
 

 

 

Filter Pruning in Convolutional Neural Networks 

Using Structural Similarity Based K-Means 
 

by 

 

Ahmed Al Dallal 

  

  

 

 

 

 

A thesis submitted in partial fulfillment of the requirements for the degree of 

 

 

Master of Science 

 

in 

 

Software Engineering and Intelligent Systems 

 

 

 

 

 

Department of Electrical and Computer Engineering 

University of Alberta 

 

 

 

 

 

 

 

  

 

 

© Ahmed Al Dallal, 2021 

  



ii 

 

Abstract 

Convolutional Neural Networks (CNNs) have been recently seeing great success in various 

image classification fields and applications. However, this success has been accompanied by a 

significant increase in memory and computational demands, limiting their use in resource-limited 

devices, e.g., smartphones. In response, network pruning methods, in particular filter pruning, are 

seeing increased interest. The principal goal of the current pruning algorithms is to substantially 

reduce the resource demands for executing the forward pass of a trained CNN, while minimizing 

performance degradation.  

In this thesis, we propose a new approach for filter pruning in CNNs. Our filter pruning 

method utilizes K-Means clustering based on the Structural Similarity Index Measurement to 

group similar filters together in each convolutional layer. A representative filter is selected from 

each cluster and the remaining filters are considered redundant and pruned from the CNN. We 

evaluated our filter pruning method on the VGG-16 architecture with the benchmark CIFAR-10 

dataset. We were able to reduce the computational demands (floating-point operations) of VGG-

16 by over 50%. Simultaneously, the network’s performance remained significantly better than 

the one pruned by the HRank algorithm. The results of our experiments provide promising 

indications that our method can significantly outperform state-of-the-art filter pruning methods. 
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Chapter 1 

Introduction 

Over the last ten years, Deep Neural Networks (DNNs) have become a very important field 

in Artificial Intelligence (AI). Giant tech companies such as Google, Amazon, Apple, Facebook, 

Microsoft, and Tesla use DNNs to power many of their services [1-6]. Researchers have found 

that DNNs significantly outperform all current competitors in many fields including self-driving 

cars, facial recognition, detecting land mines, detecting oil spills, photo editing, augmented reality, 

robotics, understanding handwritten text, language modeling, machine translation, text 

summarization, speech recognition, and textual entailment [7-16]. DNNs are also used in medical 

applications such as psychology, aiding visually challenged users to read, and diagnostic support 

for cancer, bone fractures, and skin conditions [17-19]. DNNs are also starting to see an increasing 

presence in the film, games, music, and fashion industries [20-23]. These industries combined 

bring in trillions of dollars every year [24, 25], and so the economic potential of DNNs is 

enormous. 

However, DNNs are made up of thousands or even millions of neurons and millions of 

connections between them [26]. This in turn implies a massive number of computations; for 

example, a VGG-16 network (a form of convolutional neural network with only feed-forward 

connections) trained on the CIFAR-10 dataset (having only 60,000 training images) is a relatively 

small DNN, with only 4,224 filters. Yet even this network requires over 300 million Floating-Point 

Operations (FLOPs) to execute a single forward computational pass. There are millions of 
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computations taking place which demand tremendous hardware capabilities. While this is not a 

tremendous load for a workstation, a number of useful DNN applications would need to be 

deployed on resource-constrained devices such as smartphones, or low-power wearable or internet 

of things devices. For these devices, such computationally intensive applications can consume an 

unacceptable amount of battery power or require too much processing time on the relatively low-

performance CPUs available [27-30]. A solution is needed that greatly reduces the resource 

consumption of DNNs, while not substantially degrading their performance. 

One approach for reducing DNN resource consumption is pruning the DNN. Pruning is a 

well-known strategy that has been widely applied in shallow learning algorithms (e.g., decision 

trees, rule induction algorithms, neural networks, etc.). Classically, pruning has served both to 

reduce the resource consumption of executing a model, and also to improve its generalization (by 

reducing overfitting). However, given the sheer size of large DNNs, current research into pruning 

focuses only on the former goal; to the point that some degradation of performance (defined as 

minimizing a loss function) is expected and accepted [31]. Several pruning approaches have been 

investigated, including network pruning [32], parameter quantization [33], knowledge distillation 

[34], and filter compression [35]. Among these options, network pruning has shown great promise 

[31]. There are two kinds of network pruning methods: weight pruning and filter pruning. Weight 

pruning is the process of removing certain weights within filters from the neural network [36]. 

Filter pruning on the other hand, is the process of removing entire filters, which are deemed 

redundant, from the neural network [31]. The problem with weight pruning is that it leads to sparse 

weight matrices across the network and often requires using specialized software and hardware 

[31, 37, 38]. In comparison, filter pruning does not introduce sparsity [37]. Hence, using 

specialized software and hardware is not required. 
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CNNs are a subset of DNNs originally designed for image processing and computer vision 

applications [39]. As the name implies, the signature operation in these networks is to compute the 

convolution of the input image and a function represented by a convolution mask; these are the 

filters in a CNN [39]. Filter pruning can be applied to CNNs to compress the network, with 

minimal impact on the CNN’s performance. Several filter pruning approaches for CNNs have been 

proposed in the literature [31, 37, 40, 41]. Studies in this field aim at reducing the size of CNNs in 

terms of the number of filters, parameters, and/or required computations with very minimal 

compromise to the classification accuracy. 

In this thesis, we propose and evaluate a novel filter pruning approach for CNNs. Our 

approach is based on clustering similar filters in each considered convolutional layer, selecting a 

representative filter from each cluster, and pruning all other filters. To evaluate our approach, we 

performed several experiments on the VGG-16 CNN [42] with the benchmark CIFAR-10 dataset 

[43]. Our proposed filter pruning approach was evaluated in terms of the achieved model 

compression, model acceleration, and the classification accuracy of the filter pruned model after 

retraining. Model compression was measured by the number of reduced parameters. Model 

acceleration was measured by the number of reduced computations in the form of FLOPs. We 

compared our results with those of a state-of-the-art filter pruning method [31]. 

The primary contributions of this thesis are: 

1) We introduce a new method for filter pruning, which utilizes clustering to determine redundant 

filters in CNNs. 
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2) Our experiments demonstrated the effectiveness and efficiency of our new method in model 

compression, acceleration, and accuracy. In addition, our method outperforms the current state-

of-the-art filter pruning algorithm. 

The remainder of this thesis is organized as follows. In Chapter 2, we review essential background 

and the relevant literature for our proposal. In Chapter 3, we discuss our proposed approach and 

our experimental methodology for evaluating it. In Chapter 4, we present and discuss our results. 

In Chapter 5, we provide a summary and discuss future work. 
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Chapter 2 

Literature Review 

2.1 Artificial Neural Networks 

The rich history of neural networks research reaches back to the early 1940s, when W. 

McCulloch and W. Pitts [44] attempted to mimic animal nerve cell activity using mathematical 

models. Today, multiple layers of connected artificial neurons are known as Artificial Neural 

Networks (ANN) [26]. There is a huge number of ANN architectures in the literature, which see 

practical use in a vast number of problem domains [45]. CNNs, which are the focus of this thesis, 

belong to the subclass of ANNs known as layered feedforward networks. The defining features of 

this subclass are that neurons are arranged in a layered graph structure (with each layer typically 

having a homogenous transfer function), with no intra-layer connections, and no cycles within the 

graph.   

Layered feedforward networks implement a complex functional mapping with a large 

(even huge) number of parameters; this is what makes them useful for modeling and decision-

making in such a wide variety of applications. This mapping is realized through a combination of 

many individual neurons, each of which has a fairly simple transfer function. Computing the value 

of this mapping with the current parameter vector is commonly called a “forward pass” through 

the network. In the forward pass, each artificial neuron in the first layer receives a set of inputs 

and computes its transfer function. The outputs from the first-layer neurons then pass along the 
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graph connections to the second layer. This process repeats at each successive layer until the last 

one; the outputs of that final layer are returned as the output of the entire neural network. 

 Like many other ANN architectures, CNNs make use of a modified version of the 

McCulloch-Pitts neuron, as shown in Figure 1. Each connection for an incoming input ‘xi’ of an 

artificial neuron has its own synaptic weight ‘wi’. The inputs are multiplied by the weights and the 

summation of the products ‘vi’ along with a bias ‘b’ then goes through an activation function ′φ′. 

This operation can be expressed mathematically as follows: 

vi = ∑ wixi

m

i=1

+ b , 

where ‘m’ is the number of inputs. 

 

Figure 1: Artificial Neuron 
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CNNs are supervised algorithms, meaning that for each example input in a dataset, the 

correct output is known and used for adjusting the network’s parameter values. Once the ANN has 

gone through an iteration of the forward pass, a loss function quantifies how closely the computed 

actual outputs match the ground-truth outputs recorded in the dataset. The neuron weights are then 

adjusted to hopefully reduce the loss on the next forward pass. How to make that adjustment was 

one of the early stumbling blocks in ANN research; it is necessary to decide what the contribution 

of one weight value out of millions of weights, in our case, contributes to the total loss of the 

network. This is the credit assignment problem that each multi-layered ANN must resolve. CNNs, 

again in common with many others, employ the technique of ordered derivatives, which have been 

independently discovered several times but which were first applied to neural networks by D. 

Rumelhart and J. McClelland [46] in the Back-propagation algorithm. 

At its core, back-propagation is a gradient descent algorithm, formulated as follows:  

Wnew = Wold − η∇J(w) , 

where Wnew is the new weight value, Wold is the old weight value, η is the learning rate, and ∇J(w) 

is the gradient of the loss function. We will discuss the classic back-propagation algorithm for 

Rumelhart’s Multi-Layer Perceptron architecture below [46].  

The details of output neuron j along with its incoming signals can be seen in Figure 2 [26]. 

The back-propagation algorithm for an output neuron j can be computed as follows [26]: 

ej(n) = dj(n) − yj(n) 

εj(n) =
1

2
ej

2(n) =
1

2
(dj(n) − yj(n))

2
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where εj(n) is the squared prediction error between the desired output dj(n) of the neuron and the 

actual output yj(n) of the neuron for the nth data pattern. 

The total error energy is the sum of the squared errors for all output neurons: 

ε(n) = ∑ εj(n)

m

j=1

 

The chain rule is used to compute the gradient of ε(n) with respect to wji(n): 

∂ε(n)

∂wji(n)
=

∂ε(n)

∂ej(n)
∙

∂ej(n)

∂yj(n)
∙

∂yj(n)

∂vj(n)
∙

∂vj(n)

∂wji(n)
 , 

where 

∂ε(n)

∂ej(n)
= ej(n) 

∂ej(n)

∂yj(n)
=

∂

∂yj(n)
(dj(n) − yj(n)) = −1 

∂yj(n)

∂vj(n)
=

∂φ (vj(n))

∂vj(n)
= φ′ (vj(n)) 

∂vj(n)

∂wji(n)
=

∂

∂wji(n)
∑ wji(n)yj(n) = yi(n)

m

i=1

 

This leads us to: 

∂ε(n)

∂wji(n)
= ej(n) ∙ (−1) ∙ φ′ (vj(n)) ∙ yi(n) 
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As such: 

∆wji(n) = −η ∙
∂ε(n)

∂wji(n)
= η ∙ ej(n) ∙ φ′ (vj(n)) ∙ yi(n) 

The local gradient δj(n) at neuron j is defined as: 

δj(n) =
∂ε(n)

∂vj(n)
= (−1) ∙ ej(n) ∙ φ′ (vj(n)) 

δj(n) = [dj(n) − yj(n)] ∙ φ′ (vj(n)) 

The change ∆wji(n) to the ith weight for output neuron j becomes: 

∆wji(n) = −η ∙ δj(n) ∙ yi(n) 

 

Figure 2: Details of the signal flow in output neuron j [26] 
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In the case of hidden neuron j being connected to output neuron k, as shown in Figure 3, the back-

propagation algorithm for hidden neuron j can be computed as follows [26]:   

δj(n) =
∂ε(n)

∂vj(n)
=

∂ε(n)

∂yj(n)
∙

∂yj(n)

∂vj(n)
=

∂ε(n)

∂yj(n)
∙ φ′ (vj(n)) 

∂ε(n)

∂yj(n)
=

∂

∂yj(n)
(

1

2
∑ ek

2(n)
k

) =
∂ε(n)

∂ek(n)
∙

∂ek(n)

∂yj(n)
 

=∑ [ek(n) ∙
∂ek(n)

∂yj(n)
] =k ∑ [ek(n) ∙

∂ek(n)

∂vk(n)
∙

∂vk(n)

∂yj(n)
]k  

=∑ [ek(n) ∙ (−1) ∙ φ′(vk(n)) ∙
∂vk(n)

∂yj(n)
]k  , 

where the induced local field due to neuron k is: 

vk(n) = ∑ wkj(n)yi(n)

m

j=0

 

∂vk(n)

∂yj(n)
= wkj(n) 

This leads us to: 

∂ε(n)

∂yj(n)
= − ∑ ek(n) ∙ φ′(vk(n)) ∙ wkj(n)

k

 

= − ∑ δk(n) ∙ wkj(n)

k
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So, the back-propagation formula for the local gradient for hidden neuron j becomes: 

δj(n) = φ′ (vj(n)) ∑ δk(n) ∙ wkj(n)

k

 

The change ∆wji(n) to the ith weight for hidden neuron j becomes: 

∆wji(n) = η ∙ δj(n) ∙ yi(n) 

 

The optimization of the loss function can sometimes take many iterations until 

convergence. There are three main optimization approaches including Gradient Descent, 

Stochastic Gradient Descent (SGD), and Mini-Batch Stochastic Gradient Descent (MBSGD). The 

difference between Gradient Descent, SGD, and MBSGD is in the number of training samples of 

a dataset that need to pass through an ANN in each iteration before computing the gradient [47]. 

In each iteration of Gradient Descent, the gradient is computed once all training samples of a 

dataset pass through the ANN in the forward pass before any parameters in the ANN can be 

Figure 3: Details of the signal flow in output neuron k connected to hidden neuron j [26] 
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updated. On the other hand, in each iteration of SGD, the gradient is computed after only one 

randomly chosen training sample from the dataset passes through the ANN. Empirically, SGD is 

faster but does not guarantee reaching the best optimization solution. MBSGD is considered the 

middle ground between both approaches. The gradient is computed after a subset (mini-batch) of 

the training samples passes through the ANN. 

