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Abstract 

Although previous research has emphasized the use of safety-related measures to assess and 

control safety performance, many construction companies continue to rely on reactive indicators 

for safety control. The reluctance of industry to use safety-related measures for the proactive 

evaluation of safety performance is a consequence of the unique characteristics of construction 

projects, which renders the identification and evaluation of safety-related measures difficult in 

practice. From a theoretical perspective, models developed to proactively assess the safety 

performance have difficult considering (1) the specific characteristics of an organization due to 

the limited amount of data points provided and (2) the dynamic nature of construction sites, 

which can affect measure performance. 

The objective of this research was to develop a framework that could proactively assess safety 

performance using safety-related measures. A framework, which combines Case-Based 

Reasoning (CBR) with simulation modelling, was proposed for this purpose. CBR was chosen as 

an assessment method for its ability to assess safety output under conditions of limited data, 

while simulation was considered for its ability to reliably reproduce project behavior. 

Prior to framework implementation, challenges for understanding current Safety Managements 

System (SMS) practices and identifying safety-related measures were researched. Then, a risk-

rating approach designed to investigate the complex relationship between SMS factors and 

accident precursors from a holistic perspective was developed. This approach allows for not only 

the identification of high-priority SMS factors and accident precursors but also for the evaluation 
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of associations between them, and a many-to-many relationship was found to exist between these 

groups. A case-study was then conducted to analyze and review the effective use of departmental 

data to control and assess safety performance. Several safety-related measures collected by 

several departments were found to be useful for proactively controlling safety performance. 

Altogether, the findings presented here strongly support the use of a holistic approach for the 

evaluation and control of safety performance 

The framework was developed and applied in an industrial construction organization. A total of 

27 safety-related measures were identified from data collected from departmental databases, 

documents, and interviews. After reducing the dimensionality of the database through the 

application of statistical tests and Correlation Feature Based Selection Algorithm, the final 

approach considered nine measures. From a practical perspective, the model was found to 

reliably predict trends in safety performance, and can be used to predict how specific decisions 

made in practice can affect safety performance.   

This research has resulted in (1) the development of a CBR approach that can be used to assess 

the safety performance of construction projects characterized by few data points (i.e., few 

incidents) while allowing for the consideration of an organization’s unique conditions and (2) the 

integration of CBR with a simulation model, which allows managers to more easily predict how 

decisions, both individually and in combination, influence overall safety performance. 

Furthermore, the results of this research support the use of (3) a holistic approach for the 

establishment and evaluation of proactive SMS mitigation strategies and (4) the collection and 
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consideration of various departmental data to more reliably evaluate proactive safety 

performance.  
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Chapter 1: Introduction 

1.1 Problem Statement 

The construction industry is characterized by the high risk associated with its projects. According 

to Raheem and Hinze (2014), the construction sector in industrialized countries is responsible for 

20-40% of fatal accidents, although it employs around 10% of the workforce. According to 

Association of Workers’ Compensation Boards of Canada (2012), accident rates in the 

construction industry are 30% greater than any other industry. The consequences of accidents 

negatively impact the construction sector by increasing direct and indirect project costs (Ikpe et 

al. 2012), inducing schedule delays (Han et al. 2014), and by adversely affecting workers’ 

families, companies’ reputations, and society at-large (García-Herrero et al. 2012). 

According to the Health and Safety Executive (1999), an“accident is any unplanned event that 

results in injury, damage, or loss”. In an effort to mitigate risks and avoid the occurrence of 

accidents, Safety Management Systems (SMS) have been implemented within construction 

companies to identify, mitigate, control, and evaluate safety performance prior to incident 

occurrence (Hinze 1997). According to Wachter and Yorio (2014), SMS “consist of programs, 

process, policies, and procedures for which there is a formal function overseeing their 

development, implementation, and ongoing administration.” ANSI/AIHA (2012) characterizes 

SMS as a set of inter-related and interacting components that are strategically designed to 

establish and achieve project safety goals and, consequently, avoid the occurrence of accident 

precursors. 
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However, the use of SMS in practice is associated with certain deficiencies. For instance, safety 

performance is usually measured using reactive indicators. These indicators, such as Total 

Recordable Incident Rate (TRIR), loss-time rate, and fatality rate (Guo et al. 2016), calculate 

safety performance as a ratio of the number of accidents to working hours. Although simple to 

understand, these measures are limited by their inability to identify flaws prior to incident 

occurrence, which can jeopardize proactive action and may emphasize achievement of safety 

targets over risk prevention. However, as highlighted by Salas and Hallowell (2013), companies 

often use reactive indicators due to the difficulties associated with reliably identifying proactive 

safety measures. In addition, SMS focus primarily on the implementation and control of 

traditional safety programs, such as safety training, hazard analysis, employee involvement in 

safety practices, and equipment inspections (OHSA, 2010; CCOHS 2007).  

 

Although traditional safety programs have been shown to mitigate risks (Hallowell et al 2013), 

this approach is incapable of identifying and evaluating external measures, such as building 

design, project performance, and market availability of skilled workers (Han et al. 2014; 

Mitropoulos et al. 2005; Hinze 1997), that are not traditionally controlled by safety departments. 

SMS factors and accident precursors, however, are characterized by a complex, many-to-many 

causal relationship (Saleh et al. 2014). In this context, there is a need to enhance the scope of 

SMS beyond the safety department, as a poor understanding of this relationship renders the 

identification and selection of safety-related measures difficult in practice. Moreover, it is 

necessary to establish safety-related measures that can assess the performance of these SMS 

factors and, consequently, avoid the occurrence of accident precursors. Figure 1.1 demonstrates 

the relationship between these three concepts. 
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Figure 1.1 Relationship between safety-related measures, SMS factors, and accident precursors 

Several theoretical models for proactively assessing safety output, which combine safety-related 

measures and various evaluation methods, have been proposed. Despite their ability to determine 

the level of influence of safety-related measures on safety performance (Esmaeili et al. 2015; 

Lingard et al. 2017; Salas and Hallowell 2016), these methods are limited by their inability to 

consider characteristics unique to specific companies. Method(s) usually employed by these 

models [such as Artificial Neural Network (Goh and Chua 2013; Patel and Jha 2014) and Linear 

Regressions (Esmaeili et al. 2015; Lingard et al. 2017; Salas and Hallowell 2016)] require a 

minimum ratio between the quantity of safety-related measures and the number of data points 

Kim et al. (2004). However, since the occurrence of accidents on construction sites is relatively 

infrequent (Hopkins 2009), and as many safety-related measures can influence the safety 

performance (Jablonowski 2011), the number of data points available in one organization may 

not be sufficient to appropriately apply these methods.  

To increase the number of data points, these models usually consider accidents from more than 

one organization. This often restricts the use of measures to those collected and assessed by 

safety departments, due to the difficulties in assessing measures beyond the safety department in 
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the accident investigations, thereby limiting the ability of the model to examine safety 

performance from a holistic perspective. Furthermore, since measure availability and influence 

differ between companies due to variability in safety culture, organizational characteristics, and 

project types, the relevancy of the measures and, therefore, outputs, may be limited.  

Current assessment models are also limited by their inability to evaluate how managerial 

decisions can affect the presence or occurrence of safety-related measures. Construction projects 

are dynamic processes that may change considerably during project delivery, particularly as 

managerial decisions are made. Current models cannot reproduce the performance of 

construction projects or associated safety-related measures and are, therefore, unable to predict 

how managerial decisions will affect the performance of safety-related measures overtime.   

Several practical and theoretical limitations may jeopardize the ability of current proactive 

measurement approaches to reliably evaluate safety output for individual companies. An 

approach that is capable of both holistically and dynamically assessing safety performance while 

considering the unique characteristics of an organization will be required to overcome these 

limitations.   

1.2 Research Objectives  

This research aims to develop a framework for evaluating the safety performance of industrial 

construction projects using safety-related measures. This framework is designed to assist 

managers with, and reduce the effort required to, examine SMS from a holistic perspective 
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while, at the same time, examining the effect of managerial decisions on dynamic safety 

performance.  

The followings objectives have been identified as a mean of achieving this aim:   

 To understand the association between SMS factors and accident precursors from a 

holistic perspective. 

 To collect and analyze the safety-related measures available in an organization and to 

review and assess the appropriateness of these measures for the assessment and control of 

safety performance. 

 To propose a method for the evaluation of safety performance, using safety-related 

measures, in conditions characterized by limited data quantity and high meausre 

variability. 

 To combine Case-Based Reasoning (CBR) with simulation modeling to proactively 

assess safety performance of construction projects. 

1.3 Scope of Research 

 This thesis is limited to industrial construction projects. Although safety-related measures 

not considered in Chapter 4 may also affect safety performance, this research has not 

considered these measures due to the absence of data regarding these measures at the test 

organizations. 

 Safety performance was evaluated at a organizational level  
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 While results may be used to inform researchers and practitioners in other regions, survey 

participants (Chapter 2) are from Alberta, thereby limiting the conclusion of Chapter 2 to 

this area. 

1.4 Research Methodology 

The research was conducted in four phases to achieve the stated aim. In the first phase, a 

literature review was conducted to identify accident precursors and SMS factors. Items for each 

group were also identified from accident investigation reports from construction companies. 

Subject matter experts were also asked to provide their opinions on the item list to reduce list 

redundancy. Based on the final set of items, a questionnaire was developed to evaluate the 

likelihood and influence of each measure. The purpose of the questionnaire was to identify 

critical SMS factors and accident precursors as well as the association(s) between them. A 

questionnaire method was chosen due to the ease and timeliness in which data could be 

collected. 

In the second phase, a literature review was conducted to identify safety-related measures that 

could be used to evaluate safety performance. Based on this information, data were collected 

through a case study, and a Multi-Linear Regression (MLR) model was used to identify the 

empirical association between safety-related measures and safety performance. MLR was 

selected for its ability to estimate mathematical relationships between variables and for the ease 

in which models can be interpreted when linearity between dependent and independent variables 

can be assumed (Zayed and Halpin 2005). 
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In the third phase of this research, interviews were conducted with safety and project managers at 

a construction organization to identify safety-related measures. The variables identified by the 

subject matter experts were collected from databases, documents, and a questionnaire. Following 

data collection, proactive evaluation of the safety performance was performed using a CBR 

method. According to Kim, An and Kang (2004), advantages for using CBR are (1) the clarity of 

the explanation between the relationship of input and output variables, (2) the simplicity in 

which the model can be updated with new data, and (3) the absence of a minimum requirement 

ratio between input and output data. 

In the fourth phase, a simulation model, capable of reproducing the performance of a 

construction project, was developed to assist managers with the decision-making processes 

associated with the proactive control of safety performance. Simulation was selected as a suitable 

approach due its ability to capture dynamic and complex interactions between various measures 

and to model construction processes while considering the uncertainty inherent in construction. 

In this research, Simphony (Hajjar & AbouRizk 1996) was used as a simulation tool since it is 

programmable, can be customized for further developments, and has been successfully used in 

previous studies to reproduce the performance of construction projects (Razavialavi, 2016; 

Alvanchi et al. 2012). 

1.5 Framework Overview 

Chapters 4 and 5 propose a framework for evaluating safety performance using safety-related 

measures (Figure 1.2). The final framework is composed of three components. In the data 

identification component, measures that may influence safety performance must first be 
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identified. This can be accomplished through brainstorming sessions between project and safety 

managers. Recently published studies (Hallowell et al., 2013; Han et al., 2014; Esmaeili, 

Hallowell and Rajagopalan, 2015; Salas and Hallowell, 2016) may guide the discussion and 

identification of measures. Following this, data should be collected and stored in the Onsite Risk 

Level Database. Notably, measures can be quantitative or qualitative. 

 

Figure 1.2 Thesis framework 

The second component is the assessment. In this component, the influence of each safety-related 

measure is identified and safety performance is assessed. Prior to the determination of measure 
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influence, it is necessary to (1) clean and (2) reduce the number of random variables in the onsite 

risk level database. A Pearson correlation test and Correlation Feature Base Selection were used 

to reduce the dimensionality of the dataset. To assess the influence of safety-related measures on 

safety performance, a CBR/GA method was suggested due to its ability to generate knowledge 

based on previous experiences using a limited number of data points.  

In the third component, a simulation model is developed to mimic the behaviour of safety-related 

measures and, using the method defined in Component 2, predict safety performance. 

Advantages to using simulation models to reproduce the behaviour of safety-related measures are 

their ability to (1) correctly model complex activities and their interactions with the resources 

required to perform them; (2) model environmental parameters (such as temperature) from  

historical data; and (3) include onsite worker availability when calculating productivity rates. A 

combined discrete/continuous simulation model is suggested to mimic project behaviour. The 

discrete portion of the model is responsible for controlling the flow of entities (workers) and its 

attributes. In the continuous component of the model, time interval is set at one day, where the 

state variable is working hours per day. The continuous component of the model is responsible 

for regulating the time advance of the entire model. The safety-related measures are updated 

based on the dT defined by the user. The final goal of the simulation model is to predict the 

effect of managerial decisions on safety performance. 

1.6 Thesis Organization 

The purpose of Chapters 2 and 3 is to further understand the current practices of SMS in 

construction companies, how managers perceive the influence and likelihood of factors present 
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on construction sites, and how these factors affect safety performance. Based on the foundation 

provided in these two chapters, an approach to proactively assess safety performance is proposed 

and developed in Chapters 4 and 5. The chapters in this thesis are organized as follows: 

Chapter 2 focuses on identifying, from the perceptions of project and safety managers in Alberta, 

Canada, critical SMS factors and accident precursors as well as the association between these 

two groups. A framework using a questionnaire-based methodology was developed. This 

framework is capable of exploring the many-to-many relationships between these two groups, 

thereby assisting companies with the development of strategies aimed at controlling the 

occurrence of accident precursors. Results of this study have reinforced the importance of 

applying a holistic approach when evaluating safety performance.   

Chapter 3 provides insights on several measures identified in literature to proactively assess 

safety performance. Difficulties in utilizing these measures in practice, such as the lack of data 

integration between departments and the cost of data collection, are discussed. A case study 

analyzes the use of safety-related measures at an organizational-level to assess safety 

performance. Finally, this chapter discusses the relationship between safety-related measures and 

safety performance as well as the benefits for using data from multiple organizational 

departments to mitigate risks.   

Based on the understanding acquired from Chapters 2 and 3 (suggesting the use of a holistic 

approach to avoid the occurrence of accident precursors), Chapter 4 discusses the limitations of 

current theoretical assessment models to evaluate safety output. A framework, capable of 

overcoming these limitations, to evaluate the safety performance of construction projects using 
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safety-related measures and CBR is proposed. Notably, this approach considers data from 

databases, documents, and information from several departments. Furthermore, a case study is 

presented to demonstrate the effectiveness and advantages of using the proposed framework to 

evaluate safety performance in practice. 

Chapter 5 focuses on how CBR can be combined with simulation modeling to assist managers 

with decision-making processes. A case study is presented to demonstrate how this hybrid 

simulation approach can be used to evaluate safety performance at a project-level. Scenarios 

were tested to demonstrate framework performance. 

Chapter 6 summarizes the conclusions of this thesis and its academic and industrial 

contributions. Recommendations for future studies are also described here.  
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Chapter 2: Identification and Association of High-Priority Safety 

Management System Factors and Accident Precursors for Proactive Safety 

Assessment and Control 

2.1 Introduction 

While the implementation of safety management practices over the last several decades has 

resulted in a reduction in fatal and non-fatal worksite injuries, current construction safety 

management practices have been criticized for their reactive nature, often applying corrective 

actions after, rather than prior to, incident occurrence (Robson et al. 2007; Wu et al. 2010b). 

With the aim of pre-emptively reducing worksite accidents, researchers have attempted to 

identify SMS factors that elicit the development of conditions or events, termed accident 

precursors, that precede accident occurrence (Wu et al. 2010b).  

While methods allowing construction worksite managers to prioritize critical SMS factors have 

been developed, these methods are unable to determine associations of the identified SMS 

factors with the development of high-priority accident precursors. Given that flaws in the SMS 

factors are a step in an injury event (Bentley 2009) and that accident precursors typically precede 

accident occurrence (Kyriakidis et al. 2012), identification of associations between SMS factors 

and accident precursors can provide construction managers with valuable insight into their 

current SMS. Specifically, this may provide practitioners with an overview of which SMS 

factors require additional attention or control if a particular accident precursor is observed and 

may also assist practitioners in predicting which accident precursors are likely to arise if a 



13 

 

particular set of SMS factors are present. A method capable of determining which SMS factors 

are associated with the occurrence of high-priority accident precursors is crucial for developing a 

safety management system that can mitigate high-risk conditions or environments before they 

develop into accidents and for ensuring that safety management resources are prioritized and 

allocated appropriately. 

This study proposes and demonstrates the effectiveness of a risk rating-based approach for 

assessing and prioritizing current safety management system (SMS) factors and accident 

precursors based on industrial practitioners’ experiential knowledge. In addition to its 

prioritization capabilities, the proposed approach is also capable of examining associations 

between high-priority SMS factors and accident precursors and provides a feasible method for 

identifying relationships between SMS factors and accident precursors. To demonstrate its 

practical functionality, the proposed method was applied at 15 distinct construction companies in 

Alberta, Canada.  

2.2 State of Art   

ANSI (2012) defines a SMS as a set of interrelated, interacting factors that are strategically 

designed to establish and achieve project safety goals. A SMS involves the systemic planning 

and management of various safety elements (Haas and Yorio 2016; Robson et al. 2007) 

including safety standards, safety policies, safety programs, safety evaluation, incident reporting, 

and incident investigation (Choudhry et al. 2008; Hinze et al. 2013a). The performance of a SMS 

is influenced by a large number of internal and external SMS factors that may be associated with 

the development of accident precursors, which are defined as “an event or condition that 
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increases the probability of an accident which may result in the injury or death” (Kyriakidis et al. 

2012 p. 1537).  

Previous studies have provided insight into various SMS factors, revealing that deficient SMS 

may result in worksite incidents. For example, Cheng et al. (2012) have stated that written safety 

policies, accident investigation and reporting, and safety records (a formal record of safety 

information for communication and sharing between safety parties) are the most effective means 

of maintaining worksite safety. On the other hand, Sun et al. (2008) reported that emergency 

response planning and contractors’ commitment to safety had a high impact on safety 

performance during construction projects that were planned for the 2008 Beijing Olympic 

Games. Furthermore, Costella et al. (2009) and Subramanyan et al. (2012) demonstrated that 

safety values shared by all management levels and safety commitment by all worksite personnel 

considerably improved safety performance. Several external SMS factors, which are factors that 

are not typically related to safety departments, such as building designs, schedules, and market 

availability of skilled workers, have also been identified (Han et al. 2014; Mitropoulos et al. 

2005; Hinze 1997). When applied to daily practice, however, the ability to determine which 

particular SMS factors would be most critical in given conditions throughout the life cycle of a 

project and across variable working environments remains challenging for practitioners.  

SMS factors themselves do not result in immediate threats to safety. However, due to their 

ability to elicit accident precursor occurrence, they are considered to be an early step in an injury 

event (Bentley 2009). Researchers have associated SMS factors with the occurrence of accidents 

precursors. Han et al. (2014) have indicated that project delays increase frequency of unsafe 
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worker behavior. Jiang et al. (2015) have demonstrated that ineffective safety programs and 

insufficient resources for safety measures can increase the occurrence of unsafe behavior. Jiang 

et al. (2015) also found that harsh environments can increase the number of worksite hazards.  

In contrast to SMS factors, accident precursors are considered to be both causal and indicatory in 

nature (Kyriakidis et al. 2012; Saleh et al. 2014). According to Wu et al (2010), incident 

precursors are the condition, events, and sequences that preceded and lead up to accidents. 

Similarly, Suraji et al (2001) explained this concept as an undesired event, which was an 

unwanted incident immediately preceding and leading to an accident that have, or could have, 

injured construction personnel or the general public or damaged property or the environment. 

In this regard, relationships between SMS factors and accident precursors, if identified, can be 

used to guide and adapt current safety management practices by providing insight into which 

SMS factors should be further observed, controlled, or mitigated when particular accident 

precursors are observed onsite. Identification of these relationship is difficult in practice due to 

the complexity of the associations between these two groups (Saleh et al. 2014), as shown in 

Figure 2.1. SMS factors may exist in a simple one-to-one relationship with an accident precursor, 

the presence of several SMS factors may be required to elicit one accident precursor, or a single 

SMS factors may be involved in the development of several accident precursors. This complex 

causal influence, therefore, requires research to examine the impact of safety SMS factors on 

accident precursors from a holistic perspective.  
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 Figure 2.1. A relational model of safety system factors, accident precursors, and accidents  

While previous studies have examined SMS factor and accident precursor relationships, these 

studies have evaluated the priority of SMS factors with respect to only one accident precursor 

(Fang et al. 2015; Jiang et al. 2015; Patel and Jha 2016; Zhang et al. 2016). In this context, 

previous studies overlook the impact of SMS factors on accident precursors as part of a holistic 

system. In addition, other studies (Ahmed et al. 2000; Guo and Yiu 2016; Leung et al. 2014; 

Patel and Jha 2014; Zhang et al. 2016) have primarily focused on SMS factors associated with 

safety programs and commitment to worksite site safety and have not considered the impact of 

external SMS factors on the development of accident precursors. A method capable of examining 

the association of a comprehensive set of internal and external SMS factors with multiple 

accident precursors has yet to be developed. 
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2.3 Methodology 

To determine the importance of SMS factors (input variables) and accident precursors (output 

variables) and to understand the complexity between the two, a survey-based, risk-rating 

questionnaire was designed to assess the perceptions of construction practitioners.  

2.3.1 Constructs 

A total of 96 SMS factors or accident precursors were identified following the review of safety 

management literature and the examination of three accident investigation reports provided by 

private construction companies. To increase participant compliance, redundant variables were 

removed to reduce questionnaire length. The finalized list of variables was examined by five 

safety researchers from Universities in Canada and the United States and by three senior 

industrial practitioners (average experience > 25 years). Based on the feedback received from 

these individuals, a total of 28 SMS factors and 24 accident precursors were selected for 

inclusion in the questionnaire.  The description, sources, and classification of these variables are 

summarized in Tables 2.1 and 2.2. SMS factors (Table 2.1) were categorized into four groups: 

safety programs (Hinze et al. 2013a), commitment to safety (Choudhry et al. 2008), resources 

(both budgets and personnel; Fang et al. 2004; Zou and Zhang 2009), and external factors 

(Mitropoulos et al. 2005). Accident precursors (Table 2.2) were categorized into four groups 

according to Wu et al. (2010b)’s classification of accident precursors: worker behavior-, 

teamwork-, workplace-, and materials and equipment-related. 
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2.3.2 Data Collection and Analysis Method 

SMS factors and accident precursors were prioritized using a risk-rating method that was based 

on (1) likelihood, defined as the probability of factor or precursor occurrence, and (2) impact, 

defined as the magnitude of potential consequences of the factor or precursor (i.e., the perceived 

influence of the factor or precursor on eliciting a worksite accident). The use of a likelihood- and 

impact-based rating identifies critical factors across two different dimensions and enables 

quantitative risk analysis by measuring distinct perception (Sun et al 2008).  

