Batcher’s bitonic sort. Govindaraju et al. discuss using graphics processors for quantile and fre­

quency estimation in [12], and to this end this also discuss using the GPU for sorting, but for much

larger sets of data (databases 10s of gigabytes in size).

One of Govindaraju et al. ’s methods is quite similar to our MSort in that data is streamed to the

GPU, sorted, and then written back. Indeed, they also sort 4 streams of data in parallel, correspond­

ing to one stream per color channel (plus alpha), and then merge the streams using the CPU. They

note however that a practical concern in using the GPU is the current limitation in bus bandwidth

for moving to and from the GPU — gains are achieved by leveraging the speed of computations and

data movement within the GPU. They go on to implement more complicated sorting algorithms with

good results. The existence and comparison of an SSE-optimized quicksort is mentioned in [12],

although no details are provided as to where the SSE instructions are used or other implementation

details.

The relationship between the SIMD-register-based sorting algorithms presented in this thesis

and the development of DTSL is an orthogonal improvement to a library generator [21]. Li et al.

focused on the dynamic identification of the best sorting algorithm for a given input sequence [22],

They selected an efficient algorithm for the tail o f their recursive method. This thesis offers a better

solution for the sorting of sequences that are small enough to benefit from the use of the SIMD

machinery. Similarly, we provide a faster mechanism for selecting a minimum (maximum) child in

the implicit d-heaps studied by LaMarca and Ladner [19,20].

Our SIMD-register-based sorting could also improve partition based sorting methods. For in­

stance, Shen and Ding use an adaptive partitioning scheme to attempt to evenly partition data

into chunks smaller than cache size and then use quicksort or insertion sort to finish sorting each

bucket [30]. This potential benefit is distinct from the actual partitioning phase itself, for which we

also present a SIMD algorithm. Moreover, the dynamic analysis o f the array’s key distribution done

by the DTSL may be used to select whether or not to use such vector partitioning.

This thesis offers an efficient solution for the sorting of sequences that are small enough to

benefit from the use of the SIMD machinery, as well as algorithms for the large-scale partitioning of

data and for the implementation of heaps.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

SIMD Vector Sorting Algorithms

Divide-and-conquer sorting algorithms such as quicksort often benefit from switching to a different

sorting algorithm such as insertion sort when the number of elements is below a certain threshold. It

is faster in these cases to call an algorithm with an asymptotically slower expect run time due to the

constants involved. We will term such a sorting algorithm, called at the lowest levels of recursion,

a “low-level” algorithm. By utilizing SIMD registers and instructions we will be able to construct

low-level algorithms which are both fast and which can operate efficiently at much larger thresholds

than insertion sort.

To implement such algorithms we first introduce sorting networks, then show how they can be

made parallel using vector instructions. Two of these algorithms employ a second pass to finalize

sorting, while the third uses data movement instructions, searched for ahead of time, to manipulate

and sort all elements in-register. We then show how to extend these sorting algorithms to sort ele­

ments which are key-pointer pairs. Applying a similar technique, we create a vection function which

can compute the index of a minimum (maximum) element, and use it within heapsort operations.

2.1 Sorting Networks

The inputs to an in-place comparator, C O M P (a ,b) , are two storage units — memory locations,

registers, or vector-register elements — a and b, each containing a numerical input. After the com­

parator executes, the lower numerical value is stored in a and the higher numerical value is stored

in b. Knuth describes a comparator network as a device that applies a fixed sequence of comparator

operators to an input vector of a given size [18]. When a comparator network produces a sorted

output for any possible input sequence, it is called a sorting network. The size of a sorting network

is the total number of comparators in the network. The depth o f a sorting network is the length

of the critical path in its dependence graph. Therefore the depth provides a bound for the parallel

execution of the sorting network, while the size provides a bound for a sequential execution.

A version of this chapter has been published.
Furtak, Amaral, Niewiadomski 2007. Proceedings o f the Nineteenth Annual ACM Symposium on Parallel Algorithms and
Architectures. 348-357.

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a b e d

COMP(a, c)
COMP(b, d)
COMP(a, b)
COMP(c, d)
COMP(b, c)

Figure 2.1: A 4-element sorting network.

An example of a sorting network with size 5 and depth 3 is shown in Fig. 2.1. The network is

depicted as a set of value-carrying vertical rails and comparators. Values flow from top to bottom. A

heavy dot at a line crossing indicates that the value at the vertical rail is an input to the comparator

represented by the horizontal line. A comparator moves the larger value to the right, and the smaller

value to the left. For instance, if the inputs are a = 9, b = 5, c = 2, d = 7, then the sorted output at

the bottom of the sorting network is a = 2, b = 5, c — 7, and d = 9. The value 9 moves from rail a

to rail c at COM P(a, c), and then moves from rail c to rail d at C O M P (c,d).

Although several algorithms are available to generate code for sorting networks, Batcher’s “odd-

even mergesort” algorithm is often chosen for its efficiency [2], Batcher’s algorithm uses 0 (n log2 n)

comparators and has a depth of 0 (lo g 2 n). Sorting networks can be efficiently implemented in pro­

cessors that provide a min and a max instruction. Sorting networks implemented with these instruc­

tions avoid the performance penalties of branch miss-predictions incurred by traditional branch-

based sorting implementations. The experimental results in Section 4 indicate that eliminating

branches in the code of sorting networks is a significant win in contemporary processors.

2.1.1 Supporting Hardware

Consider a machine that has the following min and max instructions:

(a : a < b \ a : a > b
min[a,b) = < . ,m a x (a ,b) = {

[b : otherwise \ b : otherwise

The comparator required by a sorting network is easily constructed using these two operations, a

copy instruction, and a temporary variable. For instance, such instructions are available in the x86-

64 architectures supporting the SSE2 min and max operations that return the minimum (maximum)

packed single-precision floating-point values [15].1

The extension of sorting networks to operate on vector instructions requires the definition of

vectorized min and max instructions.2 For input vectors A and B, |A | = |B| = n, let C =

m in (A , B) be the element-wise minimum vector, such that Q = m in(A j, B;) for 1 < i < n. The

vectorized max instruction is defined similarly. The width of a (vectorized) sorting network refers

to the number of vectors being sorted. Given an ordered list of vectors X 1, X2, . . . , X ” , a stream

'SSE stands for Streaming SIMD Extensions. SSE2 improves upon the original SSE.
2These vector instructions are called a SIMD extension.

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of data is defined to be the sequence formed by selecting the zth element from each vector in order,

such that the f t 1 stream is X j , X j , . . . , X".

For instance, the x86-64 architecture has 16 XMM vector registers, and each register can hold

4 floating-point values. Therefore, sorting the values in n XMM registers using a sorting network

produces 4 sorted streams of data o f length n. Up to 15 XMM registers can be used, i.e. 1 < n < 16,

because one register must be reserved as temporary storage for the swap of values in the comparator.

This compare-and-swap machinery offers several advantages to sort a small set of values that

fits within the SIMD registers: (1) its operation is unconditional and data independent; (2) it is

inherently branch-free, and thus free of branch-prediction performance penalties; (3) it increases

the bandwidth of sorting by enabling the SIMD instruction-level parallelism; and (4) each compare-

and-swap requires the execution of only 3 instructions.

A code generator must be able to generate code to sort sequences of any length in a machine with

n 4-1 SIMD registers. The solution is to define size-optimal sorting networks that use 1 ,2 , . . . , n

registers. The optimal code for the implementation of each of these sorting networks is pre-generated

and stored in a small codebase available to the code generator for deployment. Once data has been

loaded into the SIMD registers the code generator instantiates the code to perform the comparator

operations specified by the sorting network, and integrates the resulting streams.

2.1.2 More Related Work

Sorting networks are a well-studied field and have a large body of associated research. Their asymp­

totic complexity is 0 (n lo g n) as established by Ajtai, Komlos, and Szemeredi in their famous

work [1]. Unfortunately the constants involved in the AKS sorting network are prohibitively large

for all practical purposes. As such, and as mentioned, it is Batcher’s odd-even sorting network which

is often chosen due to its small size.

Although it is not difficult to generate valid sorting networks, generating size-optimal sorting

networks is quite difficult. At this time there are no known size-optimal sorting networks for more

than 16 elements. Proving such optimality is a hard problem, as seen in [25] and the references

therein.

In terms of hardware implementations, the number of interconnects required for a full sorting

network may become overly large and/or expensive. Addressing this concern is the creation of

periodic sorting networks, in which the output is cycled through a comparator network until it is

sorted [16]. In a similar direction, [24] shows how to use a sorting network to sort arbitrarily large

inputs.

As mentioned in the previous chapter, sorting networks enjoy much popularity in GPU-based

sorting methods. Batcher’s other common and related sorting algorithm, Bitonic sort, also produces

a sorting network. This sorting network and its variants are currently the algorithm of choice for

implementing such GPU sorting.

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2 Two-Pass Sorting with Streams

The first two SIMD-based sorting algorithms we will discuss operate in two phases. In the first

phase the SIMD registers and instructions are used to generate a partially-sorted output. In the

second phase a standard sorting algorithm — we investigate insertion sort and mergesort — finishes

the sorting. The organization of data during the first phase will be dictated by the choice of algorithm

for the second.

For the first phase, consider the use of the SIMD sorting machinery described in Chapter 2.1

for the task of sorting a sequence of k ■ w values using w SIMD registers, each register capable of

storing k values. Each group of k values is loaded from memory into a separate SIMD register. For

a moment, assume that the start of the sequence is aligned for such a load operation. The case of

unaligned and/or non-multiple-of-fc-sized arrays is discussed in Section 2.2.3.

The sorting machinery is then applied to produce k sorted streams of length w, and the sorted

streams are written back in-place to memory in an interleaved form. After sorting, A \ < A 2 <

. . . < A w, B% < B2 < . . . < Bw, etc. For k = 4 the organization of the data in memory is as:

U i B i Ci D i \A2 B2 c2 d 2] • • # E B„ D,,

For convenience we will refer to this step/algorithm as SSort (where the “S” stands for stream).

See Fig. 2.2 for SSort pseudocode. After this initial sorting pass the ordering relationship between

elements from separate streams, A,-, B j , Q , and D/, is still unknown. At this point the output from

the vectorized sorting network must undergo an additional sorting pass.

2.2.1 Second Pass with Insertion Sort

A standard insertion-sort algorithm may be used to sort the output of the SIMD-based sorting net­

work. Insertion sort performs best when its input is mostly sorted because the algorithm does not

have to move elements very far. If the list is completely sorted, only a linear scan is needed. Thus

a potential issue with using insertion sort as a second pass is how the data should be loaded into the

SIMD vectors in the first phase to produce the most favorable input for insertion sort.

Consider an input sequence of S values, and a machine with n + 1 SIMD vectors (either physical

or emulated). Each vector can store up to k values. Let m = [S /fc]. If m < n the entire array can

be loaded into the SIMD registers, sorted, and written back in-place. Then a call to insertion sort

will finish sorting the entire sequence.

If m > n, an in-place algorithm divides the array into subsets small enough to fit in the vector

registers, sorts them with a sorting network, and writes each sorted subset back to the same locations.

A naive approach would simply divide the array into \ m / n \ almost equal-sized blocks. How­

ever, if the data is uniformly distributed this partition results in \m /n] similar blocks, one after

the other. The problem is that small elements from the last block would have similar values to the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Function SSort (X)
Data: Input array X with 4k elements,
begin

n <- |X|
w <— m /4
for i=0 to w — 1 do

Vj <— X [4 t,.. . , 4 / + 3] /* L o a d i n t o v e c t o r r e g i s t e r s * /
end
S := sorting network for w elements (0-indexed)
forall comparators C (i, j) in S do

COMP(Vi[0], Vy[0])
C O M P(V j[l],V)[l])
COMP(Vi[2\,Vj[2})

lCOMP(V-[3],V-[3])
end
for i - 0 to w — 1 do

Y [4i,. . . ,4 t + 3] <— Vj /* S t o r e i n t o o u t p u t a r r a y * /
end
returnY / * P o t e n t i a l l y t h e sam e a r r a y a s X * /

V C O M P (V i,V j)

end

Figure 2.2: SIMD Stream sorting (SSort) algorithm.

small elements from the first block, and would require insertion sort to move many elements large

distances across block boundaries.

A better approach is to load the blocks into the SIMD registers in a strided fashion. Consider

for example n — 4 and m = 12 which requires three sorting network calls. Instead of the first

call acting on vectors V 1, V 2, V 3, and V4, it acts on I /1,1 /4, V 7, and V40. The second call acts on

vectors V 2, V 5, V 8, and V 11, and the third on V 3, V 6, V 9, and V 12. In this way the small values in

the array are likely to end up in V 1, V 2, and V 3. A stride width greater than one improves insertion

sort performance in cases of uniform or mostly-sorted distributions.

The stride width may be passed as a parameter when calling SSort, although in our implementa­

tion it is hard-coded. We will call this strided version of the vectorized sorting network followed by

an insertion sort pass ISort, shown in Fig. 2.3.

2.2.2 Second Pass with Mergesort

The mergesort algorithm, called MSort and shown in Fig. 2.4, uses a fixed-sized block of temporary

storage T that is large enough to hold the entire array X. Because the SIMD-based sorting is applied

to small sequences this array will not be large in practice. MSort proceeds as follows. Compute

the number of blocks of data to be sorted, \ m / n \ , and allocate temporary space T. Call the sorting

network on each block from X and store the sorted streams to T.

The Q-MERGE algorithm described by Wickremesinghe et al. [35] based on work by [28] is now

used to store the sorted data into X: (1) Build a heap containing the first element in each stream, and

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Function ISort (X , Y , w)
Data: Input and output arrays of size 4k, number of streams to use (multiple of 4).
begin

n <- |X |
p<— w / 4 /* N um ber o f s o r t i n g p a s s e s * /
for i - 1 to p do

Ij : = {4(z — 1) 4- j -f- w ■ k} : j G {0 ,1 ,2 ,3} ; k G IN; 4(t — 1) -|- y + w ■ k < fi
X,-:= X[I,-] /* S u b - a r r a y o f s t a g g e r e d v e c t o r - s i z e d b l o c k s * /
Y[/,-] <— S S o r t (X,)

end
I n s e r t i o n S o r t : (Y, n)

end___

Figure 2.3: ISort sorting algorithm.

associate with each element a pointer to the next element in its stream; (2) Repeatedly extract the

minimum element from the heap. During the extraction, replace the removed element with the next

element in its stream, and rebuild the heap.

With a small number of streams, sufficient registers may be available to contain the entire heap.

That is, the heap may be coded using explicit variables for each element, rather than a traditional

array and index pointers. Maintenance operations for such small heaps must then be written using

the fixed variable names/locations of elements, but in so doing they avoid potentially costly memory

accesses and pointer indirections.

Heapify operations are then efficient and the only flow of data to/from memory is to fetch the

next item from a stream or to store the next value to X. For heaps that are too large to fit within

the available registers, in-memory heap code may be used. In practice one would most likely want

to hard-code the heap using local variables and let the compiler automatically allocate them on the

stack or within registers.

MSort uses one merge heap, with the number of inputs (i.e. heap elements) being a multiple of

v, the number of elements in a vector register. That is, a heap completely handles the output from

one or more vectorized sorting network (SSort) calls. The heap operations (build-heap, sift-down,

extract-min), are hard-coded, with the heap source code produced automatically by a small program.

Additional optimizations include placing a sentinel value of infinity at the end of each stream to

avoid checking if streams are empty [35]. Once a sentinel is loaded into the head it will sink to the

bottom. When any sentinel is extracted from the heap no more non-sentinel values remain. If the

elements being sorted may possibly contain values of infinity as their keys then it is straightforward

after the main loop to extract the remaining elements by increment each stream pointer until it

reaches the end of its stream. Since all remaining elements have the same key they will naturally be

sorted.

Each sorting network call places elements from the same stream a constant distance away from

each other. Thus the next element on a stream can be found by adding a constant offset to the

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Function MSort (X , Y , w)
Data: Input and output arrays of size 4k, number of streams to use (multiple of 4).
begin

» H X |
p<— w / 4 / * N um ber o f s o r t i n g p a s s e s * /
b0 < -0
for i=l to p do

bi <— — / * B o u n d a ry o f s u b - a r r a y i * /

rii = bi — bi_i + 1 /* S i z e o f p a s s i * /
Tempil0 , . . . , rii - 1] <- S S o r t (X f o - i , . . . , bt - 1])
Tempi[iti + 0] <— oo /* S e n t i n e l f o r f i r s t s t r e a m * /
Tempi[n.i + 1] <— oo /* S e c o n d s t r e a m , . . . * /
Temp* [rij + 2] <— oo
Tempi[rii + 3] *— oo

end
Build min-heap from the first element of each temporary stream.
i e— 0
while top o f heap f- oo do

Y[z] *— top o f heap
replace top element with the next element in its stream
sift-down top element
t <— i + 1

end
In case any “real” elements had a key o f oo;
Finish copying elements to Y from non-empty streams.

end___ _____________________

Figure 2.4: MSort sorting algorithm.

address of the current element, which makes the maintenance of the “next element” pointer in the

heap straightforward.

2.2.3 Unaligned Arrays

Potentially the arrays that we are sorting with these vector instructions are not aligned on vector

boundaries (or do not have sizes that are exact multiples of 4). We will refer to the blocks of aligned

elements in the middle of the array as the “core”. On either end of the array, the elements that do

not fill an entire block will be denoted as the “fringe”. Likewise, the elements that are not part of the

array proper, but are nevertheless located within the memory addresses of the blocks at either array

end will be called the “non-array fringe” or “outer fringe”.

In such cases where the outer fringe is non-empty, rather than only sorting the core elements and

then attempting to shift the fringe elements into position3 we will “pad” the outer fringe elements

by placing values of positive and negative infinity into those locations as appropriate. Properly

implemented, this will prevent elements in the outer fringe from moving when sorting is applied.

After sorting, the original outer fringe values are restored.

3 Or equivalently moving the proper elements into the fringe locations first.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Function VectorWrapper (Func, X, •)
Data: Sorting function (+parameters) and potentially unaligned input/output array,
begin

n i *— L e f t O u t F r i n g e (X) /* # o f o u t e r e l e m e n t s t o X 's l e f t * /
tt2 <— (— (|X | — n i)) positive m o d 4 /* # o f r i g h t o u t e r e l e m e n t s * /

/* E i t h e r 0 , 1 , 2 , o r 3 e l e m e n t s * /
for i=l to ni do

Li <— X [—i] /* S a v e e l e m e n t s i n t h e l e f t o u t e r f r i n g e * /
X [—i] <------ oo

end
for i=l to « 2 do

Ri <— X[n — 1 + i] / * S a v e t h e r i g h t o u t e r f r i n g e * /
X[n — 1 + i\ <— oo

end
F u n c (X , . . .) / * E x e c u t i o n c o u l d h a v e c o r r u p t e d f r i n g e * /
for 1=7 to ti\ do

X [—i] <— L; / * R e s t o r e o r i g i n a l f r i n g e v a l u e s * /
end
for 1=7 to « 2 do

X[n — 1 + 1] <- Ri
end

end

Figure 2.5: Wrapper function to enable sorting of unaligned arrays using vector sorting functions.

The values stored in memory in the outer fringe may or may not be actual array elements, as

opposed to arbitrary data. As such, care should be exercised that the values located in these positions

will not change during the sorting, either due to parallel accesses or such locations actually holding

local variables used during the sort. Alternately, as alluded, the fringe elements may be handled in a

pre-/post-vector sort pass.

Note that the elements in the array proper must not move outside of that array into the fringes, as

they will be lost and the array corrupted by padding elements. This is equivalent to requiring that the

padding elements not move from their locations in the outer fringes, although reordering is allowed.

Negative sentinels from the start of the sequence will not shift their position during the SSort

pass (using a stable comparator). By keeping track of the number of sentinels added, they may be

removed from the start of their merge streams before building the heap. Similarly, during the final

pass of MSort to extract real elements with value oo, the true final index for each stream can be

computed using the number of padding elements added.

Insertion sort’s stability will automatically preserve the order of those first/last k elements which

are equal (which naturally includes the sentinels).

We will refer to the use of a “wrapper function” for the process of correcting for misaligned

arrays. For convenience we will exclude the specifics of passing fringe sizes to MSort and assume

that such a wrapping function is ambivalent to the type of low-level algorithm it is containing.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3 One-Pass Sorting

The third SIMD-based sorting algorithm, which we shall call RSort, accomplishes the sorting in

a single pass. Intuitively, this is possible by loading all of the n elements to be sorted into the

vector registers, applying the comparators for an n-element (scalar) sorting network, and writing the

elements back to memory in-place. In theory a vector-instruction-aware compiler would be able to

automatically generate such a function from a scalar implementation of a sorting network.

As with the two-pass methods in Section 2.2, we can employ a wrapper function to handle the

sorting of arrays that are not vector-aligned. Indeed the same wrapper function will work as listed if

the RSort instructions make some minor assumptions discussed in section 2.3.3.

The difficulty with this RSort approach lies in relocating (aligning) elements within the vector

registers such that the vector comparator operations can implement the scalar comparators. De­

pending on the fragmentation of free locations within the vector registers, this may be challenging.

Moreover, since these comparators are indiscriminate, any “extra” elements in the input vectors may

be corrupted and must be considered lost.

Since the cost of applying a vector comparator remains the same regardless of the number

of “care” values in each input vector, a natural optimization is to execute more than one (scalar)

sorting-network comparator at a time. However, the cost o f additional data-movement instructions

to properly position multiple comparator inputs in each vector register may outweigh the benefit of

parallelization. In practice, for the sorting networks considered, it did not appear to be the case that

aligning as many elements as possible4 was ever detrimental to the resulting sequence of operations.

