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ABSTRACT

The Ising model of a ferromagnet has been
investigated in detail on a triple of related lattices
which heretofore have not been studied. These lattices,
which we call the hydrogen peroxide, hyperkagomé, and
hypertriangular have coordination numbers of three, four,
and six respectively, and may be looked upon as three
dimensional analogues of the more familiar two dimensional

lattices, honeycomb, kagome, and triangular.

High and low temperature exact series expan-
sions have been derived for the partition function,
energy, specific heat, and initial susceptibility of the
hydrogen peroxide and hypertriangular lattices. The exact
series expansion of the spontaneous magnetizatior has also

been derived for the hydrogen peroxide lattice.

The star - triangle and decoration transforma-
tions, which relate the Ising partition functions of the
hydrogen peroxide, hyperkagomé, and hypertriangular lattices
to each other, have been utilized to obtain the properties
of the hyperkagomé lattice from those of the hydrogen
peroxide lattice. For a given pair of the triple of related
lattices we have utilized these transformations to obtain

expressions relating the specif heat amplitudes and the
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susceptibility amplitudes.

A problem which is very similar to the calculation
of the initial susceptibility of an Ising ferromagnet,
namely the self-avoiding walk problem, has also been
studied for the hydrogen peroxide and hypertriangular
lattices. Exact series expansions of the self-avoiding

walk generating function have been derived for both lattices.

A numerical analysis utilizing the ratio and
Pade approximant methods has been performed on the series
expansions to obtain estimates of the critical constants
and critical indices of the Ising model. Estimates for the
critical index and the attrition parameter of the self-

avoiding walk problem have been cbtained in-a similar manner.

An empirical formula giving the critical point
of an Ising ferromagnet as a function of coordination

number has also been found.,
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CHAPTER I

INTRODUCTION

A. Critical Point Phenomena

The study of critical phenomena was initiated
a century ago with the measurements by Andrews (1869) near
the critical point of carbon dioxide. Subsequent
experiments have shown that a number of physical systems of
a diverse nature, fluids, ferromagnets, antiferromagnets,
binary liquids, and binary alloys, all have well defined
critical points and all show very similar behaviour in the
vicinity of the critical point. One could also mention
critical point phenomena associated with superfluids,
superconductors, ferroelectrics and antiferroelectrics.
The origin of critical phenomena in these systems is how-
ever of ‘a. different nature from those systems we have

mentioned above so we will say no more about them.

The major part of this thesis is concerned with
the theory of critical phenomena described in terms of an
Ising model of a ferromagnet. Hence it is necessary that
we first give a brief review of the experimental facts as
we know them. An excellent review of the methods and

results of experimental investigations of critical point



phenomena has been given by Heller (1967). We will limit'~
most of our discussion of experimental results to critical
phenomena associated with gas-liquid and magnetic systems: -
as they have been subject to more extensive investigations

than other systems.

Our discussion of the experimental and theoretical
aspects of critical phenomena will concentrate on. the
manner in which various thcrmodynamic functions behave as

the temperature approaches its critical value.

Experience has shown that in the neighbourhood

of the critical point certain thermodynamic functions behave

as

o - P -
W = A+(x xc) ;, X =+ xc+ ’ (1-1)

where W is thé thermodynamic function of interest ang
x is the independent thermodynamic variable. The exponent.
p 1is called the critical exponent or critical index of
W and A, is called the amplitude. In case W diverges
at the critical point we will write

W= A+(x-xc)_p, X+ X_ . (1-2)

C+



The form

€+

W = A+(x-xc)l/Pr X + X (1-3)
will also occur. In each case p ;s called the critiéal
index of the thermodynamic function W . It has become.
established notation to specify by Greek letters the
critical indices of certaii. thermodynamic functions, e.g.
a for specific heat, B for magnetization, vy for
susceptibility etc. There is one other form of critical

point behaviour which often occurs in the critical region,

W =A ln(x-xc) + B, x - xc+. (1-4)

A logarithmic divergence such as (l1-4) can be described by

- a ecritieal index p =0 .

The phase diagram for a typical single component’
system is depicted in Fig. 1l.1l. The point labelled X at
the end of/the vapour pressure curve, beyond which it is
impossible to make any distinction between the liquid and
gas phases is called the critical point (P=Pc, T=Tc). A
transition from the gas to the liquid phase along curve

AB- (Fig. ‘1.1) is continuous and does not give rise to any



Fig. 1.1. The phase diagram for a simple
substance exhibiting gas, liquid, and solid
phases. The point labelled X is the

critical point (T = T, P = Pc) .
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anomalous behaviour in the derivatives of. the free energy,:
while the transition from the gas to the liquid phase along

curve CD (Fig. 1.1) is discontinuous.