The likelihood and impact of each SMS factor and accident precursor is evaluated by domain 

experts using a 5-point Likert scale. Likelihood of each item was rated as unlikely (1) to very 

likely (5) and impact as not influential (1) to extremely influential (5). A questionnaire was 

developed as an instrument to collect likelihood and impact data for each of the SMS factors and 

accident precursors indicated in Tables 2.1 and 2.2 Prior to its finalization, the questionnaire was 

tested by seven participants, all of whom had at least five years of experience in the construction 

industry or in construction research. The final questionnaire is available on Appendix A. 
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Table 2.1 List of SMS factors included in this research 

Group Factor Description Sources 

Safety 

Programs 

Safety policy Safety policy defines responsibilities for employees, third party 

companies, or individuals. In addition, safety policy outlines the 

general framework for enforcement of health, safety, and environment 

rules. 

Hislop 1999; 

Hinze 1997 

 

Safety training Safety training implements health and safety procedures into specific 

job practices and increases workers’ understanding of the hazards they 

may be exposed to; operating procedures and safeguards; and 

emergency procedures. 

Hinze 1997; 

Al Haadir and 

Panuwatwanich 

2011 

Safety committee  Safety committee reviews accident investigation reports, discusses site 

safety matters, and improves safety programs. 

Hislop 1999; 

Hinze 1997 

Safety incentive 

program  

Safety incentive programs reinforce workers’ positive safety behavior. 

The incentives can be made at the individual- or group-level.  

Hinze 1997; 

(CII 2012) 

Subcontractor 

assessment  

In subcontractor assessment, subcontractors’ safety measures are 

reviewed to ensure that they meet the safety requirements established 

by the general contractor. 

Al Haadir and 

Panuwatwanich 

2011 

Emergency planning  Emergency plans establish guidelines and procedures for dealing with 

emergencies, such as major injuries, fires, explosions, etc. 

Hislop 1999; 

Hinze 1997 

Accident investigation  In accident investigations, accident data are analyzed to reveal trends 

and points of weakness in the safety program. 

Hislop 1999; 

Hinze 1997 

Hazard assessment  Identify potential hazardous and mitigation strategies in activities 

associated with the construction process.  

Hislop 1999; 

Hinze 1997 

Employee involvement 

program 

Motivate workers to be involved in various safety and health activities, 

such as job hazard analyses, toolbox talks, and inspections. 

Hislop 1999; 

Hinze 1997 

Inspection and auditing  Safety inspections and auditing identify uncontrolled hazardous Hislop 1999; 
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Group Factor Description Sources 

exposures to workers and/or violations of safety standards Hinze 1997 

Pre-construction safety 

and constructability 

review  

In pre-construction safety planning and constructability reviews, the 

implementation of safety requirements are discussed in an early stage 

of the construction phase. 

Hislop 1999; 

Hinze 1997 

 

Substance abuse 

program  

Substance abuse programs prevent the use of illegal drugs onsite and 

screen those who are affected by substance abuse at work. 

CII 2012 

Safety meetings  In safety meetings, safety issues are updated among stakeholders. and 

solutions for identified problems are discussed.   

Hallowell and 

Gambatese 2009 

Behavior-based safety 

program  

Behavior-based safety programs attempt to reduce workers’ risk-

taking/unsafe behavior. 

Hallowell and 

Gambatese 2009 

Commitment 

to Safety 

Owner’s commitment 

to safety   

Owner commitment to prioritizing the selection of safe contractors, 

addressing safety in design, and participating in safety management. 

Sun et al. 2008 

Management team’s 

commitment to safety 

Management team commitment to investing in safety, defining safety 

management programs, and keeping pressures on workers low.  

Hinze 1997 

 

Subcontractors’ 

commitment to safety 

When subcontractors are committed to safety, subcontractors would 

comply with the safety procedures specified by the general contractor. 

Sun et al. 2008 

Management team’s 

priority with safety 

over schedule  

When a management team prioritizes safety over schedule, the 

management team does not compromise safety even when the schedule 

is lagging.   

Han et al. 2014; 

Lee et al. 2012 

Management team’s 

priority with safety 

over cost 

When a management team prioritizes safety over schedule, the 

management team does not compromise safety even when the costs are 

overrun.   

Lee et al. 2005 

Resources Safety budget  Sufficient safety budgets allow for the implementation of safety 

programs.   

Zou and Zhang 

2009;  

Safety personnel Sufficient numbers of safety personnel allow the implementation of 

safety programs.   

Suraji et al. 2001 
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Group Factor Description Sources 

Foremen  Sufficient numbers of foremen allow orienting and discussing safety 

procedures with workers.  

Han et al. 2014 

External 

Factors 

Change orders  Change orders can induce changes in work plans and sequences, 

demotivate workers, and obscure safety hazards.  

Wanberg et al. 

2013 

Design Complex building design can affect safety by increasing hazards and 

workers’ exposure to unfamiliar types of methods and materials. 

Sun et al. 2008 

Reworks Reworks can demotivate employees to follow safety rules and develop 

hazards that were not previously identified  

Han et al. 2014 

Contract schedule  Tight contract schedules can cause schedule pressure on workers and 

result in disregard of safety recommendations. 

Sun et al. 2008; 

CII 2012 

Available skilled 

workers 

Low numbers of skilled workers in the local market can affect the 

general skill levels of workers onsite.     

Zou and Zhang 

2009 

Government 

regulations 

Stringent government regulations can influence safety management 

practices by establishing strict safety standards and procedures  

Zou and Zhang 

2009 
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Table 2.2. List of accident precursors included in this research 

Group Accident precursor Sources 

Worker-related Workers’ failure to identify hazards Rodrigues et al., 2015 

Workers’ neglect of hazards Rodrigues et al., 2015 

Workers under the influence of drugs or alcohol Suraji et al. 2001 

Workers’ low skill level Suraji et al. 2001 

Workers under high levels of stress due to schedule pressure Mitropoulos et al. 2005 

Workers’ high level of fatigue Zou and Zhang 2009 

Teamwork-related Inadequate communication/enforcement of safety rules within teams Toole 2002 

Insufficient experience of safety management personnel Sun et al. 2008 

Insufficient experience of foremen Toole 2002 

Lack of attention to coworkers’ safety Zou and Zhang 2009 

Misunderstanding of safety requirements by workers or subcontractors  Brown et al. 2000 

Workplace-related Site congestion Fortunato et al. (2012) 

Workers’ exposure to extreme weather conditions Lee et al. 2012 

Workers’ unfamiliarity with work environment Lee et al. 2012 

Poor housekeeping Khanzode et al. 2012 

Low level of ergonomic consideration of workspace Mitropoulos et al. 2009 

Lack of mitigation of hazardous site environments (e.g., noise) Lee et al. 2012 

Inadequate safety guards or barriers Reiman and Pietikäinen 2012 

Unclear emergency procedures Sun et al. 2008 

Inadequate/inaccurate site information Suraji et al. 2001 

Materials and 

equipment-related 

Inadequate use of tools Toole 2002 

Inadequate use of personal protective equipment Zou and Zhang 2009 

Inadequate use of heavy equipment Suraji et al. 2001 

Workers’ exposure to hazardous materials Hallowell et al. 2013 
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22 SMS factors from the Safety Programs, Commitment to Safety, and Resource groups are 

described in the questionnaire as a desirable state. For example, the questionnaire item for the 

“safety committee” factor is “Safety practices and procedures are periodically reviewed and 

evaluated by the safety committee.” If a respondent answers “very likely,” it implies that the 

respondent’s perception of “safety committee” is desirable. As for impact, if a respondent 

answers “little influential,” it implies that the respondent perceives the actions of the safety 

committee as having little influence on accident occurrence—even if the respondent perceives 

the actions of safety committee as undesirable. In contrast, six SMS factors and 24 accident 

precursor items from the External Factors group are described as an undesirable state. The 

questionnaire item for “workers’ exposure to hazardous materials” is “Workers are frequently 

exposed to hazardous material (e.g. explosive, toxic, flammable).” If a respondent answers “very 

likely,” it implies that the respondent perceives that “workers’ exposure to hazardous materials” 

occurs frequently. As for impact, if a respondent answers “little influential,” it implies that the 

respondent perceives “workers’ exposure to hazardous materials” as having little influence on 

accident occurrence—even if exposure occurs regularly. In the questionnaire, the SMS factors 

from the External Factors group are presented in combination with accident precursors. 

Once likelihood and impact are evaluated, likelihood scores for the SMS factors from the Safety 

Programs, Commitment to Safety, and Resource group are reversed to reflect a “high risk” 

scenario. Then, in accordance with ISO standards (IEC/ISO 31010, 2009), standardized scores 

are multiplied to generate a risk score for each factor or precursor. Notably, this method has been 
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used in numerous social and economic studies (Ostrom and Wilhelmsen 2012) and has been 

adapted to assess factors influencing safety (Fang et al. 2004; Sun et al. 2008).  

Likelihood and impact scores are combined to generate risk scores using the following 

equations: 

𝐹𝑗
𝑖 = 𝜑𝑗

𝑖𝛽𝑗
𝑖               (1)  

𝐼𝑖 = 
∑ 𝐹𝑗

𝑖𝑛
𝑗=1

𝑛
           (2) 

where 𝑛 = number respondents; 𝜑𝑗
𝑖  = likelihood score for the ith item assessed by the jth 

respondent; 𝛽𝑗
𝑖 = impact score for the ith item by the jth respondent; 𝐹𝑗

𝑖 = risk score for the ith 

item assessed by the jth respondent; and 𝐼𝑗
𝑖 = average risk score of the ith SMS factor or accident 

precursor (Sun et al. 2008).   

2.3.3 Sample and Survey Procedure 

The online link to the final questionnaire was distributed—through key industrial liaison 

personnel—to 15 construction companies in Alberta, Canada. Industrial liaison personnel 

distributed the online questionnaire link to experienced safety personnel or to construction 

managers in their organization via email. No information regarding their individual or 

organization identity was collected. Survey participation was anonymous, voluntary, and self-

administered.   
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A sample size for the study that would result in meaningful findings was determined from the 

formula introduced by Cochran (1977) (Equation 3) for scaled variables: 

𝑛 =  
𝑡2𝑥 𝑠2

𝑑2
 (3) 

where n = sample size; t = value selected for significance; s = estimate of variance deviation for 

the scale used for data collection, which is calculated by dividing the inclusive range of the scale 

by the number of standard deviations that include almost all possible values in the range; and d = 

number of points on the primary scale multiplied by the acceptable margin of error. 

The significance adopted in this research is 95% (therefore, t = 1.96) and the margin of error is 

0.05%. Bartlett et al. (2001) have described how Equation 3 may be adapted for data collected 

using a Likert scale. Briefly, the estimated variance (s) can be measured by dividing the 

questionnaire scale (i.e. 5) by the standard variation (5), yielding a value of 1. Accordingly, the 

minimum sample size was calculated to be 62 participants. 

𝑛 =  
1.962𝑥 12

(5 𝑥 0.05)2
= 62 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡𝑠 

A total of 102 responses were received, of which six were removed due to incompleteness; 96 

responses were analyzed. The average construction industry experience of the respondents was 

18.80 years (σ = 11.58 years) (Figure 2.2a). A majority of the respondents were currently 

employed on industrial construction projects (Figure 2.2b), and most of the respondents were 

managers (Figure 2.2c). 



26 

 

  

Figure 2.2 Respondent demographic information. (a) Experience; (b) type of industry; and (c) 

current occupation 

2.4 Results 

Internal consistency was tested to ensure that the survey questionnaire design produced 

consistent results. Critical SMS factors and accident precursors were identified and prioritized 

using the risk-rating method. Correlation analysis was then performed to examine associations 

between high-priority SMS factors and high-priority accident precursors both at a group- and 

individual-level. 

2.4.1 Internal Consistency Test for Each Group of Variables  
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Cronbach’s alpha (α) is used to assess internal consistency within a group of variables that are 

believed to measure a single, latent construct. Latent constructs are often used to conveniently 

summarize a number of variables (Bollen 2002). According to (Byrne 1998), a latent construct 

cannot be observed or measured directly and, therefore, should be inferred from other observable 

measures. Given the presence of latent variables in the current study, the use of the Cronbach’s 

alpha test in this research is useful for testing the appropriateness of variable grouping. As there 

are two measures—likelihood and impact—for each variable, two Cronbach’s alphas are 

calculated for each group of variables as shown in Table 2.3. According to Kline (2000), a 

grouping is deemed acceptable, poor, or unacceptable if Cronbach’s alpha is greater than 0.7, 

between 0.7 and 0.5, or lower than 0.5, respectively. Here, most groupings were considered 

acceptable, both in terms of likelihood and impact, suggesting that the variables within these 

groups were under the influence of a single, latent construct. Exceptions to this were the 

Resource and External Factors groups, indicating these groups may be comprised of unrelated 

variables. Indeed, variables within the Resource or External Factors groups are unique in terms 

of likelihood or impact. For example, under the External Factors category, the likelihood that 

skilled workers are available in the market and the likelihood that tight contract schedules cause 

employee pressure are likely unrelated. Similarly, under the Resource category, onsite foremen 

availability and onsite safety personnel availability may not similarly impact accident 

occurrence: since foreman have a direct relationship with workers, they may have a greater 

influence than safety personnel with respect to incident prevention.  
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Table 2.3. Internal consistency scores for each group of variables. 

Category Group Likelihood Impact 

SMS Factors Safety Programs 0.887 0.860 

Commitment to Safety 0.846 0.851 

Resources 0.781 0.640 

External Factors 0.529 0.722 

Accident Precursors Worker-related 0.810 0.870 

Teamwork-related 0.806 0.877 

Workplace-related 0.794 0.893 

Materials and Equipment-related 0.814 0.859 

2.4.2 Identification of High-Priority SMS factors  

Table 2.4 summarizes the likelihood, impact, and risk scores of each SMS factor. The mean 

likelihood score for all SMS factors was 2.23 (σ = 0.72), the mean impact score was 3.83 (σ = 

0.46), and the mean risk score was 8.39 (σ = 2.70). External Factors tended to have higher 

likelihood scores, whereas factors related to Safety Programs, Safety Commitment, or Resource 

tended to have higher impact scores. The three highest-rated SMS factors in terms of risk scores, 

in descending order, were: contract schedule, skilled worker availability, and change orders.  

Notably, several factors from the External Factors group were determined to be ‘high-risk’ (i.e., 

perceived to have a high impact when they occur and were perceived to occur frequently). This 

is consistent with previous studies, which have emphasized both the direct and indirect adverse 

impact of contract schedule (Mohamed 2002), lack of available skilled workers (Rodrigues et al. 

2015), and change orders (Wanberg et al. 2013) on safety performance.  
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Table 2.4. Likelihood, impact, and risk scores for SMS factors 

Group Components Risk  

Score 

Likelihood 

Score  

Impact  

Score 

R µ R µ R µ 

S
af

et
y
 P

ro
g
ra

m
s 

Employee involvement program 9 8.17 18 1.95 4 4.26 

Subcontractor assessment 10 8.03 13 2.08 13 3.98 

Behavior-based safety program 12 8.01 20 1.93 7 4.19 

Safety incentive program 15 7.35 7 2.53 27 2.93 

Safety committee 14 7.51 10 2.18 23 3.56 

Pre-project safety plan 17 7.30 16 1.97 15 3.91 

Hazard assessment 18 7.14 23 1.66 2 4.42 

Substance abuse program 19 7.15 17 1.96 17 3.90 

Inspection and auditing 20 6.86 22 1.69 9 4.16 

Safety meetings 21 6.85 15 1.98 21 3.68 

Accident investigation 22 6.79 24 1.61 8 4.18 

Emergency planning 25 6.29 21 1.83 22 3.57 

Safety policy 27 5.86 28 1.44 6 4.23 

Safety training 28 5.73 26 1.49 11 4.07 

Group Average  7.07  1.88  3.93 

C
o
m

m
it

m
en

t 
to

 S
af

et
y

 

Subcontractors’ commitment to safety 5 10.20 6 2.58 14 3.96 

Management team’s priority with safety over 

cost 
7 8.58 8 2.24 12 3.98 

Management team’s priority with safety over 

schedule  
8 8.53 9 2.21 10 4.08 

Owner’s commitment to safety   23 6.45 25 1.55 3 4.28 

Management team’s commitment to safety 24 6.44 27 1.46 1 4.49 

Group Average  8.04  2.00  4.16 

R
es

o
u
rc

es
 

Foremen 11 8.02 19 1.94 5 4.23 

Safety budget  13 7.77 12 2.12 19 3.73 

Safety personnel  16 7.32 14 2.04 20 3.71 

Group Average  7.70  2.03  3.89 

E
x
te

rn
al

 F
ac

to
rs

 

Contract schedule 1 15.98 2 3.98 16 3.90 

Skilled worker availability 2 15.97 3 3.73 18 3.75 

Change orders 3 13.87 1 4.12 25 3.26 

Reworks 4 11.46 4 3.31 24 3.31 

Design 6 9.27 5 2.81 26 3.07 

Government regulations 26 6.08 11 2.14 28 2.51 

Group Average  12.10  3.35  3.30 
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R: Ranking position based on the item average 

µ: Item average 

Interestingly, SMS factors related with safety programs had lower risk scores than risk scores of 

SMS factors belonging to the External Factors group. Traditionally, safety management 

practices in industry have attempted to improve safety programs by reinforcing their 

commitment to current safety practices (Hallowell and Gambatese 2009). However, many 

researchers (Han et al. 2014; Mitropoulos et al 2005) have contended that external factors may 

impact safety and, therefore, a shift in the focus of current safety practices rather than a 

reinforcement of its practices may be more effective at improving safety performance. Indeed, 

while other SMS factors, such as ineffective accident investigation, may be expected to have a 

high impact on safety, they were rated as low- or medium-risk due to the rarity of their 

occurrence.  

2.4.3 Identification of High-Priority Accident Precursors 

Table 2.5 summarizes the likelihood, impact, and risk scores of each accident precursor. The 

mean likelihood score for all accident precursors was 2.82 (σ = 0.46), the mean impact score was 

3.57 (σ = 0.38), and the mean risk score was 10.72 (σ = 2.26). The three highest-rated accident 

precursors in terms of likelihood were: site congestion, workers’ exposure to extreme weather 

conditions, and workers’ failure to identify hazards. The three highest-rated accident precursors 

in terms of impact were: workers’ failure to identify hazards, workers’ neglect of hazards, and 

insufficient experience of foremen. Finally, the three highest-rated accident precursors in terms 
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of risk scores were: workers’ failure to identify hazards, site congestion, workers’ neglect of 

hazards. 

The top three accident precursors have been identified as critical by other researchers. For 

instance, many researchers have identified that failure to recognize hazards and indifference to 

hazards (Han et al 2014; Jiang et al. 2015) can lead to accidents. Similarly, level of congestion 

was identified by (Irumba 2014) as a primary cause of accidents. According to (Elbeltagi et al. 

2004), construction site congestion is associated with falls and struck-by accidents and, 

therefore, should be avoided. 

Table 2.5. Likelihood, impact, and risk scores for accident precursors 

Group Precursors Risk 

Score 

Likelihood 

Score  

Impact  

Score 

R µ R µ R µ 

W
o
rk

er
-r

el
at

ed
 

Workers’ failure to identify hazards 1 15.39 3 3.56 1 4.23 

Workers’ neglect of hazards 3 13.69 4 3.11 2 4.22 

Workers’ low skill level 6 12.23 6 3.07 5 3.88 

Workers under high levels of stress due to 

schedule pressure 
7 11.82 7 3.05 16 3.51 

Fatigue 11 10.77 12 2.85 13 3.56 

Workers under the influence of drugs or 

alcohol 
20 8.63 23 2.14 6 3.85 

Group Average - 12.09 - 2.96 - 3.88 

T
ea

m
w

o
rk

-r
el

at
ed

 

Insufficient experience of foremen 4 12.85 5 3.10 4 3.96 

Inadequate communication/enforcement of 

safety rules within teams 
5 12.56 11 2.95 3 4.03 

Lack of attention to coworkers’ safety 15 10.44 17 2.57 7 3.84 

Insufficient experience of safety management 

personnel 
16 10.42 9 2.97 19 3.36 

Misunderstanding of safety requirements by 

workers or subcontractors 
19 9.01 20 2.42 17 3.47 

Group Average - 11.06 - 2.80 - 3.73 
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Group Precursors Risk 

Score 

Likelihood 

Score  

Impact  

Score 

R µ R µ R µ 

W
o
rk

p
la

ce
-r

el
at

ed
 

Site congestion 2 14.84 1 3.88 8 3.79 

Workers’ exposure to extreme weather 

conditions 
9 11.73 2 3.67 21 3.15 

Workers’ unfamiliarity with work 

environment 
10 11.31 10 2.96 11 3.64 

Poor housekeeping 13 10.61 14 2.79 12 3.59 

Low level of ergonomic consideration of 

workspace 
14 10.47 13 2.81 18 3.37 

Lack of mitigation of hazardous site 

environments (e.g., noise) 
18 9.02 18 2.55 20 3.31 

Inadequate safety guards or barriers 22 7.13 24 1.87 14 3.55 

Unclear emergency procedures 23 6.98 21 2.32 22 2.95 

Inadequate/inaccurate site information 24 6.93 19 2.45 24 2.66 

Group Average - 9.89 - 2.81 - 3.33 

M
at

er
ia

ls
 a

n
d
 

eq
u
ip

m
en

t-
re

la
te

d
 Inadequate use of tools 8 11.78 8 3.03 9 3.72 

Inadequate use of heavy equipment 12 10.62 16 2.65 10 3.66 

Inadequate use of personal protective 

equipment 
17 10.31 15 2.70 15 3.52 

Workers’ exposure to hazardous materials 21 7.73 22 2.26 23 2.94 

Group Average - 10.11 - 2.66 - 3.46 

R: Ranking position based on the average 

µ: Item average 

The results demonstrated that, of the top three accident precursors, two were related to the 

Worker-Related group. This result reinforces the findings of Rowlinson (2004) who estimated 

that 80% of accidents are influenced by worker behavior. These results suggest that, in spite of 

functional safety programs (Table 2.4), adequate observation and control of worker behavior 

remains limited in practice.  
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2.4.4 Correlation Between SMS Factors’ Likelihood and Accidents Precursors’ Likelihood.  

Previous studies have indicated that many-to-many, complex causal relationships may exist 

between SMS factors and accident precursors (Figure 2.1; Saleh et al. 2014; Kyriakidis et al. 

