

Filter Pruning in Convolutional Neural Networks

Using Structural Similarity Based K-Means

by

Ahmed Al Dallal

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Software Engineering and Intelligent Systems

Department of Electrical and Computer Engineering

University of Alberta

© Ahmed Al Dallal, 2021

ii

Abstract

Convolutional Neural Networks (CNNs) have been recently seeing great success in various

image classification fields and applications. However, this success has been accompanied by a

significant increase in memory and computational demands, limiting their use in resource-limited

devices, e.g., smartphones. In response, network pruning methods, in particular filter pruning, are

seeing increased interest. The principal goal of the current pruning algorithms is to substantially

reduce the resource demands for executing the forward pass of a trained CNN, while minimizing

performance degradation.

In this thesis, we propose a new approach for filter pruning in CNNs. Our filter pruning

method utilizes K-Means clustering based on the Structural Similarity Index Measurement to

group similar filters together in each convolutional layer. A representative filter is selected from

each cluster and the remaining filters are considered redundant and pruned from the CNN. We

evaluated our filter pruning method on the VGG-16 architecture with the benchmark CIFAR-10

dataset. We were able to reduce the computational demands (floating-point operations) of VGG-

16 by over 50%. Simultaneously, the network’s performance remained significantly better than

the one pruned by the HRank algorithm. The results of our experiments provide promising

indications that our method can significantly outperform state-of-the-art filter pruning methods.

iii

Acknowledgments

First and foremost, I would like to thank Allah (God) Almighty for his grace and mercy in making

all this possible.

I would like to thank my supervisor Prof. Scott Dick for his support and guidance during my M.Sc.

studies. His advice and supervision were instrumental for completing my thesis.

I would like to express my utmost gratitude for my parents for their endless support,

encouragement, and prayers. I would also like to thank my brother for his motivational talks and

moral support when I needed them the most.

iv

Table of Contents

Chapter 1: Introduction ... 1

Chapter 2: Literature Review .. 5

2.1 Artificial Neural Networks ... 5

2.1.1 Convolutional Neural Networks .. 12

2.2 Filter Pruning .. 33

2.3 Clustering Algorithms ... 37

2.3.1 K-Means Clustering ... 40

2.4 Cluster Validation ... 43

2.4.1 Silhouette Index ... 45

2.5 Similarity Measures for Images .. 46

2.5.1 Structural Similarity Index Measurement .. 47

Chapter 3: Methodology ... 49

3.1 Overview ... 49

3.2 Implementation ... 51

3.2.1 Dataset.. 51

3.2.1.1 CIFAR-10 ... 51

3.2.2 VGG-16.. 52

3.2.3 SSIM Based K-Means Clustering .. 55

v

3.2.4 SSIM Based Silhouette Index .. 59

3.3 Filter Clustering Algorithm... 62

3.4 Filter Pruning Algorithm... 63

3.5 Evaluation ... 66

Chapter 4: Results and Discussion .. 70

4.1 Silhouette Plots ... 70

4.2 Compression Scenarios ... 84

4.2.1 Compression Scenario A.. 87

4.2.2 Compression Scenario B .. 88

4.2.3 Compression Scenario C .. 89

4.3 Accuracy Results .. 90

4.3.1 Compression Scenario A.. 91

4.3.2 Compression Scenario B .. 93

4.3.3 Compression Scenario C .. 94

Chapter 5: Conclusion and Future Work .. 97

References ... 99

vi

List of Figures

Figure 1: Artificial Neuron ... 6

Figure 2: Details of the signal flow in output neuron j [26] ... 9

Figure 3: Details of the signal flow in output neuron k connected to hidden neuron j [26] 11

Figure 4: The relationship between weights, kernels, convolutional filters, kernel matrices, and

feature maps .. 15

Figure 5: Max-Pooling operation .. 18

Figure 6: Original VGG-16 architecture ... 21

Figure 7: First iteration of the convolutional operation in convolutional layer 1 23

Figure 8: A neuron in convolutional layer 1 in VGG-16 .. 24

Figure 9: Neurons needed to generate 1 feature map in convolutional layer 1 in VGG-16 25

Figure 10: First iteration of the convolutional operation in convolutional layer 2 27

Figure 11: A neuron in convolutional layer 2 in VGG-16 .. 28

Figure 12: Neurons needed to generate 1 feature map in convolutional layer 2 in VGG-16 29

Figure 13: High level view of feature maps in convolutional layers 1 and 2 in VGG-16 30

Figure 14: The difference between weight pruning and filter pruning ... 36

Figure 15: Our proposed approach ... 50

Figure 16: Some sample images of the CIFAR-10 dataset ... 52

Figure 17: VGG-16 architecture ... 54

Figure 18: K-Means initialization ... 57

Figure 19: K-Means cluster assignment and centroid re-estimation .. 58

Figure 20: Mean of three filters .. 59

Figure 21: Silhouette Index ... 61

vii

Figure 22: Silhouette plot for convolutional layer 1 ... 72

Figure 23: Silhouette plot for convolutional layer 2 ... 73

Figure 24: Silhouette plot for convolutional layer 3 ... 74

Figure 25: Silhouette plot for convolutional layer 4 ... 75

Figure 26: Silhouette plot for convolutional layer 5 ... 76

Figure 27: Silhouette plot for convolutional layer 6 ... 77

Figure 28: Silhouette plot for convolutional layer 7 ... 78

Figure 29: Silhouette plot for convolutional layer 8 ... 80

Figure 30: Silhouette plot for convolutional layer 9 ... 81

Figure 31: Silhouette plot for convolutional layer 10 ... 82

Figure 32: Silhouette plot for convolutional layer 11 ... 83

Figure 33: Silhouette plot for convolutional layer 12 ... 84

viii

List of Tables

Table 1: The descriptions of the convolutional layers before and after pruning using compression

scenario A ... 88

Table 2: The descriptions of the convolutional layers before and after pruning using compression

scenario B.. 89

Table 3: The descriptions of the convolutional layers before and after pruning using compression

scenario C.. 90

Table 4: Filter pruning resulting accuracy using compression scenario A 92

Table 5: Filter pruning resulting accuracy using compression scenario B 94

Table 6: Filter pruning resulting accuracy using compression scenario C 96

ix

List of Abbreviations

CNN -Convolutional Neural Network

DNN -Deep Neural Network

AI -Artificial Intelligence

FLOP -Floating-Point Operation

ANN -Artificial Neural Network

SGD -Stochastic Gradient Descent

MBSGD -Mini-Batch Stochastic Gradient Descent

ILSVRC -ImageNet Large Scale Visual Recognition Challenge

ReLU -Rectified Linear Unit

SSIM -Structural Similarity Index Measurement

CIFAR -Canadian Institute for Advanced Research

ASS -Average Silhouette Score

LMSS -Local Maximum Silhouette Score

1

Chapter 1

Introduction

Over the last ten years, Deep Neural Networks (DNNs) have become a very important field

in Artificial Intelligence (AI). Giant tech companies such as Google, Amazon, Apple, Facebook,

Microsoft, and Tesla use DNNs to power many of their services [1-6]. Researchers have found

that DNNs significantly outperform all current competitors in many fields including self-driving

cars, facial recognition, detecting land mines, detecting oil spills, photo editing, augmented reality,

robotics, understanding handwritten text, language modeling, machine translation, text

summarization, speech recognition, and textual entailment [7-16]. DNNs are also used in medical

applications such as psychology, aiding visually challenged users to read, and diagnostic support

for cancer, bone fractures, and skin conditions [17-19]. DNNs are also starting to see an increasing

presence in the film, games, music, and fashion industries [20-23]. These industries combined

bring in trillions of dollars every year [24, 25], and so the economic potential of DNNs is

enormous.

However, DNNs are made up of thousands or even millions of neurons and millions of

connections between them [26]. This in turn implies a massive number of computations; for

example, a VGG-16 network (a form of convolutional neural network with only feed-forward

connections) trained on the CIFAR-10 dataset (having only 60,000 training images) is a relatively

small DNN, with only 4,224 filters. Yet even this network requires over 300 million Floating-Point

Operations (FLOPs) to execute a single forward computational pass. There are millions of

2

computations taking place which demand tremendous hardware capabilities. While this is not a

tremendous load for a workstation, a number of useful DNN applications would need to be

deployed on resource-constrained devices such as smartphones, or low-power wearable or internet

of things devices. For these devices, such computationally intensive applications can consume an

unacceptable amount of battery power or require too much processing time on the relatively low-

performance CPUs available [27-30]. A solution is needed that greatly reduces the resource

consumption of DNNs, while not substantially degrading their performance.

One approach for reducing DNN resource consumption is pruning the DNN. Pruning is a

well-known strategy that has been widely applied in shallow learning algorithms (e.g., decision

trees, rule induction algorithms, neural networks, etc.). Classically, pruning has served both to

reduce the resource consumption of executing a model, and also to improve its generalization (by

reducing overfitting). However, given the sheer size of large DNNs, current research into pruning

focuses only on the former goal; to the point that some degradation of performance (defined as

minimizing a loss function) is expected and accepted [31]. Several pruning approaches have been

investigated, including network pruning [32], parameter quantization [33], knowledge distillation

[34], and filter compression [35]. Among these options, network pruning has shown great promise

[31]. There are two kinds of network pruning methods: weight pruning and filter pruning. Weight

pruning is the process of removing certain weights within filters from the neural network [36].

Filter pruning on the other hand, is the process of removing entire filters, which are deemed

redundant, from the neural network [31]. The problem with weight pruning is that it leads to sparse

weight matrices across the network and often requires using specialized software and hardware

[31, 37, 38]. In comparison, filter pruning does not introduce sparsity [37]. Hence, using

specialized software and hardware is not required.

3

CNNs are a subset of DNNs originally designed for image processing and computer vision

applications [39]. As the name implies, the signature operation in these networks is to compute the

convolution of the input image and a function represented by a convolution mask; these are the

filters in a CNN [39]. Filter pruning can be applied to CNNs to compress the network, with

minimal impact on the CNN’s performance. Several filter pruning approaches for CNNs have been

proposed in the literature [31, 37, 40, 41]. Studies in this field aim at reducing the size of CNNs in

terms of the number of filters, parameters, and/or required computations with very minimal

compromise to the classification accuracy.

In this thesis, we propose and evaluate a novel filter pruning approach for CNNs. Our

approach is based on clustering similar filters in each considered convolutional layer, selecting a

representative filter from each cluster, and pruning all other filters. To evaluate our approach, we

performed several experiments on the VGG-16 CNN [42] with the benchmark CIFAR-10 dataset

[43]. Our proposed filter pruning approach was evaluated in terms of the achieved model

compression, model acceleration, and the classification accuracy of the filter pruned model after

retraining. Model compression was measured by the number of reduced parameters. Model

acceleration was measured by the number of reduced computations in the form of FLOPs. We

compared our results with those of a state-of-the-art filter pruning method [31].

The primary contributions of this thesis are:

1) We introduce a new method for filter pruning, which utilizes clustering to determine redundant

filters in CNNs.

4

2) Our experiments demonstrated the effectiveness and efficiency of our new method in model

compression, acceleration, and accuracy. In addition, our method outperforms the current state-

of-the-art filter pruning algorithm.

The remainder of this thesis is organized as follows. In Chapter 2, we review essential background

and the relevant literature for our proposal. In Chapter 3, we discuss our proposed approach and

our experimental methodology for evaluating it. In Chapter 4, we present and discuss our results.

In Chapter 5, we provide a summary and discuss future work.

5

Chapter 2

Literature Review

2.1 Artificial Neural Networks

The rich history of neural networks research reaches back to the early 1940s, when W.

McCulloch and W. Pitts [44] attempted to mimic animal nerve cell activity using mathematical

models. Today, multiple layers of connected artificial neurons are known as Artificial Neural

Networks (ANN) [26]. There is a huge number of ANN architectures in the literature, which see

practical use in a vast number of problem domains [45]. CNNs, which are the focus of this thesis,

belong to the subclass of ANNs known as layered feedforward networks. The defining features of

this subclass are that neurons are arranged in a layered graph structure (with each layer typically

having a homogenous transfer function), with no intra-layer connections, and no cycles within the

graph.

Layered feedforward networks implement a complex functional mapping with a large

(even huge) number of parameters; this is what makes them useful for modeling and decision-

making in such a wide variety of applications. This mapping is realized through a combination of

many individual neurons, each of which has a fairly simple transfer function. Computing the value

of this mapping with the current parameter vector is commonly called a “forward pass” through

the network. In the forward pass, each artificial neuron in the first layer receives a set of inputs

and computes its transfer function. The outputs from the first-layer neurons then pass along the

6

graph connections to the second layer. This process repeats at each successive layer until the last

one; the outputs of that final layer are returned as the output of the entire neural network.

 Like many other ANN architectures, CNNs make use of a modified version of the

McCulloch-Pitts neuron, as shown in Figure 1. Each connection for an incoming input ‘xi’ of an

artificial neuron has its own synaptic weight ‘wi’. The inputs are multiplied by the weights and the

summation of the products ‘vi’ along with a bias ‘b’ then goes through an activation function ′φ′.

This operation can be expressed mathematically as follows:

vi = ∑ wixi

m

i=1

+ b ,

where ‘m’ is the number of inputs.

Figure 1: Artificial Neuron

7

CNNs are supervised algorithms, meaning that for each example input in a dataset, the

correct output is known and used for adjusting the network’s parameter values. Once the ANN has

gone through an iteration of the forward pass, a loss function quantifies how closely the computed

actual outputs match the ground-truth outputs recorded in the dataset. The neuron weights are then

adjusted to hopefully reduce the loss on the next forward pass. How to make that adjustment was

one of the early stumbling blocks in ANN research; it is necessary to decide what the contribution

of one weight value out of millions of weights, in our case, contributes to the total loss of the

network. This is the credit assignment problem that each multi-layered ANN must resolve. CNNs,

again in common with many others, employ the technique of ordered derivatives, which have been

independently discovered several times but which were first applied to neural networks by D.

Rumelhart and J. McClelland [46] in the Back-propagation algorithm.

At its core, back-propagation is a gradient descent algorithm, formulated as follows:

Wnew = Wold − η∇J(w) ,

where Wnew is the new weight value, Wold is the old weight value, η is the learning rate, and ∇J(w)

is the gradient of the loss function. We will discuss the classic back-propagation algorithm for

Rumelhart’s Multi-Layer Perceptron architecture below [46].

The details of output neuron j along with its incoming signals can be seen in Figure 2 [26].

The back-propagation algorithm for an output neuron j can be computed as follows [26]:

ej(n) = dj(n) − yj(n)

εj(n) =
1

2
ej

2(n) =
1

2
(dj(n) − yj(n))

2

8

where εj(n) is the squared prediction error between the desired output dj(n) of the neuron and the

actual output yj(n) of the neuron for the nth data pattern.

The total error energy is the sum of the squared errors for all output neurons:

ε(n) = ∑ εj(n)

m

j=1

The chain rule is used to compute the gradient of ε(n) with respect to wji(n):

∂ε(n)

∂wji(n)
=

∂ε(n)

∂ej(n)
∙

∂ej(n)

∂yj(n)
∙

∂yj(n)

∂vj(n)
∙

∂vj(n)

∂wji(n)
 ,

where

∂ε(n)

∂ej(n)
= ej(n)

∂ej(n)

∂yj(n)
=

∂

∂yj(n)
(dj(n) − yj(n)) = −1

∂yj(n)

∂vj(n)
=

∂φ (vj(n))

∂vj(n)
= φ′ (vj(n))

∂vj(n)

∂wji(n)
=

∂

∂wji(n)
∑ wji(n)yj(n) = yi(n)

m

i=1

This leads us to:

∂ε(n)

∂wji(n)
= ej(n) ∙ (−1) ∙ φ′ (vj(n)) ∙ yi(n)

9

As such:

∆wji(n) = −η ∙
∂ε(n)

∂wji(n)
= η ∙ ej(n) ∙ φ′ (vj(n)) ∙ yi(n)

The local gradient δj(n) at neuron j is defined as:

δj(n) =
∂ε(n)

∂vj(n)
= (−1) ∙ ej(n) ∙ φ′ (vj(n))

δj(n) = [dj(n) − yj(n)] ∙ φ′ (vj(n))

The change ∆wji(n) to the ith weight for output neuron j becomes:

∆wji(n) = −η ∙ δj(n) ∙ yi(n)

Figure 2: Details of the signal flow in output neuron j [26]

10

In the case of hidden neuron j being connected to output neuron k, as shown in Figure 3, the back-

propagation algorithm for hidden neuron j can be computed as follows [26]:

δj(n) =
∂ε(n)

∂vj(n)
=

∂ε(n)

∂yj(n)
∙

∂yj(n)

∂vj(n)
=

∂ε(n)

∂yj(n)
∙ φ′ (vj(n))

∂ε(n)

∂yj(n)
=

∂

∂yj(n)
(

1

2
∑ ek

2(n)
k

) =
∂ε(n)

∂ek(n)
∙

∂ek(n)

∂yj(n)

=∑ [ek(n) ∙
∂ek(n)

∂yj(n)
] =k ∑ [ek(n) ∙

∂ek(n)

∂vk(n)
∙

∂vk(n)

∂yj(n)
]k

=∑ [ek(n) ∙ (−1) ∙ φ′(vk(n)) ∙
∂vk(n)

∂yj(n)
]k ,

where the induced local field due to neuron k is:

vk(n) = ∑ wkj(n)yi(n)

m

j=0

∂vk(n)

∂yj(n)
= wkj(n)

This leads us to:

∂ε(n)

∂yj(n)
= − ∑ ek(n) ∙ φ′(vk(n)) ∙ wkj(n)

k

= − ∑ δk(n) ∙ wkj(n)

k

11

So, the back-propagation formula for the local gradient for hidden neuron j becomes:

δj(n) = φ′ (vj(n)) ∑ δk(n) ∙ wkj(n)

k

The change ∆wji(n) to the ith weight for hidden neuron j becomes:

∆wji(n) = η ∙ δj(n) ∙ yi(n)

The optimization of the loss function can sometimes take many iterations until

convergence. There are three main optimization approaches including Gradient Descent,

Stochastic Gradient Descent (SGD), and Mini-Batch Stochastic Gradient Descent (MBSGD). The

difference between Gradient Descent, SGD, and MBSGD is in the number of training samples of

a dataset that need to pass through an ANN in each iteration before computing the gradient [47].