That said, the algorithm we present does provide the ability to balance such alignment costs for the

target architecture.

2.3.1 Searching to Align Vector Elements

We will first describe the algorithm used for finding a sequence of alignment instructions, and then

show how this applies to a small 4-element sorting network.

Algorithm Input

The input to our algorithm is a sequence of comparators corresponding to a sorting network. In

our case the sorting networks were produced by Batcher’s merge exchange - not to be confused

with Batcher’s bitonic sort. Merge exchange has the convenient property of producing an initial

sequence of comparators connecting elements that are separated by powers of 2. As the vectors are

of length 4, the elements within are already aligned for this inital comparator sequence and require

no repositioning.

4With the optimization that the sorting networks corresponding to Batcher’s Merge Exchange are explicitly separated into
layers.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The data dependencies in the sorting network define a partial ordering for the execution of the

comparisons. The comparators can thus be partitioned into sets in such a way that all the comparators

in each set can be executed in parallel. This partition corresponds to the computation of the maximal

anti-chains in a data-depemdency graph [33].

One natural optimization, namely considering multiple legal orderings of the comparator se­

quence, was not implemented due to the combinatorial increase in the search space. While we

present no formal approximation bounds, we feel that the resulting suboptimality of the instruction

sequences produced is not significant.

One important optimization which reduces both the number of assembly instructions and the

time needed to search for an alignment sequence is to insert explicit breaks between levels of the

merge exchange sorting network. That is, to disallow executing scalar comparators from different

levels within one parallel comparator. For our purposes we consider levels to be the results of the

innermost loop in Batcher’s merge exchange algorithm as described in [18]. An 8-element merge

exchange network is shown in Fig. 2.6 with such layer breaks indicated. One may also note that, as

mentioned above, the elements are already aligned for executing the first 4 comparators in parallel.

Within a layer, a similar sequence of alignment instructions is often repeated for multiple parallel

scalar comparators. Forcing breaks between levels may be thought of as helping to maintain this

repeating pattern by not disrupting element alignment at the start o f a layer. Such a disruption seems

to propagate, requiring an increased number of alignment instructions.

Initial State

For convenience we will assume that we have an unbounded number of vector registers. The result­

ing sequence of assembly instructions can be restricted to a small number o f physical vector registers

as a post-processing step by “spilling” and loading values to and from memory as appropriate. This

will be handled automatically by the compiler.

We will also assume that the elements are located in a continuous region of memory, begin on an

appropriately aligned memory boundary, and that the number of elements is a multiple of the size of

Figure 2.6: An 8-element sorting network produced by Batcher’s merge exchange, with breaks
indicated between layers.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a vector. These restrictions are for simplification only and can be removed by making small changes

to the algorithm.

Note that the process of searching for a sequence of alignment instructions is only concerned

with keeping track of the labels of the elements contained within the vector registers - we will refer

to manipulations of elements only for convenience.

The first step is to load all o f the elements from memory into the vector registers. It is natural

and convenient to use a sequential labeling, such that the first memory location is labeled 0 and

the last location n — l .5 Given realistic constraints on the capabilities of the vector manipulation

instructions, a number of empty vector registers are required as swap space for rearranging elements.

In our experiments having 5 empty vector registers in addition to those registers holding the initial

values was seen to be sufficient. With appropriate pruning techniques during search, increasing this

number should not seriously affect performance.

Aligning a Set of Comparators

While all of the comparators in the sorting network have not yet been executed, select the next k

comparators that do not cross a layer and such that k is no larger than the number of elements in

a vector register. The task is then to rearrange elements such that all the “low” elements from the

k comparators are in one vector, and all the “high” elements in another,6 and aligned element-wise

with their partner.

Such an alignment is only valid if applying a vector comparator will not erase the last copy of

any element. An erasure must necessarily occur when comparing an element with either an empty

(garbage) value or another element with an unknown ordering relation.7 Note that applying a vector

comparator will also invalidate copies of compared elements that are located in other registers.

Finding a sequence of assembly instructions to accomplish this alignment is performed using a

standard iterative-deepening search. The legal actions in a state are all vector assembly instructions

which do not completely eliminate an element from the set of vector registers.

Due to feasibility concerns, each iterative-deepening search is divided into two phases: moving

the low half of each comparator into one vector, and then moving the high half into alignment. If the

maximum search depth in any one phase reaches 3, then that task is further subdivided into moving

the first 2 elements into a vector, the next 2 elements into another, and finally combining them.

Even with these incremental stages, due to the massive branching factor a naive implementation

of this search would take a significant amount of time for even moderately large networks. Our im­

plementation makes use of several heuristics to prune provably unproductive portions of the search

5The 0 . . . n — 1 labeling is not required, but it does exploit the layout o f Batcher’s sorting networks.
6The partitioning o f low and high elements can be dropped if a relabelling is performed on the fly during search, depending

on whether or not the scalar comparator is inverted.
7We did not implement the extension where known orderings were exploited to preserve values. Namely, allowing an

element to be compared against itself without consequence. Nor did we use other orderings which may be inferred from the
partially executed sorting network.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

space, given the current depth bound, such as detecting when the target values are spread out over

too many vector registers to be combined within the number of remaining steps.

To address the tradeoff between the cost of executing a vector comparator and the cost of align­

ment instructions, the above search is repeated for smaller values of k, and the final cost becomes a

combination of the number of alignment instructions and a penalty for including fewer scalar com­

parators than is possible. This penalty value is somewhat ad hoc, but should reflect the expected

alignment and comparator costs for the current architecture.

Intuitively this attempts to select the sequence with the best ratio of number of alignments pro­

duced versus instructions required, with an additional bias towards producing more alignments since

more alignments will reduce the total number of comparison steps.

When all appropriate values of k have been searched, the choice of how many comparators to

include is made greedily and is not revisited. The vector comparator is then applied and the search

continues using the remaining comparators.

Writing Values Back to Memory

After the final comparator has been applied the elements are sorted but are not (generally) located

within the vector registers in an order in which they can be written back to memory. A similar

iterative-deepening search now finds an instruction sequence to obtain the correct alignment. Nat­

urally, all elements need not be aligned before any are written back to memory, although by using

vector intrinsics the compiler should be able to order these writebacks any time after they become

feasible.

2.3.2 Example Search

The sorting network shown in Fig. 2.1 will be used to illustrate the sequence of events in the align­

ment algorithm for single-pass in-register sorting. This network has four elements are requires the

execution of five scalar comparators. An in-register sorting instance of this network using the x86-64

SSE(2) SIMD machinery is shown in Fig. 2.7. The instructions used in this instance are described

in Table 2 .1.8

The 4-element sorting network of Fig. 2.1 produces the following partitions:

Pi = {C O M P (a ,c), C O M P(b, d) }; P2 - {C O M P (a, b), C O M P (c, d)}; and P3 = {C O M P (b, c) }.

First the elements of XMMO are assigned the four elements to be sorted (a, b, c, and d). Then a

low-cost sequence of vector instructions is searched for to align a with c and b with d. Here this can

be done with a single m o v lh p s instruction in step 1. This allows for executing the C O M P (a, c) and

C O M P {b,d) comparators in parallel (step 2).9 After this comparison the value stored in element b

8Other SSE2 instructions frequently used for data movement but not included in this example are: p s h u f d, u n p c k h p s ,
a n d u n p c k lp s .

9For SSE2, a comparator between the contents of two registers Ra and Rb requires a temporary register T and the
execution of three instructions: m ovaps T, R a;m inps Ra, Rb;andmaxps Rb, T.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Instruction Description
m o v ap s R a, Rb copy the contents of Ra to Rb
s h u f p s R a , Rb, i copy 2 elements of Ra to the 2 low-order words of Ra,

and 2 elements of Rb to the 2 high-order words of Ra.
The elements to be copied are specified by i .

m o v h lp s R a, Rb copy the 2 high-order words from Rb to the 2 low-
order words of Ra.

m o v lh p s R a , Rb copy the 2 low-order words from Rb to the 2 high-
order words of Ra.

Table 2.1: SSE2 instructions used in the example of Fig. 2.7

is smaller than the value stored in element d, and the value stored in element a is smaller than the

value stored in element c.

In Fig. 2.7 a blank square represents a vector element that contains an unknown value that is

not relevant to the sorting process. For instance, after the comparison in step 2 the values that were

in elements b and a in the low-order words of XMMO may have moved. As they are not part of the

sorting process they are now represented by blank squares. If the inputs to the sorting network are

a = 9, b = 5, c = 2, and d = 7, this comparison would leave the highest-order words of XMMO and

XMM1 intact and would swap the contents o f the second highest-order words. It may also swap the

values in the two low-order words of these registers, but the contents of those words are irrelevant.

Now the two comparators in partition Pj are candidates for the next vector alignment. The initial

state for this search is the position of the elements in the vectors at the end of step 2. In the example

in Fig. 2.7 a sequence of two instructions, m o v h lp s and s h u f p s , is selected to align elements d

with c and b with a. Thus both comparators of P2 can be executed in parallel in step 5.

A penultimate search is performed to execute the last comparator, resulting in steps 6 and 7, at

which point the element values are sorted. Finally, the elements must be properly positioned within

one register (in this case XMM1) before the sorted sequence can be written back to memory with a

m o v ap s instruction.

The vectorization of a sorting network only needs to be done once for each sorting network and

for each architecture’s set of vector instructions. Thus all the searches described above should be

performed once and offline. The resulting schedule can then be used whenever a sequence of the

corresponding size needs to be sorted.

2.3.3 Variants

At the start o f this section we mentioned that we could use a wrapper function around RSort to

correct for unaligned arrays. The function listed in Section 2.2 will work provided that the potential

fringe elements (indices 0,1,2, n-3, n-2, and n-1) are not relabeled. This is to ensure that any sentinel

values placed in these locations will not move when compared against an equal value.

On the matter of data alignment, and although not as fast as the basic RSort in practice, there are

some potentially interesting modifications to the basic algorithm which may be of some use.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

s t e p 1 :
m o v lh p s x l , xO

S t e p 6 :
m o v h lp s x 2 , x l

S t e p 9 :
s h u f p s xO, x 2 , 0x13

Step 2:
COMP(1, 0)

XMMO d c b a
- 4 . c b a

XMM1 b
<

a

XM M 2

XMM3

S t e p 3 :
m o v h lp s xO, x l

S t e p A
s h u fp s x l , x0

XMMO d c d c
N

b
r

a*
XMM1 b._ _ a - . J r

XM M 2

XMM3

1V a I

S t e p 7 :
m ovaps x 3 , xO

d c b a

Tc~* a f a

XMMO d b d. b

XMM1 a c

XM M 2 C

XMM3

d b

> a

N
s

X X
Kd

V

S t e p 1 0 :
m o v lh p s x l , x3

S t e p 5 :
COMP(1, 0)

S t e p 8 :
COMP(2, 3)

$

XMMO

XMM1

XMM2

XMM3

S t e p 1 1 :
s h u f p s x l , xO , 0x2d

c " c d

V /_

.

-f
k

c b a

z 1 c

b b

S t e p 1 2 :
m ovaps [r s i + (0)] , xmm

main memory

Figure 2.7: Instruction sequence to apply an in-register 4-element sorting network in an x86-64
architecture. The associated sorting network is shown in Fig. 2.1.

It is mainly for reasons of economy that we restrict ourselves to producing functions that assume

aligned arrays. Relative to that baseline, it becomes considerably more expensive in terms of pro­

gram size (with a subsequent execution penalty) to construct functions that deal with arrays which

are not multiples of 4 nor are necessarily aligned.

Such instruction sequences can be constructed however, simply by properly initializing the reg­

ister values in our alignment search. For the class of functions that operate on half-aligned arrays,

say, leave the first two elements in the first vector blank One may wish to start counting on the

first full vector to exploit the sorting network by setting the fringe values to the end — writing the

elements back in sorted order rather than the initial labeling.

Also, when writing the sorted values back, it is important to either use operations that support

copying only some vector elements, or to combine the sorted vector with the current fringe values

before storing. Assuming that the fringe values will not be changed while the RSort call is executing,

it is even possible to preserve them within the vector registers as part of the alignment steps.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Step 6: Step 7: Step 8:
shufps xO, x:l, Oxdd pshufd xl, xO, 0xe3 COMP(0, 1)

XMMO

XMM1

XM M 2

XMM3

Step 9: steD 10*shufps xO, xl, 0x42 movaps [rsi+(u}], xmml
XMMO

XMM1

XM M 2

XMM3

Figure 2.8: Alternate instruction sequence for the final steps of Fig. 2.7. Exploits comparing an
element against itself. Yet another sequence could align the last comparator in one instruction, but
this would require two instructions before writing back to memory.

2.4 Synchronous Data Movement

So far we have concerned ourselves only with the problem of sorting an array of floating-point

values. A more general problem is that of sorting an array of data structures. To this end we will

consider the problem o f sorting 64-bit structures, where the first 32-bit word is a floating-point key,

and the second 32-bit word is an associated pointer field. This second field may be an actual pointer

to the element’s full data structure in memory, an array index for the same, or possibly the full data

itself.

For large data structures it is often more efficient to move only this key-pointer pair during

sorting, rather than the full object. We will now describe the modifications necessary to allow the

previously described vectorized sorting algorithms to operate on such key-pointer pairs.

The first requirement is to have the key values and the pointer values located in separate SIMD

vectors, where the first element in the key vector is associated with the first element in the pointer

vector, and so forth. This is accomplished by “swizzling” the keys and pointers when they are first

loaded from memory and reversing this process when they are ultimately written back to memory.

Intermediate data movement and comparator operations may then be thought of as operating on

one set of vector registers (the keys) in the same way as before, while those same data movements

are duplicated on a second set of vector registers (the pointers). For unconditional data movements,

such as alignment operations, this is straightforward to implement. Conditional data movement

characterized by the operation of comparators, however, requires some care that the pointer elements

in two vectors are exchanged if and only if a comparator exchanges their associated key values.

This conditional movement can be performed by predicating the exchange operations using a

bitmask, rather than requiring branch instructions. Such predication is implemented via Boolean

operations on the vector. The bitmask itself is generated by a vector (inequality) comparison oper­

ating on the elements in one key vector before and after applying a comparator. In this way we can

20

main memory

1a. 1 b\J <? c '

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

produce a bitmask whose elements are all 1 where an exchange took place and 0 where one did not.

The AltiVec instruction set provides a vector instruction (v s e l) specifically to perform such a

combination of two vectors based on a bitmask. This is illustrated in Fig. 2.9. While a number of

temporary copies are used in this example, an optimizing compiler can reduce the final number of

instructions by relabeling variables. This is especially true since the function is only used inline, and

such optimizations/relabelings may extend outside of the code listed. The x86-64 architectures have

no comparable selection instruction — in this case we must resort to Boolean operations.

To this end an obvious, if slightly naive, use of the bitmask (M) is to AND it with one vector (A),

AND the other vector (B) with M ’s bitwise inverse, and then combine the two with an OR instruction.

That is, A ' = (A & M) | (B & ~ M), and similarly for B'.

This is certainly correct, but, in terms of the number of instructions required, we can do better.

Specifically, we can XOR A and B to produce a “swap” vector Q. By ANDing Q with M , we produce

a vector that will exchange the required elements when (Q & M) is XOR’d with A and with B. This

may be seen implemented using x86 GCC vector intrinsics in Fig. 2.10.

/ / =

inline void compare_an.d_swap (vector float & a, vector float &b, // keys
vector float &A, vector float &B) // pointers

{
vector float orig_a = a;
vector float orig_b = b;
vector float orig_A = A;
vector float orig_B = B;

a = vec_min(orig_a, orig_b);
b = vec_max(orig_a, orig_b);

vector int m = vec_cmpeq(a, orig_a);

A = vec_sel(orig_B, orig_A, m) ;
B = vec_sel(orig_A, orig_B, m) ;

}

Figure 2.9: Key-pointer comparator using GCC AltiVec vector intrinsics. Vectors a and b hold keys;
vectors A and B hold the associated pointers, m is the selection mask.

Using this predicated data movement, we may return to the algorithm descriptions for SSort,

ISort, MSort and RSort. These descriptions implicitly assumed that all of the data associated with

an element would be properly handled by comparators and data movement instructions.

All o f these algorithms can now correctly handle key-pointer pairs by replacing the standard

key comparators with their key-pointer equivalents. Similarly for the unconditional data movement

instructions, which, as mentioned, require only duplicating the data movement in a second set of

(pointer) vector registers.

Such methods may be arbitrarily extended to structures larger than 64-bits, although the overhead

of unpacking the elements and duplicating movement instructions (included predicated comparators)

may quickly become prohibitive.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/ / =

inline void compare_and_swap (__ml 2 8 & a, __ml 2 8 &b, I I keys
 ml28 & A, ml28 &B) // pointers

{
 ml28 temp, M, Q;

temp = a;
a = _mm_min_ps(a, b); // a' (the post-comparator value)
b = _mm_max_ps(temp, b);

M = mm cmpneg p s (temp, a); // bitmask = 1 where elements were swapped (a != a')
Q = _mm_xor_ps(A, B);
Q = _mm_and_ps(Q, M) ;
A = jnm_xor_ps(A, Q);
B = _mm_xor_ps(B , Q);

}

Figure 2.10: Key-pointer comparator using x86 GCC vector intrinsics. Vectors a and b hold keys;
vectors A and B hold the associated pointers. M and Q are the bitmask and XOR vector respectively.

2.5 Vectorizing ArgMin and ArgMax

The ArgMin (ArgMax) problem is the task of returning the parameter which corresponds to mini­

mizing (maximizing) a given criteria. We will restrict ourselves to the sub-problem of finding the

index of a minimum (maximum) array element. In this case the criteria being minimized (maxi­

mized) is the value of the element itself.

2.5.1 SIMD ArgMin/ArgMax

We present here a method for implementing ArgMin (ArgMax) by using SIMD vector instructions

to compute the index of the child with minimum (maximum) key value.

This method is similar to the one used for sorting key-pointer pairs (mentioned in Section 2.4)

in that it relies on the synchronous movement of values within a second set of registers. In this

situation the values moving in synchrony are the indices of each element, such that for an array with

n elements, the values range from 0 to n — 1. The data read into the SIMD vectors from the element

array is only used insofar as the key values condition the movement of the indices; the data is not

written back and need not be preserved as before. For simplicity, assume that n is a multiple of k,

the number of elements in a SIMD vector.

In the simplest implementation, such an ArgMin function is needed only for a small number of

elements, and can be written as an unrolled loop. The indices being used are loaded from a constant

and static array containing the values 0 ,1 , . . . , n — 1.

The algorithm to determine the index of a minimum element proceeds as follows (for clarity, the

loading/movement of the indices is implicit): (1) load the first k keys into one SIMD vector, call

this register A; (2) while unread keys remain, read the next k keys into a SIMD vector B and set

A := m in (A , B); repeat; (3) repeatedly halve the number of elements in A by taking the vector min

of one half versus the other half, until only one element remains; (4) return the index of this element.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

It is possible to construct a more general version of this function by computing the next set of

indices to load on the fly. This can be done efficiently by adding a vector array of integer Is to the

previous iteration’s indices. One may actually exploit the floating-point encoding to perform this

operation on the x86-64 architectures by casting the unsigned integer data into float-point data.

Function A rgM in (A)
Data: Input array of 4k elements,
begin

n <— |A|
nblocks <— n /4
/ : = {0
Va +-A[0____ 3]
Wf l<— I[0 , . . . ,3]
for i=2 to nblocks do

V * < - A [4 (t - 1) ,— 4 i - l]
W6 <- .J[4(i - 1), — 4* - 1]'
M ^ V a < V b
W„ « - (W a A M) V (W b A - i M)

Va *— M in (Va, Vb)
end
M <- VB[0,1] < V«[2,3]
Wa <- (W8[0,1] A M) V (Wfl[2,3] A ->M)
Fa <— M in (Va [0,1], Va [2,3])
M <- Va[0] < Va[l]
Wa < - (Wfl[0] A M) V (Wa [l] A - i M)

return W„ [0]

2.5.2 Application to d -Heaps

d-heaps are a straightforward generalization of binary heaps where each internal node has d > 2

children. Increasing the value o f d results in a shallower tree at the expense of requiring sift-down

(a.k.a. heapify-down) operations to perform more comparisons when determining the child node

with minimum (maximum) key value.

We will consider only implicit heap layouts, such that all elements are stored in a contiguous

array, and parent-child relationships are determined by an element’s index. The root node is located

at index O.10 For a given node located at index i, the indices of its parent and child nodes can be

easily computed using the following relations:

p a re n t (i) =

c h i ld (/ , /) = i- d + j ; l < j < d

In [19, 20] LaMarca and Ladner investigate the performance of implicit heaps and how they are

affected by data caches. They suggest increasing the branching factor d as well as aligning the heap

in memory such that the first child node begins on a cache-line boundary. The alignment with a

cache-line is not critical for our purposes, but it tends to maximize the usage of each main memory

10Other common implementations use a starting index o f 1.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

access since all elements within a cache-line will be loaded into the cache when one of them is

accessed.

We will employ our SIMD ArgMin function within the sift-down function to increase the branch­

ing factor that can be effectively used. For efficiency and simplicity we will restrict ourselves to

values of d that are multiples of k. This has the significant benefit that if the root node is properly

aligned then we are ensured that any node’s children are located on SIMD vector boundaries. Proper

alignment for the root node in this case is when it is located just before a SIMD vector boundary.

