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ABSTRACT

Two chemotactic models are studied in this thesis, one w ith  mixed Neu

mann and D irichlet boundary conditions, refered to as the Anderson-Chaplain 

model, and one w ith  D irichlet boundary conditions, refered to as the Chaplain- 

Stuart model. For the Anderson-Chaplain model, the time-dependent problem 

is studied first, w ith or w ithout lim ita tion  on its cross-diffusion. In the case of 

restricted cross-diffusion, proved are not only the global existence and unique

ness of solutions, but also a sufficient condition on the parameters, under which 

the system transits into a steady state; these are followed by a semi-discrete 

finite element analysis o f the system, in which convergence is established and 

the error estimate is obtained. In the case of unrestricted cross-diffusion, the 

global existence of solution is proved in one spatial dimension. I t  is based on 

a gradient a priori estimate, a generalized Nirenberg-Gagliardo type inequal

ity, and Fourier’s method of solving a parabolic equation. The steady-state 

Anderson-Chaplain model is also considered. The system is shown to have a 

unique solution under appropriate conditions. The technique used in the proof 

is a combination of the concept o f upper/lower solutions w ith  a fixed point ar

gument, in which we ‘freeze’ a non-local term so tha t the obtained system 

has quasi-monotone right-hand sides. This technique can also be applied to 

other steady-state chemotactic models, such as the Keller-Segel model. For the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chaplain-Stuart model, its steady state is approximated by a fin ite difference 

scheme: first, existence and uniqueness of the numerical solutions are proved 

on the basis of discrete maximum principles; then, the numerical solutions are 

classified into two categories: type I  and type I I ,  and a sufficient condition on 

the system parameters is obtained to ensure a solution to be of type / ;  Finally, 

error estimates and numerical simulations are given.
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BASIC NOTATION

Rm m-dimensional Euclidean space

x =  ( x i , Xm) a variable point in R m 

D  —^ 0  dxj

D a D i 1 ..~D"m where a  =  (a 1? a m), |a| =  a i +  ... +  a r

Q, a bounded domain in Rm

d fl topological boundary of

0  closure o f Q

|f2| Lebesgue measure of C R m

1/1 ( £ £ i  f i V 2 fo r  /  =  ( / i , ..., f m)

u '( t) . f

^ h,t

V u  ( g - , ..., ^ ) r , gradient of u

Aw £ ™ i Laplacian of w

f Q u(x) dx integration w ith  respect to Lebesgue measure

u | ^ | - 1  fn  u {x) dx

LP(Q) pth-power Lebesgue integrable functions defined on Q

||u||p L p norm of u on Q

IMI ||w||p when p =  2

\u \ i ,p  ( / f i £ | Q| = / | £ ,a M l?’ c te ) P

I M k P ( fn^\«\<i\Dau\Pdx) P
VLp(fl) the Sobolev space of functions having up to I order

weak derivatives in  Z/’(Q), endowed w ith  ||.||;;p norm 

H l (f l )  W lp(Q)  when p =  2

V + the set of all nonnegative elements in a topological vector space V

V* the space of linear bounded functionals on V, its dual space

< f , u  >  the duality between u € V  and /  € V*
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(“ ,»)

Qt

L "( (0 ,T ) ;X )

LH Q t )

W ^ IQ t )

W " ( Q t )

V ^ ( Q t )

C k[0 ,T ]

C k[0,T}1

vf>
Ph

A - 1

aT (or AT)

f n u (x )v (x ) dx 

0, x [0, T]

the space of L 9 functions on (0, T) w ith  values in  the Banach space X  

L 2({0, T ); L 2(fl))

the H ilbert space w ith  scalar product

(u , v)w i ,o(Qt)  =  SQt (uv +  V u  ■ V v) dxds

the H ilbert space w ith  scalar product

(u, v ) w u i {Qt ) =  fq T(uv +  V u  • Vu +  UtVt) dxds

the space of functions in W21,0 (<3 t )  tha t are continuous in t  in the

norm of L 2(Q), and have finite norm

I M U s( n )  +  I | V « | | l 2( q t )

the space of functions having up to Ar-th order continuous derivatives 

on the interval [0, T]
l times, *------------

C k[0,T\ x ••• x C k[0 ,T ]

the piecewise linear finite element space in Hr l(f2) 

projection from i f 1 (ft) to such that 

<  Phu — u, vh > — 0 Vu/j € V jp

I by I m atrix  w ith  entry O jj in the z-th row and j- th  column

inverse m atrix o f A

transpose of a vector a (or m atrix A)

max{u, 0 }

m ax{—u, 0 }
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Chapter 1

Introduction

1.1 A Survey of the Basic Chemotactic 

M odels

A ll liv ing organisms sense and respond to their surrounding environment. I f  

the external stimulus is due to chemicals, the mechanism for response is called 

chemotaxis. Typical consequences of chemotaxis are cell aggregation and pat

tern formation. Several mathematical models were proposed to describe such 

phenomena w ith the one (KS) introduced by Keller and Segel (1970, [41]) hav

ing been attracting the most interest so far. Let u(x, t) and v (x ,t)  be the cell 

density and the concentration of the chemical substance at the position x  £ Q 

and the time t £ (0 , T ), respectively, one version of the KS system is given by

du

(1.1)

dt =  V  • (V u -  u V x(v ))  

du
Tai = Av
9 u _ d v _  
d P ^ d P  =

j v  +  au

in x (0 ,T ), 

in Q, x (0 ,T ), 

on d£l x (0, T),

i(x, 0 ) =  u0(x), v(x, 0 ) =  v0(x) in ft,

where r ,  7 , and a  are positive constants; x (v)> called the s e n s it iv ity  fu n c 

tio n , is a smooth function of v; Q is a bounded domain in R m (m =  1,2,3) 

w ith  smooth boundary dQ; v denotes the un it outer-normal vector o f dO;

1
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and u0 and v0 are smooth, non-negative, and non-trivia l in itia l values in f l  

The first equation describes the conservation of mass. F lux of u is given by 

V u  — uV x(u ), so th at f h e effect of diffusion V  • V m and that of chemotaxis 

—V  • (uV x(u)) are competing for u to vary. The second equation is linear, 

and v is produced proportionally to u (the term cm), diffuses (term A n), and 

is destroyed by a certain rate (term —yv). Note that homogeneous Neumann 

boundary conditions are imposed on the KS.

A slightly different model (CS) was formulated by Chaplain and Stuart 

(1993, [13]) to describe the angiogenesis process, a process through which new 

blood vessels are produced. Here the solid tumor secretes a diffusible substance 

known as tumor angiogenesis factor (TAF) which causes the nearby endothelial 

cells (ECs)—cells that form the lin ing of normal body tissue—to migrate and 

proliferate under the angiogenesis stimulus. The 1-D CS is given by

(1.2)

du , avu . . . . _
—  ~ u xx +  \u  = ------  —  in (0,1) x (0 ,T),
at 7  +  u
Qv
—  -  D v xx +  p v  +  k (v u x)x -  6 (1  -  v )vG (u )  in (0 ,1 ) x (0, T), 

u (x , 0 )  =  uo(x) >  0 , v(x, 0 )  =  v 0 (a ;) > 0  in (0 , 1 ),

m (0 ,  t)  =  1, m ( 1, t )  =  0 ; v ( 0 ,  t ) =  0 , u ( l ,  t)  =  1 i n  (0 ,  T ) ,

where u =  u (x , t ) and v =  v (x ,t)  are the TAF concentration and EC den

sity, respectively; A, a, 7 , D , /?, k , and b are positive constants; G(w) =  

max(« — c*, 0), w ith  c* € (0,1) being the threshold concentration level of TAF 

below which proliferation does not occur. As w ith  the KS model, we assume 

here smooth and compatible in itia l and boundary conditions. The first equa

tion  in (1.2) essentially says that the change of TAF concentration is due to 

diffusion (—uxx), uptake of TAF by the ECs and decay o f chemical

(Aw). The second equation in (1.2) tells us that the following factors contribute 

to  the change in E C  density: diffusion ( —D v xx),  natu ra l decay (f3v), chemo

tactic motion ( k ( v u x ) x ) ,  and reproduction (6 (1  — v)vG(u)). We see here that 

D irichlet boundary conditions are used in the CS model. The steady-state CS 

model w ill be the research subject of Chapter 6 .
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Another model (AC) was introduced by Anderson and Chaplain (2000, [6 ]) 

to explain how secondary tumors can remain undetected in  the presence o f the 

primary tumor yet suddenly appear upon surgical removal of the primary tu 

mor. I t  turns out tha t the cells of the primary tumor secrete an anti-angiogenic 

factor called angiostatin that suppresses EC migration and proliferation in a 

dose-dependent manner. Let n (x ,t), c(x ,t), and a (x ,t) be the EC tip  density, 

TAF concentration, and the concentration of angiostatin, respectively. Then, 

the system is defined as

nt — D iV  • (V n  — n f j  = 0  in £2 x (0, T ), 

ct — A c  +  71 c +  Pinc =  0 in £2 x  (0, T), 

at — D 2A a  +  j 2a +  P2̂ a  =  0 in O x (0, T ),

(1 .3 ) c(x > 0 ) =  c0 (x), c(x, 0 ) =  c0(x), a(x, 0 ) =  a0(x), (>  0 ) in ft,

^V n  — n f j  ■ V =  0 on 80  x  (0, T),

Qc
c = l o n r 1 x (0 ,T ) ,  —  =  0 o n r 2 x (0 ,T ) ,

^ - O o n r j  x (0 , T ), a =  1 on T2 x (0,T),

where / =  V  ln ( l - f k c ) +  ^ - a 2 j , or more generally,

(1.4) f  =  x  i (Vc, c, x )Vc +  %2(Va, a, x)V a

with x i  and X2 are smooth functions of their arguments; Q is a bounded 

smooth domain in Rm (m  =  1,2,3) w ith  boundary dQ. -  Tx U F2; x , a, L>i, 

D 2, 7 i ,  7 2, Pi, and P2 are positive constants; v is the unit outer-normal vector 

of 80. Once again, we assume smooth and compatible in itia l and boundary 

conditions for the AC model, by which we mean

^ V n 0 — n 0f 0^ • v  =  0

( 1 .5 )

on 80,

c0 =

8 a 0

8 v

o
1 on r1} ^ - 0 o n r 2, 

8v

=  0 on T i , a 0 =  1 on T 2,
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where f 0 is the f  in (1.3) evaluated at c0 and do. The first equation in (1.3) 

says the ECs, besides diffusion (V  • V n), react to both TAF and angiostatin in 

a chemotactic way ■ ( n V ( ^ T n ( l  +  k c )  +  2 5 7 q2))-  The second and th ird  

equations in (1.3) have the same structures. They te ll us that the change in 

both chemicals (TAF and angiostatin) is due to diffusion, natural decay, and 

uptake of them by the ECs. I t  needs mentioning that mixed D irichlet and 

Neumann boundary conditions are imposed on the AC model. I f  /  in (1.4) is 

bounded by a constant, we call the system desensitized a t h ig h  chem ica l 

g rad ien ts , or simply desensitized; I f  /  is the gradient of a scalar function, 

we refer to that function as sensitivity function, as we did w ith  the KS model. 

The AC model, w ith  or w ithout desensitization, w ill be studied in Chapter 3, 

and Chapters 4 and 5, respectively.

A  sum m ary: Our choices of the chemotactic models have been typical and 

complete, w ith  boundary conditions ranging from D irich let’s, to Neumann’s, 

to mixed type. We point out that, for each model, the boundary conditions 

were chosen to simulate the situations encountered in practice.

1.2 Previous Work and Techniques Utilized

O n th e  K S  m ode l. The first non-linear analysis of the KS was carried out 

by Nanjundiah ([65]) who suggested that aggregaton of cells may eventually 

lead to the formation of 5-functions in cell density, a phenomenon refered to as 

chem otac tic  collapse. His arguments, however, did not include the possible 

dependence o f such collapse on the dimension of the space in which aggrega

tion occurs. In fact, Childress and Percus ([15], [14]) showed tha t singular 

behavior is not possible in one dimension; while in higher dimensions, they 

presented results supporting Nanjundiah’s contention that collapse can occur; 

As for the two dimensional case, they argued that chemotactic collapse re

quires a threshold number of cells in the system: precisely, there are numbers 

c* and c* such tha t the solution exists globally in time when HuolUqn) <  c*> 

and forms a 5-function singularity in finite time when ||ito[|x,1(fi) >  c*. While

4
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the arguments given by these authors were heuristic, making use of numerical 

computations for the steady-state problem, later studies supported their valid

ity  rigorously. Jager and Luckhaus ( [3 9 ] )  proved the existence of such numbers 

for radially symmetric solutions for a simplified system ( r  =  0 ) .  For global 

existence, they obtained an a priori estimate for u by considering the test func

tion <j>— (u — k)™~1 w ith  k >  0  and m  >  1. They proved chemotactic collapse 

by constructing a radially symmetric lower solution for the first equation of KS. 

Then, Nagai ( [6 4 ] )  refined the above work by pointing out that 8 n /(ax) is the 

exact threshold number for radially symmetric solutions. He first established 

an L°° estimate for Vw from the second equation o f the KS and then applied 

Moser’s technique to the first equation to get an L°° bound for u. By this way 

he showed global existence of solutions in the case HuolUqn) <  87r/(ax)- For 

blow-up of solutions, he first established a differential inequality for the mo

mentum M 2(t) — fQ u(x, t) | r r |2 dx. Then he showed there exists T0 G (0 ,  oo) 

such that M 2(t) —> 0  as t  —> T0. This leads to fin ite time blow-up. Global exis

tence or blow-up results can also be found in the references [6 1 ],  [6 0 ],  [1 1 ] ,  and 

[2 1 ], all o f which deal w ith  parabolic-elliptic versions of the KS w ith  different 

sensitivity functions. In the case of no diffusion in the second equation, Rascle 

and Z iti ( [7 3 ] )  showed some examples of collapse by constructing self-similar 

solutions. Several articles were devoted to the steady-state KS. In these stud

ies, the steady-state KS system was first reduced to a parameter-dependent 

single equation. Schaaf ( [ 7 6 ] )  analyzed the solutions via bifurcation of stable 

non-homogeneous aggregation patterns. Different sensitivity functions were 

considered there. L in  et al. ( [5 1 ] )  gave conditions for the system w ith  log 

sensitivity function to have non-constant and constant solutions, respectively. 

In the case of linear sensitivity function, Wang et al. ([8 6 ]) established the ex

istence of solution by combining Struwe’s technique w ith the blow-up analysis 

for a problem w ith  Neumann boundary condition. Coming to the fu ll system 

KS ( r  >  0), Herrero and Velazquez ( [ 3 5 ] )  constructed a radially symmetric so

lution w ith  u collapsing at the origin in finite time and having a concentrated 

mass equal to 87r/(ax)- On the other hand, Nagai et al. ([62]) proved radi-

5
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ally symmetric solutions exist globally in time provided HwolUqn) <  87r/(ay). 

As for the general case, they gave Huo IIl 1̂ )  <  47r/(ckx) as a criterion for the 

existence of global solutions. The basic techniques they used were Lyapunov 

functional, Trudinger-Moser inequality, and Moser’s technique to obtain an L°° 

bound. Also by using Lyapunov functionals, Biler ([12]) and Gajewski et al. 

([29]) obtained independently the same criterion above for existence of global 

solutions for the general case. Note that there is a discrepancy between radial 

(87t/(o!x)) and non-radial thresholds (An/(ax))- This was clarified by Senba et 

al. ([58], [78], [77], [32]). They showed that i f  47r/(ax) < HwolUqn) <  87r /(a x )  

and the solution blows up in fin ite time, then the concentration toward dQ, 

occurs to  u. Finally, much insight can be gained into the blow-up mechanism 

of the KS model through the work of Nagai et al. ([59]). They proved the fol

lowing: I f  the solution (u, v) blows up in finite time, then u forms a 5-function 

singularity at each isolated blow-up point, and any blow-up point is isolated 

provided a certain Lyapunov functional is bounded; only the origin can be a 

blow-up point of radially symmetric solutions.

C om m en t: The purpose of the above survey is to examine the mathe

matical techniques used for the KS model as a means of gaining some insight 

into what might be done for other chemotactic models. In particular a global 

existence result is established for the AC model in 1-D, as was the case for 

the 1-D KS model. But we used a priori estimates instead of a Lyapunov 

functional, which does not apply to our situation.

O n th e  CS m ode l. Besides formulating the CS model, the authors of 

[13] also did some numerical simulations of both the time-dependent and the 

steady-state systems. But no rigorous analysis, theoretical or numerical, was 

presented there. Allegretto et al. ([4]) studied this system from a purely 

mathematical point of view. They first tackled the question of existence and 

uniqueness of solution for the steady-state system. A  compact argument was 

used to show existence, while the proof of uniqueness was based on some 

integral inequalities. Since the u component of a solution is always decreasing 

while the v component, as they showed, has at most one pair of extrema,

6
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they classified the steady-state solutions into two types, according to whether 

v is monotone or not. Sufficient conditions were found to ensure a solution 

to  be of a given type. As for the time-dependent problem, they considered 

both the smooth and non-smooth data. For the former, Schauder’s fixed point 

theorem was used to show existence of solution; while for the latter, a lim iting  

process and Lions’ theorem were employed to achieve the same goal. I t  needs 

mentioning that the maximum principles are the basis for the existence proof 

in both the time-dependent case and the steady-state one.

O n th e  A C  m odel. Originally, the AC was formulated as a 1-D model 

in [6 ], where an analysis of the time-dependent solution was made by using 

the steady-state solution as an approximation. Since an explicit expression of 

n  in terms of c and a can be obtained by integrating the first equation of the 

AC, solution profiles become available w ith  simple numerical simulations.

A  S um m ary : As in the case of the KS model, we expect a chemotactic 

system to be simplified by restricting the dimension of its domain Q,, by con

sidering only radially symmetric solutions, or by studying extreme cases where 

diffusion is very large or very small. Another efficient way to reduce the d iffi

culty inherent w ith  chemotactic non-linearity is to allow the cross-d iffus ion  

u'Vxi'v) to be desensitized at high cell density or high gradient of chemicals. 

The former is what Hillen et al. did in [36] where the system admits a posi

tively invariant region; while the latter is exactly what we are going to do for 

the AC model in the first chapter of this thesis. Two questions need to be 

answered at this junction, (a) Is the model w ith desensitized cross-diffusion a 

realistic one? Even a casual th inking of what happens in real biological sys

tems w ill lead us to the conclusion that the mechanisms or assumptions which 

were used to set up the chemotactic model are no longer valid long before its 

solution blows up. Hence there is a good reason for desensitization, (b) Does 

the soluton of such a desensitized system s till exhibit profiles that we are inter

ested in? This was answered in the affirmative for the KS model in [36] where 

numerical simulations show interesting phenomena o f pattern formation and 

formation of stable aggregates. We believe the same is true of the AC model.

7
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1.3 Topics of This Thesis

W ith  work on the KS model having been done to a quite satisfactory degree, 

we w ill mainly study the AC model, w ith  or wothout desensitization, and the 

steady-state CS model in this thesis.

C h a p te r 2 : We collect all the prerequisites in Chapter 2 . We first lis t all 

the inequalities we need: the Basic, Young’s, Holder’s, M inkowki’s, Nirenberg- 

Gagliardo’s, and Gronwall-Bellman type inequalities; we then state different 

versions of the maximum principle; these are followed by the Divergence The

orem and Green’s three identities. Next is Moser’s technique to obtain an L°° 

bound for a function satisfying a certain differential inequality. Finally, the 

positiv ity proof of the solution to the AC model is presented.

C ha p te r 3: Chapter 3 deals w ith the desensitized AC model. Note that 

no rigorous analysis whatsoever has been made of this system. We allow 

the chemotactic response from the cells to be desensitized at high chemical 

gradient. Since i t  is not clear at the moment whether the original system 

admits a blow-up mechanism or not, i t  is essential to retain this restriction to 

achieve global existence of solution. This can be done by successively using the 

contraction mapping argument for local existence, which is made possible by 

the uniform a priori L°° estimate obtained through Moser’s technique. Note 

tha t this result is comparable to the global existence given in  [36], but we 

have used a quite different approach, and we have also considered the long 

time behavior of the system solution. While we believe the system w ill transit 

into a steady state w ithout any condition on the system parameters, we do put 

such restrictions to atta in this. The proof essentially depends on an energy-like 

inequality -^E fot, Ct, at) <  —5oE(nt ,ct ,a t). Once the theoretical properties of 

the system are clear, we turn our attention to its numerical aspect. Since 

only a semi-discrete scheme is considered, i t  turns out that we can resort 

to the standard theory of ordinary differential equations for the existence of 

numerical solutions. But this theory only ensures us a time-dependent a priori 

L°° bound for the solution, and we point out that Moser’s technique is no longer

8
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applicable to the numerical case because o f the restriction on test functions. 

We manage to obtain a uniform a priori L 2 bound basing on an inequality 

w ith  an arb itrary parameter e >  0 which relates the L 2 norm of a non-negative 

function u, its L 1 norm, and the L 2 norm of V u  together:

l ln l l l 2( n )  ^  C e l M l l q n )  +  e l l^ 7n l l i ,2( n ) -

W hile this inequality is obtainable from the Nirenberg-Gagliardo’s inequality, 

as is shown in Chapter 4, we gave a direct proof using the compact imbedding 

of H into L 2(£l). As usual, the proof of uniqueness of solution needs a 

prio ri bounds for the numerical solutions. I t  is an interesting fact tha t the 

convergence of the numercal solution to the theoretical one is proved under 

essentially the same conditions as that which ensure the system to evolve 

into a steady state. In obtaining the error analysis, we use the idea of e lliptic 

projection ([83]). We emphasize that an L 2 error bound of only 0 (h )  is proved 

when compared to that o f 0 (h 2) for a linear system, even the same linear finite 

elements are used in both cases. We believe this is due to the chemotactic 

nature of the system and the projections we used. I t  is not clear at the 

moment how this can be improved, i f  i t  can be at all.

C h a p te r 4: The principal goal of Chapter 4 is to tackle the problem of 

global existence for the AC model w ith  free cross-diffusion, and success is 

achieved in the 1-D case. W hile the KS system admits Lyapunov functionals, 

which greatly facilitates the proof of global existence, this is unlikely to happen 

in the AC model due to the inhomogeneous nature of its boundary conditions 

([37]). Our main tools have been the Fourier’s method to express the solution 

of a time-dependent problem in terms of the eigenfunctions of the correspond

ing elliptic problem, the Nirenberg-Gagliardo’s inequality, and the eigenvalue 

estimates for some elliptic problems. For completeness, we also include local in 

time existence of solution in this chapter, in which case Schauder’s fixed point 

theorem is utilized. The ideas used in the proof of this part were suggested by 

[29].

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C h a p te r 5: Chapter 5 treats the existence and the uniqueness of solution 

to the steady-state AC model. The divergence form of the first equation allows 

us to transform the system through substitution and integration into a system 

w ith  two unknowns, which to our great advantage has quasi-monotone right- 

hand sides after a non-local term in i t  is ’’ frozen” . The method of monotone 

sequence (Pao, [69]) can then be applied to give the existence of solution for 

this variation of the simplified system. By defining an operator T  and showing 

i t  has a fixed point, we prove that the simplified system, and thus equivalently 

the original system, has a solution. The only th ing that needs special care 

during this process is the mixed boundary conditions. We give a direct proof 

of the maximum principle for such mixed boundary conditions. As for the 

regularity of solution, we cite reference (Miranda, [56]) for a detailed proof. 

For the uniqueness of solution, we point out that several conditions were given 

in [69] for sim ilar systems, but none of these is satisfied by the steady-state AC 

model. We are able to show a uniqueness result through a different approach, 

though. The proof is elementary, and the condition is m ild when compared 

to those in the literature for sim ilar systems. What is more, we find that the 

proof equally applies to the other cases considered in [69].

C h a p te r 6 : Chapter 6  begins w ith  a brief review of the mathematical 

properties of the steady-state CS model (A llegratto et al. [4]). A sufficient 

condition in [4] is then improved which ensures a solution to be of type I .  The 

proof is based on a non-linear version of the maximum principle. While both 

theoretical and numerical aspects o f the CS model are treated in this chapter, 

its emphasis is on the latter. The discrete maximum principle is the right 

place where to start our finite difference numerical analysis. We then use i t  to 

set up the positiv ity of solution for a particular type of second order difference 

equation, to which both equations o f our discretized system belong. The key 

part of the numerical analysis is the a priori estimates established w ith the aid 

of the discrete maximum principle. We first consider difference equations w ith  

homogeneous boundary conditions, w ith  or w ithout a first order term. In the 

latter case, a sharp estimate on the magnitude of solutions, among the uniform
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estimate class, is obtained. These estimates are then generalized to the cases 

of inhomogeneous boundary conditions. We point out that these estimates 

only f it our situations. For example, we require the coefficients involved keep 

sign, which is not true for general difference equations. W ith  all these prepa

rations at hand, we formulate the difference scheme and prove the existence 

of solution using Schauder’s fixed point theorem. The main part of the proof 

is the verification of the continuity of an operator defined there, which is done 

through the a priori estimates set up so far. The uniqueness proof we give 

in this part is essentially a parallel of tha t in the continuous case. We then 

establish convergence and error estimates. While restrictions are put on the 

parameters to obtain error bounds, convergence does not assume such condi

tions. In fact, convergence is a direct consequence of the unform boundedness 

and equi-continuity of the system solutions. The numerical simulations that 

follow verify the theory developed in the previous sections.