In each iteration of Gradient Descent, the gradient is computed once all training samples of a

dataset pass through the ANN in the forward pass before any parameters in the ANN can be

Figure 3: Details of the signal flow in output neuron k connected to hidden neuron j [26]

12

updated. On the other hand, in each iteration of SGD, the gradient is computed after only one

randomly chosen training sample from the dataset passes through the ANN. Empirically, SGD is

faster but does not guarantee reaching the best optimization solution. MBSGD is considered the

middle ground between both approaches. The gradient is computed after a subset (mini-batch) of

the training samples passes through the ANN.

2.1.1 Convolutional Neural Networks

CNNs are the most commonly used neural networks for image classification. Even though

CNNs could be used to tackle other problems, they were originally created for image classification

[48]. The origins of CNNs date back to the 1960s with the research of neurophysiologists D. Hubel

and T. Wiesel. Their description of simple and complex cells in the human visual cortex [49] later

on inspired K. Fukushima to propose the Neocognitron, which is an early neural network model

and the seed for the CNN architecture [50]. K. Fukushima’s work inspired Y. LeCun et al. in the

late 1990s to develop the modern-day CNN [48]. Research in CNNs was stagnant for a while

afterwards. However, new advances in computing hardware and the availability of large public

image repositories led to revived interest in CNNs. Along with this, a breakthrough in CNNs

appeared around ten years ago by A. Krizhevsky et al. [51], who had developed a CNN now

popularly known as AlexNet. AlexNet took first place in the ImageNet Large Scale Visual

Recognition Challenge (ILSVRC) in 2012 [51]. It had showcased revolutionary results for image

classification and recognition tasks by reducing the error rate from 25.8 to 16.4 as compared to

previous traditional computer vision techniques [52]. The breakthrough came in the form of

stacking convolutional layers and increasing the depth of a CNN, forming the first Deep CNN

[52]. Since then, research in CNNs has rapidly increased [53].

13

Training a CNN for image classification requires a database of images annotated with their

assigned classes [54]. A CNN architecture has a structure which goes through the processes of

feature extraction, feature mapping, subsampling, and classification in the forward pass. Learning

in a CNN is accomplished via back-propagation, most commonly in the mini-batching version of

SGD. However, the CNN uses a different pattern of interconnections than a Multi-Layer

Perceptron. Unlike densely connected layers, convolutional layers learn from local patterns of

images instead of global patterns. Local patterns are in the form of an image broken down into

small 2D windows making use of features such as textures and edges in an image. Once a pattern

is learned by a convolutional layer, it can be recognized in other parts of an image. Dense layers

on the other hand have to relearn patterns again if they appear somewhere else in an image. Spatial

hierarchies of patterns can also be learned by CNNs.

The deeper the CNN, the more layers are present, and the more convolutional operations

take place in the hidden layers. A CNN could consist of thousands or even millions of neurons

with also thousands or millions of connections between multiple hidden layers [26]. Feature

extraction is performed by convolutional filters, implemented via neurons whose inputs come

exclusively from a convolution window. The convolutional filters of the first convolutional layer

extract the features of the input image. The output of this convolutional operation is known as a

feature map. The resulting feature maps of the first convolutional layer are then considered the

input for the next convolutional layer. The relationship between weights, kernels, convolutional

filters, kernel matrices, and feature maps is illustrated in Figure 4. In layer i, there are ni input

feature maps fmi. Each feature map is of height hi and width wi. The 4D kernel matrix Mi consists

of ni+1 3D filters Fi. The filters Fi consist of ni 2D kernels ki. Each kernel ki consists of s2 weights

Wi,j arranged in an s × s matrix, forming a convolutional mask. Thus, a filter Fi consists of ni × s2

14

weights Wi,j. The filters Fi are applied to the input feature maps fmi and give us ni+1 feature maps

fmi+1 as an output.

Just like digital images, filters can be visualized and interpreted as small images including

colors and edges [55, 56]. In this case, the values of the pixels are based on the filter weights. As

the name suggests, the convolutional filters convolve over the inputs and extract their features. As

a convolutional filter is applied to an input image or feature map, it moves across the input in left

to right and top to bottom directions. A convolutional filter starts by default from the top left edge

of the input where the top left weight of the filter is aligned with the top left pixel of the input. The

convolutional filter stops when it reaches the bottom right edge of the input where the bottom right

weight of the filter is aligned with the bottom right pixel of the input. The number of pixels it

moves at a time horizontally and vertically is called convolutional stride [54]. The default

convolutional stride is (1,1), which means that the convolutional filter moves one pixel at a time

from left to right of the input and then one pixel at a time from top to bottom of the input. It is

important to note that in a convolutional layer, a kernel does not actually move. Rather, each

possible location of the input is associated with a separate neuron, and all neurons for a specific

convolutional filter in a convolutional layer share the same weights. The convolutional operation

is shown in the following formula [47]:

C[i, j] = (I ∗ K)[i, j] = ∑ ∑ I[i + m, j + n]K[m, n]

n

 ,

m

where ′I′ is the input, ‘K′ is the convolutional kernel, and the indices of the rows and columns of

the result, which is usually in the form of a feature map, are represented with i and j, respectively.

15

Figure 4: The relationship between weights, kernels, convolutional filters, kernel matrices, and

feature maps

16

The problem with this convolutional operation is that the size of the output is smaller than

the input. Therefore, padding is used to counteract the effect of convolutional stride, which

decreases the size of the output of a convolutional filter. Padding is adding empty pixels, which

consist of zeros, to the sides or frame of an input image or feature map [54]. For example, if we

have a 3x3 filter with stride (1,1) applied to an 8x8 input image, the resulting output feature map

is of size 6x6. Thus, adding padding is needed if we want the output feature map to have the same

size as the input image. In this case, we need padding of 1, which would result in an input of size

10x10, but the extra pixels will not have any effect on the output because the padding only consists

of empty pixels. Applying the same 3x3 filter to the 10x10 input image after padding, will result

in an output feature map of size 8x8, which is the same size of the original input image.

An important step to consider is that a nonlinear activation function is applied to the output

of the previous convolutional operation before they form feature maps. This nonlinearity is

essential to the generalizability of neural networks; without it, the network would just be a

superposition of linear functions, which is itself linear. However, certain superpositions of

nonlinear functions can be universal approximators. The most commonly used activation function

in CNNs is the Rectified Linear Unit (ReLU) function, given by [47]:

ReLU(x) = max (x, 0)

An important step that is added to CNNs is normalization. This is to counteract the

boundless nature of some activation functions such as ReLU, where the output of some layers is

not bounded by a specific range of values. Normalization is usually applied to the output of hidden

neurons either before or after entering the activation function. In particular, batch normalization is

used because it also addresses another problem that we face in training CNNs, which is called

17

Covariate Shift. Covariate Shift occurs during the training process of CNNs when the distribution

of the inputs of each layer changes while parameters change in previous layers [57]. Batch

normalization usually consists of taking the Z-score of a mini-batch relative to its mean; the Z-

score has zero mean and unit variance. Therefore, the introduction of batch normalization has led,

in some cases, to eliminating the need to use Dropout in CNNs [57], which is a technique where

some neurons are deactivated or dropped out randomly from the CNN to avoid any possible

overfitting problems [58].

Once features are extracted in convolutional layers and the output is in the form of feature

maps, a pooling operation is performed. The purpose of pooling layers is to down sample the

feature maps. Sub-sampling helps in making the outputs less sensitive to shifts and distortions of

inputs [48]. One of the most commonly used pooling approaches is called Max-Pooling. In max-

pooling, a window with a specified size moves across a feature map and extracts the highest value

in the portion of the feature map where the max-pooling window is applied [47], and just like

convolutional filters, max-pooling also has a stride of its own. This way, the most important and

activated features are highlighted, extracted, and passed to the next stage in the CNN. The first

convolutional layer would learn a small local pattern and then the second convolutional layer could

build on that and learn larger and more complex patterns made up of the smaller local patterns of

the first layers. For example, if a max-pooling window of size 2x2 with stride of (2,2) is applied

on a feature map of size 4x4, the resulting output will be of size 2x2. The max-pooling operation

can be seen in Figure 5.

18

For classification, a Softmax layer is used. The softmax layer is usually the very last layer

in a CNN with a multi-class dataset. The softmax layer is based on the softmax function, which is

applied to the outputs of the last fully connected layer. The softmax function is defined as follows

[47]:

S(y)i =
eyi

∑ eyjn
j=1

 ,

where S(y)i is the ith probability output corresponding to output yi, ′n′ is the number of classes in

the multi-class dataset, and ‘e’ is the base of the natural logarithm.

Once the CNN has gone through an iteration of the forward pass and the softmax layer

provides the resulting output probabilities, it is important to compute the error of the CNN’s

accuracy. One of the most commonly used loss functions in CNNs is the Categorical Cross Entropy

Loss function [54]. This is specifically used for multi-class datasets. The categorical cross entropy

loss function is defined as follows [59]:

Figure 5: Max-Pooling operation

19

Loss = − ∑ yi,target ⋅ log(yi

n

i=1

) ,

where ′n′ is the number of outputs, yi is the ith output, and yi,target is the ith target output for the

input of the CNN. The number of outputs ′n′ is the same as the number of classes of a dataset. If

yi is the desired output, then yi,target is set to 1. On the other hand, if yi is not the desired output,

then yi,target is set to zero.

For example, if the dataset we are using has 3 classes, the number of outputs ′n′ will be 3.

Let us assume that an input that has passed through a neural network belongs to the second class,

the output probabilities ′y′ for the input are [0.15, 0.8, 0.05], and the input belongs to the second

class, which means that the target outputs ytarget are [0, 1, 0]. This will result in a very small loss,

because the output with the highest probability corresponds to the desired target output. This is

shown in the following equation:

Loss = −[(0 × log (0.15)) + (1 × log (0.8)) + (0 × log (0.05))] = 0.097

Using back-propagation, the CNN’s weights are then tweaked to improve the accuracy of the CNN

by reducing the error.

Today, there are various architectures of CNNs such as LeNets [48], AlexNets [51],

VGGNets [42], GoogLeNets [60], ResNets [61], and DenseNets [62] with varying advantages and

disadvantages to all of them. Our study focuses on the VGG-16 network, a popular deep CNN by

K. Simonyan and A. Zisserman [42]. It is part of a series of VGGNets, CNNs with varying layer

depth. Their work won the first and second places in the localization and classification tasks in

ILSVRC 2014 [42], respectively. It is considered one of the most popular CNN models. The idea

20

behind their work was to see the effects of increasing the depth of a CNN architecture. This was

possible because of their use of small 3x3 convolutional kernels in all convolutional layers.

VGGNets’ sizes range from 11 weight layers in the smallest architecture to 19 weight layers in the

largest architecture. With this increase in depth, there is an increase in the number of weights, also

sometimes called parameters. As such, they are considered very time consuming and

computationally intensive architectures to train and test. Yet, it has been observed that the

classification error of the architectures decreases with the increased depth. VGG-16 consists of 22

different layers. These include: 16 weight layers, 5 spatial pooling layers, and one softmax layer.

Of the 16 weight layers, 13 are convolutional layers and 3 are fully connected layers. All 5 spatial

pooling layers use max-pooling. The architecture for the original VGG-16 CNN is shown in Figure

6. The values next to the name of each layer represent the height, width, and number of feature

maps/channels in each layer.

The convolutional and fully connected layers use ReLU activation functions. The number

of filters in the convolutional layers ranges from 64 to 512. The number of filters increase by a

factor of two after every max-pooling layer, until they reach 512 filters. The first two layers of

VGG-16 are convolutional layers with 64 filters each. Convolutional layers 3 and 4 have 128 filters

each. Convolutional layers 5, 6, and 7 have 256 filters each. The remaining 6 convolutional layers,

7 until 13, have 512 filters each. The first two fully connected layers have 4,096 channels, and the

last fully connected layer has 1,000 channels. A convolutional stride of size (1,1) pixel along with

padding of size 1 pixel were used. Max-pooling was done with a window size of 2x2 pixels along

with stride of size (2,2). No padding was used for the max-pooling layers.

21

 Figure 6: Original VGG-16 architecture

22

The difference between CNNs and regular neural networks is that convolutional operations

take place between the inputs and weights instead of matrix multiplications [47]. As seen in Figure

7, the first iteration of the convolutional operation is computed. Filter F1, which consists of three

kernels, is applied to the input image. Each weight is given an index corresponding to its position,

the kernel it belongs to, and the filter it belongs to. For example, the first weight in the top left

corner of the first kernel in filter 1 is labeled as w1,1,1,1. The first two numbers in the subscript tell

us that the weight is at the first row and first column of the kernel. The third number tells us that

the weight belongs to kernel ‘1’, and the fourth number tells us that the weight belongs to filter

‘1’. Each kernel is applied to only one channel of the input image. The input image is of size (224,

224, 3). The first two dimensions are the height and width, and the third dimension is the number

of channels and since it is an RGB image, there are three channels. There is one channel for each

color (red, green, and blue). A padding of 1 is added to each channel of the input image. Each pixel

value is given an index corresponding to its position and the channel it belongs to. For example,

the first pixel in the top left corner of the red channel is labeled as x1,1,1. The first two numbers in

the subscript refer to the row and column indices of the input pixel, and the third number tells us

that the input pixel belongs to channel ‘1’. One filter applied to one input image results in one

feature map. Each pixel is multiplied by its corresponding weight, then all multiplication results

are summed together, in addition to a bias value, to give us a single output in a feature map. An

output feature map in the first convolutional layer in VGG-16 is of size (224, 224). These

correspond to the height and width. Each output is given an index corresponding to its position.

For example, the first output in the top left corner of the feature map is labeled as y1,1,1. The first

two numbers in the subscript refer to the row and column indices of the output, and the third

number tells us that the output belongs to feature map ‘1’.

23

The operation seen in Figure 7 is done using only one neuron in the first convolutional

layer in VGG-16. This is further illustrated in more detail in Figure 8, where there is a total of 27

inputs and 27 corresponding weights. In this case, 9 pixels in each of the three channels of the

input image are multiplied by 9 weights in each of the three kernels of the filter. The summation

result then passes through the activation function, which in VGG-16 is the ReLU activation

function, and then gives us a single output.

Figure 7: First iteration of the convolutional operation in convolutional layer 1

24

Figure 8: A neuron in convolutional layer 1 in VGG-16

25

The kernels then convolve across the input image channels to get us the remaining outputs

in a feature map. Since there are 224 × 224 = 50,176 outputs in a single feature map in the first

convolutional layer in VGG-16, this also means that 50,176 neurons are needed to generate a

single feature map, where all neurons contain the same weights. This is shown in Figure 9.

Figure 9: Neurons needed to generate 1 feature map in convolutional layer 1 in VGG-16

26

The convolution operation is then repeated for each of the 64 convolutional filters in

convolutional layer 1 in VGG-16. This means that there is a total of 64 × 50,176 =

3,211,264 neurons in convolutional layer 1.

In the case of convolutional layer 2, the first iteration of the convolutional operation is

computed. This is illustrated in Figure 10. In convolutional layer 2, each filter consists of 64

kernels corresponding to the 64 feature maps of convolutional layer 1, which are considered the

input for convolutional layer 2. Just like in convolutional layer 1, each weight in convolutional

layer 2 is given an index corresponding to its position, the kernel it belongs to, and the filter it

belongs to. Each kernel is applied to only one input feature map. A padding of 1 is added to each

input feature map of convolutional layer 1. Each input value is given an index corresponding to its

position and the input feature map it belongs to. In convolutional layer 2, one filter applied to all

64 input feature maps of convolutional layer 1 results in only one new output feature map. An

output feature map in convolutional layer 2 in VGG-16 is also of size (224, 224).

The operation seen in Figure 10 is done using only one neuron in convolutional layer 2 in

VGG-16. This is further illustrated in more detail in Figure 11, where there is a total of 576 inputs

and 576 corresponding weights. In this case, 9 pixels in each of the 64 input feature maps are

multiplied by 9 weights in each of the 64 kernels of the filter. The summation result then passes

through the activation function and then gives us a single output. The kernels then convolve across

the 64 input feature maps to get us the remaining outputs in an output feature map. Since there are

224 × 224 = 50,176 outputs in a single feature map in convolutional layer 2 in VGG-16, this

also means that 50,176 neurons are needed to generate a single feature map, where all neurons

contain the same weights. This is shown in Figure 12.

27

The convolution operation is then repeated for each of the 64 convolutional filters in

convolutional layer 2 in VGG-16. This means that there is a total of 64 × 50,176 =

3,211,264 neurons in convolutional layer 2.

Figure 13 shows the number of channels for the input image and the number of feature

maps in both convolutional layers 1 and 2.

Figure 10: First iteration of the convolutional operation in convolutional layer 2

28

Figure 11: A neuron in convolutional layer 2 in VGG-16

29

Figure 12: Neurons needed to generate 1 feature map in convolutional layer 2 in VGG-16

30

The convolutional operation can be expressed mathematically as follows [63]:

v(i,j,k)
[p]

= (x ∗ w[p])(i, j, k) + b(k,1)
[p]

= ∑ ∑ ∑ x(i+l−1,j+m−1,n)w(l,m,n,k)
[p]

+ b(k,1)
[p]

3

n=1

3

m=1

 ,

3

l=1

where ‘i’ and ‘j’ are the indices of the output ‘v’ of the convolutional operation in feature map ′k′.

The variables ‘l’, ‘m’, and ‘n′ are the row number, column number, and channel number for ‘x’ in

the input image or feature map. In the case of weight ‘w’, the variables ‘l’, ‘m’, ‘n′, and ′k′ are the

row number, column number, kernel number, and filter it belongs to. The superscript ′[p]′ is the

number of the layer.

Once we have the convolutional operation outputs, the activation function is applied on them as

follows:

a[p] = φ(v[p]) ,

where the activation ‘φ′ is applied element-wise to every element in the outputs ‘v’.