 

2.1.1 Convolutional Neural Networks 

CNNs are the most commonly used neural networks for image classification. Even though 

CNNs could be used to tackle other problems, they were originally created for image classification 

[48]. The origins of CNNs date back to the 1960s with the research of neurophysiologists D. Hubel 

and T. Wiesel. Their description of simple and complex cells in the human visual cortex [49] later 

on inspired K. Fukushima to propose the Neocognitron, which is an early neural network model 

and the seed for the CNN architecture [50]. K. Fukushima’s work inspired Y. LeCun et al. in the 

late 1990s to develop the modern-day CNN [48]. Research in CNNs was stagnant for a while 

afterwards. However, new advances in computing hardware and the availability of large public 

image repositories led to revived interest in CNNs. Along with this, a breakthrough in CNNs 

appeared around ten years ago by A. Krizhevsky et al. [51], who had developed a CNN now 

popularly known as AlexNet. AlexNet took first place in the ImageNet Large Scale Visual 

Recognition Challenge (ILSVRC) in 2012 [51]. It had showcased revolutionary results for image 

classification and recognition tasks by reducing the error rate from 25.8 to 16.4 as compared to 

previous traditional computer vision techniques [52]. The breakthrough came in the form of 

stacking convolutional layers and increasing the depth of a CNN, forming the first Deep CNN 

[52]. Since then, research in CNNs has rapidly increased [53]. 
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Training a CNN for image classification requires a database of images annotated with their 

assigned classes [54]. A CNN architecture has a structure which goes through the processes of 

feature extraction, feature mapping, subsampling, and classification in the forward pass. Learning 

in a CNN is accomplished via back-propagation, most commonly in the mini-batching version of 

SGD. However, the CNN uses a different pattern of interconnections than a Multi-Layer 

Perceptron. Unlike densely connected layers, convolutional layers learn from local patterns of 

images instead of global patterns. Local patterns are in the form of an image broken down into 

small 2D windows making use of features such as textures and edges in an image. Once a pattern 

is learned by a convolutional layer, it can be recognized in other parts of an image. Dense layers 

on the other hand have to relearn patterns again if they appear somewhere else in an image. Spatial 

hierarchies of patterns can also be learned by CNNs.  

The deeper the CNN, the more layers are present, and the more convolutional operations 

take place in the hidden layers. A CNN could consist of thousands or even millions of neurons 

with also thousands or millions of connections between multiple hidden layers [26]. Feature 

extraction is performed by convolutional filters, implemented via neurons whose inputs come 

exclusively from a convolution window. The convolutional filters of the first convolutional layer 

extract the features of the input image. The output of this convolutional operation is known as a 

feature map. The resulting feature maps of the first convolutional layer are then considered the 

input for the next convolutional layer. The relationship between weights, kernels, convolutional 

filters, kernel matrices, and feature maps is illustrated in Figure 4. In layer i, there are ni input 

feature maps fmi. Each feature map is of height hi and width wi. The 4D kernel matrix Mi consists 

of ni+1 3D filters Fi. The filters Fi consist of ni 2D kernels ki. Each kernel ki consists of s2 weights 

Wi,j arranged in an s × s matrix, forming a convolutional mask. Thus, a filter Fi consists of ni × s2 
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weights Wi,j. The filters Fi are applied to the input feature maps fmi and give us ni+1 feature maps 

fmi+1 as an output. 

Just like digital images, filters can be visualized and interpreted as small images including 

colors and edges [55, 56]. In this case, the values of the pixels are based on the filter weights. As 

the name suggests, the convolutional filters convolve over the inputs and extract their features. As 

a convolutional filter is applied to an input image or feature map, it moves across the input in left 

to right and top to bottom directions. A convolutional filter starts by default from the top left edge 

of the input where the top left weight of the filter is aligned with the top left pixel of the input. The 

convolutional filter stops when it reaches the bottom right edge of the input where the bottom right 

weight of the filter is aligned with the bottom right pixel of the input. The number of pixels it 

moves at a time horizontally and vertically is called convolutional stride [54]. The default 

convolutional stride is (1,1), which means that the convolutional filter moves one pixel at a time 

from left to right of the input and then one pixel at a time from top to bottom of the input. It is 

important to note that in a convolutional layer, a kernel does not actually move. Rather, each 

possible location of the input is associated with a separate neuron, and all neurons for a specific 

convolutional filter in a convolutional layer share the same weights. The convolutional operation 

is shown in the following formula [47]: 

C[i, j] = (I ∗ K)[i, j] = ∑ ∑ I[i + m, j + n]K[m, n]

n

 ,

m

 

where ′I′ is the input, ‘K′ is the convolutional kernel, and the indices of the rows and columns of 

the result, which is usually in the form of a feature map, are represented with i and j, respectively. 
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Figure 4: The relationship between weights, kernels, convolutional filters, kernel matrices, and 

feature maps 
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The problem with this convolutional operation is that the size of the output is smaller than 

the input. Therefore, padding is used to counteract the effect of convolutional stride, which 

decreases the size of the output of a convolutional filter. Padding is adding empty pixels, which 

consist of zeros, to the sides or frame of an input image or feature map [54]. For example, if we 

have a 3x3 filter with stride (1,1) applied to an 8x8 input image, the resulting output feature map 

is of size 6x6. Thus, adding padding is needed if we want the output feature map to have the same 

size as the input image. In this case, we need padding of 1, which would result in an input of size 

10x10, but the extra pixels will not have any effect on the output because the padding only consists 

of empty pixels. Applying the same 3x3 filter to the 10x10 input image after padding, will result 

in an output feature map of size 8x8, which is the same size of the original input image. 

An important step to consider is that a nonlinear activation function is applied to the output 

of the previous convolutional operation before they form feature maps. This nonlinearity is 

essential to the generalizability of neural networks; without it, the network would just be a 

superposition of linear functions, which is itself linear. However, certain superpositions of 

nonlinear functions can be universal approximators. The most commonly used activation function 

in CNNs is the Rectified Linear Unit (ReLU) function, given by [47]: 

ReLU(x) = max (x, 0) 

An important step that is added to CNNs is normalization. This is to counteract the 

boundless nature of some activation functions such as ReLU, where the output of some layers is 

not bounded by a specific range of values. Normalization is usually applied to the output of hidden 

neurons either before or after entering the activation function. In particular, batch normalization is 

used because it also addresses another problem that we face in training CNNs, which is called 
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Covariate Shift. Covariate Shift occurs during the training process of CNNs when the distribution 

of the inputs of each layer changes while parameters change in previous layers [57]. Batch 

normalization usually consists of taking the Z-score of a mini-batch relative to its mean; the Z-

score has zero mean and unit variance. Therefore, the introduction of batch normalization has led, 

in some cases, to eliminating the need to use Dropout in CNNs [57], which is a technique where 

some neurons are deactivated or dropped out randomly from the CNN to avoid any possible 

overfitting problems [58]. 

Once features are extracted in convolutional layers and the output is in the form of feature 

maps, a pooling operation is performed. The purpose of pooling layers is to down sample the 

feature maps. Sub-sampling helps in making the outputs less sensitive to shifts and distortions of 

inputs [48]. One of the most commonly used pooling approaches is called Max-Pooling. In max-

pooling, a window with a specified size moves across a feature map and extracts the highest value 

in the portion of the feature map where the max-pooling window is applied [47], and just like 

convolutional filters, max-pooling also has a stride of its own. This way, the most important and 

activated features are highlighted, extracted, and passed to the next stage in the CNN. The first 

convolutional layer would learn a small local pattern and then the second convolutional layer could 

build on that and learn larger and more complex patterns made up of the smaller local patterns of 

the first layers. For example, if a max-pooling window of size 2x2 with stride of (2,2) is applied 

on a feature map of size 4x4, the resulting output will be of size 2x2. The max-pooling operation 

can be seen in Figure 5. 
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For classification, a Softmax layer is used. The softmax layer is usually the very last layer 

in a CNN with a multi-class dataset. The softmax layer is based on the softmax function, which is 

applied to the outputs of the last fully connected layer. The softmax function is defined as follows 

[47]: 

S(y)i =
eyi

∑ eyjn
j=1

 , 

where S(y)i is the ith probability output corresponding to output yi, ′n′ is the number of classes in 

the multi-class dataset, and ‘e’ is the base of the natural logarithm. 

Once the CNN has gone through an iteration of the forward pass and the softmax layer 

provides the resulting output probabilities, it is important to compute the error of the CNN’s 

accuracy. One of the most commonly used loss functions in CNNs is the Categorical Cross Entropy 

Loss function [54]. This is specifically used for multi-class datasets. The categorical cross entropy 

loss function is defined as follows [59]: 

Figure 5: Max-Pooling operation 
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Loss =  − ∑ yi,target ⋅ log(yi

n

i=1

) , 

where ′n′ is the number of outputs, yi is the ith output, and yi,target is the ith target output for the 

input of the CNN. The number of outputs ′n′ is the same as the number of classes of a dataset. If 

yi is the desired output, then yi,target is set to 1. On the other hand, if yi is not the desired output, 

then yi,target is set to zero.  

For example, if the dataset we are using has 3 classes, the number of outputs ′n′ will be 3. 

Let us assume that an input that has passed through a neural network belongs to the second class, 

the output probabilities ′y′ for the input are [0.15, 0.8, 0.05], and the input belongs to the second 

class, which means that the target outputs ytarget are [0, 1, 0]. This will result in a very small loss, 

because the output with the highest probability corresponds to the desired target output. This is 

shown in the following equation: 

Loss =  −[(0 × log (0.15)) + (1 × log (0.8)) + (0 × log (0.05))] = 0.097 

Using back-propagation, the CNN’s weights are then tweaked to improve the accuracy of the CNN 

by reducing the error. 

Today, there are various architectures of CNNs such as LeNets [48], AlexNets [51], 

VGGNets [42], GoogLeNets [60], ResNets [61], and DenseNets [62] with varying advantages and 

disadvantages to all of them. Our study focuses on the VGG-16 network, a popular deep CNN by 

K. Simonyan and A. Zisserman [42]. It is part of a series of VGGNets, CNNs with varying layer 

depth. Their work won the first and second places in the localization and classification tasks in 

ILSVRC 2014 [42], respectively. It is considered one of the most popular CNN models. The idea 
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behind their work was to see the effects of increasing the depth of a CNN architecture. This was 

possible because of their use of small 3x3 convolutional kernels in all convolutional layers. 

VGGNets’ sizes range from 11 weight layers in the smallest architecture to 19 weight layers in the 

largest architecture. With this increase in depth, there is an increase in the number of weights, also 

sometimes called parameters. As such, they are considered very time consuming and 

computationally intensive architectures to train and test. Yet, it has been observed that the 

classification error of the architectures decreases with the increased depth. VGG-16 consists of 22 

different layers. These include: 16 weight layers, 5 spatial pooling layers, and one softmax layer. 

Of the 16 weight layers, 13 are convolutional layers and 3 are fully connected layers. All 5 spatial 

pooling layers use max-pooling. The architecture for the original VGG-16 CNN is shown in Figure 

6. The values next to the name of each layer represent the height, width, and number of feature 

maps/channels in each layer. 

The convolutional and fully connected layers use ReLU activation functions. The number 

of filters in the convolutional layers ranges from 64 to 512. The number of filters increase by a 

factor of two after every max-pooling layer, until they reach 512 filters. The first two layers of 

VGG-16 are convolutional layers with 64 filters each. Convolutional layers 3 and 4 have 128 filters 

each. Convolutional layers 5, 6, and 7 have 256 filters each. The remaining 6 convolutional layers, 

7 until 13, have 512 filters each. The first two fully connected layers have 4,096 channels, and the 

last fully connected layer has 1,000 channels. A convolutional stride of size (1,1) pixel along with 

padding of size 1 pixel were used. Max-pooling was done with a window size of 2x2 pixels along 

with stride of size (2,2). No padding was used for the max-pooling layers. 
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 Figure 6: Original VGG-16 architecture 
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The difference between CNNs and regular neural networks is that convolutional operations 

take place between the inputs and weights instead of matrix multiplications [47]. As seen in Figure 

7, the first iteration of the convolutional operation is computed. Filter F1, which consists of three 

kernels, is applied to the input image. Each weight is given an index corresponding to its position, 

the kernel it belongs to, and the filter it belongs to. For example, the first weight in the top left 

corner of the first kernel in filter 1 is labeled as w1,1,1,1. The first two numbers in the subscript tell 

us that the weight is at the first row and first column of the kernel. The third number tells us that 

the weight belongs to kernel ‘1’, and the fourth number tells us that the weight belongs to filter 

‘1’. Each kernel is applied to only one channel of the input image. The input image is of size (224, 

224, 3). The first two dimensions are the height and width, and the third dimension is the number 

of channels and since it is an RGB image, there are three channels. There is one channel for each 

color (red, green, and blue). A padding of 1 is added to each channel of the input image. Each pixel 

value is given an index corresponding to its position and the channel it belongs to. For example, 

the first pixel in the top left corner of the red channel is labeled as x1,1,1. The first two numbers in 

the subscript refer to the row and column indices of the input pixel, and the third number tells us 

that the input pixel belongs to channel ‘1’. One filter applied to one input image results in one 

feature map. Each pixel is multiplied by its corresponding weight, then all multiplication results 

are summed together, in addition to a bias value, to give us a single output in a feature map. An 

output feature map in the first convolutional layer in VGG-16 is of size (224, 224). These 

correspond to the height and width. Each output is given an index corresponding to its position. 

For example, the first output in the top left corner of the feature map is labeled as y1,1,1. The first 

two numbers in the subscript refer to the row and column indices of the output, and the third 

number tells us that the output belongs to feature map ‘1’. 
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The operation seen in Figure 7 is done using only one neuron in the first convolutional 

layer in VGG-16. This is further illustrated in more detail in Figure 8, where there is a total of 27 

inputs and 27 corresponding weights. In this case, 9 pixels in each of the three channels of the 

input image are multiplied by 9 weights in each of the three kernels of the filter. The summation 

result then passes through the activation function, which in VGG-16 is the ReLU activation 

function, and then gives us a single output. 

 

Figure 7: First iteration of the convolutional operation in convolutional layer 1 
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Figure 8: A neuron in convolutional layer 1 in VGG-16 
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The kernels then convolve across the input image channels to get us the remaining outputs 

in a feature map. Since there are 224 × 224 = 50,176 outputs in a single feature map in the first 

convolutional layer in VGG-16, this also means that 50,176 neurons are needed to generate a 

single feature map, where all neurons contain the same weights. This is shown in Figure 9. 

 

Figure 9: Neurons needed to generate 1 feature map in convolutional layer 1 in VGG-16 



26 

 

The convolution operation is then repeated for each of the 64 convolutional filters in 

convolutional layer 1 in VGG-16. This means that there is a total of 64 × 50,176 =

3,211,264 neurons in convolutional layer 1. 

In the case of convolutional layer 2, the first iteration of the convolutional operation is 

computed. This is illustrated in Figure 10. In convolutional layer 2, each filter consists of 64 

kernels corresponding to the 64 feature maps of convolutional layer 1, which are considered the 

input for convolutional layer 2. Just like in convolutional layer 1, each weight in convolutional 

layer 2 is given an index corresponding to its position, the kernel it belongs to, and the filter it 

belongs to. Each kernel is applied to only one input feature map. A padding of 1 is added to each 

input feature map of convolutional layer 1. Each input value is given an index corresponding to its 

position and the input feature map it belongs to. In convolutional layer 2, one filter applied to all 

64 input feature maps of convolutional layer 1 results in only one new output feature map.  An 

output feature map in convolutional layer 2 in VGG-16 is also of size (224, 224). 