A more convenient description of the critical
region of a fluid and the phenomena associated with it can
be given in terms of the shape of the isotherms in the
region of the critical point (Fig. 1.2). The preésure is-
a monotonically increasing function of the density for
temperatures greater than the critical temperature Tc ’
and its derivatives are finite and continuous. As T is
approached from above (T *‘Tc+) ’ (BP/ap)T decreases and
has-a minimum for some value of p until at T = Tc and
P =P s (BP/ap)T = 0 . As the temperature is lowered
below Tc the fluid separates into two phases, gas and
liguid, and (BP/ap)T vanishes over the interval
Pg < P < Pp v where Pe is the maximum density of the gas
phase and Py, is the minimum density of the liquid phase.

The shape of the isotherms in the critical region
can be characterized as follows. For simple gases

(Ar, Xe, COZ, ect.) the top of the coexistence curve can be

described by the form

B
-~ (TC-T) y T T, (1-5)

P, = Pg



Fig. 1.2. The isotherms of a simple fluid.
The coexistence curve is indicated by the

dashed line and the critical point is at

(Pc,pc) .
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An analysis of the data. from the classic experiment on

Xe (Weinberger and Schneider 1952, Fisher 1964(a)) yields

g = 0.345 *0.015 -

The shape of the critical isotherm near the
critical point is described by

S =
P-P, ~ lp-p "y T=To p>pg - (1-6)

Widom and Rice (1955) analyzed experimental data for a

number of simple gases. They found

6 =4-2 io.z L4

The appropriate quantity to describe the shape of

the critical. isotherms above Tc is the isothermal

compressibility, defined by

= - 13 =L 1-
Kp = = §&P)_ p(a_%)w' (1-7)

which according to our above. statements approaches infinity

as T » T, The behaviour of the isothermal compress-
+
ibility in the critical region can be described by



Ky ~ (T-Tc)—,Y p=pg T+ Tc+_. (1-8)

The experimental evidence for cozK (Hellexr 1967) suggests’
y = 1.35 £0.15 .

The behaviour of the compressibility along the coexistence:
curve as the critical point is approached from below can

be similarly described,

(o]

Kplpg) ~ Kplpp) ~ (T -m)5Y  Ta>T . (1-9)

An analysis of the data for CO2 (Heller 1967) indicates
Yy = 1.1 0.4 .

Recent experiments (Voronel' et al. 1965,
Moldover "1966) have revealed a very striking anomaly
associated with the specific heat at constant volume as
onefapproachés the critical point from above and below
along the critical'isochor~(p=pc). The experimental

evidence (Kadanoff et al. 1967) suggests



=0
c, ~ (T TC) , T » Tc

p=p (1-10)
C. -~ (TC-T)'“ , P > T

where

A value of a (or o”) equal to zero would indicate a

logarithmic divergence.

Guggenheim (1945) has shown. that most simple
gases-obey a law of corresponding states. This suggests
that the values of the critical indices listed above

should be valid for all such gases.

The phase diagram of an idealized ferromagnet
is illustrated in Fig. 1.3. There are two phases, an.
ordered phase represented by the heavy line on the T axis,
and -a disordered phase represented by the remainder of the
diagram. The ordered phase, for which there exists a
spontaneous magnetization, occurs only for H = 0 and

T < T, The point labelled X(T=Tc) is the ferromagnetic



Fig. 1.3. The phase diagram of a
ferromagnet. The point X(T=Tc, H=0) is

the ferromagnetic Curie point.
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Curie point or critical point.

The critical point phenomena of a ferromagnet
can also be explained in terms of the shape. of the isotherms
(Fig. 1.4). For a given direction of the magnetic field -
H and temperatures greater than the critical temperature
T, the magnetization is a monotonically increasing function
of the field and has finite and continous derivatives for -
‘all values of. the field. For T < T, the isotherms

show a discontinuity at H = 0 , the magnetization tending

to the limits I+(0) and I_(0) as H tends to zero.

Near the critical point the spontaneous magnetiza-

tion behaves as

I - (TC-T)B, TsT,, H=0. (1-11)

For -the insulating ferromagnet EuS (Heller and

Benedeck 1965) one finds

B =~ 0.33 20.02 .

The shape. of the critical igotherm can be described

by



Fig. 1.4. The isotherms of an idealized

ferromagnet.