S um m ary: We have considered chemotactic models w ith  three typical 

boundary conditions: Neumann’s, D irich let’s, and mixed type, w ith  the first 

case being thoroughly studied by other authors. We have seen that quite differ

ent techniques have been used in different cases. The questions we addressed 

range from the existence and uniqueness of both the theoretical and numerical 

solutions, either in the time-dependent case or in the steady-state case, to the 

long time behavior of a time-dependent model, and to the convergence and 

convergence rate of a fin ite difference scheme for a steady-state model. These 

are the basic questions asked of a system of partial differential equations. In 

each case a relatively satisfactory answer is obtained.

11
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Chapter 2

Prelim inaries

In this Chapter we gather all the preparatory results that w ill be used in 

the thesis. Unless otherwise specified, U w ill be a bounded domain in R m 

( r a  =  1 , 2 , 3 ) .

2.1 Inequalities and Imbedding Theorems

T heo rem  2.1. (The Basic)  For any real numbers a, b, and any e >  0, we have

(2 .1 ) ab <  -— f- eb2.
4e

Proof. Expanding (^1 7 2  —e^2b)2 >  0 , we obtain the desired result. □

T heo rem  2.2. ([54]) (Young) For a, b >  0 and 1 <  p <  00, q — p /(p  — 1), 

we have

nP M
(2 .2 ) ab <  — +

p q

T h eo rem  2.3. ([54]) (Holder) Le tp ,q  >  1 with l / p + l / q  =  1. I f u  G 1/(0,), 

and v e L q{Tl), then

(2.3) [
Jq.

Remark 2.1. Holder’s inequality can be extended to the case of k functions, 

u i, ...,uk lying respectively in spaces L Pl(Q), ..., L Pk{Q) where 1/Pi =  1-

12
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T heo rem  2.4. ([54]) (Minkowski) Let p  > 1 .  I f u , v £  1/(^1), then u +  v € 

IF ^ l ) ,  and

T heo rem  2.5. ([24], Page 66) (Poincare) There is a constant A >  0 such 

that fo r  all h € H 1^ )  with h =  0, i t  holds that ||h|| <  A||V/i||.

T heo rem  2.6. ([27], Page 30) (Imbedding) Let Q satisfy the cone condition. 

I f  a function u belongs to W f with j  >  I +  m /p  fo r some nonnegative number 

I, then u E C l (Cl).

Remark 2.2. I f  dVt is of class C 1, then f l  satisfies the cone condition. A  convex 

domain also has the cone property.

T h eo rem  2.7. ([27], Page 27) (Nirenberg-Gagliardo) Let d ll be in  C l , and u 

be any function in  Wg(Ql) f ) L r (Ql), 1 <  q, r  <  oo. For any integer k, 0 <  k <  I, 

and fo r any number 9 in  the interval k / l  < 6  <  1 , set

I f  I — k — m /q  is a nonnegative integer, then the above inequality holds fo r  

9 =  k / l .  The constant Co depends only on H, q, r , I, k, and 9.

C o ro lla ry  2 .1 . Let dQ. be in  C 1. For any e >  0 there exists a constant Ct >  0 

such that fo r  a ll u 6  H 1^ )  we have ||u||o)2 <  c\u\l 2 +  Cell^llo.i-

Proof. See the proof of Lemma 4.4; or see Lemma 3.2 for an alternative (direct) 

proof. □

T heo rem  2.8. ([68]) (Gronwall) Let u be a continuous function defined on 

the interval I  =  [o, a  +  h] and

(2.4)

I f  I — k — m fq  is not a nonnegative integer, then

(2.5)

(2.6)
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where a and b are constants. Then

(2.7) 0 <  u(t) <  ahebh, t  e I .

Proof. Put u — z(t) exp(b(t — a )), and let the maximum of z on I  occur at 

t  — t i.  For this value o f t, (2.6) gives

nil
0  <  zmax exp(6 ( t i -  a)) <  / [6z(s) exp(6 (s -  a)) +  a] ds,

J  a

whence by the Mean Value Theorem

r h  r t i

o <  Zmax exp(b(ti -  a )) <  zmax /  6 exp(6 (s -  a)) d s +  ads
J  a J  a

=  Zmax{exp{b{ti -  a) -  1 ) +  a(£i -  a),

or finally

b — Zmax ^  ^ {t\ Qt) ^  ah, 

from which (2.7) follows at once. □

T heo rem  2.9. ([68]) (Bellman) Let u and f  be continuous and nonnegative 

functions defined on I  =  [a, /?], and let c be a nonnegative constant. Then the 

inequality

(2.8) u ( t ) < c +  (  f(s )u (s )d s , t  G I
J  a

implies that

(2.9) u(t) <  cexp ( /  f(s )  ds^  , t  e I .

Proof. Define a function z(t) by the right-hand side of (2.9); then we observe 

that z(a) =  c, u ( t) <  z(t) and

(2.10) z ' ( t )  =  f ( t ) u ( t )  <  f ( t ) z ( t ), t e l .

M ultip ly  (2.10) by exp(— f *  f ( s ) ds) and apply the identity

z '(t) exp(— f l  f (s )  ds) -  z { t ) f ( t )  exp(— f l  f(s )  ds)

14
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to obtain

(2.11) z ( t ) e x p ( - J  f(s )d s )  <  0.

Integrating (2.11) from a  to t  gives

(2 .12)

Using z(a ) =  c and u (t) <  z (t) in (2.12) we get the desired inequality in

But more frequently used are the various generalizations of the above in 

equalities. Here we state two of them w ithout proof.

T heo rem  2.10. ([68]) Let u, g and h be nonnegative continuous functions 

defined on I  =  [a, fi\, n (t) be a continuous, positive and nondecreasing function  

defined on I  and

T h e o rem  2 .1 1 . ([68]) Let u, p, q, f  and g be nonnegative continuous func

tions defined on I  =  [a, fi\, and

Remark 2.3. As pointed out by Beesack ([10]), i f  the integrals in Theorem 

2.8-2.11 are Lebesgue integrals, the hypotheses can be relaxed to: the func

tions involved are measurable and certain products o f them are integrable. 

The equality and inequality conditions are then understood to hold almost 

everywhere.

(2.9). □

(2.13) u (t) <  n(t) +  g(t) (  h(s)u(s) ds, t  G / ;
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2.2 The Maximum Principles

We first state various versions of the m a x im u m  p rin c ip le .

T heo rem  2.12. ([72]) Let

A u >  0 in  Cl.

I f  u attains its maximum M  at any interior point of Cl, then u =  M  in Cl.

T heo rem  2.13. ([72]) Let u E C 2(Cl) satisfy the differential inequality 

(L  +  h)[u] =  +  S T h ^ - . + h u >  0

with h < 0 ,  L  uniformly elliptic in Cl, and the coefficients of L  and h bounded. 

I f u  attains a nonnegative maximum M  at an interior point of Cl, then u =  M .

T heo rem  2.14. ([72]) Let u E C2(Cl) satisfy the differential inequality

(L  +  ai,jdxidxj +  S i  +  hv, >  0

with h <  0, and L  uniformly elliptic in fh  Suppose that u <  M  in Cl, that 

u =  M  at a boundary point P, and that M  >  0. Assume that P  lies on the 

boundary of a ball in fh  i f  u is continuous in ClU P, any outward directional 

derivative of u at P  is positive unless u =  M  in Cl.

2.3 Green’s Identities

Now we give the divergence theorem and Green’s three identities ([72]). Recall 

that T is the boundary of Cl. Let w be a smooth vector field defined in Cl. The 

d ivergence th e o rem  states that

(2.17) [  V  -w d C l=  [  w -v d P .
J n J r

We choose w =  vV u  in (2.17) to obtain G reen ’s f irs t  id e n t ity

(2.18) [  v A  u d C l +  f V v  • Vu d C l  =  I  v ^ d T .
Jn Jo. J r  vv

Interchanging u and v in (2.18), we get

f uAvdCl +  [  Vw • 'VvdCl =  f u ^ d T .
Jn Ja Jr  ou
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Subtracting this equation from (2.18), we obtain Green’s second identity

(2.19) J (vA u  — uA v) dQ =  J ( w ^  — u ^p ) d r.

Let P  and Q be two points in Cl w ith  coordinates Xi and t/i (i  — 1,2, ...,ra), 

tpq =  (X^l^i (x i ~  2/i) 2) 1^2 their distance. Let ^  be a harmonic function 

throughout f I . By applying Green’s second identity to the function W  =  

Anl pQ +  V’j we obtain G reen ’s th ir d  id e n t ity

r du dW r
(2 .2 0 ) u{Q) =  /  ( W ^  -  u ^ A )  d T -  W A u  dfl.

J r  dv du J  q

Now let us use Green’s th ird  identity to solve the following mixed boundary 

value problem:

(2.21)
V '  1 ■ ■ du

A  u =  h in f2, 

u \t! =  h i, | | | r 2 =  h2.

We first seek a function ifr such that

A  ip — 0 in £2,

V»|ri =  - 4TTTpQ , 
dll) I 1
w\r2  =  d v -

Then we define

G (P ;Q ) =  ^  +  i>
as the G reen ’s fu n c tio n  for the problem (2.21). Choosing this function as 

W  in Green’s th ird  identity, we get the solution formula for (2 .2 1 ):

(2.22) u(Q) =  -  f  G(P] Q)h(P) dQP -  [  hl{P)^^-)dVI J n J t i  uup
[  G(P-Q)h2(P)drj

JTi

'Ti

+
' r 2

I t  can be shown ([72]), by means of the maximum principle, that the Green’s 

function for the problem (2 .2 1 ) satisfies

(2.23) J  ®  <  0  m r i>
>  0  in o u r 2.
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Conversely, the above properties of the Green’s function allow us to read off 

properties of the solution u of (2.21) from formula (2.22). For example, i f  

h <  0 in f i,  hi >  0 on r 1; and h2 >  0 on T2, then (2.22) and (2.23) show that 

u >  0 in Q. Moreover, i f  h, h i, and h2 are not all identically zero, then u >  0 

in fb

2.4 M oser’s Technique

T heo rem  2.15. ([3]) Assume the following inequality is true o fn  =  n (x ,t)  >  

0  on Qt  =  x (0 , T )

(2'24) T T i i t L n M d x  -  - L 1 V n “ ? d x + ! i r  L " i+ 1  *

where K  is a constant, and X € [0, oo). Then there exists a constant N ,

independent o fT ,  such that sup ||n||x,°o(n) <  N  for.
t> o

Proof. Let E \( t )  =  f n nx+1 dx. Since (2.24) implies ^ E \ ( t ) <  k2x(£ +1^E \( t) ,

for any t  >  0, we have: (a) Ea(t) <  ^ (O ) , tha t is, sup ||n||Li(a) is finite;
t> o

and (b) E \( t )  <  E \ { 0) exp (̂ K <  oo for any A >  0, tha t is, nA+1 is

integrable.

Now Let Xi =  T  — 1 in (2.24) (i =  1,2,...), we w ill estimate f n n2' dx in 

terms of JQ n2' 1 dx and thus recursively obtain an estimate depending on the 

uniform L 1 (O) bound o f n above. By controlling carefully the constants then 

we w ill pass to  the lim it and obtain the desired L°° bound.

Let us fix  i  and define v =  n2%~1. Then (2.24) for A =  A, takes the form

(2.25) f  v2 dx <  —Pi f  \Vv\2dx +  ai f  v2 dx,
J n J n Jsi

where — 2 — and a* =  K 22l~ 1(2t — 1). B y C orollary 2.1, for any c >  0

we have

(2.26) IIH I|2 < ^ l|V u ||l2 +  Ce||t;|||1.
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Now choose e =  e; =  max{̂ K2} y  so that

(2.27) (a* +  ei)ej <  Vi.

By defining c* =  Cei, we rewrite (2.26) as

(2.28) \ \ v \\2l2  <  Ci||Vu|||» +  Ci\\v\\li.

M ultip ly ing (2.28) by — (a* +  e*) and rearranging its terms, we obtain

(2.29) —(a, +  c<)||u||i2 +  +  €i)ci\\v\\2Li >  -(«» +  ei) eil|V t>||£2

Combining (2.27) and (2.29) w ith  (2.25) we have

(2.30) f  v2 dx < — (a,i +  €i)ei f  |V x |2 dx +  a* f  v2 dx
dt Jet Ja Ja

< —6j J v2 dx +  (aj 4 - eijCi x d x ^

<  —6j /  x2 dx 4- (ai +  ti)Ci I sup I  v dx ) .
dn \t>o 7n /

Substituting v — n2' 1 back into (2.30) we get

(2.31) [  n2% dx <  —€i f  n2' dx +  (a  ̂+  ej)cj (sup f  n2' 1 d x ) ,
at Jn Ja \  t>o Ja J

which gives

(2.32) /  n2' dx <  max s d* ( sup I  n2' 1 d x )  , I  n 2’ (x, 0) dx > ,
Ja [ V  t>o Ja J Ja J

where 6i =  Now by defining

a =  m ax{sup||n||Li (n ) ,m a x { l, | f i| }  x  ||n(x, 0 )||L~ (n)} 
t>o
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and assuming, without loss of generality, that Si >  1, from (2.32) we obtain

(2.33) sup /  n2' dx <  max < Si I sup n2' 1 dx J , a2
t>o Jn  [  \ t> o  Jn J

< Si max |  ^sup J n2' 1 dx'j , a2'

— Si max < sup /  n2' 1 dx, a 2' 1 >
I  «>o Jn J

<  Si max < Si- 1  I sup n2' 2 d x )  , a 2
( \ t> o  Jn J

<  Si max ^  ^sup J n2' 2 ds^J , a 2'

=  SiS2̂  max / sup f  n2' 2 d x ,a 2' 2 1  
I  <>o Jn J

<

< StS2_1S2\ 2...S2' 1 m a x /sup  f  n2° d x ,a 2° \
I  t>o Jn J

^  X \ 2  r2 2 r 2 * - 1 „ 2 *^  S%Si-\Si_2---Si a .

But

I n  9 /f\ X ^ i ) ^ i  /  ^ Ci ^i  2cj fn(2.34) Si =  =  (ai +  CijCi ■ <  r  ■ 2(n
ei ei ei ei

where

r  =  ^ +2^ ° t l - 

Combining (2.34) w ith  (2.33) and using a simple computation we get

(2.35) f  n2' dx <  sup f n2' dx <  r 2’ _12̂ m+4^ 2,+1_l_1 Q̂;2‘ .
Jn t>o Jn

Finally, by taking the 2l th  root on both sides of (2.35) and passing to the lim it

as i  —> oo we obtain

(2.36) n <  ||n||Loo < N  =  r  • 22<m+4> • a.

□
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Chapter 3 

Analysis of the AC M odel w ith  

D esensitization

Throughout this chapter, we study the AC model of a general dimension m  

( m — 1 , 2 ,3), but make the following d esens itiza tion  assum ption :

(3.1) | / |  =  |x i(V c , c, x)Vc  +  y 2 (Va, a, x)Va\ <  K ,

where A  is a constant, and we require /  to have bounded derivatives w ith  

respect to its arguments so that i t  satisfies a Lipschitz condition:

(3-2) \ f 2 ~ f i \  <  A (|V (c2 —Ci)| +  |c2 —Ci| +  |V (a2 —ai)| +  |a2 —« i| +  |^ 2  —a:i|))

—/ —*     —̂
where /* =  / (Vc*, Va,, Ci, a*, Xj) (i  =  1 ,2). A  simple example of /  tha t satisfies

(3.1) and (3.2) is given by

t  ^  V7 , V7/  —  ; — v c +  - — r— — r V o .
1 +  |Vc| 1 +  |Va|

—̂
Also, the /  in model (1.3):

f = v { i ? k H l + K C )  +  w / )

w ill satisfy (3.1) and (3.2) automatically i f  we can prove tha t |Vc| and |Va| 

are bounded, as is the case in Chapter 4. We set the constants D \  and D 2
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in  (1.3) to be 1 for convenience. We assume compatible in itia l and boundary 

conditions (1.5).

Though a vast amount o f work can be found on the KS model, no rigor

ous analysis has been made of the AC model. This chapter represents our 

first attempt to study the AC model. We start w ith  the formulation of the 

weak solutions. By obtaining a uniform a priori L°°(f l)  bound on the weak 

solutions, we prove both the local and the global existence o f solution. We 

have noticed that a global existence result was obtained in [36] under a similar 

assumption but through a quite different approach (semi-group theory of the 

heat equation). The long time behavior of a system is one of the interesting 

topics to work on. We obtain a sufficient condition on the parameters of the 

system for i t  to transit into a steady state, which indicates that the system is 

not likely to admit non-constant periodic solutions. Our semi-discrete finite 

element analysis of this system ends up w ith  error estimate of first order in 

space, which is not optimal, but the question of how to improve it  s till remains 

unanswered.

The outline for this chapter is as follows. In §3.1, we define the weak 

solutions, and then use contraction mapping theorem to show existence and 

uniqueness of solutions. We consider the long time behavior of the system in 

§3.2, and prove that under appropriate conditions, i t  transits into a steady 

state. In the remaining two sections (§3.3 and §3.4), we study a semi-discrete 

fin ite element approximation of the desensitized AC model and give the error 

estimates.

For convenience, we repeat the model equations here:
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nt — D iV  • ^V n  — n f j  = 0  in Q x (0 ,T),

Ct — A c  +  7 1 c +  Pinc =  0 in ft, x  (0, T ),

at — D 2A a  +  7 2a +  p2na =  0 in x (0, T ),

(3 .3 ) c(x > °) =  °o{x )i c(x > °) =  coW i a(®> °) =  ao(^), (>  0 ) in f i,
( v n  — nf* j • v =  0 on d£l x  (0, T),

<9c
c =  1 on T i x (0 ,T ), —  =  0  on r 2 x (0,T), 
d(L
—  — 0 on T i x (0 ,T ),a  =  1 on r2 x (0,T),

3.1 Existence and Uniqueness of the Exact So

lutions

3.1.1 The Weak Formulation of the System Solutions

We first give a formulation of the weak solutions to the system (Page 168, 

[46]). Let

W = C((0,T)-L2(n))nV2lfi(QT), 
V = Wl-'(QT),
V\ =  {v  6 V\v — 0 on T j x (0, T ) } ,

V2 =  {v  e V\v =  0 on r2 x (0, T )}  .

A  weak solution of the AC model (3.3) is a trip le (n, c, a) w ith  n, c, a in W, 
and c|r iX (0,r) =  1, and a |r2X(0)r) =  1, such that V (v ,v i ,v 2) € V x V] x  V2 
which vanish at t =  T,

(3.4) — f  < n , v t >  d s +  f  (V n  — fn ,  Vu) ds =  f  n0(x)v(x, 0) dx,
Jo Jo Ja

(3.5) - f  <  c, (v i)t > ds +  f  [(Vc, V u i) +  ( ( 7 1  +  pxri)c, Wi)]cfs
Jo Jo

— /  cq(x )v i (x , 0 ) dx,
Ja
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where /  =  X i(V c ,c ,x )V c  +  X2(V a ,a ,x ) Va.

Remark 3.1. I t  can be shown that the weak solution defined above satisfies:

Now we establish the positiveness of solutions to the AC model, a fact 

which w ill be frequently used later.

T heo rem  3.1. Let (n , c, a) be a solution to the AC model given by (1.3). Then

we have 0  <  n, 0  <  c <  1 , 0  <  a <  1 .

Proof. M ultip ly ing the first equation in (1.3) by n~ and integrating by parts, 

we obtain

(3.7) <  nt ,n~  > + D 1(V n  — fn ,  V n - ) =  0.

From n =  n+ — n~ we know nt — (n+)t — (n~)t , and since <  (n+)t ,n~ > =  0

we obtain

(3.8) <  nt ,n~  > = <  (n+) t ,n~ >  -  <  (n~)t ,n~ > =  -  <  (n~)t ,n~ >  .

Similarly, we have

(3.9) <  V n  — f n ,  V n -  > = <  V n -  — fn ~ ,  V n -  >  .

In view of (3.8) and (3.9), equation (3.7) becomes

nt € T2 ((0 ,T ); ct e L 2(QT), at € L 2(QT).

(3.10) <  (n )t ,n  > + Z )i(V n  — f n  ,V n  ) =  0,

from which we get

( 3 . 1 1 )  f  (n  ) 2 dx +  D i  f  IV n  12 dx <  D , f  \ f \ \ n  l lV n  I dx
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Let E(t)  =  f n (n ) 2 dx and F ( t ) =  maxQt | / j 2. Then (3.11) implies 

( 3 12) ^  ^

from which we know

But

E (t)  <  E {0) exp(:y  F (s ) ds).

E (  0) =  f  (r iQ ^dx — O 
Ja'a

because =  0  for a function n0 >  0 , so

m  =  \  (n~) 
Ja

2 dx — 0 ,

from which we obtain n~ =  0  a. e., and n — n+ >  0 .

Now we m ultip ly  the second equation in (1.3) by c~ and integrate over Q 

to obtain

(3.13) <  Ct, c~ >  - (A c ,  c~) +  ( (7 1  +  Pxn)c, c~) -  0 .

Note that

<  Ct,C~ > =  -  <  (c~)t ,c~ > ,

( (7 1  +  Pin)c, c~) =  - ( ( 7 1  +  Pin)c~,c~).

Also, since c~|rj =  0 and f^ | r 2 — 0, an integration by parts of the second term 

in the left side of (3.13) shows

(Ac, c~) =  —(Vc, V c- ) =  (V c- , V c- ).

Hence (3.13) gives

(3.14) f {c~)2 d x +  f  | V c ~ |2 dx  +  f ( j i  +  P in ) (c ~ )2 dx =  0.
J dt Jn Jn Jn

Since n >  0, we know from (3.14) that

f  (c ) 2 dx <  0 , 
Ja2 d t . . .

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



and so

I  (c~)2d x <  j  (cq)2cIx =  0.
Jn Jn

Therefore, c~ =  0 a.e., and c =  c+ >  0.

To prove c <  1, we set c =  1 — c* in the second equation of (1.3) and then

show c* >  0  following a sim ilar procedure as above, which we om it here.

The statement about a is proved in the same way. □

Remark 3.2. Theorem 3.1 is clearly s till true, i f  the n in the second (th ird) 

equation of the AC model is replaced by some h >  0 which is not necessarily 

a component of the system solution.

3.1.2 A Priori L°° Bound for n

Both the uniqueness and global existence of solution need the fact that n has

an L°° bound. The technique used in the proof of the following lemma is from 

[3],

Lem m a 3.1. Assume (3.1) and (3.2) are true. Then fo r  any weak solution 

of (3.4) — (3.6) n,c ,a  € W , we have ||n||i/x>(n) <  N , where N  is a constant 

independent o fT .

Proof We first note that n >  0 by Theorem 3.1. By setting v — 1 in (3.4) we 

have

d c
(3.15) — /  ndx  = <  nt , 1 > =  - ( V n  -  n f ,  V I )  =  0,

dt Jn

which means f Qn d x  is a constant and therefore uniform ly bounded w ith  re

spect to t. By choosing v =  nx in  (3.4) w ith  A >  0 we have

(3.16) -r— -T~r; [  nx+1 dx — —X [  nx~l \Vn\2 dx +  A [  f n xWndx =  Tl +  T2.
A +  1 at  Ja J n J n

Noting that

(3.17) T, =  -A  [  In ^ V n l2*  = - t A A u  f  |Vn“ |2<fa
Jn  (a  +  i j
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and

we obtain from (3.16) the following inequality

Now we apply Theorem 2.15 to (3.19) to obtain

(3.20) II n ||oo< r  • 22(m+4) - a  =  N

where r  and a  are constants independent of T. □

3.1.3 Existence and Uniqueness

T heo rem  3.2. For any T  >  0, system (3.4) — (3.6) has a unique solution 

(n,c,a) e W  x W  x  W, where W  =  C ((0 ,T); L 2(Q)) n  V21>0(QT).

Proof. We use the contraction mapping principle to prove the theorem. We 

first choose h G W. Set n =  h in (3.5) and (3.6) and let c and a be their 

(unique) solutions, respectively. We then denote by n  the (unique) solution of

(3.4), where c and a are determined in the way above. The existence of such 

n,c, and a in V2 ’°(Qt ) follows from Theorem 5.1 of [46] (Page 170). Also see 

the proof of Theorem 4.1. By Lemma 3.1 we have ||n||oo <  N  for any t  >  0, 

and hence n £ W.