Figure 13: High level view of feature maps in convolutional layers 1 and 2 in VGG-16

31

This convolutional operation repeats itself in each convolutional layer in the VGG-16

architecture and the forward pass of VGG-16 goes through the next layers, such as the max-pooling

layers and softmax layer, of the architecture with each layer operating the same way as explained

earlier. Once the forward pass is over, it is time to compute the error of the VGG-16 CNN and

perform back-propagation to tweak the parameters to improve the accuracy of the VGG-16 CNN

by reducing the error. For the sake of simplicity, we will assume that the input image has one

channel and that the input image or input feature map is of size H×W, which results in an output

feature map of size (H-2) × (W-2). The back-propagation algorithm can be performed by making

use of the chain rule to compute the gradient with respect to weight wl′,m′ [64]:

∂ε

∂wl′,m′
= ∑ ∑

∂ε

∂vi,j

∂vi,j

∂wl′,m′

W−2

j=1

H−2

i=1

= ∑ ∑ δi,j

∂vi,j

∂wl′,m′

W−2

j=1

H−2

i=1

To compute
∂vi,j

∂wl′,m′

, we substitute vi,j with the appropriate convolution formula. The equation

becomes [64]:

∂vi,j

∂wl′,m′
=

∂

∂wl′,m′
(∑ ∑ x(i+l−1,j+m−1)wl,m + b

3

m=1

3

l=1

)

32

If we expand the summations and take the partial derivatives for all components with respect to

wl′,m′, this will result in zero values except when l = l′ and m = m′ [64]. The equation becomes

[64]:

∂vi,j

∂wl′,m′
=

∂

∂wl′,m′
(x(i,j)w1,1 + ⋯ x(i+l′,j+m′)wl′,m′ + ⋯ + b)

=
∂

∂wl′,m′
(x(i+l′,j+m′)wl′,m′) = x(i+l′,j+m′)

This leads to [64]:

∂ε

∂wl′,m′
= ∑ ∑ δi,jx(i+l′,j+m′)

W−2

j=1

H−2

i=1

The change ∆wl′,m′ becomes:

∆wl′,m′ = −η ∙ (∑ ∑ δi,jx(i+l′,j+m′)

W−2

j=1

H−2

i=1

)

The two summations in the equation are the result of weight sharing in the CNN, i.e., the same

weights are convolved over the entire input image or input feature map [64].

33

2.2 Filter Pruning

ANN compression is the process of reducing the size of a network with minimal compromise

to the accuracy. The aim is to improve the generalization of neural networks and to make running

them faster and possible on resource-limited hardware devices. Earlier work done on compressing

neural networks in the late 1980s and early 1990s were mainly based on two approaches, either

employing weight-decay terms or saliency criteria [65, 66]. The first approach was utilized by Y.

Chauvin [67] and A. Weigend et al. [68]. They adjusted custom error functions used for back-

propagation during training. Theses error functions contained weight-decay terms such that if the

magnitudes of some weights went below a certain threshold, they were pruned. The second

approach uses saliency criteria to measure the sensitivity of error functions with respect to either

weights or neurons. This gives an indication of the importance of weights or neurons. M. Mozer

and P. Smolensky [69] measured the sensitivity of an error function with respect to neurons. Y.

LeCun et al. [70] and B. Hassibi et al. [71] measured the Hessian of an error function with respect

to weights. The work done on compressing neural networks during the early 1990s inspired a lot

of the research done in this field during the past decade. It was apparent that with the usefulness

of deeper CNNs, there had to be a way to deploy them in smaller devices. Research in this field

has expanded. Currently, the four most popular techniques utilized for compressing CNNs are:

1) Knowledge Distillation

Knowledge distillation is the process of training a large CNN model, sometimes known as a

teacher, and transferring the knowledge of the large CNN model learned by using its

predictions to train a smaller CNN model, sometimes known as a student. The idea behind this

approach is that large CNNs have a higher knowledge capacity than small CNNs, but there

34

may be the possibility that this capacity is not fully utilized and there are many redundancies

[34].

2) Parameter Quantization

Parameter quantization works by converting weights inside filters from floating-point numbers

to fixed-point numbers. Fixed-point operations require less computational resources, as they

are easier and faster to operate on. In addition, they occupy a smaller memory footprint, which

means larger models are suitable to use in case of limited memory capacities and bandwidth

requirements [33].

3) Filter Compression

Filter compression finds approximations for convolutional filters that are computationally

more efficient while preserving the CNN’s accuracy. In other words, the number of parameters

is reduced. The new approximated convolutional filters are essentially cleaned up versions

(free of redundancies) of the original convolutional filters [35].

4) Network Pruning

Network pruning is the process of removing parameters to reduce the size of a CNN [31].

There are two kinds of network pruning methods: weight pruning and filter pruning.

Weight pruning is the process of removing weights, which do not contribute much to the

accuracy of a CNN, within filters [36]. The pruned weights usually have small magnitudes below

a certain threshold value and are deemed unimportant [72]. The pruned CNN ends up preserving

its original architecture, but as a result of the pruning process, becomes more sparse. The weight

pruning process is usually done with a binary mask, which has the same size of the convolutional

filter, consisting of zeros and ones. If a weight is to be pruned, its equivalent index in the mask

35

matrix will have a value of zero. This way, the weight’s value in the convolutional filter is

overwritten and set to zero. If a weight is important, its equivalent index in the mask matrix will

have a value of 1. This way, the weight keeps its original value without change. The problem we

are faced with after weight pruning is that it leads to sparse weight matrices across the network

and often requires using specialized software and hardware [31, 37, 38].

Filter pruning on the other hand, is the process of removing entire filters, which are deemed

redundant and unimportant, without reducing the accuracy of a CNN [31]. The three main steps in

any filter pruning algorithm are: 1) determining which filters are important and which are

redundant, 2) pruning the redundant filters, and 3) retraining the neural network. Retraining is

important because it compensates for any possible drop in accuracy due to removing filters. There

are various methods through which a filter may be deemed redundant. The filter pruning process

is done with a binary mask, which has the same size of the convolutional filter, consisting entirely

of zeros. Unlike in weight pruning, filter pruning does not introduce sparsity into a CNN’s

architecture because zero values are not scattered across the weight matrices that make up filters.

Hence, using specialized software and hardware is not required. Therefore, implementing filter

pruning is a better option. The difference between weight pruning and filter pruning can be

illustrated with the following simple example shown in Figure 14. In the case of a 3x3

convolutional filter, we would have 9 weights. In weight pruning, we would set certain weights to

zero based on some defined criteria. In filter pruning, the entire filter (all 9 weights) will be set to

zero because the filter was deemed redundant based on some defined criteria.

36

Recent work on filter pruning methods has produced some very promising ideas. P. Molchanov

et al. [40] determined the importance of filters based on first order gradient information. Based on

this, the least important filters were pruned. H. Hu et al. [41] took advantage of the sparsity of

outputs in a CNN to prune filters which have a large portion of their activations as zero. Y. He et

al. [73] proposed an iterative two-step algorithm to prune redundant filters. The algorithm was

based on using least absolute shrinkage, selection operator regression, and least square

reconstruction of feature maps. H. Li. et al. [37] based their filter pruning algorithm on computing

the sum of the absolute weights for filters, referred to as the L1-norm. They proposed that filters

with small L1-norm values are less important and can be pruned. J. Luo et al. [74] proposed tackling

filter pruning as an optimization problem. Filters were pruned based on statistical information from

the following layer, not the layer the filter was in. R. Yu et al. [75] proposed propagating

importance scores from the second-to-last layer before classification to every filter in a CNN. The

Figure 14: The difference between weight pruning and filter pruning

37

least important filters were pruned based on these scores. Y. He et al. [76] calculated the geometric

median of filters in each convolutional layer. The filters nearest to the geometric median were

pruned. M. Lin et al. [31] proposed a filter pruning algorithm called HRank. They defined an

information measurement to rank feature maps. The information measurement determines the

information richness of a feature map. The feature maps are ranked based on their information

richness, where a feature map with important information would have a high ranking, while a

feature map with little information would have a low ranking. If a feature map is low ranked, then

the filter it was produced by is not important to the CNN. This means that the filter can be pruned

without affecting the accuracy of the CNN. On the other hand, if a feature map is high ranked, then

the filter it was produced by is important to the CNN. This means that the filter should not be

pruned. HRank outperformed other state-of-the-art filter pruning algorithms [31].

2.3 Clustering Algorithms

Clustering refers to a class of unsupervised learning that partitions datasets into subgroups,

known as clusters. The aim of using clustering algorithms is to group the most similar data points

into one cluster while being dissimilar to all other clusters [77]. This will result in identifying

possible natural structures in certain datasets. Clustering is used in a wide range of fields such as

image segmentation [78], data mining [79], pattern recognition [80], economics [81], biology [82],

social sciences [83], and so much more [84, 85].

It is important to note that a perfect clustering algorithm does not exist. Furthermore,

clustering is often applied to datasets without any ground truth labels; in this case, even

determining what the optimal division of the dataset might be likely impossible. This extends to

38

when the same clustering algorithm is used but with different parameters and configurations, or

different clustering algorithms are used.

Clustering algorithms can be generally categorized into the following main types [77, 86, 87]:

1) Partitional clustering

Partitional clustering partitions the dataset into a predetermined number of clusters where data

points are clustered based on a distance metric. They are highly dependent on setting an initial

parameter for the number of centroids. One of the most popular partitional clustering

algorithms is K-Means clustering.

2) Hierarchical clustering

Hierarchical clustering decomposes the dataset based on a certain hierarchy. The clusters

created are of tree like partitions called a dendrogram. There are two approaches to hierarchical

clustering: Agglomerative and Divisive. The agglomerative approach follows a bottom-up

flow for creating the clusters. The number of clusters decreases after each step because two or

more clusters are merged into one new cluster. On the other hand, the divisive approach follows

a top-down flow for creating the clusters. The number of clusters increases after each step

because a cluster is split into two or more new clusters. A predetermined number of clusters is

not required in hierarchical clustering.

3) Density-based clustering

Density-based clustering works by discovering areas of concentration or density for data points

and areas of emptiness where the concentrated data points are separated. Usually, data points

that are not part of clusters, in other words concentrations, are considered noise.

39

4) Grid-based clustering

In this type of clustering, the data space is partitioned into a finite number of cells, thus creating

a grid like structure. The cells are then sorted based on their densities and consequentially

clustered. These are efficient to use in clustering large multidimensional datasets.

Another categorization of clustering algorithms depends on the cluster overlapping. These include

[77]:

1) Crisp clustering

Sometimes also known as hard clustering. Crisp clustering results in non-overlapping

partitions where a data point belongs to only one cluster. The result of most clustering

algorithms is crisp clusters.

2) Fuzzy clustering

Sometimes also known as soft clustering. Fuzzy clustering makes use of fuzzy techniques to

cluster datasets where a data point may belong to more than one cluster. The resulting

clustering schemes are usually compatible with daily life experiences where the uncertainty of

real data is present. The most popular fuzzy clustering algorithm is Fuzzy C-Means clustering

[88].

Clustering algorithms can be further subcategorized depending on the type of datasets used. These

include [77]:

1) Statistical

Similarity measures are used to partition numeric data points that are centered around statistical

analysis concepts.

40

2) Conceptual

These cluster categorical datasets based on the concepts they hold.

Of the many different clustering algorithms available, we chose to use K-Means clustering. K-

means is considered one of the simplest, most scalable, and most well-known and widely used

partitional clustering algorithms. It is thus a reasonable first candidate for our filter pruning

algorithm.

2.3.1 K-Means Clustering

The basic idea of K-Means clustering was first proposed by S. Lloyd [89], then it was

further adapted and enhanced by E. Forgy [90] and J. Macqueen [91]. K-Means clustering is

considered part of the partitional clustering family and is specifically used in crisp clustering. The

objective of K-Means clustering, just like all clustering algorithms, is to maximize the inter-cluster

distances and minimize the intra-cluster distances. The K-Means clustering algorithm goes through

three main steps: First, initialization of centroids. Second, each data point is assigned a label

depending on which cluster it belongs to. This is usually based on calculating the Euclidean

distance [92] for each data point to each centroid and assigning the data point to the cluster with

the nearest centroid. This is done as follows [93]:

A(xi) ← argmin
j∈1…K

‖xi − Cj‖
2
 ,

where A(xi) is the assignment function for each data point xi, and the distance between each data

point xi and each centroid Cj, where j ∈ 1 … K, is computed using Euclidean distance, and the data

point is assigned to the cluster that its centroid has the minimum distance among all centroids.

41

Third, once all data points are assigned to clusters, centroids are re-evaluated by taking the

mean position for all data points in a certain cluster. The formula used for centroid re-estimation

is as follows [93]:

Cj
(t+1)

←
1

|Pj
(t)

|
∑ xi

xi∈P
j
(t)

 ,

where Cj
(t+1)

 is the new centroid for cluster partition Pj
(t)

, and xi is a data point within cluster

partition Pj
(t)

. If the new centroid position is different from the old position, we repeat the second

and third steps until convergence, i.e., the centroids do not change positions. The K-Means

clustering algorithm is given below:

K-Means Clustering Algorithm

1) Initialization: Choose ‘K’ centroids Ci randomly

Repeat until convergence:

2) Cluster assignment:

for i = 1… n:

 Set A(xi) using A(xi) ← argmin
j∈1…K

‖xi − Cj‖
2

3) Centroid re-estimation:

For j = 1… K:

 Set Cj using Cj
(t+1)

←
1

|P
j
(t)

|
∑ xixi∈P

j
(t)

42

The repetition of steps 2 and 3 is known as alternating optimization [94]. Alternating

optimization is an iterative technique for dealing with optimization functions with many variables.

This is used in case no clear solution exists to optimize the desired function for all its variables

simultaneously. The optimization problem is tackled by solving for a subset of a function’s

variables, while other subsets of variables are constant. We then alternate between solving these

subproblems. This makes optimization problems easier to tackle by splitting the problem into

multiple smaller subproblems, where one subset of variables is fixed, while the other subsets of

variables are changing, and vice versa. In K-Means clustering, we alternate between the two steps

of assigning labels to data points and re-estimating centroids.

In order to initialize centroids, the number of clusters ‘K’ needs to be determined.

Determining the most appropriate number for ‘K’ is usually tricky, which is why a process called

cluster validation has to be performed to aid in this dilemma. Determining how to initialize the

centroids from our dataset is also very important. Initializing centroids in a suboptimal way often

leads to poor clustering results. The most basic idea for initializing centroids is by selecting them

randomly from the dataset [90]. This means that not only two successive runs of the K-Means

clustering algorithm on the same dataset will most likely result in different clustering outcomes,

but also that there is no guarantee that the randomly selected centroids are of properly spaced-out

clusters. There is also the possibility that an outlier in the dataset may be selected as a centroid.

There have been many proposed ideas to tackle the pitfalls that accompany the initialization

step over the years, all of which have brought their fair share of advantages and disadvantages.

One of the most notable proposed ideas was K-Means++ by D. Arthur and S. Vassilvitskii [95].

The initialization step in K-Means++ only selects the first centroid at random. The next centroid

is selected based on a probability directly proportional to the distance between the initial centroid

43

and all remaining data points. In other words, the data point farthest away from the initial centroid

has the highest probability of being selected as the next centroid. The major problem resulting

from this idea is that the probability of selecting an outlier, if it exists, as a centroid, increases

significantly. To increase the possibility of avoiding these issues, we chose to use an initialization

step inspired by what was proposed by S. Hussain and M. Haris [93]. Instead of using a single data

point, the proposed idea uses multiple data points to represent a centroid.

2.4 Cluster Validation

Once we are done running a clustering algorithm and a dataset has been processed and data

points partitioned into clusters, there must be a way to validate the “goodness” of the resulting

clusters and tackle the shortcomings present in clustering algorithms. A process called cluster

validation is introduced for this task. This process estimates how well data points fit into the

clusters [77]. Although this is not an easy task, there are several benefits for cluster validation that

cannot be ignored such as [96]:

1) Determining the number of clusters for the dataset used. In our case, this would be the value of

‘K’ in K-Means clustering.

2) Determining whether a structure to the dataset exists and the data points have natural partitions

and not random patterns.

3) Comparing the results of various clustering algorithm configurations or even completely

different clustering algorithms for the dataset used.

44

Cluster validation techniques are categorized into three main classes: internal, external, and

relative cluster validation [97]. Internal cluster validation depends on internal information found

in the created clusters to evaluate how well data points fit into the clusters when the use of external

information as a reference is not possible. It is also useful for determining the number of clusters

needed. External cluster validation depends on externally available information to compare the

created clusters with the externally known results. This technique is useful for comparing different

clustering algorithms for specific datasets. Relative cluster validation compares the results

obtained by changing the parameters and configurations of a specific clustering algorithm.

Ultimately, this aids in finding the optimal parameters and configurations to use.

The cluster validation technique which interests us is the internal cluster validation. This

is because we have no prior knowledge on the optimal number of clusters or whether there is a

natural structure to the data we have. As such, we have to depend on two commonly used criteria

for evaluating the quality of clustering, which are the compactness and separation of the clusters.

Measuring these two criteria is the basis for providing insight into the performance of clustering

algorithms. Compactness describes how close data points are within the same cluster. Separation

describes how widely spaced clusters are from each other.

Since there is a plethora of cluster validity indices, we resorted to the work presented by

O. Arbelaitz et al. [96], where they extensively compared 30 different cluster validity indices in

various environments with various characteristics. The results of their work demonstrated the

performance effectiveness, or lack thereof, of these various cluster validity indices. These can be

used as guidelines for selecting appropriate cluster validity indices for many potential applications.

Most of the indices combined the measured compactness and separation to compute a comparable

quality measure. The writers in [96] focused on cluster validity indices that could be easily

45

evaluated and did not need any subjective decision making, which is why the Modified Hubert

Index [98] and the Elbow Method [99] were left out for example. Fuzzy indices were also left out,

as the focus was primarily on crisp clustering. Nonetheless, many well-known cluster validity

indices were included in the study such as the Silhouette index [100], Dunn index [101], Calinski-

Harabasz index [102], and Davies–Bouldin index [103]. The results showed that no single cluster

validity index was a standout winner and better in everything, but the Silhouette index did obtain

the best results in many of the experiments. As such, the cluster validity index we chose to use was

the Silhouette Index.