12
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iz - Y%, r=r, H-0. (1-12)

Kouvel and Fisher (1964) analyzed some experimental data

for nickel and found

§ = 4,2 0.1 -

The initial susceptibility defined by

21 (1-13)

increases gradually as. the temperature is lowered until at

T = T, and H =0 it becomes infinite (Fig. 1.5). The
behaviour of the initial susceptibility in the region of

‘the critical point is described by

-7 )Y = 0. -
X = (T-T) Y+ T+ T . H 0. (1-14)

A very accurate experiment on Fe (Noakes et al. 1966)

indicates

vy = 1.333 £ 0.015 .



Fig. 1.5. The spontaneous magnetization

and initial susceptibility of a ferromagnet.

14
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One would expect similar behaviour for the ‘initial susceptibility

below Tc

x ~ ¢ -m7Y, T H =0 (1-15)

¢ ! .

At the present time there are no experimental results which

enable one to predict a value for Y°.

The critical point behaviour of the specific heat

Cu at constant magnetic field is described by

o

Cy ~ (T-Tc)' , T+ T,
+
) H=0 . (1-16)
Cy ~ (TC-T)'“ ;T T,

Experiments performed by Teaney (1966) show the ferromagnets
EuS and Eu0 both have magnetic specific heat anomalies

of the lambda type. The experimental results are not
sufficiently accurate to allow one to fix a definite value
for o and o” . All that can be said is that the results
are- consistent with a logarithmic behaviour or a small non

zero value for the critical index.

In simple antiferromagnets the gquantity analogous

‘to the spontaneous magnetization of a ferromagnet is the



16

sublattice magnetization. Experiments perfermed on the

antiferromagnet MnF, by'Heiler and Benedeck (1962) give
g = 0.335 + 0.005.

Teaney (1965) has made accurate measurements of

the specific heat of the antiferromagnetic MnF, . The

behaviour of the specific heat in the critical region

(Kadanoff et al. 1967) is consistent with

-0
g v (T-Tg) T Tc+,

‘H=0, (1-17)

o

CH (TC-T)-a ¢ T+ Tay

where

In order to.have a critical isotherm and
susceptibility of an antiferromagnet analogous to those

of a ferromagnet it is necessary to place the antiferro-
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magnet in a staggered field, a field which points in
opposite directions for neighbouring spins. There is no
known way of realizing such a field experimentally, hence
there is no direct experimental analogue between the

critical isotherm and susceptibility of a ferromagnet and

antiferromagnet.

Many binary fluid mixtures exhibit a critical
temperature below which the fluid separates into two
phases. -One can define a coexistence curve analogous to
that of a gas-liquid system. Some recent accurate measure-
ments on mixtures of C Clk and n - CvF1s (Thompson and
Rice 1964) indicate thatvthé index B describing the

shape of the coexistence curve in the critical region is

given by
B =~ 0.34 ¢ 0.02

One other type of transition which we shall
'mention here is the order-disorder transition in a binary
alloy. A binary alloy in which like atoms attract unlike
atoms is analogous to an antiferromagnet. The quantity
analogous to the sublattice magnetization is the order

parameter. A very accurate experiment has been performed

on very pure beta brass (Als-Neilsen and Deitrich 1967).
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An analysis of the experimental data suggest

B =0.305 % 0.005 .

The behaviour of the diffuse scattering at the superlattice.
peak was also investigated. This provides information on
the analogue of. the staggered susceptibility. The results

showed

1.25 £-0.02-.

<
]

In light of the results.for B and Yy found
from our. work. on the Ising model the above results for
beta  brass are perhaps. the most significant of all the

experimental results we have quoted.

The experimental evidence we have cited is
summarized in Table 1l.1. The values of - -the critical
- indices -suggest that phenomena. associated with critical
- points are  very general and display only a very weak
- dependence: en a-particular type.of system, i.e. magnetic,
gas-liquid, etc. Thus it should seem quite reasonable-
to seek-expressions relating the critical indices to one
another. Using rigorous thermodynamic' arguments, . the

relation between the specific heat at constant field CH‘
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and the specific heat at constant magnetjzation CM and- the-

fact that Cy is non-negative, Rushbrooke (1963) derived

the inequality

o + 2B + vy~ > 2. (1-18)

Griffiths (1965) gave a rigorous derivation, based on the

convexity properties of the free energy, of the inequality
a” + B(1+6) > 0 . - (1-19)

'A- non-rigorous. theory has. recently been
developed -(Widom 1965, Kadanoff 1966, Kadanoff et al. 1967),
 which--enables all of the critical indices-to be. expressed
in terms of two fundamental indices. The theory (scaling
law theory) predicts that the inequalities in. (1-18) and
(1-19) are replaced by equalities -and that corresponding

jindices- above and below the critical point are equal, i.e.