Next, we define a mapping P  : W  -» W  w ith  P h  =  n. We shall show that 

there exists a T  >  0 such that P  is a contraction and thus has a unique fixed 

point, which means that system (3.4) — (3.6) has a unique solution. We denote 

by d(.,.) the distance on W  induced by its norm, that is, d {u i,u 2) =  ||ui — 

u2 ||l°°((o,t);l 2) f° r any u i ,u 2 G W. Letting h \ , f i2 € W  and n\ — P h i ,n 2 =  

P h 2, we need to show tha t there exists a constant 0 <  p <  1 such d (n i,n 2) <  

p d (h i ,h 2) for proper choice of T. Let ci and c2 be the solutions of (3.5)
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corresponding to h i  and h2, respectively. By taking the difference of these two 

equations we have

(3.21) ((c1 - c 2)1,u1) +  (V (c 1-C 2), Vwi) +  ((7 1+ ^ 1n 1)c1 - ( 7 i+ ^ in 2)c2 , i;1) =  0 . 

Setting v\ — c\ — c2(e Vi ) in (3.21) and rearranging its terms we have

(3.22) ~  f  [c\ — c2)2dx +  f  |V (c i -  c2)\2dx
W fi J

+  /  (71  +  /3jWi)(ci -  c2) 2 dx =  pi /  c2(hi -  h2){ci -  c2) dx.
J n Jn

Note that 0 <  c2 <  1 and rq >  0 by Theorem 3.1. W ith  the aid of the Basic 

inequality (Theorem 2.1) we obtain from (3.22)

(3.23) ™  J (c\ — c2)2 dx +  J |V (c i — c2)|2 dx +  71 J (cx -  c2f  dx

<  p -  f (h\ -  h2)2 dx +  71 [  (ci -  c2) 2 dx.
47i Jn Jn

Hence,

(3-24) ~  J j f i i  -  c2) 2 dx +  J |V (c i — c2) | 2 dx

<  j 2-  [  ( n i~  h2)2 dx <  y^ -d (h i, h2)2.
47i Jn 47i

Using the in itia l condition (cx -  c2 ) | t= 0  =  0, we integrate (3.24) from 0 to t, 

obtaining

(3.25) d(c i,c2) 2 <  ^ f —d (h i,h 2)2, f  f  |V (c i -  c2) | 2 dxdt <  ^ j^ -d (h i,  h2)2.
Jo Jn 4 7 !

Similarly, we have

(3.26)

d(au a2)2 <  ^ - d { h i , h 2f , [  [  |V (a i - a 2)\2dxd t <  ^ - d ( h i , h 2)2.
zl 2 Jo Jn 4 7 2

Now by taking the difference of the two equations governing n i and n2 we get

(3.27) ((m  -  n2)t , v ) +  (V (n a -  n2) -  ( m f i  -  n2f 2), V v) =  0.
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P u t t i n g  v =  n.\ —  n2 i n  ( 3 . 2 7 )  a n d  r e a r r a n g i n g  i t s  t e r m s  w e  h a v e

( 3 . 2 8 )  “  J  (n1 - n 2)2dx +  J  |V  (r*i -  n2)\2 dx

=  /  A  • V (n i -  n2)(n ! -  n2) dx
J n

+  /  n2V (n i -  n2) ■ ( f i  -  f 2) dx.
Jn

U s i n g  t h e  f a c t s  t h a t  | / i |  <  K  ( d e s e n s i t i z a t i o n  a s s u m p t i o n  ( 3 . 1 ) )  a n d  | n 2 | <  N  

( L e m m a  3 . 1 ) ,  w e  o b t a i n

( 3 . 2 9 )  ~  J ( n 1 - n 2)2dx +  J  | V ( n i  -  n2)\2dx

( K  +  N)e [  | V ( n ! - n 2)|2d:r 
Jn

[  (ni  -  n2f  dx +  y  f  \ f i  -  f 2\2 dx.
Jn  4e Jn

C h o o s e  e s o  t h a t  ( K  +  N)e <  1. T h e n  w e  h a v e

( 3 . 3 0 )  ~  J jn i  -  n2)2 dx  <  £  J  (ni -  n2)2 d x + ^ J  | / [  -  f 2\2 dx.

<

K  
+  4e

I t  follows that

(3.31) J (n i -  n2)2 dx <  ^  exp J J \ f i  ~  h \ 2 dxdt.

Using the Lipschitz condition (3.2) on f  we estimate the integral on the right 

as

(3.32) f  f  \ f i  -  f 2\2 dxd t <  [  f  \ f i - f 2\2dxdt  
Jo Jn Jo Jn

< L 2 [  ( [  l(ci -  c2)| +  |(ai -  a2)| +  |V {c\ -  c2)| +  \V(ax - a 2)| f d x d t
Jo Jn

T
<  4L 2 J J [(ci -  c2)2 +  (ai — a2)2 +  | V (c i -  c2) |2 +  | V (a i -  a2) |2] dx dt

^  a t2 ( $ \T 2 p \T 2 P \T  P l T \ J,_ _ s2

< 2 L 2 ( —  +  — 'j  Td(h i, n2)2 
V 7i 7 2 /
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where estimates (3.25) and (3.26) have been used and the fact T  <  \  has been 

assumed. Combining (3.31) w ith (3.32) we have

(3.33) J (m  -  n2f  dx <  exp ( ^ - t J  0  d(n1; n2) 2 

from which we derive the relation

(3.34) d (n i,n 2) <  p d {h i ,h 2)

1
where p =  IsfL̂ T exp ( ^ T ) ( ^ -  +  ^-) 2. Finally, by choosing T  so small as 

to make p <  1 we have a contraction P  : W  —> W, and the conclusion 

of the theorem follows on (0, T). The theorem is true of any time interval 

(0, oo), because the T  above depends only on the uniform bound o f n and 

other constants independent of time, and we can apply the above procedure 

a rb itra rily  many times. □

3.2 Transition of the System  into a Steady  

State

Now we consider the long time behavior of an AC solution, and investigate 

i f  i t  is possible for the system to admit a periodic solution, or, under which 

conditions the system w ill evolve into a steady state. The discussion in this 

section partia lly  answers these questions.

T he o rem  3.3. Under conditions

(3.35) 5 <  a,

and

(3.36) 0  <  5  -  -  (L N  +  a ^ X)2 _  (L N  +  ap2X)2
~  2a 4(a; — 6 )7 1  4 (a — S)y2

the desensitized A C  system (3.3) w ill transit into a steady state.
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Proof. We assume the solutions concerned are smooth enough so tha t we can 

differentiate the first equation (w ith respect to t ) of the AC model to obtain

(3.37) ntt -  V  • (V n  -  f n ) t =  0,

where we have used the fact that spatial and time derivatives commute. Bear

ing the same fact in mind and in particular

(3.38) (V n  -  f n ) t ■ v =  [(V n  -  f n )  ■ v\t =  0,

we m ultip ly (3.38) by nt and integrate by parts to obtain 

(3-39) +  IIV n tH2 -  ( ( / ” )*> V n ‘ ) =  °-

In view of the following bounds

<  L, | f f ,  <  L, 0 < n < N ,  I / I  <  K ,

and the fact

f t  =  E i  (ct)x< +  J2i '-(at)xi +  %ct +  | f  at , 

the last term in (3.39) is estimated:

(3.40) |(( /« ) ,,  V n ,)| <  | ( / n „  V n ,)| +  \(f,n, Vn,)| <  A-||n,|| || Vn,||

+£ iV (||V c,|| HVn.il +  ||Va.|| ||Vn,|| +  ||c|| ||V»,|| +  ||a,|| ||Vn,||).

Since nt =  <  n(, 1 > =  0 by (3.15), by Poincare inequality (Theorem 2.5)

we know

(3-41) ||nt|| <  A||Vnt||.

Hence we obtain from (3.39), (3.40), and (3.41) that

(3-42) +  l|Vn,||2 <  irA ||V n ,||2 +  L;V(||Vc,l| ||Vn,||

+11 Vo,|| ||v«,|| + | | c | | + ||o,|| ||vn,||).

Now we repeat the process for ct and at . Notice that
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Integrating by parts yields

(3-43) \ ^ Ct^2 +  II Vc*H2 +  +  ^ in ’ c*) =  c<)-

I t  follows from (3.41), (3.43), 0 <  c <  1, and n >  0 that

(3-44) l i t 110,1,2+l|Vci112+7ll|c‘112 -  ftA||Vni11 l|c*

Similarly, we have

( 3 -4 3 )  ^ l l 0*!!2 +  l l V a t l l2 +  ^ l l f l i l l 2 <  M \ V n t \\ | | a t || .

Now we m ultip ly (3.44) and (3.45) by

(3.46)

and add them to (3.42). A fter rearranging terms we have

(3.47) ^ ( I M P  +  “ l lc ll2 +  a||a,II2) +  ■5|lVn, | | 2 +  b d W I 2 +  b j I M I 2

<  -  {^ l|V n ,||2 +  a||Vc,||2 +  a ||V a ,||2 +  (a  -  <Sb,||c,||2 

+ (a  -  <5)72||at ||2 -  LJV|| Vc,|| ||Vn,|| -  LJV||Va,|| || Vn,||

-(LN +  aA A )||e || II V n .ll -(LN +  a /j2A)||a,|| ||Vn,||} .

where we have set 8 =  1~^'A. By w riting  the right-hand side of (3.47) as a 

complete square and assuming (3.35) and (3.36):

8 <  a,

and
o <  s L2iy2 -  (L iV  +  a M 2 _  (L N  +

~  2a  4 (a — 8) 71 4(ck — <5)72 ’
we obtain

(3.48) 2  (11112 +  a llctll2 +  a ll°tl|2) +  <^M|Vnt| |2 +  <bil|ct| |2 +  <  0,
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where again we have used (3.41). Let

7 =  m in {7 i,72},

and
. _  /  5A2 if $  >  a,
0 — l sI -1 otherwise.\  a

From (3.48) we have

(3-49) ^ ( M 2 +  a llc*ll2 +  a I N I 2) +  M I N I 2 +  a||ci||2 +  a |M |2) <  0,

which implies

(3 .5 0 )  | K | | 2 +  a | | c | | 2 +  a | |a , | |2 < / l e - i »‘ ,

where A  is a constant. I t  follows from (3.50) that | N I 2 > ||ct |j2 and j|at | |2 —> 0  

exponentially, and the system approaches a steady state. □

Remark 3.3. Note that the first and second order time-derivatives of the so

lution component n (x ,t)  in the proof can always be safely understood in a 

d istributional sense (Proposition 1.1 on Page 7 of [52]). But the existence of 

all the integrals involved presumes a sufficiently smooth system solution. I t  

is not clear what minimum regularity conditions on the domain and on the 

in itia l and boundary data can guarantee this. However, we believe smooth and 

compatible in itia l and boundary conditions (1.5) and a C 2-smooth domain 

w ill do.

Remark 3.4. To see how the conditions in the theorem are satisfied, we assume 

all the parameters except K ,  7 1 , and 72  are given. From the definition (3.46) 

o f a  we know (3.35) is satisfied for large 71 and 7 2 . To have (3.36) satisfied, 

we first need S =  1~^rA >  0. Noticing that A is actually an eigenvalue which 

depends only on the domain geometry, we have to make K  small. Assume now 

we have S — 1~£cx >  0- Then i t  is not hard to see that (3.36) can always be 

satisfied by making both 7 j and 7 2  large. Physically, this means the decaying 

rates of both chemicals have to be sufficiently large. I t  is ‘plausible’ to expect 

a steady state in this case, because the ‘driving force’ for any chemotactic 

movement, which comes from the chemicals, are disappearing rapidly.
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Remark 3.5. The fact that ||n*||2, ||ct||2 and ||a*||2 -7 0 exponentially shows 

that under the conditions given the system does not admit non-constant peri

odic solutions. Otherwise, the above quantities would also be periodic, which is 

obviously not true. This should discourage us enough to try  to obtain periodic 

solutions for the desensitized system, even after lim itations on the parameters 

are removed. Actually, we believe the system goes to a steady state w ithout 

any condition on the parameters.

3.3 Existence and Uniqueness of the Numeri

cal Solutions

3.3.1 Semi-Discrete Finite Element Formulation

Let 14 C H 1 (Q,) be a piecewise linear fin ite element space corresponding to a 

particular triangular partition of the domain Q. We define

14,/! = 14 n 14, 

v2,h = 14 n 14,

where 14, 14 are defined in §3.1.1. A  fin ite element solution of the system is 

a trip le (nh,ch,ah) in (1 4 ) 3 w ith ch -  1 € 14,/i and ah -  1 G 14,/! such that 

V (vh,vhh,v2,h) <= 14 x  14,/! x  1 4 ,/! we have

(3.51) <  nfcjt> vh >  + (V n h -  f hnh, V v h) =  0,

(3.52) <  cfc>t, vhh >  + (V c h, V v hh) +  ( ( ^  +  p in h)ch, vhh) =  0,

(3.53) <  ah,t, v2,h >  + (V a /t , V?/2,/i) +  ( (7 2  +  /4rbi)a/i, ^2,/i) =  0, 

and

(3.54) nh(x,0) =  Phn0(x), ch(x, 0) =  Phc0(x), ah(x, 0) =  P/,o0(a;) in L2(fi) , 

where f h =  Xi(Vc/»,cft,a:)Vch +  X2('Vah,ah,x )V a h.
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Remark 3.6. The above definition implies a stationary fin ite element space, 

and hence V£ G (0, T)  we have n^, c^, € i f 1 (ft). Furthermore, we w ill see

tha t the coefficients o f the solution actually have bounded time-derivatives.

3.3.2 A Priori Estimate for rih

Moser’s technique does not apply readily to the numerical case to ensure an 

L°° estimate for n^, but a uniform L 2(fl)  estimate is s till obtainable w ith  the 

help of the following:

Lem m a 3.2. Let e >  0 be chosen. Then there exists C£ such th a t ' in  G H l (Q) 

and n >  0, the following is true:

(3.55) f  n2 dx <  Ce (  f  ndaA +  c f  |V n |2 dx.
Jn \Jn  )  Jn

Proof. Suppose (3.55) is not true. Then we can find e, a sequence {C \}  w ith

Ci —> oo, and a sequence { r i j}  w ith n, >  0 such that

(3.56) f  n2 dx >  Ci (  f  n id x \  +  e f  |V n j|2 dx.
Jn \Jn  )  Jn

By dividing both sides of (3.56) by f n n j  dx and setting Hi =  n*/ (Jn n2 d x ) 1̂ 2 

we obtain

(3.57) 1 > C i ( ^ J  t i id x ' j  +  e J  iV n ^ 2 dx,

where Hi satisfies

(3.58) f  n i2dx =  1.
Jn

Note tha t (3.57) and (3.58) im ply that { f^ }  is bounded in H 1 and thus rela

tive ly compact in L 2, indicating that there is n G L 2 such tha t a subsequence 

of Hi, s till denoted by rii, converges to n in L 2. As a consequence we have

(3.59) f  n2 dx =  1.
Jn

On the other hand, we know from (3.57) that f Q rii dx —> 0, that is, —> 0 in 

L l . Therefore, n =  0 a.e. and f Q n2 dx =  0, which contradicts (3.59). □
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Remark 3.7. Lemma 3.2 is obtainable from Nirenberg-Gagliardo’s inequality 

(Theorem 2.7). See Lemma 4.4 for a proof. But the direct proof we gave above 

is much more simple when compared to the sophisticated techniques used in 

the proof of Nirenberg-Gagliardo’s inequality ([28]).

Remark 3.8. Lemma 3.2 is false i f  n changes sign. Let n be the eigenfunction 

corresponding to the second eigenvalue o f the problem:

Oti
(3.60) —A n  =  X2n  in f i,  —  =  0 on dCl.

du

In view of the boundary condition, we obtain 0 =  A2 f ^ n d x  by integrating the 

governing equation for n, from which we know f Q n d x  — 0. Next we m ultip ly 

the equation by n and do an integration by parts, to obtain f Q |V n |2 dx =  

A2 f n n2 dx. Note that this last equation implies A2 >  0. Now Choose e so that 

0 <  e <  1/A2. Then we have

f  n2dx =  l / \ - 2 f  |V n |2 dx >  e f  |V n |2 dx =  Ce f  f  n d x \  + t [  |V n |2 dx
Jn Jn Jn \Jn  )  Jn

for any Ce, which violates (3.55). I t  is thus im portant that n >  0 (or n <  0). 

Now we prove

Lem m a 3.3. There is a constant N ', independent of h and t, such that

I K I I 2 <  N '.

/  nh dx = <  nhjt, 1 > =  — (Vn/j -  f hnh, V I )  =  0, 
Jn

Proof. By Setting Vh =  1 in (3.51) we obtain 

£
dt jn

from which we deduce that f Q nh dx =  f Q PhnQ dx =  5, a constant. Choose e 

so that 1 — K 2e >  0. Since € H 1^ ) ,  from (3.55) we know

( 3 .6 1 )  I  n \ d x  <  C t52 +  e I  IV n /J 2 dx.
Jn Jn

Next, set Vh — nh in (3.51). In  view of saturation assumption (3.1), we obtain

(3.62) (  f  nldx\ + f  |V n J 2 dx <  K  (  [  n2hdx\ (  f  |V n J 2 dx
\Jsi Jt Ja ~ \Jn J \Jn

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



which, together w ith  (3.61), gives

Now it  follows that i f

that is, i f

(3.64) £ |V n » |2 dx >  =  M ,

then (JQn ld x ) t <  0, indicating that j a n \d x  is decreasing. If, on the other 

hand, f n | V n^|2 dx <  M ,  we obtain immmediately from (3.55) that

(3.65) [  n \  dx <  Ct52 +  eM =  N'.
J n

W ith  the above two cases being combined, i t  turns out tha t (3.65) is always 

true. □

3.3.3 Existence of Solutions

T he o rem  3.4. System (3.51) — (3.54) has a solution (nh,Ch,dh) in Vh with

Hhi Chj — 0 •

Proof. Let I be the number of partition  o f the domain fl; {<fk}lk - i  be the basis 

for the space of piece-wise linear polynomial functions corresponding to the 

above partition; Mi be the space o i l  x I real matrices.

To obtain existence of solution, we apply Schauder’s fixed point theorem. 

So we choose hT G (C [0 ,T])1 and set hh =  X)L=i hk{t)4>k- We shall solve

J  <  ch,t , v i ,h >  + (V c h, V v 1>h) +  ((71 +  Pihh)ch, vhh) =  0 

1 <  ah,t , v2 ,h >  + (V o  h, Vu2)/i) +  ((72 +  fchhfah, v2,h) =  0
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(w ith in itia l approximations). Note that Ch and %  have expressions:

i i
Ch — ^   ̂Ck , fl/j — ^   ̂Qfc (t) (j)k ■ 

k= 1 fc=l

By letting

-6  =  (V 0 i, V ^ ) i Xi +  ( (7 1  +  Pifih)(f>i, 

and w ith the notation

c(t) =  (c i( i) ,...,c j( i) ) , 

we rewrite (the first part of) the system to be solved as

Ac'(t) +  B (t)c ( t) =  0,

from which we have

c'(t) =  —A~l B{t)c(t).

Since

- A ^ B i t )  : [0, T ]  ->■ M i

is continuous, the above system has a solution c(t)T £ (C^O, T])1 (see, for 

example, [44]). Similarly, we have a(t)T £ (C ^O ,!1])*. Then, w ith  Ch =  

J2 [ = 1 ck{t)<t>k and ah -  Y?k=i ak(t)<f>k, we solve nh from

< nh,t, vh > + (V n h -  f hnh, V v h) =  0

(w ith in itia l approximation), where

—#     _
fh =  X i(Vc/l , ch, x)Vch +  X2 (Va/,, ah, x)Vah-

Again, the above system can be reduced to the form n'{t) =  D (t)n ( t)  w ith 

D (t)  =  — A~l C(t)  : [0, T] -» Mi continuous. Also, ||T>||m( is bounded by 

a costant because of the restriction \ fh\ <  K  in (3.1). Hence we obtain a 

solution n(t)T £ (C71 [0, T ])1. Thus we have defined a map

P  : (C [0 ,T ])< -> (C ^ O ,!]) ' C (C [0 ,T ])J 
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w ith  n =  Ph.

Prom the proof of the theorem on Page 79 of [44] we know

I M | (c [o ,r | ) '  <  l | w ( 0 ) l l ( c [ o , T ] ) 'e x p ( | | D | | M iT ) .

Since

I K I I ( c [o,t ])' =  l l ^ l l ( c [ o , T ] ) i  <  H -D l l iW ilM l tc p v r i ) ' ’

we have

ll77'|[ (o 1[o,x'])' =  ll77'll(c '[o ,r3 )t +  II (c f[o,t yJ)*

<  (IP IlM j +  l)||«(0)||(c[0|r])' exp(||£)||M(T).

Thus we have obtained for n ( t ) an estimate in ((TfO, T})1, which is uniform ly 

valid for all choice of h. So the map P  is compact.

While not going into detail, we point out that the continuity of P  is the 

result of the following facts: V c(f) and V a(t), together w ith  c(t) and a(t), 

depend continuously on their coefficient h , and n (t) depends continuously 

on its coefficient // i(V c (t), Va(t), c(t), a(t)). Therefore, being compact and 

continuous, P  has a fixed point. That is, system (3.51) — (3.54) has a solution. 

For the proof of the positiv ity  of solutions, we refer to Theorem 3.1 □

Remark 3.9. From the facts that all the n(t) =  (n \{ t ), .. .,n i(t))T are bounded 

in (C^O, T ])1 by a constant and that rih =  we deduce immedi

ately that \nh\ <  N , where N  is a constant (possibly T  dependent).

3.3.4 Uniqueness of Solutions

T heo rem  3.5. The positive solution of system (3.51) — (3.54) is unique.

Proof. We assume tha t ( n ^ \  c ^ \  a ^ )  and ( n ^ \  c ^ \  a ^ )  are two positive so

lutions o f (3.51) — (3 .54). Let

fh =  Xi (Vc£}, <4°, aOVc^0 +  X2(V a il), aj?, x ) V a f ( i  =  1,2), 

nh =  n ^  -  n [ 2 ) , ch =  4 °  -  4 2), ah =  -  a%] .
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Then we have

(3.66) <  nh)t, vh >  —{V n h -  nhf  J1} +  n[2) (/J2) -  f l ^ ) ,  Vnh) =  0,

(3.67) <  cKU v1>h >  + (V c/j, V v lih) +  (7 xch +  vhh) =  0,„(2)„

(3.68) < aM , n2>ft > + (V a A, Vn2i/l) +  (7 2aft +  +  /?2a ^ V ,  n2>/l) =  0.

We set Vh =  rift, =  c/(, and u2)/, =  in (3.66) — (3.68) respectively, to 

obtain

,(2).

nh d x ) +  /  |V n ft|2 <fo< [  nh /J 1} • V n ft 
^ \7n  /  t Jn Jn

(3.69) +  [  n f  ( / ] 2) -  /?>) • V n *
Jn

dx

dx,

(3.70)

( [  ch d x j +  I  |Vc/j|2 dx +  71 [  c \dx  
\Jn  J t Jn Jn

+ 0 i I nh )cl  dx <  A  [
Jn Jn

(2)Cft 'n fcc/,

(3.71)

Note that

by (3.1), 

by (3.2), and

OOftda; j + / |Va/j.[2 dx +  7 2 /  a \d x  
n J t Jn Jn

+ 0 2  [  n ^ ]a\ dx <  fa f  
Jn Jn

(2)Oft nhah

f j )
Jh <  K

f l 2) -  f T  <  L {\Vch\ +  |cA| +  |VoA| +  \ah\)

n (2 ) <  N

by Remark 3.9. So we have

(3.72) f  nh fh^  ■ Vrth dx <  e f  \Vnh\2 dx +  ^ — f  n \d x ,  
Jn Jn 4e Jn
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L 2 N 2
/  (|V c „|2 +  cJ +  |Va»|2 +  aJ)ote. 

Jn

Also we have

(3.74) A  /
Jn

(3.75) h f
Jn

(2)c\ nhch

(2)Oft nhah

d x < / 3 i  f  \nhch\ d x < ^ -  [  n \ d x + ^  f  c\ dx, 
Jn 1 Jn 1 Jn

dx <  fo [  \nhah\ d x < ^ -  f  n2h dx + ^  [  a \dx .  
Jn * Jn * Jn

Taking an appropriate linear combination of (3.69) — (3.71) and using (3.72) 

(3.75), we obtain

d r f  2 , L 2N 2/j i  2 L 2N 2l2  2'
(3.76) n h +

dt jn  

<  2e 

L 2N 2

./n

at dx +

■ [  |V n h|
Jn

2 dx | K 2 +  2L2N 2(Pi +  f)2)
4e

[  |V n fc|
Jn

/ n^da; 
Jn

dx

[  (P iC h+ fca l)  
Jn

dx

Choose e so that

0 <  e <  [K 2 +  2L2N 2(f), +  f t ) ]  min ( .