Calling ArgMin on the array of child nodes will return the offset from the first child. This value

may then be added to the first child’s index to get the index of a child with minimum key value. If

the node being examined does not have d children (this can only occur at last internal heap node)

then the vectorized search is replaced by a straightforward linear scan.

In situations where we have control over the allocation of the heap it is usually worthwhile to

follow the suggestion in [19] and position the first child at the start of a cache-line - potentially

requiring the allocation of a slightly larger array.

2.5.3 Heapsort

Heapsort operates by first turning an array of n elements into a max-heap. While the heap is non­

empty, the current maximum (root) element is popped off, swapped with the last unsorted array

location (i.e. the end of the implicit heap), and the heap property restored.

Although slower in practice on average than quicksort, heapsort has a running time of 0 (n log n),

while quicksort may degenerate to 0 (n 2) behaviour. Heapsort also operates strictly in-place, whereas

quicksort needs stack space to hold partition indices.

Exploiting our vectorized d-heap operations for heapsort is relatively straightforward, with the

one concern that the child nodes must begin on a vector boundary. Rather than attempting to modify

memory outside of the region to be sorted, we choose our root node to be the first such properly

aligned location within the array to be sorted. This has the potential to exclude some number of

elements at the start of the array from being sorted via the heap.

In the case of 64-bit key-pointer pairs and 128-bit SIMD vectors, at most 1 element may be

so excluded by an unlucky alignment. This situation can be corrected in linear time by scanning

through the array to locate the minimum element and then moving it to the first array location. This

element is then guaranteed to be in its final sorted position. In general, if the number of elements

which may be misaligned is a constant I, then a linear pass to find the I smallest elements requires

0 (n) time.

Variations

A somewhat common modification to the sift-down operation is given by Floyd. By default sift-

down finds the smallest (largest) child node and compares its value to the current node. If this value

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is smaller (larger) then the child node moves up. When the value being sifted down has reached its

proper location it is then written into the location just vacated by the child node that moved up.

Floyd’s variation does away with comparing the child’s key value against the parent’s — the

movement always takes place. When the value being sifted down reached the bottom of the heap, it

is then sifted up. The benefit of this method is an expected reduction in the number of comparisons

and exchanges.

However as noted in [19], once cache effects are taken into consideration, the frequency of cache

misses can greatly overcome any savings thus gained. We implemented both methods.

For the first step in heapsort - building the heap - Floyd also proposes an alternative to con­

structing by adding one element at a time. The repeated adds method is intuitive in the sense that

the next element being added is already located at the end of the heap and must only be sifted-up.

Floyd’s method here is to start at the middle layer of the heap and apply a sift-down operation for

every node. This is repeated for the next layer up, terminating with the root. Again, fewer operations

are performed at the price of data locality. Also again, we implement both methods.

2,6 Summary

We have presented three low-level sorting algorithms suitable for both stand-alone use and use

within quicksort, in increasing order of implementation complexity. The first two employ a straight­

forward extension of scalar sorting networks, sorting 4 streams of data at a time. ISort concludes

this pass with a call to insertion sort over the entire array, with the assumption that the first pass has

resulted in a mostly- or partially-sorted array. MSort creates a merge heap to combine the sorted

streams, and is far less affected by adversarial input. MSort requires more coding overhead than

ISort, in terms of the explicit heap operations needed. RSort operates without any branches and

has a running time that does not depend at all on the input. This comes at the expense of increased

instruction code size and a greater implementation barrier as sequences of alignment instructions

must be searched for.

Additionally, we have demonstrated how all three of these algorithms may be used to sort key-

pointer pairs, and how this conditional data movement can be used to select the index of a minimum

(maximum) element.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Quicksort

Quicksort is the classic divide-and-conquer sorting algorithm described by Hoare [14]. As a divide-

and-conquer algorithm, quicksort recursively partitions an input array into sub-arrays based on a

pivot element, such that all elements which are less than the pivot are to its left, and all elements

which are greater are to its right. Elements which have a key value equal to the pivot may be placed

in either sub-array, although it is not uncommon for implementations to always place these elements

into the left or the right sub-array.

This description refers only to the binary partitioning case. Ternary partitioning, a.k.a. multi-key

quicksort, and equivalent to Dijkstra’s Dutch National Flag problem [7], moves all elements equal

to the pivot into one block inbetween the left and right sub-arrays.

We will use the non-recursive version of quicksort implemented by Li et al. in [21] which is

quite similar to the version presented in Numerical Recipes in C [26]. This quicksort code main­

tains its own stack and always recurses into the smallest partition first - guaranteeing an O (lo g n)

bound on the stack depth. Due to the explicit stack, if one wishes to detect pathological partitioning

performance in terms of recursion depth - as a precursor to switching to a guaranteed 0 (n lo g n)

algorithm - a secondary “depth stack” is needed to maintain a count of the recursion depth that

would have resulted from a more traditional implementation.

3.1 Scalar Partitioning

In many performance analyses of sorting algorithms, execution time is estimated by the number

of comparison operations. While this metric falls short of capturing the vagaries of the memory

hierarchy and, to a lesser extent, architecture-specific instruction cycle counts and latencies, the

number of comparisons still provides a useful time estimate.

Modern processors tend to pay a significant penalty for branch mispredictions. As comparisons

are traditionally coupled with branch instructions, the number of comparisons tends to reflect both

this misprediction penalty and the execution time of the surrounding code. Naturally, code may

involve comparisons or branches which are not directly caused by comparisons between elements

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(such as loop conditions), although if the code is efficient, these will also be in an approximate 1-to-l

correspondence with the number of key comparisons.

As a fundamental property of comparison-based sorting methods, we will not be able to avoid a

lower bound of Q (n log n) comparisons in general [6]. However we can strive to reduce the constant

factors in these asymptotic bounds. Not to over-emphasize the importance of comparisons/branches

at the expense of data movement, relocating elements is hardly a free operation on modem pro­

cessors. Efficient partitioning code in particular is characterized by a tight loop containing mostly

comparison and swap operations. To this end, the majority of quicksort/quickselect algorithm re­

search has focused on reducing the number of comparison and copy instructions within partitioning

algorithms while effectively choosing a good pivot. The result is a number of highly related algo­

rithmic variants, often hinging on exploiting corner cases while supporting good performance on

common input distributions.

A comprehensive analysis o f partitioning algorithms is beyond the scope of this work — we will

restrict ourselves to two common and efficient scalar variants for comparison. For those interested

in saving every last compare/swap, Kiwiel [17] provides a detailed analysis of the instruction counts

for several versions of binary and ternary partitioning schemes. For quicksort in general, one is

directed to Bently and Mcllroy [3],

3.1.1 Binary Partitions

As mentioned, there are some choices regarding how to go about partitioning - usually a matter of

the order in Which the array elements are examined. For binary partitioning one popular choice,

shown in Fig. 3.1, (call this partitioning scheme SI) is to have two pointers starting from opposite

ends of the array and moving towards each other. When the left pointer becomes greater than

the pivot and the right pointer becomes less, the two elements are swapped. An alternate binary

partitioning option given by Lomuto [3], is to walk from left to right, incrementally growing two

sub-arrays by inserting (swapping) the next element into its proper position.

It should be noted that the two partitioning algorithms mentioned both assume that the pivot

element is not located within the array this is being partitioned. That is, while elements with the

same key value as the pivot may exist within the array, the element which was selected as the pivot

during the quicksort recursive step has already been removed. Normally this is done by moving the

pivot element to the start of the array, calling the partitioning algorithm, and then swapping the pivot

element with the location corresponding to the end of the first sub-array.

As they stand, the two implementations have several tradeoffs depending on the distribution of

the keys to be sorted. For a constant distribution (in which all keys and the pivot have the same value)

SI will split the array into two almost-equal sub-arrays, whereas Lomuto’s method will degenerate

to its worst-case quadratic time performance, moving all elements into one sub-array.

In the case of already sorted arrays SI is significantly faster, and is slightly faster for a uniform

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

distribution o f keys.

/ / =

inline int partition_Sl(DATA_T src[], int len, KEY_T pivot)
{

int i = -1, j = len;

while (1) {
do i++; while (src[i].key < pivot);
do j--; while (srclj).key > pivot);
if (j < i) break;
swap(src[i], src[j]);

}

return i; I I index of last "small" element
}

Figure 3.1: Scalar binary partitioning function SI.

3.1.2 Ternary Partitions

As the number of distinct key values becomes small, ternary partitioning schemes tend to become

faster. In general these methods require additional bookkeeping which is wasted if the number

of elements equal to the pivot is small. Ideally the bookkeeping effort is recouped by not having

to recurse on these equal elements. Unfortunately our experiments show that the extra effort is

significant. As will be seen, unless there is a priori knowledge that the keys are drawn from a small

distribution, or a statistical sample is gathered before sorting to support assumption, one is most

likely better off using the binary partitioning function SI.

For our ternary partitioning implementation (call this function S2) we use the split-end partition­

ing function described in [3]. It operates much the same as SI except an additional check is made

for each element about to be swapped, to determine if it equals the pivot. If it does equal the pivot,

it is moved to a sub-array of like elements at the start or end of the array. When all elements have

been partitioned, these equal elements are moved from the edges o f the array to the center.

3.2 Vector Optimizations

In a general sense, the vectorized partitioning function compares the keys o f 4 elements at a time

against the pivot. Based on the result of these comparisons, elements are then moved to the start or

end of the array as appropriate.

More specifically, two writeback pointers are maintained, which are intialized to point to the start

and end of the array. As elements are compared and written to their correct locations, these pointers

advance towards each other. When the pointers cross, corresponding to (nearly) all elements having

been written to their correct partition, the algorithm’s main loop terminates. What we mean by

“nearly” will be clarified shortly.

The writeback pointers correspond to “holes” in the array. The values previously located at these

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11

inline void partition__S2 (DATA_T src [] , int len, KEY_T pivot,
int &i, int &j)

{
int a, b, c, d, s;

// divide array into 5 regions: [(==) |a (<) b| (?) |c (>) d| (==)]

a = b = 0 ;
c = d = len - 1;

for (; ,-) {
while (b <= c && src[b].key <= pivot) {

if (src[b].key == pivot) { swap(src[a], src[b]); ++a; }
++b;

}
while (c >= b && src[c].key >= pivot) {

if (src[c].key == pivot) { swap(src[d], src[c]); --d; }
--c;

>
if (b > c) break;
swap(src[b], src[c]);
++b;
--c;

>

// move equal-to-pivot end regions into the middle

s = min(a, b-a);
for (int 1 = 0, h = b-s; s; --s) { swap(src[l], src[h]); ++1; ++h; }
s = min(d-c, n-l-d);
for (int 1 = b, h = n-S; s; --s) { swap(src[l], src[h]); + + 1; ++h; }

i = len - d + c;
j = b - a;

}

Figure 3.2: Scalar ternary partitioning function S2.

positions have been loaded into temporary storage (within a vector), and are the elements which are

being compared against the pivot. Consequently, each writeback operation is paired with a read

operation from the same side of the array so as to maintain a hole for the next iteration.

Because all data movement is performed using vector instructions, the writeback operations are,

in a sense, batch operations. If the number of elements to be written to one partition does not fill

a vector register then more comparisons must be performed until sufficiently many elements are

obtained (except possibly for the very last writeback).

Since we are concerned with key-pointer pairs, each vector read/write operation involves two

elements.1 Thus, we may have at most 1 element pending a writeback for each side of the array.

Moreover, since we always compare 4 elements at a time, if one partition has a pending writeback,

then so does the other. Such a situation occurs when there is a 1-3 split in the pivot comparisons,

and will persist until another 1-3 split is encountered.

To avoid checking the status o f a “pending” bit within every loop iteration, this information is

encoded within the program state by means of two separate code blocks for the main loop - one

1 For 64-bit structs and 4-element 128-bit vectors.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

assuming that the bit is set, and the other assuming that the bit is not. Jump instructions move

between the two blocks as appropriate.

The parallel computation of the pivot is accomplished by moving the keys from 4 elements into

one vector and comparing that against a vector containing 4 copies of the pivot value. This results in

a vector mask corresponding to the comparison done (say, all Is where less than the pivot). Unlike

the situation with sorting networks, here we can no longer perform predicated data movement -

the destinations depend on the comparison results. Instead, the results of the 4 comparisons are

combined into one 4-bit number which is used in a C “switch” statement. For the x86 ISA, the

“move mask” (movmskps) instruction, which concatenates the high bits from each vector element

and writes the result in a general purpose register, is used.

The AltiVec instruction set lacks a corresponding instruction, but may emulate the same func­

tionality by AND-ing the comparison mask against a {8 ,4 ,2 ,1 } vector and performing a horizontal

add of the result. Unfortunately in practice the overhead required for this emulation is greater than

any benefits gained on the G5.

Each case in the switch statement corresponds to one of the 16 different layouts of high- and

low-partition elements. The associated instruction code writes elements to their correct partition

(possibly involving some realignment instructions to group high/low elements within the same vec­

tor), and reads the next elements to compare. These data movement instructions are quite straight­

forward. In the case of 1 -- 3 splits, as previously mentioned, control is transferred between the two

loops via goto statements.

It should be noted that the switch statement is well-suited to being implemented as a jump table.

That is, the 4-bit value may be used as a lookup in an array containing a pointer to the associated

code for each switch-case. Optimizing compilers will use this implementation, barring architectural

considerations.

The vectorized partitioning function is only applied to those elements which are well-aligned for

vector access. The small number of “fringe” elements at the start and/or end of the array are left until

the end when they are handled in a cleanup step. This is a simple matter o f taking the large elements

from the start fringe and moving them into the high partition - similarly for the small elements in

the end fringe. This is depicted in Fig. 3.3. There will be 0 or 1 elements in the low fringe, and

0 to 3 elements in the high fringe, corresponding to half-vector-sized key-pointer elements and the

requirement to compare four elements at a time. We shall denote this partitioning function V I.

As currently stated, the vectorized partitioning algorithm is vulnerable to the case where all (or

a large number of) elements are equal to the pivot. With a fixed comparison function (< or <) all

elements will be moved into one partition. However by keeping track of how many elements have

been written to each partition, and then selecting < or < so as to bias elements equal to the pivot

towards the smaller partition, the resulting partitions are of almost equal size.

The smallest partition is guaranteed to be 4|_(p + 3) /8 j , where p is the number of elements

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

low fringe Partition high fringe

< < < < >

low fringe Partition

> >
\

high fringe

< < < < < l > > > > > >
V I /

low fringe Partition high fringe

Figure 3.3: Sample cleanup step moving the fringe elements to their proper partition.

within the aligned array region that are equal to the pivot value. Clearly this should not be considered

a remedy in general for a very bad or unlucky choice in selecting a pivot element.

3.2.1 Exploiting Special Cases

The scalar partitioning functions are able to take advantange of arrays that are already or mostly

sorted by performing few swap operations - only when out-of-place elements are encountered. Un­

fortunately V I will read and write every element, potentially even into its original location. In the

interest of not having our vectorized function degrade on common inputs (or inputs that one might

expect to sort quickly), we introduce a slight modification.

We will call this modified version V2, and the change is as follows. At the start of V I, the first

4 elements from the left side of the array are read in, and a vector comparison is performed against

the pivot. If all elements are less than the pivot, then the necessary pointers are incremented and the

next 4 elements are read in, otherwise stop scanning. Repeat this scan similarly for the right side of

the array. Note that no elements need to be moved since we are only checking if they are already

in their proper sub-arrays. Also, unlike the general case, here the G5 provides vector instructions to

check if all comparisons are true or false.

This introduces some small overhead where either end of the array is not already in position,

but has significant improvements for already sorted data, or reverse sorted data. Reverse sorted data

will, in the first partitioning phase, divide into 2 (roughly) sorted sub-arrays if the median is selected

as the pivot. “Roughly” in the sense that the exchange operations of VI will, for efficiency, most

likely not be implemented so as to exchange the order of element pairs when moving from the first

half to the second and vice versa. The resulting key values might then be something along the lines

■of 1 ,0 ,3 ,2 ,5 ,4 ,

An adversarial-type input of a sorted array with the first and last elements exchanged will break

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

this modification by halting the scans on the first step, while letting SI operate with only one ex­

change. However we do not wish to get drawn into an “arms race” in designing special checks for

our vector partitioning functions. We will simply reiterate that, as will be seen, V1/V2 operate well

on common inputs.

3.3 Pivot Selection

To select a pivot element to use for partitioning, we employ Tukey’s ninther, the median of 3

medians-of-3, as used in [3]. The result is intended to be a good approximation of the true me­

dian of the entire array being partitioned, while requiring few comparisons. The values used are

taken from evenly-spaced locations within the array, with the first median-of-3 using the elements

at indices 0, > and • Similarly for the next two medians.

In practice this pivot selection is robust against common distributions, is fast, and does not

require generating random numbers. Taking only the median of the first, middle, and last elements

resulted in degenerate quicksort performance for the scalar binary partitioning function on reverse-

sorted input arrays. Moreover, in general we expect the ninther to produce a better pivot value on

average than only sampling three elements.

3.4 Thresholding

Now that we have established a sufficient library of vector sorting routines, we are ready to integrate

them with quicksort. It is well established that quicksort should switch to a secondary (low-level)

sorting algorithm like insertion sort when the number of elements drops below a certain threshold.

Typically this is a small number, around 16 elements. We will simply replace the call to insertion

sort with a call to one of our sorting functions (with some minor modifications to account for data

alignment), although we must first determine what value(s) to use for thresholds.

The optimal threshold for a given low-level algorithm is going to depend on many related factors,

although it is decided by how fast a low-level algorithm is able to sort arrays of increasing size

relative to the partitioning speed. Clearly we want to find the point at which it becomes more

expedient to sort an array with one of our algorithms rather than partition it further. This choice is

going to depend on the specific architecture we are dealing with, the surrounding quicksort/partition

code, and potentially the distribution of keys.

One general factor that will affect the ratio of partitioning time to low-level sorting is memory

latency and bandwidth. Different algorithms will exhibit different memory access patterns, which

may be a win if the given architecture is able to better support those requests — failure to do so

results in memory stalls which can impose a serious performance penalty. Although being memory-

bound may just indicate that the code has been well optimized. Assuming that the CPU is being

provided with data at a sufficient rate, the efficiency of the code will be the main determinant of

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Procedure WriteLow (a) Procedure WriteHigh (a)

A[w\ ,W\ + 1] <— a A [W2 , W2 + I] <— a
a <- A [ri,r i + 1] a v - A[r2fr2 + 1]
Wi <— w\ + 2 W2 <— W2 — 2
r \ * - r \ + 2 T2 *— ?2 — 2
n \ <— n \ + 2 Jt2 <— «2 + 2

Function P a r t i o r u V l [A, p)
Data: Input array of 4k > 8 elements and the pivot value,
begin

n *— \A\
? : = { p ,p ,p ,p }
r\ «— 2, ri <— n — 4 /* l o w / h i g h r e a d in d e x * /
w\ <r- 0, Wj n — 2 /* l o w /h ig h w r i t e i n d e x * /
tti, ri2 <— 0 /* l o w / h i g h e le m e n t c o u n t * /
a * - A[0,1]
z <— A [n — 2 ,n — 1]

biocko while rrne do
V <— {a, z}
if < ti2 then m <— 4 - b i t - m a s k (V < P)
else m <— 4 - b i t - m a s k (F < P)
switch m do

W rite L o w () and W r i te H ig h () as appropriate
if a?i > w 2 then goto finish
if 1-3 split then

t\ <— low unpaired value
t2 high unpaired value
goto block1

end
end

end
biocki while true do

V ^ - { a , z }
if < ti2 then m <— 4 - b i t - m a s k (V < P)
else m <— 4 - b i t - m a s k (V < P)
switch m do

W rite L o w () and W r i te H ig h () as appropriate
if W\ > W2 then goto finish
if 1-3 split then

W rite L o w ({fi, low unpaired value })
W r i te H ig h ({t2 , high unpaired value })
goto blockO

end
end

end
finish if no cached values in t\, t2 then return W\

write back cached values
return W\ + l

end

Figure 3.4: Vector binary partitioning function VI.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

execution time.

While it would be possible to select a different threshold based on the size of the array or sampled

distribution statistics, we will show that proper parameter selection depends mainly on the architec­

ture and the partitioning algorithm. This simplifies implementation details somewhat, since we will

be using a fixed partitioning scheme.

Rather than exhaustively testing on a range of common and adversarial key distributions, when

selecting our threshold we restrict ourselves to the common cases in the hopes that they will gen­

eralize. Moreover, the effect of key distributions will mostly relate to the quality of partition­

ing. Distributions which produce consistently bad (i.e. uneven) partitions will approach worst-case

quadratic time behaviour, at which point we may or may not cut our losses and switch to a guaran­

teed © (« lo g n) algorithm (e.g. Heapsort). In either case, the low-level running time will not be a

significant factor.

3.4.1 Searching for a Threshold

Our process for selecting an algorithm’s threshold is as follows. For each architecture and each

of partition functions S I, S2, and P I, we run quicksort on arrays of 5000, 10000, 20000, 40000,

and 80000 elements, measuring the wall-clock time taken (or equivalently the number of processor

cycles used, where such metrics are available).

We restrict our potential thresholds to multiples of 4, ranging from a lower value of 8 to an

algorithm-specific large value. For ISort and MSort, the large value is the product of the number

of streams each algorithm operates over and the maximum stream length capable of being sorted

by SSort. We implemented the SSort parallel sorting networks for lengths of up to 64 elements

(corresponding to 256 elements total). The maximum length for RSort is 256 elements. The DTSL

scalar sorting network has a maximum length of 32 elements, and a cap of 256 elements was used for

insertion sort. In all cases, the maximum value was selected so as to be inefficiently large. Namely,

such that the most efficient threshold lies within the range considered.