2.4.1 Silhouette Index

The Silhouette index was first introduced by P. Rousseeu in [100]. The Silhouette index

measures how compact data points are within a cluster and how well separated a cluster is to its

nearest neighboring cluster. The resulting value of this index is known as Silhouette coefficient or

Silhouette score. The Silhouette score is computed using the following formula [96, 104]:

 S(C) =
1

N
∑ ∑

b(xi,ck)−a(xi,ck)

max {a(xi,ck),b(xi,ck)}
 xi ∈ckck ∈C ,

where

a(xi, ck) =
1

|Ck|−1
∑ d(xixi ∈Ck

, xj),

b(xi, ck) = min
cl∈C\ck

{
1

|cl|
∑ d(xi, xj)xj∈cl

}.

46

To explain how the silhouette score is computed, let us assume we have performed K-

Means clustering on dataset ‘X’, which contains a set of ‘N’ data points, X = {x1, x2, x3, …, xN}.

There are ‘K’ clusters ‘C’, C = {c1, c2, c3, …, cK} where ⋃ ck = X, ck ∩ cl = ∅ ∀k ≠ lck∈C . The

distance ‘d’ between two data points ‘xi’ and ‘xj’ is d(xi, xj). Usually, Euclidean distance is used.

Compactness ‘a’ of data point ‘xi’ to all other data points in the same cluster ‘ck’ is a(xi, ck).

Separation ‘b’ of data point ‘xi’ to all other data points in the nearest neighboring cluster ‘ck’ is

b(xi, ck).

The values of the silhouette score range from -1 to 1. A value close to 1 means that the data

points are well clustered. A value of zero means that the data points could be in any cluster. A

value close to -1 means that the data points are poorly clustered. So, in order to decide on the best

number of clusters ‘K’ for K-Means clustering, we compute the silhouette score for the different

values of ‘K’. The value of ‘K’ which gives us the largest silhouette score is the best one because

it provides the highest cluster quality. The key takeaway is that we want to insure the maximization

of the inter-cluster distances and the minimization of the intra-cluster distances.

2.5 Similarity Measures for Images

Similarity measures are methods that compute the resemblance or likeness between two

objects [105]. There are many similarity measures based on image quality assessment techniques.

These are techniques that assess the quality of an image [106]. If a complete reference image is

available, it is considered full-reference image quality assessment. If a reference image is not

available, it is considered no-reference or blind image quality assessment. Of the many image

quality assessment techniques, we chose to use Structural Similarity Index Measurement (SSIM)

47

[106], which is considered a full-reference image quality metric. SSIM was compared to various

methods such as Peak-Signal-to-Noise-Ratio [107], Sarnoff’s Just Noticeable Difference model

[108], Universal Quality Index [109], and Mean Square Error [110]. SSIM performed better than

all mentioned methods [106].

2.5.1 Structural Similarity Index Measurement

Images are usually structured in nature. Pixels in an image show strong dependencies,

especially when they are adjacent. These dependencies hold valuable information regarding the

structures of various objects in an image. SSIM was introduced by Z. Wang et al. [106] as an

improvement to the Universal Quality Index. It has been widely used as an image quality

assessment technique and similarity measure. The idea from developing SSIM is to mimic the

human visual perception system, where it is possible to identify structural information from images

and ultimately identifying the differences between them. It is important to note that measuring the

similarity between two images using SSIM must be done to images of the same size.

Three components are taken into account when measuring the similarity between two images:

luminance, contrast, and structure.

The formula for luminance is [106]: l(x, y) =
2μxμy+ C1

μx
2+ μy

2+ C1
 ,

where C1 = (K1L)2, L is the dynamic range of the pixel values, and K1 is a small constant set to

0.01. μx and μy are the mean values of images x and y, respectively.

The formula for contrast is [106]: c(x, y) =
2σxσy+ C2

σx
2+ σy

2+ C2
 ,

48

where C2 = (K2L)2, L is the dynamic range of the pixel values, and K2 is a small constant set to

0.03. σx and σy are the standard deviation of images x and y, respectively.

The formula for structure is [106]: s(x, y) =
σxy+ C3

σxσy+ C3
 ,

where C3 = C2/2 and σxy is the covariance of images x and y.

The formula for SSIM, which is the combined formula for all three components together, is as

follows [106]:

SSIM(x, y) =
(2μxμy + C1)(2σxy + C2)

(μx
2 + μy

2 + C1)(σx
2 + σy

2 + C2)

The range of values for SSIM is (-1, 1]. The more similar two images are, the closer the

value is to 1. If two images are identical, the value of SSIM will be exactly 1. The more dissimilar

two images are, the closer the value is to -1.

49

Chapter 3

Methodology

3.1 Overview

Filter pruning is an important new frontier when it comes to developing improved CNN

models. As discussed in section 2.2, the three main steps in any filter pruning algorithm are: 1)

determining which filters are important and which are redundant, 2) pruning the redundant filters,

and 3) retraining the neural network. In our thesis, we are interested in introducing and evaluating

a new approach for the first step. Our approach determines which filters are redundant and can be

pruned with very minimal compromise to the accuracy of the chosen CNN compared to the current

state-of-the-art filter pruning method.

In our approach, we used the K-Means clustering algorithm to cluster similar filters

together. A cluster contains similar filters which accomplish a similar job inside a convolutional

layer. The K-Means clustering algorithm we implemented was adapted to use SSIM instead of

Euclidean distance. We ran the K-Means clustering algorithm using various values of ‘K’ for each

considered convolutional layer individually. We computed the silhouette score over a range of

values for ‘K’ for each considered convolutional layer, which was used to determine the best value

for the number of clusters ‘K’ for each considered convolutional layer. The Silhouette index we

implemented was also adapted to use SSIM instead of Euclidean distance. We then used the

clustering outcome with the highest silhouette score for each considered convolutional layer to

50

continue our experiments. The value of ‘K’ we selected for each considered convolutional layer

was used to determine the pruning rate of that specific layer. The pruning rate represented the

percentage of filters to be pruned. Then, we selected a representative filter from each cluster. We

considered this filter to be important and all remaining filters in the cluster were considered

redundant. Our proposed approach is illustrated in Figure 15. As for the second and third steps of

filter pruning, we kept only one filter from each cluster and pruned the rest. The CNN was retrained

after pruning filters in each layer. This is done to compensate for any possible drop in accuracy

due to filter pruning. To test our new approach, we ran experiments on the VGG-16 architecture

with the CIFAR-10 dataset.

Determine the
best 'K' for

each
considered

convolutional
layer using
SSIM based
Silhouette

Index

Cluster similar
filters together

in each
considered

convolutional
layer using

SSIM based K-
Means

algorithm

Select a
representative
filter from each
cluster in each

considered
convolutional

layer

For each
considered

convolutional
layer:

1) Prune
redundent

filters

2) Retrain CNN

Figure 15: Our proposed approach

51

3.2 Implementation

3.2.1 Dataset

Of the most commonly used datasets for training CNNs, such as MNIST [111], Fashion

MNIST [112], and CIFAR-10, the dataset used in the experiments reported in this thesis is the

CIFAR-10 dataset by A. Krizhevsky [43]. It is a more challenging training dataset in comparison

to the MNIST and Fashion MNIST datasets [113, 114].

3.2.1.1 CIFAR-10

The CIFAR-10 dataset, which stands for Canadian Institute for Advanced Research, is a

subset of the 80 million tiny images dataset by A. Torralba et al. [115]. It consists of 60,0000 RGB

images. Each image is 32x32 pixels in size. The CIFAR-10 dataset is divided into 10 mutually

exclusive classes in total with 6,000 images per class. The dataset is further divided into 5 training

batches and one testing batch. Each batch consists of 10,000 images, which means that there are

50,000 images in total used for training and 10,000 images used for testing CNNs. The testing

batch has exactly 1,000 randomly selected images from each class, while the training batches

contain the remaining images in random order. This results in the possibility of some training

batches containing more images from certain classes than others. The ten classes are: trucks, ships,

horses, frogs, dogs, deer, cats, birds, automobiles, and airplanes. The Python PyTorch library was

used to load the dataset. The size of the dataset is 163 MB. Some sample images of the CIFAR-10

dataset are shown in Figure 16.

52

3.2.2 VGG-16

Because we are using VGG-16 on CIFAR-10 and not ImageNet as it was originally created

by K. Simonyan and A. Zisserman [42], we are using a variation similar to what was introduced

by S. Zagoruyko [116] and H. Li et al. [37] to accommodate the smaller images of the CIFAR-10

Figure 16: Some sample images of the CIFAR-10 dataset

53

dataset. This variation of VGG-16 consists of 21 different layers, instead of 22 layers. These

include: 15 weight layers, 5 spatial pooling layers, and one softmax layer. Of the 15 weight layers,

13 are convolutional layers and 2 are fully connected layers. All 5 spatial pooling layers are max-

pooling layers. The architecture for the VGG-16 CNN we are using is shown in Figure 17.

All convolutional layers and the first fully connected layer use ReLU activation functions.

In addition, Batch Normalization was added to all convolutional layers and the first fully connected

layer in this VGG-16 architecture. Batch Normalization was used instead of Dropout. All

convolutional layers use 3x3 convolutional kernels. Just like the original VGG-16 architecture, the

number of filters in the convolutional layers ranges from 64 to 512. The number of filters increases

by a factor of two after every max-pooling layer, until they reach 512 filters. The first two layers

of VGG-16 are convolutional layers with 64 filters each. Convolutional layers 3 and 4 have 128

filters each. Convolutional layers 5, 6, and 7 have 256 filters each. The remaining 6 convolutional

layers, 7 until 13, have 512 filters each. A convolutional stride of size (1,1) pixel along with

padding of size 1 pixel were used. Max-pooling was done with a window size of 2x2 pixels along

with stride of size (2,2). No padding was used for the max-pooling layers. One of the key

differences between the VGG-16 architecture we used, and the original VGG-16 architecture is

that the former architecture has two fully connected layers instead of three and the number of

channels in the fully connected layers was decreased. The first fully connected layer has 512

channels instead of 4,096. This is because after the last max-pooling layer we are left with 512

weights. The second, also final, fully connected layer has only 10 channels instead of 1,000. This

is to correspond to the number of classes of the dataset we used, such that we can have 1 output

for each of the 10 classes in CIFAR-10.

54

Figure 17: VGG-16 architecture

55

The pre-trained VGG-16 model we used was downloaded from [117]. The Python PyTorch

library was used to load, prune, and retrain the pretrained network. The MBSGD optimizer was

used for retraining the network. The Categorical Cross Entropy loss function was used. We set an

initial learning rate at a value of 0.001. The learning rate was divided by 10 at epochs 5 and 10.

The momentum was set at 0.9, and the weight decay was set at 0.0005. The training batch size was

set to 128. We retrained the network for 30 epochs. The parameters we used were based on the

same settings experimented by [31]. The pre-trained VGG-16 model on the CIFAR-10 dataset we

used had a baseline accuracy of 93.96%.

3.2.3 SSIM Based K-Means Clustering

What we are trying to perform is clustering convolutional filters. As explained in Section 2.1.1,

convolutional filters in a CNN can be thought of as image-like objects with a certain dimension

size of pixels. The filters consist of weights which resemble pixel values of an image. Our aim

from clustering is to group similar convolutional filters together. As such, using SSIM, which is

suitable for comparing images, instead of a distance metric was a more logical and suitable choice.

Therefore, we compare filters using SSIM. In our approach, the input used for our K-Means

clustering algorithm are the convolutional filters from individual convolutional layers. The output

are clusters of similar convolutional filters such that the intra-cluster similarities are maximized,

and the inter-cluster similarities are minimized. We will explain our proposed approach for the

three main steps in K-Means clustering: initialization, cluster assignment, and centroid re-

estimation.

56

1) Initialization

Determining how to initialize centroids from a dataset, which are the convolutional filters in our

case, is a very important step. Initializing centroids in a suboptimal way might lead to poor

clustering results. To increase the possibility of avoiding this issue, we chose to use an initialization

step inspired by what was proposed by S. Hussain and M. Haris [93]. Instead of using a single data

point, the proposed idea uses multiple data points to represent a centroid. This implies that in

addition to determining the number of clusters ‘K’ before starting, we also need to determine a

number of initial centroids ‘ic’ to use in the initialization process of clustering. There are three

main steps in our initialization process. The first step is choosing ‘K’ points at random from our

dataset. The second step is finding the most similar ‘ic-1’ data points to a specific centroid. This

is done using SSIM. The function we used to compute SSIM was from the Python Scikit-Image

library [118]. Finally, we take the mean value of the ‘ic’ data points to get our new centroid.

Let us assume we set the value of ‘K’ to 5 and the value of ‘ic’ to 3. Let C1,1, C2,1, C3,1,

C4,1, and C5,1 be our K = 5 randomly chosen centroids from our considered filters. We chose the 2

(3 − 1 = 2) most similar filters to C1,1. They will be known as C1,2 and C1,3. The same step is

repeated for the remaining centroids C2,1 to C5,1. In total, we will have ‘K’ × ’ic’, 5 × 3 = 15 filters

selected. We will then take the mean value for C1,1, C1,2, and C1,3 to get our new centroid C1. The

same step is repeated for the remaining centroids. In the end, we will have 5 new centroids. We

illustrate our initialization method with an example based on 2D space shown in Figure 18.

57

2) Cluster Assignment

Once centroid initialization is done, the second step in our clustering algorithm is similar to

standard K-Means clustering. We assign filters to clusters based on the most similar centroid. This

is done using SSIM. This step is illustrated in Figure 19A. The formula used for assigning filters

is as follows:

𝐴(𝐹𝑖) ← argmax
𝑗∈1…𝐾

(𝑆𝑆𝐼𝑀(𝐹𝑖 , 𝐶𝑗)) ,

where 𝐴(𝐹𝑖) is the assignment function for each filter 𝐹𝑖. The similarity between each filter 𝐹𝑖 and

each centroid 𝐶𝑗, where 𝑗 ∈ 1 … 𝐾, is computed using SSIM, and the filter is assigned to the cluster

that its centroid has the maximum similarity to among all centroids.

Figure 18: K-Means initialization

58

3) Centroid Re-estimation

Once all filters are assigned to a cluster, we want to re-estimate or compute new centroids. This is

done in the third step by computing the mean of the filters in each cluster. This step is illustrated

in Figure 19B.

The second and third steps (cluster assignment and centroid re-estimation) are repeated until

convergence, i.e., the centroids do not change.

When we say that we are taking the mean of multiple convolutional filters, this means that

we are taking the mean of the corresponding weights from each filter. That is, the mean is actually

a matrix of weights. The size of the matrix is the same size of a filter. The value of the mean 𝑀𝑖,𝑗

at row 𝑖 and column 𝑗 is formally computed as:

𝑀𝑖,𝑗 =
∑ 𝑊𝑘[𝑖, 𝑗]𝑛

𝑘=1

𝑛
 ,

Figure 19: K-Means cluster assignment and centroid re-estimation

59

where 𝑛 is the number of filters for which the mean is computed, 𝑊𝑘[𝑖, 𝑗] is the weight at row 𝑖

and column 𝑗 of filter 𝐹𝑘. Figure 20 shows an example of three filters and their corresponding

mean. In this example, the mean value of 𝑀1,1 is computed as follows:

𝑀1,1 =
𝑊1[1,1] + 𝑊2[1,1] + 𝑊3[1,1]

3
=

0.5 + 0.3 + 0.7

3
= 0.5

The rest of the weights are computed in a similar way.

Figure 20: Mean of three filters

3.2.4 SSIM Based Silhouette Index

Cluster validation acts as a failsafe for us. Even if our clustering algorithm’s initialization

step does not provide good centroids, by using the silhouette index we can know that the clusters

are poorly created. The steps for computing the silhouette score are straightforward. We compute

60

the similarity between a specific filter and each of the remaining filters in the same cluster. Then

we compute the similarity between the same filter and each filter in the most similar cluster to the

original cluster. This is repeated for all filters in the dataset.

When implementing the silhouette index, we used SSIM instead of Euclidean distance. To

accommodate the use of SSIM, we shifted the range of values we get using SSIM from (-1,1] to

(0,2] and switched the variables a(xi, ck) and b(xi, ck) in the silhouette index formula. This is

because similarity is the inverse of distance. The formula for computing the silhouette score

becomes:

𝑆(𝐶) =
1

𝑁
∑ ∑

𝑎(𝑥𝑖,𝑐𝑘)−𝑏(𝑥𝑖,𝑐𝑘)

max {𝑎(𝑥𝑖,𝑐𝑘),𝑏(𝑥𝑖,𝑐𝑘)}𝑥𝑖 ∈𝑐𝑘𝑐𝑘 ∈𝐶 ,

where

a(𝑥𝑖 , 𝑐𝑘) =
1

|𝐶𝑘|−1
∑ 𝑆𝑆𝐼𝑀(𝑥𝑖𝑥𝑖 ∈𝐶𝑘

, 𝑥𝑗),

b(𝑥𝑖 , 𝑐𝑘) = min
𝑐𝑙∈𝐶\𝑐𝑘

{
1

|𝑐𝑙|
∑ 𝑆𝑆𝐼𝑀(𝑥𝑖 , 𝑥𝑗)𝑥𝑗∈𝑐𝑙

}.

This means that the range of values for our silhouette index is (-1,1). A value close to 1

means that the filters are well clustered. A value of zero means that the filters could be in any

cluster. A value close to -1 means that the data points are poorly clustered. We illustrate our

silhouette index with an example based on 2D space shown in Figure 21.

For example, if filter Fi is exactly similar to all other filters in the same cluster Ck, then the

value of a(Fi, Ck) will be equal to 2. In addition, if filter Fi is very dissimilar to all other filters in

the most similar cluster cl to the original cluster ck, then the value of b(Fi, Ck) will be very close to

61

zero. The minimum function used in b(Fi, Ck) selects the most similar cluster to the original cluster.

The average similarity between filter Fi and each filter in other clusters is computed and the

minimum average similarity determines the most similar cluster to the original cluster which filter

Fi belongs to. So, if the average similarity between filter Fi in cluster Ck and each filter in cluster

Cl is 0.1, cluster C2 is 0.5, and cluster C3 is 0.3, we choose cluster Cl. Therefore, in our example,

the value of b(Fi, Ck) will be 0.1. The silhouette score for the single filter Fi becomes:

S(xi) =
2−0.1

max {2,0 .1}
=

1.9

2
= 0.95

This step is then repeated for all filters and the average value for the individual filter

silhouette scores is the silhouette score we use to determine how good the clustering outcome is

for this run of the algorithm. The silhouette index was implemented with the help of the Python

Scikit-Learn library [119, 120], while performing the changes indicated earlier to suit our needs of

using SSIM.