Then, w ith

£(*) =
2 L 2N 2 7l 2 

^  +  — 7 - ^ 4  +
L 2N 2ry2 2 
----------- aft ) dx,

i t  follows from (3.76) that

(3.77) m  <

The last inequality and the in itia l condition .E'(O) = 0  im ply that n/, =  0, 

Ch =  0, and ah =  0 for t  G [0, T], Therefore raj^ =  n ^ \  =  c ^ \  and

a =  cSfP, and the solution is unique. □

Remark 3.10. The above proof of uniqueness applies equally to the continuous 

case in §3.1, where we used a contraction mapping argument to obtain both 

existence and uniqueness.
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3.4 Error Estim ate for the Numerical Solu

tions

Throughout this section, we assume that d£l is sufficiently smooth, and in itia l 

and boundary values are compatible and smooth enough such that n, c, a, nt , 

Ct, and at are in L°°((0, T ); H 2). Our work is motivated by the semi-discrete 

fin ite element analysis for a linear evolution problem in [83]. But unlike the 

situation there, we are able to show only a first order accuracy result for 

the linear finite element numerical solution to this nonlinear problem, which 

we believe is due to the gradient-dependent (chemotactic) nature of the ‘n ’ 

equation. Before we can prove the error estimates below, we need to define 

some elliptic projection operators P j f \  P j f \  and P ^ ,  and set up some of their 

properties. P ^  is deifned as P ^  : n G V  —> P ^ n  € 14 w ith

(3.78) ( V T f n ,  V vh) =  (Vn, V vh) Vvh <E 14 

and

(3.79) [  P ^ )n d x =  f  Phn0dx.
Jn Jn

The definition for P ®  is: c —̂ P ^ c  w ith  c -  1 e V\ and P ^ c  -  1 € and 

Vvi , h  e Vi , h

(3.80) ( V P f  c, V u1>ft) +  (7i P f )c,t;1(/l) =  (Vc, V u1,/l) +  (7ic ,u 1>h) Vu1(/l e I V

The operator P ^  is defined sim ilarly for the ‘a’ equation.

Lem m a 3.4. The above defined operators P ^  (i  =  1,2,3) are uniquely deter

mined.

Proof. Note that Pf®c is actually the fin ite element solution of the elliptic 

problems (3.80) w ith  c its exact solution. A  similar statement holds true for 

P ^ a .  The conclusion then follows from the uniqueness of these numerical 

solutions (Lax-Milgram Lemma, [55], Page 118). The solution o f (3.78) is 

unique only up to a constant, hence an additional equation (3.79) is there to 

ensure uniqueness. □
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Remark 3.11. The value f Q Pkno dx is chosen for J ^ P ^ n d x  in (3.79) so that 

the error =  nk — P jp n  satisfies

5 ,  =  m/„Mi =  0 '

Then we know ||0i|| <  A||V#i|| by Poincare inequality (Theorem 2.5), which 

w ill be used in the proof o f the error estimates in Theorem 3.6.

Lem m a 3.5. The time-derivative and the projections P j^  commute, that is, 

we have { P {k ]n) t =  P ^ th, { P ^ c j t  =  P^C t, ( P ^ o f t  =  P ^ V

Proof. We only prove the first equality, the other two can be done similarly. 

Let {(pk}i= i be the base functions corresponding to a partition of the domain 

fb Note that (3.78) is equivalent to

(3.81) (V P ^ n ,  fa) =  (Vn, V fa ) ,  k =  1,..., I.

Now we take the time derivative on both sides of (3.81). Since the j>ks are 

time independent, we obtain

(3.82) (V (P i1)n )t , fa) =  (Vnt, V fa ) ,  k =  1,..., I.

On the other hand, by definition we have

(3.83) ( V P ^ n t ,  fa)  =  (V n t , V fa ) ,  k =  1,..., I.

The first equation in the lemma then follows from the uniqueness of the elliptic 

projection. □

Remark 3.12. The fact tha t the time-derivative and the projections P j^  com

mute w ill be used in the proof of the error estimates in Theorem 3.6. We could 

have included those nonlinear terms from the AC system in the definitions of 

P j^  (i =  1,2,3), but in tha t case Lemma 3.5 no longer holds true.

T h e o rem  3.6. Let (n ,c ,a ) and (nh,Ch,ah) be the solutions of (3.4) — (3.6) 

and (3.51) — (3.54), respectively. Then fo r  any t  e [0,T] we have

(3.84) ||n -  nh\\ <  Ch, \\c -  ch\\ <  Ch, ||a -  ah\\ <  Ch, 

where C  is a constant depending on T.
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Proof. We decompose the error e\ = r i h - n  into two parts:

(3.85) ei =  0i +  pi =  (raA -  P ^ n )  +  { P ^ n  -  n).

S im ilarly we have

(3.86) e2 =  02 +  P2 =  (cft -  P^2)c) +  ( P f c  -  c),

and

(3.87) e3 =  02 +  Pi =  (oft -  P/[3)a) +  (P^3)a -  a).

We estimate pi (* =  1,2,3) first. From elliptic finite element analysis ([55]) we 

know

(3.88) ||pi|| +  /i||V a || <  D h 2, (t =  1,2,3)

and

(3.89) | | f f -  u[‘>|| <  Dh\ (i  =  1,2,3)

where uB) =  n, =  c, u®  =  a, and D  is a constant depending on ||n||#2 ,

M in * , ||o||ffa, IK IIm q llctlln*, and

Next, we estimate 9i (* =  1,2,3). The equation for 9\ is derived this way: 

V v h  €  V h  C  V ,  by (3.85) we have

(#i,t,vh) +  ( W i -  fh 9 i ,V v h) =  (nhit, Vh) -  {(P j^r^uVh)

+ (V n ft -  f hnh, V vh) -  ( V P ^ n  -  U P ^ n ,  V vh)

By (3.51) and Lemma 3.5, the right-hand side of the above equation can be 

simplified into

- ( P ^ n t ,  vh) -  ( V / f  }n -  h P ^ n ,  V vh), 

which, in view o f (3.78), gives

~ { p h )nt, vh) ~  (V n  -  fn ,  V vh) +  ( f h P ^ n  -  f n ,  V vh).

4 4
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By using v =  Vh in (3.4), we can rewrite the last expression as

- ( P ^ n t  -  n t , vh) +  ( f h iP ^ n  -  n), V v h) +  ( ( fh -  f )n ,  Wvh).

The four expressions above being combined, we have

(0i,t, vh) +  (V 0 i -  f h91 , Vv/,) =  - ( P ^ n t  -  nt, vh) +  ( f h iP ^ n  -  n), V vh)

(3.90) + { ( f h -  f )n ,  V v fc).

Now by setting Vh =  9i (G Vh) in (3.90) and using the following estimates

\ ( fheu  V 0 O| <  K m  l iv ^ n  <  i^ A i iv ^ n 2,

H P ^ n t - n M  < D h 2\\ex\\ <  m / i 2 ||V01||,

|( f h iP ^ n  -  n), V0X)| <  D K h ^ V d . l

\ ( ( f l  ~  f )n ,  V 0 i)| <  L N \\V (ch - c )  +  (ch -  c) +  V (ah -  a) +  (ah -  a)\\ ||V0i||

<  ZJV(||V02|| +  ||02|| +  ||V03|| +  ||03|| +  2 D (h  +  h2)) llV^xil-

we obtain

(3.91) 5 ^ l l« . l l2 +  l !™ il |2 <  I t 1' (fc)l|V«,|| +  ArAUV0.ll2 +

iW d lv ^ l i  +  i l^ i i  +  i iv ^ n  +  i i^ lD l lv ^ i i ,

where (h) has the dominant term h. Similarly, we have

(3.92 ) \ ~ W h t  +  ||V02 ||2 +  7 l W |2 <  +  ftA H V ^ II ||02||,

and

( 3 .9 3 ) i | | |0 3 ||2 +  l|V03 ||2 + 7 2 W I 2 <  B(3)(ft)IN I +  jM |V 0 . | |  ||03||.

Notice the s im ilarity between (3.91) — (3.93) and (3.42) — (3.45). Using the 

same technique and under similar conditions as (3.35) and (3.36) we obtain

(3.94) ||0||2 <  e -^ H ^ O ) ! ! 2 +  R (h)2( 1 -  e~Sot),

where ||0 | |2 =  ||0 i ||2 +  a ||0 2 ||2 +  ^  11 ̂ 3 112 > R(h) =  0 (h ),  and a  and 50 are

constants. Now the conclusion of the theorem follows from (3.88), (3.94), and 

the fact that ||0(O)|| =  0 ( h 2). □
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Remark 3.13. Note that the error estimates established for the semi-discrete 

finite element method are only sub-optimal. The author believes these esti

mates can be improved, though i t  is not clear how this can be done at the 

moment.
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Chapter 4

Theoretical Analysis of the  

One-Dim ensional AC M odel

We continue our study of the AC model in this chapter. To obtain more 

general results, we remove the desensitization assumption (3.1). As before, 

we still work w ith  solutions in the weak sense because of the readiness to 

obtain various estimates. We assume in itia l and boundary data are smooth 

and compatible, and domain Q =  [0,1], i. e., we only consider the 1-D system.

We notice that the Lyapunov functionals, which have been the key to 

obtain global existence of solution to the KS model, are not available to us 

because of the inhomogeneous mixed boundary conditions. Instead, we mainly 

rely on a prio ri estimates obtained through Sobolev-type inequalities. Two 

preparatory results are specifically proved for this, one as a new consequence 

of the general Nirenberg-Gagliardo inequality, and the other as a generalization 

of its particular 1-D case. We include the proof of local existence o f solution 

for completeness. We have found that, in the 1-D case, substitutions like those 

in [29] are not necessary, and the whole proof can be greatly simplified once 

we know the ‘a lien ’ gradient term  in  the first equation of (1.3) is bounded.

The outline for this chapter is as follows. §4.1 deals w ith the local in time 

existence of solution. The basic tool is Schauder’s fixed point theorem. Results 

on a compact set in the space L p((0, T ); X )  and the existence o f solution for
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parabolic equations are needed for this. §4.2 sketches the proof of uniqueness 

of solution. §4.3 is devoted to the global existence of solution.

4.1 Existence of Local in Tim e Solution

From now on, we study the 1-D time-dependent AC model, but we keep using 

general notations like V , Q and etc. in this section in  order for an easy 

adaptation and generalization of available results to higher dimensions at a 

later stage.

The proof of Theorem 4.1, suggested by [29], needs some prelim inary results 

which we state below as lemmas.

Lem m a 4.1. ([79], Page 85, Corollary 4) Assume W  C  X  C  Y  with compact

imbedding W  —> X ,  where W , X ,  and Y  are Banach spaces. Let F  be bounded
d F  ' ‘ ' 

in IAiiO, T ); W) where 1 <  p <  oo, and - j—
(/t

acn spaces. Lit

M/eF}/  G F  > be bounded in

L 1((0, T ) ;Y ) .  Then F  is relatively compact in L p((0,T)] X ) .

Lem m a 4.2. ([46], Page 170, Theorem 5.1 and the comments that follow it)  

Let Ll € Rn with boundary d f l  =  T i U T 2 and unit outer-normal direction V. 

Let Qt  =  f 1 x  (0 ,T), and St  — dLl x [0,T). Consider in  Qt  the following 

problem:

(4.1)

where

= - / .
I n  ( d u  \

w|rix[o,r] — 0 , \ f f i JrOU)

«|t=o = ipo(x),

=
r 2x[o,T]

L[u] =  ut -  ^ 2  ^ 7  ( 5 3  ° « ' +  ai(x > ) +  5 3  ^ Uxi +  a(x ’ ^

Assume

»=l \ j= l
U.

i= l

(4.2) * £ { ? < £ £  <*ij(x,t)£itj <  pi E [ f ,  v, p. — constant >  0 ;
i= l j = 1i=1 i= 1
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(4.3)

in  which

(4.4)

(4.5)

in which

E«f
4=1

<  Mi,
q,r,Qr

E 5?
i=X

<  m i, I q,r,QT <  Ml,
q,r,Qr

1 n  
r  +  2i - 1 '
9 G (n /2 ,o o ], r  €  [ l ,o o ) f o r  n >  2, 

g €  [1, oo], r  G [1, 2] / o r  n =  1;

ll/llgi,ri,Qr ^  M2,

(4 .6)

' I n  .
—  +  —  =  1 +  n /4 ,
r i  2q-i

gi G [2 n /(n  +  2), 2], r x G [1,2] f o r  n >  3,

qi G (1, 2], n  G [1, 2) f o r  n =  2,

gi G [1 ,2 ], n  G [1 ,4 /3 ] / o r  n =  1.

Also, we assume (when n =  1)

(4 .7)

and

(4 -8) I M U a . <  M3, r 3 =  4 /3 .

Then there exists a unique solution o f problem (4 .1 ) in the class V j'° (Q r)-

Lem m a 4.3. ([52], Page 37, Theorem 6.2) Let Ll G Rn with boundary d f l  =  

T i U T 2 . Let Q t  — ^  x (0, T), and S t  — dLl x  [0, T], Consider the following 

problem in Q t :

(4 .9 )

where

Au +  u' =  / ,

B jU  =  gj, 0 <  j  <  m  — 1, 

k n (0 ) =  uq,

A ( t ) = A ( x , t , D , )  =  Y ,  ( - 1 )W£W«w(*. «)*>£).
\p\M\<m

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



and

B j( i )  — B j ( x , t ,D x) — Y  bjh (x , t )D l.
\h\<mj

Let

(4.10) r  >  0 , 2 rm  — integer.

Let gj, uq and f  be given with the compatibility condition, and

( 4 . 1 1 )  9j  G  f f 2 ( » - + l ) " * - n * J - l / 2 , ( r + l ) - K - + l / 2 ) / 2 m ( 5 r ^  0 <  j  <  m  -  1,

(4.12) uQ e H 2̂ 2)m(Q),

(4.13) /  e H 2rm’r (QT).

If, in addition, some ellipticity and regularity conditions are satisfied, then 

problem (4.9) admits a unique solution in the space H 2(r+1)m,r+1 (Qt ) ■

Remark 4.1. In the above lemma, we omitted the compatibility, e llip tic ity  

and regularity conditions for space reason. I t  can be checked easily tha t these 

conditions are satisfied by the equations to be considered. Also, the boundary 

conditions in the lemma are general enough to include that of mixed Dirichlet- 

Neumann type (cf. [8 ] and [2]).

T he o rem  4.1. System (1.3) has a local in time solution in V Y iQ r )  fo r  suf

ficiently small T  >  0.

Proof. We are going to use Schauder’s fixed point theorem ([8 8 ], Page 61, 

Theorem l.C .) to prove the existence. We divide the proof into four parts:

( i)  D e f in it io n  o f  th e  m ap A. We first define a map A  for appropriate 

T  >  0:

A : w e W - > v  =  A w e V c W ,  V =  (vY ( Q t ) ) + , W  =  (L2(QT) )+ ,
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where v is the unique V̂ 1,0 (Q r) solution of

I vt — D iV  ■ (V v  — v f j  = 0  in Q t  =  ^  x (0 , T ),

v(x, 0 ) =  Wo(^) > 0  in f 2,

— v f j  ■ v =  0 on S =  d£l x (0, T ),

where

(4.15) /  =  V 9  .  V  ( J -  ln ( l  +  « )  +  ^ )  =  VC +  ^ V a ,

and c and o are the unique V£’°(Qt ) solutions of

C t - A c  +  j i c — - P iw c  in QT,

(4.16)  ̂ c(x, 0 ) =  c0(x) > 0  in ft,
dc

C =  l o n 5 1 =  r 1 x ( 0 , r ) ,  ^  =  0 on £>2 =  r 2 x  (0, T ), 

and

I  at -  D 2 A a  +  7 2a =  -/3 2io a in Q t,

a(x, 0 ) =  a0 (a:) > 0  in ft,

da
—  =  0  on Si, a =  1 on S2,

respectively. Note that the solutions v, c, and a, i f  exist, must satisfy

u >  0 , 0  <  c <  1 , 0  <  a <  1 ,

as a consequence of the maximum principle (Theorem 3.1 and Remark 3.2). 

We use Lemma 4.2 to verify tha t (4.16) (and (4.17)) has a unique solution. In 

fact, a transform such as c =  1 — u w ill change (4.16) into (4.1), and conditions

(4.2) — (4.8) in Lemma 4.2 are satisfied, w ith

v =  [1 =  1

in (4.2),
4

? =  2, r > 5

in (4.3) — (4.4) (see Remark 1.1 on Page 135 of [46]),

qi =  2 , 1 <  r \  <  oo 
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in (4.5) -  (4.6), and
o =  if) =  0

in (4.7) — (4.8). Furthermore, c E H 2,1(Qx) by Lemma 4.3, where conditions

(4.10) — (4.13) are satisfied w ith

m  =  1 , r  =  0 , rriQ — 1 .

By the imbedding theorem (Theorem 2.6), when the space dimension m  =  1, 

V c =  c* (and V a =  a*) is actually in C(QT). Hence, from (4.15) we know 

f  — f  E C(Qt ). Then, by applying Lemma 4.2 to (4.14), we know the solution 

v exists and is unique. This time, the conditions are satisfied w ith

in (4.2), 

in (4.3) -  (4.4), 

in (4.5) — (4.6), and

u =  fj, — D i  

Q >  1 , r  >  1 (arbitrary) 

Qi >  1 ) H >  1 (arbitrary)

a E C(Qt ), -0 =  0

in (4.7) — (4.8). Therefore, the map A  is well-defined.

(ii) T he m ap A  sends a  bounded, closed, and  convex set in to  itself.
Next, we show the map A  sends the set B  — jn ;  E W  into

itself for sufficiently small T  >  0 . Assume w € L 2(QT) w ith  w >  0  and

IIH I i2(Qt) ^  R- Since /  =  /  € C(QT), as we have shown in Part (i), there 

exists a constant F  such that | / j  <  F. Now, m ultip lying the first equation of

(4.14) by v and integrating by parts over Qt  we have

(4.18) -  f  v2 dx — -  f  Vq dx +  D i  f  |V v|2 dxds — f  v fV v d x d s
^ J SI *  Jn I.J Qt JQt

from  which we obtain for any e >  0,

(4.19) l \ \v \ \2 - h \ v 4 2 +  D 1\\Vv\i2QT< D l F  f  M|Vt>|<tafo
J Qt

0 ,

<  D iF  (e||Vu||Qr  +  i | | » | l | r )  =  ■D ife ||V«rei. +  ^ | | « " 2

Qt

D 1F  
4e ll-IKJr-
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I f  we choose e =  — in (4.19), then we have

(4.20)

We integrate (4.20) over [0, T ] to get

I f  T  >  0 is such that ^ ~ - T  <  1, then we have

lb | | 2 - > 0 ( T - + 0 ).

Now i t  is clear tha t sufficiently small T  can be chosen so that |M |qt  <  R, and

therefore, A  maps the ball B  into itself.

( i i i )  T h e  m ap A  is p re -com pact. We show the map A  is pre-compact

by setting up a bound for B  =  {v  =  Aw\w  £ B }  in L 2((0, T ); H 1), and a

bound for {v t =  {Aw)t \w £ B }  in Y  — L 2 ((0 ,T ); (H 1)*). Note that we have

shown IMIqj, <  R  in Part ( i i) .  I f  we choose e =  —  in (4.19), then we have
2 F

To see {v t =  (Aw )t \w £ B }  is bounded in Y  =  L 2 ((0 ,T ); (H 1)*), we take 

any u £ L 2 ((0, T ); H 1) and proceed from (4.14) to do the following calcula

tions:

(4.22) ||V » |& , <  F 2H v ll^  +  ^ - | h | |2 <  F 2R2 +  =  i t 2.

So we have

< vt , u > — D \ I  «V  • (Vu — v f )  dx — — D i  /  (V v  — v f ) V u d x .  
Jn Jn x 7

Using the fact tha t \ f \  <  F  (a constant, see Part ( i)  of this proof), we have

(4.23) [ T | <  vt , u >  | ds <  A  (|| Vu||qt  +  F H u ll^ )  || V u ||Qt 
Jo

< D 1 [ l t  +  F r )  IIV u llo , <  D x [ i i  +  F R )  ||u||Lz((0
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Note that (4.23) implies

lk t | |L 2 ( (0 ,T ) ;( . f f1)*) <  D i ^ R  +  F F t j  ,

that is,

vt e L2((0, T); {H 1)*) C  L 1 ( ( 0 , T ) ;  (H 1)*).

Now we have H 1 C  L2 C  (H1)* w ith compact imbedding H 1 C  L2. By Lemma

4.1 (w ith p — 2, W =  H 1, X  =  L2, and Y =  (H1)*), the image B  of B  under 

A  is pre-compact, tha t is, A  is a pre-compact mapping.

( iv )  T h e  m ap A  is con tinuous. Assume -> iu in L 2(Qt ) w ith 

>  0, w >  0. Then we have \ \w ^  — w \\qt 0. Let and c ( a ^  

and a) be the corresponding solutions of (4.16) ((4.17)), and v ^  and v be the 

corresponding solutions of (4.14). By taking the difference of

cf )  _  A c ^  +  7 lCW =  - / W fc) c(fe),

and

ct -  A c  +  7 1C =  - P iw  c,

we have

(4.24) (c «  — c)t — A  (c «  — c) +  (7 1  +  P iw ^ )  ( c «  — c) =  —/?i ( w ^  — w ) c, 

together w ith  the following homogeneous in itia l and boundary conditions:

(4 2 5 ) 1 (c(fc) ~  C) l*=° =  0  in
(c(‘ ) - c ) | s, = 0 , ^ k = 0 .

We m ultip ly (4.24) by (c ^  — c) and do an integration by parts over Qt (t  G 

[0, T]), obtaining

(4.26)  ̂ f  (c<*> — c) 2 dx +  f  | V  (c(fc) — c) |2 dxds
2 . / n

+  f (7 1  +  0 iw ^ )  (c(fc) — c) 2 cteds 
J Q t

=  —/3i f  ( w ^  — w) c ( c ^  — c) ckrds 
J Q t

<  Pi [e f  (CW — c) 2 d:rds +  j -  f  (u /fc) -  tc) 2 dxds 
L • /Qt 4 e  J Q t
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Let e =  so that 71 +  f ixw ^  >  /3xe. Then we obtain from (4.26)
Pi

(4.27) |||c<*> -  C|p +  || V (c<‘ > -  c) HI, <  || («,<*> -  w) HI,.

Note that (4.27) implies

l|V  (c(fc) -  c) \\2Qt <  A . II («/<*> -  w) \\2Qt ->0 (k-¥ 00) ,

and

II (c“ > -  c) | | |T <  ^ 1 1  ( » “ > -  w)  | | |T - y  0 (k ~y oo). 

which in turn give

(4.28) ||/V ) -  /1 |„T -» 0 (k -> 00) .

The proof of (4.28) uses the fact that f  satisfies a Lipschitz condition w ith 

respect to all of its arguments when |Vc| and |Va| are bounded, see Theorem

4.2 for a proof.

Next, we use (4.28) to show — v||<2 r  0. In fact, the equation for

v(k) — v is given by

(4.29) (u(fc) -  v ) t - D xV-  [V  (v{k) - v ) -  f k) (v{k) -  v) -  v ( f t k) -  / ) ]  =  0 .

We m ultip ly (4.29) by (v ^  — v) and do an integration by parts over QT to 

get

(4.30) J  [  (vw  - v ) 2 dx +  D i [  | V  (u(fc) -  v) f  dxds
^ Jn J qt

=  D i f  (v^  — v) V  (v^  — v) dxds
J q t

+ D i J v (/**> -  / )  V  ( v ^  -  v) dxds

Note that | / ^ |  <  F, \ f \  <  F , and they satisfy a Lipschitz condition. By 

Lemma 3.1, we know ||,î ||z,oo(qt,) <  N , a constant. Hence we obtain from
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(4.30) that

(4.31) I | | , W _ l, f  +  D 1 ||V(»<‘ ) - » ) | | J5 r

<  A F U V  ( « “ > -  V )  H e ^ ll («<*> -  W) U q ,.

+B,Ar|| V  (»<*> -  v) ||<J r [ | / t*> -  / | |« r

<  D ,F  (e ||V  (v<‘ > -  v)  | | |T +  i | |  («,“ > -  v) | | ^ )

+ D , N  (e ||V  (»<*) -  v)  || J ,  +  -  /T 0 l.)  .

Let e =  so that

jD i >  D i F e  4- D iN e .

Then we obtain from (4.31)

(4.32) ||„<*> -  +  _  „ | | ^

=  C ,\ \v ^  -  v \\2Qt  +  C2\ \ f ^  -  f\\%T.