The quicksort performance for each threshold is estimated using an average of 505 runs, dis­

carding the first 5 runs. These runs are discarded to ensure that the relevant instructions and memory

have had an opportunity to be loaded into processor’s cache.

Due to time constraints, rather than evaluating all values in the range, a recursive search is

performed. As an initialization step, using the threshold in the middle of the range, the quicksort

performance time is sampled. We then iterate as follows. Starting from the threshold parameter

which produces the best known evaluation time, two samples are taken using smaller and larger

thresholds. The distance of these samples from the current best parameter begins at half the size

of the threshold range (such that at the first step the two endpoints are sampled), and decreases

by half with each iteration. This is analogous to performing a binary search. The quality of this

search depends on the assumption that the performance curves for the thresholds are monotonically

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

decreasing towards only one minima.

Finally, once the sample minimum has been found, to help mitigate any deviations of the sample

points from the true values, the search finishes by searching all thresholds within a distance of 20

from the best parameter.

This parameter search is repeated multiple times until stability is achieved. That is, using the

cached values from all the previous runs, a new search is started from the current best threshold,

until no more new values are examined. In this way additional points will be sampled, as the best

parameter from the last run will shift the center of the search away from the center of the array.

Once we have computed the best threshold for each of the 3 distributions - uniform, increasing,

and decreasing - the overall best threshold is selected to be that which minimizes their weighted

sum with coefficients of | , and | respectively.

It will most likely be the case that we will have sample points for a given threshold in one

distribution, but no matching sample for the same threshold in another distribution. In this case the

execution time is taken to be the linear interpolation between samples. Since this interpolation may

not accurately reflect the true value at that point, additional samples are taken to a distance of 20

around the current combined minimum for the uniform, increasing, and decreasing cases. As before,

computing the combined threshold and taking samples around it is repeated until convergence.

The final threshold parameters we use for each algorithm/architecture/partitioning function are

shown in Tables A .l, A.2, A.3, and A.4. One may note that in certain cases the selected threshold for

the MSort and ISort functions can vary by a seemingly large amount across arrays of different sizes.

This is due to those functions exhibiting exceptionally broad minima - a large range of threshold

values will produce equally good performance results. This suggests that relatively little tuning is

necessary for these algorithms. A representative sample of the threshold optimization curves are

shown in Figs. 3.5, 3.6, and 3.7. While absolute execution times/cycle counts are included in these

graphs, we hesitate to do so. At this point it is the shapes of the performance curves across array

sizes and architectures that we wish to focus on. The timing results in Chapter 4 will be more

comprehensive and will include the second vector partitioning function, V2.

We can see in Fig. 3.5 that on the Core 2 Duo M Sortl6, which merges 16 streams produced by 4

SSort passes, has a range of thresholds from at least 200 to 600 elements within which performance

is essentially the same. The same pattern repeats for the other versions of MSort, based on the length

of the streams, such that the curves for MSort32 would be spread over a larger range of thresholds.

This indicates a fairly consistent scaling of the overhead from the merge heap relative to the total

execution time. ISort exhibits similar scaling patterns and equally broad minima, shown in Fig. 3.7.

In the case of RSort, shown in Fig. 3.6, we can see a more convex minimum on the Core 2 Duo.

In this case, however, the thresholds listed in Table A .l are far more consistent. In all cases the

choice of threshold tends to get quite near the optimal performance for all three curves. Thus, we

may select a fixed threshold with a strong confidence that in most cases we could not have made a

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

significantly better selection.

C o re 2 D u o - M SortlQ - P artition S1
2 0 0 0 0 e le m e n ts

Athlon 64 - MSortl 6 - Partition S1
20000 elements

6 e + 0 6

5 .5 e + 0 6

5 e + 0 6

4 5 e + 0 6

4 e + 0 6

3 .5 e + 0 6

3 e + 0 6

2 .5 e + 0 6

2 e + 0 6

1 .5 e + 0 6

1 e + 0 6

5 0 0 0 0 0

uniform — 1—
in cr ea s in g — ■X—

s. d e c r e a s in g ---X ---

' \

4 0 0 6 0 0

T h re sh o ld

S .5e+ 06
uniform — H—

in cr ea sin g — X—
d e c r e a s in g -X ---5 .5 e + 0 6

EP 3 .5 e + 0 6 -

3 e + 0 8

2 .5 e + 0 6 A

1 .5 6 + 0 6

1 e + 0 6
200 4 0 0 6 0 0 8 0 0 1000

P en tiu m 4 - M S o r tl 6 ♦ Partition S1
2 0 0 0 0 e le m e n ts

G 5 - M S ortIB - P artition S 1
2 0 0 0 0 e le m e n ts

uniform
in cr ea s in g — X—

d e c r e a s in g • ••* •

§ 2 5 0 0

1 4 0 0 0 0
uniform —i—

in cr ea sin g — X —
d e c r e a s in g — X ---120000

1 00000

20000
200 4 0 0 6 0 0 8 0 0 1000

Figure 3.5: M Sortl6 thresholds for 20000 elements on different architectures.

3.5 Unaligned Arrays Redux

In Sections 2.2 and 3.1 we have previously discussed methods for wrapping our vector sorting

and partitioning functions to support unaligned arrays. However if we are only concerned with

using these algorithms within the context o f quicksort then wrapping every execution is unnecessary.

While we cannot ignore the fringes of the entire array, quicksort is still provably correct if we

sort sub-arrays strictly larger than those returned by partitioning. As such, we can avoid some

unnecessary instructions by not copying and restoring the fringes of the small sub-arrays.

Lem m a 3.5.1. Let A[0, n — 1] be an array o f elements to sort. Let A \x ,y \ be a sub-array produced

by partitioning during quicksort, such that Va with x < a < y it is the case that i < x => A[i] <

A[a] and y < i => A[a] < A[i], Then sorting A[w,z] instead o f A[x,y] during quicksort, where

0 < w < x and y < z < n , results in A being correctly sorted when quicksort terminates.

Proof. Without loss of generality we will only consider the elements in A[w, x — 1], since A[y +

l,z] may be treated analogously. Assume w < x. By virtue of having been partitioned, A[i] <

A\j] \ / i , j : i < x < j. Sorting A [w ,z\ will not alter this relation, and if A [w , x — 1] has already

been sorted, it will remain sorted. Moreover, if any elements in A[w , x — 1] are pivots (specifically

a pivot separating A[x, y \ with the partition to its left), they will not change value. If A [w , x — 1]

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Core 2 Duo • RtSort • Partition S1
20000 elements

Athlon 64 • RSort • Partition S1
20000 elements

m ins52
uniform — I—

in cr ea s in g — X—
d e c r e a s in g — X ---

4 .5 e + 0 6

4 e + 0 6

3 .5 e + 0 6

5 0 0 0 0 0
2005 0 100 1 5 0 2 5 0

uniform — 4—
in cr ea s in g — X—

d e c r e a s in g - --X —
8 e + 0 6

6 e + 0 6
o>eF

1 e + 0 6
4 0 6 0 8 0 100 120 1 4 020

P en tiu m 4 - R Sort - Partition S1
2 0 0 0 0 e le m e n t s

G 5 - R S ort - P artition S1
2 0 0 0 0 e le m e n t s

3 5 0 0

in cr ea s in g — x —
d e c r e a s in g - - X - -3 0 0 0

2 5 0 0

E
F

2000

1 5 0 0

1000

5 0 100 1 5 0 200 2 5 0

2 5 0 0 0 0
uniform — H—

in cr ea sin g — X—
d e c r e a s in g — X - -

1 5 0 0 0 04>
E

i -

5 0 0 0 0 ' ■

5 0 100 200
T h re sh o ld

Figure 3.6: RSort thresholds for 20000 elements on different architectures.

has not yet been sorted, then becoming so will not affect the correctness of future sorting operations.

This is clear since pivots will not move, and non-pivot values are not normally guaranteed to be in

any order. Thus, regardless of the order in which the sub-arrays are considered during quicksort, A

will be correctly sorted. □

The extent to which this change improves performance will depend on the number of low-level

sorting calls, which in turn depends on the size of the threshold. As such, RSort will benefit more

than, say, MSort with many streams. While we did not perform extensive tests, on the Core 2 Duo

there was a moderate improvement for RSort on the smallest arrays (200 elements) which became

negligible as the array size increased to 500. MSort with 4 streams exhibited a slightly lesser gain.

Neither improvement was sufficient to displace the fastest algorithm at that array size.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T
im

e
T

im
e

Core 2 Duo - iSort8 - Partition S1
20000 elements

Athlon 64 - ISort8 - Partition S1
20000 elements

i— i
uniform

in cr ea s in g — X—
d e c r e a s in g4 .5 e + 0 6

4 e + 0 6

3 .5 e + 0 6

3 e + 0 6

2 .5 6 + 0 6

t ,5 e + 0 6

1 e + 0 6

5 0 0 0 0 0
2 0 0 3 0 0

T h resh o ld

uniform — I—
in cr ea s in g — X—

d e c r e a s in g •••X ---

6 e + 0 6

5 e + 0 6

3 e + 0 6

100 200 3 0 0 4 0 0 5 0 0

P en tiu m 4 - ISortB - P artition S 1
2 0 0 0 0 e le m e n ts

G 5 - ISortS ♦ P artition S 1
2 0 0 0 0 e le m e n t s

4 0 0 0
uniform — I—

in cr ea s in g — X—
d e c r e a s in g — X---

2000

1 5 0 0 ■

1000 it ; . . .
'S

5 0 0 -

100 200 3 0 0 4 0 0 5 0 0

uniform — I—
in cr ea sin g — X—

d e c r e a s in g ---X ---

1 4 0 0 0 0

120000

m i iii j i i i i tfn - i -
8 0 0 0 0

20000
100 200 3 0 0 4 0 0 5 0 0

Figure 3.7: ISort8 thresholds for 20000 elements on different architectures.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Experimental Evaluation

4.1 Overview

In this section we will be presenting detailed experimental evaluations of the low-level sorting al­

gorithms discussed and Quicksort results using these low-level algorithms in combination with the

scalar and vector partitioning functions described. Additionally, we present results using vectorized

d-heaps in both a traditional heap setting and within the context of Heapsort for sorting an array of

elements.

The main findings of these evaluations are:

• Significant reductions in execution time are possible for sorting on the Core 2 Duo, the Pen­

tium 4, and the Athlon 64, with lesser reductions on the G5, depending on array size and

distribution.

• The integration of SIMD-based sorting algorithms to sort sequences smaller than a fixed

threshold can improve the performance of an optimized Quicksort when sorting 80,000-

element arrays of floating-point key-pointer pairs by over 40%.

• Vectorized partitioning functions can further reduce execution time by about 15% over base­

line, as arrays become larger and partitioning time becomes more dominant.

• These performance improvement are due not only to a reduction in the number of loads,

stores, and branch instructions, but also to a significant decrease in the number of branch

mispredictions.

4.1.1 Naming Conventions

For ease of reference, where appropriate within the figures, when we are referring to a low-level

algorithm we will include the threshold at which that algorithm is applied. This is the same value

which may be found by looking within the tables in Appendix A. For ISort and MSort, which

combine a variable number of data streams, the number of streams will be included in the algorithm

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

name. We may omit the number of streams if we are referring to the general performance for the

class of MSort or ISort algorithms.

Algorithm Description
M S o rtX - Y MSort algorithm with X streams applied at y threshold.
I S o r t X - Y ISort algorithm with X streams applied at Y threshold.
R S o r t - Y One-pass RSort algorithm applied at Y threshold.
DTSL - y DTSL’s scalar sorting network applied at Y threshold.
I n s - y Standard insertion sort applied at y threshold.

Table 4.1: Low-level vector sorting algorithms studied

4.1.2 Data

We will be referencing a significant number of graphs and tables within this chapter. In many cases

a class of such figures (e.g. all G5 timings) will be too large to effectively insert within the main

text. To avoid detracting from side-by-side comparisons of figures within a class we will direct the

reader to the appropriate appendix, rather than splitting these figures up.

4.2 Hardware Specifics

Experiments were conducted on 4 different processor architectures: an E6400 Core 2 Duo, a 3.40GHz

Pentium 4 (Prescott), an Athlon 64 3500+, and a PowerPC 970 G5. Where available, timing and

event counts were taking using the processor’s internal performance counters via the PAPI library.

In other cases wall-clock times were used. An overview of each processor’s cache sizes is given in

Table 4.2. In all cases the benchmark applications did not require more memory than was physically

available on the system.

Processor LI I-Cache LI D-Cache L2 Cache SIMD Reg’s
Core 2 32K, 8-way 32K, 8-way 2M, 8-way, 64 byte lines 16
Pentium 4 12K fi-ops, 8-way 16K, 8-way 2M, 8-way, 64 byte lines 16
Athlon 64 64K, 2-way 64K, 2-way 512K, 16-way, 64 byte lines 16
G5 32K, 2-way 64K, 2-way 512K, 8-way, 128 byte lines 32

Table 4.2: Processor cache and register features.

In the case of the Core 2 Duo, the processor is overclocked to 3.2 GHz. There was no observed

significant deviation in the results compared to running at stock speeds.

4.2.1 Software

All source code was written in C++ and was compiled using GCC 3.4.6,4.0.1,4.2.0, and 4.2.1 on the

Pentium 4, G5, Core 2 Duo, and Athlon 64 respectively, with full optimizations and loop unrolling.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3 Low-Level Algorithm Timing

4.3.1 Methodology

To investigate the relative standings of our low-level timing algorithms for sorting short sequences of

data, we ran each algorithm on its range of valid input sizes in steps of 4. Key values are drawn from

a uniform distribution much larger than the array sizes, such that values are practically equivalent to

a random reordering of 1 . . . n.

Performance for each size is taken as the average of 500 runs, with 5 “warm-up” runs to bring

instruction code and data into the processor’s cache. As such, we’re measuring the best-case perfor­

mance — in practice it may be the case that the instruction sequence for the function is not already

cached, or the data being sorted needs to be fetched from main memory. Even when using the

“same” algorithm (e.g. MSort, ISort) repeatedly, sorting a range of array sizes may use the instruc­

tion sequences from sufficiently many different sorting networks to push some of them out of the

cache.

Although this is possible, the object file sizes for SSort and RSort listed in Table D .l indicate

that instruction code size may not be a serious problem if a program is repeatedly calling low-level

SIMD sorting code for a small range of values (depending on the size of the cache). Naturally it

is possible to construct artificial program execution and memory access patterns that can hide or

amplify such an effect.

Note that for these timing results we are not running the algorithms inside a wrapper function

(nor would insertion sort and the scalar sorting network require one). If the intended array size to

sort is very small then such wrapping overhead may be a concern. We would however expect such

cases to occur predominantly in situations where the array alignment could be explicitly controlled,

either by aligning structures or manually locating data within padded regions.

4.3.2 Results
Core 2 Duo

Figure 4.1 shows the execution times for a representative sample of the low-level algorithms on

very small arrays. In general the performance for ISort and MSort is slightly better when using

a smaller number of streams for small arrays. RSort is significantly faster relative to all the other

algorithms up until approximately 72 elements at which point MSort4 becomes faster. The scalar

DTSL sorting network beats ISortl2 and keeps pace with ISort4 up until 24 elements. Compared to

the other algorithms, the scalar sorting network is only suited for a very small number of elements

— the maximum size tested is only 32 elements. Larger sorting networks would not be particularly

practical (given insertion sort as an alternative), and we expect them to scale poorly, considering

their increasing code size and branch-intensive comparators.

As expected, insertion sort does performs poorly, scaling quadratically. These times for insertion

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sort would change significantly if the key values were already sorted, or sorted in reverse order,

exhibiting better and worse performance respectively.

For moderately-sized arrays (~100 to 1000 elements) MSort is a clear winner. Figure 4.2 shows

some of the MSort versions with different stream counts. Insertion sort and ISortl2 are included to

indicate relative performance. A notable feature of all the MSort versions is a single sharp jump in

execution time corresponding to the point at which the SSort pass switches from sorting 40-element

streams to 44-element streams.

Core 2 Duo Low-level Sorting Algorithm Timing
45000

10000
9000
8000
7000
6000
5000
4000
3000
2000
1000

Insertion » -
DTSLSN — —■

ISortl 2 —
ISort4 - - - - -

MSort4
RSort — —

40000

35000

C3Oo 30000

c
& 25000
O>-

J 20000h—oH
% 15000
CL

10000

5000

20 40 60 80 100 120 140 160 200180
Array size

Figure 4.1: Low-level algorithm cycle counts on the Core 2 Duo.

Athlon 64 and G5

Performance on the Athlon 64 takes somewhat of a departure in that the cycle counts are much

noisier than on the Core 2 Duo, as shown in in Fig. 4.3. ISortl2 and MSort32 are effectively tied as

the winner for small arrays. Results stabilize somewhat for moderately-sized arrays, with MSort32

taking the lead. Flere, however, looking at Fig. 4.4, instead of the Core 2 Duo’s discrete jump in

running times we can observe two well-defined alternating execution profiles which are gradually

diverging.

Specifically, for a given instance of MSortX there is a dip in execution time every X elements,

corresponding to the point at which all streams being sorting in the first pass are the same length.

This would indicate that the instruction sequences for 2 sorting networks (being used when the

streams are of non-uniform length) are pushing each other out o f the cache. This same behaviour

can be observed for the G5 in Fig. 4.5, which also has an L2 cache of only 512K, compared to the

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Core 2 Duo Low-level Sorting Algorithm Timing

300000
10000
9000
8000
7000
6000
5000
4000
3000
2000
1000

250000

c
oo
c
CD>
CD

o>-O

200000

150000
I

5
h-
£ 100000
n.

Insertion — e —
ISortl 2
MSort4 — i—

MSortl 2 — x—
MSort16
MSort24 B ...
MSort32

50000

200 600400 800 1000 1200 1400 1600 1800 2000
Array size

Figure 4.2: Low-level algorithm cycle counts for MSort on the Core 2 Duo.

2M of the Core 2 Duo and the Pentium 4.

The low-level performance for moderate arrays on the G5 closely follows that of the Athlon 64,

with the exception that ISort performs somewhat worse. For small arrays insertion sort performs

surprisingly well, keeping pace with ISort and MSort until about 100 elements.

Pentium 4

Following the trend of varying execution profiles, the Pentium 4 exhibits essentially straightline

performance for all versions of MSort up to its full range of 2048 elements as seen in Fig 4.6. For

small arrays RSort is easily the winner, followed by MSort, and then ISort.

4.4 Quicksort

4.4.1 Methodology

To measure Quicksort performance we integrated our collection of low-level scalar and SIMD-based

sorting algorithms into the non-recursive Quicksort implementation described in Chapter 3. When

the number of elements to be sorted drops below a threshold the default Quicksort switches to a

scalar sorting network. For each algorithm’s threshold on each architecture we use the empirical

value given in Appendix A. The reference partitioning function used is S I, the scalar binary par­

tition. This version of Quicksort is the baseline for the graphs of the relative performance of each

algorithm.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Athlon 64 Low-level Sorting Algorithm Timing

70000

o>-

_ 50000

<DI 40000

c

60000

18000

16000

14000
12000
10000

8000
6000

4000
2000

Insertion
RSort
ISort4

DTSL SN
MSort4
ISortl 2

MSort32

t ' 30000
0

Q-<
20000

10000

20 40 60 80 100 120 140 160 180 200
Array size

Figure 4.3: Low-level algorithm cycle counts on the Athlon 64.

Five different distributions were examined: (1) a uniform distribution with a range much larger

than the array; (2) a uniform distribution with a range of 100; (3) strictly increasing; (4) strictly

decreasing; and (5) a “pipe organ” distribution, with the smallest values at the ends of the array,

increasing towards the middle.

We tested array sizes of 2 0 0 ,500 ,2k, 5k, 10k, 20k, 40k, and 80k using 2000 sample runs, after 5

warm-up runs. Arrays of 1M and 10M elements were tested using 20 samples and 5 warm-up runs.

All SIMD sorting algorithms are called from within a wrapper function to correct for misaligned

sub-arrays. As noted in Section 3.5, this wrapping should not significantly affect performance.

4.4.2 Results
Core 2 Duo

Fig. B .l shows the common case of uniformly distributed data. Looking at the scalar partitioning

algorithms SI and S2, when the array size increases the contribution of the low-level sorting algo­

rithms, as expected, begins to be surpassed by the partitioning effort. For the smallest arrays (200

elements), which are small enough to be handled immediately by MSort, execution time, compared

to the baseline, may be reduced 40-50%. For 10M elements this reduction drops to around 12%

when partitioning with SI. S2 involves greater partitioning overhead and this is reflected in its

comparatively worse times.

Using vector partitioning functions VI and V2 shows a clear increase in performance over the

scalar versions, with the best MSort and RSort time reductions near 30%, even for 10M elements.

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

500000

450000

400000

■g 350000
8
| 300000
3
> 250000
2
o 200000
qT
cl 150000

100000

50000

0
200 400 600 800 1000 1200 1400 1600 1800 2000

Array size

Figure 4.4: Low-level algorithm cycle counts for MSort on the Athlon 64.

Neither the two uniform nor the pipe-organ ordistribution are suited to show a significant difference

between VI and V2. In the case of increasing keys in Fig. B.3, V2 shows a clear advantage over

V I. V i ’s performance steadily drops, going below the baseline as the array size increases. Com­

paratively V2 is able to keep RSort and the best MSort versions at or near a 10% gain for 10M

elements. V 2’s performance for the decreasing distribution in Fig. B.4 is somewhat more ragged,

but still positive.