2012). To determine if the SMS factors identified were associated with the accident precursors, a 

Pearson’s correlation test was performed to examine the relationship between the likelihood 

scores of high-priority SMS factors and accident precursors. According to Gravetter and Wallnau 

(2010), the Pearson’s correlation test measures the degree and direction of the linear relationship 

between two variables. De Vaus (2002) interprets the correlation coefficient as follows: < 0.3 

weak; 0.30 – 0.49 moderate; 0.50 – 0.69 substantial, and > 0.7 very strong. In addition to 

determining the strength of the relationship, the significance of the correlation should also be 

verified. Gravetter and Wallnau (2010) have indicated that a probability value of 0.05 (or less) 

indicates that the correlation observed is “very unlikely” to have occurred by chance.  

Several moderate and weak correlations between the SMS Factors and accident precursors were 

identified (Table 2.6). A correlation classified as substantial between “Skilled worker 

availability” and “Worker’s low skill level” was identified. Notably, almost all of the incident 

precursors had at least one moderate correlation with an SMS factor. The exception was the 

“Extreme weather condition” precursor, which is likely a consequence of workers not being 

required to work when temperatures fall below -30°C.  
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Table 2.6. Pearson’s correlation between SMS factors’ likelihood and accidents precursors’ 

likelihood 

SMS Factors 
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Workers’ failure to identify 

hazards 
.306** .234* - .267** - - - - 

Site congestion - - - - - .208* - .242* 

Workers’ neglect of hazards .315** .247* - - - .267** - - 

Insufficient experience of 

foremen 
.247* .330** - - - - - .274** 

Inadequate 

communication/enforcement 

of safety rules within teams 

.223* - - .215* .238* .297** - .315** 

Workers’ low skill level .326** .571** - .296** - - - - 

Workers under high levels 

of stress due to schedule 

pressure 

.224* - - - - .332** .262* .342** 

Inadequate use of tools .405** .235* - .398** - .277* - .277** 

Workers’ exposure to 

extreme weather conditions 
- - - - - .208* - - 

Fatigue - - - - - .287** - - 

Workers’ unfamiliarity with 

work environment 
.318** .364** - .296** - .380** - - 

**. Correlation is significant at the 0.01 level (2-tailed). 

*. Correlation is significant at the 0.05 level (2-tailed). 

- Correlation not significant 
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Identification of these relationships (Table 2.6) should incite the participating companies to 

better define accident precursor avoidance strategies. For instance, if companies are concerned 

about the accident precursor “Workers failure to recognize factors,” efforts should be 

concentrated on controlling associated SMS factors such as “contract schedules,” “skilled worker 

availability,” and “rework.’ This may include managerial actions to increase hiring of skilled 

workers or inciting onsite safety management to focus on improving the skill level and 

familiarity with working environments of current employees. The results generated from the 

application of the proposed method can also be used by managers and practitioners to review and 

update current safety management practices to better represent organization culture. For 

example, results in Table 2.6 suggest that SMS should focus on implementing interdepartmental 

integration. This may include the promotion and development of holistic safety policies and the 

fostering of a organization-wide commitment to safety, which, ultimately, may improve 

decision-making processes and overall safety performance. 

It should be noted that, while a substantial number of associations between SMS factors and 

accident precursors have been identified (Table 2.6), causality cannot be established from these 

results. Correlation results only demonstrate that two variables related; they provide limited 

insights into the causal relationship that may exist between variables. Although previous studies 

support the presence of causality, additional investigation and in-depth analyses are required to 

establish the cause and effect relationship between SMS factors and accident precursors. An 

example is the correlation between “complexity of design” (an SMS factor) and “workers’ 

exposure to extreme weather conditions” (an accident precursor). An interpretation of this 

relationship may be that an increase in design complexity may adversely affect entire project 
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duration (i.e., by causing delays) or the difficulty of construction operations (as reported by 

Weinstein et al. 2005). These phenomena may increase workers’ operations under unfavorable 

weather conditions (e.g. to compensate for schedule delays). However, the relationship between 

“complexity of design” and “extreme weather conditions” should to confirmed by further 

investigation to establish causality. 

2.4.5 Validation 

Two techniques, namely comparison to other models and event validity, were used to validate 

the proposed methodology and to determine if the methodology was capable of producing 

reliable results. These validation techniques are described below:  

Comparison to other models: As described by Sargent (2005), this validation technique 

compares the results generated by a proposed method with results obtained using alternate 

methods, where result consistency is indicative of model validity. To apply this validation 

technique, correlation results between the three highest-priority SMS factors and accident 

precursors were compared to previously reported results. The SMS factor “contract schedule” 

was found to correlate with “worker’s failure to identify hazards,” “worker’s neglect of hazards,” 

and “worker’s low skill level” (Table 2.6). Consistent with this, Wilson Jr and Koehn (2000) 

found that tight contract schedules often reduce the amount of attention allocated to safety 

management in favor of attaining construction deadlines. Jiang et al. (2015) found that work 

pressures resulting from tight schedules can influence workers’ safety behavior, safety 

knowledge, and perceived behavioral control.   
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In line with the correlations observed between “skilled worker availability” and “worker’s low 

skill level” (Table 2.6), previous findings have demonstrated that reduced availability of skilled 

workers can affect an employee’s skill, behaviors, and familiarity with the workplace. In 2013, 

Caputo et al. stated that skills are necessary to enable workers to successfully perform activities. 

Gibb et al. (2006) have contended that lack of skills can shape a worker’s actions, behavior, 

capabilities, and, consequently, influence accident occurrence.  

Although “change order” was not related to any of the “critical incident” precursors, the results 

demonstrated that “change order” was correlated with “rework” (r = 0.339; n=96; P<0.01). Love 

and Edwards (2004) stated that rework may undermine effective supervision, while Wanberg et 

al. (2013) indicated that rework can alter work environments, thereby affecting a worker’s ability 

to recognize hazards. Wanberg et al. (2013) also indicated that rework tasks may demotivate 

workers to follow safety practices and, consequently, neglect hazards. These findings are 

consistent with the results in Table 2.6, which demonstrate a significant correlation between 

“change order,” “rework,” and the three highest-priority accident precursors.  

Event validity: In this technique, conditions found to associate with event occurrences are 

compared to a real system to determine if they are similar (Sargent 2005). Here, a “real system” 

was extracted from two accident reports collected by the companies participating in this research. 

The accident reports are summarized as follows:  

Accident Case #1: Worker was removing a pipe spool after a hydrotest. The filler was stuck to 

the flange face, and upon removal, the filler sliced through the worker's glove causing a 
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laceration to his right hand. The investigation identified that the worker did not understand the 

safety requirements during the activity due to a deficiency in safety training.  

Accident Case #2: Worker crushed right-hand middle finger between jack-stand base and tongue 

of portable welding machine. The accident precursors, as identified by the organization, were 

neglect of hazards and inadequate enforcement of rules. An in-depth investigation conducted 

demonstrated failure in the employee involvement program (supervisor and worker did not 

discuss the equipment issue properly). 

Consistent with the findings of this study, that “safety training” was correlated with “safety 

requirements,” which were not clearly communicated (r = 0.208; n=96; P<0.05), and that 

“employee involvement program” was correlated with “worker’s neglect of hazards” (r = 0.225; 

n=96; P<0.05) and “inadequate communication,” (r = 0.278; n=96; P<0.01), the cases described 

above provide anecdotal evidence directly associating accident precursors, such as “workers’ 

ignorance of hazards” or “inadequate communication of safety requirements,” with SMS factors, 

such as the “safety training” and “poor implementation of employee involvement programs.” 

Results of the proposed method were shown to be consistent with the findings of several 

previously reported safety management studies and from “real system” accident reports. The 

ability of the proposed model to reliably prioritize and associate SMS factors with accident 

precursors has been validated using two validation techniques. 
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2.5 Discussion 

As a consequence of limited resources, practitioners must balance SMS efficiency with SMS 

efficacy. Although this can be accomplished by allocating resources towards the control of SMS 

factors and accident precursors that are most predictive of accident occurrence, identifying and 

prioritizing SMS factors and accident precursors remains challenging in practice. To overcome 

these difficulties, this study has developed and validated a method that (i) allows for the 

comprehensive and concurrent assessment of the importance of numerous SMS factors and 

accident precursors, (ii) facilitates the prioritization of SMS factors and accident precursors, and 

(iii) examines relationships between high-priority SMS factors and accident precursors. Results 

generated by this method can be used by practitioners to determine if prioritized SMS factors are, 

in fact, associated with accident precursor occurrence, thereby ensuring that resource allocation 

to these factors will result in meaningful improvements in practice.  

By identifying high-impact SMS factors and accident precursors, results generated by the 

proposed method may provide practitioners with insight regarding flaws in their ongoing SMS. 

Identification and prioritization of these factors and conditions can motivate practitioners to 

modify current SMS and safety practices to better control safety performance. For example, 

since the “lack of skilled workers in the market” was identified as a critical SMS factor, 

companies may implement competency tests to evaluate a worker’s skills prior to engaging in an 

activity or project. To avoid the effect of “tight contract schedules” on accident precursor 

occurrence, companies may increase onsite safety personnel to better alleviate worker pressure 

or to assist with worker identification of hazards. 



40 

 

To examine the model’s functionality, the proposed method was used to evaluate the importance 

of SMS factors and accident precursors at several construction companies in Alberta, Canada. 

The highest priority SMS factors and accident precursors identified were consistent with many 

high-priority factors previously identified in literature The proposed method was also validated 

using two validation techniques, which demonstrated that the proposed method is capable of 

generating results that are both consistent with previously reported findings and reflective of a 

real system. 

Notably, four of the highest priority SMS factors were classified as external factors (i.e., factors 

that are not typically associated with safety management). Although the perceived impact of 

these factors was low, the perceived likelihood of these factors was high. These results 

demonstrate that there is a need to consider safety management practices beyond the traditional 

approach, as the implementation of traditional safety management programs may not be 

sufficient to improve onsite safety performance. Companies must be aware of other potential root 

causes of accident precursors and safety incidents. This is not to say that external SMS factors, 

such as contract schedule control, are more important than traditional SMS factors, such as safety 

training. Rather, these findings highlight the notion that certain external factors are perceived to 

pose a greater risk to safety within the current SMS due to increased event likelihood as a 

consequence of limited or absent control of external factors by current SMS.  

Although previous studies have demonstrated the influence of external SMS factors on incident 

precursors (Mohamed 2002; Rodrigues et al., 2015; Wanberg et al. 2013), management of 

external factors remains poorly integrated with the achievement of safety goals. This is due, in part, 
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to the difficulties associated with identifying and prioritizing external SMS factors. The proposed 

questionnaire can be used to address these challenges. The questionnaire can identify and assess 

accident risk of numerous external factors across several organization departments. By 

identifying high-priority external SMS factors using the method presented here, companies can 

adopt broad safety practices to proactively control safety performance, such as defining realistic 

contract schedules to decrease production pressure on workers, evaluating the workers’ 

competency during the hiring process, conducting new hazard assessments when rework occurs, 

and implementing “safety through design.”  

It was also found that SMS factors that are typically related to safety programs were perceived as 

high-impact factors, yet their perceived likelihood was low. Based on their low likelihood scores, 

safety-associated SMS factors appear to be appropriately controlled by current SMS of the 

studied companies. This phenomenon may be a consequence of the demand for safety excellence 

by local governments and owners when contracting a construction organization in the local 

market. Notably, similar patterns may not be observed in other countries and regions whose 

contracting practices may differ (Zou and Zhang 2009). These results suggest that high-impact 

factors, such as safety programs, are well managed and controlled in the construction sector in 

Alberta. 

Recently, a systems-based approach to safety, which incorporates safety management practices 

across various areas of an organization, has been widely advocated througout safety management 

literature (Jiang et al. 2015; Leveson 2004; CII 2002). In this approach, various safety 

management elements are systemically planned and managed throughout the lifecycle of a 
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project (Choudhry et al. 2008; Hinze et al. 2013a), across multiple functional units of an 

organization, and in a technical, organizational, or regulatory manner (Saleh et al. 2014). Many 

researchers have emphasized the importance of a holistic SMS approach for developing effective 

safety management practices (Hinze 1997; Leveson 2004; Wahlström and Rollenhagen 2014) 

and to improve safety performance (Haas and Yorio 2016). In consideration of this, a key feature 

of the proposed method is its comprehensive assessment of several SMS factors and accident 

precursors across various organization departments and areas. For instance, the likelihood of 

SMS factors related to safety management programs was perceived, overall, as low despite the 

continued presence of high-impact accident precursor occurrence onsite (Table 2.5), suggesting 

that conventional safety management programs and practices are not addressing all causes of 

onsite accidents. Companies, therefore, should be motivated to be aware of and begin to 

investigate other potential root causes using reliable, easy-to-use methods such as the one 

presented here.  

While the current study supports the use of the proposed method to prioritize management of 

certain high-risk SMS factors and accident precursors in ongoing safety systems, the findings of 

this study should be interpreted in consideration of the following limitations. First, although the 

survey instrument was developed through rigorous development and testing procedures, a 

portion of the factor-selection process was dependent on the subjective opinions of subject 

matter experts; the examination of additional research cases is required to generalize method 

application to other sectors, industries, or regions. Second, although the list of variables in this 

research was identified following an extensive literature review and several expert interviews, 

additional SMS factors and accident precursors that were not identified may be affecting 
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organization safety performance. Third, as previously mentioned, in-depth exploration of the 

complex relationships between SMS factors and accident precursors is limited by the methods 

employed in this paper. Fourth, as the respondents were employed in various types of 

construction projects, further research is required to identify factor and precursor risk within 

specific industries. 

2.6 Conclusion 

For achieving proactive safety management in construction, SMS factors and accident precursors 

that influence accident occurrence must be identified, prioritized, monitored, and controlled prior 

to worksite accident or injury. The reliable identification of high-priority SMS factors and 

accident precursors will allow construction companies to appropriately allocate and make 

efficient use of safety management resources and to effectively enhance safety management 

systems and approaches. Here, a survey-based, risk-rating method was proposed as an effective 

approach for identifying high-priority SMS factors and accident precursors. In this method, 

likelihood and impact scores of several SMS factors or accident precursors are collected from 

construction practitioners via surveys. These scores are then combined to generate risk scores, 

which are used to identify SMS factors and/or accident precursors that are most predictive of 

accident occurrence.  

This method was used to identify and prioritize SMS factors and accident precursors and to 

provide insight into likelihood patterns and impact scores for SMS factors and accident 

precursors on construction sites in Alberta, Canada. The results demonstrated that “contract 

schedule,” “skilled worker availability,” and “change orders” were the highest-priority SMS 
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factors in the region. As these SMS factors are considered external factors, these results suggest 

that external factors are not well-controlled by current safety management practices in this 

construction sector. Results also found the highest-priority accident precursors to be “workers’ 

failure to identify hazards,” “congestion,” and “workers’ neglect of hazards.” Of the top three 

accident precursors, two were related to worker behavior suggesting that current SMS practices 

are not adequately controlling worker behavior. Association results also supported previous 

findings of many-to-many relationship between high-priority SMS factors and accident 

precursors. 

The expected contributions of this research are twofold. First, this research enhances the 

understanding of the complex relationships existing between SMS factors, accident precursors, 

and accidents by identifying and prioritizing high-risk SMS factors and accident precursors that 

are most relevant to construction companies in Alberta. Notably, the questionnaire included SMS 

factors that are not commonly considered in practice or in safety management literature. As 

discussed previously, due to its comprehensive approach, this questionnaire can effectively 

identify gaps in SMS across many departments and areas and, therefore, can be used to assess the 

impact of multiple risk factors on precursor occurrence throughout the lifecycle of ongoing 

projects. 

Second, the proposed association approach can indicate which SMS factors should be addressed 

based on accident precursors observed, or which accident precursors are most likely to occur 

based on the presence of critical SMS factors. These research findings will assist companies to 

improve SMS and practices by guiding which SMS factors and accident precursors should be 
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prioritized with respect to resources and attention based on the specific conditions observed 

onsite. The associations identified in this research can also be used to investigate cause-and-

effect relationships between SMS factors and accident precursors.  
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Chapter 3: Empirical Testing for Use of Safety-Related Measures at 

Organizational Level to Assess and Control Onsite Risk Level  

3.1 Introduction 

Construction laborers are frequently exposed to hazardous environments such as work at height, 

proximity to heavy equipment, or use of toxic and electrical materials. As a result, the 

construction industry is regarded as one of the most dangerous job sectors in many countries. For 

example, the construction industry in Canada had the highest number of fatalities and the third 

highest loss-time injuries in 2013 (AWCBC 2014). Safety incidents on the construction job site 

psychologically influence the worker and his/her family, coworkers, and society (Ikpe et al. 

2012); and negatively affect project schedule (Han et al. 2014), cost, and quality (Wanberg et al. 

2013). The role of management in incident prevention is therefore to diagnose and mitigate 

symptoms of managerial failure early on by setting appropriate safety goals and identifying 

means to achieve these targets (Petersen 1978). 

Risk assessment, referred to as “a way of managing hazards of an organization” (Harms-

Ringdahl 2004), is considered the core approach to safety management (Fung et al. 2012). Thus 

it is critical for an organization to manage safety risks, and to define and maintain certain 

measures to be within an acceptable level of safety throughout the life cycle of activity, process, 
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or project (Antonsen et al. 2012). The use of safety-related measures at an organizational level1 

to control safety performance has been suggested and emphasized (Hinze 1997) since doing so 

provides a proactive approach to avoiding incidents (García-Herrero et al. 2012). However, the 

adoption of organizational safety-related measures is still a challenge due to the unknown 

influence of these measures on safety performance (Hallowell et al. 2013), the time-consuming 

process of data collection (Huang and Hinze 2003), and the dynamic behavior of construction 

sites (Han et al. 2014). Moreover, since safety performance is affected by numerous factors 

related to the different parties involved in a project—for example, owner commitment (Huang 

and Hinze 2006), project planning (Mitropoulos et al 2005), supply chain (Hallowell et al. 2013), 

subcontractors (Rowlinson 2004), design (Huang and Hinze 2003), and worker characteristics 

(Hinze 1997)—, it is difficult to establish which and how many measures should be used to 

evaluate ongoing safety performance on a given site.  

Previous studies in construction have identified several safety-related measures at an 

organizational level to control factors related to incidents. These measures are commonly related 

to the organizational safety culture, site safety climate, worker’s competency, worker behavior, 

and hazard management (Zhou et al. 2015). For example, Rowlinson (2004) and Hinze et al. 

(2013) impart the importance of establishing measures to control subcontractors’ commitment to 

safety through the pre-project safety plan and contract type. Although these studies provide 

insight into effective policies and procedures that can be implemented to enhance safety 

                                                 

1 Organizational level, in this research, refers to safety-related measures controlled by departments of an 

organization at a project level 
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management, it is still difficult to collect data from construction projects and identify the 

influence patterns of safety-related measures to control the safety performance. Moreover, in 

practice, difficulties in measuring safety-related factors arise from the complexity of an 

organization’s structure—especially when relevant safety data are not adequately shared between 

various functional units (e.g., human resources, scheduling, and finance). This lack of integration 

may occur because the relationship between safety measures and outcomes (e.g., incidents) are 

not fully identified from a data perspective; there may be a lack of understanding between the 

functional units of an organization as to which data are available in practice, whose job it is to 

collect such data, and how such data can be analyzed and used for safety management. For 

instance, an organization investigated in the preliminary study stated that there is a need for 

evidence that the use of safety-related measures available on departmental databases may be 

used to improve safety performance. Based on this evidence, companies may re-design their 

databases to 1) support data sharing between departments to allow the control of safety-related 

measures and 2) improve decision-making processes to decrease onsite risk. 

This paper aims to review and evaluate adoption of safety-related measures at an organizational 

level to assess and control onsite risk level (ORL). Through a cross-sectional case study, 

measures are selected and collected from databases of several departments—namely, human 

resources, safety, and payroll. Furthermore, a regression analysis is performed to model 

statistical relationships between organizational data and measured ORLs. The results of this 

analysis are compared with a new construction project to test the validity of the measures when 

the data are used for the purpose of management in practice. The rest of the paper is organized as 

follows: First, a background research about organizational measures for safety management is 
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presented. Research methods section proposes a statistical framework to quantify the impact of 

the measures on the ORL and determine the acceptable ranges of the measures to be maintained. 

A case study is conducted to evaluate the proposed method and the analysis of results and 

discussion section examines the research results and study limitations, and in conclusion section 

the findings of this paper are summarized. 

3.2 State of Art - Challenges in Defining Safety Measures 

Antonsen et al. (2012) emphasize that safety performance may be improved by the 

standardization of working methods, separation of planning from execution, and implementation 

of a safety management system. When safety management programs are established and 

operated on a job site, defining appropriate measures associated with the safety practice is also 

critical to monitoring and controlling the ongoing project safety performance (Wachter and 

Yorio 2014). However, the safety performance measures commonly used in practice, such as 

total recordable incident rate (TRIR) and experience modification rate (EMR), are reactive. 

According to Hinze et al. (2013b), reactive indicators measure the safety performance after an 

incident has already occurred as a result of flaws in the safety system rather than functioning as 

precursor measures that can be used for the prevention of an incident in the first place. In 

addition, reactive measures do not necessarily indicate the risk level on construction sites 

(Mohamed 2002); according to Laitinen et al. (1999), sites with zero incidents can have even 

higher risk levels than sites with a few incidents. Accordingly, many research efforts (Guo and 

Yiu 2015; Hallowell et al. 2013; Hinze et al. 2013; Lee et al. 2012) have recently been made to 
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define proactive strategies with which to control the risk level within a daily practice rather than 

reactively learning from previous incidents to avoid the recurrence of similar incidents.  

Safety risk can be monitored and controlled by collecting and analyzing relevant data that 

represent a degree of risk involved in construction activities (Jannadi and Almishari 2003). 

Recent studies reveal that risk can be proactively identified and mitigated by understanding how 

various factors lead to safety incidents; such factors include schedule delay (Han et al. 2014), 

rework (Mitropoulos et al. 2005), and safety policies (Jiang et al. 2015). On this basis, numerous 

measures to control safety risks have been proposed, as shown in Table 3.1.  

Although the adoption of all these measures (Table 3.1) on a job site can be unworkable and non-

economical from a practical aspect (Wachter and Yorio 2014), previous studies have focused 

more on identifying safety performance measures than assessing the use of such measures in 

practice. Measures have generally been identified through questionnaire (Guo and Yiu 2015; 

Hallowell et al. 2013; Lee et al. 2012) or the use of accident causation models (Mitropoulos et al. 

2005; Han et al. 2014; Jiang et al. 2015). Survey questionnaires reveal respondents’ perceptions 

of the influence of measures on risk level, while accident causation models provide insight into 

the mechanisms by which various safety factors lead to an incident. Although findings from 

previous studies, summarized in Table 3.1, suggest various safety-related measures that may 

proactively control safety performance, the need to investigate which types of data can be 

collected in practice, as well as how these measures influence a safety system as a whole, still 

exists. The notion of this relationship, as exemplified through a case study, may be instrumental 

to the application and benchmarking of these findings, as the data analysis collected here can 
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provide considerable insight on the maintenance and control of project risk level from a practical 

perspective.  