We integrate (4.32) over [0, T] to get

(4.33) ||„<*> -  <  C,T||«<‘ > -  v\\%T +  C2r | | / t*> -  f \ \2QT.

Let T  be such that 1 — C \T  >  0. Then we have

(4.34) ||v<‘ > -  v\\%T <  | | / to  _  / ] | | t  _> o (*  -> oo).

That is,

ll^(fe) ~  v||qt  -> 0  (A: -»• oo),

and the map A  is continuous.

C onclus ion : The map A, defined on a bounded, closed, and convex set in 

the Banach space L 2(QT), is pre-compact and continuous (and thus compact). 

Hence i t  has a fixed point n G L 2(Qt ) by Schauder’s theorem. From the 

definition of the operator A, we know that n is actually in V ^ iQ r ) -  That 

is, system (1.3), w ithout the desensitization assumption, has a local in time 

solution w ith  n, c, a G V ^ iQ r ) -  L]
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Remark 4.2. The proof of Theorem 4.1 uses the fact tha t | / |  <  F .  This 

is a consequence of the imbedding theorem (Theorem 2.6) when the space 

dimension m  =  1. There is no guarantee that this is true when the spatial 

dimension m  >  1 .

Remark 4.3. Note that the Vr21’0 (Qr)-solution in Theorem 4.1 only exists locally 

in time, because to have the map A  well-defined (its image to be w ith in  itself), 

T  has to be sufficiently small. Hence the bound F  for | / |  is also known to exist 

only locally in time. Furthermore, i f  the solution n  blows up when t  —> T, 

then by Lemma 3.1 (through an argument of contradiction), we must have

l/U°°(Qt)  ̂oo (t  ̂T).

4.2 Uniqueness of Solution

The proof of uniqueness essentially depends on the boundedness of the chem

ical gradients, tha t is, Vc and Va.

T h eo rem  4.2. The local in time V2 ’0(Q t ) solution in Theorem 4-1 is unique.

Proof. We first show that (3.1) and (3.2) are actually satisfied. In Part (i) of 

the proof of Theorem 4.1 we have shown | / |  <  F  (=  K ),  as a result o f the 

imbedding theorem. Then from (4.15) we have

(4.35) I / a - A  |

<
.D i( l +  ncf)

Vc2
X

D \ { \  +  KC \ )

< X
D \  (1  +  k c 2) 

ota2

|Vc2 -  V c i| +

V Cl

X

+
aa2 aax

V &2 — —V  CL\
A

X

Dx
|Va2 — V a i| +

aa2
Dx( l  +  k c 2)  Dx( l  +  k c x ) 

aax

|V d |

Dx Dx
|V 0 l |

“  ~d [  ~  +  IV (a2 -  ax)| +  |c2 -  Ci| +  —  |a2 — ai|

<  L  (|V (c2 — d ) |  +  |V (a2 — a i)| +  |c2 — ci| +  |a2 — a i | ) ,

where

L  =  max (_X_ X * F  a F \  
l A ’A ’ Dx ’ D x ) ’
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Then, following exactly the proof of Theorem 3.5, we know the solution in 

Theorem 4.1 is unique. □

4.3 Global in Time Existence of Solution

We are going to extend the local in time solution in Theorem 4.1 to any 

time interval in this section. By obtaining a uniform L°° ((0, T); L 2(d))  bound 

for the n component, we show the solution exists globally, thus excluding 

the possibility of any 5-function blow-up. Some lemmas are needed for this 

purpose.

The first lemma says that, under appropriate conditions, the L 2 norm of 

a function can be bounded by its L 1 norm together w ith the L 2 norm of 

its gradient. This is important because the cell mass (||n(a:, £)||i,i(n)) in the 

chemotactic system is conserved (a constant).

Lem m a 4.4. Let dQ, be in C 1. Then fo r  any e >  0, there exists a constant 

C€ >  0 such that fo r  all u £ H l (f2) we have

(4-36) IM I |2(n) ^  e l lV u l l i^ )  +  C dM liqn )-

Proof. We have given a direct proof of this result in Chapter 3 (Lemma 3.2). 

But an alternative proof is also available by using Nirenberg-Gagliardo’s in

equality ((2.5) in Theorem 2.7). To do this, we let k — 0, I =  1, p =  q =  2, 

and r  — 1 in the theorem. Then we have 9 — m /(m  +  2), and the inequality

(2.5) becomes
m 2

(4-37)

from which, w ith  the help of Young’s inequality (Theorem 2.2), we obtain

(4.38) \\u\\l2 <

<

58
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(xlMlif5)  ’  ( f  II-IIoT )

m+ 2 T  to+2
m 2

r h N i h + i f 7 ii“ ii« -

m + 2
2
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where

and

m+2 (  m + 2\  m+2
1 +  e J V m

m + 2
2_/-rm+ 2 ( _ r n _ \  2

Ce =  (1 +  e)— 0 A m + l l

Using the relation

we obtain

f e ) 2

M l? ,2 =  \<2 +  lltillJo,

M l 2 < e \ u \ l2 +  C M l v

That is, equation (4.36) is true. □

Remark 4.4. Note that the above lemma is true of any i f 1 (0,1) function, 

because the condition on the domain is automatically satisfied.

The second lemma gives a Sobolev type imbedding inequality for any non

negative H 1 function defined on a 1-D interval. I t  generalizes a result from 

[15], which is true only for functions that satisfy the homogeneous Dirichlet 

boundary condition.

Lem m a 4.5. Let =  (0,1). Then fo r  any nonnegative u € H l (Q), we have

3  N 2/3
(4.39) IM I i-p i)  <  IMIyJn) ( ||u  I Uqn) +  2 llu*IU2(fby

Proof. We first observe that u e C [0 ,1] by the imbedding theorem. Since 

u >  0, we set u =  p(x)2. Then using Holder’s inequality we obtain

(4.40) I K I l ! 2(n)IMUi(n) =  [  u \d x  [  u (x )dx
Jo Jo

=  4  [  p2p l dx [  P2 dx 
Jo Jo

“ 4 ( /  P2\px\dxSj  .

Note tha t for an unordered pair (a, (3) of adjacent maximum and minimum we 

have

J  p2\px\ dx =  ^  |p ( a f  -  p (P f  \ =  1 1u(a)3/2 -  u(/?)3/2| .
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Hence

r 1 1
(4.41) J  p2\px\ d x > - V a r u ( x ) 3/2,

where V ar f ( x )  denotes the tota l variation of f { x ) .  But i t  is easily seen that

(4.42) V ar u{x)3/2 >  ||«||J2(n) -  u3/2 =  |M |J2 (n) -  IM I^ n )-  

Now, (4.40), (4.41), and (4.42) give

IM IW M W )  > I (ll-lllAn) -  HulliMn))2 ’

from which we solve for ||w||.£,°o(n) to obtain (4.39). □

Remark 4.5. Lemma 4.5 is not implied by Nirenberg-Gagliardo’s inequality, 

that is, \u\ktP <  Co|H |f!9 |H |J“ 0, because ||u||f involves the L 2 norm of u (when 

I =  1 and q—2). Another closely related result: <  CQ\u\dl q\u\\~re in [81]

(Page 90, Theorem 3.5), where only semi-norms of u are involved, requires u 

to be a C 1 function, which is not necessarily true for a function u in H ’1( f2).

The th ird  lemma, which uses Fourier’s method to solve a 1-D parabolic 

problem w ith  constant coefficients ([46], Page 252-255), allows us to give a 

gradient estimate of the unknown function.

Lem m a 4.6. Consider the following problem:

{ wt - w xx +  'Yiw — h (x ,t)  in  (0,1) x (0 ,T ),

w(0,t) =  0 , wx( l , t )  =  0  in  (0 , T ),

w(x, 0 ) =  0  in  (0 , 1 )

where h (x , t ) € L 2 ((0, T); L 2 (0 , 1 )). Assume there exists a constant C, which 

is independent o f T, such that in  [0, T)

f  \h(x,  t ) \ d x  <  C.
Jo

Let A* and ^ ( rc )  (k =  1,2,...), be eigenvalues and (orthonormal) eigenfunc

tions of

- f p x x  +  T iV ’ =  0 , ^ ( 0 )  =  0 , ip x (  1 )  =  0 ,
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and

ak(t) =  [  exp(—Afc(< -  t ) )  [  h {x ,T )i)k{x) dx
Jo Uo

then the unique V ^ i Q r )  solution of (4.43) is given by
OO

w (x ,t)  =(4.44)
fc=i

Also, there is a constant D, independent of T, such that the inequality

(4.45) f  w2( x , t ) d x < D 2
Jo

holds in  [0, T).

Proof The existence of a unique V ^ i Q r )  solution of (4.43) is assured by 

Lemma 4.2. Note tha t the conditions on h(x, t ) suffice to guarantee the con

vergence of w(x, t ) in (4.44) and its spatial derivative as well as the convergence 

of the Fourier expansion
°°  r r l

h (x ,t)  =  E / h(x,t)ipk(x) dx\ ipk{x )
fc=l

([23] §8.2.1, Page 131). Then i t  is tr iv ia l to check that w(x, t) satisfies (4.43). 

Obviously, w (x ,t)  £ V^’̂ Q t) -

Next, we estimate f *  w2 dx. A  direct calculation shows

Afc =  {k -  1 / 2 )2tt2 +  7 1 ,

and

ipk(x) =  \/2sin[(A; -  l / 2 )7ra:] =  \Z2am [\J \k -  71 x],

w ith the ipk(x)s being made to be orthonormal. Noticing that the ipk{x)s are 

also orthogonal and

[  ipk(x)2 dx — (k — l / 2 )27r2 =  Xk -  7 1 ,
Jo

we have

(4.46)

/  00 \  1 00

/  w2 dx =  /  ^ a fc(t)^ (a ;)  dx =  ^  /  a2kxp%
Jo Jo \ k = 1 J  k = i Jo

OO p i  OO

=  J 2 al  V42dx =  ]P (A fe -  71 )a\.
1 1 J 0 j 1

dx
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On the other hand, using the expression for a,k{t), we have

(4.47) \ak(t)\ < \  f  e xp (-A fc(t — r ) )  [  h(x,r)il>k(x )d
\J o Uo

exp(-A  k( t - r ) )  u :  \h(x, r ) |  d r  

<  \ [2C  f  exp(—Ah{t — t ) )  dr.
J o

Hence we obtain from (4.46) and (4.47)

(4-48) Jq wl dx  ̂2° 2 ~  ^  exv { ~ h { t  ~  t )) d r ' j

oo / Pt \  2

< 2 C 2 ^ A ,  U  exp (-A k( t - T ) ) d T j

=  2C2 (X ~  exp (-A fct ) ) 2

k~l
oo

< 2 c 2 Y 2 =  D 2 <  oo.
(k ~  1 / 2 )2tt2 +  m in {7 1, 7 2}

□

We are ready to prove the main result of this section. The underlying 

theory contained in the following theorem is: I f  uniform ly (that is, independent 

of T) a priori estimates in appropriate spaces can be obtained in [0, T), then 

the solution can always be extended to [T, T  +  ST) for some ST >  0, so that 

any [0, T)  w ith T  <  oo is not the maximum interval of existence (see Corollary 

3.5 on Page 250 of [87]).

T heorem  4.3. Suppose we have smooth and compatible in itia l and boundary 

conditions in the 1-D AC  model ((1.3), m =  1). Then there is a constant M ,  

independent o fT ,  such that fo r  t  G [0, T) we have

(4.49)

Furthermore, fo r  any T  >  0 we have n (x , t ) e L°°(QT).
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Proof. We first notice that a substitute like w(x, t ) =  c(x, t ) - c ( x ,  0) =  c(x, t) — 

c0 (a:) w ill transform the ‘c’ equation (together w ith  the in itia l and boundary 

conditions) of the AC model into (4.43), where

h (x ,t)  =  c'q (x ) -  7iC o (a ;)  -  j3 in(x,t)c(x,t).

Note tha t n(x, t ), c(x, t) £ L 2((0, T ) ] L 2(0,1)). If, in addition, we assume c0 (:c) 

is so smooth that c$P(x) £ L 2(0,1), then all the conditions in Lemma 4.6 are 

satisfied, w ith

(4.50) f  \h (x ,t ) \dx  <  f  \c!q { x )  — ^ \ C q { x ) \ d x f  n0(x )dx  =  C,
Jo Jo Jo

where C  is constant independent of T, and where we have used the facts that

0  <  c(x, t ) < 1 ,

and

/  n(x, t )d x  =  /  n(x, 0 ) dx =  /  n0(x) dx 
Jo Jo Jo

for any t  >  0. By Lemma 4.6 we know f *  w2(x ,t)  dx is uniform ly bounded, 

and hence the relation c(x, t ) =  w(x, t ) +  c o ( x )  allows us to conclude that the 

same is true of f *  c l(x , t )  dx (and similarly, of f *  a2 (x ,t)  dx). That is, there 

exists a constant D, independent of T , such that

f  c2(x, t ) dx <  D 2, f  a2x(x , t) dx <  D 2.
Jo Jo

Next, from the ‘n ’ equation

nt -  D i (n x - n f j  -  0  

and its boundary condition we do an integration by parts to get

(4.51)
1  d .  r
2 dt J0

n2 dx — D \ /  nnxf d x  —
Jo Jo

nx dx
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(4.52)

By applying Lemma 4.5 to n(x, t), we obtain from (4.51) that

J  K l  \ f \ d x -  j  n2x dx|

<  Dx [5 ||n||I ,oo||na:||i<2 -  ||nx|||2]

=  Dx\ \n x \ \ L 2 [E\\n\\L^  -  ||n*||£2] ,

3

1 d r ] o ,
-  —  /  n dx < Dx
2 dtJQ
< D x n Lo

<  A I K I I l 2 B IW ll .3 ( W i -  +  f l M b

2 /3

l^xIlL2

Note that

D x \ \Tlx | | l2 J5||»lib3 M il 1 +  g lP z lU 2

2 /3

F x ||l 2 < 0

is equivalent to the cubic inequality in ||nx||£,2:

M i . -  E 3\\n\\Li ^||n||Li +  ^ ||n x ||L2^ >  0,

from which i t  is clear tha t there exists a constant IV > 0 such tha t when 

| |^ x || l2 >  N  the above inequalities hold true. In this case, we know from 

(4.52) that fg n2 dx < 0, tha t is, f *  n2 dx is decreasing. And so is ||n | |L 2 =

( f o n2dx)  7 •
If, on the other hand, ||nx|jt a <  N, then by Lemma 4.4 we know

(4.53) M l| 2 <  £JV2 +  C'e||n || ii.

That is, ||n ||i2 is uniform ly bounded w ith  respect to T. This fact allows us 

to  conclude that cx and ax (and hence / )  are uniform ly bounded in L°°(0 , 1 ). 

Then by applying Moser’s technique we know the L°°(QT) bound for n  is 

unform  w ith  respect to T ,  and therefore, the solution can be extended to  any 

T  >  0 and never blows up. □

Remark 4.6. We notice that the chemotactic equations in both the AC model 

and the KS model have the same structure, and i t  is shown in [87] (Page 52,
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Proposition 5.1) tha t the Lf2 (Q) norm of the maximal solution u to the KS 

model is substantially controlled by from which we deduce that,

for the AC model also, a uniform L 2(Q) bound is sufficient to exclude any 

5-function singularity.

Remark 4.7. We point out tha t the proof of Lemma 4.6 does not apply to 

higher spatial dimensions (m  =  2 and m — 3). This is because we need the 

convergence of the series YlkLi to get estimate (4.48). In general, we have 

the following eigenvalue estimates:

([17] Page 432-434, Theorems 12 and 13), where m (m =  1,2,3) is the d i

mension of the domain 0 , and C  is a constant. I t  is easily seen that 

converges when m  =  1, while diverges when m  =  2 or m  =  3. But we em

phasize tha t in higher dimensions the following facts are s till true: Fourier’s 

expression (4.44), orthogonality of eigenfunctions and their derivatives ([24], 

Page 136, Theorem 4), and Nirenberg-Gagliardo’s inequality. I t  seems, there

fore, that for the same line of proof to succeed in higher dimensions, we need 

better approximation of the term f Q h(x, T)ipk(x) dx: instead of being satisfied 

w ith  a simple constant bound, we have to show something like

for some 0 <  p <  1. We believe this is possible because, for any fixed r  >  0, 

h ( x , r ) is a function in L 1^ ) .  Hence, by Theorem 1 on Page 11 of [84], we 

have

for any fixed r .  The problem is how to make the estimate uniform.

Remark 4.8. We have seen that the 1-D AC model in this chapter satisfies 

all the assumptions in Chapter 3. This implies tha t all the results from that 

chapter, for example, uniform L°°((0 , T ); L 2) bound, transition into steady 

state under proper conditions, and semi-discrete fin ite analysis are obtainable 

for the model studied in this chapter.

lim  Xk/ 0 m =  C
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Chapter 5

Theoretical Analysis o f the  

Steady-State AC M odel

We study the steady-state AC system in this chapter. According to model

(1.3), its steady state is defined by

- V  • [Vn -  n V ( ^  ln ( l +  k c ) +  ^ a 2)] =  0 in Q,

—A c +  (71  +  n)c =  0  in Q,

- A a  +  (7 2  +  /?2«)a =  0  in Q,

[V n  — ln ( l +  k c )  +  ^ a 2)] • v =  0 on dQ =  T i U r2,
c|ri =  1, f§ |r2 =  0,

I f l r i  =  °> a lr 2 =  !>

where z? is the un it outer-normal vector of dQ. (We have re-defined 72  and /52 

to be 7 2 /H 2 and P2/ D 2, respectively, in terms of the original parameters.) We 

are mainly concerned w ith  the existence and uniqueness of solution to system

(5.1). Motivated by the observation that the system has a pair of lower and 

upper solutions we choose to  work in the classical framework in which Pao’s 

technique of upper/lower solutions (also refered to as the method of monotone 

sequence, [69]) w ill be utilized. The C'2+a-regularity of dQ, is assumed for this 

purpose. But before we start, a few comments could prove helpful.

A P rio ri E stim ates for M ixed B oundary Value Problem :
Miranda ([56]) derived the first Schauder-type a priori estimate for second

6 6
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order e llip tic equations w ith  mixed boundary conditions. For e llip tic equations 

of arbitrary order w ith  general boundary conditions which include the mixed 

type as special case, a priori estimates of both C'2+Q(f2) and W 2 ( f2) types can 

be found in [2]. A ll these results assume not only smooth domain (C2+a), 

smooth boundary data (C'2+Q(fl)  or (71+a(f2)), and smooth coefficients and 

source term ((7Q(Q)), but also a ‘complementing’ algebraic condition between 

the elliptic operator and the boundary operator. (We point out, w ithout giving 

the calculating details, that all these conditions are satisfied by system (5.1) 

and its equivalence (5.3).)

Later, Azzam et al. ([8 ], Page 257, Theorem 1) showed tha t these estimates 

s till hold true in 2-D for a plane domain w ith  corners where the two parts of the 

boundary, T i and r 2, meet at an angle 9 <  7r/ ( 4  +  2a) or 9 =  7t / 4 . Lieberman 

([50], [49]), Savare ([75]), and Jochmann ([40]) obtained Holder continuity and 

H s-regularity in the cases of non-smooth data and/or non-smooth domain. 

These results are weaker than Azzam’s but are best possible (optimal) w ith  

the data given.

Stra tegy  of th e  P ro o f of Existence:

Instead of working on the original system (5.1), we work on its equivalence

(5.3) below. Although neither system has quasi-monotone right-hand sides, 

the latter can be made so by freezing its non-local term B  — M /  f n F(u , v ) dx. 

This changes system (5.3) into system (5.12), to which the method of monotone 

sequences can be applied. For system (5.12), we first show that for any B  >  0 it  

has a solution; we then show that, under appropriate conditions, its solution 

is unique. This allows us to define, on a closed interval of real numbers, a 

compact operator

T  : B  T (B )  =  M /  [  F (u(x , B ) ,v (x ,  B)) dx.
Jn

Existence of solution follows from the fact tha t the operator T  has a fixed 

point.

We emphasize that though both the fixed-point argument and the concept 

of upper/lower solutions are classical, the idea to combine them is new. W hat
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is more, i t  allows us to apply the method of monotone sequences to a situation 

where the system does not have monotone source terms.

The outline for this chapter is as follows. In §5.1 we simplify the system by 

introducing appropriate substitutions, and use maximum principle to obtain a 

p rio ri bounds for its solutions. In §5.2 we first define the monotone sequences 

and establish their relevant properties; then we prove existence of solution. 

We present the condition for uniqueness of solution in §5.3.

5.1 The Steady-State System  and Its Reduc-

We first note that no-flux boundary condition is being imposed on the ‘n ’ 

equation of the steady-state AC system (5.1). This makes its solution not 

uniquely determined. But by recalling the physical significance of this model, 

we know that any steady state is the result of the time-evolution of an in itia l 

state, and during this process the mass m(t) =  f Q n(x, t) dx is conserved. This 

suggests that a complementary condition is needed:

where M  is the to ta l mass o f the endothelial cells. This makes (5.1) a well- 

posed system.

Next, the divergence form of the first equation in the steady-state AC model

(5.1) allows us to remove this equation from the system through integration, 

resulting in a reaction-diffusion system (5.12), which has quasi-monotone right- 

hand sides. Hence the technique of upper/lower solutions is applicable to the 

steady-state AC model.

We say two systems have equ iva len t s o lv a b ility  when their solutions are 

m utually determined.

Lem m a 5.1. The solvability o f the system (5.1) is equivalent to that o f the

tion

(5.2)
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system

(5.3)

where

and

—A u = ( j i  +  / 3 iF M / f a F d x ) ( l  — u) in to,

- A v  =  (7 2  +  f c F M /  f n F  dx)( 1 -  v) in to,

Mlri =  0, § f |r2 =  0; ^ | r x =  0, u|r2 =  0,

u =  1 — c, v — 1 — a,

(5.4) F  =  eh =  (1 +  k ( 1 — u))*^\ exp ~  w)2̂  •

Proof. We note that the steady-state chemotactic system (5.1) can be sim

plified first through a substitution and then by an integration. In fact, by 

letting

(5 .5 ) A =  _ X _ ln ( 1  +  Kc) +  _ |_ o2,

and introducing a new unknown

(5.6) b =  e~hn,

we have

(5.7) n — ehb — (1 +  /cc)«®7 exp

and

(5.8) ehVb M  eh[e~h(—V h )n  +  e~hVn] =  V n  -  nVh.

In  view of (5.5) — (5.8), system (5.1) becomes

- V  • (e^Vfc) =  0 in to,

(5.9) ^ —A c +  (7 ! +  /3iehb)c =  0 in to,

—A a +  (7 2  +  p2ehb)a =  0  in to,

w ith  boundary conditions

db . , d c , d a ,
(5-10) g j j lr =  0 ; c|r i  =  1 , g ^ |r 2 =  0 ; — \Vl — 0 , a\r2 =  1 .
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We m ultip ly  the first equation in (5.9) by b and integrate by parts over Q. 

In view of the boundary condition for b in (5.10) we obtain

(5.11) [  eh\V 6 |2
Jn

dx — 0 ,

from which we deduce |Vfe|2 =  0. Therefore b =  B, a constant. W ith  b — B  

and F  =  eh having been used in the second and th ird  equations o f (5.9), a 

further transformation (c, a) — (1 — u, 1 — v) w ill change system (5.9) and

(5.10) into

(5.12)

-A u — (7 ! +  /3 iF B )( l  — u) =  H i(u , v) in f2,

-A v  =  (7 2  +  /32F B ) (1 — v) =  H 2(u, v) in f i,

Mlr i =  0 , § f | r 2 =  0 ,

% \r i -  0 , v \r3 =  0 .dp\

To determine the constant B, we integrate (5.7) and solve for b to obtain 

(5' 13) B  =

Finally, by substituting B  =  M /  Jn F d x  into (5.12), we obtain system (5.3). 

Notice tha t the transformations we have used are invertible. Therefore, the 

solvability of system (5.1) is equivalent to that of system (5.3). □

Remark 5.1. A  simple calculation shows tha t system (5.3) (and (5.1)) does 

not have quasi-monotone source terms (right-hand sides). This implies that 

Pao’s technique does not directly apply to system (5.3) (and system (5.1)).

The method o f monotone sequences requires (non-negative) bounds to be 

given for any solution (n , c, a) of (5.1). To do this we need the following lemma, 

which is a consequence of the maximum principle.