As intended, V2 is able to sufficiently exploit regularities in the array being partitioned while

maintaining the speed o f V I for uniformly distributed keys.

G5

The good performance of V I and V2 is not replicated on the G5. Indeed the vector partitioning

functions are consistently bad on all but the first distribution (uniform values with a large variance).

This drop in performance can be attributed to the extra effort needed to compute the 4-bit comparison

value from the comparison mask, compared to the single instruction on the x86-64.

The variants of MSort are able to perform reasonably well using the scalar binary and ternary

partitioning functions S 1 and S2, while ISort is consistently worse than MSort, and often the baseline

as well.

Pentium 4 and Athlon 64

The Pentium 4 and Athlon 64 both loosely follow the trends of the Core 2 Duo — not particularly

surprising given their shared instruction set. Although performance for the Athlon 64 is good on the

45

Athlon 64 Low-level Sorting Algorithm Timing

14000
12000
10000

b ■ I 1 * * a

- . n r*
Si! !i I !

Insertion
ISortl 2
MSort4

MSortl 2 — x -
MSortl 6 —*
MSort24 e
MSort32 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

G5 Low-level Sorting Algorithm Timing

9000

•I 5000

f 4000
S

<D

O

6000

7000

2000

8000

3000

1000

0

Insertion — e -
ISortl 2 -
MSort4 — h-

MSortl 2 — x -
MSort16
MSort24 ...
MSort32 -

200 400 600 800 1000 1200 1400 1600 1800 2000
Array size

Figure 4.5: Low-level algorithm cycle counts for MSort on the G5.

large uniform distribution, it tends to perform notably worse than the other two on the final three

distributions.

4.5 Heapsort

4.5.1 Methodology

Using the d-heap operations defined in Chapter 2.5, we implemented scalar and SIMD versions of

heapsort. The d value for the sorting heaps was known at compile time. For the SIMD variants, we

implemented the described heapsort wrapper function to correct for the case where the first child

node is unaligned — a linear scan locates the smallest element and moves it to the first position,

effectively shifting the unsorted array. We investigated all four combinations of using or omitting

Floyd’s variants for both sift-down and for the initial make-heap phase. Recall that these variations

reduce the number of instructions at the expense of poorer data locality.

We used these Heapsort versions to sort not-necessarily-aligned arrays of sizes in powers of 2,

from 22 to 222. Heapsort applied to arrays with 222 elements was sampled 5 times. For each decrease

in the exponent one addition sample run was added, as smaller heaps are prone to more measurement

noise, up to 29 samples for 22 elements. In each case one additional run was first discarded to load

the relevant data into the processor’s cache.

We present results for sorting uniformly distributed keys with a large range. As with the previous

experiments, heap elements are key-pointer pairs.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pentium 4 Low-level Sorting Algorithm Timing

160

140

.4-B Is.-?-'*-
.» ? * ' -X "

• a : - * . * - - * ■ *ar .X-'?

120

/ /100(D£
. *oo
o
"c3
5

60

Insertion — e —
ISortl 2 ------

MSort32 —m-'-
MSort24 B...
MSortl 6 — * —
MSort12 — x—

MSort4 — I—

20

600200 400 800 1000 1200 1400 1600 1800 2000
Array size

Figure 4.6: Low-level algorithm cycle counts for MSort on the Pentium 4.

4.5.2 Results

To distinguish between the various flavours of each d value, the tables in Appendix C use the fol­

lowing suffixes: “F” to denote Floyd’s make-heap variant was used, rather than the incremental-add

method; “V” to denote the SIMD variant which uses vector instructions to find the max child node.

Floyd’s sift-down variant was not found to be particularly helpful and is not included.

Core 2 Duo

Up until 212 elements the standard binary heap with Floyd’s modification is the best performing

on the Core 2 Duo. Beyond that point the title shifts between branching factors of 12, 16, and 24,

with and without Floyd’s modification. The performance of these heaps are all comparable for these

sizes, with gains of approximately 17% relative to the non-vector versions at the upper end of the

array sizes.

Pentium 4

The Pentium 4 shows a substantive shift to the vectorized d-heap, using Floyd’s variant, once the

array size reaches approximately 212. From that point the 16-way heap is faster than or equal to all

other variants.

47

with permission of the copyright owner. Further reproduction prohibited without permission.

Athlon 64

In the case of the Athlon 64, similar to the Core 2 Duo, the binary heap with Floyd’s make-heap

modifications is dominant up until the array size reaches 216, at which point the 12-way vectorized

heap becomes the best. This crossover point coincides with the L2 cache size on the Athlon 64, and

reiterates LaMarca’s observation that increased fanouts are superior once the heap grows beyond the

processor’s cache.

G5

Results for the G5 are consistently in favour of the SIMD heap operations, with reductions of around

20% for the larger heaps.

4.6 Summary

We have demonstrated that the combination of low-level SIMD sorting algorithms integrated into

quicksort, combined with a vectorized partitioning function can result in significant speed improve­

ments over a highly efficient baseline implementation. The Core 2 Duo saw a time reduction of

approximately 30% for uniformly distributed data. Execution times on the G5 were reduced by

10-20% using standard binary partitioning, with the SIMD partitioning performing terribly.

Using some flavour of MSort within quicksort is almost always a strong improvement - moreso

if the distribution is known to be uniform. The extent to which using these low-level algorithms

resulted in performance gains was limited on those machines with small amounts of cache, although

other architectural factors may have contributed.

For sorting short sequences of data, RSort has the potential to be almost twice as fast as other

algorithms, and many times faster than insertion sort. This may be a great benefit in situations

calling for sorting many short arrays.

For all architectures the best heapsort performance for large arrays was obtained using SIMD

instructions. The crossover point at which SIMD heap operations become practical may be too high

for its use as a fallback sort within introsort, except perhaps on the G5 and the Pentium 4. This

technique may still be successfully employed in situations where worst-case performance must be

guaranteed, such that heapsort is always used to sort the entire array.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Conclusions and Future Work

This thesis proposes the use of the SIMD machinery provided in modern processors to improve the

performance of recursion tails. The idea is that whenever the number of elements to be processed

fits within the SIMD registers available in the processor, these values should be loaded once into the

SIMD registers and then an efficient SIMD execution should be used. While the feasibility of this

idea was demonstrated with the integration into quicksort of a more efficient algorithm for sorting

short sequences, the idea should be generally applicable to recursive computation.

Once efficient low-level SIMD algorithms are crafted, they can be generated into a solution

database to be instantiated by code generators into optimized libraries. Alternatively, if a suitable

identification algorithm is created, the compiler should be able to integrate these solutions directly

into general programs.

The main results of this thesis are:

• MSort is a fast and robust sorting algorithm that can handle moderately sized arrays well and

has few parameters to adjust. Quicksort performance improves by 10-30% over baseline on

large arrays with a uniform key distribution, when combined with vector partitioning.

• RSort is excellent for sorting short sequences of elements - approximately 2.5 times faster

than insertion sort for fewer than 64 elements on the Core 2 Duo.

• Cache sizes may limit the performance of algorithms such as SSort and RSort that are written

as many sequential instructions. Larger caches allow for more effective sorting in these cases.

• Vectorized partitioning functions can be highly beneficial, with additional time reduction of up

to 20% over MSort on uniformly distributed data, and exploiting common input distributions

can be done without notable overhead.

5.1 Future Work

Although we have generated efficient instruction sequences for aligning data and executing multiple

comparators in parallel for RSort, we do not claim that these sequences are optimal. We do not feel

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

it likely that large gains could be made by investing additional search effort, but small gains are

certainly possible and may warrant investigation if execution time is critical. This would most likely

be the case for situations involving sorting many short sequences, where RSort is superior, rather

than divide-and-conquer scenarios where such benefit would be diluted.

Additionally, it may be the case that there is a deterministic sorting network (not necessarily

scalar-optimal), which lends itself to efficient alignment instruction sequences. Such a network may

operate along the lines of the perfect shuffling sorting network algorithms used in vector processors.

The vectorized partitioning function was implemented with a first pass to detect data at both ends

of the array that was already properly located. It should be possible to include this functionality, so

as to avoid extraneous write instructions, inside the main loop at the expense of some additional

bookkeeping. This bookkeeping may be encoded in the program state.

Our experimental study focused on array sizes that were small enough to fit within main memory.

This is often not the case for large databases, where records must be read to and from disk. It would

be worthwhile to determine the extent to which such SIMD optimizations might affect performance

on very large arrays, where disk I/O latency becomes an important factor.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] M. Ajtai, J. Komlos, andE. Szemeredi. An 0 (n log n) sorting network. In STOC ’83: Proceed­
ings o f the fifteenth annual ACM symposium on Theory o f computing, pages 1-9, New York,
NY, USA, 1983. ACM Press.

[2] K. E. Batcher. Sorting networks and their applications. In AFIPS Spring Joint Computing
Conference, pages 307-314, 1968.

[31 J. L. Bentley and M. D. Mcllroy. Engineering a sort function. Softw. Pract. Exper.,
23(11):1249-1265, 1993.

[4] L. Bishop, D. Eberly, T. Whitted, M. Finch, and M. Shantz. Designing a PC game engine.
IEEE Computer Graphics and Applications, 18(1):46—53, 1998.

[5] D. Bitton, D. J. DeWitt, D. K. Hsiao, and J. Menon. A taxonomy of parallel sorting. Computing
Surveys, 16(3):287-318, September 1984.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms, Second
Edition. MIT Press, Cambridge, MA, USA, 2001.

[7] E. W. Dijkstra. Executional abstraction, chapter 14. Prentice-Hall, 1976.

[8] J. D. Frens and D. S. Wise. Auto-blocking matrix-multiplication or tracking BLAS3 perfor­
mance from source code. In Principples and Practice o f Parallel Programming PPoPP, pages
206-216, Las Vegas, Nevada, 1997.

[9] M. Frigo. A fast Fourier transform compiler. In Programming Language Design and Imple­
mentation PLDI, pages 169-180, Atlanta, GA, June 1999.

[10] T. Furtak. C++ source code for a vectorized sorting library, http://www.cs.ualberta.ca/fur-
tak/sort, 2007.

[11] T. Furtak, J. N. Amaral, and R. Niewiadomski. Using SIMD registers and instructions to enable
instruction-level parallelism in sorting algorithms. In SPAA ’07: Proceedings o f the nineteenth
annual ACM symposium on Parallel algorithms and architectures, pages 348-357, New York,
NY, USA, 2007. ACM Press.

[12] N. K. Govindaraju, N. Raghuvanshi, and D. Manocha. Fast and approximate stream mining
of quantiles and frequencies using graphics processors. In SIGMOD ’05: Proceedings o f the
2005 ACM SIGMOD international conference on Management o f data, pages 611-622, New
York, NY, USA, 2005. ACM Press.

[13] Y. Han and Y. Igaraski. Time lower bounds for sorting on multi-dimensional mesh-connected
processor arrays. In Proceedings o f the 1988 International Conference on Parallel Processing,
volume III, Algorithms and Applications, pages 194-197, University Park, Penn, 1988. Penn
State.

[14] C. A. R. Hoare. Algorithm 64: Quicksort. Commun. ACM, 4(7):321, 1961.

[15] Intel. IA-32 Intel(R)64 and ai-32 architectures software developer’s manual volume 1: Basic
architecture, http://www.intel.com/design/processor/manuals/253665.pdf, 2007.

[16] M. Kik, M. Kutylowski, and G. Stachowiak. Periodic constant depth sorting networks. In
Symposium on Theoretical Aspects o f Computer Science, pages 201-212, 1994.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cs.ualberta.ca/fur-
http://www.intel.com/design/processor/manuals/253665.pdf

[17] K. C . Kiwiel. Partitioning schemes for quicksort and quickselect. ArXiv Computer Science
e-prints, December 2003.

[18] D. E. Knuth. The Art o f Computer Programming, Vol. 3 - Sorting and Searching. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1973.

[19] A. LaMarca and R. E. Ladner. The influence of caches on the performance of heaps. ACM
Journal o f Experimental Algorithms, 1:4, 1996.

[20] A. LaMarca and R. E. Ladner. The influence of caches on the performance of sorting. In
SODA: ACM-SIAM Symposium on Discrete Algorithms (A Conference on Theoretical and Ex­
perimental Analysis o f Discrete Algorithms), 1997.

[21] X. Li, M. Garzaran, and D. Padua. A dynamically tuned sorting library. In Code Generation
and Optimization CGO, pages 111-122, Palo Alto, CA, March 2004.

[22] X. Li, M. J. Garzaran, and D. Padua. Optimizing sorting with genetic algorithms. In Code
Generation and Optimization CGO, pages 99-110, San Jose, CA, March 2005.

[23] D. Nuzman, I. Rosen, and A. Zaks. Auto-vectorization of interleaved data for SIMD. In
Programming language design and implementation PLDI, pages 132-143, 2006.

[24] Stephan Olariu, M. Christina Pinotti, and S. Q. Zheng. How to sort n items using a sorting
network of fixed i/o size. IEEE Trans. Parallel Distrib. Syst., 10(5):487-499, 1999.

[25] I. Parberry. On the computational complexity of optimal sorting network verification. In
PARLE (1), pages 252-269, 1991.

[26] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes in C:
The Art o f Scientific Computing. Cambridge University Press, New York, NY, USA, 1992.

[27] T. J. Purcell, C. Donner, M. Cammarano, H. W. Jensen, and P. Hanrahan. Photon mapping on
programmable graphics hardware. In Proceedings o f the ACM S1GGRAPH/EUROGRAPHICS
Conference on Graphics Hardware, pages 41-50. Eurographics Association, 2003.

[28] A. Ranade, S. Kothari, and R. Udupa. Register efficient mergesorting. In High Performance
Computing — HiPC, volume 1970 of LNCS, pages 96-103. Springer, 2000.

[29] G. Ren, P. Wu, and D. Padua. Optimizing data permutations for SIMD devices. In Program­
ming language design and implementation PLDI, pages 118-131, 2006.

[30] X. Shen and C. Ding. Adaptive data partition for sorting using probability distribution. In ICPP
’04: Proceedings o f the 2004 International Conference on Parallel Processing (ICPP’04),
pages 250-257, Washington, DC, USA, 2004. IEEE Computer Society.

[31] H. J. Siegel. The universality of various types of SEMD machine interconnection networks.
In Proceedings o f the 4th Annual Symposium on Computer Architecture, pages 23-25, Silver
Spring, MD, March 1977. ACM SIGARCH/IEEE-CS.

[32] C. D. Thompson and H. T. Kung. Sorting on a mesh-connected parallel computer. In STOC
’76: Proceedings o f the eighth annual ACM symposium on Theory o f computing, pages 58-64,
New York, NY, USA, 1976. ACM Press.

[33] S. A. A. Touati. Register saturation in instruction level parallelism. International Journal o f
Parallel Programming, 33(4):393-449,2005.

[34] R. Whaley, A. Petitet, and J. Dongarra. Automated empirical optimizations of sotware and the
ATLAS project. Parallel Computing, 27(1-2):3-35, 2001.

[35] R. Wickremesinghe, L. Arge, J. S. Chase, and J. S. Vitter. Efficient sorting using registers and
caches. ACM Journal o f Experimental Algorithmics, 7:9, 2002.

[36] J. Xiong, J. Johnson, R. Johnson, and D. Padua. SPL: A language and compiler for DSP
algorithms. In Programming Language Design and Implementation PLDI, pages 298-308,
Snowbird, Utah, June 2001.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix A

Quicksort Thresholds

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Best Quicksort Thresholds for the Core 2 Duo

Array Size Avg.
5000 10000 20000 40000 80000 Thresh.

SI 100 100 100 100 104 100
MSort4 VI 88 84 80 100 84 84

52 104 104 80 80 84 88
SI 136 196 168 132 136 152

MSort8 VI 132 132 132 132 132 132
S2 228 200 224 208 176 204
SI 264 288 240 276 240 260

MSort 12 VI 192 192 216 196 212 200
S2 292 288 288 276 284 284
SI 512 512 512 512 384 484

MSort 16 VI 260 388 332 416 364 352
S2 568 560 512 552 512 540
SI 532 480 480 476 480 488

MSort20 VI 480 484 480 500 336 456
52 484 548 480 480 544 504
SI 576 576 600 604 612 592

MSort24 VI 576 576 576 544 432 540
52 576 584 620 616 580 592
SI 616 896 616 896 560 716

MSort28 VI 592 452 560 604 616 564
52 1116 1044 1112 964 960 1036
SI 980 960 1024 1024 1024 1000

MSort32 VI 1024 1024 1024 1024 768 972
52 1024 1212 1144 1084 1084 1108
SI 100 100 100 100 100 100

lSort4 VI 68 68 56 68 68 64
52 80 80 100 92 80 84
SI 120 132 132 132 132 128

ISort8 VI 132 132 132 96 140 124
S2 160 164 164 180 156 164
SI 196 196 172 212 200 192

ISort 12 VI 200 196 188 176 188 188
S2 192 200 192 188 188 192
SI 40 40 40 40 40 40

RSort VI 40 40 40 40 40 40
52 44 40 40 44 40 40
SI 20 20 20 20 20 20

DTSL VI 20 20 20 20 20 20
52 20 24 24 24 20 20
SI 56 64 56 88 80 68

Insertion VI 96 64 104 76 92 84
S2 128 116 116 80 120 112

Table A .l: Quicksort thresholds for Core 2 Duo (overclocked).

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Best Quicksort Thresholds for the Pentium 4

Array Size Avg.
5000 10000 20000 40000 80000 Thresh.

SI 128 128 124 124 140 128
MSort4 VI 124 120 124 104 124 116

S2 216 180 148 148 152 168
SI 192 256 256 256 256 240

MSort8 VI 256 256 232 288 256 256
S2 304 308 292 308 296 300
SI 288 288 288 288 288 288

M Sortl2 VI 536 384 288 288 308 360
S2 580 580 512 500 516 536
SI 512 512 512 512 512 512

MSort 16 VI 512 512 512 512 512 512
S2 612 780 604 560 520 612
SI 828 764 688 480 552 660

MSort20 VI 952 480 480 480 480 572
S2 948 984 880 896 828 904
SI 1032 576 768 576 588 708

MSort24 VI 1084 860 600 576 576 736
S2 1060 1108 1140 968 984 1052
SI 896 896 896 896 896 896

MSort28 VI 1204 1208 896 896 896 1020
S2 1204 1100 1192 892 1104 1096
SI 1024 1024 1024 1024 1024 1024

MSort32 VI 1024 1024 768 1024 1024 972
S2 1628 1512 1448 1112 1052 1348
SI 128 128 124 120 112 120

lSort4 VI 96 112 120 100 112 108
S2 144 152 152 128 124 140
SI 124 132 192 144 132 144

lSort8 VI 128 120 120 124 132 124
S2 248 284 268 272 272 268
SI 196 196 196 196 196 196

ISortl2 VI 172 196 196 192 188 188
S2 308 304 304 292 288 296
SI 68 68 68 68 68 68

RSort VI 68 68 68 72 64 68
S2 120 124 112 116 100 112
SI 12 12 12 12 12 12

DTSL VI 12 12 12 12 12 12
S2 20 20 20 20 20 20
SI 128 128 128 60 60 100

Insertion VI 80 128 76 128 128 108
S2 80 88 80 84 80 80

Table A.2: Quicksort thresholds for Pentium 4.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B e st Q uicksort T h resh o ld s for the A th lon 6 4

Array Size Avg.
5000 10000 20000 40000 80000 Thresh.

SI 76 76 80 76 80 76
MSort4 VI 84 68 68 80 80 76

S2 80 80 84 80 80 80
SI 148 192 132 140 132 148

MSort8 VI 196 196 132 132 132 156
S2 164 160 160 156 160 160
SI 248 240 240 244 240 240

M Sortl2 VI 244 240 196 244 268 236
S2 288 288 248 248 248 264
SI 484 328 320 272 260 332

M Sortl6 VI 328 328 260 260 388 312
S2 444 404 396 364 364 392
SI 576 480 412 464 352 456

MSort20 VI 404 448 360 328 404 388
S2 596 536 372 496 420 484
SI 576 572 480 480 428 504

MSort24 VI 576 484 484 388 408 468
S2 732 664 512 452 464 564
SI 672 672 560 452 452 560

MSort28 VI 452 452 452 456 452 452
52 940 776 576 656 624 712
SI 908 772 516 708 772 732

MSort32 VI 772 776 516 516 648 644
S2 1016 764 680 676 716 768
SI 84 68 76 76 76 76

!Sort4 VI 68 68 80 68 80 72
S2 80 80 84 84 88 80
SI 132 132 128 128 124 128

!Sort8 VI 132 132 132 132 132 132
52 156 156 156 156 144 152
Si 196 196 196 200 196 196

!Sortl2 VI 196 196 180 176 196 188
52 228 188 204 180 188 196
SI 52 52 52 52 52 52

RSort VI 52 52 52 44 52 48
52 56 56 52 52 52 52
Si 20 20 20 20 20 20

DTSL VI 20 20 20 20 20 20
52 24 24 20 24 20 20
Si 32 32 32 48 48 36

Insertion VI 48 48 48 60 128 64
S2 80 80 80 80 80 80

Table A.3: Quicksort thresholds for Athlon 64.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Best Quicksort Thresholds for the G5

Array Size Avg.
5000 10000 20000 40000 80000 Thresh.