The operation seen in Figure 10 is done using only one neuron in convolutional layer 2 in 

VGG-16. This is further illustrated in more detail in Figure 11, where there is a total of 576 inputs 

and 576 corresponding weights. In this case, 9 pixels in each of the 64 input feature maps are 

multiplied by 9 weights in each of the 64 kernels of the filter. The summation result then passes 

through the activation function and then gives us a single output. The kernels then convolve across 

the 64 input feature maps to get us the remaining outputs in an output feature map. Since there are 

224 × 224 = 50,176 outputs in a single feature map in convolutional layer 2 in VGG-16, this 

also means that 50,176 neurons are needed to generate a single feature map, where all neurons 

contain the same weights. This is shown in Figure 12.  
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The convolution operation is then repeated for each of the 64 convolutional filters in 

convolutional layer 2 in VGG-16. This means that there is a total of 64 × 50,176 =

3,211,264 neurons in convolutional layer 2. 

Figure 13 shows the number of channels for the input image and the number of feature 

maps in both convolutional layers 1 and 2. 

Figure 10: First iteration of the convolutional operation in convolutional layer 2 
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Figure 11: A neuron in convolutional layer 2 in VGG-16 
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Figure 12: Neurons needed to generate 1 feature map in convolutional layer 2 in VGG-16 
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The convolutional operation can be expressed mathematically as follows [63]: 

v(i,j,k)
[p]

= (x ∗ w[p])(i, j, k) + b(k,1)
[p]

= ∑ ∑ ∑ x(i+l−1,j+m−1,n)w(l,m,n,k)
[p]

+ b(k,1)
[p]

3

n=1

3

m=1

 ,

3

l=1

 

where ‘i’ and ‘j’ are the indices of the output ‘v’ of the convolutional operation in feature map ′k′. 

The variables ‘l’, ‘m’, and ‘n′ are the row number, column number, and channel number for ‘x’ in 

the input image or feature map. In the case of weight ‘w’, the variables ‘l’, ‘m’, ‘n′, and ′k′ are the 

row number, column number, kernel number, and filter it belongs to. The superscript ′[p]′ is the 

number of the layer. 

Once we have the convolutional operation outputs, the activation function is applied on them as 

follows: 

a[p] = φ(v[p]) , 

where the activation ‘φ′ is applied element-wise to every element in the outputs ‘v’.  

Figure 13: High level view of feature maps in convolutional layers 1 and 2 in VGG-16 
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This convolutional operation repeats itself in each convolutional layer in the VGG-16 

architecture and the forward pass of VGG-16 goes through the next layers, such as the max-pooling 

layers and softmax layer, of the architecture with each layer operating the same way as explained 

earlier. Once the forward pass is over, it is time to compute the error of the VGG-16 CNN and 

perform back-propagation to tweak the parameters to improve the accuracy of the VGG-16 CNN 

by reducing the error. For the sake of simplicity, we will assume that the input image has one 

channel and that the input image or input feature map is of size H×W, which results in an output 

feature map of size (H-2) × (W-2). The back-propagation algorithm can be performed by making 

use of the chain rule to compute the gradient with respect to weight wl′,m′ [64]: 

∂ε

∂wl′,m′
= ∑ ∑

∂ε

∂vi,j

∂vi,j

∂wl′,m′

W−2

j=1

H−2

i=1

 

= ∑ ∑ δi,j

∂vi,j

∂wl′,m′

W−2

j=1

H−2

i=1

 

 

To compute 
∂vi,j

∂wl′,m′

, we substitute vi,j with the appropriate convolution formula. The equation 

becomes [64]: 

∂vi,j

∂wl′,m′
=

∂

∂wl′,m′
(∑ ∑ x(i+l−1,j+m−1)wl,m + b

3

m=1

3

l=1

) 
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If we expand the summations and take the partial derivatives for all components with respect to 

wl′,m′, this will result in zero values except when l = l′ and m = m′ [64]. The equation becomes 

[64]: 

∂vi,j

∂wl′,m′
=

∂

∂wl′,m′
(x(i,j)w1,1 + ⋯ x(i+l′,j+m′)wl′,m′ + ⋯ + b) 

=
∂

∂wl′,m′
(x(i+l′,j+m′)wl′,m′) = x(i+l′,j+m′) 

 

This leads to [64]: 

∂ε

∂wl′,m′
= ∑ ∑ δi,jx(i+l′,j+m′)

W−2

j=1

H−2

i=1

 

 

The change ∆wl′,m′ becomes: 

∆wl′,m′ = −η ∙ (∑ ∑ δi,jx(i+l′,j+m′)

W−2

j=1

H−2

i=1

) 

The two summations in the equation are the result of weight sharing in the CNN, i.e., the same 

weights are convolved over the entire input image or input feature map [64]. 
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2.2 Filter Pruning  

ANN compression is the process of reducing the size of a network with minimal compromise 

to the accuracy. The aim is to improve the generalization of neural networks and to make running 

them faster and possible on resource-limited hardware devices. Earlier work done on compressing 

neural networks in the late 1980s and early 1990s were mainly based on two approaches, either 

employing weight-decay terms or saliency criteria [65, 66]. The first approach was utilized by Y. 

Chauvin [67] and A. Weigend et al. [68]. They adjusted custom error functions used for back-

propagation during training. Theses error functions contained weight-decay terms such that if the 

magnitudes of some weights went below a certain threshold, they were pruned. The second 

approach uses saliency criteria to measure the sensitivity of error functions with respect to either 

weights or neurons. This gives an indication of the importance of weights or neurons. M. Mozer 

and P. Smolensky [69] measured the sensitivity of an error function with respect to neurons. Y. 

LeCun et al. [70] and B. Hassibi et al. [71] measured the Hessian of an error function with respect 

to weights. The work done on compressing neural networks during the early 1990s inspired a lot 

of the research done in this field during the past decade. It was apparent that with the usefulness 

of deeper CNNs, there had to be a way to deploy them in smaller devices. Research in this field 

has expanded. Currently, the four most popular techniques utilized for compressing CNNs are: 

1) Knowledge Distillation 

Knowledge distillation is the process of training a large CNN model, sometimes known as a 

teacher, and transferring the knowledge of the large CNN model learned by using its 

predictions to train a smaller CNN model, sometimes known as a student. The idea behind this 

approach is that large CNNs have a higher knowledge capacity than small CNNs, but there 
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may be the possibility that this capacity is not fully utilized and there are many redundancies 

[34]. 

2) Parameter Quantization 

Parameter quantization works by converting weights inside filters from floating-point numbers 

to fixed-point numbers. Fixed-point operations require less computational resources, as they 

are easier and faster to operate on. In addition, they occupy a smaller memory footprint, which 

means larger models are suitable to use in case of limited memory capacities and bandwidth 

requirements [33]. 

3) Filter Compression 

Filter compression finds approximations for convolutional filters that are computationally 

more efficient while preserving the CNN’s accuracy. In other words, the number of parameters 

is reduced. The new approximated convolutional filters are essentially cleaned up versions 

(free of redundancies) of the original convolutional filters [35]. 

4) Network Pruning 

Network pruning is the process of removing parameters to reduce the size of a CNN [31]. 

There are two kinds of network pruning methods: weight pruning and filter pruning.  

Weight pruning is the process of removing weights, which do not contribute much to the 

accuracy of a CNN, within filters [36]. The pruned weights usually have small magnitudes below 

a certain threshold value and are deemed unimportant [72]. The pruned CNN ends up preserving 

its original architecture, but as a result of the pruning process, becomes more sparse. The weight 

pruning process is usually done with a binary mask, which has the same size of the convolutional 

filter, consisting of zeros and ones. If a weight is to be pruned, its equivalent index in the mask 
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matrix will have a value of zero. This way, the weight’s value in the convolutional filter is 

overwritten and set to zero. If a weight is important, its equivalent index in the mask matrix will 

have a value of 1. This way, the weight keeps its original value without change. The problem we 

are faced with after weight pruning is that it leads to sparse weight matrices across the network 

and often requires using specialized software and hardware [31, 37, 38].  

Filter pruning on the other hand, is the process of removing entire filters, which are deemed 

redundant and unimportant, without reducing the accuracy of a CNN [31]. The three main steps in 

any filter pruning algorithm are: 1) determining which filters are important and which are 

redundant, 2) pruning the redundant filters, and 3) retraining the neural network. Retraining is 

important because it compensates for any possible drop in accuracy due to removing filters. There 

are various methods through which a filter may be deemed redundant. The filter pruning process 

is done with a binary mask, which has the same size of the convolutional filter, consisting entirely 

of zeros. Unlike in weight pruning, filter pruning does not introduce sparsity into a CNN’s 

architecture because zero values are not scattered across the weight matrices that make up filters. 

Hence, using specialized software and hardware is not required. Therefore, implementing filter 

pruning is a better option. The difference between weight pruning and filter pruning can be 

illustrated with the following simple example shown in Figure 14. In the case of a 3x3 

convolutional filter, we would have 9 weights. In weight pruning, we would set certain weights to 

zero based on some defined criteria. In filter pruning, the entire filter (all 9 weights) will be set to 

zero because the filter was deemed redundant based on some defined criteria. 
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Recent work on filter pruning methods has produced some very promising ideas. P. Molchanov 

et al. [40] determined the importance of filters based on first order gradient information. Based on 

this, the least important filters were pruned. H. Hu et al. [41] took advantage of the sparsity of 

outputs in a CNN to prune filters which have a large portion of their activations as zero. Y. He et 

al. [73] proposed an iterative two-step algorithm to prune redundant filters. The algorithm was 

based on using least absolute shrinkage, selection operator regression, and least square 

reconstruction of feature maps. H. Li. et al. [37] based their filter pruning algorithm on computing 

the sum of the absolute weights for filters, referred to as the L1-norm. They proposed that filters 

with small L1-norm values are less important and can be pruned. J. Luo et al. [74] proposed tackling 

filter pruning as an optimization problem. Filters were pruned based on statistical information from 

the following layer, not the layer the filter was in. R. Yu et al. [75] proposed propagating 

importance scores from the second-to-last layer before classification to every filter in a CNN. The 

Figure 14: The difference between weight pruning and filter pruning 
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least important filters were pruned based on these scores. Y. He et al. [76] calculated the geometric 

median of filters in each convolutional layer. The filters nearest to the geometric median were 

pruned. M. Lin et al. [31] proposed a filter pruning algorithm called HRank. They defined an 

information measurement to rank feature maps. The information measurement determines the 

information richness of a feature map. The feature maps are ranked based on their information 

richness, where a feature map with important information would have a high ranking, while a 

feature map with little information would have a low ranking. If a feature map is low ranked, then 

the filter it was produced by is not important to the CNN. This means that the filter can be pruned 

without affecting the accuracy of the CNN. On the other hand, if a feature map is high ranked, then 

the filter it was produced by is important to the CNN. This means that the filter should not be 

pruned. HRank outperformed other state-of-the-art filter pruning algorithms [31]. 

 

2.3 Clustering Algorithms  

Clustering refers to a class of unsupervised learning that partitions datasets into subgroups, 

known as clusters. The aim of using clustering algorithms is to group the most similar data points 

into one cluster while being dissimilar to all other clusters [77]. This will result in identifying 

possible natural structures in certain datasets. Clustering is used in a wide range of fields such as 

image segmentation [78], data mining [79], pattern recognition [80], economics [81], biology [82], 

social sciences [83], and so much more [84, 85]. 

It is important to note that a perfect clustering algorithm does not exist. Furthermore, 

clustering is often applied to datasets without any ground truth labels; in this case, even 

determining what the optimal division of the dataset might be likely impossible. This extends to 
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when the same clustering algorithm is used but with different parameters and configurations, or 

different clustering algorithms are used. 

Clustering algorithms can be generally categorized into the following main types [77, 86, 87]: 

1) Partitional clustering  

Partitional clustering partitions the dataset into a predetermined number of clusters where data 

points are clustered based on a distance metric. They are highly dependent on setting an initial 

parameter for the number of centroids. One of the most popular partitional clustering 

algorithms is K-Means clustering. 

2) Hierarchical clustering 

Hierarchical clustering decomposes the dataset based on a certain hierarchy. The clusters 

created are of tree like partitions called a dendrogram. There are two approaches to hierarchical 

clustering: Agglomerative and Divisive. The agglomerative approach follows a bottom-up 

flow for creating the clusters. The number of clusters decreases after each step because two or 

more clusters are merged into one new cluster. On the other hand, the divisive approach follows 

a top-down flow for creating the clusters. The number of clusters increases after each step 

because a cluster is split into two or more new clusters. A predetermined number of clusters is 

not required in hierarchical clustering.  

3) Density-based clustering 

Density-based clustering works by discovering areas of concentration or density for data points 

and areas of emptiness where the concentrated data points are separated. Usually, data points 

that are not part of clusters, in other words concentrations, are considered noise. 
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4) Grid-based clustering 

In this type of clustering, the data space is partitioned into a finite number of cells, thus creating 

a grid like structure. The cells are then sorted based on their densities and consequentially 

clustered. These are efficient to use in clustering large multidimensional datasets. 

Another categorization of clustering algorithms depends on the cluster overlapping. These include 

[77]: 

1) Crisp clustering 

Sometimes also known as hard clustering. Crisp clustering results in non-overlapping 

partitions where a data point belongs to only one cluster. The result of most clustering 

algorithms is crisp clusters. 

2) Fuzzy clustering 

Sometimes also known as soft clustering. Fuzzy clustering makes use of fuzzy techniques to 

cluster datasets where a data point may belong to more than one cluster. The resulting 

clustering schemes are usually compatible with daily life experiences where the uncertainty of 

real data is present. The most popular fuzzy clustering algorithm is Fuzzy C-Means clustering 

[88]. 

Clustering algorithms can be further subcategorized depending on the type of datasets used. These 

include [77]: 

1) Statistical 

Similarity measures are used to partition numeric data points that are centered around statistical 

analysis concepts. 
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2) Conceptual 

These cluster categorical datasets based on the concepts they hold. 

Of the many different clustering algorithms available, we chose to use K-Means clustering. K-

means is considered one of the simplest, most scalable, and most well-known and widely used 

partitional clustering algorithms. It is thus a reasonable first candidate for our filter pruning 

algorithm. 

 

2.3.1 K-Means Clustering 

The basic idea of K-Means clustering was first proposed by S. Lloyd [89], then it was 

further adapted and enhanced by E. Forgy [90] and J. Macqueen [91]. K-Means clustering is 

considered part of the partitional clustering family and is specifically used in crisp clustering. The 

objective of K-Means clustering, just like all clustering algorithms, is to maximize the inter-cluster 

distances and minimize the intra-cluster distances. The K-Means clustering algorithm goes through 

three main steps: First, initialization of centroids. Second, each data point is assigned a label 

depending on which cluster it belongs to. This is usually based on calculating the Euclidean 

distance [92] for each data point to each centroid and assigning the data point to the cluster with 

the nearest centroid. This is done as follows [93]: 

A(xi) ← argmin
j∈1…K

‖xi − Cj‖
2
 , 

where A(xi) is the assignment function for each data point xi, and the distance between each data 

point xi and each centroid Cj, where j ∈ 1 … K, is computed using Euclidean distance, and the data 

point is assigned to the cluster that its centroid has the minimum distance among all centroids. 
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Third, once all data points are assigned to clusters, centroids are re-evaluated by taking the 

mean position for all data points in a certain cluster. The formula used for centroid re-estimation 

is as follows [93]: 

Cj
(t+1)

←
1

|Pj
(t)

|
∑ xi

xi∈P
j
(t)

 , 

where Cj
(t+1)

 is the new centroid for cluster partition  Pj
(t)

, and xi is a data point within cluster 

partition  Pj
(t)

. If the new centroid position is different from the old position, we repeat the second 

and third steps until convergence, i.e., the centroids do not change positions. The K-Means 

clustering algorithm is given below: 

K-Means Clustering Algorithm 

1) Initialization: Choose ‘K’ centroids Ci randomly 

Repeat until convergence: 

2) Cluster assignment: 

for i = 1… n: 

  Set A(xi) using A(xi) ← argmin
j∈1…K

‖xi − Cj‖
2
 

3) Centroid re-estimation: 

For j = 1… K: 

 Set Cj using Cj
(t+1)

←
1

|P
j
(t)

|
∑ xixi∈P

j
(t)  
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The repetition of steps 2 and 3 is known as alternating optimization [94]. Alternating 

optimization is an iterative technique for dealing with optimization functions with many variables. 