Table 3.1: Summary of safety measures in previous studies 

Studies 

Number of 

measures 

proposed 

Measure examples 
Validation 

method 

Guo and Yiu 

(2015) 
32 

Safety rules are in place; working hours per 

day; adequate safety resources are provided on 

site; frequency with which senior managers 

provide feedback on safety performance  

Expert interview 

Hallowell et al. 

(2013) 
10 

Near miss reporting; worker observation 

process; stop work authority 
Expert interview 

Toellner 

(2001) 
6 

Effective score of barricade performance; 

number of closed down areas; housekeeping 

quality 

Visual 

assessment 

Rajendran 

(2013) 
3 

Pre-task planning review; worker safe 

observation behaviour; site safety audits 

Data from 

residential 

projects 

Hinze et al. 

(2013) 
2 

Percent of worker observations that were safe; 

number of positive reinforcements provided 

per 200,000 h. 

14 projects 

Lee et al. 

(2012) 
43 

Workers’ age; temperature; quantity training 

per month 
Expert interview 

NOSHC 

(1999) 
26 

Budget for safety programs; sub-contractors 

contract include safety practices; number of 

sub-standard conditions identified and 

corrected 

Expert interview 

AOHS (2015) 55 
Hazard identification; hazard control; training 

competency 
Expert interview 

COAA (2011) 300 

Behavioral based observation in place; 

employees perception surveys; active 

management safety participation 

Expert interview 

Brown et al. 

(2000) 
61 

Perceived safety climate; perceived pressure 

for shortcuts; perceived safety climate 

Workers’ 

opinions 
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Existing literature also incompletely discusses sources from which safety-related measures may 

be collected within an organization. In general, the health and safety department is mainly 

responsible for collecting and storing safety-related data (Hallowell 2012; Hinze et al. 2013). As 

the amount of data collected from construction projects is experiencing explosive growth, 

valuable information can also be obtained from other departments (Soibelman and Kim 2002). 

Consequently, further research needs to demonstrate that in addition to data collected from job 

sites, measures collected at the organizational level can also be used to evaluate safety 

performance and establish safety policies in order to engage the entire organization in safety risk 

control. 

3.3 Research Methods 

This case study leverages cross-sectional data analysis to verify the influence of safety-related 

measures on the ORL on construction sites. Specifically, a multiple linear regression (MLR) 

model is built using the safety-related data sets to 1) test correlation between variables, 2) 

understand trends in data, and 3) evaluate the trustworthiness of results (Montgomery et al. 

2007). Further information on the safety-related measures considered in this research is detailed 

in Data Collection Section.  

3.3.1 MLR Model Description  

Regression analysis is one of the most powerful and popular techniques that allows for 

estimating the mathematical relationships among variables and easily interpreting model results 

when linearity between dependent and independent variables can be assumed (Zayed and Halpin 
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2005). In an MLR model, the dependent variable is related to two or more independent or 

regressor variables. The model is represented by Equation 1: 

 Y =  β0 + β1x1 + β2x2 +⋯+ βnxn +  ϵ  Equation 1 

In Equation 1, β0, β1… . βn are regression coefficients, x1, x2, … , xn are independent variables, 

ϵ is the random error term, and Y is the dependent variable. In this case, a stepwise variable 

selection was adopted to identify the critical independent variables (i.e., safety-related measures 

in this paper), which can potentially be used as the best predictor variables (Norusis 2005). In 

general, the stepping method criteria selected a p-value = 0.05 to enter a measure into the 

regression equation and a p-value = 0.10 to remove it. The best model is the model with highest 

coefficient of determination (adjusted R2, or Adj. R2), which indicates how data fit in the MLR 

model. 

In this paper, the dependent variable in the MLR model is based on the quantity of construction 

site incidents counted during a specific time interval. The number of incidents considered in this 

research includes any instances of fatality, first aid, medical aid, lost time, and modified work 

injury, and is used to calculate the total incident rate (TIR) (Equation 2), where 200,000 

represents the quantity of working hours in one year per 100 full-time employees working for 40 

hour per week and 50 weeks per year on a given project. Then, the ORL is calculated, based on 

the maximum TIR for all projects analyzed (Equation 3), and is rounded to the nearest whole 

number from 1 to 10. Furthermore, TIR outliers are identified and assigned with ORL = 10 to 

minimize the impact of extreme values on the regression model. According to Lee et al. (2012), 
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integer numbers (such as the Likert scale) are commonly used to assess risk within the 

construction industry and have also been adopted by the organization in the present case study. 

Notably, this approach intends to measure the ORL on a construction site rather than to quantify 

incident severity. According to Khanzode et al. (2012), it is problematic to predict consequences 

when risk attributes determining consequence severity have not fully been investigated.  

TIRn =
∑ Incidents

total working hours
∗ 200,000  Equation 2 

                                                           ORLn =
TIRn

TIRmax
∗ 10                     Equation 3 

It is important to check violations of regression assumptions in the modeling process. Following 

Gravetter and Wallnau (2010), the following four assumptions are tested in this paper: 

(1) Autocorrelation: Autocorrelation is a characteristic of the data collected in which 

the correlation between the values of the same variables is based on related objects. In this 

research, autocorrelation is verified using a Durbin-Watson test. If autocorrelation (ρ) < 0.3, than 

it is possible to reject the hypothesis of autocorrelation.  

(2) Lack of multicollinearity: Multicollinearity occurs when two or more variables are highly 

correlated. In this research, multicollinearity is assessed through a variance inflation factor (VIF) 

test. If VIF < 10, multicollinearity can be rejected. 

(3) Normality of residuals: In an MLR model, it is assumed that the standardized residuals follow 

a standard normal distribution. A Shapiro-Wilk test is used to check this assumption. If a p-value 

> 0.05, then the normality of the residuals cannot be rejected (Montgomery et al. 2007). 
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(4) Homoscedasticity: Homoscedasticity is the constancy of the residual variance. When the 

residual variance is not constant over all the observations, the residual is said to be 

heteroscedastic. A Breusch-Pegan test is used to test for heteroscedasticity. If the test result is 

higher than 0.05, heteroscedasticity can be rejected. 

3.3.2 MLR Model Evaluation 

Once the assumptions of the MLR model are verified, the mean absolute percentage errors 

(MAPEs) can be computed to evaluate the model performance (Equation 4). In this case, a 10k 

cross-validation procedure was adopted to measure the accuracy of the model. In this procedure, 

the entire data were divided into 10 data sets where nine were used to train an MLR model, and 

one was used for the validation. The MAPE was calculated to measure the difference between 

values predicted by the MLR model and the values observed. In addition, a completely new data 

set (i.e., data from a new project) was used to test the reliability of the model by eliminating any 

potential inter-correlation among data points.  

 MAPE =  
1

n
∑ |

Pv−Av

Av
|n

t=1   Equation 4 

Where: n is the number of observations, Pv is the predicted ORL, and Av is the actual ORL. 

The prediction errors were further analyzed using inequality statistics tests to investigate error 

sources. In these tests, error components (e.g., UM + US + UC = 1) are decomposed into the 

variables UM, US, and UC that represent bias proportion, variance proportion, and covariance 

proportion, respectively (Sterman 1984); herein, UM, US, and UC are fractions of the mean 

squared error (MSE) (Equation 5). UM measures the extent to which the average values of the 

predicted and actual value deviate from each other (Equation 6). US indicates the ability of the 
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model to replicate the degree of variability in the variable of interest (Equation 7). UC represents 

the remaining error after deviations from actual values have been accounted for (Equation 8). 

The ideal distribution of inequality over the three proportions is UM and US = 0 and UC =1. 

 MSE =  
1

n
∑ (Pi − Ai)

2n
i=1   Equation 5 

 UM =
(P ̅–A̅)

2

MSE
  Equation 6 

 US =
(SP−SA)

2

MSE
  Equation 7 

 UC =
2(1−r)SPSA

MSE
  Equation 8 

Where: n is the number of observations; Pi is the predicted value I; Ai is the actual value I; P,̅ A̅ 

are the means of P and A; SP, Sa are standard deviations of P and A; r is the correlation 

coefficient between P and A.  

3.3.4 Comparison between High and Low ORLs Group 

To understand how the safety-related measures can be controlled to avoid peaks of ORL, the 

recommended boundaries of safety-related measures analysed in this case study were determined 

by comparing the performances of two groups with high and low ORLs. For this task, the data 

sets are divided into two groups (i.e., ORL ≤ 5 and ORL > 5) and analyzed using a non-

parametric test, namely a Mann-Whitney U test. This test is used to compare differences between 

two independent groups when the dependent variable is either ordinal or cardinal, but not 

normally distributed. It tests the null hypothesis that two samples come from the same population 
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against an alternative hypothesis that a specific population has higher values than the other 

(Gravetter and Wallnau 2010). 

3.4 Data Collection 

The MRL model was built and tested through a case study in which cross-sectional data of  

safety-related measures were collected from construction projects located in Canada. In 

particular, in this research the data stored in the human resource, payroll, and safety departments 

in the given case study organization was analyzed to verify the claims of previous studies of the 

use safety-related measures to manage the ORL. Based on the availability of data in these 

departments’ databases, a focus group consisting of safety managers in the organization 

identified seven safety-related measures for which relationships with the ORL may be tested 

(Table 3.2). Since high and low temperatures may increase the risk of accidents (Lee et al 2012), 

the safety-related “temperature” measure calculates the absolute value of the deviation from the 

ideal temperature. Since there is no available data that indicate ideal temperatures for the areas 

where the projects were performed, here, the ideal temperature is set at 18oC. The ideal 

temperature is based on findings by Lee et al. (2012), who determined that accident risk is lowest 

when temperatures range between 16-20oC. 
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Table 3.2: Description of safety-related measures 

Measure Metric 
Source 

Department 

BBO card rate BBO rate =  
BBO filled

working hours
∗ 200,000 HSE 

Near miss rate Near miss rate =  
quantity near miss

working hours
∗ 200,000 HSE 

New workers 

rate 
New workers (%) =  

new workers

Total workers
∗ 100 Finance 

Temperature Temperature = |
∑ temperaturen
i=1

total calendar hour
−

desirable
temperature

| 
Environment 

Canada 

Workers’ age  Workers’ age =  
∑ workers’ agen
1=1

total workers
 

Human 

Resources 

Crew size Crew size =  
total workers

total foreman
 Finance 

Working days  Working hours =
∑ workers higher 21 days n
i=1

Total workers
 Finance 

n – observation 

The safety-related measures were collected from four different industrial construction projects—

described in Table 3.3—in the same organization. Each measure was collected on a calendar 

monthly basis. Three projects were utilized as a training set (A, B, and C, n = 84) and one project 

(D) was used to validate the model (n = 17). Analysis of each project excluded the first six 

months of the execution phase due to the low number of workers on the job site at that time. 

Temperatures were collected from the Environment Canada database (Environment Canada 

2015). The safety-related measures identified in this study are described below: 
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Table 3.3: Project description 

Project Description Duration 

(month) 

Data collection Work hours 

(million) 

      Location 

Start End Total 

A Utility plant for 

heavy oil 

extraction 

facility 

30 1/2013 12/2014 24 2.246 

 

Alberta, 

Canada 

B Construction of 

new steam-

assisted gravity 

drainage facility 

33 10/2012 12/2014 27 3.647 

 

Alberta, 

Canada 

C Expansion of 

existing potash 

mine and mill 

39 6/2012 7/2015 33 2.370 

 

Saskatchewan

, Canada 

D Mechanical 

tank and pipe 

rack installation 

23 2/2013 3/2015 17 1.126 

 

Alberta, 

Canada 

Total     101 9.389  

Behavior-based observation (BBO) rate. In the BBO program, workers fill out a card to evaluate 

co-workers’ safety behavior. After identifying risky behaviors in their peers, workers give 

constructive one-on-one feedback to their peers to reinforce safe work conditions and discourage 

risky behaviors. According to Vaughen et al. (2010), implementing BBO makes workers more 

likely to avoid risky behaviors.  

Near miss rate. Investigating near misses can contribute to safety performance improvement 

since it can reveal trends in safety deficiencies (Hallowell et al. 2013). In the organization 

investigated in this case study, workers report to supervisors whenever a near miss happens. This 

behavior may indicate worker participation in safety management. Furthermore, a high number 

of near misses might suggest a higher probability of incidents on a construction site.  
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New workers rate. Workers lacking experience may have difficulty recognizing onsite hazards 

(Jiang et al. 2015) and consequently may be at greater risk for incidents. The new workers rate 

can also be affected by turnover rate. Higher turnover rates can additionally affect worker safety 

behavior since in such environments, workers are more prone to taking shortcuts (Emberland and 

Rundmo 2010).  

Temperature. Temperature can also contribute to risky behaviors on construction sites (Lee et al. 

2012). Poor environmental conditions (e.g., extreme temperatures) can increase workers’ 

physical and mental fatigue, decreasing their attention to the task at hand (Leung et al. 2012).  

Workers’ age. Each worker age group has a different influence on risk assessment on 

construction sites (Lee et al. 2012). For example, Feola et al. (2012) report that older workers 

tend to use less personal protective equipment (PPE). 

Ratio of workers to supervisors (crew size). Supervisors have an important role in maintaining 

safety conditions on the work site since they are responsible for planning out activities, and 

rearranging activities when required equipment are not available or when worker absence occurs. 

Leung et al. (2014) state that increasing the presence of supervisors leads to an increase in 

positive perception of safety. 

Working days. Expressed as a ratio of total workers working more than 21 days in a month to the 

total number of workers, working days can also indicate safety on a project site. Prolonged 

working hours can produce fatigue due to a decrease in workers’ muscular strength and mental 

stress (Alvanchi et al. 2012). Fatigue can lead workers to take shortcuts (Jiang et al. 2015).  
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The data of each safety-related measure and from incident records were extracted from the 

departments’ database through SQL (Structured Query Language). As an example, the raw data 

obtained from the payroll department database is presented in Figure 3.1a. Data was collected for 

each safety-related measure individually from the three departments. Following collection, data 

from different departments were matched. A query containing the values of all safety-related 

measures was re-organized by project and month and was used for data analysis (Figure 3.1b). 

  

(a)                                                                        (b) 

Figure 3.1. (a) Raw data provided by the payroll department; (b) example of data extracted for 

project D. 

3.5 Analysis of results and discussion 

The data collected was analyzed to assess the ORL through an MLR model and to define values 

for controlling safety-related measures through a Mann-Whitney U test. For this purpose, TIR 

was first computed and checked to identify outliers. Consequently, three outliers were identified 

based on the middle 50% of the scores in a boxplot. The ORL was then rounded to the nearest 

whole number from 1 to 10. Months with a TIR = 0 had their ORL assigned as 1, and those with 
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a TIR > the value boundary had their ORL assigned as 10. This classification was applied to 

make it perceptually easy to assess and compare the estimated ORLs in the field.  

Table 3.4 summarizes the safety-related measures collected on a monthly basis from the four 

projects. A high variance in the BBO rate (σ = 1497.94) can be observed, implying that the 

organization may not set and control a target value for the BBO rate efficiently, while the high 

variance on near miss rate (σ = 10.65) indicates that there are certain higher-hazard time periods 

during project execution. The average temperature in the project locations is low (µ = 0.99 oC). 

The working days (σ = 11.01) and new workers (σ = 10.76) measures have high variation, 

demonstrating that project progress and working environments dynamically change over time. 

On the other hand, crew size (σ = 1.67) presented low variance compared to all other measures, 

indicating that the organization may maintain the ratio of workers per supervisor on a job site. 

The workers’ age measure has low variance (σ = 2.50), showing that at the time of data 

collection, most workers on the project were 44 years old on average. 

Table 3.4: Descriptive statistics of collected safety-related measures 

Variable Unit Mean 
Standard 

deviation 

Upper 

level 

Lower 

level 

BBO rate BBO

working hours
∗ 200,000 

2824.69 1497.94 7014.47 145.49 

Near miss rate near miss

working hours
∗ 200,000 

9.70 10.65 51.61 0 

New workers 

rate 

% 12.68 11.70 67.59 0 

Temperature oC 17.20 12.68 40.99 0.08 

Workers’ age Years 44.60 2.50 49.29 40.39 

Crew size Worker/superviosr 7.51 1.14 10.27 5.45 

Working days % workers > 21 days 19.90 11.01 42.13 0.00 
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A stepwise MLR, with significance lower than 0.05, was conducted to identify the influence of 

safety-related measures on the ORL and five models were identified (1 to 5) (Table 3.5). The 

measure with the most influence on the ORL is the BBO rate (negatively correlated with ORL) 

in Model 1, followed by the new workers measure (positively correlated with ORL), workers’ 

age measure (positively correlated with ORL), near miss rate (positively correlated with ORL), 

and temperature (positively correlated with ORL) in models 2 through 5, respectively. Model 6 

and 7 were additionally conducted to observe the significance of missing variables and the 

relationship between the measures and the ORL. While crew size is positively correlated with 

ORL, the significance of safety-related measures is higher than 0.05 (Model 6). Model 7 

indicates that the working days measure is, unexpectedly, negatively correlated with the ORL, 

although the significance was greater than 0.05. This behavior may be a consequence of the 

holiday season in December and January. Therefore, these measures were not considered in the 

analyses. For each of the models, significance is less than 0.05 (ANOVA), indicating that the 

regression equation accounts for a significant portion of the variance for the ORL. Eventually, 

between model 1 to 5, Model 5 was considered the best model, as its measures had a higher 

adjusted R2 (0.488) and the significance of safety-related measures were less than 0.05. 

According to Gravetter and Wallnau (2010), there is no definitive criterion at which the value of 

adjusted R2 is acceptable; the required level of adjusted R2 depends on the data available during 

model development and the purpose of the MLR model. In addition, lower values of adjusted R2 

can still reveal trends and relationships between measures (Montgomery et al. 2007). In the 

present study, the results of the error analysis demonstrated that the MLR model was able to 

identify the relationship between several safety-related measures and ORL, using the data stored 
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in the three departments. Although crew size was not statistically significant in MLR Model 6 

(Table 3.5), this finding may be due to the lack of data available. Therefore, further analysis is 

required before crew size can be used to assess safety performance. 

Table 3.5: Results of statistical analysis (extracted from SPSS) 

Model 
Dependent 

variable(s) 
B Sig1 R R2 

Adj. 

R2 

ANOVA 

F  Sig2 

1 Constant 

BBO rate 

6.222 

-0.001 

0.000 

0.000 

0.502 0.252 0.243 27.633 0.000 

2 Constant 

BBO rate 

New workers rate 

5.372 

-0.001 

0.071 

0.000 

0.000 

0.001 

0.594 0.353 0.337 22.070 0.000 

3 Constant 

BBO rate 

New workers rate 

Workers’ age 

-5.577 

-0.001 

0.060 

0.250 

0.176 

0.000 

0.003 

0.008 

0.638 0.407 0.385 18.296 0.000 

4 Constant 

BBO rate 

New workers rate 

Workers’ age 

Near miss rate 

-8.300 

-0.001 

0.044 

0.285 

0.074 

0.040 

0.000 

0.027 

0.002 

0.002 

0.688 0.473 0.446 17.726 0.000 

5 Constant 

BBO rate 

New workers rate 

Workers’ age 

Near miss rate 

Temperature 

-8.900 

-0.001 

0.048 

0.275 

0.081 

0.046 

0.022 

0.000 

0.012 

0.002 

0.001 

0.008 

0.720 0.519 0.488 16.839 0.000 

6 Constant 

BBO rate 

New workers rate 

Workers’ age 

Near miss rate 

Temperature 

Crew size 

-14.10 

-0.001 

0.038 

0.326 

0.070 

0.047 

0.387 

0.005 

0.000 

0.055 

0.000 

0.003 

0.005 

0.088 

0.733 0.537 0.501 14.889 0.000 
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Model 
Dependent 

variable(s) 
B Sig1 R R2 

Adj. 

R2 

ANOVA 

F  Sig2 

7 Constant 

BBO rate 

New workers rate 

Workers’ age 

Near miss rate 

Temperature 

Crew size  

21 days working  

-10.50 

-0.001 

0.039 

0.275 

0.067 

0.275 

0.380 

-0.040 

0.048 

0.000 

0.047 

0.004 

0.005 

0.182 

0.091 

0.094 

0.744 0.554 0.513 13.482 0.000 

Where: B = standardized coefficient; Sig1 = significance of independent variables; R = 

correlation coefficient; F = F-ratio ANOVA test; and Sig2 = ANOVA test significance 

3.5.1Model Assumptions Test  

The principal assumptions mentioned in Section 3 were tested to justify the use of the MLR 

model; the results are summarized as follows: 

Autocorrelation: The Durbin-Watson test result was inconclusive. However, as ρ = 0.238, it 

was possible to conclude that the model is not auto-correlated. 

Normality: The Shapiro-Wilk test result (p = 0.673) suggests that normality of the residuals 

cannot be rejected. 

Heteroscedasticity: The heteroscedasticity test result (p = 0.808) suggests that the model can 

reject heteroscedasticity. 

Multicollinearity: As VIF = 1.386, multicollinearity can be rejected. 
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The results of these tests reveal that Model 5 did not violate any assumptions of MLR analysis, 

so it is appropriate to use in analyzing the data collected in this study.  

3.5.2 Model Performance Evaluation 

A 10-fold cross validation was conducted to assess the performance of the selected MLR model 

(i.e., Model 5). Equation 9 was used to calculate model output and model performance was 

evaluated using Equation 4. According to Gravetter and Wallnau (2010), MAPE  results can be 

evaluated using the following criteria: < 10% for highly accurate forecasting; 10–20% for good 

forecasting; 20–50% for reasonable forecasting; and  > 50% for inaccurate forecasting. Here, the 

MAPE average was found to be equal to 39.09%, which is considered a reasonable forecast. 

Furthermore, the model accuracy in predicting the ORL was tested using a new data set (Project 

D), which resulted in a MAPE of 36.69%. Therefore, MAPE results indicate that this model can 

provide reasonable forecasting for entirely new data sets. Furthermore, inequality statistics were 

computed to understand the sources of errors. The results—UM = 0.099, US = 0.371, and UC = 

0.529—demonstrated that the error in the model is highly related to the variability and remaining 

errors of deviation. The relatively low UM and US reveals that the difference between the 

predicted value and actual data is low. The higher UC indicates that, although the model can 

forecast the trend of the ORL, there is a random component that was not identified by Model 5. 

The random variable shows that further research is necessary to identify other safety-related 

measures in the organization’s database to improve the model’s prediction capability.  
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ORL = (−0.001 ∗ SRM1) + (0.048 ∗ SRM2) + (0.275 ∗ SRM3) + (0.081 ∗ SRM4) +

(0.045 ∗ SRM5) − 8.900    Equation 9 

Where SRM1 = BBO rate; SRM2 = new workers rate; SRM3 = workers’ age; SRM4 = near miss 

rate; SRM5 = temperature. 