SI 84 80 80 68 72 76
MSort4 VI 108 96 80 84 80 88

S2 96 96 84 80 80 84
SI 188 184 180 144 148 168

MSort8 VI 188 180 172 172 156 172
S2 208 180 192 156 156 176
SI 304 284 240 212 208 248

M Sortl2 VI 316 264 236 260 236 260
S2 264 276 260 264 220 256
SI 384 376 308 292 272 324

MSort 16 VI 384 380 348 332 316 352
S2 384 436 388 376 308 376
SI 492 488 372 340 360 408

MSort20 VI 468 444 420 404 396 424
S2 552 500 472 376 396 456
SI 564 540 516 444 436 500

MSort24 VI 568 528 484 448 476 500
S2 580 560 552 504 504 540
SI 584 716 572 452 440 552

MSort28 VI 640 720 572 452 500 576
S2 728 596 616 588 520 608
SI 776 620 760 516 564 644

MSort32 VI 828 724 656 636 572 680
S2 796 824 704 612 604 708
SI 68 68 68 68 64 64

lSort4 VI 84 72 84 64 72 72
S2 92 84 80 80 80 80
SI 108 100 100 112 100 104

!Sort8 VI 160 124 128 116 136 132
S2 112 148 124 140 100 124
SI 128 128 124 120 128 124

ISortl2 VI 172 196 196 200 172 184
S2 148 128 176 112 128 136
SI 52 56 52 48 48 48

RSort VI 56 52 52 48 52 52
S2 68 60 60 52 52 56
SI 28 32 28 32 28 28

DTSL VI 32 32 32 28 32 28
S2 32 32 32 32 28 28
SI 52 52 48 48 48 48

Insertion VI 80 60 60 80 60 68
S2 40 44 44 44 80 48

Table A.4: Quicksort thresholds for G5.

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix B

Quicksort Timing

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

LA'O

P >Ti *■*
CD OQ
C L S

3 o
I w

*
cd
clco

5; ° S9 »>-t —.
3 *
& *555* o
S’. cT
& o

ots

&
05
$era
CD

p CD

<S g*
CD 8»

CD

3 n■-* O
a- 3
§ p

3
V3* O

<
CO M

s a
3 O
C l O P PT
3 CD
C l p u
C l
CD•C O *1p CD

5- « a a
§

$

Core 2 Duo Partition Function = S1
Reduction of Quicksort Cycles per Low-Level Algorithm

co 50%

* 407c

3 2 07

0) -307e

Low-level algorithm used

Core 2 Duo Partition Function = V1
Reduction of Quicksort Cycles per Low-Level Algorithm

500

Low -level a lg o rith m u s e d

D
ec

re
as

e
fro

m
DT

SL

- 2
0

(P
ar

tit
io

n
St

)
D

ec
re

as
e

fro
m

DT
SL

- 2

0
(P

ar
tit

io
n

S1
)

Core 2 Duo Partition Function = S2
Reduction of Quicksort Cycles per Low-Level Algorithm

60%
50%
40%
30%
20%
10%
0%

-10%
-20%
-30%
-40%

■ j
E l

200 i
500 i 5k i. 80k imam 10M i

•tr i -

CO2
Low-level algorithm used

Core 2 Duo Partition Function = V2
Reduction of Quicksort Cycles per Low-Level Algorithm

L ow -level a lgo rithm u s e d

C
ore

2
Duo

-
Large

U
niform

D

istrib
u

tion

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

ONO

e 3
CD tfq

& §
P
3
3
>—h
3
3
p

§

cd
w

&
CDCLco
o*3

C/2 O
5. ^cr o c o s\ c o a
a St
2. o_
3* p *

p
3OQ
CD

CD

3*
CD
cr
p

8
w § ’
§ § i-» -3
c r p
£8 3o
CO <
^ CD "t
CO IQ *
p O
s ap . 2T
3 o.

§■ a
< CD
P * K)

o O
3 3
' ?

£

Core 2 Duo Partition Function » S1
Reduction of Quicksort Cycles per Low-Level Algorithm

w 50%

cv 2 0 %

co 10%

c6 -20% 2k ! ̂~ 20k
5k 80k

S -30%

Low-level algorithm used

Core 2 Duo Partition Function = V1
Reduction of Quicksort Cycles per Low-Level Algorithm

co 50%

o j 20 %

Uj 10%

L ow -level a lg o rith m u s e d

D
ec

re
as

e
fro

m
DT

SL

- 2
0

(P
ar

tit
io

n
S1

)
D

ec
re

as
e

fro
m

DT
SL

- 2

0
(P

ar
tit

io
n

S1
)

Core 2 Duo Partition Function = S2
Reduction of Quicksort Cycles per Low-Level Algorithm

dU"/o

Low-level algorithm used

Core 2 Duo Partition Function = V2
Reduction of Quicksort Cycles per Low-Level Algorithm

L ow -level a lg o rith m u s e d

C
ore

2
Duo

-
Sm

all
U

niform

D
istrib

u
tion

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

n a .Ct OQ

5 ‘ I- • CD

s; a
& w

anQ.SOr-h
o ’
E33 —CTQ 3

8 ^
& ar* o

03 40%
| 35% -
I 30%
“ 25% o
7 20%
ai 15%
£ 10%
| 5%
at 0%J8
® *5%
8 -10%

Core 2 Duo Partition Function » S1
Reduction of Quicksort Cycles per Low-Level Algorithm

K.
2-i 3

R B
CT ”
3 2.

pV3 «-*•
►— < ’

p O
S. s-B> o
o. O'
8* B5. a
S' 5c. ft
R °? 3

S3a
o
3
O^
o
o

trCL
no•-$o
K>

o
<so

£3

£0
s

Low-level algorithm used

Core 2 Duo Partition Function * V1
Reduction of Quicksort Cycles per Low-Level Algorithm

c/3 40%
co
:B 20%
(0

0%

<o -20%
f—
Q
£ -40%

-60% 1M :
10M i

t y - r -

03
2 03

s

L ow -level a lg o rith m u s e d

D
ec

re
as

e
fro

m
DT

SL

- 2
0

(P
ar

tit
io

n
S1

)
D

ec
re

as
e

fro
m

DT
SL

- 2

0
(P

ar
tit

io
n

S1
)

Core 2 Duo Partition Function = S2
Reduction of Quicksort Cycles per Low-Level Algorithm

60%

40%

20%

0%

-20%

-40%

-60%

Low-level algorithm used

Core 2 Duo Partition Function = V2
Reduction of Quicksort Cycles per Low-Level Algorithm

I
-40%

200 i i 2k a a s 20k 1M
500 5k 80k 10M

03H
a

L ow -level a lg o rith m u s e d

C
ore

2
D

uo
-

Increasing
D

istrib
u

tion

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

ON

O CfQ

5 ‘ §
p ' Cd

*

S' F3
G- o.
8 I
3 e.P o S3. £3
era 3 ’
%Q- O
2t cT
* O
W O
3 S o aco
c r
p

t/j 3.
^ o

I s
S. s
I S -r * pO- Vio a
S . ~
3* 3a

03
P
3

1
Oo
S'
o .
no
O
to
o
§

£
<3

Core 2 Duo Partition Function = S1
Reduction of Quicksort Cycles per Low-Level Algorithm

co 50%

i 40% ■e (0
9^ 30%
0
CM

■ 20%
_ i
&
& 10%

1 o%
<33
a -10%<D
® - 20%

-.. tt
1M !

10M i

P
Q CO

2

Low-level algorithm used

Core 2 Duo Partition Function = V1
Reduction of Quicksort Cycles per Low-Level Algorithm

co 50%
40%

1 30% <o
o- 20%

10%
0%

- 10%

-20 °A!
E
2 -30%
<“ -40%

50%
GO0/,

■ 1
00 CMo>

■ 1
00

■ 1
52

■2
60

■4
84

59
2

t r CM 1 00■e CM co -a-
CM

CO O
CO

CO CO O o
CO
2

O
CO

' 2
2 2 2

Low -level a lg o rith m u s e d

D
ec

re
as

e
fro

m
DT

SL

- 2
0

(P
ar

tit
io

n
S1

)
D

ec
re

as
e

fro
m

DT
SL

- 2

0
(P

ar
tit

io
n

S
I)

Core 2 Duo Partition Function = S2
Reduction of Quicksort Cycles per Low-Level Algorithm

50%

40%

30%

20%

10%

0%

- 10%

-20%

80k 10M
•40%

o
CM

COto ©o oo CMin ©© ■M-COCM
O) CMo> o ©

Low-level algorithm used

Core 2 Duo Partition Function = V2
Reduction of Quicksort Cycles per Low-Level Algorithm

50%
40%
30%
20%
10%
0%

- 10%

-20%

-30%
-40%
-50%
-60%

■

2k 20k

Low -level a lg o rith m u s e d

C
ore

2
D

uo
-

D
ecreasing

D
istrib

u
tion

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

o \

£5 3
O CfQ
s-* c

p ’ D3

•5T
5 'o ft >-t cl Ct> c
^ r>OC y*
5 o'

3
c l .e * Q E3
a o
3 o p o

cT
o o
3
3

<W

3OQ

P 3
1? e
R*
P

<

3*a

CO
Vi

CL

a*
pCL £

CL O
3
O
O
3
P
3
O<
CD

IB TCL CL
P _

O
3

. to

. a
e
o

£
>3

Core 2 Duo Partition Function = S1
Reduction of Quicksort Cycles per Low-Level Algorithm

(z> 60%

: i 40%
s
t 20%
0
CM

0%

£ -2 0 %

1 -40%

8 -60%
£
8 -80% Q

, I

1M !
10M i

CO
2 «o

2 CO
2

Low-level algorithm used

Core 2 Duo Partition Function = V1
Reduction of Quicksort Cycles per Low-Level Algorithm

co 60%

:■§ 40% 11
CO
t 20%
O
CM
• 0 %

££ -20%

| -40%

$ -60% -
<u
8 -80%

2k tM&mi-a 20k r n r r i 1M i
5k &mmM 80k 0 0 3 10M i

•c i-
CO
2

CO
2 CO

2

L ow -level a lg o rith m u s e d

D
ec

re
as

e
fro

m
DT

SL

• 2
0

(P
ar

tit
io

n
S1

)
D

ec
re

as
e

fro
m

DT
SL

- 2

0
(P

ar
tit

io
n

S1
)

Core 2 Duo Partition Function = S2
Reduction of Quicksort Cycles per Low-Level Algorithm

0%

500 80k 10M
- 100%

ooo
CM

CM OO oco -3-
oo

CMin CMCT> o ©<Ji

Low-level algorithm used

Core 2 Duo Partition Function = V2
Reduction of Quicksort Cycles per Low-Level Algorithm

60%

I

©
CM ■ s 10

0

19
2

to
o

15
2

<2 k CM CO

Q t ;0) o
CO

£ o
CO
2

o
CO
2

COc CO

r - CM

CO
2

CO
2

L ow -level a lg o rith m u s e d

C
ore

2
D

uo
-

Pipe
O

rgan
D

istrib
u

tion

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

§ a
I ' So
3
CL

Os4L

CTQa
p3OQ
9
&

* & o
CLcor-►
o ’
3

5T 3
51 *

o
o
0
!*r

1
CD

2-ETr-►
< ’
cd

G5 Partition Function = S1
Reduction of Quicksort Cycles per Low-Level Algorithm

j j p : j r

2k 20k
5k 80k

Low-level algorithm used

3 “
CDP

B. g*
I S .
8* §

I s
o' «°
F OUl

w
RCD
CL
•-»

I3
>-b
O
3
p

G5 Partition Function = V1
Reduction of Quicksort Cycles per Low-Level Algorithm

o 40%

~ 2 0 %

-20%

k l i i i i

L ow -level a lgo rithm u s e d

D
ec

re
as

e
fro

m
DT

SL

- 2
8

(P
ar

tit
io

n
S

1)
D

ec
re

as
e

fro
m

DT
SL

- 2

8
(P

ar
tit

io
n

S
I)

G5 Partition Function = S2
Reduction of Quicksort Cycles per Low-Level Algorithm

■

Low-level algorithm used

G5 Partition Function = V2
Reduction of Quicksort Cycles per Low-Level Algorithm

20(I 1 2k
50(5k

Low -level a lg o rith m u s e d

G5
-

L
arge

U
niform

D

istrib
u

tion

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

O SL/l

§ 5!
f 1
3 «

P£3OQ
cd

& *
i a
o* o s c.
s . s
5- 3'

s i

!
o- <
S cd

G5 Partition Function = S1
Reduction of Quicksort Cycles per Low-Level Algorithm

Low-level algorithm used

■”* s*
2+ ^
£5 a * £3 p
CL Vie? si
a- S’
CL CD
2 o
S . 3
S 3
I ’ OP yi

£CD

B
CD

p

£3
>-b
O
3
P

G5 Partition Function = V1
Reduction of Quicksort Cycles per Low-Level Algorithm

g 40%

« 20%
0%

g -20%

-40%

-60% 200
500

20k
80k

1M
10M

-80%

co tco •e ■co00cvj CM CO CM

Low -level a lg o rith m u s e d

D
ec

re
as

e
fro

m
DT

SL

- 2
8

(P
ar

tit
io

n
S

1)
D

ec
re

as
e

fro
m

DT
SL

- 2

8
(P

ar
tit

io
n

SI
)

G5 Partition Function = S2
Reduction of Quicksort Cycles per Low-Level Algorithm

40% -

20%

-20%

-40%

Low-level algorithm used

G5 Partition Function = V2
Reduction of Quicksort Cycles per Low-Level Algorithm

40%

20%
0%

•20%
-40%
•60% 200

500
1M10M20k

80k
•80% 00

CM
if<o 't

CM 800 00 CO

CO
5 CO2

L ow -level a lgo rithm u s e d

G5
-

Sm
all

U
niform

D

istrib
u

tion

G5 - Increasing Distribution

B P ' UOSH

P P 9 * seyosw

oos - pzwm

PZG-91VOSW

8fr2-2UJOSW
i

891 -QVOSW

91 - WOSfll
»o
<si ir> *21 -livosi

P 9 • P V O S\

Qp • uoiyasu)

82 - l S l a

8** UOSU

pp9 - 2GJJOSW

oos - r a o s w

*2€-9lVOSRI

B P Z - 2 LUOSW
: CVJ tO

891-8UOSW

9 1 • ^OQW

WIO *21 -21POSI

P 9 - WJOSI

9t - u o iy a su i

82 - i s i a

(IS uofflyed) qz - I S i a wojj eseejoaa (IS uoiijyBd) 82 • 1S1Q wojj 8sb9J09q

b p • yosy

PP9 • zzvosn

OOS ■ raJOSW

tse-9iyosw

8*2 - 2LJJOSW
win

G9L -8UOSW

91 * *yosw

P Z l ' Z IUOS

P 9 • *yosi

2p - uojiiesuj

82■1S1Q

BP - yosy

P P 9 - 2SUOSW

oos ■ *2yosw

fr28-9J.y0SW

8*2 - 2tyosw

891-8UOSW

9L - fryosw

p z i - 2tyosi

P9 • t'yosi

8* - uo;|jesu|

82 • I S i a

(IS UOJIIIJBd) 82 * I S i a WOJJ 0SB9JO9Q (IS UO[I!IIBd) 82 - I S i a WOJJ 9SB9J09Q

Figure B.8: Reduction in wall-clock time relative to the baseline on a G5. Keys are initially in
increasing order. Error bar is 1 standard deviation.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Lo
w

-le
ve

l
alg

or
ith

m

us
ed

Lo

w
-le

ve
l

alg
or

ith
m

us
ed

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

B* ^
o d5
a- n
P CD

hrt3 CO
OQ vo
O ••
a &
8 2
m c m o
3 ?• o 23
a*
p 3—s

^ i
a §f
§ o
6 s-

£ I*ct CD

p CD
& p*

ON<1

W 30%

•| 20%
I 10%
CM 0%

CO -10%
Q
Ep

G5 Partition Function = S1
Reduction of Quicksort Cycles per Low-Level Algorithm

£

-20%
-30%

=40%

8 -50%
Q

. I Ill.............. o/vi i-----

Low-level algorithm used

c r
cd

a*
p

3
CD
O
3

PLn

£
co

§CD

P
*^T

S'

G5 Partition Function = V1
Reduction of Quicksort Cycles per Low-Level Algorithm

c8 -100%

120%
3 12

4

r?

•
G CM G

CO G COO
CO 2 co2 cos

Low -level a lgo rithm u s e d

D
ec

re
as

e
fro

m
DT

SL

- 2
8

(P
ar

tit
io

n
S1

)
D

ec
re

as
e

fro
m

DT
SL

- 2

8
(P

ar
tit

io
n

S1
)

G5 Partition Function = S2
Reduction of Quicksort Cycles per Low-Level Algorithm

40%

30%

20%
10%
0%

1M
10M80k

co
CM

CO <o oo CO

COf-Q o r*

Low-tevel algorithm used

G5 Partition Function « V2
Reduction of Quicksort Cycles per Low-Level Algorithm

Low -level a lgo rithm u s e d

G5
-

D
ecreasing

D
istrib

u
tion

G5 - Pipe Organ Distribution

Esz
oO)<
0)>a>

CM _ J

II o
c->B ©O Q.
£8U.-Q
C >
. 2 0 •St:
I Iin .2
° 3

■5
co
o3■D
CD

q p - y o s u

FF9 ■ ZCJJOSIAI

00s - fzuosw

tZG-9L̂ osw

8F 2 '2 iy°S K I

891- -8H0SW

9Z - WOSW

F2t -ZU10SI

*9 - WiOSI

8F - uojpasui

82■ 1S1Q

; f•B ©o a.R u>

8F -yosd

ff9 - zsyosw

OOS - frWOSW

WS -9»iOSW

8F2'2UJOSIfl|

9 9 1 -8U0SW

91 - fuosw

F21-ZLUOSI

P9 - WiOSI

8F - uojyesui

82 * nsia

(IS uopijjBd) 82 - nsia wojj esBQjoea (IS uopiyBd) 82 - 1S1Q wojj esesjosa

8F -uosy

PP9 * 2EU0SN

OOS - F2U0SW

«8-9lU°SW

8F2-2LPOSW
0 4 in

891- -81J0SIN

91 * WiOSW

F2t-2Lyoci

F 9 • W JOSI

8 F - U 0l}JSSU |

82 -1S1Q

8f -uosy

PP9 - 28UOSW

OOS - F2UOSW

F28-9LUOSW

8F2-2I.UOSIN

891. -8U0SW

9Z - FUOSW

f 2 L - z t y o s i

P9 • FUOSI

8F * uoijjesui

82 -nsia

(IS UO!l!JJBd) 82 * ISia WOJJ 0SB0JO0a (IS uojHimd) 82 - 1S1Q wojj ©sbojooq

Figure B.10: Reduction in wall-clock time relative to the baseline on a G5. Keys are initially
increasing/decreasing with a peak at the middle. Error bar is 1 standard deviation.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Lo
w

-le
ve

l
alg

or
ith

m

us
ed

Lo

w
-le

ve
l

alg
or

ith
m

us
ed

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

Reduction of Quicksort Cycles per Low-Level Algorithm
co 60%
co
i | 50% <0
t 40%
CM

7 30%

b 20%

| 10%
0%

500 80k 10M8 - 10% Q CM Oo (O0> 00
CM

© 00

Osv©

Low-level algorithm used

<0 60%co
•f 50%
(0
— 40%
CM

~ 30%

Pentium 4 Partition Function = V1
Reduction of Quicksort Cycles per Low-Level Algorithm

co 20%

8 o% ©
8 -10% Q

5k 10M i
CM Oo

-1
20

-1
96 00CM 24

0

28
8

51
2

70
8

CO

In
se

rti
on

IS
or

t4
■

!S
or

t1
2

■

■eo
CO
2 M

So
rtS

■

CM

1
CO
2 M

So
rt

16
-

-M-CM■co
CO
2

L ow -level a lg o rith m u s e d

D
ec

re
as

e
fro

m
DT

SL

-1
2

(P
ar

tit
io

n
S1

)
D

ec
re

as
e

fro
m

DT
SL

-1

2
(P

ar
tit

io
n

S1
)

Pentium 4 Partition Function = $2
Reduction of Quicksort Cycles per Low-Level Algorithm

60%

40%

20%
0%

-20%

-40% 200 20k
80k

“1U
10M-60%

8 ©
CM

CO
CM

O CM
CM

Low-level algorithm used

Pentium 4 Partition Function * V2
Reduction of Quicksort Cycles per Low-Level Algorithm

L ow -level a lg o rith m u s e d

Pentium

4
-

L
arge

U
niform

D

istrib
u

tion

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

P
2 o3’3 s
P CD

I . “

§
& S.
Vi 3

3 S
or o'
£ 3

§ 5 '
% I

>-t Q p
3 ^

OC)
5 *

S, 8
5 3.
O P

W S ’§ s
cr 5*
p f t
M. O*
00 P

^ 3§ a>
C l o
P 3
C l p
q. id
§. §
a S'
2 3

&$
BSa>
e*
1
S3

CO 60%
c

50%
■e
Q. 40%
CM

30%
_l

20%

LI 10%
g 0%
<!>
(0 -10%
c

-20%
o

SL w 60%

1 50%
to
~ 40%
cy
~ 30%

£ 20%

| 10%

| 0%2
8 *1 0 % Q

Pentium 4 Partition Function = S1
Reduction of Quicksort Cycles per Low-Level Algorithm

; s M S U I
- f 200 i-------- 1 2k (111*1 20k wmmm 1M erass

i CO
2

COs CO
2

Low-level algorithm used

Pentium 4 Partition Function « V1
Reduction of Quicksort Cycles per Low-Level Algorithm

80k i 10M

co2 CO2 CO2 CO2

L ow -level a lg o rith m u s e d

D
ec

re
as

e
fro

m
D

T
S

L
-12

(P

ar
tit

io
n

S1
)

D
ec

re
as

e
fro

m
DT

SL

-1
2

(P
ar

tit
io

n
S1

)

Pentium 4 Partition Function = S2
Reduction of Quicksort Cycles per Low-Level Algorithm

Low-level algorithm used

60%

Pentium 4 Partition Function = V2
Reduction of Quicksort Cycles per Low-Level Algorithm

Low-level algorithm used

Pentium

4
-

Sm
all U

niform

D
istrib

u
tion

R
eproduced

with
perm

ission
of the

copyright ow
ner.