This is used in case no clear solution exists to optimize the desired function for all its variables 

simultaneously. The optimization problem is tackled by solving for a subset of a function’s 

variables, while other subsets of variables are constant. We then alternate between solving these 

subproblems. This makes optimization problems easier to tackle by splitting the problem into 

multiple smaller subproblems, where one subset of variables is fixed, while the other subsets of 

variables are changing, and vice versa. In K-Means clustering, we alternate between the two steps 

of assigning labels to data points and re-estimating centroids. 

In order to initialize centroids, the number of clusters ‘K’ needs to be determined. 

Determining the most appropriate number for ‘K’ is usually tricky, which is why a process called 

cluster validation has to be performed to aid in this dilemma. Determining how to initialize the 

centroids from our dataset is also very important. Initializing centroids in a suboptimal way often 

leads to poor clustering results. The most basic idea for initializing centroids is by selecting them 

randomly from the dataset [90]. This means that not only two successive runs of the K-Means 

clustering algorithm on the same dataset will most likely result in different clustering outcomes, 

but also that there is no guarantee that the randomly selected centroids are of properly spaced-out 

clusters. There is also the possibility that an outlier in the dataset may be selected as a centroid. 

There have been many proposed ideas to tackle the pitfalls that accompany the initialization 

step over the years, all of which have brought their fair share of advantages and disadvantages. 

One of the most notable proposed ideas was K-Means++ by D. Arthur and S. Vassilvitskii [95]. 

The initialization step in K-Means++ only selects the first centroid at random. The next centroid 

is selected based on a probability directly proportional to the distance between the initial centroid 
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and all remaining data points. In other words, the data point farthest away from the initial centroid 

has the highest probability of being selected as the next centroid. The major problem resulting 

from this idea is that the probability of selecting an outlier, if it exists, as a centroid, increases 

significantly. To increase the possibility of avoiding these issues, we chose to use an initialization 

step inspired by what was proposed by S. Hussain and M. Haris [93]. Instead of using a single data 

point, the proposed idea uses multiple data points to represent a centroid. 

 

2.4 Cluster Validation 

Once we are done running a clustering algorithm and a dataset has been processed and data 

points partitioned into clusters, there must be a way to validate the “goodness” of the resulting 

clusters and tackle the shortcomings present in clustering algorithms. A process called cluster 

validation is introduced for this task. This process estimates how well data points fit into the 

clusters [77]. Although this is not an easy task, there are several benefits for cluster validation that 

cannot be ignored such as [96]:  

1) Determining the number of clusters for the dataset used. In our case, this would be the value of 

‘K’ in K-Means clustering. 

2) Determining whether a structure to the dataset exists and the data points have natural partitions 

and not random patterns. 

3) Comparing the results of various clustering algorithm configurations or even completely 

different clustering algorithms for the dataset used. 
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Cluster validation techniques are categorized into three main classes: internal, external, and 

relative cluster validation [97]. Internal cluster validation depends on internal information found 

in the created clusters to evaluate how well data points fit into the clusters when the use of external 

information as a reference is not possible. It is also useful for determining the number of clusters 

needed. External cluster validation depends on externally available information to compare the 

created clusters with the externally known results. This technique is useful for comparing different 

clustering algorithms for specific datasets. Relative cluster validation compares the results 

obtained by changing the parameters and configurations of a specific clustering algorithm. 

Ultimately, this aids in finding the optimal parameters and configurations to use. 

The cluster validation technique which interests us is the internal cluster validation. This 

is because we have no prior knowledge on the optimal number of clusters or whether there is a 

natural structure to the data we have. As such, we have to depend on two commonly used criteria 

for evaluating the quality of clustering, which are the compactness and separation of the clusters. 

Measuring these two criteria is the basis for providing insight into the performance of clustering 

algorithms. Compactness describes how close data points are within the same cluster. Separation 

describes how widely spaced clusters are from each other. 

Since there is a plethora of cluster validity indices, we resorted to the work presented by 

O. Arbelaitz et al. [96], where they extensively compared 30 different cluster validity indices in 

various environments with various characteristics. The results of their work demonstrated the 

performance effectiveness, or lack thereof, of these various cluster validity indices. These can be 

used as guidelines for selecting appropriate cluster validity indices for many potential applications. 

Most of the indices combined the measured compactness and separation to compute a comparable 

quality measure. The writers in [96] focused on cluster validity indices that could be easily 
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evaluated and did not need any subjective decision making, which is why the Modified Hubert 

Index [98] and the Elbow Method [99] were left out for example. Fuzzy indices were also left out, 

as the focus was primarily on crisp clustering. Nonetheless, many well-known cluster validity 

indices were included in the study such as the Silhouette index [100], Dunn index [101], Calinski-

Harabasz index [102], and Davies–Bouldin index [103]. The results showed that no single cluster 

validity index was a standout winner and better in everything, but the Silhouette index did obtain 

the best results in many of the experiments. As such, the cluster validity index we chose to use was 

the Silhouette Index. 

 

2.4.1 Silhouette Index 

The Silhouette index was first introduced by P. Rousseeu in [100]. The Silhouette index 

measures how compact data points are within a cluster and how well separated a cluster is to its 

nearest neighboring cluster. The resulting value of this index is known as Silhouette coefficient or 

Silhouette score. The Silhouette score is computed using the following formula [96, 104]: 

 S(C) =
1

N
∑ ∑

b(xi,ck)−a(xi,ck)

max {a(xi,ck),b(xi,ck)}
 xi ∈ckck ∈C , 

where 

a(xi, ck) =
1

|Ck|−1
∑ d(xixi ∈Ck

, xj), 

b(xi, ck) = min
cl∈C\ck 

{
1

|cl|
∑ d(xi, xj)xj∈cl

}. 
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To explain how the silhouette score is computed, let us assume we have performed K-

Means clustering on dataset ‘X’, which contains a set of ‘N’ data points, X = {x1, x2, x3, …, xN}. 

There are ‘K’ clusters ‘C’, C = {c1, c2, c3, …, cK} where ⋃ ck = X, ck ∩ cl = ∅ ∀k ≠ lck∈C . The 

distance ‘d’ between two data points ‘xi’ and ‘xj’ is d(xi, xj). Usually, Euclidean distance is used. 

Compactness ‘a’ of data point ‘xi’ to all other data points in the same cluster ‘ck’ is a(xi, ck). 

Separation ‘b’ of data point ‘xi’ to all other data points in the nearest neighboring cluster ‘ck’ is 

b(xi, ck). 

The values of the silhouette score range from -1 to 1. A value close to 1 means that the data 

points are well clustered. A value of zero means that the data points could be in any cluster.  A 

value close to -1 means that the data points are poorly clustered. So, in order to decide on the best 

number of clusters ‘K’ for K-Means clustering, we compute the silhouette score for the different 

values of ‘K’. The value of ‘K’ which gives us the largest silhouette score is the best one because 

it provides the highest cluster quality. The key takeaway is that we want to insure the maximization 

of the inter-cluster distances and the minimization of the intra-cluster distances. 

 

2.5 Similarity Measures for Images 

Similarity measures are methods that compute the resemblance or likeness between two 

objects [105]. There are many similarity measures based on image quality assessment techniques. 

These are techniques that assess the quality of an image [106]. If a complete reference image is 

available, it is considered full-reference image quality assessment. If a reference image is not 

available, it is considered no-reference or blind image quality assessment. Of the many image 

quality assessment techniques, we chose to use Structural Similarity Index Measurement (SSIM) 
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[106], which is considered a full-reference image quality metric. SSIM was compared to various 

methods such as Peak-Signal-to-Noise-Ratio [107], Sarnoff’s Just Noticeable Difference model 

[108], Universal Quality Index [109], and Mean Square Error [110].  SSIM performed better than 

all mentioned methods [106].  

 

2.5.1 Structural Similarity Index Measurement 

Images are usually structured in nature. Pixels in an image show strong dependencies, 

especially when they are adjacent. These dependencies hold valuable information regarding the 

structures of various objects in an image. SSIM was introduced by Z. Wang et al. [106] as an 

improvement to the Universal Quality Index. It has been widely used as an image quality 

assessment technique and similarity measure. The idea from developing SSIM is to mimic the 

human visual perception system, where it is possible to identify structural information from images 

and ultimately identifying the differences between them. It is important to note that measuring the 

similarity between two images using SSIM must be done to images of the same size. 

Three components are taken into account when measuring the similarity between two images: 

luminance, contrast, and structure. 

The formula for luminance is [106]: l(x, y) =  
2μxμy+ C1

μx
2+ μy

2+ C1
 , 

where C1 = (K1L)2, L is the dynamic range of the pixel values, and K1 is a small constant set to 

0.01. μx and μy are the mean values of images x and y, respectively.  

The formula for contrast is [106]: c(x, y) =  
2σxσy+ C2

σx
2+ σy

2+ C2
 , 
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where C2 = (K2L)2, L is the dynamic range of the pixel values, and K2 is a small constant set to 

0.03. σx and σy are the standard deviation of images x and y, respectively. 

The formula for structure is [106]: s(x, y) =  
σxy+ C3

σxσy+ C3
 , 

where C3 = C2/2 and σxy is the covariance of images x and y. 

The formula for SSIM, which is the combined formula for all three components together, is as 

follows [106]: 

SSIM(x, y) =  
(2μxμy +  C1)(2σxy +  C2)

(μx
2 +  μy

2 + C1)(σx
2 +  σy

2 + C2)
 

The range of values for SSIM is (-1, 1]. The more similar two images are, the closer the 

value is to 1. If two images are identical, the value of SSIM will be exactly 1. The more dissimilar 

two images are, the closer the value is to -1. 
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Chapter 3 

Methodology 

3.1 Overview 

Filter pruning is an important new frontier when it comes to developing improved CNN 

models. As discussed in section 2.2, the three main steps in any filter pruning algorithm are: 1) 

determining which filters are important and which are redundant, 2) pruning the redundant filters, 

and 3) retraining the neural network. In our thesis, we are interested in introducing and evaluating 

a new approach for the first step. Our approach determines which filters are redundant and can be 

pruned with very minimal compromise to the accuracy of the chosen CNN compared to the current 

state-of-the-art filter pruning method. 

In our approach, we used the K-Means clustering algorithm to cluster similar filters 

together. A cluster contains similar filters which accomplish a similar job inside a convolutional 

layer. The K-Means clustering algorithm we implemented was adapted to use SSIM instead of 

Euclidean distance. We ran the K-Means clustering algorithm using various values of ‘K’ for each 

considered convolutional layer individually. We computed the silhouette score over a range of 

values for ‘K’ for each considered convolutional layer, which was used to determine the best value 

for the number of clusters ‘K’ for each considered convolutional layer. The Silhouette index we 

implemented was also adapted to use SSIM instead of Euclidean distance. We then used the 

clustering outcome with the highest silhouette score for each considered convolutional layer to 
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continue our experiments. The value of ‘K’ we selected for each considered convolutional layer 

was used to determine the pruning rate of that specific layer. The pruning rate represented the 

percentage of filters to be pruned. Then, we selected a representative filter from each cluster. We 

considered this filter to be important and all remaining filters in the cluster were considered 

redundant. Our proposed approach is illustrated in Figure 15. As for the second and third steps of 

filter pruning, we kept only one filter from each cluster and pruned the rest. The CNN was retrained 

after pruning filters in each layer. This is done to compensate for any possible drop in accuracy 

due to filter pruning. To test our new approach, we ran experiments on the VGG-16 architecture 

with the CIFAR-10 dataset. 

 

 

 

 

Determine the 
best 'K' for 

each 
considered 

convolutional 
layer using 
SSIM based 
Silhouette 

Index 

Cluster similar 
filters together 

in each 
considered 

convolutional 
layer using 

SSIM based K-
Means 

algorithm

Select a 
representative 
filter from each 
cluster in each 

considered 
convolutional 

layer 

For each 
considered 

convolutional 
layer:

1) Prune 
redundent 

filters

2) Retrain CNN

Figure 15: Our proposed approach 



51 

 

3.2 Implementation 

3.2.1 Dataset 

Of the most commonly used datasets for training CNNs, such as MNIST [111], Fashion 

MNIST [112], and CIFAR-10, the dataset used in the experiments reported in this thesis is the 

CIFAR-10 dataset by A. Krizhevsky [43]. It is a more challenging training dataset in comparison 

to the MNIST and Fashion MNIST datasets [113, 114]. 

 

3.2.1.1 CIFAR-10 

The CIFAR-10 dataset, which stands for Canadian Institute for Advanced Research, is a 

subset of the 80 million tiny images dataset by A. Torralba et al. [115]. It consists of 60,0000 RGB 

images. Each image is 32x32 pixels in size. The CIFAR-10 dataset is divided into 10 mutually 

exclusive classes in total with 6,000 images per class. The dataset is further divided into 5 training 

batches and one testing batch. Each batch consists of 10,000 images, which means that there are 

50,000 images in total used for training and 10,000 images used for testing CNNs. The testing 

batch has exactly 1,000 randomly selected images from each class, while the training batches 

contain the remaining images in random order. This results in the possibility of some training 

batches containing more images from certain classes than others. The ten classes are: trucks, ships, 

horses, frogs, dogs, deer, cats, birds, automobiles, and airplanes. The Python PyTorch library was 

used to load the dataset. The size of the dataset is 163 MB. Some sample images of the CIFAR-10 

dataset are shown in Figure 16. 
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3.2.2 VGG-16 

Because we are using VGG-16 on CIFAR-10 and not ImageNet as it was originally created 

by K. Simonyan and A. Zisserman [42], we are using a variation similar to what was introduced 

by S. Zagoruyko [116] and H. Li et al. [37] to accommodate the smaller images of the CIFAR-10 

Figure 16: Some sample images of the CIFAR-10 dataset 
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dataset. This variation of VGG-16 consists of 21 different layers, instead of 22 layers. These 

include: 15 weight layers, 5 spatial pooling layers, and one softmax layer. Of the 15 weight layers, 

13 are convolutional layers and 2 are fully connected layers. All 5 spatial pooling layers are max-

pooling layers. The architecture for the VGG-16 CNN we are using is shown in Figure 17. 