In addition, the performance of Model 5 was compared with individual performance of safety-

related measures (Table 3.6). The only model producing a MAPE results with a reasonable 

forecast when individual measures were compared was Model 5. The MLR regression model, 

which is built from the cross-sectional data collected in the case study, reveals that better ORL 

control is provided using data sources obtained from a variety of departments in a construction 

organization versus those collected from individual safety-related measures.  

Table 3.6: Performance evaluation of individual measures and Model 5. 

 Workers 

Age 

Temperature Near Miss 

Rate 

BBO Rate New 

workers 

Model 5 

Adj R2 0.036 0.021 0.234 0.243 0.080 0.488 

MAPE (%) 68.90 131.58 106.44 83.61 125.07 36.69 

3.5.3 Difference between Means in Group Comparison 

The data from projects A, B, C, and D were divided into two groups—Group 1, for which ORL 

≤ 5 (n = 6378) and Group 2, for which ORL > 5 (n = 231)—to determine if a significant 

difference exists between them (Table 3.7). It was observed that the near miss rate (ρ <0.05) and 

new workers rate (ρ <0.05) in Group 1 were significantly higher than in Group 2, while the BBO 
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rate (ρ <0.05) in Group 1 was significantly lower than in Group 2. In addition, if considering 

only one tail in the test, temperature in Group 1 is significantly lower than in Group 2 (ρ <0.05). 

The absence of significance for the workers’ age measure was likely a consequence of the low 

standard deviation of this measure. These results can be used by the organization to establish 

appropriate goals focused on maintaining risk levels within safe boundaries, such as those 

indicated in Group 2. For example, in this case study, acceptable ranges of ORL were achieved 

when the BBO rate on average was higher than 3750, near miss rate lower than 6.48, new 

workers per month less than 11.18%, with temperatures not deviating more than 15.57oC from 

the desirable temperature (18oC±15.57). In addition, the results also demonstrated the importance 

of interdepartmental collaboration to control measures such as new workers rate and planning 

schedule to avoid outdoor work during extremely low temperatures. 

Table 3.7: Results of Mann-Whitney U Test 

Safety-related 

measure 
Group 

Mann-

Whitney U 
Z 

Asymp. 

Sig. (2-

tailed) 

Median 

Age 1 

2 

822 -0.607 0.544 44.87 

45.39 

Temperature 

 

1 

2 

622 -2.227 0.026 15.57 

22.76 

BBO rate 1 

2 

344 -4.478 0.000 3750.70 

1871.61 

Near miss rate 1 

2 

310.5 -4.756 0.000 6.48 

16.77 

New workers 

rate 

1 

2 

558 -2.746 0.006 11.18 

19.17 
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3.5.4 Theoretical and Practical Implications 

An in-depth understanding of the causal mechanism through which the safety-related measures 

lead to the occurrence of incidents allows for the development of further strategies for safety 

enhancement. In this sense, relevant theories and studies were reviewed as follow:   

BBO rate. Hallowell et al. (2013) suggest that BBO card rate can be used as a proactive safety 

measure since it can demonstrate the organization’s commitment to safety. According to Jiang et 

al. (2015) a BBO card program can affect a worker’s individual conditions such as safety 

awareness, safety knowledge, attitude, and perceived behavioral control; they also emphasize 

that the BBO card can be used to avoid inappropriate worker behavior, thereby controlling 

hazardous exposures. These findings corroborate the results identified in this research indicating 

that BBO rate can be used to control and predict the ORL. 

New workers rate. New workers may not have enough experience to identify hazards on the site 

(Jiang et al., 2015), so they may increase the ORL. In addition, new workers can also influence 

the site environment. For instance, project delay, schedule pressure, or inappropriate planning 

may lead organizations to hire a considerable number of new workers, causing site congestion 

and consequently increasing workers’ exposure to struck-by or struck against incidents 

(Fortunato et al. 2012). Therefore, new workers can affect both site conditions and worker 

behavior, and the measure should be controlled by the organization to decrease ORL. 

Workers’ age. The age of workers can influence their decision to comply with safety practices 

and regulations. Workers with high experience may think that safety practices are not important 
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and consequently may not follow safety practices recommended by their companies (Gherardi 

and Nicolini 2002). Such inappropriate “macho” (Mullen 2004) behaviour can influence younger 

workers to likewise deviate from safety practices. Although controlling onsite workers’ age is 

difficult, organizations can carefully establish policies for workers with more experience by 

emphasizing the importance of complying the safety recommendations. 

Near miss rate. According to Wu et al. (2010), analysis of near misses has great supplementary 

potential to identify incident precursor factors since 90.9% of all incidents produces no injuries. 

Near miss investigation can help identify each incident’s root causes, and improve workers’ 

intention to work safely through communicating the results (Hallowell et al. 2013). A high near 

miss rate can suggest to workers that management is not concerned with identifying and 

controlling the near miss root causes, which may consequently incentivize unsafe behaviors such 

as not following safety procedures and taking shortcuts.  

Temperature. Extreme temperature on construction sites can fatigue workers by contributing to 

mental and physical stress conditions (Mitropoulos et al. 2009). According to Arslan et al. 

(2014), prolonged exposure to cold temperature can cause workers to experience hypothermia, 

frostbite, and trench foot. To avoid the cold weather, workers may take shortcuts, ignoring safety 

procedures (Leung et al. 2012). The unsafe behavior of a worker may increase the ORL and 

consequently cause incidents. In addition, low temperatures may cause slipperiness due to icing 

surfaces, which can physically increase the ORL.  

Previous studies support that these safety-related measures directly or indirectly influence 

workers’ behavior, which is associated with about 80% of incidents on construction job sites 
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(Lingard and Rowlinson 2005). To this end, controlling the safety-related measures identified in 

this research can contribute to controlling workers’ safe behavior, improving their intention to 

work safely, and increasing their ability to identify hazards. 

3.5.5 Limitations and Future Research 

In the case study, the working days measure was not significant in the three projects. However, 

fatigue can play an important role in workers’ perception of safe work and their intention to 

perform it (Shapira et al. 2012). Therefore, further investigation is needed to identify measures 

related to worker fatigue. In addition, the datasets were collected from four projects in the case 

study; three were used to build the regression model, while one was used for validation purposes. 

Due to the small size of samples used in this study, however, further research is necessary to 

generalize the findings of this case study. Another potential issue may arise from the limited 

number of safety-related measures studied in this paper. These measures were chosen mainly to 

(1) scrutinize the data available in the organization’s database, as recommended by safety 

experts, rather on a job site and (2) minimize the impact of known safety measures (e.g., working 

hours, training hours) on the regression analysis. However, the use of only seven safety-related 

factors may contribute to the relatively low adjusted R2, since other measures directly related to 

safety were not considered even though they may better fit the data into the MLR model. Thus, 

the MLR model identified (Equation 9) needs to be further adjusted for the use in practice since 

the influence of the safety-related measures can be affected by other variables such as the project 

type and safety culture.  
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3.6 Conclusion 

This paper demonstrated that the use of data-based safety-related measures suggested by existing 

literature can assist companies in assessing and controlling the ORL. Safety-related measures 

collected by different departments (i.e., BBO rate; near miss rate; temperature; crew size; 

working hours; workers’ age; and new workers rate) were tested using a MLR model and 

verified for their usage in assessing, controlling and predicting the ORL. The model results 

showed that five of the seven variables significantly impact the ORL. In addition, the holistic 

view achieved by using numerous measures can result in a better assessment of the ORL than is 

possible to achieve through individual measures. The causal relationship between the measures 

and the incident occurrence was verified through literature review, and it was observed that they 

are most related to workers’ safe behavior—although site conditions can also be influenced by 

the new workers rate (congestion) and temperature (slippery surface) measures. In summary, 

organizations can use safety-related measures to develop models to control the ORL and to 

identify and implement safety strategies to avoid ORL peak. The findings potentially support the 

proposal that safety-related measures collected at an organizational level can help the 

organization to 1) save the safety department additional time and resources required for data 

collection by sharing existing data in an organization and 2) control the measures by establishing 

acceptable boundaries based on historical data. In addition, organizations should emphasize an 

integrated cross-department safety approach to achieve safety performance excellence. 
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Chapter 4: Assessing the safety performance of construction projects using 

Case-Based Reasoning 

4.1 Introduction 

Safety Management Systems (SMS), which are designed and implemented to improve safety 

performance, have resulted in reduced accident rates. However, to ensure that current SMS 

remain functional, it is important to periodically evaluate the performance of a company’s SMS 

to detect and mitigate any flaws in the system’s procedures or policies that may develop over 

time. Currently, safety performance of construction companies is often evaluated using reactive 

measures (Hinze et al. 2013), such as the Total Recordable Incident Rate (TRIR) or the Days 

Away Restrictions and Transfers (DART) rates, which are assessed by retrospectively examining 

safety performance based on the number of recordable accidents that have occurred (per working 

hour). Consequently, these measures are not effective at evaluating current risk-levels of a 

worksite and provide little insight into practices that can be implemented to avoid future 

accidents (Grabowski et al. 2007). Furthermore, as suggested by Mengolini and Debarberis 

(2008), reactive measures may convey the unintended message that actual safety prevention is 

less important than safety performance goals, which may incite laborers to avoid reporting 

incidents to create an artificial improvement in safety performance.  

To overcome these difficulties, previous studies have proposed the use of proactive measures or 

indicators to evaluate safety performance. These measures arise from the identification of 

relationships between accident rates and certain safety-related measures (Esmaeili et al. 2015; 
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Lingard et al. 2017; Salas and Hallowell 2016). By identifying this relationship, managers can 

take proactive actions to improve safety-related measures prior to incident development and, in 

turn, avoid accidents. Current methods for proactively assessing SMS performance, however, 

require a minimum ratio of the number of safety-related measures being assessed to the number 

of incidents that have occurred (Kim et al. 2004).  

As a large number of safety-related measures have been reported to affect safety performance 

(Jablonowski 2011), and since the occurrence of recorded accidents on construction sites are 

comparatively low (Hopkins 2009), the number of data points available in one company may not 

be sufficient to appropriately apply these methods and may incite companies to avoid using a 

comprehensive list of safety-related measures to achieve the minimum ratio required. While 

organizations may opt to use an abridged list of safety-related measures that has been established 

using data from other organizations, the type and form of safety-related measures most critical to 

a project or company vary considerably based on project type, organizational policies, and 

cultural background, and previously developed lists may not produce reliable results when 

applied to other contexts. A method capable of evaluating current and predicting future safety 

performance from a comprehensive set of safety-related measures in conditions with small 

sample sizes, however, has yet to be developed.  

This study has developed an approach, based on Case-Based Reasoning (CBR) and genetic 

algorithms (GA), to more accurately assess and predict safety performance in conditions where 

incident occurrence is low and the quantity of safety-related measures is high. A case study was 

used to demonstrate method application in a practical setting. The method was shown to be 
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adaptable, to produce reliable results, and to be updatable in real-time. In addition to providing a 

reliable evaluation of current SMS performance, results generated using the proposed method 

can also be used to more objectively predict how decisions taken in various areas of an 

organization can affect overall safety performance. 

4.2 State of the Art 

4.2.1 Methods for Evaluating Safety Performance 

Safety performance can be monitored and controlled by collecting and analyzing relevant 

measures that influence the occurrence of an accident (Jannadi and Almishari 2003). Since they 

can monitor the level of safety in a system (Hale 2009), can describe conditions that precede an 

incident, have a predictive value, and can indicate interventions to improve safety performance 

(Hinze et al. 2013), safety-related measures are particularly well-suited for this purpose. Many 

safety-related measures, such as the behavior-observation rate (Hallowell et al. 2013), work stop-

authority, and working hours per day (Guo and Yiu 2016), have been proposed in safety 

management literature. 

Models using safety-related measures to assess safety performance have also been developed. 

However, these models are limited by their use of methods, such as Artificial Neural Networks 

(Goh and Chua 2013; Patel and Jha 2014) and linear models (Esmaeili et al. 2015; Lingard et al. 

2017; Salas and Hallowell 2016), which require a minimum ratio of the quantity of safety-related 

measures to available data points (Kim et al. 2004). To address the need for a large sample size, 

these models are typically designed to collect data from mulitple companies and to only consider 



77 

 

safety-related measures most commonly identified during the incident investigation. In essence, 

these models are designed to consider a particular set of safety-related measures that are applied 

across all companies without adjustment. Although these approaches can be used to evaluate 

SMS performance, they are limited by their propensity to (1) consider that specific measures are 

available in all companies—not accounting for its individual characteristics, (2) assume that 

measures equally influence accident occurrence, and (3) only consider safety-department 

associated measures. 

These limitations can impair the method’s effectiveness in practice. The uniqueness of the 

construction projects, dynamic project conditions (Sousa et al. 2015), and organizational safety 

culture that characterize each company cause variations in the types of measures that are 

collected by organizations in practice. In this context, measures such as a behavior observation 

program—suggested by Hallowell et al. (2013)—may not be available in every organization 

since the program (behavior observation) may not be implemented. In addition, while certain 

factors may be similar across organizations, the magnitude of the measure’s influence on safety 

performance may differ. For instance, while Wachter and Yorio (2014) suggested the use of the 

safety-related measure “amount of working hours per worker” to proactively control safety risk, 

Pereira et al. (2017) empirically determined that this measure was insignificant in a particular 

organization where a case study was conducted. Finally, records collected during incident 

investigations usually contain data related to safety programs and lack data involving other 

project components. However, safety is a part of a system (Jiang et al. 2015; Saleh et al. 2013) 

that is affected by various components of a construction project, such as project schedule (Jiang 
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et al. 2015), quality (Wanberg et al. 2013), and cost, which must be considered to generate a 

comprehensive evaluation of a SMS.   

4.2.2 Case-Based Reasoning and Genetic Algorithm 

The construction industry gathers various types of data that it collects from several departmental 

sources. This data may contain relevant historical experience that can provide companies with 

useful information for assessing and estimating safety performance outcomes. As the amount of 

data points available to assess the safety performance is limited and the influence of each 

measure on the safety perfromance is different, this research proposes a method using CBR and 

GA to address these issues, respectively.  

CBR has been applied in construction research to solve problems related to cost estimation (Choi 

et al. 2014; Kim and Shim 2014) and safety hazards identification (Goh and Chua 2010). It is a 

problem-solving methodology from the cognitive science field, which imitates the human action 

of reasoning by recalling previous experiences (Lopez 2013). When a user inputs a new case, 

CBR generates a solution by comparing the new case with similar cases in the database. CBR is 

capable of identifying associations between inputs and outputs using a limited quantity of data 

(Lopez 2013) and is, therefore, able to extract solutions from small databases while considering 

several measures. In this context, CBR can be used to evaluate safety performance by identifying 

similarities between cases from previous experiences (containing multiple safety-related 

measures) with a new case. CBR can be combined with GA, which can determine the weight 

(i.e., influence) of the attribute (i.e., safety-related measures) and, in turn, minimize prediction 

error (Kim and Kim 2010).  
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4.3 Method Development 

A method capable of identifying relationships between safety-related measures and safety 

performance outcomes from a limited amount of data in consideration of an organization’s 

individual culture and characteristics is proposed. Measures are first identified through several 

round of interviews with project and safety managers. Then, critical measures are selected and 

the level of influence of each measure is determined using GA. Finally, CBR is used to assess 

ongoing safety perfromance. The procedures used to develop the proposed method are illustrated 

in Figure 1 and are detailed in the following section. The method was validated using Correlation 

and Mean Absolute Percent Error (MAPE). 
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Figure 4.1: Method procedures for assess the safety performance 

4.3.1 Safety-Related Measures Identification  

Safety-related measures that influence safety performance can be identified through discussions 

between project and safety managers. Safety management literature should also be consulted to 

ensure the generation of a comprehensive list of measures. Researchers have associated safety-
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related measures with safety program efficiency (Rajendran 2013), worker behavior, (Leung et 

al. 2012), coworker behavior, supervisory encouragement (Brown et al. 2000), and inherent 

technical aspects of engineering systems (Han et al. 2014).  

Since the proactive control of safety performance can be related to (1) quantity of accidents 

(Salas and Hallowell, 2015) or (2) onsite risk (Lee et al 2012), two outputs related to safety 

performance were considered in this research: the total incident rate (TIR) and the safety risk 

(SR). TIR includes fatalities, major first aid, medical aid, and lost time incidents (Equation 1). In 

addition to including the aforementioned incidents, the SR also consider the perceived severity of 

each type of incident as suggested by Hallowell and Gambatese (2009) and as indicated in Table 

4.1 (Equation 2).  

𝑇𝐼𝑅𝑛 =
𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑠𝑛

𝑡𝑜𝑡𝑎𝑙 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 ℎ𝑜𝑢𝑟𝑠𝑛
∗ 200000               (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1) 

where 𝑇𝐼𝑅𝑛= total incident rate during time interval n; 𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑠𝑛= total of incidents during 

time interval n; 𝑡𝑜𝑡𝑎𝑙 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 ℎ𝑜𝑢𝑟𝑠𝑛 = quantity of working hours during time interval n; with 

200,000 representing the quantity of working hours in one year per 100 full-time employees 

working for 40 hours per week and 50 weeks per year. 
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Table 4. 1: Severity scale (Hallowell and Gambatese 2009) 

Subjective Severity Relative Impact Score (RIS) 

Temporary discomfort 2 

Persistent discomfort 4 

Temporary pain 8 

Persistent pain 16 

Minor first aid 32 

Major first aid 64 

Medical case 128 

Lost work-time 256 

Permanent disablement 1,024 

Fatality 26,214 

𝑆𝑅𝑛 =
∑#𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑠 𝑡𝑦𝑝𝑒𝑛 ∗ 𝑅𝐼𝑆

𝑡𝑜𝑡𝑎𝑙 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 ℎ𝑜𝑢𝑟𝑠𝑛
∗ 200000               (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2) 

where 𝑆𝑅𝑛 = safety risk in time interval n; #𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑡𝑦𝑝𝑒𝑛= quantity of each incident type; 

𝑡𝑜𝑡𝑎𝑙 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 ℎ𝑜𝑢𝑟𝑠𝑛 = quantity of working hours in time interval n; and 𝑅𝐼𝑆  = subjective 

severity defined by the relative impact score for each type of incident (Table 2). 

Integer numbers (such as the Likert scale) are commonly used in practice to assess risk due to the 

familiarity of these rating systems to project/safety managers within the construction industry 

(Lee et al 2012). TIR/SR are discretized using the equal frequency binning method. In this 

method, a fixed number of intervals are defined (e.g. 5) and, following the examination of the 

histogram of each attribute, n-1 cuts are determined so that approximately the same number of 

objects fall into each of the n intervals. After discretizing the safety outputs, measures are 

cleaned, queried, and integrated into a centralized database. The database is formatted as a table, 
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where each column contains safety-related measures and outputs used to assess safety 

performance and each line contains a new instance.  

4.3.2 Safety-Related Measures Selection 

Since most algorithms that reduce dataset dimensionality evaluate variables in one format (Hall 

1999), the continuous measures were discretized using the equal frequency binning method 

combined with a GA. This combination identifies optimum breakpoints within the safety-related 

measures and the safety performance outputs according to the significance concept introduced by 

Pawlak (1998). Specifically, if the safety output (D) depends entirely on a safety-related measure 

(C), denoted as 𝐶
 
⇒  𝐷, all values of the safety output are uniquely determined by one measure. 

To generalize this concept, Pawlak (1998) introduced the idea of partial dependency attributes (γ

), which states that “some values of D are determined by values of C. If D depends totally on C, 

γ = 1, otherwise, it depends partially on C (0 ≤ γ ≤ 1)” (Equation 3). 

γ =  ∑
|𝐶∗(𝐷)|

𝑈
𝑋∈𝑈/𝐷

 (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3) 

where 𝐶∗(𝐷)  = safety outputs (D) that can be identified according to the safety-related measures 

(C) and U/D = the set of all elements used in this research categorized in D.  

To identify the optimum breakpoints, each input attribute (i.e., safety related measures) is ranked 

from the lowest to the highest value with its corresponding discrete value (1 to 5) and decision 
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attribute (TIR/SR). The objective function aims to maximize the dependency between the 

input/decision attribute (Equation 4.2). Figure 4.2 demonstrates how the GA affects the interval 

range of each attribute. Notably, if the safety-related measure behavior is expected to be 

negatively correlated with TIR/SR, the scale (1-5) should be reversed.  

max[(γ)]   (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 4) 

 

Figure 4.2. Safety-Related Measure Discretization Combining Equal Frequency Binning and GA 

After identifying the optimum breakpoint, a Pearson correlation test is performed between each 

measure and each safety output (Equation 5). If the correlation direction is different from 

established theories (e.g. crew size has a negative correlation with TIR/SR), the measure is 

discarded to avoid any bias in practice. For instance, in some companies, months with a lower 

crew size have more accidents due to poor performance of other measures; therefore, the pattern 

observed with this measure may not be accurate. 
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𝑟 =  
𝑛(∑𝑥𝑦) − (∑𝑥)(∑𝑦)

√[𝑛 ∑𝑥2 − (∑𝑥)2] [𝑛 ∑𝑦2 − (𝑦)2 ]
 (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 5) 

where r = correlation coefficient; x = safety related measure value; and y = corresponding safety 

performance. 

From the remaining safety-related measures, a correlation-based feature selection (CFS) is 

performed to reduce the dimension of the dataset while retaining the maximum possible 

variance. The CFS algorithm is a filter selection method that evaluates the relevance of attributes 

for explaining the variance of an output variable (Hall 1999). It was chosen for its ability to 

accommodate a large dimension of safety-related measures and a small number of instances 

while preserving the original representation of the attributes (Guyon et al. 2003). CFS ranks the 

safety-related measures based on a heuristic evaluation function (Equation 6): the numerator in 

Equation 2 provides an indicator of the capacity of the measure to predict safety output, while 

the dominator indicates how much redundancy exists among the measures (Hall 1999).  

𝑀𝑠 =
𝑘�̅�𝑐𝑓

√𝑘 + 𝑘(𝑘 − 1)�̅�𝑓𝑓
               (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 6) 

where 𝑀𝑠 = heuristic merit for the safety-related measures subset S containing 𝑘 measures; �̅�𝑐𝑓 = 

average safety-related measures for the safety output correlation ( 𝑓 ∈ 𝑆); and �̅�𝑓𝑓 = average 

measure-to-measure correlation (Hall 1999). 

4.3.3 Safety Assessment Model Using CBR and GA 
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CBR offers various advantages that can address several challenges associated with this study: 

 Results are easily and rapidly obtained from a CBR model. This allows the simultaneous 

comparison of various safety performance scenarios, which can facilitate effective 

decision-making during the conceptual planning phase and throughout the execution 

phase of a project. 