Lem m a 5.2. Let H  be bounded and nonnegative. Then any function w 6  

C 2(Q) D C(Q) that satisfies

^  ^  { —A w  +  H (x , w)w >  0 in Q,

\  w | r i  >  0 , § | | r 2 =  0 ,

must be nonnegative throughout
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Proof. Suppose the opposite is true, then W  =  m a x ^ l —w }  >  0. Let P  € Q. 

be such tha t —w (P ) =  W. Taking at least two values ( - w |r i  <  0, —w(P)  =  

W  >  0), —w can not be a constant, and at the point P  we have A ( —w) >  

—w) >  0. So, by Theorem 2.12, P  can not be an interior point of Q,. Then 

as a boundary point, P  must lie either on T i or on r 2. P  is not on T i because 

—w \r1 =  0 <  —w(P) =  W. But i f  P  were on T2, we would have (P) >  0 

by Theorem 2.14, contradicting the boundary condition § f |r2 =  0- Therefore, 

the assumption was wrong and w >  0 . □

Remark 5.2. The lemma is clearly true i f  we switch I \  and T2 in the boundary 

conditions.

Lem m a 5.3. Any solution (n , c, a) of (5.1) must satisfy 0 <  c <  1, 0 <  a < 1,

andn — (1 +  k c ) kD i  exp B, where B  >  0 is a constant given by (5.13).

Proof. The positiv ity of c follows immediately from Lemma 5.2 once we notice 

c |rx =  1 >  0 and H  =  j i  +  fi\ehB  >  0. From the first equation of (5.3) we 

see u =  1 — c satisfies — A u +  H u  =  H  >  0, w ith  corresponding homogeneous 

boundary condition. Hence u >  0 by Lemma 5.2, and c — 1 — u <  1. The 

proof for a is similar. The last equation follows from equation (5.7), the fact 

tha t b =  B  is a constant, and equation (5.13). □

5.2 Existence of Solution

We have seen that neither the original AC model ((5.1)) nor its equivalent 

((5.3)) has monotone source terms. This prevents us from applying results 

from [69] to them. One way to solve the difficulty is to treat the non-local 

term

as a constant, unrelated to the solution (u , v). This leads to a system (system

(5.12)), which w ill refered to  as the v a r ia t io n a l system , for which monotone 

sequences can be defined and their properties be proved. The existence result 

o f the original system is then proved using a fixed point argument.
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5.2.1 The Monotone Iteration

Now we apply the method o f monotone sequence ([69]) to system (5.12). We 

assume B  >  0 is any given constant unrelated to the solution (u, v). Let N  be 

a constant such that

N  >  max <
0<u,u<l

dHi dHi
du 5 dv

(5.15)

Starting w ith  ( # , # )  =  (1,0) and ( u f ° \ v ^ )  — (0,1), we define two se

quences and (u^k\ v ^ )  w ith  components in C2+a(f2) by

—A +  N u ^  — Nu^k~^  +  i l i ( ^ fc_1\ ^ fc_1̂ ) in 

- A n ( fc) +  N v ^  =  Nv(k-V  +  in

- A u (fc) +  NuW  =  N y fk~V +  H ^ - V , ijC*-1)) in Q,

- A vM  +  NvW  =  in fi,

S ^ l r ,  =  0 , « g l | r ,  =  0 ; ^ | r ,  =  0 . =  0 ,

a '^ l r ,  =  0, 2 g l | r s =  0; 2 g >  |r , =  0 , # > | r ,  =  0.

To jus tify  the definition of the above sequences, we need:

Lem m a 5.4. The sequences in  (5.15) are well-defined.

Proof. We have to show each equation in (5.15) has a unique solution for its 

right-hand side given. We prove this only for the first equation, and the other 

proofs are similar.

For simplicity, we first work w ith  weak solutions; then we quote references 

for C,2+a-regularity. We write the first equation as

—A w +  N w  — (j) in Q,

H r , = 0 ,  f | r 2 = 0 ,
(5.16) 

and define

(5.17) Vj. =  {v  G t f 1^ ) !  vjr i =  0}, V2 =  { v E  H ^ Q )| n,r2 =  0}.

Then, we m ultip ly the first equation in (5.16) by v € V\ and do an integration 

by parts to obtain

(5.18) a(w, v) =  /  (V w V u +  Nwv) dx =  (<f>, v) =  /  ( j )v d x ^ v E V \.
Jn J n
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Since

|a(w,v)| <  (iV +  l) |H |H i|M U i,

and

IO M I <  IM M M Il* <  IM M M I# 1,

we know a(w ,v ) and (</>, v) are both continuous as bilinear form on H 1^ )  x 

H 1^ )  and linear functional on i f 1(lT2) respectively. Furthermore, a(w,v) de

fines an inner product on the H ilbert Space The existence of a unique

w in  satisfying (5.18) is assured by Riesz’s representation theorem ([8 8 ]

p. 167). The fact that w is actually classical follows from a C 2+a(Q) estimate 

of w for mixed boundary value problem of elliptic type ([56]) because all the 

data here are sufficiently smooth. □

Remark 5.3. I t  needs mentioning that in at least one of the references ([8 ]) Ti 

and r 2 are not required to have a non-zero distance (be disjoint) to have the 

normal regularity result. A  smooth boundary dQ, — T i U T2 is sufficient. In 

some special cases where dCl is not smooth, i t  is s till possible to have classical 

solutions. For example, when both T i and T2 are smooth, but they meet at 

an angle 0 =  7r / 4 , or 0 <  7t / ( 4  +  2a), the solution w can s till be shown to be 

in C 2+Q(fl) . See [8 ] for details.

Now we show the monotone properties o f these sequences. But unlike what 

was done in [69] where lower and upper solutions are defined, we apply the 

maximum principle directly.

Lem m a 5.5. ([69]) The sequences in (5.15) are monotone in the sense that 

they satisfy

f  0  =  <  uf1) <  ... <  u(k) <  <  ... <  uf1) <  =  1 ,(5.19) < -  - - - - -  -  -  -  -  >
( 0  — y]0) <  <  ... <  y)k) <  <  ... <  =  1 .

Proof. We use induction on k, and hence the proof depends on the following 

facts: (1-1) 0 =  m(0) <  u(0) =  1, 0 =  y (0) <  v (0) =  1; (1-2) For any k, i f  

and <  ĵ(fc_1) are true, then u ^  <  u ^  and y[k) <  v ^

are also true; ( i n )  0 =  v f1! <  vf0) =  1 ; ( I I - 2 ) For any fc, i f
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and vW  <  are true, then <  «(fc+1) and ij(fc+1) <  v ^  

are also true; ( I I I - l )  <  vf® — 1, 0 =  v ( I I I - 2 )  For any k, i f  

< u^k~^  and v^k~^ <  v ^  are true, then u(fc+1) <  u ^  and v ^  <  y(k+1) 

are also true.

Proof of (1-2): We subtract the th ird  equation from the first one in (5.15). 

By using the mean value theorem on the right-hand side, we get
Q TT

(5.20) - A («<*> -  «<*)) +  N (u (k) -  u<k)) = ( N +  -  u
ou

+ ^ - ( w (fc_1) - F (fc- 1)).
ov

Note that <  0 and <  0. In  view of the induction assumption in (1-2) 

and the choice of TV: N  +  >  0, the right-hand side of the above equation

is nonnegative, and the conclusion u ^  follows from Lemma 5.2.

Proof of ( I I - l ) :  The first part of ( I I - l )  is true because the equation for u ^  

becomes — A +  N u ^  =  Hi(u(°\v(° '>) >  0. Applying Lemma 5.2 again, we 

know =  0  <  The second part of ( I I - l )  is true because the equation 

for becomes — A v ^  +  N v ^  — N, or as we rewrite it,

-  A (1  -  u(1)) +  N (  1 -  vw ) =  0 .

Once more from Lemma 5.2 we know 1 — vW >  0, or v ^  <  1 =  v^°\

To prove (II-2 ) , the following equation suffices:

(5 .21)-A (m (*+1) -  u{k)) +  N (u {k+1} -  u{k)) = ( N +  ^ - ) ( u {k) -  u(fc_1))
ou

+ ^ r 1 (v{k) - v (k~1)).ov

Statements (H I-1 ) and ( I I I - 2 ) are proved in exactly the same way as ( I I - l )  

and ( I I - 2 ). □

5.2.2 Existence and Uniqueness Results for the Varia
tional System

Since the variational system, that is, system (5.12), has quasi-monotone free 

terms after its non-local term is ‘frozen’, i t  turns out that the technique of
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upper/lower solutions is applicable to it. The key part of the proof o f the 

following lemma is the argument that point-wise convergence o f the source 

term satisfying a Lipschitz condition eventually leads to C'2+Q(fi!) convergence 

of its solution ([69], Page 102, Theorem 2.1).

Lem m a 5.6. The variational system (5.12) has a solution fo r  any given B  € 

(0 , oo).

Proof. For any given B  >  0 we know, by Lemma 5.4, the sequences in (5.15) 

are well-defined; By Lemma 5.5, u ^  and are nondecreasing and bounded 

above, while and v ^  are nonincreasing and bounded below. Hence their 

lim its  exist, which we denote respectively by u, v, u, v. Obviously, 0  <  u <  

u <  I,  0 <  y  < v  <  1.

Now we write any equation in (5.15) as

- A u {k) -  H (u {k),v {k)).

Note that u ^  and v ^  are uniform ly bounded, and H  satisfies a Lipschitz 

condition. This implies that the sequence H(u^k\ v ^ )  is uniform ly bounded 

in L p(tt) for any p >  1 . By an ZAestimate from [2] (Page 701, Theorem 14.1) 

we conclude that u ^  is uniform ly bounded in W 2{Vt). Choose p >  m  (where 

m  is the dimension of the domain 12) so that a  =  1 — m /p  >  0. Then by 

the embedding theorem (Theorem 2.6), u ^  and vW are uniform ly bounded in 

C 1 + Q ( f 2 ) .  This, together w ith  the fact that ^  and ^  are bounded, implies 

tha t H(u^k\ v ^ )  is uniform ly bounded in C a(f2). I t  follows from a Schauder- 

type estimate ([2], Page 6 6 8 , Theorem 7.3) that u ^  is uniform ly bounded 

in C 2+a(f2). Then from the Arzela-Ascoli theorem ([16], Page 569) we know 

there exists a subsequence o f u ^  which converges in C 2{Pl) to a function 

u G C 2+Q(Q).

On the other hand, converges to u  point-wise. Therefore, we have 

u =  u, and moreover the whole sequence converges to u in C 2(Q). This 

gives the facts that

—A u ^ —̂ —A u,  and H(u^k\ v ^ )  —>■ H (u,  v),
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By letting k  oo in (5.15), we know the limit functions, u, v, u, v, satisfy

- A m =  H i(u ,v ) ,  —A v  =  H 2(u,v) in O,

—A u =  H \(u ,v ) , —A v  =  H 2( u , v )  in S7,
(5.22)

u lr i =  0 , | | | r 2 =  0 ; §§|r i  =  0 , u |r2 =  0 , 

mIfj =  o, § f |r2 =  0 ; %\ti =  0 , u |r2 =  0 .8P ' 1 2 ’ d p '

That is, both (u,v) and (u,v) are solutions of system (5.12). □

A uniqueness result for the variational system (5.12) is needed in order for 

the function T  in Theorem 5.1 to be properly defined.

Lem m a 5.7. Let A be defined as

(5.23) Xi =  in f ||Vu;||2, A2 =  in f ||Viu||2, A =  m in {A i, A2} ,
w€Vi u»€V2

IMI=i IMI=i

where V\ and V2 are given by

Vx =  { v e  H \ Q ) I  U|Fl =  0}, V2 =  { v e  H ' in ) ]  u,r2 =  0}.

Also, we define L, P, R, and Q as

(5.24) L  =  (1 +  «)*^T exp >

(5-25) 72+ ^ 1 -  

(5.26) ( T T ^ } ’

(5-27) Q =  m ax{A ,/J2} ^ .

Then under condition

(5.28) A +  P > Q ,

M  M
the solution to system (5.12) is unique fo r  any B  with <  B  <  j^j-.
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Proof. Let (u i, u i) and (112, V2) be two solutions of (5.3), and (u , u) =  (112, V2) — 

(u i,v i) .  By taking the difference of the equations for u2 and u ly we have

OH OH
- A ( u 2 - « l )  =  H i ( u 2, V 2 )  -  H i ( u i , V i )  -  ~ g ^ (U2 -  “ 1 ) +  ~  Wl)>

which we rewrite as

(  d H A  d H x
—A u +  I — -— I u =  —— v.

du J dv

We m ultip ly the above equation by u, then integrate on both sides over fi, 

obtaining

dH x
(5.29) [  ( - A « )  

Jn
udx  +

1 n \  du

We estimate the first term in (5.29) as

/Jn dv
-uv dx.

(5.30) f ( —A u )u d x  =  f  \Vu\2 dx >  X\\u\\2 dx.
Jn Jn

To estimate the second and th ird  terms in (5.29), we first calculate

dHx
dv

dH j
du

and

to get

dH i  . „  n d F
du =  7 \ + P \ F B  ~  P i ^ B {l ~ u), 

dH i dF

Since

1 < F < L  

and a simple calculation shows

^ L < r < ^ L  dJ L <  n
’ L |f i|  “  “  | f l | ’ du ~  ’

d F
dv

we have
dH i
du >  7 i + L\n\ > p ,

dH i
dv

< PiRB < P i1̂  <  Q.
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Hence,

(5.31) J u2 dx >  P\\u\\2 dx,

and

(5.32) [  uvdx  <  Q f  \uv\ dx <  -^(||m | |2 +  IM |2)-
Jn ov Ja 2

Combining estimates (5.30), (5.31), and (5.32) w ith  (5.29), we get

(5.33) (A +  P ) N | 2 < | ( W !  +  H 2).

Similarly, we obtain from the V  equation

(5.34) (A +  P ) W | 2 < f ( W I 2 + I H | 2).

By adding (5.33) and (5.34) together, we have

(5.35) (A +  P ) ( IH |2 +  |H |2) < Q ( | M |2 +  |H |2).

Now, i f  we assume that

A +  P  >  Q,

then we have ||u ||2 =  0 and ||u||2 — 0. Therefore, u — U2 — u\ =  0 and 

v =  v2 — vx =  0. That is, the solution of (5.3) is unique for any given constant 

B  of interest. □

Remark 5.4. I t  is easy to  see that a system w ith  the parameter 71 and 72 

sufficiently large w ill satisfy the condition of this theorem, and therefore such 

a system has a unique solution. Physically, this means that when the decay 

rate of both chemicals are very large, the solution of the system is unique.

Remark 5.5. To estimate the magnitude of A in Lemma 5.7, we first note that 

Ai and A2 are actually the first non-zero eigenvalues of

- A w  =  0 in n,  tw|r i  =  0, § f  |r2 - 0

and
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- A w  =  0 in n ,  § f |ri =  0, w \ r 2 =  0

respectively (see [24], pp. 133-134, for a proof). Then, in the 1-D case, a

direct calculation gives A =  |^ ,  where I is the length of the interval (domain).

In  2-D or 3-D, when F2 is empty, the boundary condition for u becomes that

of D irich let’s, and i t  was shown ([19]) that Ai >  ^ , where p is the radius of

the largest disk or ball contained in (the simply connected domain) f2. But

in  this case we have A2 =  0 , because the function w =  1 / |Q | 2 minimizes

in f wev2 ||Vw||2. Hence A =  m in{A 1,A2} =  0. The same is true when T^ is 
IM I=i

empty. As for the case when both I^  and T2 have non-empty interior, no 

estimate is available, to our best knowledge, for the first eigenvalue of such a 

mixed boundary value problem. Nevertheless, we can s till prove that A >  0. 

In fact, Friedrich’s inequality ([55] p. 82), which applies also to the spaces V\ 

and V2 in (5.17) ([53] pp. 149-150), asserts that there are constants C i,C 2 >  0 

such that

I H I < C ' 1 ||Vu|| W e F x ,

and

Hull <  C2 ||Vu|| Vv e V2.

Then from (5.23) we have

Ai >  1 / C l  A2 >  1 / C l

and therefore,

A >  m in { l/C '2, 1 /C ^ }  >  0.

Remark 5.6. Two sets of sufficient conditions were given in [69] (p. 409 and p. 

415) to ensure uniqueness of solution for a class o f reaction-diffusion systems. 

Unfortunately, neither is satisfied by our system. The first set of conditions 

requires that at least one of the two inequalities

■ t dH l m f - 7—  >  Aixefi ou

and

• f  dH* ^  i  m f - 7—  > A2
xen Ov

7 9
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holds. None of the above inequalities is true, because a simple calculation 

shows <  0, ^  <  0. The other set of conditions requires either

¥ > 0 . Of ^ > 0

to be true. But in our case both quantities are negative. In fact, our sufficient 

conditon for uniqueness is also m ild when compared to those for other similar 

systems found in the literature. See [57], [20], and [74] etc. where, besides 

monotonicity, the convexity of the right-hand side H i  and H 2 is also required. 

In addition, a slight modification of Lemma 5.7 w ill give similar sufficient con

ditions for the other two cases considered in [69] (p. 402) where the monotone 

sequence method applies.

We summarize the above lemmas in the following theorem.

T he o rem  5.1. Under condition (5.28), system (5.1) has at least one classical 

solution (n , c, a) with

0  <  c, a <  1 ,

and

n =  (1  +  k c ) kDi exp q -q2 )̂ J F  dx.

Proof. By Lemma 5.1, to solve (5.1), we need only solve (5.3). By freezing 

its the non-local term B  =  M /  Ja F (u ,v ) ,  system (5.3) becomes (5.12). By 

Lemma 5.6 and Lemma 5.7, for any B  w ith

r -  M  < b < c - M
Ci =  m  W \ '

system (5.12) has a unique solution (u(x, B ),v (x , B))  under condition (5.28).

Now we consider the quantity T ( B ) =  M f  f n F (u (x ,B ) ,v (x ,B ) )d x .  A 

simple calculation shows C\ <  T (B ) <  C2. We claim that the function T  : B  e 

[C ijC y  —> T (B )  € [C i,C 2] is continuous. Let E (C \,C 2), B^ —> Bq,

and

(■uk , vk) =  ( u ( : r ,  £ * ) ,  v{x, B h)), ( « 0, «o) =  (« (® , B0),v(x, B 0)),
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we need to show

T (B k) =  M f  [  F (u k,vk)d x  ->• T (B 0) =  M /  f  F {u 0,v0)dx.
Jn Jn

Since F(u , v) >  0 is a continuous function of its components, i t  suffices to have

(uk,vk) ->• (u0 ,u0).

In  fact, from the boundedness of we know { (uk, vk)}^=l is a rela

tively compact sequence, following from a uniform C2+a(Ll) a priori estimate 

mentioned in Lemma 5.6. Note that any lim it point of the above set is 

also a solution of system (5.12), by a similar argument as that in Lemma 

5.6, any such lim it point has the form {u(x, Bo), v(x, B 0)) because of the fact 

B k —> B q. Since the solution of (5.12) is unique under condition (5.28), we 

conclude that (u(x, B 0), v(x, B 0)) =  (u (x ,B 0) , v ( x ,B 0)), and («o,^o) is the 

only lim it point o f the relatively compact sequence {(u k, ffc )}^=1. I t  follows 

tha t (uk,vk) -» (uo,uo). Thus as a compact operator, T  has a fixed point 

by Schauder’s Theorem ([8 8 ], Page 61, Theorem I.C .). Such a fixed point 

B  — M /  f n F (u ,v )  dx makes system (5.12) become system (5.3). This proves 

the existence of solution for system (5.3). The remaining part of the theorem 

follows from Lemma 5.3. □

5.3 Uniqueness of Solution

To obtain a condition on the uniqueness of solution to the original system (5.1) 

(or its equivalent (5.3)), the non-local term B  =  M /  f n F (u ,v )  dx has to be 

treated as a variable depending on (u , v) instead of as a constant. This results 

in  a severer uniqueness condition than for the variational system (5.12).

T h e o rem  5.2. Let X, L, P , R, and Q be defined by (5.23), (5.24), (5.25),

(5.26), and (5.27), respectively. Then under condition

(5.36) A +  P > Q ( 1  +  2L),

the solution to the steady-state system (5.1) is unique.
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Proof. For simplicity, we consider the equations for (c, o) instead of (u, v) (a 

substitution (u, v) — (1 — c, 1 — a) in (5.3) w ill suffice.) Suppose (c i,a i)  and 

(c2, a2) are its two solutions. Let

c =  c2 — Ci, a — a2 — a i,

Fx =  F (cu  a i), F2 =  F ( c2, a2),

B i  =  M f  f  F i  dx, B 2 =  M f  [  F2 dx.
Jn Jn

Then, by taking the difference of the two equations for c2 and cx, we have

(5.37) A (c2 -  Ci) =  7 i(c 2 -  c i) +  p iB 2F2{c2 -  ci)

+ P i B 2Ci(F2 — F i )  +  P iF iC i (B2 — B i ) .

From
d F  dF

F2 — F i =  — ci)  +  — f l l) '

and

B 2 - B i  =  M /  [  F2 dx — M /  [  F id x  =  - ? J ^  [  {F2 - F i ) d x ,  
Jn Jn M  Jn

we have

B 2 ~ B i =  - —7 ”  f
Jn

d F .  . d F .  .
& (C2 “ c>) +  u (“ 2 - 0i )

dx.
M

W ith  c2 — Ci =  c, a2 — ai — a, we rewrite equation (5.37) as

(5.38) —A c +  ^ 7 1  +  Pi B 2F2 +  Pi B 2c i~ ^ ^  c

0 0  dF 0 B i B2t  ̂ [  ( d F  dF
= - Afi2C‘ 9T° + Aci j a (  & c+ aT1

We m ultip ly  (5.38) by c and then integrate over Cl to get

(5.39) J — A  c -c d x  +  J ^7 i +  P1B 2F2 +  PiBzCi-q-^  c2dx

[  dF
=  ~P i B 2 /  Ci — ca dx 

Jn da

(TC+̂ a) * *  J j M c d x .
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Recall the definitions of A, L, P, R, and Q. Noticing again that

, „  r M  ^ ^  M
< F i < L ,  L |Q| - ^ - | f i |>

and that
d F  n OF n
^ - > 0 , ^ - > o ,
oc oa

0  <  ci <  1 , 0  <  m <  1 ,

we estimate each term in (5.39) as follows:

f  — A c -c d x  =  f  \Vc\2dx >  \\\c\\2,
Jn  f Jn

7 i +  f i iB 2F2 +  c2 dx >  P\\c\\2,
n \  d c J
Pi B 2 J ^ d ^ - a c d x  <  | ( | | c ||2 +  ||a||2),

^ ~ W  In  ( ^ c C +  f a ° )  dX Jn FlCl° dX ~ +  Ha l l ) l l c ll>

where Holder’s inequality has been used to obtain the last estimate, which 

in turn bounded by

|Q £ ||c l |2 +  iQ i||<x|p .

Making use of these estimates in (5.39), we obtain

(5.40) (A +  P )||c | |2 <  |  (1 +  3L) M 2 +  |  (1 +  I )  ||o||2.

Similarly, from the ‘a’ equation we obtain

(5.41) (A +  P )||a | |2 <  |  (1 +  3L) ||a||2 +  |  (1  +  L) ||c||2.

We then derive from (5.40) and (5.41) the inequality

(5.42) [X +  P -  Q(1 +  2L)} (||c ||2 +  ||a||2) <  0,

from which we know that i f

A +  P  — Q{ 1 +  2L) >  0,

then

Ml2 = INI2 = o,
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or

c =  0, a =  0.

That is, the solution of the steady-state AC system is unique. □

Remark 5.7. Condition (5.36) obviously implies condition (5.28), from which 

we know that, under condition (5.36), the solution to the steady-state AC 

system exists and is unique.
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Chapter 6 

Analysis o f the Steady-State CS 

M odel

Throughout this chapter we study the following steady-state of the CS model
avu

(6.1)

~'U'XX T  Au —'
7 +  u

- D v xx +  fiv +  k ( v u x ) x — 6(1 -  v)vG(u),

u(0 ) =  1 , « (1 ) =  0 ; u(0 ) =  0 , v ( l )  =  1 .

The main aim of this chapter is to study a fin ite difference approximation

of the above system. Except for a general maximum principle for matrices,

we have not found the discrete a priori estimates we need. We derive these 

estimates systematically, and use them to prove existence, uniqueness, and 

error estimates for the numerical solutions, which, to  our best knowledge, has 

not been done before. We have found that the numerical solutions can be 

classified into two basic types, exactly as was shown in the continuous case 

([4]). The only piece of work on the theoretical aspect of the model is Theorem

6.5 that improves a sufficient condition from [4] for type I  solution.

The outline for this chapter is as follows. In §6.1, we give the mathematical 

properties of the CS model as background information. In  §6 .2 , we give the 

improved sufficient condition on the system parameters for the solutions to be 

o f type I ,  and give the a priori estimates for the exact solutions. In §6.3, we 

first develop some discrete a p rio ri estimates based on the maximum principle;
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we then set up a finite difference scheme for the CS; and using those estimates 

as a tool, we show the existence, uniqueness, and convergence of the numerical 

solution. Error estimates and numerical simulations are also included in this 

section. Some remarks are made in the last section.