All convolutional layers and the first fully connected layer use ReLU activation functions. 

In addition, Batch Normalization was added to all convolutional layers and the first fully connected 

layer in this VGG-16 architecture. Batch Normalization was used instead of Dropout. All 

convolutional layers use 3x3 convolutional kernels. Just like the original VGG-16 architecture, the 

number of filters in the convolutional layers ranges from 64 to 512. The number of filters increases 

by a factor of two after every max-pooling layer, until they reach 512 filters. The first two layers 

of VGG-16 are convolutional layers with 64 filters each. Convolutional layers 3 and 4 have 128 

filters each. Convolutional layers 5, 6, and 7 have 256 filters each. The remaining 6 convolutional 

layers, 7 until 13, have 512 filters each. A convolutional stride of size (1,1) pixel along with 

padding of size 1 pixel were used. Max-pooling was done with a window size of 2x2 pixels along 

with stride of size (2,2). No padding was used for the max-pooling layers. One of the key 

differences between the VGG-16 architecture we used, and the original VGG-16 architecture is 

that the former architecture has two fully connected layers instead of three and the number of 

channels in the fully connected layers was decreased. The first fully connected layer has 512 

channels instead of 4,096. This is because after the last max-pooling layer we are left with 512 

weights. The second, also final, fully connected layer has only 10 channels instead of 1,000. This 

is to correspond to the number of classes of the dataset we used, such that we can have 1 output 

for each of the 10 classes in CIFAR-10. 
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Figure 17: VGG-16 architecture 
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The pre-trained VGG-16 model we used was downloaded from [117]. The Python PyTorch 

library was used to load, prune, and retrain the pretrained network. The MBSGD optimizer was 

used for retraining the network. The Categorical Cross Entropy loss function was used. We set an 

initial learning rate at a value of 0.001. The learning rate was divided by 10 at epochs 5 and 10. 

The momentum was set at 0.9, and the weight decay was set at 0.0005. The training batch size was 

set to 128. We retrained the network for 30 epochs. The parameters we used were based on the 

same settings experimented by [31]. The pre-trained VGG-16 model on the CIFAR-10 dataset we 

used had a baseline accuracy of 93.96%. 

 

3.2.3 SSIM Based K-Means Clustering 

What we are trying to perform is clustering convolutional filters. As explained in Section 2.1.1, 

convolutional filters in a CNN can be thought of as image-like objects with a certain dimension 

size of pixels.  The filters consist of weights which resemble pixel values of an image. Our aim 

from clustering is to group similar convolutional filters together. As such, using SSIM, which is 

suitable for comparing images, instead of a distance metric was a more logical and suitable choice. 

Therefore, we compare filters using SSIM. In our approach, the input used for our K-Means 

clustering algorithm are the convolutional filters from individual convolutional layers. The output 

are clusters of similar convolutional filters such that the intra-cluster similarities are maximized, 

and the inter-cluster similarities are minimized. We will explain our proposed approach for the 

three main steps in K-Means clustering: initialization, cluster assignment, and centroid re-

estimation. 
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1) Initialization 

Determining how to initialize centroids from a dataset, which are the convolutional filters in our 

case, is a very important step. Initializing centroids in a suboptimal way might lead to poor 

clustering results. To increase the possibility of avoiding this issue, we chose to use an initialization 

step inspired by what was proposed by S. Hussain and M. Haris [93]. Instead of using a single data 

point, the proposed idea uses multiple data points to represent a centroid. This implies that in 

addition to determining the number of clusters ‘K’ before starting, we also need to determine a 

number of initial centroids ‘ic’ to use in the initialization process of clustering. There are three 

main steps in our initialization process. The first step is choosing ‘K’ points at random from our 

dataset. The second step is finding the most similar ‘ic-1’ data points to a specific centroid. This 

is done using SSIM. The function we used to compute SSIM was from the Python Scikit-Image 

library [118]. Finally, we take the mean value of the ‘ic’ data points to get our new centroid. 

Let us assume we set the value of ‘K’ to 5 and the value of ‘ic’ to 3. Let C1,1, C2,1, C3,1, 

C4,1, and C5,1 be our K = 5 randomly chosen centroids from our considered filters. We chose the 2 

(3 − 1 = 2) most similar filters to C1,1. They will be known as C1,2 and C1,3. The same step is 

repeated for the remaining centroids C2,1 to C5,1. In total, we will have ‘K’ × ’ic’, 5 × 3 = 15 filters 

selected. We will then take the mean value for C1,1, C1,2, and C1,3 to get our new centroid C1. The 

same step is repeated for the remaining centroids. In the end, we will have 5 new centroids. We 

illustrate our initialization method with an example based on 2D space shown in Figure 18. 
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2) Cluster Assignment 

Once centroid initialization is done, the second step in our clustering algorithm is similar to 

standard K-Means clustering. We assign filters to clusters based on the most similar centroid. This 

is done using SSIM. This step is illustrated in Figure 19A. The formula used for assigning filters 

is as follows: 

𝐴(𝐹𝑖) ← argmax
𝑗∈1…𝐾

( 𝑆𝑆𝐼𝑀(𝐹𝑖 , 𝐶𝑗) ) , 

where 𝐴(𝐹𝑖) is the assignment function for each filter 𝐹𝑖. The similarity between each filter 𝐹𝑖 and 

each centroid 𝐶𝑗, where 𝑗 ∈ 1 … 𝐾, is computed using SSIM, and the filter is assigned to the cluster 

that its centroid has the maximum similarity to among all centroids. 

Figure 18: K-Means initialization 
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3) Centroid Re-estimation 

Once all filters are assigned to a cluster, we want to re-estimate or compute new centroids. This is 

done in the third step by computing the mean of the filters in each cluster. This step is illustrated 

in Figure 19B. 

 

The second and third steps (cluster assignment and centroid re-estimation) are repeated until 

convergence, i.e., the centroids do not change. 

When we say that we are taking the mean of multiple convolutional filters, this means that 

we are taking the mean of the corresponding weights from each filter. That is, the mean is actually 

a matrix of weights. The size of the matrix is the same size of a filter. The value of the mean 𝑀𝑖,𝑗 

at row 𝑖 and column 𝑗 is formally computed as: 

𝑀𝑖,𝑗 =
∑ 𝑊𝑘[𝑖, 𝑗]𝑛

𝑘=1

𝑛
 , 

Figure 19: K-Means cluster assignment and centroid re-estimation 
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where 𝑛 is the number of filters for which the mean is computed, 𝑊𝑘[𝑖, 𝑗] is the weight at row 𝑖 

and column 𝑗 of filter 𝐹𝑘. Figure 20 shows an example of three filters and their corresponding 

mean. In this example, the mean value of 𝑀1,1 is computed as follows: 

𝑀1,1 =
𝑊1[1,1] + 𝑊2[1,1] + 𝑊3[1,1]

3
=

0.5 + 0.3 + 0.7

3
= 0.5 

The rest of the weights are computed in a similar way. 

Figure 20: Mean of three filters 

 

3.2.4 SSIM Based Silhouette Index 

Cluster validation acts as a failsafe for us. Even if our clustering algorithm’s initialization 

step does not provide good centroids, by using the silhouette index we can know that the clusters 

are poorly created. The steps for computing the silhouette score are straightforward. We compute 
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the similarity between a specific filter and each of the remaining filters in the same cluster. Then 

we compute the similarity between the same filter and each filter in the most similar cluster to the 

original cluster. This is repeated for all filters in the dataset. 

When implementing the silhouette index, we used SSIM instead of Euclidean distance. To 

accommodate the use of SSIM, we shifted the range of values we get using SSIM from (-1,1] to 

(0,2] and switched the variables a(xi, ck) and b(xi, ck) in the silhouette index formula. This is 

because similarity is the inverse of distance. The formula for computing the silhouette score 

becomes: 

𝑆(𝐶) =
1

𝑁
∑ ∑

𝑎(𝑥𝑖,𝑐𝑘)−𝑏(𝑥𝑖,𝑐𝑘)

max {𝑎(𝑥𝑖,𝑐𝑘),𝑏(𝑥𝑖,𝑐𝑘)}𝑥𝑖 ∈𝑐𝑘𝑐𝑘 ∈𝐶  , 

where 

a(𝑥𝑖 , 𝑐𝑘) =
1

|𝐶𝑘|−1
∑ 𝑆𝑆𝐼𝑀(𝑥𝑖𝑥𝑖 ∈𝐶𝑘

, 𝑥𝑗), 

b(𝑥𝑖 , 𝑐𝑘) = min
𝑐𝑙∈𝐶\𝑐𝑘 

{
1

|𝑐𝑙|
∑ 𝑆𝑆𝐼𝑀(𝑥𝑖 , 𝑥𝑗)𝑥𝑗∈𝑐𝑙

}. 

This means that the range of values for our silhouette index is (-1,1). A value close to 1 

means that the filters are well clustered. A value of zero means that the filters could be in any 

cluster.  A value close to -1 means that the data points are poorly clustered. We illustrate our 

silhouette index with an example based on 2D space shown in Figure 21. 

For example, if filter Fi is exactly similar to all other filters in the same cluster Ck, then the 

value of a(Fi, Ck) will be equal to 2. In addition, if filter Fi is very dissimilar to all other filters in 

the most similar cluster cl to the original cluster ck, then the value of b(Fi, Ck) will be very close to 
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zero. The minimum function used in b(Fi, Ck) selects the most similar cluster to the original cluster. 

The average similarity between filter Fi and each filter in other clusters is computed and the 

minimum average similarity determines the most similar cluster to the original cluster which filter 

Fi belongs to. So, if the average similarity between filter Fi in cluster Ck and each filter in cluster 

Cl is 0.1, cluster C2 is 0.5, and cluster C3 is 0.3, we choose cluster Cl. Therefore, in our example, 

the value of b(Fi, Ck) will be 0.1. The silhouette score for the single filter Fi becomes: 

S(xi) = 
2−0.1

max {2,0 .1}
=  

1.9

2
=  0.95 

This step is then repeated for all filters and the average value for the individual filter 

silhouette scores is the silhouette score we use to determine how good the clustering outcome is 

for this run of the algorithm. The silhouette index was implemented with the help of the Python 

Scikit-Learn library [119, 120], while performing the changes indicated earlier to suit our needs of 

using SSIM.  

Figure 21: Silhouette Index 



62 

 

3.3 Filter Clustering Algorithm 

As explained in section 2.1.1 and with the help of Figure 4, a convolutional filter in the 

VGG-16 model we used consisted of multiple kernels. We had to flatten the kernels together to 

transform a filter into one image-like object instead of multiple objects. For example, each 

convolutional filter in the first convolutional layer of VGG-16 consisted of 3 kernels. Each kernel 

is of size 3x3, which means a total of 9 weights. This means that each filter is of size 3x3x3, 

consisting of a total of 27 weights. We flattened the 3 kernels together to make each filter to be of 

size 9x3, which still maintains a total of 27 weights in each filter. Once this was done to all 

convolutional filters, we ran our K-Means clustering algorithm for each considered convolutional 

layer individually. This is because convolutional filters in different layers may have different sizes 

and perform different tasks. By definition, SSIM can only be applied on objects with the same 

size. 

We ran the code 10 times for each value of ‘K’. We computed the silhouette score for each 

of the 10 runs for a specific value of ‘K’. We then computed the average of the 10 silhouette scores 

we have for the same specific value of ‘K’. This was done for all values of ‘K’ we ran. The average 

silhouette score at a certain value of ‘K’ is referred to as ASSK, and the maximum ASSK is referred 

to as ASSmax. The individual maximum silhouette score out of the 10 silhouette scores for each 

value of ‘K’ is called the local maximum silhouette score (LMSSK). At the value of ‘K’ 

corresponding to ASSmax, the individual maximum silhouette score out of the 10 silhouette scores 

is called the global maximum silhouette score. The value of ‘K’ corresponding to ASSmax was 

considered the best one. The value for ‘ic’ gradually decreased as the value of ‘K’ increased. In 
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our experiments, we selected the value of ‘ic’ to range from 5 to 1. This was done to ensure that 

‘ic’ × ‘K’ was not greater than the number of filters in a specific convolutional layer.  

For example, if we ran our K-Means clustering algorithm on the first convolutional layer 

in VGG-16, which has 64 filters, the value for ‘K’ would range from 2 to 63. This means that we 

tested 62 values for ‘K’ and for each one we computed 10 clustering outcomes with each one 

giving us a different silhouette score. In total, we obtained 62×10 = 620 clustering outcomes for 

the first convolutional layer alone. We computed the average of the 10 silhouette scores we got for 

each ‘K’ we tested. This results in 62 average silhouette scores corresponding to the 62 values of 

‘K’ we tested. We then select the ‘K’ with the highest average silhouette score and selected the 

clustering outcome with the highest silhouette score out of the 10 runs we did for that specific 

value of ‘K’. If the highest average silhouette score, for example, corresponds to K=20, we would 

select the clustering outcome with the highest silhouette score, which we have out of the 10 

clustering outcomes we produced for K=20, to use as the input for our filter pruning algorithm. 

 

3.4 Filter Pruning Algorithm 

Once the clustering algorithm has been applied and all filters are allocated to a cluster, the 

filters inside a cluster are similar and hence accomplish a similar job inside a convolutional layer. 

This means that if more than one filter extracts the same or similar features, it could be assumed 

that the filters are redundant and not necessary for the overall accuracy and process of a CNN. We 

then select a representative point from each cluster, which we consider the most similar filter to 

the centroid. That is, we calculate the similarity between each filter in the cluster and the centroid. 

The filter that has the highest similarity value with the centroid is selected to be the representative 
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filter of the cluster. All remaining filters in the clusters are considered redundant and will be 

pruned. The pruning rate for each considered convolutional layer depends on the number of 

clusters ‘K’ which we have selected. 

For example, in the first convolutional layer, we have 64 filters. If the value of ‘K’ we are 

using is 16, the pruning rate for the first convolutional layer is 1-16/64 = 0.75. We will keep only 

16 filters out of 64. This means that 48 filters will be pruned, which represents 75% of the filters 

in the first convolutional layer. The value of ‘K’, which we selected for each considered 

convolutional layer, was used to determine the pruning rate of that specific layer. 

We performed three experiments. In the first experiment, we selected ‘K’ in each 

convolutional layer corresponding to ASSmax. In the second and third experiments, we tested 

higher pruning rates. Therefore, we tested using smaller values for ‘K’ corresponding to other 

LMSSK. The criteria we considered for selecting the ‘K’ values in the second and third experiments 

are as follows. In the second experiment, we experimented using almost the same pruning rate for 

all layers. The pruning rate, and consequently the value of ‘K’, is selected such that it is the highest 

possible rate that does not cause the LMSSK in each layer to be less than the ASSmax. After this 

selection of ‘K’ values, if the selected value of ‘K’ in any layer is almost the same as the value of 

‘K’ corresponding to ASSmax, we search for a value of ‘K’ for that specific layer that results in the 

highest possible pruning rate without causing the value of the LMSSK to be less than ASSmax. 