Figure 21: Silhouette Index

62

3.3 Filter Clustering Algorithm

As explained in section 2.1.1 and with the help of Figure 4, a convolutional filter in the

VGG-16 model we used consisted of multiple kernels. We had to flatten the kernels together to

transform a filter into one image-like object instead of multiple objects. For example, each

convolutional filter in the first convolutional layer of VGG-16 consisted of 3 kernels. Each kernel

is of size 3x3, which means a total of 9 weights. This means that each filter is of size 3x3x3,

consisting of a total of 27 weights. We flattened the 3 kernels together to make each filter to be of

size 9x3, which still maintains a total of 27 weights in each filter. Once this was done to all

convolutional filters, we ran our K-Means clustering algorithm for each considered convolutional

layer individually. This is because convolutional filters in different layers may have different sizes

and perform different tasks. By definition, SSIM can only be applied on objects with the same

size.

We ran the code 10 times for each value of ‘K’. We computed the silhouette score for each

of the 10 runs for a specific value of ‘K’. We then computed the average of the 10 silhouette scores

we have for the same specific value of ‘K’. This was done for all values of ‘K’ we ran. The average

silhouette score at a certain value of ‘K’ is referred to as ASSK, and the maximum ASSK is referred

to as ASSmax. The individual maximum silhouette score out of the 10 silhouette scores for each

value of ‘K’ is called the local maximum silhouette score (LMSSK). At the value of ‘K’

corresponding to ASSmax, the individual maximum silhouette score out of the 10 silhouette scores

is called the global maximum silhouette score. The value of ‘K’ corresponding to ASSmax was

considered the best one. The value for ‘ic’ gradually decreased as the value of ‘K’ increased. In

63

our experiments, we selected the value of ‘ic’ to range from 5 to 1. This was done to ensure that

‘ic’ × ‘K’ was not greater than the number of filters in a specific convolutional layer.

For example, if we ran our K-Means clustering algorithm on the first convolutional layer

in VGG-16, which has 64 filters, the value for ‘K’ would range from 2 to 63. This means that we

tested 62 values for ‘K’ and for each one we computed 10 clustering outcomes with each one

giving us a different silhouette score. In total, we obtained 62×10 = 620 clustering outcomes for

the first convolutional layer alone. We computed the average of the 10 silhouette scores we got for

each ‘K’ we tested. This results in 62 average silhouette scores corresponding to the 62 values of

‘K’ we tested. We then select the ‘K’ with the highest average silhouette score and selected the

clustering outcome with the highest silhouette score out of the 10 runs we did for that specific

value of ‘K’. If the highest average silhouette score, for example, corresponds to K=20, we would

select the clustering outcome with the highest silhouette score, which we have out of the 10

clustering outcomes we produced for K=20, to use as the input for our filter pruning algorithm.

3.4 Filter Pruning Algorithm

Once the clustering algorithm has been applied and all filters are allocated to a cluster, the

filters inside a cluster are similar and hence accomplish a similar job inside a convolutional layer.

This means that if more than one filter extracts the same or similar features, it could be assumed

that the filters are redundant and not necessary for the overall accuracy and process of a CNN. We

then select a representative point from each cluster, which we consider the most similar filter to

the centroid. That is, we calculate the similarity between each filter in the cluster and the centroid.

The filter that has the highest similarity value with the centroid is selected to be the representative

64

filter of the cluster. All remaining filters in the clusters are considered redundant and will be

pruned. The pruning rate for each considered convolutional layer depends on the number of

clusters ‘K’ which we have selected.

For example, in the first convolutional layer, we have 64 filters. If the value of ‘K’ we are

using is 16, the pruning rate for the first convolutional layer is 1-16/64 = 0.75. We will keep only

16 filters out of 64. This means that 48 filters will be pruned, which represents 75% of the filters

in the first convolutional layer. The value of ‘K’, which we selected for each considered

convolutional layer, was used to determine the pruning rate of that specific layer.

We performed three experiments. In the first experiment, we selected ‘K’ in each

convolutional layer corresponding to ASSmax. In the second and third experiments, we tested

higher pruning rates. Therefore, we tested using smaller values for ‘K’ corresponding to other

LMSSK. The criteria we considered for selecting the ‘K’ values in the second and third experiments

are as follows. In the second experiment, we experimented using almost the same pruning rate for

all layers. The pruning rate, and consequently the value of ‘K’, is selected such that it is the highest

possible rate that does not cause the LMSSK in each layer to be less than the ASSmax. After this

selection of ‘K’ values, if the selected value of ‘K’ in any layer is almost the same as the value of

‘K’ corresponding to ASSmax, we search for a value of ‘K’ for that specific layer that results in the

highest possible pruning rate without causing the value of the LMSSK to be less than ASSmax.

Using these criteria in the second experiment, we ensured that none of the selected values of ‘K’

had LMSSK less than the ASSmax. In the third experiment, we experimented relaxing the selection

criteria for the LMSSK for the last 25% of the selected layers to explore the impact of increasing

the pruning rate for the last layers compared to the former ones on the classification accuracy. In

this case, we experimented using the same pruning rate for the last three considered layers such

65

that this rate is the highest possible rate that does not cause the LMSSK in each of these layers to

be less than 85% of ASSmax.

The main filter pruning code we used was from [117]. We adapted the code to our needs.

Originally, the filters were given values from 0 to 100 indicating their importance. The higher the

value, the more important a filter is, and it is higher ranked. What we did instead was assigning

only a value of 100 or 0. There were no values in between. The filters we wanted to keep were

given a value of 100, and the redundant filters were given a value of zero. Filters were then ranked

based on descending order. This way, the important filters were at the top of the rank and the

redundant filters were at the bottom. The percentage of filters that were in the bottom of the rank

were pruned. For example, in the first convolutional layer, if we want to prune 48 filters out of 64

filters, we need to make sure that the pruning rate is set to 0.75. If the pruning rate is less than 0.75,

the filter pruning code will not prune all 48 filters which were given a value of zero. If the pruning

rate is higher than 0.75, the filter pruning code will prune some of the 16 filters which were given

a value of 100. A mask was then applied to the percentage of redundant filters corresponding the

pruning rate we had set. The weights for all redundant filters were set to zero, effectively pruning

them from the CNN. We applied a layer-wise iterative process for filter pruning and retraining.

We would filter prune one layer at a time and then retrain the whole CNN to compensate for any

possible drop in accuracy due to removing filters from that specific convolutional layer. Therefore,

we prune the first convolutional layer and retrain for 30 epochs, then we prune the second

convolutional layer and retrain for 30 epochs and so on.

66

3.5 Evaluation

Our proposed filter pruning algorithm was evaluated in terms of the achieved model

compression, model acceleration, and model accuracy. We used the same pretrained VGG-16

model [117] provided by HRank. We also made use of the filter rankings they generated based on

the same pretrained VGG-16 model. We filter pruned the pretrained VGG-16 model with the same

pruning rate for both our method and the state-of-the-art method of HRank. This provided a fair

and level starting point for comparison. The pruning rate we used depends on the value of ‘K’ with

the highest silhouette score. HRank on the other hand ranked the filters of each convolutional layer

based on their importance. The filters with the high values were more important than filters with

low values. Their pruning rates were not chosen based on predetermined criteria. So, if the pruning

rate was set to 0.6, 60% of the filters with the lowest ranks will be pruned.

To calculate the number of parameters and FLOPs in our VGG-16 model, we recall the

terminology used in section 2.1.1 to describe Figure 4. In layer i, there are ni input feature maps

fmi. Each feature map is of height hi and width wi. The 4D kernel matrix Mi consists of ni+1 3D

filters Fi. The filters Fi consist of ni 2D kernels ki. Each kernel ki consists of s2 weights Wi,j.

Basically, a filter Fi consist of ni × s2 weights Wi,j. The filters Fi are applied to the input feature

maps fmi and give us ni+1 feature maps fmi+1 as an output.

The number of parameters in each convolutional layer can be calculated using the following

formula:

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 = (𝑠2 × 𝑛𝑖 + 1) × 𝑛𝑖+1

67

Where the added 1 is due to the bias term. For example, the first convolutional layer in our VGG-

16 model has an input of ni = 3 channels, which could also be considered feature maps. Each kernel

consists of s2 = 32 = 9 weights. There are 64 filters, which results in ni+1 = 64 feature maps as an

output. As such, there are:

(32 × 3 + 1) × 64 = 1,792 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠

The second convolutional layer has an input of ni+1 = 64 feature maps. Each kernel also consists

of s2 = 32 = 9 weights. There are 64 filters, which results in ni+2 = 64 feature maps as an output. As

such, there are:

(32 × 64 + 1) × 64 = 36,928 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠

The number of FLOPs in each convolutional layer can be calculated using the following formula:

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝐿𝑂𝑃𝑆 = 𝑛𝑖 × 𝑛𝑖+1 × 𝑠2 × ℎ𝑖+1 × 𝑤𝑖+1

For example, the first convolutional layer in our VGG-16 model has an input of ni = 3 channels.

Each kernel consists of s2 = 32 = 9 weights. There are 64 filters, which results in ni+1 = 64 feature

maps as an output. The height and width of the feature maps is 32. As such, there are:

3 × 64 × 32 × 32 × 32 = 1,769,472 FLOPs

The second convolutional layer has an input of ni+1 = 64 feature maps. Each kernel also consists

of s2 = 32 = 9 weights. There are 64 filters, which results in ni+2 = 64 feature maps as an output.

The height and width of each feature map is 32. As such, there are:

64 × 64 × 32 × 32 × 32 = 37,748,736 FLOPs.

Therefore, when a filter is pruned, the number of reduced parameters is:

68

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑑𝑢𝑐𝑒𝑑 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 = 𝑠2 × 𝑛𝑖 + 1

When a filter is pruned, the number of reduced FLOPs is:

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑑𝑢𝑐𝑒𝑑 𝐹𝐿𝑂𝑃𝑆 = 𝑛𝑖 × 𝑠2 × ℎ𝑖+1 × 𝑤𝑖+1

For example, if one filter is pruned from the first convolutional layer, the number of reduced

parameters is:

32 × 3 + 1 = 28 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠

In addition, if one filter is pruned from the first convolutional layer, the number of reduced FLOPs

is:

3 × 32 × 32 × 32 = 27,648 𝐹𝐿𝑂𝑃𝑠

The code used for calculating the number of reduced parameters and reduced FLOPs was provided

by [117].

We compared the resulting average accuracy, after filter pruning and retraining the

pretrained VGG-16 model, of both our method and HRank’s method. To get the accuracy of the

pretrained VGG-16 model after filter pruning, we did 10 experiments for each filter pruning

method. We did 10 experiment runs based on the filters we deemed redundant and then calculated

the average value for the 10 accuracy values we got from the 10 experiment runs. We did the same

thing based on the filters HRank deemed least important. We compared the average accuracy

values obtained using our method and HRank’s method to check whether the difference between

them is statistically significant. Before we could compare the average accuracy values, we had to

check whether each set of data followed the normal distribution using the Shapiro-Wilk test [121].

69

The type of test needed to compare our sets of data differed if our data did not follow the normal

distribution. Once our sets of data were confirmed to follow normal distribution, we ran a T-test

[122] to confirm whether there was a statistically significant difference in the accuracy. The T-test

is a statistical test that determines whether there is a significant difference between the mean values

of two groups.

70

Chapter 4

Results and Discussion

4.1 Silhouette Plots

There is one silhouette plot for each of the 12 convolutional layers we filter pruned. The

plots show the change of the average silhouette score over ‘K’. In addition, for each convolutional

layer, two more curves are plotted for the average silhouette score ±1 standard deviation (σ). In all

cases, the two plotted curves showed that the amount of variability from the individual silhouette

scores to the average silhouette score at each ‘K’ is relatively small. The average and maximum

ratios of sigma to the average silhouette scores for each plot are reported. The first and last 10%

of the average silhouette scores were excluded from calculating the average and maximum ratios

of sigma. This is because the excluded values of the average silhouette scores are very small which,

in some cases, causes the ratios of sigma to the average silhouette scores to be relatively high,

which gives a misleading impression when reporting the maximum ratio. Excluding these values

does not affect the interpretations of the results as these excluded values are for ‘K’ values that are

far from the ‘K’ value that corresponds to the global silhouette score.

In each plot, the x-axis is for the number of clusters ‘K’. The y-axis is for the silhouette

scores. The global maximum average silhouette score and any local maximum silhouette scores

are marked in each plot, and the ‘K’ values corresponding to them are also indicated. The selection

of the global maximum average silhouette score and any local maximum silhouette scores is based

71

on the criteria explained in section 3.4. Hence, using a clustering outcome at the ‘K’ values

corresponding to local maximum silhouette scores provides the opportunity to test higher pruning

rates.

Figure 22 is for convolutional layer 1 which has 64 filters. The number of clusters ‘K’

ranges from 2 to 63. This means that we have tested 62 values for ‘K’ and for each one we

computed 10 clustering outcomes with each one giving us a different silhouette score. In total, we

have obtained 62×10 = 620 clustering outcomes for the first convolutional layer alone. The value

of ‘ic’ ranges from 5 to 1 and it gradually decreases as the value of ‘K’ increases. The value of ‘ic’

is set to 5 for the number of clusters ‘K’ ranging from 2 to 10 and is set to 4 for the number of

clusters ‘K’ ranging from 11 to 14. In addition, the value of ‘ic’ is set to 3 for the number of clusters

‘K’ ranging from 15 to 20 and is set to 2 for the number of clusters ‘K’ ranging from 21 to 31. The

value of ‘ic’ is set to 1 for the number of clusters ‘K’ ranging from 32 to 63. This was done to

ensure that ‘ic’ × ‘K’, i.e., the total number initial centroids, was not greater than the number of

filters in a specific convolutional layer. For example, if the value of ‘K’ was 18 and the value of

‘ic’ was 4, then the total number of initial centroids would be 4×20=72, which is greater than the

number of filters in convolutional layer 1. On the other hand, if the value of ‘ic’ was 3, then the

total number of initial centroids would be 3×18=54, which is less than the number of filters in

convolutional layer 1. This means that we cannot set the value of ‘ic’ to be 4 at K=18, but it is

possible to set the value of ‘ic’ to be 3.

As shown in Figure 22, the average silhouette scores widely range from 0.02 to 0.60. The

global maximum average silhouette score was found to correspond to the value of K = 24. The

highest individual silhouette score out of the 10 silhouette scores we computed at K = 24 was 0.63.

The selected local maximum silhouette score corresponds to the value of K = 20. The highest

72

individual silhouette score out of the 10 silhouette scores we computed at K = 20 was 0.61. The

average ratio of sigma to the average silhouette scores is 0.041. The maximum ratio of sigma to

the average silhouette scores is 0.079.

Figure 23 is for convolutional layer 2 which has 64 filters, as in convolutional layer 1.

Therefore, we have also obtained 620 clustering outcomes for convolutional layer 2. The value of

‘ic’, which ranges from 5 to 1, changes at the same rate as in convolutional layer 1 because both

convolutional layers 1 and 2 have the same number of filters. As shown in Figure 23, the average

silhouette scores widely range from 0.02 to 0.48. The global maximum average silhouette score

was found to correspond to the value of K = 29. The highest individual silhouette score out of the

10 silhouette scores we computed at K = 29 was 0.51. The selected local maximum silhouette

score corresponds to the value of K = 23. The highest individual silhouette score out of the 10

Figure 22: Silhouette plot for convolutional layer 1

73

silhouette scores we computed at K = 23 was 0.48. The average ratio of sigma to the average

silhouette scores is 0.064. The maximum ratio of sigma to the average silhouette scores is 0.115.

Figure 24 is for convolutional layer 3 which has 128 filters. The number of clusters ‘K’

ranges from 2 to 127. This means that we have tested 126 values for ‘K’ and for each one we

computed 10 clustering outcomes with each one giving us a different silhouette score. In total, we

have obtained 126×10 = 1,260 clustering outcomes for convolutional layer 3. The value of ‘ic’

ranges from 5 to 1 and it gradually decreases as the value of ‘K’ increases. The value of ‘ic’ is set

to 5 for the number of clusters ‘K’ ranging from 2 to 20 and is set to 4 for the number of clusters

‘K’ ranging from 21 to 28. In addition, the value of ‘ic’ is set to 3 for the number of clusters ‘K’

ranging from 29 to 40 and is set to 2 for the number of clusters ‘K’ ranging from 41 to 62. The

Figure 23: Silhouette plot for convolutional layer 2

74

value of ‘ic’ is set to 1 for the number of clusters ‘K’ ranging from 63 to 127. As shown in Figure

24, the average silhouette scores widely range from 0.02 to 0.47. The global maximum average

silhouette score was found to correspond to the value of K = 53. The highest individual silhouette

score out of the 10 silhouette scores we computed at K = 53 was 0.48. The selected local maximum

silhouette score corresponds to the value of K = 45. The highest individual silhouette score out of

the 10 silhouette scores we computed at K = 45 was 0.47. The average ratio of sigma to the average

silhouette scores is 0.044. The maximum ratio of sigma to the average silhouette scores is 0.084.

Figure 25 is for convolutional layer 4 which has 128 filters, as in convolutional layer 3.

Therefore, we have also obtained 1,260 clustering outcomes for convolutional layer 4. The value

of ‘ic’, which ranges from 5 to 1, changes at the same rate as in convolutional layer 3 because both

convolutional layers 3 and 4 have the same number of filters. As shown in Figure 25, the average

Figure 24: Silhouette plot for convolutional layer 3

75

silhouette scores widely range from 0.01 to 0.43. The global maximum average silhouette score

was found to correspond to the value of K = 56. The highest individual silhouette score out of the

10 silhouette scores we computed at K = 56 was 0.47. The selected local maximum silhouette

score corresponds to the value of K = 45. The highest individual silhouette score out of the 10

silhouette scores we computed at K = 45 was 0.44. The average ratio of sigma to the average

silhouette scores is 0.043. The maximum ratio of sigma to the average silhouette scores is 0.083.