6.1 A Brief Review

The steady-state CS model has been studied by Allegretto et al.([4]). Now we 

introduce their work, on which our numerical analysis w ill be based. First, in 

view of the physical significance of u,v, i t  is clear that we need only consider 

solution w ith  0 <  u, v <  1. As for the existence and uniqueness o f such 

solution of (6 .1 ), we have

T heo rem  6.1. ([4]) System (6.1) has at least one classical solution (u ,v ) 

which stisfies 0  <  u(x), v(x) <  1 fo r  x  e (0 , 1 ).

T heo rem  6.2. ([4]) Suppose 

( M  +

Then the nonnegative solution of system (6.1) is unique.

Before we give the remaining results, we need the following definition.

We call a solution (u , v) of type I  i f  the function v is monotonically in

creasing in (0,1); or call i t  of type I I  i f  v has a pair of extrema.

T heo rem  6.3. ([4]) Any nonnegative solution of system (6.1) is either of 

type I  or o f type I I .

T heo rem  6.4. ([4]) (a.) Suppose the condition 

(6.3) P +  A k c *  >  b( 1 -  c*)

is satisfied. Then v is of type I .  (b) Let

_  1 -  c* _  c*______
Cl  —  r /  \  i l /2 ’ °2 ~  r ( \  i  x/ 2 ’

M ? +a)] M ‘ +a)]
8 6
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and
I6’ I + f  (A +  s +  2 )W

D , =  -
6 (1  — c* ) / 2

I f

(6.4) exp ( £ )  <  (1 -  A )  ( l  +  | f )  ,

then v is o f type I I .

Remark 6.1. Since (6.2):

o m  *\ f t2 fl2  ab
/ 5 > 6 ( 1 - c )  +  i 6 l U  +  4A

implies (6.3):

/? +  A k c *  >  6(1 — c*), 

we know that the uniqueness conclusion applies only to type I  solution.

6.2 The Theoretical Work

In this section we first give a result which improves the sufficent condition in 

Theorem 6.4 (a) for type I  solution; we then give the gradient estimates for the 

general solutions. We need the following nonlinear version of the maximum 

principle first.

Lem m a 6.1. ([72]) Suppose v — v(x) 6  C 2[a, 6] satisfies the differential in 

equality L[v ] =  vxx +  H (x ,v ,  vx) <  0 in  [a, 6], where H  =  H (x ,y ,z ) ,  ^ , and 

are continuous in their domains; H (x ,  0,0) =  0, <  0. I f v  assumes

a nonnegative maximum value M  at an interior point of [a, 6], then v(x) =  M .

T heo rem  6.5. Suppose

(6.5) /? +  A/c >  6(1 — c*),

then v is of type I .
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Proof. We apply the above maximum principle to the steady-state equation 

for v, which we rewrite as

' P k (  av _ \ b . . .
~D ~ D ( y + u  +  )  “  +  5 ( ~  l , ) G ( “ )

where the equation for u has been used. Let

K
D-

TT **H  =  ——uxz +

v =  0 ,

y-

In  our case, the conditions in Lemma 6.1 are all satisfied except the one:

dH
dy

<  0 .

Since

(6.7)
d H
dy

P nX b . (  2 kolu  26 A

=  - ^ - ^ d g ^ - { w ^ )  +  d g (u) ) v

where y =  v ( x ) >  0 , to guarantee <  0  i t  suffices to have max f ( x )  <

0 , where

(6.8)
P k \  b 

/ W  =  - 5 - - 0 “ + p G ( « ) .

/(®) =

Note that u(0) =  1 and u ( l)  =  0, and u is decreasing on [0 ,1 ]. Since 0 <  c* <  

1, we know there is a unique £o € (0,1) such that u{x0) =  c*. Hence,

for x e [0 , xo],

~D  ~  1)U for X G ^

I t  follows that f ( x )  is monotone on both invervals [0, x0] and (x0, 1]. Therefore, 

(6.9)

Since

max f ( x )  =  m a x {/(0 ) , / ( £ O) , / ( ! ) } •
e €[0,1J

while

(6 .10)

/ ( I )  =  < 0, f { x0) = ~ j j (P  + «^c*) < 0,

/ ( ° )  =  ~ j j \ P  +  KX -  6(1 -  c*)],

i t  is clear that max f ( x )  <  0 i f  and only i f  p  +  kX >  6(1 — c*), tha t is, (6.5) 
xe[o,i]

is true. Under the above condition, the function v(x) can not assume any 

nonnegative maximum, and i t  must be of type I .  □
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Remark 6.2. Note that condition (6.3) implies (6.5), indicating tha t Theorem

6.5 is an improvement of Theorem 6.4 (a).

Lem m a 6.2. Let (u,v) be a positive solution of (6.1), and

_ f x , a \ * _  p exp (p) exp (2 / i ) +  1
/ i = ( A - l — I , m  =  j —r— - , M  =  p-

7 /  ’ exp (2 /t) — 1 ’ exp (2 /i) — 1 ’

Ar /c 3/3 36(1- c * )  ,
AT =  — M  +  —  H     +  1.

D  2D  8  D

Then we have the following estimates:

(6.11) — M  <  ux <  —m, |vx | <  N.

Proof. Noticing that

0  <  u, v <  1 ,

we obtain from the first equation in (6 .1 ) that

(6 .1 2 ) Xu <  uxx — ( A 4— ) M <  ( A +  — ) u =  u2u.
V 7  +  UJ \  7 /

Now suppose w is the solution of the following problem

I Wxx =  U2W,6.13 < X X  H- ,

[  ic(0 ) =  1 , w ( l)  =  0 .

By the maximum principle, w has the properties: (0 <  w <  u), which results 

in

(6.14) 0 <  w <  u, wx(0) <  Ux(0), ux( l )  <  tg ^ l) .

Direct solution of (6.13) gives us

, . _  exp (px) exp (2 /t — px)
exp (2 /t) — 1 exp (2 p) — 1 ’

and thus

(a cn /nx exP (2/i) +  1 v p  exp (p)
(6.15) to*(0) = -- p ------- jz-x— T, Wx( 1) = --------- \  '

exp (2 /t) — 1 exp (2 /i) — 1
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Then, the estimate for ux follows from the fact that

(6.16)

which is a result o f uxx > 0 .

Next, we estimate vx. Prom the second equation in (6.1) we have

We integrate the above equation from 0 to x and use the fact tha t t>(0) =  0 to 

get

Application of the Mean-value Theorem to the first integral and direct esti

mation of the second one on the right-hand side of the above equation give 

us:

The estimate for vx is then obtained easily from (6.20), (6.18), (6.16), (6.15),

Remark 6.3. We could have used the barrier function method to conduct the 

gradient estimate for v, but the divergence form of its equation and the bound

edness of u, v save us from that way, which involves more complicated work. 

See Gilbarg and Trudinger ([31]) for more information.

Remark 6.4. We see that u is always decreasing and concaving up, while w ith 

v the situation is not tha t simple. But as we saw in last section, v has at most 

one pair of extrema.

(6.17)

Integrating the above equation again from 0 to 1 and using the fact u ( l)  =  1 

(plus w(0 ) =  0 ), we obtain

Jo D  J0 J0

(6.20)

and (6.14). □
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6.3 The Numerical Work

We w ill give a finite difference analysis of the CS in this section. So we divide 

the interval [0 , 1 ] into n  equal subintervals w ith  the nodes being denoted by 

Xi =  ^ =  ih, i  =  0, Let Vh be the space of functions that are piece-wise 

linear on or*], i  =  l , . . . ,n .  We w ill identify any sequence {u ; ; } " _ 0 w ith 

an element w € Vh w ith  w(xi) — Wi, i  =  0 , ...,n, because they are mutually 

determined. Now we define some difference operators. The Euler forward- 

difference operator Fh is given by:

Fhw{x) =
/ t

So that
F M x t )  =  FhWi =

The second order center-difference operator L/t is defined by:

. . w(x +  h) — 2 w(x) +  w(x  — h)

So that

. . w(xi+1) -  2 w(xi) +  w (x i- i )  wi+i -  2 Wi +  Wi- 1
L hw{Xi) = ------------------ — , L hWi = ----------- —2------------ .

For any w =  {w i} 1̂ ,  we define:

min w ~  m in Wi, maxw =  max Wi, ||w|| =  max
i\<i<in ii<i<in ii<i<in

and for a constant c, w =  c means Wi =  c, i  =  * i , ..., i n\ and w <  (> )c  means 

Wi <  (>)c, * =  h,..., in -

6.3.1 The Discrete Maximum Principle and A Priori 
Estimates

The discrete maximum principle and the a prio ri estimates established as a 

consequence w ill play the key role in our numerical analysis. We start w ith  

the discrete maximum principle.
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Lem m a 6.3. Let w =  {u ;i} ”= 0  satisfy

(6 .2 1 ) ~ L hWi +  PiFhWi +  qiWi > 0 , i  =  1 , n -  1

where p <  0 and q >  0. I f  there exists some j  (1 <  j  <  n — 1) such that 

min w =  Wj <  0 , then w =  Wj.

Proof. From

0 <  - L hWj +  PjFhWj +  qjWj <  - L hWj +  PjFhWj =

± ( w j  -  Wj_i )  +  -  %)(Wj -  wj+ i)  <  0,

we obtain W j-i =  Wj =  w j+x. Continue the above process w ith  j  — 1 and j  + 1  

un til we have w* =  wj, 0  <  k <  n, tha t is, w =  Wj. □

Remark 6.5. A  more general version of this lemma, developed for general 

matrices associated w ith  elliptic problems, can be found in [38].

Remark 6 .6 . In Lemma 6.3, if, in  addition, we assume wq >  0, wn >  0, and 

w 0, then we know Wk >  0, k — l , . . . ,n  — 1. Otherwise we would have 

m inw  =  Wj <  0 for some 1 <  j  <  n — 1, and hence w =  Wj <  0 by Lemma 

6.3. On the other hand, w0 >  0 and wn >  0 implies w =  Wj >  0. So the only 

possibility is w =  0. But this contradicts the assumption w ^  0.

We then set up the positiv ity o f solutions to a particular type of second 

order difference equations.

Lem m a 6.4. Let w =  {uJi } ' l=0 satisfy

22  ̂ f  ~ L hWi +  PiFhWi +  qiWi =  T i{M  -  wf), 1 <  i  <  n -  1 ,

\  0 <  Wo <  M , 0 <  wn <  M,

where p  <  0, q >  0, r  >  0, and M  >  0 (a constant). Then, either w =  0 (in 

which case r  =  0), or

(6.23) 0 <  Wi <  M , i  =  1,..., n — 1.
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Proof. To get the left half of (6.23) we need only to note that

- L hWi +  PiFhWi +  (qi +  Ti)wi =  r {M  > 0 , w0 >  0 , wn >  0 ;

and then apply Lemma 6.3 to w^ To obtain the right half of (6.23), we apply 

Lemma 6.3 to =  M  — Wi. □

Next, we proceed to derive some more general a priori estimates. We begin 

w ith  difference equation w ithout a first order term. The following lemma w ill 

be needed.

Lem m a 6.5. Let w(x) and {iUi} " = 0  be the solution of

(6.24) —wxx +  qw =  1; w(0) =  0, w ( l )  =  0

and

(6.25) ~ L hWi +  qwi =  1, i  =  1,..., n -  1; w0 =  0, wn — 0

respectively, where q >  0 is a constant. Then Wi <  w (x i) , i  — 0, ...,n .

Proof We first show wxx <  0. By the maximum principle we have w(x) >  

0 for 0 < x <  1 . Since tt;(0) =  u>(l) =  0, we know there exists an x0,

0 <  Xo <  1, such that w (x0) =  max[0,i] w(x). From elementary calculus 

we know — w xx( xq) >  0. Then we have qw(x) <  qw(xo) <  1, and therefore, 

wxx — qw(x) — l  <  0. Now we differentiate (6.24) twice to get w ^  — qwxx <  0.

Next, let e, =  w(xi) — Wi. By using Taylor’s expansion

wxx(xi) -- L hw { x i )  >

we rewrite (6.24) as

|  - L hw(xi) +  qw(xi) =  1 -  ^ ^ - h 2, i  =  1 ,..., n -  1 ;

|  w(x 0) =  0, w(xn) =  0.

Now we subtract (6.25) from (6.26) to obtain

o
(6.27) - L hei +  qei =  —— >0,  i  =  1,..., n -  1; e0 =  0, en =  0.

Hence by the discrete maximum principle, e* >  0, and therefore, Wi <  w(xi),

1 =  0 ,..., n. □
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I t  turns out tha t for equation w ithout the first order term and w ith  homo

geneous boundary conditions, a sharp uniform estimate on the magnitude of 

its solution can be obtained.

Lem m a 6 .6 . There exists a constant $(q), where q =  { ^ } " = 0  >  0, such that 

any solution of

(6.28) ~ L hWi +  qiWi =  r it i  — 1 ,..., n -  1 ; w0 =  0 , wn =  0  

satisfies

(6.29) |M I <  $IM I

and

(6.30) | | f W | < ( l  +  $ |M |)||r||.

Further more, $  can be made independent of q.

Proof. Let v be the solution of

- L hVi +  min q Vi =  \\r\\, i  =  1, ...,n -  1; v0 =  0 , vn =  0 .

Clearly, v >  0. Since

- L h (vi  ±  Wi)  +  q f i v i  ±  Wi)  =  ||r|| ±  r  * +  (<& -  ming)uj >  0,

and v0 — w0 =  0 , vn — wn =  0 , by the discrete maximum principle we have 

—Vi <  Wi <  vi} i  =  0, ...,n. That is, ||ie|| <  ||u||.
V'

We then estimate [lull. Noticing that -jpL- satisfies
In i

Vi Vi Vo v n
- L h-r- r  +  m in q —  =  1 , « =  l , . . . , n - l ;  tt-m =  0 , tt—rr =  °,

IMI r l l  r l l  r l l
II^Hwe use Lemma 6.5 to get tj—n- <  ||u(a;)||, or ||u|| <  ||u(a;)||||r||, where u(x) is
Mr ll

the solution of (6.24) w ith  q being replaced by m in g  ( we use t °  denote

the solution of (6.25)). A  direct calculation shows

,  ,  .  [ f  ( !  -  2 * ) '
u(x) =  -

2 cosh

Q q cosh ^
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and

K^OII =  H q) =  \  ( 1 ~
9 \  cosh ^  

where

q — min <&.
0 < i< n

Therefore, we have ||iw|| <  ||u|| <  $ (9 )||r||.

Now let di =  FhWi-i, i  — 1 , n,  we rewrite (6.28) as

di + 1 -  di =  (qiWi -  ri)h,

so that we have

\di+1- d i \  <  ( |M ||H | +  ||r||)/i.

Then, for any 1 <  k, I <  n — 1, we have

|4  -  di\ < \ k -  /|(||<j[||||w|| +  \\r\\)h <  |t?||||w|| +  ||r||.

Note that u>o — wn =  0. I t  is easily seen that there are m i, m 2 w ith  m\ ^  m 2 

such that min d — dmi <  0 and max d =  dm2 >  0. Hence, we get

\dmi \ — \dmi — dm2| <  IMIII^II T  Ill’ ll)

and

|4 i2 I — Mmi — 4 i  2| <  ||9||||w || +  ||r||.

Therefore, we have

IMII < IklllMI + IMI < (1 + $(g)lkll) IMI,

where we have used the fact tha t ||ty|| <  d>(<7)||r||. The reason why $(<7) can 

be made independent of q is tha t it  is a decreasing function in (0 , 0 0 ) and

$ (0 + ) =  lim $(g) =
g->0+  O

so that any contant $  >  |  works uniform ly for all h >  0 . □
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Remark 6.7. Note tha t the constant $  in Lemma 6.6 make (6.29) hold uni

formly for all q, r, w, and n. O f all such constants, <f> is the best (least). This 

is because the solution of a difference scheme like

- L hWi +  Wi =  l ,  i  =  1,..., n — 1; w0 =  0, wn - 0

w ill converge to the solution of

—Wxx +  w =  I j  w(0) =  0, w ( l)  =  0

when n —> oo, and $  provides a sharp estimate for the latter (see the derivation 

of $  above). Nonetheless, the gradient estimate (6.30) is s till q dependent.

Now we generalize the above lemma to the case w ith nonhomogeneous 

boundary conditions.

Lem m a 6.7. Let the conditions in Lemma 6.6 be satisfied except that Wq =  or 

and wn =  fd. Then we have

(6.31) \\w\\ <  <J>||r|| +  (1 +  ~ m ax{|a|, \/3\} 

and

(6.32) ||F&u;|| <  (1 +  $IM I)IM I +  (1 +  $ IM I)|M I max{|a|, \/3\} +  \ 0 -  a\.

Proof. We apply Lemma 6.6 to w* =  Wi — (a  +  ^ - i )  to obtain the estimates 

above. □

Now we consider difference equations w ith a first order term.

Lem m a 6 .8 . Let p <  0, q >  0. Then the system

(6.33) - L hWi +  PiFhWi +  qiWi =  r u i  =  1,..., n -  1; w0 - a ,  wn — fi 

has a unique solution w. When a =  ft =  0, i t  satisfies

(6.34) |M | <  ||r||

and

(6.35) l l f t t » l l < ( 2  +  * M ) H ,

where ^  is a constant that can be made independent o f p, q, r , w, and n.
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Proof. We first show the homogeneous system corresponding to (6.33) has 

only the triv ia l solution w =  0. In fact, when r  =  0 and a  =  /3 =  0, we apply 

Lemma 6.3 and Remark 6 .6  to Wi and then to —ŵ  to get Wi >  0 and tu* <  0 

at the same time. Thus, w =  0. This indicates that the system m atrix  is 

invertible. Therefore the system has a unique solution.

Now let a  =  /3 =  0. To find a constant T  that works for the lemma, we 

first observe that the solution of (6.33) is bounded by the solution of

- L hVi + P i F hVi =  ||r||, i  — 1, ...,n  — 1; v0 =  0, vn =  0.

So we need only to estimate ||u||. Let a* =  i  =  1, — 1, and do =  1.

We solve the above equation for v by reducing i t  into two first order difference 

equations, in which case we get

Now, since ||w|| <  ||u|| <  ^||r||, we know the constant $  in the lemma must 

exist and satisfy <  | .

Next, we set out to estimate FhWi. Note that although FhW0 <  FhV0 and 

—FhWn - 1  <  —FhVn - 1  follows immediately from the fact tha t ||it?|| <  ||u|| (and

for I — 2 , ...,n  — 1 ; and v\ =  \\r\\h2 

Also,

E U  ( n U a j E U ^ a i )  
------------------------------------------ , v0 =  0

Noticing that a* <  1, we find an easy bound for ||u||:
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plus, of course, the fact tha t w0 =  v0,w n =  vn), the relation HFfciull <  \\Fhv\\ 

does not necessarily hold true. So we proceed in the following way: Let 6* =  

(r* — qiWi)h, and rewrite equation (6.33) as

F hWi -  a,i(FhW i-i -  bt ), 

from which we find the relation
i

FhWi =  WJ=1a,jFhvJo -  y > n U ?afe, * =  1, n -  1.
j = 1

We then have

\FhWi\ <  Fhwo +  \bj\Ul= jak <  Fhv0 +  Y ! j=i \bj \ ^ l = j ak

< I H I  +  ( IH |  +  N | | H I ) < ( 2  +  ^ l k l l ) I H | .

Note tha t the inequality

|F^ | < ( 2  +  ^ |M |)||r ||

holds true for all 0  <  i  <  n  — 1 . □

Remark 6 .8 . Though estimate (6.34) is uniform, i t  does not incorporate the 

factor q. There is a remedy for this shortcoming: When 0 <  min q <  2 we w ill 

s till use (6.34); but when m in <7 > 2 we adopt the following estimate instead: 

I ll 'll — 5 ^ -  derivation goes this: We first note that the solution of (6.33) 

is bounded by the solution of

- L hV i+ p iF hVi + minqVi =  \\r\\, i = l , . . . , n - l ;  v0 = 0, vn -  0.

Let 1 <  m  <  n -  1 be such that vm — maxu. Then apparently we have 

- L hvm >  0, and pmFhvm >  0. Hence, rmnqvm <  ||r||, and vm <  

Therefore,

Ih ll <  ll»ll <  tw  < m ing
Remark 6.9. The proof given above involves direct solution of a second order 

difference equation w ith  only second and first difference terms. By factorizing 

the difference operator, we can reduce such an equation into two first order 

ones, which in turn can be solved by the summation factor method. But this 

is no longer true w ith  the presence of the q terms. See [1] for details.
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The above lemma can be generalized to the case of nonhomogeneous bound

ary conditions.

Lem m a 6.9. Let the conditions in Lemma 6.8 be satisfied except that Wo =  a 

and wn — fi (not necessarily zero). Then we have

(6.37) |M | <  (IMI +  \\p\\\/3 -  a |) +  (1 +  M M I) m ax{|a |, \P\}

and

(6.38) ||F ,M I < (2  +  $ ||g ||)( ||r ||- f||g ||m a x {|a |>|/3|})

+  ( i  +  2 | | p | |  +  M b l l l k l l )  \P ~  « | -

Proof. We apply Lemma 6.8 to Vi =  — (a +  to obtain the estimates

above. □

6.3.2 The Difference Scheme

The following fin ite difference scheme w ill be used to analyze the chemotaxis 

system numerically:

Lhui T  ~  — y+ui >

- D L hVi +  K(FhUiFhVi +  ViLhUi) +  fivt =  6(1 -  Vi)viG{ui),

u0 =  1 , un =  0 ; v0 =  0 , vn =  1 ,

where Ui is the approximation o f u(xi), i  =  0, ...,n. In the following subsec

tions we are going to show tha t the solution to the above difference system 

exists and is unique, and it  converges to the exact solution of (6.1).

Remark 6.10. We have rewritten the term k(vux)x as kvxux +  kvuxx in the 

original equation of v before we approximate each term. Due to the negative 

sign o f ux, we adopt a forward diference for vx so that the maximum principle 

w ill apply, and there is no such guarantee otherwise.

Remark 6.11. We see that the truncation error for the first difference equation 

is due to approximating uxx(xi) by L hu(xi)  — ? and there

fore is 0 (h 2); while for the second equation the truncation error is 0 ( h ) , which

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



is due to the approximation of the first order derivatives by a forward (back

ward) difference scheme. This indicates that a consistent difference scheme 

has been used.

6.3.3 The Existence of Numerical Solution

Theorem  6.6. The fin ite  difference system (6.39) has at least one solution 

pair (w, v ) with 0 <  U{ <  1 , 0 <  Vj <  1 (z =  1 ,..., n — 1 ).

Proof. We are going to use Schauder’s fixed point theorem to prove the exis

tence of solutions. We break this into two parts:

(a) D efinition and Com pactness of the  O perato r T. Note that for 

any (U, V ) 6  I f ,  the following system

T/j'Uj +  Xui =  j+ u f  )

- D L hVi +  K{FhUiFhVi +  ViL hUi) +  fivt =  b{ 1 -  Vi)V ? G {U t) ,  

uQ =  1, un =  0; v0 =  0, vn =  l

has a unique solution (u , v) because each equation in (6.40) can be treated as 

a linear one, and Lemma 6.8 applies. Furthermore, we know (0,0) <  (zq, ) < 

(1,1) (i  =  1, ...,n  — 1) by Lemma 6.4. Thus we have defined an operator T: 

I f  —» M C  I f  w ith  T(U, V) =  (u , v), where M  is defined by:

M  =  {(u ,u ) € I f  |(0,0) <  (u,v) <  (1,1), (uq, Vo) =  (1,0), («„, vn) =  (0 ,1)}.

Note that M  is a bounded, convex, closed, and nonempty subset of I f ;  and 

T  clearly maps M  into itself. Also, T  transforms any bounded set B  into a 

relatively compact set T (B ) C  M  becasue M  itse lf is compact as a closed 

bounded set in a fin ite dimensional Banah space I f .  Below i t  w ill be shown 

that T  is also continuous. Thus T  has a fixed point (u , v) in M  by Schauder’s 

fixed point theorem ([8 8 ]). That is, (u , v) is the solution of the following system

{ —LhUi +  Xui —

- D L hVi +  K{FhUiFhVi +  ViLhUi) +  /3v{ =  6(1 -  Vi)vfiG(uf), 

u0 =  1, un =  0; v0 =  0, vn =  1.
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Since (u ,v) is nonnegative, (6.41) is reduced to (6.39). Therefore, system

(6.39) has a solution as desired.

(b ) C o n t in u ity  o f  T. Since U+ and V + are continuous functions of 

U and V  respectively, we need only show T  is continuous in [0, oo)2. Let 

(0,0) <  (t/W , 0*> ), (0,0) <  (U, V ) in V£, and {U^k\  V & )  -> (U, V ). We have 

to show (u^k\ v ^ )  =  T ( [ / ^ , y W )  -> {u ,v) =  T (U ,V ). That is, the solutions 

of

(6.42)

f  r (*) . \ (*) aVi k) (k)- L hu\ +  Au\ =  >

- D L hv{k) +  K{Fhu\h) Fhv{k) +  v{k)L hu f ]) +  /3v\k)

=  6 (1  -  ’G f C f )
(*) 1 «o =  1

converge to the solution of

=  1 , uLk) =  0 ; vQfc) =  0 , Vn ) =  1

- L r f ' + ( A  +  ^ r o )«f» =  0.