Using these criteria in the second experiment, we ensured that none of the selected values of ‘K’ 

had LMSSK less than the ASSmax. In the third experiment, we experimented relaxing the selection 

criteria for the LMSSK for the last 25% of the selected layers to explore the impact of increasing 

the pruning rate for the last layers compared to the former ones on the classification accuracy. In 

this case, we experimented using the same pruning rate for the last three considered layers such 
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that this rate is the highest possible rate that does not cause the LMSSK in each of these layers to 

be less than 85% of ASSmax. 

The main filter pruning code we used was from [117]. We adapted the code to our needs. 

Originally, the filters were given values from 0 to 100 indicating their importance. The higher the 

value, the more important a filter is, and it is higher ranked. What we did instead was assigning 

only a value of 100 or 0. There were no values in between. The filters we wanted to keep were 

given a value of 100, and the redundant filters were given a value of zero. Filters were then ranked 

based on descending order. This way, the important filters were at the top of the rank and the 

redundant filters were at the bottom. The percentage of filters that were in the bottom of the rank 

were pruned. For example, in the first convolutional layer, if we want to prune 48 filters out of 64 

filters, we need to make sure that the pruning rate is set to 0.75. If the pruning rate is less than 0.75, 

the filter pruning code will not prune all 48 filters which were given a value of zero. If the pruning 

rate is higher than 0.75, the filter pruning code will prune some of the 16 filters which were given 

a value of 100. A mask was then applied to the percentage of redundant filters corresponding the 

pruning rate we had set. The weights for all redundant filters were set to zero, effectively pruning 

them from the CNN. We applied a layer-wise iterative process for filter pruning and retraining. 

We would filter prune one layer at a time and then retrain the whole CNN to compensate for any 

possible drop in accuracy due to removing filters from that specific convolutional layer. Therefore, 

we prune the first convolutional layer and retrain for 30 epochs, then we prune the second 

convolutional layer and retrain for 30 epochs and so on.  
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3.5 Evaluation 

Our proposed filter pruning algorithm was evaluated in terms of the achieved model 

compression, model acceleration, and model accuracy. We used the same pretrained VGG-16 

model [117] provided by HRank. We also made use of the filter rankings they generated based on 

the same pretrained VGG-16 model. We filter pruned the pretrained VGG-16 model with the same 

pruning rate for both our method and the state-of-the-art method of HRank. This provided a fair 

and level starting point for comparison. The pruning rate we used depends on the value of ‘K’ with 

the highest silhouette score. HRank on the other hand ranked the filters of each convolutional layer 

based on their importance. The filters with the high values were more important than filters with 

low values. Their pruning rates were not chosen based on predetermined criteria. So, if the pruning 

rate was set to 0.6, 60% of the filters with the lowest ranks will be pruned. 

To calculate the number of parameters and FLOPs in our VGG-16 model, we recall the 

terminology used in section 2.1.1 to describe Figure 4. In layer i, there are ni input feature maps 

fmi. Each feature map is of height hi and width wi. The 4D kernel matrix Mi consists of ni+1 3D 

filters Fi. The filters Fi consist of ni 2D kernels ki. Each kernel ki consists of s2 weights Wi,j. 

Basically, a filter Fi consist of ni × s2 weights Wi,j. The filters Fi are applied to the input feature 

maps fmi and give us ni+1 feature maps fmi+1 as an output.  

The number of parameters in each convolutional layer can be calculated using the following 

formula: 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 = (𝑠2 × 𝑛𝑖 + 1) × 𝑛𝑖+1  
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Where the added 1 is due to the bias term. For example, the first convolutional layer in our VGG-

16 model has an input of ni = 3 channels, which could also be considered feature maps. Each kernel 

consists of s2 = 32 = 9 weights. There are 64 filters, which results in ni+1 = 64 feature maps as an 

output. As such, there are: 

(32 × 3 + 1) × 64 = 1,792 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠  

The second convolutional layer has an input of ni+1 = 64 feature maps. Each kernel also consists 

of s2 = 32 = 9 weights. There are 64 filters, which results in ni+2 = 64 feature maps as an output. As 

such, there are: 

(32 × 64 + 1) × 64 = 36,928 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 

The number of FLOPs in each convolutional layer can be calculated using the following formula: 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝐿𝑂𝑃𝑆 = 𝑛𝑖 × 𝑛𝑖+1 × 𝑠2 × ℎ𝑖+1 × 𝑤𝑖+1 

For example, the first convolutional layer in our VGG-16 model has an input of ni = 3 channels. 

Each kernel consists of s2 = 32 = 9 weights. There are 64 filters, which results in ni+1 = 64 feature 

maps as an output. The height and width of the feature maps is 32. As such, there are: 

3 × 64 × 32 × 32 × 32 = 1,769,472 FLOPs 

The second convolutional layer has an input of ni+1 = 64 feature maps. Each kernel also consists 

of s2 = 32 = 9 weights. There are 64 filters, which results in ni+2 = 64 feature maps as an output. 

The height and width of each feature map is 32. As such, there are: 

64 × 64 × 32 × 32 × 32 = 37,748,736 FLOPs. 

Therefore, when a filter is pruned, the number of reduced parameters is: 
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𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑑𝑢𝑐𝑒𝑑 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 = 𝑠2 × 𝑛𝑖 + 1 

When a filter is pruned, the number of reduced FLOPs is: 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑑𝑢𝑐𝑒𝑑 𝐹𝐿𝑂𝑃𝑆 = 𝑛𝑖 × 𝑠2 × ℎ𝑖+1 × 𝑤𝑖+1 

For example, if one filter is pruned from the first convolutional layer, the number of reduced 

parameters is: 

32 × 3 + 1 = 28 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠  

In addition, if one filter is pruned from the first convolutional layer, the number of reduced FLOPs 

is: 

3 × 32 × 32 × 32 = 27,648 𝐹𝐿𝑂𝑃𝑠 

The code used for calculating the number of reduced parameters and reduced FLOPs was provided 

by [117].  

We compared the resulting average accuracy, after filter pruning and retraining the 

pretrained VGG-16 model, of both our method and HRank’s method. To get the accuracy of the 

pretrained VGG-16 model after filter pruning, we did 10 experiments for each filter pruning 

method. We did 10 experiment runs based on the filters we deemed redundant and then calculated 

the average value for the 10 accuracy values we got from the 10 experiment runs. We did the same 

thing based on the filters HRank deemed least important. We compared the average accuracy 

values obtained using our method and HRank’s method to check whether the difference between 

them is statistically significant. Before we could compare the average accuracy values, we had to 

check whether each set of data followed the normal distribution using the Shapiro-Wilk test [121]. 
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The type of test needed to compare our sets of data differed if our data did not follow the normal 

distribution. Once our sets of data were confirmed to follow normal distribution, we ran a T-test 

[122] to confirm whether there was a statistically significant difference in the accuracy. The T-test 

is a statistical test that determines whether there is a significant difference between the mean values 

of two groups. 
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Chapter 4 

Results and Discussion 

4.1 Silhouette Plots 

There is one silhouette plot for each of the 12 convolutional layers we filter pruned. The 

plots show the change of the average silhouette score over ‘K’. In addition, for each convolutional 

layer, two more curves are plotted for the average silhouette score ±1 standard deviation (σ). In all 

cases, the two plotted curves showed that the amount of variability from the individual silhouette 

scores to the average silhouette score at each ‘K’ is relatively small. The average and maximum 

ratios of sigma to the average silhouette scores for each plot are reported. The first and last 10% 

of the average silhouette scores were excluded from calculating the average and maximum ratios 

of sigma. This is because the excluded values of the average silhouette scores are very small which, 

in some cases, causes the ratios of sigma to the average silhouette scores to be relatively high, 

which gives a misleading impression when reporting the maximum ratio. Excluding these values 

does not affect the interpretations of the results as these excluded values are for ‘K’ values that are 

far from the ‘K’ value that corresponds to the global silhouette score. 

In each plot, the x-axis is for the number of clusters ‘K’. The y-axis is for the silhouette 

scores. The global maximum average silhouette score and any local maximum silhouette scores 

are marked in each plot, and the ‘K’ values corresponding to them are also indicated. The selection 

of the global maximum average silhouette score and any local maximum silhouette scores is based 
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on the criteria explained in section 3.4. Hence, using a clustering outcome at the ‘K’ values 

corresponding to local maximum silhouette scores provides the opportunity to test higher pruning 

rates. 

Figure 22 is for convolutional layer 1 which has 64 filters. The number of clusters ‘K’ 

ranges from 2 to 63. This means that we have tested 62 values for ‘K’ and for each one we 

computed 10 clustering outcomes with each one giving us a different silhouette score. In total, we 

have obtained 62×10 = 620 clustering outcomes for the first convolutional layer alone. The value 

of ‘ic’ ranges from 5 to 1 and it gradually decreases as the value of ‘K’ increases. The value of ‘ic’ 

is set to 5 for the number of clusters ‘K’ ranging from 2 to 10 and is set to 4 for the number of 

clusters ‘K’ ranging from 11 to 14. In addition, the value of ‘ic’ is set to 3 for the number of clusters 

‘K’ ranging from 15 to 20 and is set to 2 for the number of clusters ‘K’ ranging from 21 to 31. The 

value of ‘ic’ is set to 1 for the number of clusters ‘K’ ranging from 32 to 63. This was done to 

ensure that ‘ic’ × ‘K’, i.e., the total number initial centroids, was not greater than the number of 

filters in a specific convolutional layer. For example, if the value of ‘K’ was 18 and the value of 

‘ic’ was 4, then the total number of initial centroids would be 4×20=72, which is greater than the 

number of filters in convolutional layer 1. On the other hand, if the value of ‘ic’ was 3, then the 

total number of initial centroids would be 3×18=54, which is less than the number of filters in 

convolutional layer 1. This means that we cannot set the value of ‘ic’ to be 4 at K=18, but it is 

possible to set the value of ‘ic’ to be 3.  

As shown in Figure 22, the average silhouette scores widely range from 0.02 to 0.60. The 

global maximum average silhouette score was found to correspond to the value of K = 24. The 

highest individual silhouette score out of the 10 silhouette scores we computed at K = 24 was 0.63. 

The selected local maximum silhouette score corresponds to the value of K = 20. The highest 
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individual silhouette score out of the 10 silhouette scores we computed at K = 20 was 0.61. The 

average ratio of sigma to the average silhouette scores is 0.041. The maximum ratio of sigma to 

the average silhouette scores is 0.079. 

 

Figure 23 is for convolutional layer 2 which has 64 filters, as in convolutional layer 1. 

Therefore, we have also obtained 620 clustering outcomes for convolutional layer 2. The value of 

‘ic’, which ranges from 5 to 1, changes at the same rate as in convolutional layer 1 because both 

convolutional layers 1 and 2 have the same number of filters. As shown in Figure 23, the average 

silhouette scores widely range from 0.02 to 0.48. The global maximum average silhouette score 

was found to correspond to the value of K = 29. The highest individual silhouette score out of the 

10 silhouette scores we computed at K = 29 was 0.51. The selected local maximum silhouette 

score corresponds to the value of K = 23. The highest individual silhouette score out of the 10 

Figure 22: Silhouette plot for convolutional layer 1 
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silhouette scores we computed at K = 23 was 0.48. The average ratio of sigma to the average 

silhouette scores is 0.064. The maximum ratio of sigma to the average silhouette scores is 0.115. 

 

Figure 24 is for convolutional layer 3 which has 128 filters. The number of clusters ‘K’ 

ranges from 2 to 127. This means that we have tested 126 values for ‘K’ and for each one we 

computed 10 clustering outcomes with each one giving us a different silhouette score. In total, we 

have obtained 126×10 = 1,260 clustering outcomes for convolutional layer 3. The value of ‘ic’ 

ranges from 5 to 1 and it gradually decreases as the value of ‘K’ increases. The value of ‘ic’ is set 

to 5 for the number of clusters ‘K’ ranging from 2 to 20 and is set to 4 for the number of clusters 

‘K’ ranging from 21 to 28. In addition, the value of ‘ic’ is set to 3 for the number of clusters ‘K’ 

ranging from 29 to 40 and is set to 2 for the number of clusters ‘K’ ranging from 41 to 62. The 

Figure 23: Silhouette plot for convolutional layer 2 
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value of ‘ic’ is set to 1 for the number of clusters ‘K’ ranging from 63 to 127. As shown in Figure 

24, the average silhouette scores widely range from 0.02 to 0.47. The global maximum average 

silhouette score was found to correspond to the value of K = 53. The highest individual silhouette 

score out of the 10 silhouette scores we computed at K = 53 was 0.48. The selected local maximum 

silhouette score corresponds to the value of K = 45. The highest individual silhouette score out of 

the 10 silhouette scores we computed at K = 45 was 0.47. The average ratio of sigma to the average 

silhouette scores is 0.044. The maximum ratio of sigma to the average silhouette scores is 0.084. 

 

Figure 25 is for convolutional layer 4 which has 128 filters, as in convolutional layer 3. 

Therefore, we have also obtained 1,260 clustering outcomes for convolutional layer 4. The value 

of ‘ic’, which ranges from 5 to 1, changes at the same rate as in convolutional layer 3 because both 

convolutional layers 3 and 4 have the same number of filters. As shown in Figure 25, the average 

Figure 24: Silhouette plot for convolutional layer 3 
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silhouette scores widely range from 0.01 to 0.43. The global maximum average silhouette score 

was found to correspond to the value of K = 56. The highest individual silhouette score out of the 

10 silhouette scores we computed at K = 56 was 0.47. The selected local maximum silhouette 

score corresponds to the value of K = 45. The highest individual silhouette score out of the 10 

silhouette scores we computed at K = 45 was 0.44. The average ratio of sigma to the average 

silhouette scores is 0.043. The maximum ratio of sigma to the average silhouette scores is 0.083. 

 

Figure 26 is for convolutional layer 5 which has 256 filters. The number of clusters ‘K’ 

ranges from 2 to 255. This means that we have tested 254 values for ‘K’ and for each one we 

computed 10 clustering outcomes with each one giving us a different silhouette score. In total, we 

have obtained 254×10 = 2,540 clustering outcomes for convolutional layer 5. The value of ‘ic’ 

ranges from 5 to 1 and it gradually decreases as the value of ‘K’ increases. The value of ‘ic’ is set 

Figure 25: Silhouette plot for convolutional layer 4 
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to 5 for the number of clusters ‘K’ ranging from 2 to 40 and is set to 4 for the number of clusters 

‘K’ ranging from 41 to 56. In addition, the value of ‘ic’ is set to 3 for the number of clusters ‘K’ 

ranging from 57 to 80 and is set to 2 for the number of clusters ‘K’ ranging from 81 to 112. The 

value of ‘ic’ is set to 1 for the number of clusters ‘K’ ranging from 113 to 255. As shown in Figure 

26, the average silhouette scores widely range from 0.01 to 0.40. The global maximum average 

silhouette score was found to correspond to the value of K = 102. The highest individual silhouette 

score out of the 10 silhouette scores we computed at K = 102 was 0.44. The selected local 

maximum silhouette score corresponds to the value of K = 90. The highest individual silhouette 

score out of the 10 silhouette scores we computed at K = 90 was 0.40. The average ratio of sigma 

to the average silhouette scores is 0.051. The maximum ratio of sigma to the average silhouette 

scores is 0.189. 