Further reproduction
prohibited

w
ithout perm

ission.

S’ 3
I— OQ

* § 3 ^
p t dCA •

rS ^ CfQ • •
O |5d
a a
s I
W K •

on
^ a
C/5 O
P

c l j r .

S 3CL O
CL 3
cd £L< p
§ ' * •
o
P P

Pentium 4 Partition Function * S1
Reduction of Quicksort Cycles per Low-Level Algorithm

w
c 80%
o 70%
ccfl
0.

60%

CM
50%

T_ 40%

£ 30%
r—Q 20%
E
8 10%

® 0%

§ -10%

§
Q

-20%

1M i
10M i

co2

Low-(evei algorithm used

=ra
o*p

3
O
O

P
hdo
3

S'
3
4^

w

C/5

P►tn>

Pentium 4 Partition Function * V1
Reduction of Quicksort Cycles per Low-Level Algorithm

80%
60%
40%
20%

0%
-20%

-40%
-60%
-80%

200
500

20k
80k

1M
10M« - 100%

$ - 120%
oo o

CM
00
CM

O GO
GO

CM COO CM

Low -level a lg o rith m u s e d

D
ec

re
as

e
fro

m
DT

SL

-1
2

(P
ar

tit
io

n
S1

)
D

ec
re

as
e

fro
m

DT
SL

-1

2
(P

ar
tit

io
n

S1
)

Pentium 4 Partition Function * S2
Reduction of Quicksort Cycles per Low-Level Algorithm

80%

60%

40%

20% -

0%
- 20 %

-40%

200
500

20k
80k

1M
10M

-60%

-80%
o
CM

O CO o GO
CO

CO COCM

t:

Low-level algorithm used

Pentium 4 Partition Function = V2
Reduction of Quicksort Cycles per Low-Level Algorithm

»100%

L o w -lev el a lgo rithm u s e d

Pentium

4
-

Increasing
D

istrib
u

tion

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

o. a.

M 70%

| 60% -
| 50%
cm 40%

_li 30%
“ 20% o
E 10% o
0 0%
1 -10%
8 -20%

Pentium 4 Partition Function = S1
Reduction of Quicksort Cycles per Low-Level Algorithm

fsa

Low-level algorithm used

EL
vT

Pentium 4 Partition Function = V1
Reduction of Quicksort Cycles per Low-Level Algorithm

L ow -level a lg o rith m u s e d

D
ec

re
as

e
fro

m
DT

SL

•
12

(P
ar

tit
io

n
S1

)
D

ec
re

as
e

fro
m

DT
SL

-1

2
(P

ar
tit

io
n

S1
)

Pentium 4 Partition Function = S2
Reduction of Quicksort Cycles per Low-Level Algorithm

100%

80%

60%

40%

20%

0%
-20% 200

500
20k
80k 10M

-40%
CM oo o

CM
co
O)

o-a 0000 CM COo Tj-
CM

00co

Low-level algorithm used

Pentium 4 Partition Function = V2
Reduction of Quicksort Cycles per Low-Level Algorithm

60%

40%

20%

0%
-20%

-40%

-60%

-80%

• 100%

20k m am 1M i
80k 10M i

CO T -

L ow -level a lgo rithm u s e d

Pentium

4
-

D
ecreasing

D
istrib

u
tion

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

5' 31
G
§ §w 01
S' td
c5 G*2; Ln
0 "
8 s?o> S
p Q .01 C

o

o'3
3

OQ

P ^

■3 EL
f t 7 - o

s-
£ OZ *■
CD 5 3 ’

3 I
& &
« S

f f l CD

§ s
^ a
g* O
n crn*. ca73 V3
t— <L
& 3 ’ '
p CD

3 OO- 3
P
i t p

©■ n
§ 3 .
a £
o'
3 4*

£CD

73
ES
CD

vT

Pentium 4 Partition Function = S1
Reduction of Quicksort Cycles per Low-Level Algorithm

w 80%

I 60%
| 40%
w 20%
^ 0%
£ -20% Q
E -40%
o
^ -60%

§ -80%
» -100%

1M i
10M i

t - i - CM

Low-level algorithm used

w
c 80%
o 60%
■E(0£L

40%

CM
20%

0%
_l -20%
t—
Q -40%
£g -60%

a> -80%
$a> -100%

8
Q

-120%

Pentium 4 Partition Function * V1
Reduction of Quicksort Cycles per Low-Level Algorithm

1M
10M

i- ooo

■ 1
20

■ 1
96

■1
28

■2
40

■2
88 51
2

70
8

In
se

rti
on

•

IS
or

t4
■

IS
or

t1
2

■

M
So

rt4

■

M
So

rtS

-

M
So

rt1
2

-

M
So

rt
16

-

M
So

rt2
4

-

Low -level a lgo rithm u s e d

D
ec

re
as

e
fro

m
D

T
S

L
-12

(P

ar
tit

io
n

S1
)

D
ec

re
as

e
fro

m
D

T
S

L
-12

(P

ar
tit

io
n

S1
)

Pentium 4 Partition Function = S2
Reduction of Quicksort Cycles per Low-Level Algorithm

Low-level algorithm used

Pentium 4 Partition Function = V2
Reduction of Quicksort Cycles per Low-Level Algorithm

r
100%

Low -level a lg o rith m u s e d

Pentium

4
-

Pipe
O

rgan
D

istrib
u

tion

Athlon 64 - Large Uniform Distribution

OP - UOSH

0001 - zevosw

269 - frgyosw

CD O
w*-9iyosw

092-2UJOSW

ZSl-8y0SW o>

ooi • vvosn

c v t r n

261. -SUJOSI

oot -*yosi

89 - uoijjssui

02 - i s i a

o* - yosu

0001 *2eUOSW

269 - PZUOSW

CM CO

092 - 2LWOSW
c m i n

291-8UOSW

ooi -fryosw

cm in
261 * 2iy°SI

001 -tryos

liOIJJ0SU|

02 *ISIO

(IS UOjHJJBd) 02 - 1S1Q WOJJ 9SB0JO9Q (IS UOjliJJBd) 02 - I S i a WOJJ 8SB8JO0Q

o -̂yosH

oooi-2eyosw

269 - *2UOSW

t9fr-9iyosw

092‘ 2iyosw
cm in

2 9 1 -8MOSW

oot -w » sw

261 - 2 iyosi

ooi * fryosi

89 - uoijjesui

02 - ISIO

op - yosd

oooi • 2cy°sw

269 * t2yc>SW

m-9iyosw

092-2iyosw
cMm

291 -8y0SW

ooi -ty o swto JC
cm i n

26t*2iy°SI

ooi - w osi

• UOIJJ8SUI

02 ■ i s i a

(IS UO!i!JJBd) 02 - 1S1Q WOJJ 0SB8JO8Q (I S UOIJIJJBd) 02 - I S i a WOJJ 8SB8JO0Q

Figure B.16: Reduction in cycle counts relative to the baseline on a Athlon 64. Keys are drawn from
a uniform distribution with a large range. Error bar is 1 standard deviation.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Lo
w

-l©
v0

l
alg

or
ith

m

us
ed

Lo

w
-le

ve
l

alg
or

ith
m

us

ed

Athlon 64 - Small Uniform Distribution

Of -yosy

0001 -26VOSW

Z6s - frsyosw
CM 0 0 m-9ty°sw

092'2l.yosw
C M lO

SSL•syosw

©o
r v im

ooi'Wosn

26 t - s ty o s i

001 -WJOSI

89 - uoipasuj

o s - i s i a

Ofr • y o sy

oool -s e y o s w

269 - FSMOSW

s i W-9»iOSW

092-ZWOSW
cm m

291 -8y°SW

oo l • py°sw

S6i -styosi

ooi'fwsi

89 - uoiyesui

02 * i s i a

(tS uoiiiyed) 02 - 1S1Q wojj s se s jo ea

CO CM i -

(tS UOIHyBd) 02 - 1S1Q WOJJ 8SB9J09Q

ooo t - sc y o sw
E

CD

aja
</)

0)CC

(tS uomviBd) 02 • " is ia luoj ̂esee joea

ofr-yosy

ooo i • zcyosw

26S • 7Zy°SIN

Wfr-9iyosw

092-21.MOSW

291. - 8y°sw
cm in

1 HBffWflBHftfljfflH
: » ‘_____________________4+=.-..... ■■■■ ■'■"■■' ' ^

OOt -WOSW

261 ■ 2 ty ° s i

001 • WJOSI

89 * uojiJdSU|

os - i s i a

J u o m y e d) 02 * I S i a UJOJi 0SB0JO9Q

Figure B. 17: Reduction in cycle counts relative to the baseline on a Athlon 64. Keys are drawn from
a uniform distribution with a range of 100. Error bar is 1 standard deviation.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Lo
w

-le
v©

l
alg

or
ith

m

us
ed

Lo

w
-le

ve
l

alg
or

ith
m

us

ed

Athlon 64 - Increasing Distribution

o* -y°su

0001- - ZWOSM

2 6 S - F2WOSW

m-9inosw

09Z-ZIUOSW

ssi -8yosw

oo t - ty o sw

261 *2 iyosi

OOt -FVOSI

8 9 - u o ij j q s u i

0 2 • 1 S 1 Q

CO <M t- r- w O IO (D

(tS uojijyed) 0 2 - 1 S 1 Q w o jj ©sb ©jo©ci

oooi - seuosw

II ~ i

.11

^ (Oin zi

os - isia

(LS UO|l!PBd) 0 2 - isia WOJJ © S B 0JO 0Q

oooi.-2eyosw

2 6 S * F2U 0SW

CD>

092-2UJOSW

88

o3■oCDcc

os - i s i a

.§!
■St1

I s
c « .2.2 az O
3*

■ i < i i ■ i i

of • yosd

0001 -2SIJOSW

26S - F2POSW

F8F-9l.yosw

092 - 2L1JOSW

2SI -8yosifll

(KH -W»SW

261 -StPOSI

00L-FPOSI

8 9 - u o j j j e s u i

0 2 - IS IO

(t S UOjJIJJBd) 0 2 - I S I O w o jj ©SB0JOeQ (J.S UO jtjlJBcj) 0 2 • I S I O WOJJ © S B 9JO 0Q

Figure B.18: Reduction in cycle counts relative to the baseline on a Athlon 64. Keys are initially in
increasing order. Error bar is 1 standard deviation.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Lo
w

-le
ve

l
alg

or
ith

m

us
ed

Lo

w
-le

ve
l

al
go

rit
hm

us

ed

Athlon 64 - Decreasing Distribution

op -uosa

oocu-zeyosw

2 6 9 - •FSUOSN

CM 00 W-91W0SW

09Z-ZIUOSW
cm i n

2 9 1 - 9 P0 SW

001 ■ MJOSW
CD o
cm in

2 6 1 ■ cllJOSI

001 -frUOSI

99 - uoiyesui

02 - 1S1Q

“!---!---!---!---1—I !---!”
| p g J I I I I

op - yosa

0001 • 20JJOSW

2 6 S ■ PZW SVi

m-9DJOSW

092*21.yosw

2SL -8UOSW

oo t -mjosn(o V

261-2LMOSI

001 -W»s

- uo iyesu

02 *isia

(IS uoitiyBd) 02 - 1S1Q wojj eseejoea
CM C \l CO

(I.S UOjtjlJBd) 02 ■ ISia WOJJ 0SBSJO9Q

OOOL - 2 CIJOSW
£x:
oo>3

w $
II -J

5 8t5 ̂
§ S.u_ t t

sjsc y
S O
5 b

c
o
T>3■oocca>

02 -isia

op - uosa

oooi-2cyosw

269 * PZV OSW

W-9WOSW

092 * 2iyosw

291 *8y0SW

00 L -WJOSW

261 -2iyosi

ooi -tyosi

- uoiyesui

02■isia

(is UOKHJBd) 02 • ISIO WOJJ 9SB8J06Q (is uô jiBd) 02 • ISxa wojj BSBBJoea

Figure B.19: Reduction in cycle counts relative to the baseline on a Athlon 64. Keys are initially in
decreasing order. Error bar is 1 standard deviation.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Lo
w

-le
ve

l
alg

or
ith

m

us
ed

Lo

w
-le

ve
l

al
go

rit
hm

us

ed

Athlon 64 - Pipe Organ Distribution

0001 • ZZVOSW

269 * *2P0SW
0>0 W-9HJOSIN

ii -J
.11
§ ® if

0

0* * POSH

0001 ■ SOPOSW

2 6 S - fr2 P°SW

(MOO m -9L P O S W

092-2LPOSW
CM u)

29 i • 8 P°SW

001. -frPOSW

CM u)
261 . ■ 2 tP °S I

001- * pP°SI

8 9 • uo iyasui

0 2 - 1 S1 Q

(IS uoiupBd) 02 • 1S1Q PJOJ* eseejoea
CD CO

(LS UOJWJBd) 02 - 1S1Q UiOJi 9SB0JO0Q

0001. • 2GP0SW

oo>5
s

3
0Q.
(/>0

88

Co
o3■a0CC

02 ■ i s i a

op - posy

0001. "2GPOSW

269 • fr2POSW

Wt'-9lPOSW

092 • 2 lP °S rJ

291- -8POSW

001 -t-POSW

t 261-2WOS

001 -«*>S

8 9 - u o jy e s u i

02 -nsia

(LS uoifflJBd) 02 ■ nsxa woj) 8 S B 3 J0 ea (I S U O j l^ B d) 0 2 - n s i a W ° 4 9 S B 9 J 0 9 Q

Figure B.20: Reduction in cycle counts relative to the baseline on a Athlon 64. Keys are initially
increasing/decreasing with a peak at the middle. Error bar is 1 standard deviation.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Lo
w

-le
ve

l
al

go
rit

hm

us
ed

Lo

w
-le

ve
l

alg
or

ith
m

us

ed

Appendix C

Heaps

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

H eap sort T im es fo r the C ore 2 D u o

Array
Size

Algorithm
2 8 12 16 2F 8F 12F 16F 24F 4V 8V 12V 16V 24V 4FV 8FV 12FV 16FV 24FV

24 110 113 118 123 98 112 117 112 116 128 119 113 125 124 122 113 106 116 115
2b 110

1 123 1 OO1Z0 131 100 124 136 142 1 O AlOH- 144 1 n 11J1 1 'I 1 1^1 1 nnJOU 1 n a 135 124 124 126 128
2 6 121 135 146 146 106 139 158 172 160 155 134 142 144 153 145 127 131 139 140
27 133 155 159 162 116 154 180 198 185 167 147 145 151 I6 l 157 138 135 142 156
2« 145 172 179 178 127 176 203 219 209 186 159 157 152 164 174 150 143 142 159
2y 159 189 201 201 140 197 230 249 228 201 167 170 165 165 190 156 158 156 157
2iu 174 209 224 226 154 217 260 285 248 222 I8 l 180 180 175 210 170 166 171 168
2n 188 231 244 249 168 242 284 320 280 242 199 185 190 192 229 188 171 181 187
2U 204 251 268 271 183 266 313 347 315 264 2 l l 205 195 206 25 1 199 192 187 200
215 228 276 295 298 210 291 350 380 355 289 232 227 216 218 276 220 215 209 212
214 258 304 323 330 239 323 383 423 386 319 258 243 242 227 307 245 231 235 222
2lb 291 332 348 358 273 353 413 463 426 348 276 259 259 253 338 264 249 253 249
216 324 359 380 386 307 382 451 497 471 381 302 287 272 279 369 288 279 266 275
2 iz 362 392 413 415 348 415 490 536 518 412 332 312 299 298 40 1 317 303 292 296
218 429 438 453 461 431 476 543 596 575 466 367 344 343 333 458 353 337 339 333
2 ly 617 515 544 557 634 556 634 695 667 564 446 420 431 420 566 442 419 431 420
2^u 919 644 662 660 933 691 758 809 786 714 577 537 531 535 706 571 530 525 539
2a 1282 781 786 776 1288 826 887 925 908 874 705 644 643 647 873 697 647 640 652
2lz 1657 929 912 900 1684 966 1021 1059 1037 1050 841 756 757 749 1054 830 754 762 775

Table C.l: Heapsort times for the Core 2 Duo, uniform distribution, normalized by array size.

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

H eap sort T im es fo r the P en tiu m 4

Array
Size

Algorithm
2 8 1 2 1 6 2 F 8 F 1 2 F 1 6 F 2 4 F 4 V 8 V 1 2 V 1 6 V 2 4 V 4 F V 8 F V 1 2 F V 1 6 F V 2 4 F V

2 4 0.07 0 . 0 8 0 . 0 9 0 . 0 9 0 . 0 9 0 . 0 8 0 . 0 8 0 . 1 0 0 . 0 9 O . l l 0 . 1 1 0 . 0 9 0 . 1 1 0 . 0 9 0 . 1 0 0 . 1 0 0 . 0 8 0 . 0 9 0 . 0 8
o bz. 0.08 r \ 1 r\ U . iU

n i n
\j .L \j

r\ t 1
U . i l

rv r\r\
\j.vy

r\ r\r\
\j.\jy 0 . 0 9

r \ 1
U . 1 U

A 1 1
U . l l

A 1 1
U . l l 0 . 1 2 0 . 1 1 0 . 1 1 0 . 1 0 0 . 1 2 0 . 1 1 0 . 1 0 0 . 1 0 0 . 1 0

2 b 0.09 0 . 1 1 0.12 0 . 1 2 0.09 0 . 1 0 0 . 1 0 O . l l 0 . 1 2 0 . 1 2 0 . 1 2 0 . 1 2 0 . 1 1 0 . 1 3 0 . 1 2 0 . 1 1 0 . 1 2 0 . 1 1 0 . 1 2

2 ' 0 . 1 0 0 . 1 2 0 . 1 3 0 . 1 3 0.09 0 . 1 1 0 . 1 2 0.12 0 . 1 3 0 . 1 2 0 . 1 2 0 . 1 3 0 . 1 2 0 . 1 4 0 . 1 2 0 . 1 2 0 . 1 2 0 . 1 1 0 . 1 3

2 s 0 . 1 1 0 . 1 4 0 . 1 4 0 . 1 4 0.10 0 . 1 3 0 . 1 4 0 . 1 3 0 . 1 5 0 . 1 4 0 . 1 3 0 . 1 3 0 . 1 2 0 . 1 4 0 . 1 3 0 . 1 1 0 . 1 2 0 . 1 1 0 . 1 4

2 y 0 . 1 2 0 . 1 5 0 . 1 6 0 . 1 6 0.11 0 . 1 4 0 . 1 5 0 . 1 5 0 . 1 7 0 . 1 5 0 . 1 2 0 . 1 3 0 . 1 2 0 . 1 5 0 . 1 4 0 . 1 1 0 . 1 2 0 . 1 1 0 . 1 4
2 1 0

0 . 1 4 0 . 1 7 0 . 1 8 0 . 1 7 0 . 1 3 0 . 1 6 0 . 1 7 0 . 1 6 0 . 1 8 0 . 1 6 0 . 1 3 0 . 1 3 0.12 0 . 1 5 0 . 1 6 0.12 0.12 0.12 0 . 1 4

2 11 0 . 1 6 0 . 1 8 0 . 2 0 0 . 1 9 0 . 1 4 0 . 1 7 0 . 1 9 0 . 1 9 0 . 2 0 0 . 1 8 0 . 1 4 0 . 1 3 0 . 1 3 0 . 1 5 0 . 1 7 0 . 1 3 0.12 0.12 0 . 1 4

212 0 . 1 7 0 . 2 0 0 . 2 2 0 . 2 2 0 . 1 6 0 . 2 0 0 . 2 1 0 . 2 1 0 . 2 3 0 . 2 0 0 . 1 5 0 . 1 4 0 . 1 3 0 . 1 5 0 . 1 9 0 . 1 4 0 . 1 3 0.12 0 . 1 4

2 1J 0 . 1 9 0 . 2 2 0 . 2 4 0 . 2 3 0 . 1 8 0 . 2 1 0 . 2 3 0 . 2 2 0 . 2 5 0 . 2 1 0 . 1 6 0 . 1 5 0 . 1 4 0 . 1 5 0 . 2 0 0 . 1 5 0 . 1 5 0.13 0 . 1 4
2 1 4 0 . 2 1 0 . 2 4 0 . 2 7 0 . 2 5 0 . 2 0 0 . 2 3 0 . 2 6 0 . 2 5 0 . 2 7 0 . 2 3 0 . 1 8 0 . 1 6 0 . 1 5 0 . 1 5 0 . 2 2 0 . 1 7 0 . 1 5 0.14 0.14
2 Lb 0 . 2 3 0 . 2 7 0 . 2 9 0 . 2 8 0 . 2 2 0 . 2 6 0 . 2 8 0 . 2 7 0 . 2 9 0 . 2 5 0 . 1 9 0 . 1 7 0 . 1 6 0 . 1 7 0 . 2 4 0 . 1 8 0 . 1 6 0.15 0 . 1 6
2 1 6 0 . 2 6 0 . 2 9 0 . 3 1 0 . 3 0 0 . 2 5 0 . 2 8 0 . 3 0 0 . 2 9 0 . 3 2 0 . 2 7 0 . 2 0 0 . 1 9 0 . 1 7 0 . 1 8 0 . 2 7 0 . 1 9 0 . 1 8 0.16 0 . 1 8

2 1 / 0 . 2 9 0 . 3 2 0 . 3 4 0 . 3 2 0 . 2 8 0 . 3 1 0 . 3 3 0 . 3 1 0 . 3 5 0 . 3 1 0 . 2 3 0 . 2 1 0 . 1 9 0 . 2 0 0 . 3 0 0 . 2 2 0 . 2 0 0.18 0 . 1 9

2 18 0 . 3 4 0 . 3 5 0 . 3 7 0 . 3 6 0 . 3 3 0 . 3 4 0 . 3 7 0 . 3 5 0 . 3 8 0 . 3 4 0 . 2 5 0 . 2 3 0 . 2 2 0 . 2 2 0 . 3 4 0 . 2 4 0 . 2 2 0.21 0.21
2 l y 0 . 4 4 0 . 4 0 0 . 4 3 0 . 4 1 0 . 4 3 0 . 4 0 0 . 4 2 0 . 4 0 0 . 4 4 0 . 4 1 0 . 3 0 0 . 2 9 0.26 0 . 2 7 0 . 4 1 0 . 3 0 0 . 2 7 0.26 0.26
2 2U

0 . 5 8 0 . 4 8 0 . 4 9 0 . 4 8 0 . 5 8 0 . 4 7 0 . 4 9 0 . 4 7 0 . 5 3 0 . 4 8 0 . 3 7 0 . 3 5 0.32 0 . 3 4 0 . 4 8 0 . 3 6 0 . 3 4 0.32 0 . 3 3

2 41 0 . 7 6 0 . 5 5 0 . 5 7 0 . 5 4 0 . 7 4 0 . 5 5 0 . 5 6 0 . 5 4 0 . 6 1 0 . 5 6 0 . 4 4 0 . 4 2 0 . 3 9 0 . 4 1 0 . 5 7 0 . 4 4 0 . 4 1 0.38 0 . 4 0

2 2 2 0 . 9 3 0 . 6 3 0 . 6 4 0 . 6 1 0 . 9 3 0 . 6 3 0 . 6 4 0 . 6 1 0 . 7 0 0 . 6 6 0 . 5 2 0 . 4 9 0 . 4 6 0 . 4 8 0 . 6 6 0 . 5 2 0 . 4 8 0.45 0 . 4 6

Table C.2: Heapsort times for the Pentium 4, uniform distribution, normalized by array size.