Figure 26 is for convolutional layer 5 which has 256 filters. The number of clusters ‘K’

ranges from 2 to 255. This means that we have tested 254 values for ‘K’ and for each one we

computed 10 clustering outcomes with each one giving us a different silhouette score. In total, we

have obtained 254×10 = 2,540 clustering outcomes for convolutional layer 5. The value of ‘ic’

ranges from 5 to 1 and it gradually decreases as the value of ‘K’ increases. The value of ‘ic’ is set

Figure 25: Silhouette plot for convolutional layer 4

76

to 5 for the number of clusters ‘K’ ranging from 2 to 40 and is set to 4 for the number of clusters

‘K’ ranging from 41 to 56. In addition, the value of ‘ic’ is set to 3 for the number of clusters ‘K’

ranging from 57 to 80 and is set to 2 for the number of clusters ‘K’ ranging from 81 to 112. The

value of ‘ic’ is set to 1 for the number of clusters ‘K’ ranging from 113 to 255. As shown in Figure

26, the average silhouette scores widely range from 0.01 to 0.40. The global maximum average

silhouette score was found to correspond to the value of K = 102. The highest individual silhouette

score out of the 10 silhouette scores we computed at K = 102 was 0.44. The selected local

maximum silhouette score corresponds to the value of K = 90. The highest individual silhouette

score out of the 10 silhouette scores we computed at K = 90 was 0.40. The average ratio of sigma

to the average silhouette scores is 0.051. The maximum ratio of sigma to the average silhouette

scores is 0.189.

Figure 26: Silhouette plot for convolutional layer 5

77

Figure 27 is for convolutional layer 6 which has 256 filters, as in convolutional layer 5.

Therefore, we have also obtained 2,540 clustering outcomes for convolutional layer 6. The value

of ‘ic’, which ranges from 5 to 1, changes at the same rate as in convolutional layer 5 because both

convolutional layers 5 and 6 have the same number of filters. As shown in Figure 27, the average

silhouette scores widely range from 0.01 to 0.37. The global maximum average silhouette score

was found to correspond to the value of K = 100. The highest individual silhouette score out of the

10 silhouette scores we computed at K = 100 was 0.40. The selected local maximum silhouette

score corresponds to the value of K = 90. The highest individual silhouette score out of the 10

silhouette scores we computed at K = 90 was 0.38. The average ratio of sigma to the average

silhouette scores is 0.073. The maximum ratio of sigma to the average silhouette scores is 0.213.

Figure 27: Silhouette plot for convolutional layer 6

78

Figure 28 is for convolutional layer 7 which has 256 filters, as in convolutional layer 5.

Therefore, we have also obtained 2,540 clustering outcomes for convolutional layer 7. The value

of ‘ic’, which ranges from 5 to 1, changes at the same rate as in convolutional layer 5 because both

convolutional layers 5 and 7 have the same number of filters. As shown in Figure 28, the average

silhouette scores widely range from 0.01 to 0.36. The global maximum average silhouette score

was found to correspond to the value of K = 110. The highest individual silhouette score out of

the 10 silhouette scores we computed at K = 110 was 0.39. The selected local maximum silhouette

score corresponds to the value of K = 90. The highest individual silhouette score out of the 10

silhouette scores we computed at K = 90 was 0.37. The average ratio of sigma to the average

silhouette scores is 0.051. The maximum ratio of sigma to the average silhouette scores is 0.162.

Figure 28: Silhouette plot for convolutional layer 7

79

Figure 29 is for convolutional layer 8 which has 512 filters. The number of clusters ‘K’

ranges from 2 to 511. This means that we have tested 510 values for ‘K’ and for each one we

computed 10 clustering outcomes with each one giving us a different silhouette score. In total, we

have obtained 510×10 = 5,100 clustering outcomes for convolutional layer 8. The value of ‘ic’

ranges from 5 to 1 and it gradually decreases as the value of ‘K’ increases. The value of ‘ic’ is set

to 5 for the number of clusters ‘K’ ranging from 2 to 80 and is set to 4 for the number of clusters

‘K’ ranging from 81 to 112. In addition, the value of ‘ic’ is set to 3 for the number of clusters ‘K’

ranging from 113 to 160 and is set to 2 for the number of clusters ‘K’ ranging from 161 to 224.

The value of ‘ic’ is set to 1 for the number of clusters ‘K’ ranging from 225 to 511. As shown in

Figure 29, the average silhouette scores range from 0.01 to 0.30. The global maximum average

silhouette score was found to correspond to the value of K = 217. The highest individual silhouette

score out of the 10 silhouette scores we computed at K = 217 was 0.34. The selected local

maximum silhouette score corresponds to the value of K = 180. The highest individual silhouette

score out of the 10 silhouette scores we computed at K = 180 was 0.30. The average ratio of sigma

to the average silhouette scores is 0.062. The maximum ratio of sigma to the average silhouette

scores is 0.186.

80

Figure 30 is for convolutional layer 9 which has 512 filters, as in convolutional layer 8.

Therefore, we have also obtained 5,100 clustering outcomes for convolutional layer 9. The value

of ‘ic’, which ranges from 5 to 1, changes at the same rate as in convolutional layer 8 because both

convolutional layers 8 and 9 have the same number of filters. As shown in Figure 30, the average

silhouette scores range from 0.01 to 0.28. The highest individual silhouette score out of the 10

silhouette scores we computed at K = 226 was 0.32. The selected local maximum silhouette score

corresponds to the value of K = 180. The highest individual silhouette score out of the 10 silhouette

scores we computed at K = 180 was 0.31. The average ratio of sigma to the average silhouette

scores is 0.042. The maximum ratio of sigma to the average silhouette scores is 0.091.

Figure 29: Silhouette plot for convolutional layer 8

81

Figure 31 is for convolutional layer 10 which has 512 filters, as in convolutional layer 8.

Therefore, we have also obtained 5,100 clustering outcomes for convolutional layer 10. The value

of ‘ic’, which ranges from 5 to 1, changes at the same rate as in convolutional layer 8 because both

convolutional layers 8 and 10 have the same number of filters. As shown in Figure 31, the average

silhouette scores range from 0.01 to 0.26. The global maximum average silhouette score was found

to correspond to the value of K = 110. The highest individual silhouette score out of the 10

silhouette scores we computed at K = 235 was 0.30. The two selected local maximum silhouette

scores correspond to the values of K = 128 and K = 180. The highest individual silhouette score

out of the 10 silhouette scores we computed at K = 128 was 0.23. The highest individual silhouette

score out of the 10 silhouette scores we computed at K = 180 was 0.29. The average ratio of sigma

Figure 30: Silhouette plot for convolutional layer 9

82

to the average silhouette scores is 0.045. The maximum ratio of sigma to the average silhouette

scores is 0.125.

Figure 32 is for convolutional layer 11 which has 512 filters, as in convolutional layer 8.

Therefore, we have also obtained 5,100 clustering outcomes for convolutional layer 11. The value

of ‘ic’, which ranges from 5 to 1, changes at the same rate as in convolutional layer 8 because both

convolutional layers 8 and 11 have the same number of filters. As shown in Figure 32, the average

silhouette scores range from 0.01 to 0.26. The global maximum average silhouette score was found

to correspond to the value of K = 229. The highest individual silhouette score out of the 10

silhouette scores we computed at K = 229 was 0.30. The two selected local maximum silhouette

scores correspond to the values of K = 128 and K = 180. The highest individual silhouette score

out of the 10 silhouette scores we computed at K = 128 was 0.24. The highest individual silhouette

Figure 31: Silhouette plot for convolutional layer 10

83

score out of the 10 silhouette scores we computed at K = 180 was 0.29. The average ratio of sigma

to the average silhouette scores is 0.042. The maximum ratio of sigma to the average silhouette

scores is 0.086.

Figure 33 is for convolutional layer 12 which has 512 filters, as in convolutional layer 8.

Therefore, we have also obtained 5,100 clustering outcomes for convolutional layer 12. The value

of ‘ic’, which ranges from 5 to 1, changes at the same rate as in convolutional layer 8 because both

convolutional layers 8 and 12 have the same number of filters. As shown in Figure 33, the average

silhouette scores range from 0.01 to 0.26. The global maximum average silhouette score was found

to correspond to the value of K = 218. The highest individual silhouette score out of the 10

silhouette scores we computed at K = 218 was 0.28. The two selected local maximum silhouette

Figure 32: Silhouette plot for convolutional layer 11

84

scores correspond to the values of K = 128 and K = 180. The highest individual silhouette score

out of the 10 silhouette scores we computed at K = 128 was 0.23. The highest individual silhouette

score out of the 10 silhouette scores we computed at K = 180 was 0.26. The average ratio of sigma

to the average silhouette scores is 0.040. The maximum ratio of sigma to the average silhouette

scores is 0.097.

4.2 Compression Scenarios

Tables 1, 2, and 3 provide the descriptions of the convolutional layers before and after

pruning using 3 different compression scenarios. The first scenario A uses the ‘K’ values which

have the global maximum silhouette scores found in section 4.1. The second and third scenarios B

and C use ‘K’ values which have local maximum silhouette scores found in section 4.1. The tables

Figure 33: Silhouette plot for convolutional layer 12

85

for the 3 compression scenarios are listed in ascending order in terms of the pruning rates for the

total number of filters. The left side of each of these tables shows the size of the feature maps and

the original number of filters, parameters, and FLOPs for each of the 12 convolutional layers

before pruning. The right side of each of these tables shows the number of filters, parameters, and

FLOPs after filter pruning. The numbers of parameters and FLOPs were calculated using the

equations mentioned in Section 3.5. The second to last row for each of these tables reports the total

number of filters, parameters, and FLOPs before and after pruning. The pruning rate for each

convolutional layer is reported in the last column of each of these tables. The pruning rate

represents the percentage of removed filters, which is also the same percentage of the removed

parameters and FLOPs in each convolutional layer. In addition, the percentages of removed filters,

parameters, and FLOPs from their respective totals are calculated and shown in the last row in

each of these tables.

The number of remaining filters in each convolutional layer after filter pruning depends on

the value of ‘K’ we selected in section 4.1. For example, the results for the first convolutional

layer, in Table 3, show that we have removed 44 filters out of 64 filters, which means we have a

pruning rate of 68.75% for each of the filters, parameters, and FLOPs. This leaves us with only 20

filters, 560 parameters, and 552,960 FLOPs after filter pruning. The number of remaining filters

is the same value as ‘K’ we selected.

Some convolutional layers have the same number of filters but different number of

parameters and FLOPs. For example, as shown in Table 3, convolutional layers 8 and 9 have the

same number of filters, i.e., 512 filters, but convolutional layer 9 has a larger number of parameters

and FLOPs than convolutional layer 8. When the same pruning rate is applied to different layers

that have the same number of filters but different number of parameters and FLOPs, the resulting

86

number of parameters and FLOPs among the layers will be different. This is because when a

pruning rate is applied to a layer, the numbers of filters, parameters, and FLOPs are reduced by

the same rate. For example, Table 3 shows that the number of filters, parameters, and FLOPs, in

convolutional layer 8, is reduced by the same percentage, which is equal to the pruning rate

64.84%. The same pruning rate is applied to convolutional layer 9, which results in reducing the

number of filters, parameters, and FLOPs by 64.84%. However, the resulting number of

parameters and FLOPs in convolutional layers 8 and 9 after pruning are different because the two

layers originally had a different number of parameters and FLOPs before pruning. In this case, the

number of parameters is reduced by 765,260 (from 1,180,160 to 414,900 as shown in Table 3) and

1,530,188 (from 2,359,808 to 829,620 as shown in Table 3), in layers 8 and 9, respectively. In

addition, the number of FLOPs is reduced by 12,238,848 (from 18,874,368 to 6,635,520 as shown

in Table 3) and 24,477,696 (from 37,748,736 to 13,271,040 as shown in Table 3), in layers 8 and

9, respectively. Therefore, the amount of reduction in the number of filters is the same in both

layers, but the amount of reduction in the number of parameters and FLOPs is different. As a result,

using the same pruning rate for different convolutional layers may result in a different number of

reduced parameters and FLOPs, even though the layers have the same number of filters. This

means that pruning certain convolutional layers might be more beneficial in terms of reducing

more parameters and FLOPs than other convolutional layers.

A convolutional layer can have a larger number of parameters than another convolutional

layer but a smaller number of FLOPs, and vice versa. For example, as shown in Table 3,

convolutional layer 7 has a smaller number of parameters and larger number of FLOPs than

convolutional layer 8. This is because the size of the feature maps in convolutional layer 7 is larger

than that in convolutional layer 8. As such, if the aim from filter pruning a CNN is reducing the

87

number of parameters, then it would be beneficial to have a higher pruning rate for the layers that

have a higher number of parameters, such as the last 5 convolutional layers described in Tables 1,

2, and 3. On the other hand, if the aim from filter pruning is reducing the number of FLOPs, then

it would be beneficial to have a higher pruning rate for convolutional layers that have a higher

number of FLOPs, such as convolutional layers 2, 4, 6, 7, 9, and 10 described in Tables 1, 2, and

3. Reducing the number of parameters results in a smaller CNN, while reducing the number of

FLOPs results in a faster CNN.

In order to test higher pruning rates from the totals of filters, parameters, and FLOPs for

scenarios B and C than those of scenario A, we based scenarios B and C on using local maximum

silhouette scores instead of using global maximum silhouette scores as in scenario A. We will

explore the effect of considering these different compression scenarios on the network’s accuracy

in the following section.

4.2.1 Compression Scenario A

In Table 1, the pruning rates for the convolutional layers range from 54.10% to 62.5%. The

number of remaining filters for the convolutional layers ranges from 24 to 235. The last row in the

table shows that we have removed 56.92%, 56.30%, and 56.94% of the total number of filters,

parameters, and FLOPs, respectively.

88

 Original After filter pruning

Layer
Feature

map size

Number

of filters

Number of

parameters

Number of

FLOPs

Number

of filters

Number of

parameters

Number of

FLOPs

Pruning

rate

Conv

1
32x32 64 1,792 1,769,472 24 672 663,552 62.5%

Conv

2
32x32 64 36,928 37,748,736 29 16,733 17,104,896 54.69%

Conv

3
16x16 128 73,856 18,874,368 53 30,581 7,815,168 58.59%

Conv

4
16x16 128 147,584 37,748,736 56 64,568 16,515,072 56.25%

Conv

5
8x8 256 295,168 18,874,368 102 117,606 7,520,256 60.16%

Conv

6
8x8 256 590,080 37,748,736 100 230,500 14,745,600 60.94%

Conv

7
8x8 256 590,080 37,748,736 110 253,550 16,220,160 57.03%

Conv

8
4x4 512 1,180,160 18,874,368 217 500,185 7,999,488 57.62%

Conv

9
4x4 512 2,359,808 37,748,736 226 1,041,634 16,662,528 55.86%

Conv

10
4x4 512 2,359,808 37,748,736 235 1,083,115 17,326,080 54.10%

Conv

11
2x2 512 2,359,808 9,437,184 229 1,055,461 4,220,928 55.27%

Conv

12
2x2 512 2,359,808 9,437,184 218 1,004,762 4,018,176 57.42%

Total 3,712 12,354,880 303,759,360 1,599 5,399,367 130,811,904 -

Pruning rate from totals 56.92% 56.30% 56.94% -

Table 1: The descriptions of the convolutional layers before and after pruning using compression

scenario A

4.2.2 Compression Scenario B

In Table 2, the pruning rates for the convolutional layers range from 64.06% to 68.75%.

The number of remaining filters for the convolutional layers ranges from 20 to 180. The last row

in the table shows that we have removed 64.90%, 64.84%, and 64.77% of the total number of

filters, parameters, and FLOPs, respectively.

89

 Original After filter pruning

Layer
Feature

map size

Number

of filters

Number of

parameters

Number of

FLOPs

Number

of filters

Number of

parameters

Number of

FLOPs

Pruning

rate

Conv

1
32x32 64 1,792 1,769,472 20 560 552,960 68.75%

Conv

2
32x32 64 36,928 37,748,736 23 13,271 13,565,952 64.06%

Conv

3
16x16 128 73,856 18,874,368 45 25,965 6,635,520 64.84%

Conv

4
16x16 128 147,584 37,748,736 45 51,885 13,271,040 64.84%

Conv

5
8x8 256 295,168 18,874,368 90 103,770 6,635,520 64.84%

Conv

6
8x8 256 590,080 37,748,736 90 207,450 13,271,040 64.84%

Conv

7
8x8 256 590,080 37,748,736 90 207,450 13,271,040 64.84%

Conv

8
4x4 512 1,180,160 18,874,368 180 414,900 6,635,520 64.84%

Conv

9
4x4 512 2,359,808 37,748,736 180 829,620 13,271,040 64.84%

Conv

10
4x4 512 2,359,808 37,748,736 180 829,620 13,271,040 64.84%

Conv

11
2x2 512 2,359,808 9,437,184 180 829,620 3,317,760 64.84%

Conv

12
2x2 512 2,359,808 9,437,184 180 829,620 3,317,760 64.84%

Total 3,712 12,354,880 303,759,360 1,303 4,343,731 107,016,192 -

Pruning rate from totals 64.90% 64.84% 64.77% -

Table 2: The descriptions of the convolutional layers before and after pruning using compression

scenario B

4.2.3 Compression Scenario C

In Table 3, the pruning rates for the convolutional layers range from 64.06% to 75%. The

number of remaining filters for the convolutional layers ranges from 20 to 180. The last row in the

table shows that we have removed 69.10%, 70.66%, and 66.66% of the total number of filters,

parameters, and FLOPs, respectively.