 

Figure 26: Silhouette plot for convolutional layer 5 
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Figure 27 is for convolutional layer 6 which has 256 filters, as in convolutional layer 5. 

Therefore, we have also obtained 2,540 clustering outcomes for convolutional layer 6. The value 

of ‘ic’, which ranges from 5 to 1, changes at the same rate as in convolutional layer 5 because both 

convolutional layers 5 and 6 have the same number of filters. As shown in Figure 27, the average 

silhouette scores widely range from 0.01 to 0.37. The global maximum average silhouette score 

was found to correspond to the value of K = 100. The highest individual silhouette score out of the 

10 silhouette scores we computed at K = 100 was 0.40. The selected local maximum silhouette 

score corresponds to the value of K = 90. The highest individual silhouette score out of the 10 

silhouette scores we computed at K = 90 was 0.38. The average ratio of sigma to the average 

silhouette scores is 0.073. The maximum ratio of sigma to the average silhouette scores is 0.213. 

 

Figure 27: Silhouette plot for convolutional layer 6 
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Figure 28 is for convolutional layer 7 which has 256 filters, as in convolutional layer 5. 

Therefore, we have also obtained 2,540 clustering outcomes for convolutional layer 7. The value 

of ‘ic’, which ranges from 5 to 1, changes at the same rate as in convolutional layer 5 because both 

convolutional layers 5 and 7 have the same number of filters. As shown in Figure 28, the average 

silhouette scores widely range from 0.01 to 0.36. The global maximum average silhouette score 

was found to correspond to the value of K = 110.  The highest individual silhouette score out of 

the 10 silhouette scores we computed at K = 110 was 0.39. The selected local maximum silhouette 

score corresponds to the value of K = 90. The highest individual silhouette score out of the 10 

silhouette scores we computed at K = 90 was 0.37. The average ratio of sigma to the average 

silhouette scores is 0.051. The maximum ratio of sigma to the average silhouette scores is 0.162. 

 

Figure 28: Silhouette plot for convolutional layer 7 
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Figure 29 is for convolutional layer 8 which has 512 filters. The number of clusters ‘K’ 

ranges from 2 to 511. This means that we have tested 510 values for ‘K’ and for each one we 

computed 10 clustering outcomes with each one giving us a different silhouette score. In total, we 

have obtained 510×10 = 5,100 clustering outcomes for convolutional layer 8. The value of ‘ic’ 

ranges from 5 to 1 and it gradually decreases as the value of ‘K’ increases. The value of ‘ic’ is set 

to 5 for the number of clusters ‘K’ ranging from 2 to 80 and is set to 4 for the number of clusters 

‘K’ ranging from 81 to 112. In addition, the value of ‘ic’ is set to 3 for the number of clusters ‘K’ 

ranging from 113 to 160 and is set to 2 for the number of clusters ‘K’ ranging from 161 to 224. 

The value of ‘ic’ is set to 1 for the number of clusters ‘K’ ranging from 225 to 511. As shown in 

Figure 29, the average silhouette scores range from 0.01 to 0.30. The global maximum average 

silhouette score was found to correspond to the value of K = 217. The highest individual silhouette 

score out of the 10 silhouette scores we computed at K = 217 was 0.34. The selected local 

maximum silhouette score corresponds to the value of K = 180. The highest individual silhouette 

score out of the 10 silhouette scores we computed at K = 180 was 0.30. The average ratio of sigma 

to the average silhouette scores is 0.062. The maximum ratio of sigma to the average silhouette 

scores is 0.186. 
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Figure 30 is for convolutional layer 9 which has 512 filters, as in convolutional layer 8. 

Therefore, we have also obtained 5,100 clustering outcomes for convolutional layer 9. The value 

of ‘ic’, which ranges from 5 to 1, changes at the same rate as in convolutional layer 8 because both 

convolutional layers 8 and 9 have the same number of filters. As shown in Figure 30, the average 

silhouette scores range from 0.01 to 0.28. The highest individual silhouette score out of the 10 

silhouette scores we computed at K = 226 was 0.32. The selected local maximum silhouette score 

corresponds to the value of K = 180. The highest individual silhouette score out of the 10 silhouette 

scores we computed at K = 180 was 0.31. The average ratio of sigma to the average silhouette 

scores is 0.042. The maximum ratio of sigma to the average silhouette scores is 0.091. 

 

Figure 29: Silhouette plot for convolutional layer 8 



81 

 

 

Figure 31 is for convolutional layer 10 which has 512 filters, as in convolutional layer 8. 

Therefore, we have also obtained 5,100 clustering outcomes for convolutional layer 10. The value 

of ‘ic’, which ranges from 5 to 1, changes at the same rate as in convolutional layer 8 because both 

convolutional layers 8 and 10 have the same number of filters. As shown in Figure 31, the average 

silhouette scores range from 0.01 to 0.26. The global maximum average silhouette score was found 

to correspond to the value of K = 110. The highest individual silhouette score out of the 10 

silhouette scores we computed at K = 235 was 0.30. The two selected local maximum silhouette 

scores correspond to the values of K = 128 and K = 180. The highest individual silhouette score 

out of the 10 silhouette scores we computed at K = 128 was 0.23. The highest individual silhouette 

score out of the 10 silhouette scores we computed at K = 180 was 0.29. The average ratio of sigma 

Figure 30: Silhouette plot for convolutional layer 9 
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to the average silhouette scores is 0.045. The maximum ratio of sigma to the average silhouette 

scores is 0.125. 

 

Figure 32 is for convolutional layer 11 which has 512 filters, as in convolutional layer 8. 

Therefore, we have also obtained 5,100 clustering outcomes for convolutional layer 11. The value 

of ‘ic’, which ranges from 5 to 1, changes at the same rate as in convolutional layer 8 because both 

convolutional layers 8 and 11 have the same number of filters. As shown in Figure 32, the average 

silhouette scores range from 0.01 to 0.26. The global maximum average silhouette score was found 

to correspond to the value of K = 229. The highest individual silhouette score out of the 10 

silhouette scores we computed at K = 229 was 0.30. The two selected local maximum silhouette 

scores correspond to the values of K = 128 and K = 180. The highest individual silhouette score 

out of the 10 silhouette scores we computed at K = 128 was 0.24. The highest individual silhouette 

Figure 31: Silhouette plot for convolutional layer 10 
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score out of the 10 silhouette scores we computed at K = 180 was 0.29. The average ratio of sigma 

to the average silhouette scores is 0.042. The maximum ratio of sigma to the average silhouette 

scores is 0.086. 

 

Figure 33 is for convolutional layer 12 which has 512 filters, as in convolutional layer 8. 

Therefore, we have also obtained 5,100 clustering outcomes for convolutional layer 12. The value 

of ‘ic’, which ranges from 5 to 1, changes at the same rate as in convolutional layer 8 because both 

convolutional layers 8 and 12 have the same number of filters. As shown in Figure 33, the average 

silhouette scores range from 0.01 to 0.26. The global maximum average silhouette score was found 

to correspond to the value of K = 218. The highest individual silhouette score out of the 10 

silhouette scores we computed at K = 218 was 0.28. The two selected local maximum silhouette 

Figure 32: Silhouette plot for convolutional layer 11 
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scores correspond to the values of K = 128 and K = 180. The highest individual silhouette score 

out of the 10 silhouette scores we computed at K = 128 was 0.23. The highest individual silhouette 

score out of the 10 silhouette scores we computed at K = 180 was 0.26. The average ratio of sigma 

to the average silhouette scores is 0.040. The maximum ratio of sigma to the average silhouette 

scores is 0.097. 

 

4.2 Compression Scenarios 

Tables 1, 2, and 3 provide the descriptions of the convolutional layers before and after 

pruning using 3 different compression scenarios. The first scenario A uses the ‘K’ values which 

have the global maximum silhouette scores found in section 4.1. The second and third scenarios B 

and C use ‘K’ values which have local maximum silhouette scores found in section 4.1. The tables 

Figure 33: Silhouette plot for convolutional layer 12 
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for the 3 compression scenarios are listed in ascending order in terms of the pruning rates for the 

total number of filters. The left side of each of these tables shows the size of the feature maps and 

the original number of filters, parameters, and FLOPs for each of the 12 convolutional layers 

before pruning. The right side of each of these tables shows the number of filters, parameters, and 

FLOPs after filter pruning. The numbers of parameters and FLOPs were calculated using the 

equations mentioned in Section 3.5. The second to last row for each of these tables reports the total 

number of filters, parameters, and FLOPs before and after pruning. The pruning rate for each 

convolutional layer is reported in the last column of each of these tables. The pruning rate 

represents the percentage of removed filters, which is also the same percentage of the removed 

parameters and FLOPs in each convolutional layer. In addition, the percentages of removed filters, 

parameters, and FLOPs from their respective totals are calculated and shown in the last row in 

each of these tables. 

The number of remaining filters in each convolutional layer after filter pruning depends on 

the value of ‘K’ we selected in section 4.1. For example, the results for the first convolutional 

layer, in Table 3, show that we have removed 44 filters out of 64 filters, which means we have a 

pruning rate of 68.75% for each of the filters, parameters, and FLOPs. This leaves us with only 20 

filters, 560 parameters, and 552,960 FLOPs after filter pruning. The number of remaining filters 

is the same value as ‘K’ we selected. 

Some convolutional layers have the same number of filters but different number of 

parameters and FLOPs. For example, as shown in Table 3, convolutional layers 8 and 9 have the 

same number of filters, i.e., 512 filters, but convolutional layer 9 has a larger number of parameters 

and FLOPs than convolutional layer 8. When the same pruning rate is applied to different layers 

that have the same number of filters but different number of parameters and FLOPs, the resulting 
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number of parameters and FLOPs among the layers will be different. This is because when a 

pruning rate is applied to a layer, the numbers of filters, parameters, and FLOPs are reduced by 

the same rate. For example, Table 3 shows that the number of filters, parameters, and FLOPs, in 

convolutional layer 8, is reduced by the same percentage, which is equal to the pruning rate 

64.84%. The same pruning rate is applied to convolutional layer 9, which results in reducing the 

number of filters, parameters, and FLOPs by 64.84%. However, the resulting number of 

parameters and FLOPs in convolutional layers 8 and 9 after pruning are different because the two 

layers originally had a different number of parameters and FLOPs before pruning. In this case, the 

number of parameters is reduced by 765,260 (from 1,180,160 to 414,900 as shown in Table 3) and 

1,530,188 (from 2,359,808 to 829,620 as shown in Table 3), in layers 8 and 9, respectively. In 

addition, the number of FLOPs is reduced by 12,238,848 (from 18,874,368 to 6,635,520 as shown 

in Table 3) and 24,477,696 (from 37,748,736 to 13,271,040 as shown in Table 3), in layers 8 and 

9, respectively. Therefore, the amount of reduction in the number of filters is the same in both 

layers, but the amount of reduction in the number of parameters and FLOPs is different. As a result, 

using the same pruning rate for different convolutional layers may result in a different number of 

reduced parameters and FLOPs, even though the layers have the same number of filters. This 

means that pruning certain convolutional layers might be more beneficial in terms of reducing 

more parameters and FLOPs than other convolutional layers. 

A convolutional layer can have a larger number of parameters than another convolutional 

layer but a smaller number of FLOPs, and vice versa. For example, as shown in Table 3, 

convolutional layer 7 has a smaller number of parameters and larger number of FLOPs than 

convolutional layer 8. This is because the size of the feature maps in convolutional layer 7 is larger 

than that in convolutional layer 8. As such, if the aim from filter pruning a CNN is reducing the 
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number of parameters, then it would be beneficial to have a higher pruning rate for the layers that 

have a higher number of parameters, such as the last 5 convolutional layers described in Tables 1, 

2, and 3. On the other hand, if the aim from filter pruning is reducing the number of FLOPs, then 

it would be beneficial to have a higher pruning rate for convolutional layers that have a higher 

number of FLOPs, such as convolutional layers 2, 4, 6, 7, 9, and 10 described in Tables 1, 2, and 

3. Reducing the number of parameters results in a smaller CNN, while reducing the number of 

FLOPs results in a faster CNN.  

In order to test higher pruning rates from the totals of filters, parameters, and FLOPs for 

scenarios B and C than those of scenario A, we based scenarios B and C on using local maximum 

silhouette scores instead of using global maximum silhouette scores as in scenario A. We will 

explore the effect of considering these different compression scenarios on the network’s accuracy 

in the following section. 

 

4.2.1 Compression Scenario A 

In Table 1, the pruning rates for the convolutional layers range from 54.10% to 62.5%. The 

number of remaining filters for the convolutional layers ranges from 24 to 235. The last row in the 

table shows that we have removed 56.92%, 56.30%, and 56.94% of the total number of filters, 

parameters, and FLOPs, respectively. 
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 Original After filter pruning  

Layer 
Feature 

map size 

Number 

of filters 

Number of 

parameters 

Number of 

FLOPs 

Number 

of filters 

Number of 

parameters 

Number of 

FLOPs 

Pruning 

rate 

Conv 

1 
32x32 64 1,792 1,769,472 24 672 663,552 62.5% 

Conv 

2 
32x32 64 36,928 37,748,736 29 16,733 17,104,896 54.69% 

Conv 

3 
16x16 128 73,856 18,874,368 53 30,581 7,815,168 58.59% 

Conv 

4 
16x16 128 147,584 37,748,736 56 64,568 16,515,072 56.25% 

Conv 

5 
8x8 256 295,168 18,874,368 102 117,606 7,520,256 60.16% 

Conv 

6 
8x8 256 590,080 37,748,736 100 230,500 14,745,600 60.94% 

Conv 

7 
8x8 256 590,080 37,748,736 110 253,550 16,220,160 57.03% 

Conv 

8 
4x4 512 1,180,160 18,874,368 217 500,185 7,999,488 57.62% 

Conv 

9 
4x4 512 2,359,808 37,748,736 226 1,041,634 16,662,528 55.86% 

Conv 

10 
4x4 512 2,359,808 37,748,736 235 1,083,115 17,326,080 54.10% 

Conv 

11 
2x2 512 2,359,808 9,437,184 229 1,055,461 4,220,928 55.27% 

Conv 

12 
2x2 512 2,359,808 9,437,184 218 1,004,762 4,018,176 57.42% 

Total 3,712 12,354,880 303,759,360 1,599 5,399,367 130,811,904 - 

Pruning rate from totals 56.92% 56.30% 56.94% - 

Table 1: The descriptions of the convolutional layers before and after pruning using compression 

scenario A 

 

4.2.2 Compression Scenario B 

In Table 2, the pruning rates for the convolutional layers range from 64.06% to 68.75%. 