 Although the number of cases influences the accuracy of the CBR model (Doğan et al. 

2008)), there is no minimum quantity of data points required to establish an association 

between safety-related measures and TIR/SR.  

 The model is easily updated with new data (Kim et al. 2004), which ensures that the 

model remains relevant and reflective of the real system.  

CBR is based on four main processes: retrieve, reuse, revise, and retain (Lopez 2013). When a 

user inputs a new case to estimate safety performance, the model first retrieves comparable cases 

from the case-base by calculating the similarity point, which represents the degree of similarity 

between the input and retrieved cases for a particular safety-related measure (Choi et al. 2014). 

Once the final dataset of measures are selected, the CBR and GA algorithms are employed to 

determine the impact (i.e., weight) of each measure on safety output and to assess safety 

performance. Here, the similarity between safety-related measures was determined as 

recommended by Choi et al. (2014) (Equation 7). The model calculates the similarity score (sim) 

of each case with the new input case using the nearest neighbor matching (NNM) technique, and 

reuses the case safety output to assess the TIR/SR (Equation 8). The result is then revised by 
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selecting the top five cases which presented highest 𝑠𝑐𝑜𝑟𝑒𝑛 to assess the TIR or SR (Equation 9). 

Finally, the model retains the new case for future use.  

𝑠𝑖𝑚(𝑥𝑎
𝐼 , 𝑥𝑎

𝑅) =

{
 
 

 
 0,             𝑑 (𝑥𝑎

𝐼 ,  𝑥𝑎
𝑅) > 0.3

60,           𝑑 (𝑥𝑎
𝐼 ,  𝑥𝑎

𝑅) ≤ 0.3

80,           𝑑 (𝑥𝑎
𝐼 ,  𝑥𝑎

𝑅) ≤ 0.2

100, 𝑑 (𝑥𝑎
𝐼 ,  𝑥𝑎

𝑅) ≤ 0.1}
 
 

 
 

 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 7 

where 𝑥𝑎
𝐼 , 𝑥𝑎

𝑅 = the safety-related measure a for input case I and retrieved case R and the 

difference rate 𝑑(𝑥𝑎
𝐼 ,  𝑥𝑎

𝑅) =  | (𝑥𝑎
𝑅 −  𝑥𝑎

𝐼 )/ 𝑥𝑎
𝐼  | 

𝑠𝑐𝑜𝑟𝑒𝑛 =
∑ [𝑠𝑖𝑚( 𝑥𝑎

𝐼 ,  𝑥𝑎
𝑅)  × 𝑤𝑎]

𝑚
𝑎=1

∑ 𝑤𝑎
𝑚
𝑎=1

 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 8. 

where 𝑚 = number of attributes and 𝑤𝑎= weight of attribute 𝑎.  

𝑆𝑅 𝑜𝑟 𝑇𝑅𝐼 =  ∑((𝑆𝑅 𝑜𝑟 𝑇𝐼𝑅)𝑖 ∗
𝑠𝑐𝑜𝑟𝑒𝑖
∑𝑠𝑐𝑜𝑟𝑒

)

5

𝑖=1

 (𝐸𝑞𝑢𝑎𝑖𝑜𝑛 9) 

where safety performance = predicted safety performance of the input case (final result of the 

CBR model); 𝑆𝑃𝑖 = safety performance of the top-scored 𝑐𝑎𝑠𝑒𝑖 ; 𝑠𝑐𝑜𝑟𝑒𝑖 = similarity score of the 

ith top-score case; and ∑𝑠𝑐𝑜𝑟𝑒 = sum of top five scores. 

A GA is used to define the weight of each safety-related measure (𝑤𝑎) to maximize the 

correlation provided by the CBR (Kim and Kim 2010; Kim and Shim 2014). The objective 

function of the GA is to maximize the correlation between the actual and predicted TIR/SR 



88 

 

(Equation 10). For the genetic algorithm computation, the database is split into learning cases 

(≈25%) and base cases (≈75%).  

𝑀𝑎𝑥 𝑟 =  
𝑛(∑𝑥𝑦) − (∑𝑥)(∑𝑦)

√[𝑛 ∑𝑥2 − (∑𝑥)2] [𝑛 ∑𝑦2 − (𝑦)2 ]
 (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 10) 

where 𝑀𝑎𝑥 𝑟 = maximum correlation between actual and predicted TIR/SR; 𝑥 = actual safety 

performance;  𝑦 = predicted safety performance; and n = number of learning cases. 

Once the weights of the attributes are verified, the performance method can be evaluated by 

computing the correlation (𝑟) and MAPE (Equation 5 and 11). A 10k cross-validation procedure 

is recommended to evaluate the accuracy of the proposed method. In this procedure, a database 

is divided into ten data sets, with nine used as learning cases and one used as a test case. The 

correlation and MAPE are then calculated to determine the difference between the values 

predicted by the CBR model and the values observed. A completely new data set (i.e., data from 

a new project) could also be used to test the reliability of the model, thereby eliminating any 

potential inter-correlation amongst data points.  

 𝑀𝐴𝑃𝐸 = 
1

𝑛
∑ |

𝑃𝑣−𝐴𝑣

𝐴𝑣
|𝑛

𝑡=1  𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 11   

where n = number of new cases; 𝑃𝑣 = predicted TIR/SR; and 𝐴𝑣 = actual TIR/SR. 
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4.4 Method Application 

The proposed method was applied at an industrial construction company in Edmonton, Canada. 

Safety-related measures were collected from four different industrial construction projects 

undertaken by the case company, totaling more than 22 million hours. Three projects were 

utilized as a training set (A, B, and C; n = 93) and one project (D; n = 18) was used to validate 

the model. The first six months of the execution phase of each project were excluded due to the 

low number of onsite workers during this period. Data was then collected on a monthly basis. 

From interviews with project and safety managers, 27 safety-related measures were identified 

(Table 4.2). Data were collected from department databases and project documents. In addition, 

measures such as congestion level and scope changes were collected through interviews with 

project managers based on questions developed by the Construction Industry Institute 

(Construction Industry Institute 2006). Data for temperature measures were calculated as the 

absolute value of the deviation from the ideal temperature. Temperatures were collected from the 

Environment Canada database (Environment Canada 2015). The ideal temperature was defined 

here as 18oC as recommended by Lee et al. (2012) who determined that accident risk is lowest 

when temperatures range between 16-20oC. Absolute deviations were then calculated. The 

unemployment rate was collected from the Alberta and Saskatchewan Unemployment Rate 

Database (Alberta, 2017; Saskatchewan 2017).  
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Table 4.2: Safety-related measures selection 1 

Safety-related measure Source Type Unit TIR SR 

Corr CFS Corr CFS 

Crew size Payroll Cont. Workers / foreman     

Hours worked per worker Payroll Cont. Hours worked / worker     

Worker experience on project Payroll Cont. Days      

Foreman experience on project Payroll Cont. Days     

BBO rate  HSE Cont. # BBO filled / working hour     

Inspection rate  HSE Cont. # Inspection / working hour     

Near miss rate HSE Cont. Near misses/working hour     

Total PSI audited rate  HSE Cont. #PSI audited/working hour     

Ramp up / ramp down Payroll Cont. # workersn / # workersn-1     

Operators Payroll Cont. # operators / total workers     

Temperature Canada environm. Cont. oC     

Wind speed average Canada environm. Cont. km/h     

Scaffolding rate Payroll Cont. Scaffolding hours/working hour     

New workers rate Payroll Cont. New workers / total workers     

Workers age Human resource Cont. % workers younger than 30 and 

older than 50 years old 

    

Foreman age Human resource Cont. % foreman younger than 30 and 

older than 50 years old 

    

Unemployment Rate Economics Canada Cont. % unemployment rate     

Delay S curve  Scheduling Cont. actual hours / planned hours     

Quality subcontractors Procurement Disc. Likert scale (1-5)*     

Scope change Quality Disc. Likert scale (1-5)*     

Rework level Quality Disc. Likert scale (1-5)*     
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Safety-related measure Source Type Unit TIR SR 

Corr CFS Corr CFS 

Cost overrun Estimating Disc. Likert scale (1-5)*     

Congestion level Project control Disc. Likert scale (1-5)*     

Project elevation Project control Disc. Likert scale (1-5)*     

Design Project control Disc. Likert scale (1-5)*     

Schedule pressure Scheduling Disc. Likert scale (1-5)*     

Where: Cont is continuous measure; Disc is discrete measure 

* Questionnaire available in the Appendix E 
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Each continuous safety-related measure was discretized, and the correlation between the measure 

and the TIR/SR was verified. The measures “hours worked per worker,” “foreman age,” 

“unemployment rate,” “scope change,” “cost overrun,” and “congestion level” did not result in 

an expected correlation and, therefore, were not considered in the dimensionality reduction. 

Several factors may underlie these observations: holiday season in December and January 

decreased working hours per worker, foreman age may not have been related to foreman 

competency, unemployment rate may not have been related to the availability of skilled workers 

in the market, and safety training may have been standardized within the company resulting in 

low measure variance. Notably, although “scope changes,” “congestion,” and “cost overrun” 

have been recognized as factors that can influence the safety performance, (Albert et al. 2015; 

Han et al. 2014), the questionnaire was not designed to assess the magnitude of their influence. It 

is recommended that different measures should be established by this company to evaluate—and, 

in turn—control the effect of these variables on safety performance.  

Ultimately, a total of 21 measures were considered in the CFS reduction technique. Using the 

Waikato Environment of Knowledge Analysis (WEKA) to perform the reduction technique, 

eight measures were selected: “crew size,” “Behavior-based Observation (BBO) rate,” “near 

miss rate,” “operators,” “temperature,” “workers’ age,” “delay S curve,” and “project elevation.” 

The “ramp-up/ramp-down” measure was considered only in the SR model.  

Following the dimension reduction, the weight of each measure was identified using Evolver 

(Table 4.3). “Operators,” “crew size,” and “near miss rate” were determined to have the greatest 
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weight with respect to SR, while “operators,” “project elevation,” and “workers’ age” had the 

greatest weight with respect to TIR.  

Table 4.3: Optimal weights of safety-related measures 

Safety-Related Measure TIR(%) SR(%) 

Crew size 9.84 16.15 

BBO rate  5.44 8.69 

Near miss rate 5.04 14.92 

Ramp up/Ramp down - 10.83 

Operators 24.04 17.31 

Temperature 5.78 7.88 

Workers age 10.04 8.12 

Delay S curve 6.22 8.25 

Project elevation 33.60 7.85 

Total 100.00 100.00 

As previously described, two tests were performed to validate the proposed method: correlation 

and MAPE (Table 4.4). In social or behavioral sciences, a correlation coefficient value of 0.30–

0.49 is typically interpreted as moderate to substantial evidence of an association and 0.50–0.69 

is interpreted as substantial to very strong (de Vaus 2002). According to Salas and Hallowell 

(2016), if the analysis provided a strong relationship for the model, it can be used for predictive 

purposes. The correlation identified in Table 4.4 is considered very strong. MAPE  results can be 

evaluated using the following criteria: < 10% for highly accurate forecasting; 10–20% for good 

forecasting; 20–50% for reasonable forecasting; and  > 50% for inaccurate forecasting (Gravetter 

and Wallnau 2010). Here, MAPE average was found to be 32%, which is considered a 

reasonable forecast. The model accuracy for predicting TIR/SR was tested using a new data set 

(Project D), which resulted in a MAPE value of approximately 21.5% and a correlation of 
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approximately 0.66. The correlation and MAPE results indicate that the proposed method can 

provide an acceptable forecast for new projects. 

Table 4.4: MAPE and correlation results: 

Output 10k fold New project 

correlation MAPE correlation MAPE 

TIR 0.6822 34.14% 0.6450 22.18% 

SR 0.7129 30.92% 0.6786 21.04% 

The correlation result from the CBR and GA was also compared with other methods to evaluate 

the performance of the proposed approach (Table 4.5). The correlation result obtained by the 

CBR and GA is at least 8% greater than others methods, suggesting that this approach can be 

used to evaluate the safety performance. In addition, since the prediction accuracy of the CBR 

model is governed by the quantity of cases in the case base, this method is expected to improve 

with each addition of cases to the case base over time. 

Table 4.5 Comparison between CBR and other assessment techniques (10 k fold) 

Test  TIR 

correlation 

Improvement 

GA and CBR 

SR 

correlation 

Improvement 

GA and CBR 

Gaussian Process 0.3141 126% 0.3407 109% 

Multilayer perceptron 0.4450 53% 0.3381 111% 

Simple linear regression 0.5636 21% 0.5709 25% 

Additive regression 0.6343 8% 0.6582 8% 

RapTree 0.4455 53% 0.5730 24% 

CBR and GA 0.6822 - 0.7129 - 
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4.5 Discussion 

Although studies have used safety-related measures to evaluate safety performance, their 

methods require a minimum ratio between safety-related measures and safety output to produce 

reliable results. Since accidents have a low probability of occurrence, the limited number of 

safety performance data points incites companies to use an abridged set of measures, which may 

jeopardize the model’s results by not considering a full-spectrum of measures that accurately 

capture the unique characteristics of a company. To overcome these limitations, a CBR- and GA-

based method, which is able to (1) reliably assess safety performance with a limited number of 

data points, (2) consider specific characteristics of each company, and (3) determine the 

influence of various measures on future safety performance, was proposed. The model was 

validate using MAPE and correlation methods and was shown to be capable of producing 

reliable results. 

The method was applied in a practical context to evaluate its functionality. For this purpose, data 

from an industrial construction project were used. The model was shown to easily evaluate safety 

performance and to identify and select safety-related measures. The final model of the case study 

was composed of nine assessment measures: “crew size,” “BBO rate,” “near miss rate,” 

“operators,” “temperature,” “workers’ age,” and “delay S curve.” This result is consistent with 

measures previously identified in safety management literature. For instance, numerous 

researchers have emphasized both the indirect and indirect impact of the project delay (Han et al. 

2014; Mitropoulos et al. 2005); environmental conditions and workers` age (Lee et al. 2012); 

near miss reporting and worker observation process (Hallowell et al. 2013); teamwork 
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(Mitropoulos and Memarian 2012); and congestion related to equipment (Fortunato et al. 2012) 

on safety performance. The results also demonstrated that safety-related measures were 

associated with “worker behavior,” “teamwork,” “equipment and material,” and “workplace” 

factors. As highlighted by Wu et al. (2010), these factors are associated with construction 

accident precursors, and their presence can indicate that certain hazards have not been effectively 

removed or mitigated. 

Through the use of CBR, the proposed was shown to be capable of reliably evaluating safety 

performance in situations with a limited sample size. The ability to extract knowledge from a 

small sample size increases the model’s applicability, allowing it to evaluate safety performance 

of specific activities (such as welding and civil works) at a project level. In turn, the outputs 

presented by the model can then be used to assess effectiveness of current SMS. Application of 

this method during the planning phases of a new project could allow strengths and weakness of 

the current SMS to be identified, allowing practitioners to proactively improve safety 

performance. As the model is able to predict safety performance trends, it can also be used to 

proactively evaluate the SMS and guide companies at an organizational level, facilitating 

decision-making regarding changes to current policies and procedures to achieve the safety goal. 

Finally, since the model is able to identify measures with the greatest impact on performance, it 

can also be used by practitioners to identify potential deficiencies in their SMS. 

The lack of a required ratio between attributes and output variables also provide the advantage of 

adaptability to the proposed model. The CBR-based model considers the key attributes of a 

problem and provides solution according to the organization’s culture and background (Lopez 
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2013). As demonstrated in previous studies, CBR is adaptable to the quantity of attributes and 

data types available in each specific domain (Choi et al. 2014; Kim and Kim 2010; Kim and 

Shim 2014). This adaptability allows the CBR to provide companies with personalized 

suggestions to improve safety performance. The feature also allows the CBR-based method to be 

easily updated. In contrast to other methods such as linear models, which must be re-performed 

to update the model with new data, CBR is continuously improved through the constant 

accumulation of new cases in its database. 

Although the evidence presented in the current study support the use of the proposed method to 

identify and evaluate the safety performance of construction projects, the findings of this study 

should be interpreted in consideration of the following limitations. First, the safety-related 

measures were selected based on the data available by the company. Other variables related to 

work processes, such as union versus non-union workers, schedule over time, automation, and 

procurement, can (and should) be used to provide a comprehensive overview of potential safety 

management deficiencies onsite. In addition, although some measures were not identified as 

significant in the present research, this pattern should not be generalized for other companies due 

to unique organizational factors such as cultures, regional characteristics, or construction types. 

As previously recommended, safety-related measures should be purposefully selected for each 

assessment. Second, the causality effects of the identified measures were not examined due to the 

absence of randomized experiences. Further research is necessary to determine the cause and 

effect relationship between the measures identified. Finally, the predictive models are influenced 

by the data collected onsite. Since the data collection process is manually conducted and 

uploaded in databases, there is a natural limitation related to the accuracy of data entry. 
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The results and procedures adopt by the company shared in this paper revealed several themes of 

useful future study. First, since safety-related measures can be affected by the dynamic 

conditions of construction projects, the integration between CBR and simulation models 

(designed to replicate the performance of projects) may assist managers in comprehending how 

the interaction of various decisions affect overall safety performance. Second, an in-depth 

understanding of the cause and effect between the safety-related measures can enhance SMS 

strategies to mitigate the risks during project planning and execution phase. Third, since it is not 

available, the data related to the day the workers start to work in the construction industry, 

further research can evaluate how a worker’s field experience, as opposed to a worker’s age, 

affects safety risk. 

4.6 Conclusion 

Results generated by this assessment tool can be used to more accurately evaluate SMS 

performance, particularly in situations with small sample sizes. In addition, the model can also 

be used to assess how various scenarios can affect risk levels and can be used to test scenarios 

and assist managers with decision-making processes. By reliably evaluating and predicting SMS 

performance, managers can examine how various strategies can impact safety output. For safety 

management in construction to become proactive in nature, it is necessary to control safety-

related measures prior to the occurrence of accidents. This research proposes a method that uses 

existing data from companies to assess the safety performance of construction sites by 

identifying and evaluating various safety-related measures. The CBR and GA method were 

found to be effective at producing reasonable results with a limited amount of data points. The 



99 

 

proposed method was found to accurately identify the measures, determine their impact on safety 

performance, assess safety performance of construction projects, and visually demonstrate its 

performance. The framework was validated using correlation and MAPE.  

The presented CBR/GA-based method is expected to assist companies with (1) identifying 

safety-related measures within the information available in a company and assessing each 

measure’s influence on safety performance, (2) controlling safety performance using a proactive 

holistic approach, and (3) producing reliable, meaningful information that can be used to 

improve safety management practices and policies. Its functionality was demonstrated following 

its application in a case study of a company located in Edmonton, Canada. Here 27 measures 

were initially identified as possible potential measures of safety performance. Following method 

application, nine safety-associated measures were selected and considered in the final model. 

Measures associated with “resource allocation,” “scheduling,” “human resource,” “cost control,” 

and “environmental policies,” were determined to have the greatest impact on safety outcome at 

this company. Based on the model results, companies can establish policies such as defining 

minimum penetration rate of Behavior-based observation rate and maximizing crew size. The 

framework also allows practitioners to verify how policy combinations influence overall safety 

performance. 
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Chapter 5:  Integrating Case-Based Reasoning and simulation modeling for 

testing strategies to control safety performance 

5.1. Introduction 

The construction industry is considered one of the most hazardous industries across numerous 

countries and regions throughout the world (International Labour Organization 2014). Since 

accidents influence project performance, efforts to reduce incident occurrence on construction 

projects are important not only for worker health but also to successfully achieve financial, 

schedule, and quality targets (Dadeviren and Yuksel 2008). In this context, evaluation of project 

safety performance is critical. Evaluation can assist in identifying possible flaws in an 

organization’s Safety Management System (SMS), thereby improving proactive safety planning, 

and ultimately, in reducing incident occurrence. While the evaluation of safety performance is 

common in practice, it is done primarily using reactive indicators such as Total Recordable 

Incident Rate (TRIR) and Severity Rate (SR) (Salas and Hallowell 2016). Since these indicators 

are based on accident frequency, they cannot alert practitioners to deficiencies in SMS prior to 

accident occurrence. Use of these indicators renders the definition and development of proactive 

risk mitigation strategies difficult in practice and may even produce unreliable results, which can 

adversely affect safety performance.  

Researchers have, therefore, concentrated their efforts on proactively assessing and controlling 

safety performance by focusing their attention on identifying safety-related measures that can be 

used to predict onsite safety risk. Multiple factors influence accident occurrence, and most 

models have been developed to evaluate the combined effect of several safety-related measures 
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(Esmaeili et al. 2015; Lee et al. 2012; Lee and Halpin 2003). However, to be useful in practice, 

models, in addition to being comprehensive, must also be capable of considering the dynamic 

behavior of construction projects. Dynamic conditions, such as workers and equipment 

availability, work team rotations, and environment conditions, often affect project schedule. In 

response, managers may be required to make decisions that result in project delivery deviating 

from original project plans. Notably, these decisions may have effects on the performance or 

occurrence of several safety-related measures and may substantially impact overall safety 

performance. The inability of current evaluation models to incorporate and respond to multiple, 

concurrent decisions makes it difficult to alter safety policies in response to changing project 

conditions. 

A hybrid simulation/Case-Based Reasoning (CBR) approach that can assist managers with the 

proactive development of comprehensive safety management strategies while considering the 

impact of managerial decisions on safety performance overtime is proposed. Here, CBR is used 

to determine onsite safety risk from company-specific safety-related measures, and a 

combination of both continuous and discrete simulation modeling is used to reliably replicate the 

behavior of construction projects overtime. Together, this approach is capable determining how 

dynamic project conditions can affect safety performance and, therefore, can be used to inform 

and support decision-making processes and to facilitate the development of risk mitigation 

strategies throughout various stages of project delivery. 
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5.2 State of the Art 

This research has defined safety-related measures in accordance with the definition proposed by 

Harms-Ringdahl (2009), which defines safety-related measures as “observable measures that 

provide insights into a concept – safety – that is difficult to measure directly” (p.482). According 

to Hallowell et al. (2013), safety-related measures are recommended for proactive control of the 

safety level in construction projects due to their well-established relationship with lagging 

indicators such as TRIR and SR. Notably, as a consequence of the unique conditions of 

construction projects, safety culture of each organization, and diversity of causes that can 

contribute to accident occurrence [(such as worker behavior (Li et al. 2015), site conditions (Lee 

et al. 2012), and managerial commitment to safety (Guo and Yiu 2016)], several researchers  

(Goh and Chua 2013; Lee et al. 2012; Patel and Jha 2014; Salas and Hallowell 2016; Esmaeili et 

al. 2015; Lingard et al. 2017) have recommended evaluation approaches that are capable of 

considering a combination of multiple safety-related measures. 