90

 Original After filter pruning

Layer
Feature

map size

Number

of filters

Number of

parameters

Number of

FLOPs

Number

of filters

Number of

parameters

Number of

FLOPs

Pruning

rate

Conv

1
32x32 64 1,792 1,769,472 20 560 552,960 68.75%

Conv

2
32x32 64 36,928 37,748,736 23 13,271 13,565,952 64.06%

Conv

3
16x16 128 73,856 18,874,368 45 25,965 6,635,520 64.84%

Conv

4
16x16 128 147,584 37,748,736 45 51,885 13,271,040 64.84%

Conv

5
8x8 256 295,168 18,874,368 90 103,770 6,635,520 64.84%

Conv

6
8x8 256 590,080 37,748,736 90 207,450 13,271,040 64.84%

Conv

7
8x8 256 590,080 37,748,736 90 207,450 13,271,040 64.84%

Conv

8
4x4 512 1,180,160 18,874,368 180 414,900 6,635,520 64.84%

Conv

9
4x4 512 2,359,808 37,748,736 180 829,620 13,271,040 64.84%

Conv

10
4x4 512 2,359,808 37,748,736 128 589,952 9,437,184 75%

Conv

11
2x2 512 2,359,808 9,437,184 128 589,952 2,359,296 75%

Conv

12
2x2 512 2,359,808 9,437,184 128 589,952 2,359,296 75%

Total 3,712 12,354,880 303,759,360 1,147 3,624,727 101,265,408 -

Pruning rate from totals 69.10% 70.66% 66.66% -

Table 3: The descriptions of the convolutional layers before and after pruning using compression

scenario C

4.3 Accuracy Results

Tables 4, 5, and 6 show the resulting accuracy of the VGG-16 network on the CIFAR-10

dataset after filter pruning and retraining the network. The tables compare our SSIM based

clustering filter pruning method and the state-of-the-art filter pruning method of HRank. Each table

shows the accuracy for 10 experiments for each filter pruning method using the same compression

scenario. This ensures fair comparison. The last 4 rows of each table show the average, standard

91

deviation, maximum, and minimum values of the 10 experiments for each filter pruning method.

Tables 4, 5, and 6 show the results after filter pruning using compression scenarios A, B, and C,

respectively. The baseline accuracy of the VGG-16 network before filter pruning is 93.96%.

4.3.1 Compression Scenario A

Table 4 shows that our filter pruning method outperforms the state-of-the-art filter pruning

method of HRank using compression scenario A. Our average accuracy is higher than HRanks’s

average accuracy by 0.267 percentage points. Our maximum accuracy is higher than HRank’s

maximum accuracy by 0.23 percentage points. Our minimum accuracy is higher than HRank’s

minimum accuracy by 0.31 percentage points. Our standard deviation is lower than HRank’s

standard deviation. Our minimum accuracy is less than HRank’s maximum accuracy by only 0.04

percentage points. After implementing our filter pruning method and retraining the network, there

is on average a 2.46 percentage point decrease in accuracy compared to baseline accuracy. This

means that we have preserved 97.38% of the original accuracy of the VGG-16 network even after

pruning 56.92%, 56.30%, and 56.94% of the total number of considered filters, parameters, and

FLOPs, respectively. As such we have achieved our goal of compressing the network with very

little compromise to accuracy.

After performing the Shapiro-Wilk test on the 10 experiment accuracy values resulting

from each filter pruning method found in Table 4, we confirmed that they indeed followed normal

distribution. The resulting p-value of the test for the 10 accuracies of HRank was 0.450. The

resulting p-value of the test for the 10 accuracies of our method was 0.411. As such, since the

computed p-values are greater than the significance level alpha=0.05, we cannot reject the null

92

hypothesis H0, which states that the variable from which the sample was extracted follows a

normal distribution.

We then performed the T-test to confirm whether there was a statistically significant

difference between resulting accuracies of both filter pruning methods. The resulting p-value of

the test was less than 0.0001. As such, since the computed p-value is lower than the significance

level alpha=0.05, we should reject the null hypothesis H0, and accept the alternative hypothesis

Ha, which states that the difference between the means is different from 0. This shows that there

is a statistically significant difference between our average accuracy and HRank’s average

accuracy.

Filter Pruning Method HRank
Ours

(SSIM based clustering)

 Accuracy (%) Accuracy (%)

Experiment 1 91.13 % 91.52 %

Experiment 2 91.34 % 91.65 %

Experiment 3 91.07 % 91.47 %

Experiment 4 91.10 % 91.49 %

Experiment 5 91.42 % 91.40 %

Experiment 6 91.17 % 91.64 %

Experiment 7 91.39 % 91.43 %

Experiment 8 91.24 % 91.49 %

Experiment 9 91.16 % 91.53 %

Experiment 10 91.31 % 91.38 %

Average 91.233 % 91.500 %

Standard Deviation 0.119 0.086

Maximum 91.42 % 91.65 %

Minimum 91.07 % 91.38 %

Table 4: Filter pruning resulting accuracy using compression scenario A

93

4.3.2 Compression Scenario B

Table 5 shows that our filter pruning method outperforms the state-of-the-art filter pruning

method of HRank using compression scenario B. Our average accuracy is higher than HRanks’s

average accuracy by 0.454 percentage points. Our maximum accuracy is higher than HRank’s

maximum accuracy by 0.45 percentage points. Our minimum accuracy is higher than HRank’s

minimum accuracy by 0.43 percentage points. Although our standard deviation is slightly higher

than HRank’s standard deviation, our minimum accuracy is still higher than HRank’s maximum

accuracy by 0.12 percentage points. After implementing our filter pruning method and retraining

the network, there is on average a 2.978 percentage point decrease in accuracy compared to

baseline accuracy. This means that we have preserved 96.83% of the original accuracy of the

VGG-16 network even after pruning 64.90%, 64.84%, and 64.77% of the total number of

considered filters, parameters, and FLOPs, respectively. As such we have achieved our goal of

compressing the network with very little compromise to accuracy.

After performing the Shapiro-Wilk test on the 10 experiment accuracy values resulting

from each filter pruning method found in Table 5, we confirmed that they indeed followed normal

distribution. The resulting p-value of the test for the 10 accuracies of HRank was 0.977. The

resulting p-value of the test for the 10 accuracies of our method was 0.292. As such, since the

computed p-values are greater than the significance level alpha=0.05, we cannot reject the null

hypothesis H0, which states that the variable from which the sample was extracted follows a

normal distribution.

We then performed the T-test to confirm whether there was a statistically significant

difference between resulting accuracies of both filter pruning methods. The resulting p-value of

94

the test was less than 0.0001. As such, since the computed p-value is lower than the significance

level alpha=0.05, we should reject the null hypothesis H0, and accept the alternative hypothesis

Ha, which states that the difference between the means is different from 0. This shows that there

is a statistically significant difference between our average accuracy and HRank’s average

accuracy.

Filter Pruning Method HRank
Ours

(SSIM based clustering)

 Accuracy (%) Accuracy (%)

Experiment 1 90.49 % 90.87 %

Experiment 2 90.60 % 90.81 %

Experiment 3 90.58 % 91.10 %

Experiment 4 90.52 % 90.86 %

Experiment 5 90.62 % 91.01 %

Experiment 6 90.54 % 91.14 %

Experiment 7 90.41 % 91.00 %

Experiment 8 90.69 % 91.05 %

Experiment 9 90.38 % 91.10 %

Experiment 10 90.45 % 90.88 %

Average 90.528 % 90.982 %

Standard Deviation 0.093 0.112

Maximum 90.69 % 91.14 %

Minimum 90.38 % 90.81 %

Table 5: Filter pruning resulting accuracy using compression scenario B

4.3.3 Compression Scenario C

Table 6 shows that our filter pruning method outperforms the state-of-the-art filter pruning

method of HRank using compression scenario C. Our average accuracy is higher than HRanks’s

average accuracy by 0.475 percentage points. Our maximum accuracy is higher than HRank’s

maximum accuracy by 0.65 percentage points. Our minimum accuracy is higher than HRank’s

minimum accuracy by 0.47 percentage points. Although our standard deviation is slightly higher

95

than HRank’s standard deviation, our minimum accuracy is still higher than HRank’s maximum

accuracy by 0.05 percentage points. After implementing our filter pruning method and retraining

the network, there is on average a 2.959 percentage point decrease in accuracy compared to

baseline accuracy. This means that we have preserved 96.85% of the original accuracy of the

VGG-16 network even after pruning 69.10%, 70.66%, and 66.66% of the total number of

considered filters, parameters, and FLOPs, respectively. As such we have achieved our goal of

compressing the network even further with very little compromise to accuracy. Although we have

slightly higher pruning rates in compression scenario C compared to compression scenario B, we

notice unexpectedly that our average accuracy in Table 6 is slightly higher than our average

accuracy in Table 5. Yet, our standard deviation in Table 6 is also slightly higher than our standard

deviation in Table 5.

After performing the Shapiro-Wilk test on the 10 experiment accuracy values resulting

from each filter pruning method found in Table 6, we confirmed that they indeed followed normal

distribution. The resulting p-value of the test for the 10 accuracies of HRank was 0.953. The

resulting p-value of the test for the 10 accuracies of our method was 0.239. As such, since the

computed p-values are greater than the significance level alpha=0.05, we cannot reject the null

hypothesis H0, which states that the variable from which the sample was extracted follows a

normal distribution.

We then performed the T-test to confirm whether there was a statistically significant

difference between resulting accuracies of both filter pruning methods. The resulting p-value of

the test was less than 0.0001. As such, since the computed p-value is lower than the significance

level alpha=0.05, we should reject the null hypothesis H0, and accept the alternative hypothesis

Ha, which states that the difference between the means is different from 0. This shows that there

96

is a statistically significant difference between our average accuracy and HRank’s average

accuracy.

Filter Pruning Method HRank
Ours

(SSIM based clustering)

 Accuracy (%) Accuracy (%)

Experiment 1 90.47 % 90.80 %

Experiment 2 90.46 % 91.40 %

Experiment 3 90.75 % 90.97 %

Experiment 4 90.55 % 91.13 %

Experiment 5 90.68 % 91.09 %

Experiment 6 90.58 % 90.82 %

Experiment 7 90.33 % 91.12 %

Experiment 8 90.56 % 90.98 %

Experiment 9 90.38 % 90.81 %

Experiment 10 90.50 % 90.89 %

Average 90.526 % 91.001 %

Standard Deviation 0.121 0.179

Maximum 90.75 % 91.40 %

Minimum 90.33 % 90.80 %

Table 6: Filter pruning resulting accuracy using compression scenario C

97

Chapter 5

Conclusion and Future Work

In this thesis, we have proposed a new approach for filter pruning CNNs. Our filter pruning

method utilizes K-Means clustering based on SSIM to group similar filters together and determine

redundant filters in CNNs. The silhouette index is used for cluster validation and in our case is

utilized to determine the best number of clusters. In our approach, the number of clusters is the

same as the number of important filters in a CNN. The idea is that filters in the same cluster

perform similar tasks in a convolutional layer. We have shown that it is possible for a single

representative filter chosen from each cluster to compensate for the remaining filters in the same

cluster. All remaining filters are considered redundant and hence can be pruned with very little

consequence. We evaluated our filter pruning method on the VGG-16 architecture with the

benchmark CIFAR-10 dataset and experimented with three different compression scenarios. Our

new filter pruning method has demonstrated its experimental effectiveness and efficiency in model

compression, acceleration, and accuracy. Our experimental results have shown that it is possible

to prune substantial parts of a CNN, which makes them smaller and faster, with very minimal

compromise to the accuracy of the network. The results provide promising indications that our

method can consistently and significantly outperform the current state-of-the-art filter pruning

method. We hope that our filter pruning method will aid in making CNNs more generalized and

bring research a step closer to the possibility of running CNNs on devices with limited hardware

capabilities.

98

Future work in this field of research includes substituting our K-Means clustering

algorithm and implementing different clustering algorithms such as Fuzzy C-Means clustering,

Gustafson-Kessel fuzzy clustering, or Gaussian Mixture Models clustering. This could lead to

better clustering possibilities. Another lane to explore is in the area of cluster validation. Numerous

cluster validation indices could be implemented in future work. In addition, changing the optimizer

or related parameters such as the learning rate may improve the accuracy of the CNN in the

retraining step after filter pruning.

Our experiments could be expanded to include several datasets and CNN architectures. We

want to evaluate our filter pruning algorithm on VGG-16 with larger datasets such as CIFAR-100

and ImageNet. In addition, we want to evaluate our work on different CNN architectures such as

DenseNets, ResNets, and GoogLeNet with various datasets such as CIFAR-10, CIFAR-100, and

ImageNet.

99

References

[1] “How Google Translate Squeezes Deep Learning onto a Phone.” Google AI Blog, July 29,

2015. https://ai.googleblog.com/2015/07/how-google-translate-squeezes-deep.html.

[2] Ananthakrishnan, Shankar. “Amazon Scientists Applying Deep Neural Networks to Custom

Skills.” Amazon Science. Amazon Science, July 23, 2020. https://www.amazon.science/blog/

amazon-scientists-applying-deep-neural-networks-to-custom-skills.

[3] “An On-Device Deep Neural Network for Face Detection.” Apple Machine Learning Research.

Accessed April 1, 2021. https://machinelearning.apple.com/research/face-detection.

[4] Marr, Bernard. “4 Mind-Blowing Ways Facebook Uses Artificial Intelligence.” Forbes. Forbes

Magazine, December 12, 2018. https://www.forbes.com/sites/bernardmarr/2016/12/29/4-

amazing-ways-facebook-uses-deep-learning-to-learn-everything-about-you/?sh=225e7ccac.

[5] Kris Zentner. “Microsoft Research: How We Operate Deep Neural Network with Log

Analytics.” Azure Blog and Updates | Microsoft Azure. Accessed April 1, 2021.

https://azure.microsoft.com/en-us/blog/microsoft-research-how-we-operate-deep-neural-

network-with-log-analytics/.

[6] “Autopilot AI.” Tesla. Accessed April 1, 2021. https://www.tesla.com/en_CA/autopilotAI.

[7] Sharma, Neha, Reecha Sharma, and Neeru Jindal. "Machine Learning and Deep Learning

Applications-A Vision." Global Transitions Proceedings 2, no. 1 (2021): 24-28.

100

[8] Wang, Jie, and Zihao Li. "Research on face recognition based on CNN." In IOP Conference

Series: Earth and Environmental Science, vol. 170, no. 3, p. 032110. IOP Publishing, 2018.

[9] Lameri, Silvia, Federico Lombardi, Paolo Bestagini, Maurizio Lualdi, and Stefano Tubaro.

"Landmine detection from GPR data using convolutional neural networks." In 2017 25th

European Signal Processing Conference (EUSIPCO), pp. 508-512. IEEE, 2017.

[10] Shaban, Mohamed, Reem Salim, Hadil Abu Khalifeh, Adel Khelifi, Ahmed Shalaby, Shady

El-Mashad, Ali Mahmoud, Mohammed Ghazal, and Ayman El-Baz. "A Deep-Learning

Framework for the Detection of Oil Spills from SAR Data." Sensors 21, no. 7 (2021): 2351.

[11] Park, Jongchan, Joon-Young Lee, Donggeun Yoo, and In So Kweon. "Distort-and-recover:

Color enhancement using deep reinforcement learning." In Proceedings of the IEEE

Conference on computer vision and pattern recognition, pp. 5928-5936. 2018.

[12] Zhang, Jinwei, Zhe Liu, Shun Zhang, Hang Zhang, Pascal Spincemaille, Thanh D. Nguyen,

Mert R. Sabuncu, and Yi Wang. "Fidelity imposed network edit (FINE) for solving ill-posed

image reconstruction." Neuroimage 211 (2020): 116579.

[13] Lalonde, Jean-François. "Deep learning for augmented reality." In 2018 17th Workshop on

Information Optics (WIO), pp. 1-3. IEEE, 2018.

[14] Thomas, Ajith, and John Hedley. "FumeBot: A Deep Convolutional Neural Network

Controlled Robot." Robotics 8, no. 3 (2019): 62.

[15] Bluche, Théodore. "Deep neural networks for large vocabulary handwritten text recognition."

PhD diss., Paris 11, 2015.

101

[16] Bayer, Ali Orkan, and Giuseppe Riccardi. "Semantic language models with deep neural

networks." Computer Speech & Language 40 (2016): 1-22.

[17] Miotto, Riccardo, Fei Wang, Shuang Wang, Xiaoqian Jiang, and Joel T. Dudley. "Deep

learning for healthcare: review, opportunities and challenges." Briefings in bioinformatics 19,

no. 6 (2018): 1236-1246.

[18] Litjens, Geert, Thijs Kooi, Babak Ehteshami Bejnordi, Arnaud Arindra Adiyoso Setio,

Francesco Ciompi, Mohsen Ghafoorian, Jeroen Awm Van Der Laak, Bram Van Ginneken,

and Clara I. Sánchez. "A survey on deep learning in medical image analysis." Medical image

analysis 42 (2017): 60-88.

[19] Wieslander, Hakan, Gustav Forslid, Ewert Bengtsson, Carolina Wahlby, Jan-Michael Hirsch,

Christina Runow Stark, and Sajith Kecheril Sadanandan. "Deep convolutional neural

networks for detecting cellular changes due to malignancy." In Proceedings of the IEEE

International Conference on Computer Vision Workshops, pp. 82-89. 2017.

[20] Zhou, Yao, and Gary G. Yen. "Evolving deep neural networks for movie box-office revenues

prediction." In 2018 IEEE Congress on Evolutionary Computation (CEC), pp. 1-8. IEEE,

2018.

[21] Justesen, Niels, Philip Bontrager, Julian Togelius, and Sebastian Risi. "Deep learning for

video game playing." IEEE Transactions on Games 12, no. 1 (2019): 1-20.

[22] Zhang, Pengjing, Xiaoqing Zheng, Wenqiang Zhang, Siyan Li, Sheng Qian, Wenqi He,

Shangtong Zhang, and Ziyuan Wang. "A deep neural network for modeling music." In

102

Proceedings of the 5th ACM on International Conference on Multimedia Retrieval, pp. 379-

386. 2015.

[23] Lomov, Ildar, and Ilya Makarov. "Generative Models for Fashion Industry using Deep Neural

Networks." In 2019 2nd International Conference on Computer Applications & Information

Security (ICCAIS), pp. 1-6. IEEE, 2019.

[24] FinancialNewsMedia.com. Global Gaming, Media & Entertainment Market Could

Exceed $2.1 Trillion In 2021, April 13, 2021. https://www.prnewswire.com/news-

releases/global-gaming-media--entertainment-market-could-exceed-2-1-trillion-in-2021--

301267299.html.

[25] Global Fashion Industry Statistics. Accessed April 18, 2021. https://fashionunited.com/

global-fashion-industry-statistics/.

[26] Haykin, Simon. Neural networks and learning machines, 3/E. Pearson Education India, 2010.

[27] Luo, Jian-Hao, Jianxin Wu, and Weiyao Lin. "Thinet: A filter level pruning method for deep

neural network compression." In Proceedings of the IEEE international conference on

computer vision, pp. 5058-5066. 2017.