The number of remaining filters for the convolutional layers ranges from 20 to 180. The last row 

in the table shows that we have removed 64.90%, 64.84%, and 64.77% of the total number of 

filters, parameters, and FLOPs, respectively. 
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 Original After filter pruning  

Layer 
Feature 

map size 

Number 

of filters 

Number of 

parameters 

Number of 

FLOPs 

Number 

of filters 

Number of 

parameters 

Number of 

FLOPs 

Pruning 

rate 

Conv 

1 
32x32 64 1,792 1,769,472 20 560 552,960 68.75% 

Conv 

2 
32x32 64 36,928 37,748,736 23 13,271 13,565,952 64.06% 

Conv 

3 
16x16 128 73,856 18,874,368 45 25,965 6,635,520 64.84% 

Conv 

4 
16x16 128 147,584 37,748,736 45 51,885 13,271,040 64.84% 

Conv 

5 
8x8 256 295,168 18,874,368 90 103,770 6,635,520 64.84% 

Conv 

6 
8x8 256 590,080 37,748,736 90 207,450 13,271,040 64.84% 

Conv 

7 
8x8 256 590,080 37,748,736 90 207,450 13,271,040 64.84% 

Conv 

8 
4x4 512 1,180,160 18,874,368 180 414,900 6,635,520 64.84% 

Conv 

9 
4x4 512 2,359,808 37,748,736 180 829,620 13,271,040 64.84% 

Conv 

10 
4x4 512 2,359,808 37,748,736 180 829,620 13,271,040 64.84% 

Conv 

11 
2x2 512 2,359,808 9,437,184 180 829,620 3,317,760 64.84% 

Conv 

12 
2x2 512 2,359,808 9,437,184 180 829,620 3,317,760 64.84% 

Total 3,712 12,354,880 303,759,360 1,303 4,343,731 107,016,192 - 

Pruning rate from totals 64.90% 64.84% 64.77% - 

Table 2: The descriptions of the convolutional layers before and after pruning using compression 

scenario B  

 

4.2.3 Compression Scenario C 

In Table 3, the pruning rates for the convolutional layers range from 64.06% to 75%. The 

number of remaining filters for the convolutional layers ranges from 20 to 180. The last row in the 

table shows that we have removed 69.10%, 70.66%, and 66.66% of the total number of filters, 

parameters, and FLOPs, respectively. 
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 Original After filter pruning  

Layer 
Feature 

map size 

Number 

of filters 

Number of 

parameters 

Number of 

FLOPs 

Number 

of filters 

Number of 

parameters 

Number of 

FLOPs 

Pruning 

rate 

Conv 

1 
32x32 64 1,792 1,769,472 20 560 552,960 68.75% 

Conv 

2 
32x32 64 36,928 37,748,736 23 13,271 13,565,952 64.06% 

Conv 

3 
16x16 128 73,856 18,874,368 45 25,965 6,635,520 64.84% 

Conv 

4 
16x16 128 147,584 37,748,736 45 51,885 13,271,040 64.84% 

Conv 

5 
8x8 256 295,168 18,874,368 90 103,770 6,635,520 64.84% 

Conv 

6 
8x8 256 590,080 37,748,736 90 207,450 13,271,040 64.84% 

Conv 

7 
8x8 256 590,080 37,748,736 90 207,450 13,271,040 64.84% 

Conv 

8 
4x4 512 1,180,160 18,874,368 180 414,900 6,635,520 64.84% 

Conv 

9 
4x4 512 2,359,808 37,748,736 180 829,620 13,271,040 64.84% 

Conv 

10 
4x4 512 2,359,808 37,748,736 128 589,952 9,437,184 75% 

Conv 

11 
2x2 512 2,359,808 9,437,184 128 589,952 2,359,296 75% 

Conv 

12 
2x2 512 2,359,808 9,437,184 128 589,952 2,359,296 75% 

Total 3,712 12,354,880 303,759,360 1,147 3,624,727 101,265,408 - 

Pruning rate from totals 69.10% 70.66% 66.66% - 

Table 3: The descriptions of the convolutional layers before and after pruning using compression 

scenario C  

 

4.3 Accuracy Results 

Tables 4, 5, and 6 show the resulting accuracy of the VGG-16 network on the CIFAR-10 

dataset after filter pruning and retraining the network. The tables compare our SSIM based 

clustering filter pruning method and the state-of-the-art filter pruning method of HRank. Each table 

shows the accuracy for 10 experiments for each filter pruning method using the same compression 

scenario. This ensures fair comparison. The last 4 rows of each table show the average, standard 
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deviation, maximum, and minimum values of the 10 experiments for each filter pruning method. 

Tables 4, 5, and 6 show the results after filter pruning using compression scenarios A, B, and C, 

respectively. The baseline accuracy of the VGG-16 network before filter pruning is 93.96%.  

 

4.3.1 Compression Scenario A 

Table 4 shows that our filter pruning method outperforms the state-of-the-art filter pruning 

method of HRank using compression scenario A. Our average accuracy is higher than HRanks’s 

average accuracy by 0.267 percentage points. Our maximum accuracy is higher than HRank’s 

maximum accuracy by 0.23 percentage points. Our minimum accuracy is higher than HRank’s 

minimum accuracy by 0.31 percentage points. Our standard deviation is lower than HRank’s 

standard deviation. Our minimum accuracy is less than HRank’s maximum accuracy by only 0.04 

percentage points. After implementing our filter pruning method and retraining the network, there 

is on average a 2.46 percentage point decrease in accuracy compared to baseline accuracy. This 

means that we have preserved 97.38% of the original accuracy of the VGG-16 network even after 

pruning 56.92%, 56.30%, and 56.94% of the total number of considered filters, parameters, and 

FLOPs, respectively. As such we have achieved our goal of compressing the network with very 

little compromise to accuracy. 

After performing the Shapiro-Wilk test on the 10 experiment accuracy values resulting 

from each filter pruning method found in Table 4, we confirmed that they indeed followed normal 

distribution. The resulting p-value of the test for the 10 accuracies of HRank was 0.450. The 

resulting p-value of the test for the 10 accuracies of our method was 0.411. As such, since the 

computed p-values are greater than the significance level alpha=0.05, we cannot reject the null 
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hypothesis H0, which states that the variable from which the sample was extracted follows a 

normal distribution. 

We then performed the T-test to confirm whether there was a statistically significant 

difference between resulting accuracies of both filter pruning methods. The resulting p-value of 

the test was less than 0.0001. As such, since the computed p-value is lower than the significance 

level alpha=0.05, we should reject the null hypothesis H0, and accept the alternative hypothesis 

Ha, which states that the difference between the means is different from 0. This shows that there 

is a statistically significant difference between our average accuracy and HRank’s average 

accuracy.  

Filter Pruning Method HRank 
Ours 

(SSIM based clustering) 

 Accuracy (%) Accuracy (%) 

Experiment 1 91.13 % 91.52 % 

Experiment 2 91.34 % 91.65 % 

Experiment 3 91.07 % 91.47 % 

Experiment 4 91.10 % 91.49 % 

Experiment 5 91.42 % 91.40 % 

Experiment 6 91.17 % 91.64 % 

Experiment 7 91.39 % 91.43 % 

Experiment 8 91.24 % 91.49 % 

Experiment 9 91.16 % 91.53 % 

Experiment 10 91.31 % 91.38 % 

Average 91.233 % 91.500 % 

Standard Deviation 0.119 0.086 

Maximum 91.42 % 91.65 % 

Minimum 91.07 % 91.38 % 

Table 4: Filter pruning resulting accuracy using compression scenario A 
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4.3.2 Compression Scenario B 

Table 5 shows that our filter pruning method outperforms the state-of-the-art filter pruning 

method of HRank using compression scenario B. Our average accuracy is higher than HRanks’s 

average accuracy by 0.454 percentage points. Our maximum accuracy is higher than HRank’s 

maximum accuracy by 0.45 percentage points. Our minimum accuracy is higher than HRank’s 

minimum accuracy by 0.43 percentage points. Although our standard deviation is slightly higher 

than HRank’s standard deviation, our minimum accuracy is still higher than HRank’s maximum 

accuracy by 0.12 percentage points. After implementing our filter pruning method and retraining 

the network, there is on average a 2.978 percentage point decrease in accuracy compared to 

baseline accuracy. This means that we have preserved 96.83% of the original accuracy of the 

VGG-16 network even after pruning 64.90%, 64.84%, and 64.77% of the total number of 

considered filters, parameters, and FLOPs, respectively. As such we have achieved our goal of 

compressing the network with very little compromise to accuracy. 

After performing the Shapiro-Wilk test on the 10 experiment accuracy values resulting 

from each filter pruning method found in Table 5, we confirmed that they indeed followed normal 

distribution. The resulting p-value of the test for the 10 accuracies of HRank was 0.977. The 

resulting p-value of the test for the 10 accuracies of our method was 0.292. As such, since the 

computed p-values are greater than the significance level alpha=0.05, we cannot reject the null 

hypothesis H0, which states that the variable from which the sample was extracted follows a 

normal distribution. 

We then performed the T-test to confirm whether there was a statistically significant 

difference between resulting accuracies of both filter pruning methods. The resulting p-value of 
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the test was less than 0.0001. As such, since the computed p-value is lower than the significance 

level alpha=0.05, we should reject the null hypothesis H0, and accept the alternative hypothesis 

Ha, which states that the difference between the means is different from 0. This shows that there 

is a statistically significant difference between our average accuracy and HRank’s average 

accuracy. 

Filter Pruning Method HRank 
Ours 

(SSIM based clustering) 

 Accuracy (%) Accuracy (%) 

Experiment 1 90.49 % 90.87 % 

Experiment 2 90.60 % 90.81 % 

Experiment 3 90.58 % 91.10 % 

Experiment 4 90.52 % 90.86 % 

Experiment 5 90.62 % 91.01 % 

Experiment 6 90.54 % 91.14 % 

Experiment 7 90.41 % 91.00 % 

Experiment 8 90.69 % 91.05 % 

Experiment 9 90.38 % 91.10 % 

Experiment 10 90.45 % 90.88 % 

Average 90.528 % 90.982 % 

Standard Deviation 0.093 0.112 

Maximum 90.69 % 91.14 % 

Minimum 90.38 % 90.81 % 

Table 5: Filter pruning resulting accuracy using compression scenario B 

 

4.3.3 Compression Scenario C 

Table 6 shows that our filter pruning method outperforms the state-of-the-art filter pruning 

method of HRank using compression scenario C. Our average accuracy is higher than HRanks’s 

average accuracy by 0.475 percentage points. Our maximum accuracy is higher than HRank’s 

maximum accuracy by 0.65 percentage points. Our minimum accuracy is higher than HRank’s 

minimum accuracy by 0.47 percentage points. Although our standard deviation is slightly higher 
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than HRank’s standard deviation, our minimum accuracy is still higher than HRank’s maximum 

accuracy by 0.05 percentage points. After implementing our filter pruning method and retraining 

the network, there is on average a 2.959 percentage point decrease in accuracy compared to 

baseline accuracy. This means that we have preserved 96.85% of the original accuracy of the 

VGG-16 network even after pruning 69.10%, 70.66%, and 66.66% of the total number of 

considered filters, parameters, and FLOPs, respectively. As such we have achieved our goal of 

compressing the network even further with very little compromise to accuracy. Although we have 

slightly higher pruning rates in compression scenario C compared to compression scenario B, we 

notice unexpectedly that our average accuracy in Table 6 is slightly higher than our average 

accuracy in Table 5. Yet, our standard deviation in Table 6 is also slightly higher than our standard 

deviation in Table 5. 

After performing the Shapiro-Wilk test on the 10 experiment accuracy values resulting 

from each filter pruning method found in Table 6, we confirmed that they indeed followed normal 

distribution. The resulting p-value of the test for the 10 accuracies of HRank was 0.953. The 

resulting p-value of the test for the 10 accuracies of our method was 0.239. As such, since the 

computed p-values are greater than the significance level alpha=0.05, we cannot reject the null 

hypothesis H0, which states that the variable from which the sample was extracted follows a 

normal distribution. 

We then performed the T-test to confirm whether there was a statistically significant 

difference between resulting accuracies of both filter pruning methods. The resulting p-value of 

the test was less than 0.0001. As such, since the computed p-value is lower than the significance 

level alpha=0.05, we should reject the null hypothesis H0, and accept the alternative hypothesis 

Ha, which states that the difference between the means is different from 0. This shows that there 
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is a statistically significant difference between our average accuracy and HRank’s average 

accuracy. 

Filter Pruning Method HRank 
Ours 

(SSIM based clustering) 

 Accuracy (%) Accuracy (%) 

Experiment 1 90.47 % 90.80 % 

Experiment 2 90.46 % 91.40 % 

Experiment 3 90.75 % 90.97 % 

Experiment 4 90.55 % 91.13 % 

Experiment 5 90.68 % 91.09 % 

Experiment 6 90.58 % 90.82 % 

Experiment 7 90.33 % 91.12 % 

Experiment 8 90.56 % 90.98 % 

Experiment 9 90.38 % 90.81 % 

Experiment 10 90.50 % 90.89 % 

Average 90.526 % 91.001 % 

Standard Deviation 0.121 0.179 

Maximum 90.75 % 91.40 % 

Minimum 90.33 % 90.80 % 

Table 6: Filter pruning resulting accuracy using compression scenario C 
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Chapter 5 

Conclusion and Future Work 

In this thesis, we have proposed a new approach for filter pruning CNNs. Our filter pruning 

method utilizes K-Means clustering based on SSIM to group similar filters together and determine 

redundant filters in CNNs. The silhouette index is used for cluster validation and in our case is 

utilized to determine the best number of clusters. In our approach, the number of clusters is the 

same as the number of important filters in a CNN. The idea is that filters in the same cluster 

perform similar tasks in a convolutional layer. We have shown that it is possible for a single 

representative filter chosen from each cluster to compensate for the remaining filters in the same 

cluster. All remaining filters are considered redundant and hence can be pruned with very little 

consequence. We evaluated our filter pruning method on the VGG-16 architecture with the 

benchmark CIFAR-10 dataset and experimented with three different compression scenarios. Our 

new filter pruning method has demonstrated its experimental effectiveness and efficiency in model 

compression, acceleration, and accuracy. Our experimental results have shown that it is possible 

to prune substantial parts of a CNN, which makes them smaller and faster, with very minimal 

compromise to the accuracy of the network. The results provide promising indications that our 

method can consistently and significantly outperform the current state-of-the-art filter pruning 

method. We hope that our filter pruning method will aid in making CNNs more generalized and 

bring research a step closer to the possibility of running CNNs on devices with limited hardware 

capabilities. 
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Future work in this field of research includes substituting our K-Means clustering 

algorithm and implementing different clustering algorithms such as Fuzzy C-Means clustering, 

Gustafson-Kessel fuzzy clustering, or Gaussian Mixture Models clustering. This could lead to 

better clustering possibilities. Another lane to explore is in the area of cluster validation. Numerous 

cluster validation indices could be implemented in future work. In addition, changing the optimizer 

or related parameters such as the learning rate may improve the accuracy of the CNN in the 

retraining step after filter pruning. 

Our experiments could be expanded to include several datasets and CNN architectures. We 

want to evaluate our filter pruning algorithm on VGG-16 with larger datasets such as CIFAR-100 

and ImageNet. In addition, we want to evaluate our work on different CNN architectures such as 

DenseNets, ResNets, and GoogLeNet with various datasets such as CIFAR-10, CIFAR-100, and 

ImageNet.  
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