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

H eapsort T im es fo r th e A th lo n 6 4

Array
Size

Algorithm
2 8 1 2 1 6 2 F 8 F 1 2 F 1 6 F 2 4 F 4 V 8 V 1 2 V 1 6 V 2 4 V 4 F V 8 F V 1 2 F V 1 6 F V 2 4 F V

2 4 1 2 0 1 3 7 1 5 1 1 5 4 113 1 3 4 1 4 8 1 3 6 1 4 6 1 4 3 1 3 7 1 3 9 1 5 8 1 5 6 1 3 7 1 3 7 1 3 4 1 4 9 1 4 9

2 5 1 2 4 1 4 4 1 6 0 1 6 9 115 1 4 5 1 6 7 1 7 2 1 6 8 1 5 1 1 4 9 1 5 3 1 6 0 1 6 5 1 4 8 1 4 1 1 5 2 1 5 8 1 6 4

2 b 1 4 0 1 6 1 1 7 5 1 9 1 129 1 5 8 1 8 7 2 0 6 2 0 1 1 6 7 1 4 8 1 6 2 1 7 5 1 9 2 1 6 3 1 4 2 1 5 7 1 7 0 1 8 5

2 y 1 5 6 1 7 0 1 9 8 2 0 7 142 1 7 5 2 1 1 2 3 3 2 3 4 1 8 6 1 6 1 1 6 7 1 8 4 2 1 1 1 8 0 1 5 6 1 6 3 1 7 8 2 0 0
2 « 1 7 4 1 9 7 2 1 6 2 2 7 157 1 9 8 2 3 3 2 5 8 2 6 2 2 0 7 1 7 8 1 8 0 1 8 7 2 2 3 2 0 3 1 7 2 1 7 6 1 8 3 2 0 9

2 9 1 9 2 2 2 1 2 3 2 2 5 1 175 2 2 4 2 6 4 2 8 7 2 8 4 2 3 1 1 9 3 2 0 0 2 0 7 2 2 9 2 2 6 1 8 5 1 9 8 2 0 2 2 2 2
2 i o 2 0 9 2 4 4 2 6 0 3 0 0 191 2 4 8 2 9 6 3 2 5 3 1 1 2 5 7 2 1 1 2 1 4 2 3 2 2 4 8 2 5 3 2 0 5 2 1 4 2 2 7 2 3 6

211 2 2 8 2 6 6 2 9 7 3 1 2 209 2 7 6 3 2 3 3 6 2 3 5 2 2 8 5 2 3 1 2 2 7 2 4 8 2 7 9 2 8 1 2 2 7 2 2 6 2 4 6 2 7 0

2 V1 2 4 6 2 9 3 3 0 9 3 4 8 227 3 0 5 3 5 3 3 9 2 3 9 3 3 1 1 2 4 8 2 5 0 2 6 1 3 0 4 3 0 8 2 4 2 2 5 1 2 5 7 2 9 5

2 1 '3 2 6 5 3 1 9 3 5 0 3 8 4 245 3 2 9 3 8 9 4 2 4 4 2 3 3 3 7 2 6 7 2 7 0 2 8 1 3 2 2 3 3 4 2 6 1 2 7 4 2 8 1 3 1 0
2 1 4 2 9 4 3 5 0 3 7 8 4 1 8 276 3 6 1 4 2 7 4 7 0 4 5 4 3 7 0 2 9 8 2 9 2 3 1 5 3 3 9 3 6 6 2 9 5 2 9 5 3 1 1 3 2 7

2 l b 3 3 5 3 8 9 4 1 3 4 6 1 318 4 0 1 4 7 4 5 2 6 5 1 4 4 1 6 3 3 9 3 3 0 3 5 2 3 8 6 4 1 1 3 3 3 3 2 9 3 4 8 3 7 3

2 i 6 3 9 7 4 2 8 4 7 3 5 1 8 3 9 1 4 5 1 5 3 4 5 7 8 5 7 4 4 6 7 3 8 7 3 8 1 3 7 6 4 3 2 4 6 9 3 9 1 367 3 7 3 4 1 8

2 i z 5 7 6 5 1 5 5 6 5 6 1 0 5 9 0 5 3 2 6 2 8 6 7 5 6 8 2 5 5 8 4 6 9 4 5 3 4 5 5 5 1 9 5 6 4 4 7 7 452 4 5 5 5 1 0
2 i s 7 9 6 6 1 7 6 7 4 7 4 0 8 2 7 6 4 0 7 4 1 8 1 4 8 0 5 6 7 0 5 6 4 537 5 5 7 6 2 2 6 7 5 5 7 2 5 4 4 5 5 9 6 2 6

2 i y 1 0 5 7 7 3 1 8 0 3 8 8 9 1 0 7 5 7 5 7 8 7 8 9 7 5 9 4 1 8 0 0 6 8 4 638 6 5 6 7 3 9 8 1 6 6 8 8 6 5 2 6 6 0 7 5 2

NCM

1 3 4 2 8 6 7 9 5 1 1 0 5 5 1 3 8 3 8 8 6 1 0 3 7 1 1 3 6 1 1 2 0 9 5 0 8 1 1 754 7 5 6 8 8 9 9 6 8 8 1 6 7 7 2 7 6 4 9 1 2

2 21 1 6 6 5 9 8 4 1 0 9 8 1 2 1 9 1 6 9 8 1 0 1 3 1 1 8 1 1 3 0 1 1 2 9 0 1 1 0 5 9 3 0 854 8 7 0 1 0 3 9 1 1 1 6 9 3 2 8 7 2 8 7 7 1 0 6 5
2 z z 2 0 0 4 1 1 2 7 1 2 5 8 1 4 0 3 2 0 2 0 1 1 5 3 1 3 4 5 1 4 9 6 1 4 6 9 1 2 7 3 1 0 7 5 972 1 0 0 2 1 2 0 1 1 2 8 2 1 0 6 7 9 9 3 1 0 1 3 1 2 3 1

Table C.3: Heapsort times for the Athlon 64, uniform distribution, normalized by array size.

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

H eap sort T im es fo r the G 5

Array
Size

Algorithm
2 8 12 16 2F 8F 12F 16F 24F 4V 8V 12V 16V 24V 4FV 8FV 12FV 16FV 24FV

24 2.3 2.3 2.4 2.4 2.4 2.2 2.3 2.3 2.3 2.6 2.4 2.4 2.4 2.4 2.7 2.3 2.2 2.4 2.4
2b 2.9

00 3.1 8.8

OO 3.1 0 1 :>.! r\o.v 3.1

OO OO<N <*\ AZ.y 2.9 3.0 s 'z.o z.o 2.7 2.8
2b 3.5 3.3 3.9 5.0 3.3 3 .2 3.8 4 .1 4.0 3.7 3.0 3 .1 3.1 3.4 3.5 2.8 3.3 3.0 3.2
2y 4.1 3.8 4.5 4.9 4.1 3 .8 4.5 5 . 0 4.9 4.2 3.3 3 . 2 3.2 3.7 4.1 3.1 3.0 3.0 3.5
2» 4.9 4.4 5.2 5.6 4.7 4 . 4 5.3 5 . 6 5.8 4.8 3.8 3 . 4 3.2 3.9 4.8 3.6 3.2 3.0 3.8
29 5.6 5.1 6.1 6.4 5.5 5 . 0 6.0 6 .5 6.5 5.4 4.2 3.9 3.5 4.1 5.4 4.0 3.7 3.4 3.9
2io 6.3 5.6 6.9 7.4 6.1 5 .7 6.8 7 . 4 7.3 5.9 4.7 4.4 4.1 4.4 5.8 4.5 4.1 3.8 4.2
211 6.9 6.3 7.4 8.3 6.7 6 .3 7.4 8 .4 8.2 6.4 5.2 4.7 4.4 4.8 6.3 5.0 4.5 4.3 4.6
2U 7.6 6.9 8.1 8.9 7.4 6.8 8.2 9 . 0 9.2 6.9 5.5 5.2 4.7 5.2 6.8 5.3 5.0 4.6 5.0
213 8.4 7.5 9.0 9.8 8.2 7.5 9.1 9 . 9 10.0 7.3 6.0 5.8 5.3 5.5 7.3 5.8 5.7 5.1 5.4
214 9.2 8.2 9.8 10.8 9.0 8.2 9.9 1 1 .0 10.7 7.9 6.5 6.2 5.8 5.8 7.9 6.4 6.2 5.7 5.7
2it> 10.4 9.1 11.0 11.9 10.1 9.2 10.9 1 2 .3 11.9 8.6 7.1 6.8 6.7 6.5 8.7 7.1 6.7 6.4 6.4
216 12.2 10.6 12.7 13.6 12.2 10.6 13.0 14.1 14.2 10.1 7.7 8.4 7.9 8.2 10.2 8.1 8.3 7.9 8.2
217 16.9 13.4 16.0 17.0 16.6 13.0 16.1 17.2 17.8 13.0 10.0 11.5 11.3 11.8 13.2 10.1 11.4 11.3 11.7
2is 22.2 16.6 18.8 20.4 22.8 16.2 19.4 20.7 22.0 16.2 12.3 14.5 14.5 15.2 17.1 12.7 14.4 14.6 15.2
2ly 31.0 21.1 23.5 24.9 31.1 20.1 23.9 25.0 26.5 22.2 15.6 18.6 18.5 18.8 22.4 15.9 18.7 18.7 18.7
2^0 41.8 26.2 28.3 29.9 42.9 25.0 28.9 29.9 32.7 27.8 19.7 23.0 22.3 22.9 28.5 20.3 22.8 22.5 22.9
2Z1 54.8 31.8 33.6 35.0 55.2 30.7 34.2 35.3 38.5 34.8 24.8 27.3 26.3 26.0 35.0 25.3 27.0 26.3 26.1
2Z> 68.7 37.7 38.3 40.0 69.5 36.9 39.4 40.5 43.2 42.4 30.6 30.8 29.1 28.3 42.9 31.0 30.9 29.3 27.9

Table C.4: Heapsort times for the G5, uniform distribution, normalized by array size.

Appendix D

Source Code

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/ / = = = = = = = = = = = = = = = = = = = = = = = = =: = =:=::= = = =: = = ::=::==: = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

/** Simpler than a comparator, only keep track of the minimum. */

static inline attribute ((always_inline))
voidmyswap{ ml28 &a, const ml28 &b, ml28 &A, const ml28 &B)
{

a = _mm_min_ps(a, b) ;
m!28 mask = _mm_cmpneq_ps(a, b) ;

 ml28 mA = mm and ps (A, mask) ;
m!28 mB = _mm_andnot_ps(mask, B) ;

A - _mm_or_ps (mA, mB) ;
)
/ / ---------------

/** Doesn't preserve key values, we only need the index. */

static inline attribute ((always__inline))
void finalswap(ml28 &a, const ml2 8 &b, ml28 &A, const ml28 &B)
{
 ml28 mask - _mm_cmplt_ps(a, b) ;
 ml28 mA = _mm_and_j?s (A, mask);
 ml28 mB = _mm_andnot_ps(mask, B);
A = _mm_or_ps(mA, mB);

)

/ / --

/** Return the index associated with the smallest key in the input vector. */

static inline attribute ((always_inline))
int horz_min (ml28 & a , ml28 &A)
{
 ml28 b = _mm_movehl_ps(b, a); // b[0,l] = a[2,3]
 ml28 B - _mm_movehl_ps(B, A); // B[0,1] = A(2,3]

myswap(a , b , A , B);

b = (__ m!28) mm shuffle eoi32((m!28i)a. 0x01); // b [0] = a[l]
B = (__ ml28)_mm_shuffle_epi32((ml28i)A, 0x01); // B[0] = A[l]

finalswap(a, b, A, B) ;

union foo {
unsigned int i;
float f;

};

 attribute ((aligned (16))) foo final;
_mm_store_ss(&final.f , A);
return final.i;

}

/ / =

Figure D .l: Support functions for finding the minimum element in an array.

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/ / =

/** Return the index of the minimum element from an array of 12 key-pointer pairs.
Input is already typecast as float* from an array of key-pointer structs.

* /

static inline attribute ((always_inline))
int find_min_12i(const float *key_in)
{
 attribute ((aligned (16))) static const unsigned int index[12] =

{ 0,1,2,3,4,5,6,7,8,9,10,11 };

 ml28 a, b, A, B;

// first 4 key-pointer elements

a = _mm_load_ps(key_in + 0 * 8 + 0) ;
{ ml28 q = __rnm_load_ps(key_in + 0 * 8 + 4) ;
a = _mm_shuffle_ps(a, q, 0x88); }
A = _mm_load_ps((float*)index);

// elements 5-8

b = _mm_load_ps(key_in + 1 * 8 + 0) ;
{ ml28 q = _mm_load_ps(key_in + 1 * 8 + 4) ;
b = _mm_shuffle_ps(b, q, 0x88); }
B = _jmn_load_ps((float*)index + 1*4);
myswap(a, b, A, B);

// elements 9-12

b = _mm_load_ps(key_in + 2 * 8 + 0) ;
{ __^ml28 q = _mm_load_ps (key_in + 2 * 8 + 4);
b = _mm_shuffle_ps(b, q, 0x88); }
B = _mm_load_ps((float*)index + 2*4);
myswap(a, b, A, B);

return horz_min(a, A) ;
}
/ / = =:=: = = = = = =

Figure D.2: Vector code to find the minimum element from an array of 12 key-pointer pairs. Uses
functions defined in Fig. D .l.

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S iz e s o f C O bject F ile s for Sorting N etw ork s up to a G iven S ize

Array Size <
.o File Size (bytes)

x86-64 SSort x86-64 RSort G5 SSort G5 RSort
4 1 4 9 6 1 6 9 6 9 8 0 1 9 1 6

8 1 7 5 2 2 3 1 2 1 3 2 4 4 4 4 0

1 2 2 1 4 4 3 3 2 8 1 7 6 4 8 4 3 2

1 6 2 6 3 2 4 5 8 4 2 2 7 2 1 3 5 4 0

2 0 3 3 1 2 6 3 9 2 3 0 1 6 2 0 8 4 4

2 4 4 1 2 8 8 6 7 2 3 9 5 2 2 9 2 6 0

2 8 5 1 9 2 1 1 9 7 6 5 3 0 4 3 9 9 0 0

3 2 6 5 1 2 1 6 1 1 2 7 0 1 2 5 1 4 9 6

3 6 8 2 4 8 2 1 7 2 8 9 3 8 8 6 6 7 5 2

4 0 1 0 5 3 6 2 8 1 3 6 1 2 4 5 6 8 2 4 9 2

4 4 1 3 4 2 4 3 6 3 3 6 1 6 4 4 8 1 0 1 8 8 4

4 8 1 6 7 3 6 4 5 4 0 8 2 0 9 2 4 1 2 1 6 6 4

5 2 2 0 8 4 0 5 6 5 5 2 2 6 4 5 6 1 4 5 0 8 8

5 6 2 5 4 8 8 6 8 4 9 6 3 2 5 8 0 1 6 9 2 2 8

6 0 3 0 7 8 4 8 2 7 5 2 3 9 6 4 4 1 9 7 1 4 4

6 4 3 6 6 1 6 9 7 3 2 0 4 7 4 3 2 2 2 5 4 0 4

6 8 4 3 6 6 4 1 1 5 1 6 0 5 6 4 5 2 2 5 8 9 5 2

7 2 5 1 6 1 6 1 3 3 6 3 2 6 6 4 1 6 2 9 2 4 6 8

7 6 6 0 4 8 8 1 5 5 3 6 8 7 7 5 1 2 3 3 0 6 1 6

8 0 7 0 0 4 0 1 7 7 3 3 6 8 9 6 3 6 3 6 9 3 4 8

8 4 8 0 5 4 4 2 0 2 6 2 4 1 0 3 0 2 4 4 1 2 9 0 4

8 8 9 2 0 4 0 2 2 8 2 9 6 1 1 7 3 5 6 4 5 6 5 4 0

9 2 1 0 4 4 4 0 2 5 6 8 5 6 1 3 3 0 2 8 5 0 5 4 4 4

9 6 1 1 7 4 0 8 2 8 5 8 2 4 1 4 9 6 4 8 5 5 4 2 4 8

1 0 0 1 3 1 7 2 0 3 1 8 4 1 6 1 6 7 7 5 6 6 0 8 1 6 4

1 0 4 1 4 7 0 0 0 3 5 1 7 0 4 1 8 7 0 9 6 6 6 2 4 9 6

1 0 8 1 6 3 4 2 4 3 8 8 1 6 0 2 0 7 9 6 8 7 2 2 2 2 4

1 1 2 1 8 0 4 3 2 4 2 5 0 7 2 2 2 9 6 9 2 7 8 2 0 7 6

1 1 6 1 9 8 8 0 8 4 6 5 6 2 4 2 5 2 8 8 8 8 4 7 1 0 4

1 2 0 2 1 8 2 0 8 5 0 6 8 1 6 2 7 7 1 2 4 9 1 2 2 1 2

1 2 4 2 3 8 6 4 0 5 5 1 6 6 4 3 0 2 7 8 0 9 8 2 5 5 6

1 2 8 2 5 9 8 0 0 5 9 6 0 2 4 3 2 9 6 4 0 1 0 5 3 0 0 8

2 1 2 1 0 2 1 8 8 8 2 0 9 8 6 2 4 1 2 7 0 3 2 0 3 3 6 6 3 4 0

2 1 6 1 0 7 3 3 8 4 2 1 9 5 4 9 6 1 3 3 4 2 2 0 3 5 1 8 6 4 4

2 2 0 1 1 2 7 3 2 0 2 2 9 7 7 2 0 1 3 9 9 9 2 4 3 6 7 8 5 6 8

2 2 4 1 1 8 2 5 2 8 2 3 9 8 4 9 6 1 4 6 6 7 3 6 3 8 3 8 4 1 6

2 2 8 1 2 3 9 8 1 6 2 5 0 6 0 9 6 1 5 3 6 3 6 4 4 0 0 5 9 2 8

2 3 2 1 2 9 8 6 1 6 2 6 1 2 5 0 4 1 6 0 7 9 1 2 4 1 7 3 4 8 8

2 3 6 1 3 5 9 1 0 4 2 7 2 4 8 6 4 1 6 8 1 7 1 2 4 3 4 8 5 7 2

2 4 0 1 4 2 0 7 5 2 2 8 3 5 8 2 4 1 7 5 7 4 6 8 4 5 2 3 3 4 0

2 4 4 1 4 8 4 6 3 2 2 9 5 2 3 1 2 1 8 3 5 8 0 0 4 7 0 5 7 5 6

2 4 8 1 5 4 9 6 6 4 3 0 6 7 3 9 2 1 9 1 6 3 5 6 4 8 8 8 3 8 0

2 5 2 1 6 1 6 9 1 2 3 1 8 8 4 6 4 1 9 9 9 0 8 4 5 0 7 7 8 7 2

2 5 6 1 6 8 4 9 2 0 3 3 0 8 2 8 0 2 0 8 3 2 8 8 5 2 6 7 6 7 2

Table D .l: Size of the compiled object files containing all functions up to and including a given
maximum number of elements.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