[28] Lin, Shaohui, Rongrong Ji, Chenqian Yan, Baochang Zhang, Liujuan Cao, Qixiang Ye,

Feiyue Huang, and David Doermann. "Towards optimal structured cnn pruning via generative

adversarial learning." In Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pp. 2790-2799. 2019.

103

[29] Zhao, Chenglong, Bingbing Ni, Jian Zhang, Qiwei Zhao, Wenjun Zhang, and Qi Tian.

"Variational convolutional neural network pruning." In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pp. 2780-2789. 2019.

[30] Lin, Shaohui, Rongrong Ji, Yuchao Li, Cheng Deng, and Xuelong Li. "Toward compact

convnets via structure-sparsity regularized filter pruning." IEEE transactions on neural

networks and learning systems 31, no. 2 (2019): 574-588.

[31] Lin, Mingbao, Rongrong Ji, Yan Wang, Yichen Zhang, Baochang Zhang, Yonghong Tian,

and Ling Shao. "Hrank: Filter pruning using high-rank feature map." In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1529-1538. 2020.

[32] Han, Song, Jeff Pool, John Tran, and William J. Dally. "Learning both weights and

connections for efficient neural networks." arXiv preprint arXiv:1506.02626 (2015).

[33] Gupta, Suyog, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. "Deep

learning with limited numerical precision." In International conference on machine learning,

pp. 1737-1746. PMLR, 2015.

[34] Hinton, Geoffrey, Oriol Vinyals, and Jeff Dean. "Distilling the knowledge in a neural

network." arXiv preprint arXiv:1503.02531 (2015).

[35] Denton, Emily L., Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob Fergus. "Exploiting

linear structure within convolutional networks for efficient evaluation." In Advances in neural

information processing systems, pp. 1269-1277. 2014.

104

[36] Carreira-Perpinán, Miguel A., and Yerlan Idelbayev. "“learning-compression” algorithms for

neural net pruning." In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pp. 8532-8541. 2018.

[37] Li, Hao, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. "Pruning filters

for efficient convnets." arXiv preprint arXiv:1608.08710 (2016).

[38] Han, Song, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A. Horowitz, and

William J. Dally. "EIE: Efficient inference engine on compressed deep neural network." ACM

SIGARCH Computer Architecture News 44, no. 3 (2016): 243-254.

[39] Yamashita, Rikiya, Mizuho Nishio, Richard Kinh Gian Do, and Kaori Togashi.

"Convolutional neural networks: an overview and application in radiology." Insights into

imaging 9, no. 4 (2018): 611-629.

[40] Molchanov, Pavlo, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. "Pruning

convolutional neural networks for resource efficient inference." arXiv preprint

arXiv:1611.06440 (2016).

[41] Hu, Hengyuan, Rui Peng, Yu-Wing Tai, and Chi-Keung Tang. "Network trimming: A data-

driven neuron pruning approach towards efficient deep architectures." arXiv preprint

arXiv:1607.03250 (2016).

[42] Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale

image recognition." arXiv preprint arXiv:1409.1556 (2014).

[43] Krizhevsky, Alex, and Geoffrey Hinton. "Learning multiple layers of features from tiny

images." (2009): 7.

105

[44] McCulloch, Warren S., and Walter Pitts. "A logical calculus of the ideas immanent in nervous

activity." The bulletin of mathematical biophysics 5, no. 4 (1943): 115-133.

[45] Abiodun, Oludare Isaac, Aman Jantan, Abiodun Esther Omolara, Kemi Victoria Dada,

Nachaat AbdElatif Mohamed, and Humaira Arshad. "State-of-the-art in artificial neural

network applications: A survey." Heliyon 4, no. 11 (2018): e00938.

[46] Rumelhart, David E., James L. McClelland, and PDP Research Group. "Parallel Distributed

Processing: Explorations in the Microstructure of Cognition, Volume 1: Foundations."

(1986).

[47] Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

[48] LeCun, Yann, Léon Bottou, Yoshua Bengio, and Patrick Haffner. "Gradient-based learning

applied to document recognition." Proceedings of the IEEE 86, no. 11 (1998): 2278-2324.

[49] Hubel, David H., and Torsten N. Wiesel. "Receptive fields, binocular interaction and

functional architecture in the cat's visual cortex." The Journal of physiology 160, no. 1 (1962):

106-154.

[50] Fukushima, Kunihiko, and Sei Miyake. "Neocognitron: A self-organizing neural network

model for a mechanism of visual pattern recognition." In Competition and cooperation in

neural nets, pp. 267-285. Springer, Berlin, Heidelberg, 1982.

[51] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep

convolutional neural networks." Advances in neural information processing systems 25

(2012): 1097-1105.

106

[52] Khan, Asifullah, Anabia Sohail, Umme Zahoora, and Aqsa Saeed Qureshi. "A survey of the

recent architectures of deep convolutional neural networks." Artificial Intelligence Review

53, no. 8 (2020): 5455-5516.

[53] Alom, Md Zahangir, Tarek M. Taha, Christopher Yakopcic, Stefan Westberg, Paheding

Sidike, Mst Shamima Nasrin, Brian C. Van Esesn, Abdul A. S. Awwal, and Vijayan K. Asari.

"The history began from alexnet: A comprehensive survey on deep learning approaches."

arXiv preprint arXiv:1803.01164 (2018).

[54] Chollet, Francois. Deep learning with Python. Simon and Schuster, 2017.

[55] Liu, Mengchen, Jiaxin Shi, Zhen Li, Chongxuan Li, Jun Zhu, and Shixia Liu. "Towards better

analysis of deep convolutional neural networks." IEEE transactions on visualization and

computer graphics 23, no. 1 (2016): 91-100.

[56] Choo, Jaegul, and Shixia Liu. "Visual analytics for explainable deep learning." IEEE

computer graphics and applications 38, no. 4 (2018): 84-92.

[57] Ioffe, Sergey, and Christian Szegedy. "Batch normalization: Accelerating deep network

training by reducing internal covariate shift." In International conference on machine learning,

pp. 448-456. PMLR, 2015.

[58] Srivastava, Nitish, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. "Dropout: a simple way to prevent neural networks from overfitting." The

journal of machine learning research 15, no. 1 (2014): 1929-1958.

107

[59] Zhang, Zhilu, and Mert R. Sabuncu. "Generalized cross entropy loss for training deep neural

networks with noisy labels." In 32nd Conference on Neural Information Processing Systems

(NeurIPS). 2018.

[60] Szegedy, Christian, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,

Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. "Going deeper with

convolutions." In Proceedings of the IEEE conference on computer vision and pattern

recognition, pp. 1-9. 2015.

[61] He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Deep residual learning for image

recognition." In Proceedings of the IEEE conference on computer vision and pattern

recognition, pp. 770-778. 2016.

[62] Huang, Gao, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q. Weinberger. "Densely

connected convolutional networks." In Proceedings of the IEEE conference on computer

vision and pattern recognition, pp. 4700-4708. 2017.

[63] Osajima, Jason. “Convolutional Networks - VGG16.” Convolutional Networks - VGG16 |

Jason {osa-jima}, August 18, 2018. https://www.jasonosajima.com/convnets_vgg.html.

[64] Jefkine. “Backpropagation In Convolutional Neural Networks.” DeepGrid, September 5,

2016. https://www.jefkine.com/general/2016/09/05/backpropagation-in-convolutional-

neural-networks/.

[65] Reed, Russell. "Pruning algorithms-a survey." IEEE transactions on Neural Networks 4, no.

5 (1993): 740-747.

108

[66] Lee, Namhoon, Thalaiyasingam Ajanthan, and Philip HS Torr. "Snip: Single-shot network

pruning based on connection sensitivity." arXiv preprint arXiv:1810.02340 (2018).

[67] Chauvin, Yves. "A Back-Propagation Algorithm with Optimal Use of Hidden Units." In

NIPS, vol. 1, pp. 519-526. 1988.

[68] Weigend, Andreas S., David E. Rumelhart, and Bernardo A. Huberman. "Generalization by

weight-elimination with application to forecasting." In Advances in neural information

processing systems, pp. 875-882. 1991.

[69] Mozer, Michael C., and Paul Smolensky. "Skeletonization: A technique for trimming the fat

from a network via relevance assessment." In Advances in neural information processing

systems, pp. 107-115. 1989.

[70] LeCun, Yann, John S. Denker, and Sara A. Solla. "Optimal brain damage." In Advances in

neural information processing systems, pp. 598-605. 1990.

[71] Hassibi, Babak, David G. Stork, and Gregory J. Wolff. "Optimal brain surgeon and general

network pruning." In IEEE international conference on neural networks, pp. 293-299. IEEE,

1993.

[72] Han, Song, Huizi Mao, and William J. Dally. "Deep compression: Compressing deep neural

networks with pruning, trained quantization and huffman coding." arXiv preprint

arXiv:1510.00149 (2015).

[73] He, Yihui, Xiangyu Zhang, and Jian Sun. "Channel pruning for accelerating very deep neural

networks." In Proceedings of the IEEE international conference on computer vision, pp. 1389-

1397. 2017.

109

[74] Luo, Jian-Hao, Jianxin Wu, and Weiyao Lin. "Thinet: A filter level pruning method for deep

neural network compression." In Proceedings of the IEEE international conference on

computer vision, pp. 5058-5066. 2017.

[75] Yu, Ruichi, Ang Li, Chun-Fu Chen, Jui-Hsin Lai, Vlad I. Morariu, Xintong Han, Mingfei

Gao, Ching-Yung Lin, and Larry S. Davis. "Nisp: Pruning networks using neuron importance

score propagation." In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pp. 9194-9203. 2018.

[76] He, Yang, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang. "Filter pruning via geometric

median for deep convolutional neural networks acceleration." In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4340-4349. 2019.

[77] Halkidi, Maria, Yannis Batistakis, and Michalis Vazirgiannis. "On clustering validation

techniques." Journal of intelligent information systems 17, no. 2 (2001): 107-145.

[78] Dhanachandra, Nameirakpam, Khumanthem Manglem, and Yambem Jina Chanu. "Image

segmentation using K-means clustering algorithm and subtractive clustering algorithm."

Procedia Computer Science 54 (2015): 764-771.

[79] Berkhin, Pavel. "A survey of clustering data mining techniques." In Grouping

multidimensional data, pp. 25-71. Springer, Berlin, Heidelberg, 2006.

[80] Baraldi, Andrea, and Palma Blonda. "A survey of fuzzy clustering algorithms for pattern

recognition. I." IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)

29, no. 6 (1999): 778-785.

110

[81] Wang, Xi. "Application of Weighted Fuzzy Clustering Algorithm in Urban Economics

Development." In International conference on Big Data Analytics for Cyber-Physical-

Systems, pp. 1698-1702. Springer, Singapore, 2020.

[82] Nugent, Rebecca, and Marina Meila. "An overview of clustering applied to molecular

biology." Statistical methods in molecular biology (2010): 369-404.

[83] Verleysen, Frederik T., and Arie Weeren. "Clustering by publication patterns of senior authors

in the social sciences and humanities." Journal of Informetrics 10, no. 1 (2016): 254-272.

[84] Xu, Rui, and Don Wunsch. Clustering. Vol. 10. John Wiley & Sons, 2008.

[85] Anderberg, Michael R. Cluster analysis for applications: probability and mathematical

statistics: a series of monographs and textbooks. Vol. 19. Academic press, 2014.

[86] Jain, Anil K., M. Narasimha Murty, and Patrick J. Flynn. "Data clustering: a review." ACM

computing surveys (CSUR) 31, no. 3 (1999): 264-323.

[87] Aggarwal, Charu C., and Chandan K. Reddy. "Data clustering." Algorithms and applications.

Chapman&Hall/CRC Data mining and Knowledge Discovery series, Londra (2014).

[88] Dunn, Joseph C. "A fuzzy relative of the ISODATA process and its use in detecting compact

well-separated clusters." (1973): 32-57.

[89] Lloyd, Stuart. "Least squares quantization in PCM." IEEE transactions on information theory

28, no. 2 (1982): 129-137.

[90] Forgy, Edward W. "Cluster analysis of multivariate data: efficiency versus interpretability of

classifications." biometrics 21 (1965): 768-769.

111

[91] MacQueen, James. "Some methods for classification and analysis of multivariate

observations." In Proceedings of the fifth Berkeley symposium on mathematical statistics and

probability, vol. 1, no. 14, pp. 281-297. 1967.

[92] Singh, Archana, Avantika Yadav, and Ajay Rana. "K-means with Three different Distance

Metrics." International Journal of Computer Applications 67, no. 10 (2013).

[93] Hussain, Syed Fawad, and Muhammad Haris. "A k-means based co-clustering (kCC)

algorithm for sparse, high dimensional data." Expert Systems with Applications 118 (2019):

20-34.

[94] Bezdek, James C., and Richard J. Hathaway. "Some notes on alternating optimization." In

AFSS international conference on fuzzy systems, pp. 288-300. Springer, Berlin, Heidelberg,

2002.

[95] Arthur, David, and Sergei Vassilvitskii. k-means++: The advantages of careful seeding.

Stanford, 2006.

[96] Arbelaitz, Olatz, Ibai Gurrutxaga, Javier Muguerza, Jesús M. Pérez, and Iñigo Perona. "An

extensive comparative study of cluster validity indices." Pattern Recognition 46, no. 1 (2013):

243-256.

[97] Theodoridis, Sergios, and Konstantinos Koutroumbas. Pattern Recognition, 4th Edition.

Academic Press, 2009.

[98] Hubert, Lawrence, and Phipps Arabie. "Comparing partitions." Journal of classification 2, no.

1 (1985): 193-218.

112

[99] Thorndike, Robert L. "Who belongs in the family?." Psychometrika 18, no. 4 (1953): 267-

276.

[100] Rousseeuw, Peter J. "Silhouettes: a graphical aid to the interpretation and validation of

cluster analysis." Journal of computational and applied mathematics 20 (1987): 53-65.

[101] Dunn, Joseph C. "A fuzzy relative of the ISODATA process and its use in detecting compact

well-separated clusters." (1973): 32-57.

[102] Caliński, Tadeusz, and Jerzy Harabasz. "A dendrite method for cluster analysis."

Communications in Statistics-theory and Methods 3, no. 1 (1974): 1-27.

[103] Davies, David L., and Donald W. Bouldin. "A cluster separation measure." IEEE

transactions on pattern analysis and machine intelligence 2 (1979): 224-227.

[104] Petrovic, Slobodan. "A comparison between the silhouette index and the davies-bouldin

index in labelling ids clusters." In Proceedings of the 11th Nordic Workshop of Secure IT

Systems, vol. 2006, pp. 53-64. sn, 2006.

[105] Chang, Mark. "Artificial intelligence for drug development, precision medicine, and

healthcare." (2020).

[106] Wang, Zhou, Alan C. Bovik, Hamid R. Sheikh, and Eero P. Simoncelli. "Image quality

assessment: from error visibility to structural similarity." IEEE transactions on image

processing 13, no. 4 (2004): 600-612.

[107] Yuanji, Wang, Li Jianhua, Lu Yi, Fu Yao, and Jiang Qinzhong. "Image quality evaluation

based on image weighted separating block peak signal to noise ratio." In International

113

Conference on Neural Networks and Signal Processing, 2003. Proceedings of the 2003, vol.

2, pp. 994-997. IEEE, 2003.

[108] Lubin, Jeffrey, and David Fibush. "Sarnoff JND vision model." (1997): 97.

[109] Wang, Zhou, and Alan C. Bovik. "A universal image quality index." IEEE signal processing

letters 9, no. 3 (2002): 81-84.

[110] Wang, Zhou, and Alan C. Bovik. "Mean squared error: Love it or leave it? A new look at

signal fidelity measures." IEEE signal processing magazine 26, no. 1 (2009): 98-117.

[111] LeCun, Yann. "The MNIST database of handwritten digits." http://yann. lecun.

com/exdb/mnist/ (1998).

[112] Xiao, Han, Kashif Rasul, and Roland Vollgraf. "Fashion-mnist: a novel image dataset for

benchmarking machine learning algorithms." arXiv preprint arXiv:1708.07747 (2017).

[113] Del Bimbo, Alberto, Rita Cucchiara, Stan Sclaroff, Giovanni Maria Farinella, Tao Mei,

Marco Bertini, Hugo Jair Escalante, and Roberto Vezzani, eds. Pattern Recognition. ICPR

International Workshops and Challenges: Virtual Event, January 10-15, 2021, Proceedings,

Part III. Vol. 12663. Springer Nature, 2021.

[114] Li, Hongmin, Hanchao Liu, Xiangyang Ji, Guoqi Li, and Luping Shi. "Cifar10-dvs: an event-

stream dataset for object classification." Frontiers in neuroscience 11 (2017): 309.

[115] Torralba, Antonio, Rob Fergus, and William T. Freeman. "80 million tiny images: A large

data set for nonparametric object and scene recognition." IEEE transactions on pattern

analysis and machine intelligence 30, no. 11 (2008): 1958-1970.

114

[116] Zagoruyko, Sergey. "92.45 on cifar-10 in torch, 2015." URL http://torch.ch/blog/

2015/07/30/cifar. html.

[117] Lin, Mingbao, and Ethan Zhang. “Lmbxmu/HRank: Pytorch Implementation of Our Paper

Accepted by CVPR 2020 (Oral) -- HRank: Filter Pruning Using High-Rank Feature Map.”

GitHub. https://github.com/lmbxmu/HRank.

[118] Van der Walt, Stefan, Johannes L. Schönberger, Juan Nunez-Iglesias, François Boulogne,

Joshua D. Warner, Neil Yager, Emmanuelle Gouillart, and Tony Yu. "scikit-image: image

processing in Python." PeerJ 2 (2014): e453.

[119] “Sklearn.metrics.silhouette_score.” scikit, n.d. https://scikit-learn.org/stable/modules/

generated/ sklearn.metrics.silhouette_score.html.

[120] Pedregosa, Fabian, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand

Thirion, Olivier Grisel, Mathieu Blondel et al. "Scikit-learn: Machine learning in Python."

the Journal of machine Learning research 12 (2011): 2825-2830.

[121] Shapiro, Samuel Sanford, and Martin B. Wilk. "An analysis of variance test for normality

(complete samples)." Biometrika 52, no. 3/4 (1965): 591-611.

[122] Hines, William W., Douglas C. Montgomery, and David M. Goldman Connie M. Borror.

Probability and statistics in engineering. John Wiley & Sons, 2008.