Although comprehensive, these models are unable to consider the performance of safety-related 

measures overtime, making it difficult to estimate the impact of changing safety policies (e.g. 

penetration of behavior based observation rate) or resource allocation on safety performance. As 

highlighted by Han et al. (2014) and Cooke (2003), safety-related measures such as the quantity 

of safety training and number of workers often change throughout project delivery. To ensure 

that model outcomes are relevant and representative, models must be able to incorporate 

variations in measure performance that may occur overtime. Furthermore, current assessment 

models are also limited by their inability to examine how project performance itself can affect 
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the performance of safety-related measures overtime. As demonstrated by Mitropoulos et al. 

(2005) and Jiang et al. (2015), strategies implemented to ensure that construction projects 

achieve planned schedules can affect the performance of safety-related measures. Therefore, it is 

also critical to consider how the performances of safety-related measures are altered within a 

dynamic environment. 

Simulation models have been used to successfully replicate the performance of construction-

associated measures and construction projects (Alvanchi et al. 2012, Lee et al. 2009; and 

Razavialavi and Abourizk 2015). Simulation modeling has also been used to identify periods of 

high risk level by overlapping risk associated with construction activity (Choe and Leite 2015; 

Wang et al. 2006; Zolfagharian et al. 2014). In these studies, activity risk is assessed using data 

from organizational databases (e.g. OSHA), which considerably limits the efficacy of these 

approaches. Changes to other safety-related measures that affect safety performance, but that are 

not included in such databases, are not considered in these models. These approaches also 

assume that measures influence are the same across the organizations, not considering that 

factors such as organization’ safety culture and programs can vary and affect the safety 

performance (Haas and Yorio 2016).  

There is a need, therefore, to integrate simulation models with an assessment method capable of 

effectively and appropriately evaluating safety performance. Methods such as Artificial Neural 

Network (Goh and Chua 2013; Patel and Jha 2014) and linear models (Esmaeili et al. 2015; 

Lingard et al. 2017; Salas and Hallowell 2016) have been used to assess the safety performance. 

However, as these methods requires a minimum ratio between quantity of safety-related 
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measures and amount of data points and as many safety-related measures can be correlated with 

the safety performance (Jablonowski 2011), the amount of data points may not be enough to 

apply these methods. One such approach, proposed by Pereira et al (2017), (“Evaluating safety 

performance using CBR and Safety-Related Measures” submitted, University of Alberta, 

Edmonton, Canada), is the use of a CBR-based method. CBR is capable of evaluating safety 

performance when data points are limited and measure variability is high. Consequently, this 

approach is effective at considering multiple safety-related measures of an organization as well 

as their level of impact on safety performance, thereby representing an evaluation method that is 

capable of capturing the unique characteristic of an organization. Notably, this method can 

accommodate various types of data (such as numerical and nominal data) and can effectively 

overcome issues related to incomplete data and variable data structure (Arditi and Tokdemir 

1999). 

5.3 Methodology 

This research proposes the use of an integrated Case-Based Reasoning (CBR) and simulation 

modeling approach to assess safety performance. Here, CBR is used to assess safety 

performance, while a simulation model is used to reproduce project conditions and to update the 

performance of safety-related measures overtime.  

Simulation “is the science of developing and experimenting with computer-based representations 

of construction systems to understand their underlying behavior” (AbouRizk 2010). Simulation 

models the logic of activities required to perform a task, the resources necessary to complete this 

task (e.g. crews, equipment, and material), and the environmental conditions (e.g. weather 
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temperature, wind speed, and ground conditions) that may affect project performance 

(AbouRizk, 2010). In essence, simulation allows for the concomitant analysis of several safety-

associated measures and, therefore, can be used to determine how a combination of decisions can 

influence overall project cost, schedule, quality, and safety. Here, the simulation model is 

responsible for replicating project behavior and for updating the values of the safety-related 

measures. Two types of simulation are used in this conceptual approach, namely continuous and 

discrete-event simulation, to achieve this goal. 

5.3.1 Continuous and discrete-event simulation modeling 

Several authors (Lee et al. 2009; Puri and Martinez 2013; Razavialavi and Abourizk 2015) have 

contended that a combination of discrete-even and continuous simulation may enhance the 

understanding of complex interactions between various processes and resources. Given that 

safety is affected by a multitude of construction-associated factors, a continuous and discrete-

event simulation approach was selected as a means of best representing the complexity 

associated with safety performance. 

Continuous simulation (CS) is used to represent systems experience continuous change (Roth 

1987). CS relies on the differential equation for determining the values of continuous variables 

(Equation 1)   

S(t2) =  S(t1) + 
Ds

Dt
 dt                𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1 
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where S(t2) and S(t1) are the value of the continuous variable S at time t2 and t1, respectively (t2 = 

t1 +dt), and Ds/Dt is the rate of change of the continuous variable. 

According to Reggelin and Tolujew (2011), CS is most suitable for modeling events at a 

strategic level with aggregate data when a low-level of detail and modeling effort, relative to that 

required for discrete-event simulation, is needed. Razavialavi and Abourizk (2015) have 

indicated that CS is mostly used to predict the long-term behavior of a project and to model 

managerial corrective actions. Accordingly, CS was chosen to simulate the project schedule to 

establish the relationship between the start and end times of a project’s activities. Here, the work 

breakdown structure of a project is classified into disciplines that are defined depending on 

project type. The quantity of required worker hours in each discipline is defined by the project 

estimation department and is obtained from the planned scheduled. Actual project hours are 

tracked by the CS, and the rate of change is calculated using Equation 2. The time unit used by 

the simulation model is set as days. 

𝐷𝑠

𝐷𝑡
= 𝑤𝑜𝑟𝑘𝑒𝑟 ∗ 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 ℎ𝑜𝑢𝑟𝑠 ∗ 𝐻𝐸 (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2) 

where 
𝐷𝑠

𝐷𝑡
 is the change rate; worker is the quantity of workers available for the discipline; and 

HE is the Hours Effective factor determined by the project manager onsite. 

In the current model, discrete-event simulation (DES) is used to determine project completion 

from the outputs provided by the CS component of the model. According to Alvanchi et al. 

(2011), DES is extremely useful for modeling the effects of operation-level variables in 
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sequential systems. Here, the DES portion is used to (1) update safety-related measures that 

change monthly (e.g. crew size) or daily (e.g. Temperature) based on distributions defined by the 

user or from historical database information, (2) control time advancement of the model and 

finalize the simulation when project duration has elapsed, (3) calculate project safety 

performance, and (4) simulate specific tasks in which the use of resources, materials, or weather 

conditions significantly affect project schedule. Figure 5.1 schematically demonstrates the 

behavior of the simulation model. The project information is read from a spreadsheet by the 

simulation software, and data are stored in the system. When t = 0, monthly and daily attributes, 

and the rate of change for day 1, are calculated. Then, information is provided to the CS and 

DES models. Safety-related measures are updated for time intervals defined by the user. Project 

schedule is updated by the CS on a daily basis.  

Continuous 
simulation

User 
scenario

Project progress 
rate: working hours/

day

Stochastic measures 
updated on a daily 

basis

Scenario loaded into 
the simulation 

model

Update safety-
related measures 

Working hours rate 
and monthly 

measures calculated 

Discrete 
simulation

 

Figure 5.1. Integrated continuous and discrete-event simulation model 

5.3.2 Case-Based Reasoning 

CBR is an artificial intelligence-based method that utilizes a problem solving approach to imitate 

the human action of reasoning (Watson 1999). In this method, the solution is obtained from 
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previous experiences that are accumulated by the system over time (Lopez 2013). CBR solves 

new problems by matching the characteristics of a new problem to those of the old cases that 

have been successfully solved (Richter and Weber 2013). CBR has been applied in the 

construction domain to estimate costs (Choi et al. 2014; Kim et al. 2004; Kim and Kim 2010; 

Kim and Shim 2014), identify hazard (Goh and Chua 2010), estimate resource allcoation (Du 

and Bormann 2014; García et al. 2015), assist in bid decision-making (Chua et al. 2001), assess 

performance of scheduling and planning (Dzeng and Tommelein 2004)), and evaluate contractor 

prequalifications (Ng 2001)). Application of a CBR-based approach to evaluate safety 

performance has been proposed by Pereira et al (2017), (“Evaluating safety performance using 

Case-Based Reasoning and safety-related measures,” submitted, University of Alberta, 

Edmonton, Canada). In brief, safety-related measures are collected from various departments at 

an organization. Correlation Feauture Selection Based and Genetic Algorithm  are used to select 

and determine the influence of safety-related measures on safety performance, respectively. 

Then, the measures selected by this approach are used as inputs for the simulation. Safety-related 

measures are updated on a monthly basis. The simulation model is responsible for accessing the 

database, which contains all the safety-related measures, and for plotting safety performance. 

CBR is integrated into the simulation to assess the safety performance (the CBR code is 

available on Appendix F). Similarity scores between the new case and previous cases contained 

in the historical database are verified by the CBR code using Equations 3 and 4 (Choi et al. 

(2014).  Interactions between the CBR and simulation models are illustrated in Figure 5.2 
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𝑠𝑖𝑚(𝑥𝑎
𝐼 , 𝑥𝑎

𝑅) =

{
 
 

 
 0,             𝑑 (𝑥𝑎

𝐼 ,  𝑥𝑎
𝑅) > 0.3

60,           𝑑 (𝑥𝑎
𝐼 ,  𝑥𝑎

𝑅) ≤ 0.3

80,           𝑑 (𝑥𝑎
𝐼 ,  𝑥𝑎

𝑅) ≤ 0.2

100, 𝑑 (𝑥𝑎
𝐼 ,  𝑥𝑎

𝑅) ≤ 0.1}
 
 

 
 

 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3 

where 𝑥𝑎
𝐼 , 𝑥𝑎

𝑅 represents the values for the input case I and the retrieved case R for the safety-

related measure a, respectively, and the difference rate 𝑑(𝑥𝑎
𝐼 ,  𝑥𝑎

𝑅) =  |(𝑥𝑎
𝑅 −  𝑥𝑎

𝐼 )/ 𝑥𝑎
𝐼  | 

𝑠𝑐𝑜𝑟𝑒𝑛 =
∑ [𝑠𝑖𝑚( 𝑥𝑎

𝐼 ,  𝑥𝑎
𝑅)  × 𝑤𝑎]

𝑚
𝑎=1

∑ 𝑤𝑎
𝑚
𝑎=1

 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 4. 

where 𝑚 represents the quantity of safety-related measure and 𝑤𝑎represents the weight of the 

safety-related measure 𝑎.  
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Figure 5.2. Interactions between the CBR and the simulation model components 
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5.4 Method Application 

The model functionally and performance was tested through a case study. Three industrial  

construction projects totalizing 93 data points were used to build the assessment model. Two 

outputs were considered to evaluate the safety performance: Total Incident Record (TIR), which 

consider the amount of accidents divided by the amount of working hours, and the Severity Risk 

(SR), which multiplies incident types by perceived severities defined by Hallowell and 

Gambatese (2009). Both outputs were discretized (1 to 5) using the equal frequency binning 

method. Outliers were identified in the dataset and excluded from the analysis.  

A total of 27 measures were identified and collected from departmental databases, spreadsheets 

(e.g. project performance), drawings, and interviews with project managers. Based on these data, 

nine variables related to SR and eight related to TIR were selected. Results of this work are 

summarized in Table 5.1 and are detailed in Pereira et al (2017), (“Assessing the safety 

performance of construction projects using Case-Based Reasoning,” submitted, University of 

Alberta, Edmonton, Canada). The final product of the CBR approach is a model that is capable 

of proactively assessing safety performance.  
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Table 5.1. Determined weights of each variable 

Variable TIR(%) SR(%) Unit Maximum Minimum Average 

Crew Size 9.84 16.15 Workers / foreman 10.8 4.07 7.35 

Behavior 

Based 

Observation 

(BBO) Rate 

5.44 8.69 # BBO filled / 

working hour 

*200,000 

6226.98 41.33 2026.67 

Near Miss 5.04 14.92 Near 

misses/working 

hour *200,000 

51.96 0.66 10.00 

Ramp Up/ 

Ramp Down 

- 10.83 # workersn / # 

workersn-1 

105.42 -43.58 8.40 

Operators 24.04 17.31 # operators / total 

workers 

10.91 0.66 3.83 

Temperature 5.78 7.88 oC 40.99 0.07 16.53 

Workers Age 10.04 8.12 % workers younger 

than 30 and older 

than 50 years old 

59.24 44.95 51.49 

Delay S curve 6.22 8.25 actual hours / 

planned hours 

1.16 0.24 0.73 

Project 

Elevation 

33.60 7.85 Likert Scale 4 1 2.5 

A simulation model, based on the measures indicated in Table 5.1, was built using Simphony 

(Abourizk and Hajjar 1998). Figure 5.3 demonstrates model implementation. Following 

initiation of the simulation (Figure 5.3a), scenario information is loaded from an excel 

spreadsheet (Figure 5.3b) into the simulation system. From this information, monthly indicators 

are sampled based on distributions defined by the user. In this case study, the safety-related 

measures “near misses,” “crew sizes,” “ramp up and ramp down,” “project elevation,” “workers’ 

age,” and “behavior-based observation rate,” are sampled on the first day of each month. 

Notably, users can also define specifics tasks that can impact discipline and/or project schedule. 
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Figure 5.3. (a) Simulation model implemented in Simphony (b) Excel spreadsheet used to load 

scenarios. 
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Once monthly indicators are defined, the simulation model calculates the Effective Working 

Hours (EWH)2 (Equation 5), and the daily working hours for each discipline is calculated by 

multiplying the quantity of workers by the Effective Working Hour factor (EWFH) defined by 

the user in the excel spreadsheet. This information is used by the continuous component of the 

model to replicate the schedule performance of each discipline (Figure 3). The discrete 

component of the model is used to establish daily temperatures and to advance simulation time.  

𝐸𝑊𝐻 = 𝐸𝑊𝐹𝐻 ∗ 𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑓 𝑊𝑜𝑟𝑘𝑒𝑟𝑠 ∗ 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 ℎ𝑜𝑢𝑟𝑠 𝑝𝑒𝑟 𝑑𝑎𝑦 (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 5) 

 After all daily information is computed, the model determines if it is the last day of the month. If 

it is not the end of the month, daily information (e.g., temperature, daily productivity and daily 

discipline production) is updated, and the simulation proceeds forward by one day. If it is the last 

day of the month, information for each safety-related measure is reported. Then, the CBR 

algorithm (Appendix H) identifies which of the cases in the database are most similar to the 

reported values and uses the associated historical data to calculate safety performance (Equation 

1 and 2). Results are then displayed in a graphical format. The model continues to operate until 

the project is complete. 

An industrial project (Project D) located in Edmonton, Canada, was used to assess the 

functionality and validity of the proposed approach. Data from 12 months of the project 

execution phase were collected (Table 5.2). Project D was comprised of six disciplines, namely 

                                                 

2 𝐸𝑊𝐹𝐻 ranges from 0 to 1. 
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ironworkers, operators, welders, civil workers, electricians, and millwrights; the total working 

hours planned for this period was 975,000. Based on project information, five scenarios were 

established to examine the effect of various risk mitigation strategies on TIR and SR. For testing 

purposes, activities were set to occur concurrently with no start/end relationship, specific 

activities that could substantially affect project schedule were not defined, and the start date of 

the project was set as September 1. Characteristics of each scenario are detailed as follows: 

Scenario 1: Quantity of workers remains as defined by Project D. The performance of safety-

related measures, such as “BBO rate,” “crew size,” “near miss,” and “workers’ age,” is 

improved. 

Scenario 2: Quantity of workers remains as defined by Project D. Performance of safety-related 

measures, such as “BBO rate,” “crew size,” “near miss,” and “workers’ age,” is reduced. 

Scenario 3: Quantity of workers is increased during the first six months of project execution. 

Additionally, performance of safety-related measures, such as “BBO rate,” “crew size,” “near 

miss,” and “workers’ age,” is reduced. 

Scenario 4: Quantity of workers is drastically increased during the final six months of project 

execution. Performance of safety-related measures, such as “BBO rate,” “crew size,” “near 

miss,” and “workers’ age,” is reduced. 
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Scenario 5: Quantity of workers is drastically increased during the final six months of project 

execution. Performance of safety-related measures, such as “BBO rate,” “crew size,” “near 

miss,” and “workers’ age,” is improved. 



118 

 

Table 5.2. Actual information for Project D 

Safety-Related Measures 
Month 

1 2 3 4 5 6 7 8 9 10 11 12 

Total Working Hours 29310 40548 54391 68323 88836 49594 69407 89741 113549 123145 133484 142972 

Crew Size 6.38 7.50 7.48 7.83 8.65 7.30 7.53 8.05 8.93 8.85 8.66 8.91 

Elevation 1 1 1 1 1 1 1 1 2 2 2 2 

BBO Rate 3132 3167 4071 4104 5169 5404 5541 7424 5450 5265 4781 5084 

Near Miss 0.01 4.93 3.68 5.85 4.50 8.07 8.64 2.23 7.05 3.25 10.49 8.39 

Delay S Curve 0.49 0.51 0.58 0.68 0.78 0.80 0.91 0.88 0.90 0.91 0.93 0.97 

Workers Age 50.23 50.88 51.07 51.30 49.56 49.16 48.26 49.84 47.69 46.54 50.20 48.77 

Temperature 1.03 0.39 4.63 14.52 27.59 40.99 34.32 37.01 29.11 17.06 9.76 2.60 

Operators 3.37 3.77 3.89 3.26 3.60 4.43 4.27 3.65 2.94 2.27 1.81 1.60 
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Definitions, values, and distributions used for each scenario are indicated in Figure 5.4 

Triangular distributions were used in the present case study to facilitate range definition of 

safety-related measures such as crew size and BBO rate. Notably, the simulation model supports 

the use of other distribution types, including beta, normal, and exponential distributions. Project 

elevation was kept consistent for all scenarios.  

 Quantity of Workers Operators 

Month 1 2 3 4 5 1 2 3 4 5 

1 160 160 420 200 200 3 3 6 1 1 

2 200 200 500 200 200 3 3 6 1 1 

3 250 250 600 220 220 3 3 6 1 1 

4 330 330 650 240 240 3 3 6 1 1 

5 380 380 500 300 300 3 3 6 1 1 

6 396 396 500 380 380 3 3 6 1 1 

7 400 400 450 450 450 3 3 3 6 6 

8 449 449 400 550 550 3 3 3 6 6 

9 567 567 300 600 600 3 3 3 6 6 

10 560 560 250 700 700 3 3 3 6 6 

11 580 580 200 750 750 3 3 3 6 6 

12 600 600 200 900 900 3 3 3 6 6 

*Project elevation was kept constant for all scenarios 

 

Scenario Workers Age Productivity BBO Rate Near Miss Rate Crew Size 

1 (42,45,46) (0.8, 0.9, 1) (5500, 6000, 7000) (1, 2.5, 3) (4, 5, 6) 

2 (48, 50, 59) (0.75, 0.8, 1) (500, 1500, 2000) (5, 7, 9) (6, 8, 10) 

3 (48, 50, 59) (0.75, 0.8, 1) (500, 1500, 2000) (5, 7, 9) (6, 8, 10) 

4 (48, 50, 59) (0.6, 0.75, 0.9) (500, 1500, 2000) (5, 7, 9) (6, 8, 10) 

5 (42, 44, 48)  (0.6, 0.75, 0.9) (6000, 6500, 7000) (1, 3, 4) (4, 5, 6) 

Figure 5.4. Scenarios used to visualize model behavior 

5.4.1 Method Results 



120 

 

The maximum and average TIR and SR values from 50 simulation runs are depicted in Figure 

5.5.  

 

Figure 5.5. Simulation results of various project scenarios 

The model was able to predict the influence of several company policies on the safety 

performance, such as quantity of crew size, behavior based observation card filled per workers, 

and resource allocation. These policies are defined by a variety of departments, which prompted 

the recommendation that a holistic, interdepartmental approach should be considered during the 

development and deployment of risk mitigation procedures and strategies. 

Safety Risk

1 2 3 4 5 6 7 8 9 10 11 12

Average 1 2 2 2 2 2 2 1 2 2 2 2

Maximum 2 3 3 3 3 2 2 2 2 2 2 2

Average 3 3 3 3 3 3 3 3 3 3 3 3

Maximum 4 3 3 3 4 3 4 3 3 3 3 3

Average 4 4 4 4 4 4 3 2 2 2 2 2

Maximum 4 5 4 4 4 4 3 3 3 3 2 3

Average 2 2 3 3 3 2 3 3 3 3 3 3

Maximum 3 3 3 4 3 3 4 4 4 4 4 4

Average 1 2 1 1 2 2 2 2 2 3 2 2

Maximum 2 2 2 2 3 2 3 3 4 4 3 3

Total Incident Rate 

1 2 3 4 5 6 7 8 9 10 11 12

Average 1 2 2 2 1 2 2 1 2 2 2 2

Maximum 2 2 2 2 2 3 2 2 2 2 2 2

Average 3 2 2 3 3 3 3 3 2 3 2 2

Maximum 4 3 4 4 4 4 4 4 3 4 4 4

Average 4 4 4 4 4 3 2 3 2 2 2 2

Maximum 5 5 5 4 4 5 3 3 3 3 3 3

Average 3 3 3 3 2 2 3 3 4 4 4 3

Maximum 4 4 3 4 3 3 4 4 4 4 4 4

Average 2 2 2 2 2 2 2 3 2 3 2 2

Maximum 2 2 2 3 3 2 4 3 3 3 3 3

Scenarios
Safety 

Level

Months Actual 

hours 

1 978057

5 918650

2 923461

3 939249

4 918650

5 918650

1 978057

2 923461

3 939249

Scenarios Output
Months Actual 

hours 

4 918650
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Results also demonstrated that, while increasing the performance of safety-related measures can, 

on average, reduce TIR and SR, peaks of risks (values greater than 3) can still occur (Scenarios 2 

and 4). Findings such as these can motivate organizations to increase the stringency of safety 

mitigation strategies during these riskier periods. Furthermore, the results demonstrated that even 

decreasing the performance of safety-related measures with a high influence on SR and TIR (e.g. 

Operators in Scenario 5) it is possible to define strategies to keep the safety performance in a 

level lower or equal to average.  

Although the quantity of workers and EWHF changed in the scenarios, it is possible to observe 

that the maximum delay is about 60,000 hours (Scenario 4 and 5) (≈ 6%). Therefore, based on 

the project characteristics, the five scenarios were able to accomplish the project planning 

schedule. The results also suggest that different production scenarios require different strategies 

to control the safety performance. For instance, although scenarios 1 and 5 presents low TIR and 

SR on average, the crew size distribution is more restrictive in scenario 5 due to the higher 

percentage of Operators and New Workers Rate in the last six months of project.  