LhUi +  Atij —

(6.43) ^ —DLhVi +  K{FhUiFhVi +  ViLhUi) +  (3vi =  6 ( 1  -  Vi)ViG(Ui)

U0 — I ;  Un — 0, Vq — 0, vn 1.

To this end, we need first set up bounds for (Fhu(k\F h v (k^). To estimate 

H-F/jU^II, we rewrite the first equation in (6.42) as

/■(fc)
7+t^

Note that (U^k\  V ^ )  —> (U, V) implies that there are positive numbers 5k —> 0 

and p such that

IIJ/W -  t/|| <  6k, ||V<‘ > -  V|| < St , ||£/(*)|| < p, ||V<‘ >|| < p.

By Lemma 6.7 we have <  C(p), where

(6.44) £(p) =  i + ^ \  +  y ) + * ( a +  ^ )  •

Also, we have

0 <  L ftu(fc) <  A +  — .
7

To estimate we rewrite the second equation in (6.42) as
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- U v f  +  %Fhu f )Fhv f ) +  i (K L tu p 1 +  « b { ‘ > =  ± (1  -  »,w ) V f  te tC /f*). 

By Lemma 6.9, we have ||Fftu ^ | |  <  p(p), where

(6.45) v(p)

x +  1 .

Note that the same bounds apply to (FhU, Fhv), too. Now let =  u ^  — U{. 

By taking the difference of the first equation in (6.42) w ith that in (6.43) and 

rearranging terms, we get

r(k)
(6.46) ° K '

7 +  UI
(k)

(fc)
e) =  u

w ith  r,- being estimated by

( 6 . 4 7 )  | | r | |  <  4 l l U{k) -  U\\ \ \V^\\  +  - \ \ V ^  -  V\\ <  -  ( P-  +  1 )  5 k - »  0 .
7 7 7 \ 7  /

We apply Lemma 6 .6  to to obtain

||e(fc) | | < $ | | r | | ^ 0 ,

l|f/.c(‘ >ll< ( i  +  * ( a +  “ ) ) | M I - > o,

and then

l | i / . « (s ) ll =  ll« e W  -  r | |  <  ( l  +  4> ( A  +  “ ) )  | | r | |  - >  0 .

Now let
(k) _  (fc)

Pi =  Vi ~  Vi.

By taking the difference of the second equation in (6.42) w ith  that in (6.43) 

and rearranging terms, we have

(6.48) - L hp f  +  ^ F hUiFhp f  +  1  {K Lhu f  +  5 V f }G ( t / f }) +  /?) p™ =  Si 

; ( 1  -  V i)  ( v } k)G(Ulk)) -  ViG(Ui) )  -  ^ F ^ F ^  -  £ V iL h e ^
b_
D '
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Since s; is bounded by

IM I <  0,

we apply Lemma 6 .8  to equation (6.48) to  obtain ||p^^|| <  ,, ,, —>• 0. Thus

Remark 6.12. Suggested by the operator T , we use the following iterative pro-

Note that the above procedure always gives a solution between 0 and 1 by the 

discrete maximum principle. Numerical simulations w ill be conducted later to 

show the efficiency of this scheme.

To prove convergence, we need set up bounds for the gradient of the nu

merical solutions. This has actually been done in Theorem 6 .6 .

Lem m a 6.10. Let (u , v ) be the solution o f (6.39). Then we have the following:

we have proved the continuity of the operator T. □

cedure to obtain a numerical solution: Starting w ith  an in itia l point (u \° \ v f^ ) 

w ith

o <  « r  < !»  °  <  vi < 1

) recursively bywe define (u.

(6.50) 0  <  u <  1 , 0  <  v <  1

and

(6.51) i i ^ i i  <  m ,  i i f t» i i  <  i w ,

where ((p ) and r)(p) are defined in  Theorem 6.6.

Proof. See the proof o f Theorem 6 .6  for a more general derivation. □
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Remark 6.13. The bounds in Lemma 6.10 are independent of the numerical 

solutions and the partition  size n, and depend only on the parameters.

Remark 6.14. As we saw in the proof of Theorem 6 .6 : U{ >  0 and >  0.

Hence, FhUi is increasing. But Fhun- i  — — <  0. So we know F^ui <  0 for

all i  =  0,..., 7i —l .  Now from L^Ui >  0 and F^Ui <  0, we know tq is decreasing 

and concaving up. The profile of Vi is not so simple, but we s till can show 

tha t they fa ll into two classes: type I  and type I I ,  according to whether 

Vi is monotone or not, just like the continuous case. The proof depends on 

establishing the parallels of Lemma 2.2 and Lemma 2.3 in [4].

Lem m a 6.11. Let

A i =  0 +  nLhUi +  b(vi -  1 )G(ui).

I f  Aio <  0  and i f  Vi is increasing from i  — i '0 to i  =  io fo r  some i '0 <  io, then

A i < 0  fo r  i '0 < i <  i 0.

Proof Since Ui is decreasing by Remark 6.14, rto =  1, tt„ =  0, and 0 <  c* <  1, 

we know there exists i * , 0 < i* <  n, such that i* =  m in {7 |«j <  c*}. Then for 

i  >  i* we have G(ui) =  max{Mj — c*, 0} =  0, and hence A* =  /3 +  KLh.Ui >  0. By 

assumption, A io <  0, so we deduce that i 0 <  i*. We claim that the quantity

is increasing from i  =  i '0 to i  — i 0. In fact, T  is increasing; so is =  A+ 

by the assumption of increasing v{. Also, since i  <  i 0 <  i*, we have

Lem m a 6 .1 2 . Internal m inim al and maximal extreme points, i f  any, o f Vi 

appear in pairs. Moreover, there is at most one pair o f extreme points.

U<i XLi
Lh^i

Notice that Vi — 1 is increasing but negative, while (1 — ~ ) is decreasing but

positive. Hence (vi — 1 ) is increasing, and so is But <  0, so wewio
know <  0  for i'Q < i < i $ .  Therefore, we have A ; <  0 for i'Q <  i  <  io- □
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Proof. The first conclusion follows from the fact that 0 =  Vo <  Vi <  vn =  1.

Next, we show there is at most one pair of extreme points. Let i \  < i2 be a

pair of extreme points of V{. We assume that there is no other extreme point

on the right side of i \  except i 2. From the equation for i>j in (6.39) we obtain

A D L hvh -  acFhuh Fhvh 
—

Vit

Note that

r  ^ i i - l  — 2 u j i  +  U jj- I - I  ^ 1 1 + 1  — v h  ^  n
LhVi!  ------------ —2--------------<  0, FhVix     <  0

because i \  is a maximal point, and FhU^ <  0 because tq is decreasing. Hence, 

A jj <  0. Suppose there is another adjacent minimal point a3 <  i\ .  Then we 

know A ; 3 >  0. Now Vi is increasing from i  — i$ to i  =  i \ ,  and A tl <  0, so we 

know A i3 <  0 by Lemma 6.11, which contradicts the fact tha t A j3 >  0. This 

proves the lemma. □

We summarize the above two lemmas in the following theorem.

T he o rem  6.7. There are only two types o f solution fo r  (6.39): either Vi is 

increasing (type I ), or Vi has exactly one pair o f extreme points (type I I ).

We then give the following sufficient condition for type I  solution.

T h eo rem  6 .8 . Under condition (6.5):

ft +  A/c >  5(1 — c*)

the solution o f (6.39) is o f type I .

Proof The proof depends on the following facts: (1) The difference equation 

for Wi =  —Vi can be written as

- L hWi + P iF hWi +  qiWi — 0 , i  — 1 , ...,n  -  1 ,

w ith  pi <  0. When ^  >  0, by Lemma 6.3, Wi can not have any interior non

positive minimum, or equivalently, Vi can not have any interior non-negative 

maximum (type I ) .  (2) To guarantee >  0, i t  suffices for (6.5) to  be true, 

just as the proof in the continuous case. □
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6.3.4 The Uniqueness of Numerical Solution

The proof o f the uniqueness of numerical solution follows a sim ilar idea as 

tha t in the continuous case. But first, we need the following lemmas, which 

are discrete conterparts of the formula of integration by parts, and Green’s 

first identity.

Lem m a 6.13. For the sequences (u j} f= 0  and {u ;}”=0, we have

n n

(6.52) y ^ - i FhU j-i =  ~  ^ U jF h V i- 1-
i = i  0 i = i

When uqVq =  unvn =  0, we have

n n

(6.53) ^ 2 V i- iF hU i-i =  - ' y ] u iFhvi- 1.
j= i j= i

Proof. The proof is triv ia l. □

Lem m a 6.14. For {w j} " _ 0 and {n j}"=0, we have

n —1 n n —1

(6.54) VjLhUi =  v%Fh™1 1 -  y ' i FhUj-.1Fhvi- 1.
j = 1 1 i—1

When vnFhun- i  =  Vi F^uq =  0 we have

n —1 n

(6.55) V iL hUi =  -  Y 2  F h U i - i F hV i - i .
i= 1 i = l

Proof. The proof is triv ia l. □

T he o rem  6.9. Under condition (6.2): j3 >  6(1 — c*) +  the positive

solution to the difference scheme (6.39) is unique.

Proof. Let (m ^, n j1̂ ), { u f \  v ^ )  be two nonnegative solutions of system (6.39), 

and
_  (2) (1) _  (2) (1)Ui =  u\ — u\ , Vi — Vi — Vi .

Then («j, vf) satisfies the following equations

(6.56) - W  A » ,=  alU iV^  ^
(7 +  Ui1})( 7 +  *42)) 7 +  «<2)
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and

(6.57) - L hVi +  j^V i +  (F hu f ]FhVi +  FhUiFhv\1} +  ViLhu{2) +  v f ]L hu^j 

=  -^(1 -  -  v j2))G (u j2))vi +  - ^ ( 1  -  -  G ^ ) ) ,

w ith  boundary conditions:

(6.58) uq =  0, un =  0; v0 =  0, vn =  0.

We m ultip ly  (6.56) by «j, and sum over i  =  1, . . .  , n  — 1. (Conditions (6.58) 

w ill also be used throughout the proof.) W ith  the help of partial summation, 

we have

n  n —1 n —1

(6.59) E (F^ - i ) 2 + A E u*? ^ a E m i  •
i = l  i = l  i = l

Since (the Basic inequality)

(6.60) a J 2 \uiVi\ <  +  ^ E u<’
i = l  i = l  i = l

we obtain from (6.59) and (6.60) that

(6-61) E (F hui - i f  vi-
i = l  i= 1

Also, from (6.59) we have

(6.62) A ^ u ? < a ( ] T \ 2 ) (

which gives

n —1 / n —1 \  2 / n —1 \  2

«?
i = l  \  i = l  /  \  i = l

/ n —1 \  2 / n —1 \  2

(6-63) 7  “ H ? ?  7

So we obtain

n —1 /  n —1 \  2 /  n —1 \  2 n —1

(6.64) Ml ̂  ( E Ui )  ( E Vi ) -  7  E Vi-
i = 1 \ i = l  /  \  i = l  )  i = l

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Similarly, from (6.57) we have

(6.65) (Fhyi - i  f  +  ^  E  vi +  ^  E  ̂ L ^wi2)
2=1 2=1 i= l

+  ' ^ y ^ j vlF hu f ) F hVj +  ^  E  ( f ^ f E ^  +  u f  
2 = 1  2 = 1  

n —1b_
D 2 ( 1  “  Wi1} “  vi 2))G(u\2))vf

2=1

+ 5 E ( l - « f V , a )( G ( « f ) - G ( » f )))»i .
2=1

Next, using Lemma 6.13 and Lemma 6.14, we make the following estimates. 

For the fourth term on the left of (6.65), we have

n - 1 j  n —1

(6 .6 6 ) E  ViFhu f }FhVi =  -  Fhu f }FhVi [(w* -  ui+ i)  +  («< +  vi+ i)]
i=1 1=1

=  + 5  £  >  j  £
2=1 2=1 2=1

F̂ )
2=1

2=1

-  ~ l Y l Vi L hU<? ) >  ~ ^ 2 Vi LhUi2)'
2= 1  2=1  

For the fifth  term, we have

(6.67) ~  [F „u iFh4 1) + 1f ’ U u i )  =  vtFk ( 4 ‘ V i )
2 = 1  2 = 1  

n  n

^  t FhUi—iFfcVi—l ^  ^  ] I "^F /jltj—i I |F/jUj_i|
2 = 1  2 = 1

-  E ( * a « . - - i ) 2 “  X > ^ - i ) 2
2 = 1  2 = 1

-  “ 16F2A 
2̂ = 1  2 = 1
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As for the two terms on the right-hand side of (6.65), we have

n- 1  , n—1

(6 .6 8 )

and

D i= l
vh

i= l

(6-69) 4  X )  k 1 “  «{1))Vi1)(G(«S2) -  G {uV ))v i  ^  775 X
i= 1

<

4 D

ab 
W X  *

2=1
n —1

i= i

where a Lipschitz condition on the function G(-) and (6.64) have been used. 

After substituting (6 .6 6 ), (6.67), and (6 .6 8 ), and (6.69) into (6.65), we obtain

n —1

(6.70)
1

D
P - K i - c * ) -

n2a2 ab
16DA 4A X > . 2 < o

2=1

which implies that Vi =  0, and then Ui =  0 in view of (6 .2 ). Therefore, the 

solution is unique. □

Remark 6.15. The uniqueness result applies only to type I  solution, just as in 

the continuous case.

6.3.5 Convergence

Convergence is guaranteed by the uniqueness of exact solution and the uniform 

boundness of the numerical solutions and their first order differences.

T heo rem  6.10. Under condition (6.2): ^  >  6(1 — c*) +  +  — , the
ID D a 4 A

numerical soluton o f (6.39) converges to the exact solution o f (6.1) with an 

error o f 0 (h).

Proof. We deal w ith  convergence and rate of convergence separately in our 

proof.

Convergence. As before, we let u(n ) =  {« i } ”_ 0 and v(n) — {w j}”_0, where 

we use n to indicate the dependence o f the numerical solution (u, v) on the
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partition  number n. We know from Lemma 6.10 that (u, v) and (FhU,FhV) 

are uniform ly bounded. Hence the set {(u (n ),v (n ))}^=1 C C [0 ,1] is bounded 

and equi-continuous and thus relatively compact. Therefore there exists a 

subsequence {(u (n k),v (n k))}kL i that converges to an element (u (x ),v (x )) in 

C [0 ,1], which is the unique solution of the original system of equations. We 

claim that the sequence {(u (n ), itse lf converges to (u(x), v(x)), be

cause otherwise we would conclude that there exists an e >  0  such tha t for 

any k there is an nk >  k w ith  the property \\(u(nk),v (n k) — (u(x), u(a;))|| >  e.

But C {{u (n ), v(n))}£Tx *s itse lf rel£itively  compact. Fol

lowing the argument above, we know a lim it point (u (x ),v (x ))  exists for 

this subsequence, and i t  is also a solution of the original system. Since 

|j(^(rc), — (u(:r), u(a;))|| >  e, this contradicts the uniqueness of solution.

R a te  o f Convergence. We need to rewrite the system of differential 

equations into a discrete form. From the first equation we solve uxx to  get

av
uxx — Am -|---------- u.

7 +  u

We substitute i t  into the second equation. Then, in view of the following 

approximations:

w*x(^i) =  L hu (x i) +  R i, vxx(xi) =  L hv(x i) +  R2,

ux(xi) =  Fhu(xi) +  R3, vx(xi) =  Fhv(xi) +  i?4;

and the following notation:

i ?5 =  Ffiv(xi)R^ +  Fku (x i)R i +  R3R4,

system (6 .1 ) becomes

—L ku +  Xu =  — -^^u  +  i? i,

71j   ̂ —D L hv +  K(FhuFhv +  vL hu) +  0v +  «(Auv +

=  6 (1  — v)vG(u) +  D R 2 — KR5,

u (x0) =  1, u(xn) =  0; v(x0) -  0, v(xn) =  1,

1 1 0
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where u and v and all their first and second order differences are evaluated at 

x =  Xi, i  =  1 , ...,n  — 1. Now we take the difference of (6.71) w ith  (6.39). By 

letting

e j 1') =  u(xi) -  Ui, e ( 2 ) =  v(xi) -  vh

Pi =  X +
a jv (x i)

(7  +  «(*,-)) (7 +  Ui) , Qi =
aui

7 +  Ui

r  i =  +  nLhu (x i) +
7 +

6 (1  -  v(x i) -  Vi)G(ui),

7 ’(el1)) =  ( “  v (x i))v (x i)
G(u(xj))  -  G(uj)

u (x i) -  Ui
-  KViPi 1 e-X) -  KFhViFhe(i)

and rearranging terms, we obtain

- L he\1} +  p ie f ]

(6.72)
- D L hef* +  KFhu(xi)Fhe\Z) +  r^e, 

=  T ( e j  ^ ) +  KViRi +  D R 2 —  KR5 , 

=  0 , =  0 ; e[,2) =  0 , el2) =  0 .

'<7iei^  +  i?i,
(2) ,(2)

Noticing that K,Fh,u(xi) <  0 and that condition (6.2) implies r* >  0, we apply 

Lemma 6 .8  to the second equation in (6.72) to obtain

(6.73) |e(2)|| <  # (||T (e (1))|| +  «|i2x| +  D \R 2\ +  k \R5\)

(Note that the coefficient D  before the term does not affect the esti

mate). Now we apply Lemma 6 .6  to the first equation in (6.72) to get

(6.74)

(6.75) ||Ffce« || <  (1  +  <S>IMI)IMII|e(2)|| +  (1  +  * | |p || ) l* i l-

W ith  the help of (6.74), (6.75), we estimate ||r(e (^)|| as follows:

( 6 .7 6 )  | | r ( e w ) | |  <  ( I +  * 11) l k (1)ll +  < = H ^ » l l l l ^ ( , ) ll

<

+

$  Q  +  /c||p||^ +  «I7(1 +  $||p||)

$  ( |  +  « iw i ) +«»7(i +

,(2)1

\Ri\-

1 1 1
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Note that

7  7 +  1
We use these in the above estimate to obtain

(6 .7 7 ) ||r(e<*))||<  A||e<J) | | + e | f l , | ,

where

(6.78) 0  =  $  ^  +  k ^  ̂  +  kt] ^(1 +  $  +  ^

and

aQ
(6.79) A  _
v '  7 + 1

So (6.73) becomes

(6.80) ||e(2)|| <  A ^||e (2)|| +  V  ((© +  k ) ^ .  +  |D|it:2| +  4 Rs|).

Now i t  is clear tha t under condition

(6.81) 1 -  A t f  >  0 ,

we have

(6.82) ||e(2)|| <  Y T T a¥  +  +  ̂ |-Rs|) •

Using this estimate in (6.74), we obtain

(6.83) ||e<»|| <  ( ( 0  +  k ) ^ , !  +  \D \R ,\ +  „|J%|) +

Since the truncation error R\ is of second order, while R2 and R5 are of first, 

we know our difference scheme converges w ith  a rate of 0 (h) =  O (^) when 

n oo. □

Remark 6.16. I t  is easily seen that A  is decreasing as a function of a in [0, oo], 

and lim a_>0+ A  =  0. This shows tha t condition (6.81) can be satisfied by 

parameters w ith  relatively small a. I t  should be emphasized tha t this condition 

is technical only and not required by the convergence of the difference scheme 

at all, as we showed above. Note that condition (6.81) can also be satisfied by 

parameters w ith  large 7  as well as by other choices.

1 1 2
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Remark 6.17. We point out that we can not improve the order o f accuracy 

from 0 (h) to 0 (h2) by simply adopting center difference scheme for the first 

order derivatives. This is because G(u), and hence vxx, is a continuous but 

not differentiable function o f x G (0,1). We expect this d ifficulty to  be solved 

by using the fin ite element method.

6.3.6 Numerical Simulations

To verify the condition on type I  or type I I  solution, we use three sets o f 

parameters in our numerical realizations:

(a) Condition (6.3), (3 +  Anc* >  6(1 — c*), is satisfied. The solution is of 

type I  by Theorem 6.4.
Type I solution: P+Akc* > b(1 —c*)

0 .8

0 .6

0.4

0 .2

. . . . 1 ........................ t" ■ --------------  i i i j

\
0.8

/  '

\ u = u ( x ) 0.6 v=v(x) x /

0.4

0.2

/
. \ 0 '  1 1 t I

0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1

, a = l, Y=1, D=0.5, P=1, k=1 , b=10, c*=0.9

(b ) Condition (6.3) is not satisfied, but condition (6.5), /3 +  Ak >  6(1 —c*), 

is. The solution is s till of type I  by Theorem 6.5.
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Type I solution: P+Xkc* < b(1-c*), but P+Xk > b(1 -c*)

0.8

0.6

0.4

0.2

L ' ■■■■■!■" | | I" i ....... ..... 1

\
0.8

Nw U=U(X) 0.6 v=v(x) /

0.4

0.2

. \ 0 1, i______ 1 1 . ■
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0 .8

X=1, a=1, y=1, D=0.05, p=1, k=1 , b=20, c*=0.8

(c )  Condition (6.4), exp (-^) <  (1 — D \) ^1 +  in Theorem 6.4 is not 

satisfied, but the graph gives type I I  solution, indicating tha t this sufficient 

condition is not a necessary one.
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Type II solution: expfc/D) > (1-D^ (1+0.5|3c /̂D)

0.8

v=v(x)0.6

0.4

0.2

0.6 0.80.2 0.4

0.8

u=u(x)0.6

0.4

0.2

0 0.2 0.4 0.6 0.8 1

X=1, a=1, y=1, D=0.05, (3=1, k =1 , b=20, c*=0.1

To test the convergence of difference scheme (6.39), a typical combination 

of parameters for each of type I  and type I I  solutions is considered. In both 

cases convergence is obvious from the graphs. Also, our calculation shows that 

the above method actually performs w ith  essentially a rate of 0 (h), matching 

our error estimates.
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Convergence for type I solution 
u=u(x) v=v(x)

Partition size 
n=10

0.5

0.6 0.80.2 0.4
1

n=100
0.5

0.4 0.6 0.80.2
1

n=1000

0.5

0.80.2 0.4 0.6
1

n=2000

0.5

0.80.2 0.4 0.6

Partition size 
^  n=10

0.5

0.80.2 0.4 0.6
1

n=100
0.5

0.2 0.4 0.6 0.8
1 T T

n=1000
0.5

0 0.2 0.4 0.6 0.8 1

n=2000
0.5

0 0.2 0.4 0.6 0.8 1

A=1, a=1, y=1 , D=0.5, (3=1, k =1 , b=10, c*=0.9
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0.5

0.5

0.5

0.5

Convergence for type II solution
u=u(x)

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

v=v(x)

Partition size

1

/
^ \ n = 1 0 0.5

/  Partition size
/  n=10

------------ ,-----------.-----------,-----------1 0 _______i______ i__ _ i______ i----------
0 0.2 0.4 0.6 0.8 1

^ \ n = 1 0 0

1 1 1 " T"......................... •

f  '  n=1000.5

0 ■ - - i ■ •»—
0.2 0.4 0.6 0.8 1

1

^ ' " \ n = 1 0 0 0 f  --------0.5 7  n=1000

0
I

0 0.2 0.4 0.6 0.8 1

n=2000

1

0.5 ■ n=2000

0 » . » i t —

0.2 0.4 0.6 0.8 1

X=1, a=1, y=1, D=0.05, (3=1, k =1 , b=20, c*=0.1 

A ll the numerical solutions are obtained using the iterative procedure (6.49), 

which typically converges in between 4 to 40 steps when the tolerance is set 

to  be 1.0E — 8 .

6.4 Further Comments

In  this chapter a finite difference numerical analysis has been studied for a 

chemotaxis system. For first order derivatives the Euler forward is chosen so 

tha t the maximum principle w ill be applicable. Problems from existence and
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uniqueness o f numerical solutions to gradient estimate and convergence have 

been addressed. Particularly, we have seen that convergence is the result of 

uniqueness of the exact solution and equi-continuity o f the numerical ones. 

There s till leaves some work to be done on this model.

In  th e o re tic a l aspect:

•  Uniqueness result for type I I  solution

Note tha t the convergence established so far is only for type I  solution because 

of the lack of such a result.

•  Condition on the parameters to ensure type I I  solution

Though I believe i t  is too restrictive, I  have not succeeded in improving i t  yet. 

In  n u m e rica l aspect:

•  Finite element (or fin ite volume element) analysis of the CS

The key is to set up the maximum principle. W ith  the basic framework done 

in this chapter, progress is being made in this direction toward success. We 

w ill report this later.
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