The results also reinforce that a systematic approach should be considered to improve safety 

performance, since individual actions have limited influence on the safety performance. In 

addition, Figure 6 suggests possible strategies to improve the safety performance such as limit 

the crew size, increase the BBO Rate, decrease the near miss rate, control the amount of young 

and experienced workers on the site, and limit the new workers rate.    

5.4.2 Method Verification and Validation 

The proposed approach was verified and validated using several validation techniques. 
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Trace validation 

Trace validation aims to verify the accuracy of a model’s logic. Here, project behavior is 

recorded in a trace window (Figure 5.6). The information such as daily productivity calculation 

and the sample from each distribution was traced and verified to be equal to results calculated by 

hand calculation. In addition, TIR and SR values calculated by the system were consisted with 

those obtained using alternate calculation methods.  

 

Figure 5.6. Trace window from simulation tool 

Sensitivity analysis 

This test determines if the model is sensitive to input variability. In essence, input conditions are 

modified and resultant outputs are compared to those expected in a real system (Razavialavi and 

Abourizk 2016). Scenario 1 was used to conduct the sensitivity analysis, where one safety-

related measure was altered at a time. Figure 5.7 illustrates how changing crew size input from 

the 15th, 50th, and 85th percentile was predicted to affect TIR and SR. Here, safety outputs were 
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found to improve with increasing crew size. Module results were consistent with expected 

outcomes, further confirming the model’s validity. 

 

Figure 5.7. Sensitivity Analysis 

Historical data validation 

Model were tested using MAPE and Spearmann correlation (Equation 6 and 7) to assess safety 

performance. Correlations for Project D were determined to be 0.6450 (TIR) and 0.6786 (SR), 

which are considered, according to de Vaus (2002), as substantial to very strong evidence of 

forecasting ability. The MAPE for Project D was 22.18% (TIR) and 21.04% (SR), which 

indicates a reasonable forecasting ability (Gravetter and Wallnau 2010).Altogether, these results 

demonstrate that the CBR component of the method was capable of generating reliable forecasts. 

𝑀𝐴𝑃𝐸 =  
1

𝑛
∑|

𝑃𝑣 − 𝐴𝑣
𝐴𝑣

|

𝑛

𝑡=1

 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 6 

where: n is the number of new cases; 𝑃𝑣 representes the predicted TIR/SR; and 𝐴𝑣 is the actual 

TIR/SR. 
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𝑟 =  
𝑛(∑𝑥𝑦) − (∑𝑥)(∑𝑦)

√[𝑛 ∑𝑥2 − (∑𝑥)2] [𝑛 ∑𝑦2 − (𝑦)2 ]
 (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 5) 

where r = correlation coefficient; x = predicted safety performance; and y = actual safety 

performance. 

5.4 Discussion 

The dynamic conditions of construction projects require managers to make frequent decisions to 

ensure that projects continue to achieve planned schedule, cost, quality, and safety targets in 

spite of changing circumstances. However, it is difficult, in practice, to identify how multiple 

decisions, taken often simultaneously, can affect overall project performance. This research 

proposes a conceptual approach combining CBR and simulation modeling that is capable of 

reliably evaluating the impact of multiple decisions on safety performance over time. 

Specifically, the proposed model (1) considers the dynamic behavior of construction projects to 

assist managers in understanding how decisions can affect safety performance, (2) allows 

managers to proactively test the effect of scenarios and risk mitigation strategies on safety 

performance, and (3) assists managers in determining the impact of various interdepartmental 

policies on safety performance. 

The proposed model was applied in a practical setting at an industrial construction organization. 

A CBR database, containing information from three projects (93 cases), was used to assess the 

safety performance of an industrial construction project in Edmonton, Canada. The model was 

able to predict safety performance trends under several, pre-defined scenarios. Results of the 
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proposed model are expected to assist practitioners at this organization in defining, developing, 

and deploying risk mitigation strategies in a proactive manner. The simulation model can also be 

used to compare expected project durations, identify gaps in safety practices, and determine how 

such deficiencies affect safety performance. 

Safety-related measures used in this research are consistent with those identified in and used by 

many cases described in literature. Numerous researchers have emphasized both the indirect and 

indirect impact of the project delay (Han et al. 2014; Mitropoulos et al. 2005); environmental 

conditions, workers’ age (Lee et al. 2012); near miss reporting, worker observation process 

(Hallowell et al. 2013); teamwork (Mitropoulos and Memarian 2012), and congestion  (Fortunato 

et al. 2012) on safety performance. Furthermore, the several types and sources of safety-related 

measures identified here support the use of a systems approach for safety performance control. In 

this approach, various safety management elements are planned and managed throughout the 

lifecycle of a project, in multiple functional units of an organization, and by technical, 

organizational, or regulatory manner (Saleh et al. 2014). In this scenario, organizations should 

emphasize an integrated safety approach between all parts of the project to achieve safety 

performance excellence (Guo et al. 2016; Han et al. 2014; Lee et al. 2012; Wu et al. 2010a).   

The findings of this study should be applied in consideration of the following limitations. First, 

the simulation model was built based on the measures identified in the case study. Other 

variables, such as quantity of inspections, and project cost not included in this model, may be 

affecting safety performance at other organizations. For this purpose, the simulation model 

should be modified to reflect specific organizational conditions and characteristics. 
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Generalization of this research results, therefore, should be done with caution. Second, the 

industrial project used to validate the model was comprised of a multitude of activities, which 

limits the use of DES to reproduce project behavior and, ultimately, limits the model’s ability to 

assess the safety performance. Application of the proposed approach to projects characterized by 

a lower quantity of activities, such as earthmoving or tunneling operations, will allow for 

increased model detail and, consequently, will allow for the examination of more elaborate test 

scenarios.  

Several themes of future work for enhancing the proactive assessment of safety performance can 

be performed based on the results of the conceptual model. First, since using data from different 

sources was found to provide a better evaluation of safety performance, a distributed simulation 

model could facilitate the definition of safety policies for each department. Second, a data 

adaptor can be developed to automatically gather data from various departments within the 

organization to build the CBR database. This data adaptor should be able to read and extract 

information from project designs, spreadsheets, and word documents.  

5.5 Conclusion 

The dynamic conditions and the complex relationship between various areas of a construction 

project limits the ability of practitioners to develop strategies to proactively control safety 

performance. This research proposes a conceptual approach, which combines CBR and 

simulation modeling, to evaluate scenarios and proactively mitigate risks. In the proposed 

approach, the simulation model simulates project behavior by using CS and DES, while safety 

assessment is performed using CBR. To validate the project approach, a case study was 
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conducted in a construction organization and five scenarios were tested to identify the influence 

of various strategies on safety performance. Results demonstrated that various strategies can be 

defined by managers to proactively control safety performance. These strategies will depend on 

project requirements and the level of risk accepted. The results also demonstrated that, even in 

projects where there is increased pressure on workers to achieve the project schedule (e.g. high 

new workers rate), it is possible to control safety performance by improving other safety-related 

measures. These results also support the notion that safety is a part of a system and emphasizes 

the importance of implementing a holistic approach for controlling safety performance. 

The conceptual approach developed in this research contributes to the body of knowledge. In 

particular, (1) by combining simulation modeling with CBR, the proposed approach can assist 

practitioners in predicting how concomitant decision affect the project and, therefore, improve 

proactive mitigation of project risk and (2) the proposed approach allows companies to 

customize this model to their own needs and to the data available at their organization. Notably, 

this research may also contribute to improved practice by increasing the commitment of 

managers from different sectors with the Safety Management System and to better identify and 

implement safety policies. 
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Chapter 6: Conclusions, Limitations, and Future Work 

6.1 Research Conclusions 

Construction companies often use reactive indicators to evaluate safety performance, which can 

jeopardize the ability of SMS to proactively control incident occurrence. A holistic approach, 

which considers multiple factors beyond those conventionally associated with safety 

departments, may facilitate and improve the outcome of decision-making processes aimed at 

improving safety output. This thesis proposed a framework to assess safety performance using 

such safety-related measures. CBR and simulation modeling were combined: CBR was used to 

assess safety output, using safety-related measures, in consideration of specific organizational 

characteristics, and a simulation model was used to predict the impact of decisions on project and 

safety-related measure performance. Results of the current research demonstrate that the 

proposed model can be used to evaluate SMS and to proactively define risk mitigation  

strategies.  

Chapter two proposed a framework capable of identifying critical SMS factors and accident 

precursors as well as the association(s) between these two groups, thereby allowing companies to 

more appropriately allocate and make efficient use of safety management resources. Application 

of the model demonstrated that critical accident factors were primarily from the environment 

group (e.g. “contract schedule,” “lack of skilled worker availability in the market,” and “change 

orders”). Results also found the highest-priority accident precursors to be “workers’ failure to 

identify hazards,” “congestion,” and “workers’ neglect of hazards.” Of the top three accident 

precursors identified, two were related to worker behavior suggesting that current SMS practices 
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are not adequately controlling this safety-related measure. The results also demonstrate that most 

accident precursors have more than one SMS factor associated with it, suggesting that 

improvements to SMS should consider many-to-many relationship(s) that may exist between 

SMS factors and accident precursors. 

Results of the case study conducted in Chapter three suggest that safety-related measures that are 

not traditionally associated with safety departments can—and should—be used to evaluate safety 

performance. Multi-linear regression model results demonstrated that measures such as 

“temperature,” “workers’ rate, and “workers’ age” can affect the occurrence of accidents. 

Furthermore, results from the mean comparison reinforced the notion that policies should also 

consider the level of measure influence.  

Chapters 4 and 5 proposed a framework to evaluate safety performance using safety-related 

measures. CBR was suggested due to its ability to generate knowledge based on previous 

experiences using a limited number of data points, thereby allowing this method to consider the 

unique characteristics of each organization. The framework can also identify many safety-related 

measures. The simulation model was applied to predict the effect of managerial decisions on 

safety performance, and a case study from an organization was conducted to evaluate the 

framework. Twenty-seven measures were identified, and nine were selected by the final model. 

Findings indicated that resource allocation, scheduling, human resources, cost control, and 

environmental policies all affected safety outcomes at the case organization. The proposed 

simulation model was found to (1) facilitate examination of the impact of various decisions 

defined by managers on overall safety output and (2) assist managers in predicting safety 
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performance overtime (each month) and deploying corrective actions prior to incident 

occurrence. 

A case study from an organization was conducted to evaluate the framework. Twenty-seven 

measures were identified, and nine were selected by the final model. Findings indicated that 

resource allocation, scheduling, human resources, cost control, and environmental policies all 

affected safety outcomes at the case organization. The proposed simulation model was found to 

(1) facilitate examination of the impact of various decisions defined by managers on overall 

safety output and (2) assist managers in predicting safety performance overtime (each month) 

and deploying corrective actions prior to incident occurrence. 

6.2 Academic Contributions 

This research study has resulted in the development of several academic contributions: 

 Department data others than safety department can—and should—be used to develop 

proactive strategies to control safety performance, including the implementation of 

policies designed to improve the performance of safety-related measures. 

 The questionnaire developed in Chapter 2 has expanded the understanding and facilitated 

the exploration of the nature of the relationships between SMS factors and accident 

precursors. In addition to considering factors that are not commonly controlled by the 

safety department, the questionnaire facilitates the identification of critical SMS factors 

for various accident precursors. The comprehensive approach can be used to identify 

gaps in SMS across multiple areas in an organization. 
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 Association results described in Chapter 3 can serve as a foundation for future studies 

attempting to identify and understand causal relationships between these two groups. 

 The CBR method proposed is a reliable alternative for assessing safety performance of 

construction projects or organizations with few data points.  

 The integration between simulation modeling and CBR substantially facilitates the ability 

to predict how decisions, both individually and in combination, affect safety 

performance. Furthermore, by considering the dynamic conditions of construction 

projects, the integration between these methods provides a better approach to evaluate 

safety performance dynamically.   

 The use of a holistic approach during the development, evaluation, and deployment of 

proactive mitigation strategies is supported by the findings of the present research, which 

also reinforces the notion that isolated actions may not result in significant improvements 

in safety performance. 

6.3 Industrial Contributions 

Industrial contributions have arisen out of collaborative research efforts with partners 

organizations and include the following: 

 A holistic approach for controlling safety performance, such as enhancing 

interdepartmental data sharing, is recommended to improve safety performance in the 

construction industry and to reduce the time and resources required by safety departments 

for data collection. 
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 The proposed association approach between SMS factors and accident precursors can 

assist managers in identifying which SMS factors should be addressed based on accident 

precursors observed or to predict which accident precursors are most likely to occur 

based on the presence of critical SMS factors. This is expected to not only improve safety 

performance but to also result in the more efficient allocation of available resources. 

 Through the development of a reliable, easy-to-use method for comprehensively 

evaluating safety performance, application of this research can be used to increase the 

deployment of effective policies and to increase interdepartmental focus on safety. 

 The approach can also assist managers with the identification and evaluation of safety-

related measures from existing departmental data.   

 The simulation approach can assist managers with the proactive examination of various 

project delivery scenarios, thereby allowing managers to establish mitigation strategies 

prior to incident occurence. 

 Safety-related measures identified, as suggested by previous studies listed in Chapter 4, 

can be used by other organizations from different sectors to proactively control safety 

performance. However, the use of the same CBR/GA model should be made with caution 

due to the different characteristics of each organization.  

6.4 Limitations of the Proposed Approach 

Although the results presented in previous chapters support the use of the approaches developed, 

the findings should be interpreted in consideration of certain limitations. 
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The SMS factors and accident precursors selected in Chapter 3 were dependent on the subjective 

opinions of subject matter experts. Alternative SMS factors and accident precursors should be 

examined prior to the application of the questionnaire to other industries or regions. In addition, 

further research is required to establish cause-and-effect relationships between SMS factors and 

accident precursors 

Safety-related measures identified in Chapters 2 and 4 were limited by the data available within 

the case organization. Other variables related to work process and contract type should be further 

investigated to identify their influence on safety outputs. Furthermore, measures identified as not 

significant in this research should not be disregarded by other organizations due to the unique 

conditions of each organization.  

The simulation model developed in Chapter 5 considered the safety-related measures identified 

in previous chapters. Therefore, generalization of this model to other companies should be 

considered with caution, particularly as the level of measure influence on safety output may vary 

considerably between organizations. 

6.5 Envisioned Future Research 

This thesis revealed several themes of useful future study. For instance, the implementation of a 

data adaptor component can assist companies with the identification and automatic extraction of 

safety performance evaluation data. As departmental data are often stored in a disconnected 

databases. Database integration may enhance the proposed framework by increasing the quantity 

of available measures. 
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From a simulation perspective, distributed simulation may be used to improve reproducibility of 

project several agents (e.g. different departments). High-Level Architecture supports the building 

of complex virtual environments using distributed computer simulation systems to create a 

collaborative research project. In this scenario, each department is responsible for developing 

their own simulation model, and the High-Level Architecture is responsible for connecting and 

sharing the information between these models. 

The data collection process may also be improved. For example, data collection for Behavior-

Based Observation Cards and site inspections are often collected manually and are later digitized 

and loaded into databases. This is a time-consuming, error-prone process that could be improved 

with automation. Companies could develop software applications that could load this 

information into databases automatically. Another potential area for improvement is the 

adjustment of the CBR-Simulation approach to allow for the identification of safety-related 

measures from photos and videos. 

The simulation CBR approach can be further expanded to integrate project schedule, quality, and 

cost performance. This approach would assist companies in evaluating how project performance 

is affected overall, and could enhance companies’ abilities to more effectively allocate resources 

to areas that would benefit most. 

Lastly, the simulation CBR approach should be expanded to allow for its application at 

additional levels, such as at the activity-level and process-level. As the approach proposed can 

evaluate performance using a limited quantity of data, managers can expand the scope of this 

thesis by identifying how safety-related measures affect various levels of a project.   
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Appendix A: Questionnaire to evaluate SMS Factors and Accident Precursors 
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                                                                                                                              Department of Civil and Environmental Engineering 

                                                                                              Hole School of  Construction and Engineering 

 

 

 

 

 

This survey is conducted by the University of Alberta in order to identify the impact of safety factors with 
relation to safety programs on construction sites. 

 
The survey should take around 10-15 minutes to complete. 

Completing and submitting this survey implies giving consent to participate in this study as per the 
conditions outlined in the accompanying information/consent letter. 

 
Thank you for your participation. 
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In section 1, you are given statements about managerial efforts for enhancing safety on job sites. For each statement, 

please select an option that best fits your perception of its LIKELIHOOD (i.e., how likely you will see that achieved in a 

project) and your perception of the INFLUENCE ON INCIDENT PREVENTION  (i.e. if that happened how influential it 

would be on incident prevention). 

 
  Likelihood  Influence on Incident Prevention 

# Phenomena Affecting Safety Unlikely 
Somewhat 

Unlikely 
Neutral 

Somewhat 

Likely 

Very 

Likely 

Not 

Influential 

Little 

Influential 

Somewhat 

Influential 

Largely 

Influential 

Extremely 

Influential 

1 
Safety responsibility and goals are clearly 

defined among project team members. 

           

 

2 
Safety training increases worker safety 

knowledge 

          

3 

Safety Practices and procedures are 

periodically reviewed or evaluated by the 

safety committee 

          

4 Workers are given incentives to work safely           

5 
Subcontractors are adequately assessed and 

managed for safety 

          

6 
Worker participation in safety programs is 

high 

          

7 
Emergency response plan is clear 

communicated 

          

8 

Incident investigations are properly 

performed, stored or analyzed to prevent future 

incidents 

          

9 
Potential hazards are effectively identified 

and mitigated 

          

10 Tools/Equipment and site conditions are           
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  Likelihood  Influence on Incident Prevention 

# Phenomena Affecting Safety Unlikely 
Somewhat 

Unlikely 
Neutral 

Somewhat 

Likely 

Very 

Likely 

Not 

Influential 

Little 

Influential 

Somewhat 

Influential 

Largely 

Influential 

Extremely 

Influential 

regularly inspected  

11 

Project safety plan / kickoff meeting 

(considering design, schedule, constructability 

etc.) is properly reviewed before the project 

starts  

          

12 

The supervision, monitoring , and control of 

workers’ drug and alcohol consumption is 

effective 

          

13 
Safety meetings are effective to reinforce 

safety practices 

          

14 
Worker safety behavior is observed and 

evaluated routinely 

          

15 
The owner/client considers safety as a core 

value of the company 

          

16 
Management team considers safety as a core 

value 

          

17 
Management team considers safety ahead of 

cost 

          

18 
Management team considers safety ahead of 

schedule 

          

19 
Subcontractor considers safety ahead of other 

business priorities 

          

20 
Budget assigned to safety management is 

sufficient to carry out the program 

          

21 The number of safety personal is sufficient to           
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  Likelihood  Influence on Incident Prevention 

# Phenomena Affecting Safety Unlikely 
Somewhat 

Unlikely 
Neutral 

Somewhat 

Likely 

Very 

Likely 

Not 

Influential 

Little 

Influential 

Somewhat 

Influential 

Largely 

Influential 

Extremely 

Influential 

implement safety practices 

22 
The number of foremen is sufficient to 

implement safety practices 
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In section 2, you are given statements about safety-related phenomena that you might observe on job sites. For each 
statement, please select an option that best fits your perception of the LIKELIHOOD (i.e., how likely you will observe the 

phenomenon in your project) and your perception of the INFLUENCE ON INCIDENT OCCURRENCE (i.e. if that 
happened how influential it would be on incident occurrence). 

  Likelihood  Influence on Incident Occurrence 

# Phenomena Affecting Safety Unlikely 
Somewhat 

Unlikely 
Neutral 

Somewhat 

Likely 

Very 

Likely 

Not 

Influential 

Little 

Influential 

Somewhat 

Influential 

Largely 

Influential 

Extremely 

Influential 

23 
There are a large number of change orders on 

the project 

           

 

24 

The design involves new technologies and 

materials that the  management team is not 

familiar with 

          

25 There are a large amount of reworks           

26 Contract schedule is too tight           

27 
There is a shortage of skilled workers in the 

market 

          

28 

Companies are more concerned about WCB 

cost (worker rehabilitation cost assessment) 

than safety of personnel 

          

29 
Workers are frequently exposed to hazardous 

material (e.g. explosive, toxin, flammable) 

          

30 Tools are not properly used           

31 
Workers do not use the personal protective 

equipment (PPE) properly  

          

32 Heavy equipment is not properly used            

33 
Safety personnel have insufficient experience 

in implementing safety practices 

          

34 Workers’ skill levels are low           
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  Likelihood  Influence on Incident Occurrence 

# Phenomena Affecting Safety Unlikely 
Somewhat 

Unlikely 
Neutral 

Somewhat 

Likely 

Very 

Likely 

Not 

Influential 

Little 

Influential 

Somewhat 

Influential 

Largely 

Influential 

Extremely 

Influential 

35 
Workers are unfamiliar with the work 

environment 

          

36 
Foremen have insufficient experience to 

implement safety practices  

          

37 Workers fail to identify an unsafe condition           

38 
Workers continue their work even when they 

identify an unsafe condition or behavior 

          

39 
Workers are under the influence of drugs or 

alcohol while at work 

          

40 
Workers do not pay attention to coworkers’ 

safety 

          

41 
Foremen do not communicate and enforce 

safety rules  

          

42 

Ergonomic issues (e.g. worker posture, weight 

of objects) are not considered in construction 

activities 

          

43 

Safety requirements in the project are not 

clearly communicated/understood by workers 

and subcontractors 

          

44 Housekeeping is poor           

45 Construction site is congested            

46 
Site information (e.g. soil tests and survey 

reports) is inadequate or inaccurate  

          

47 
Workers are exposed to extreme weather 

conditions (e.g. temperature less than -30 °C) 
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  Likelihood  Influence on Incident Occurrence 

# Phenomena Affecting Safety Unlikely 
Somewhat 

Unlikely 
Neutral 

Somewhat 

Likely 

Very 

Likely 

Not 

Influential 

Little 

Influential 

Somewhat 

Influential 

Largely 

Influential 

Extremely 

Influential 

48 
The safety guards or barriers (e.g. fall 

protection system) are inadequate 

          

49 Workers are under a high level of fatigue           

50 

Hazardous site environments  (e.g. noise, 

luminosity, space, ground, etc.) are not 

effectively mitigated 

          

51 
Workers are not clear about emergency 

procedures 

          

52 
Workers are under high stress due to schedule 

pressure 

          

 
Please tell us about your experience and current position. 
1. Which is the province/state that you are currently working? □ Alberta □ Saskatchewan □ British Columbia  □ Manitoba  □ Others   
2. Current Position    : □ HSE Manager □ Project Manager □ Project Control  □ H&S Staff  □ Technical/Administrative Staff  □ Foreman   
                                     
                                    □ Field Worker  □ Others  Specify _____________________ 

 

3. Experience in construction: _____   years                                                           4. Experience in the field: ________   years 

5. Industry type: □ Heavy Construction   □ Industrial    □ Buildings   □ Others Specify_________ 

Thank you very much for participating in our survey! 