a” + 28 + y© = 2 \

li
N

a” + B(8+1)
?o (1-20)
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The experimental values for the set of critical
indices describing the critical point behaviour of real
systems are not known to gufficient accuracy to enable- one’
to draw' a definite conclusion on the validity of the
scaling law hypothesis which leads to (1-20). The critical -
indices of the mean field theory and also those of the
two dimensional Ising model satisfy (1-20). However,
numerical investigations indicate- (1-20) does not hold for
the three--dimensional Ising model (see Table 1.2). We
shall have more to say about equations (1-18), (1-19), and.

(1-20) -in Chapter VIII.

Several. attempts. have. been made towards a
theoretieal description of the -experimental facts as out-
lined above. -The first of these were of a phenomenological
nature, the Van der Waals theory of the gas-liquid critical.
point and the Weiss theory of ferromagnetism, which are now
commonly known as mean field theories. The predictions of
the mean -field theories disagree both qualitatively and

quantitatively with the results of experiment.

An explanation based on a statistical mechanical
approach did not come until much later with the advent of

the Ising -(1925) and Heisenberg (1928) models of ferro-

magnetism.
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Theoretical investigations of the Ising-and-
Heisenberg models have shown these two models, or modifica=:
tions thereof, are capable of explaining much of" the
observed critical point behaviour in real systems. Our
work concentrates on the Ising model of a ferromagnet, so
we will review in the next section the development of

the Ising model from 1925 to the present.
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B. The Ising Model

What has now come to be known as the Ising:model
was first proposed as a model of ferromagnetism in 1920 to
Ernst Ising by his supervisor W. Lenz (Brush 1967). The
Ising model represented the first attempt to give a-

statistical mechanical interpretation to the phenomena of

ferromagnetism.

The classical Ising model of a ferromagnet
associates with each site of a crystal lattice a spin
‘(magnetic moment m) which can point in two directions, "up"
and "down", relative to an external magnetic field H. The
two states of the ith spin are usually described by the
variable o; = +1 for "spin up" and o; = -1 for "spin
down". In addition to the energy of interaction (-mHoi)
of the magnetic moment with the magnetic field, there is
also assumed to exist an interaction between neighbouring
spins, ~-J 1f the two spins point in the same direction and

J 1if they point in opposite directions, where J 1is a

positive constant. The energy of the system is given by

E=-J ) o.,0, -mH | o, (1-21)
<iyg> 13 ¢ i

where <i,j> indicates the first sum is over nearest

neighbours only. Equation (1-21) can be taken as the
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definition of the classical Ising model., Having-defined& the
energy the next step is to calculate (in principal at least)
the partition function from which the thermodynamic
quantities of interest can be obtained in a straight forward
manner. The greater part of this thesis is concerned with
just such a calculation for a triple of related three
dimensional lattices on which the Ising model (1.21} has not

previously been studied.

Interest in the Ising model is primarily of a
pedagogical nature as it is one of the few many body
problems that has proven exactly soluble, others being a
class of two dimensional problems. (the ice problem, KDP
model of a ferroelectric, and F model of an antiferro-
electric) ,which have been solved by Liebk (1967(a), (b), (c)),
and the one dimensional Van der Waals gas,which has been
solved exactly (Kac et al. 1963). Despite the fact'the
expression for the energy (1-21) is extremely simple,
studies of the Ising model have shown that the simple nearest
neighbour interaction between spins is the essential
ingredient in explaining the existence and behaviour of

ferromagnetic systems near their critical points.

Use of the Ising model is not restricted to a
study of ferromagnets only. The model can serve as an

equally valid description of an antiferromagnet upon
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replacing J by =-J , as a model for liquid-gas- condensa-
tion; the lattice gas (Yang and Lee 1952); and as a model

for binary alloys and liquids as well.

Though as we have pointed out in the previouw
paragraph the great pedagogical interest in the Ising-
model stems from the fact it serves as a prototype for many-
different types of cooperative phenomena, there is experi-
mental justification for studying such a model as well. For
those insulating ferromagnets and antiferromagnets exhibiting
a large anisotropy in the g factor (g" > g;) the Ising
model provides a more valid description than the Heisenberg
model which applies only to isotropic systems. Recent
experimental evidence (Als-Neilsen and Deitrich 1967)

suggests the Ising model can provide a valid description of

a binary alloy.

Ising (1925) was able to solve the model. exactly
in one dimension for all temperatures and all values of the
magnetic field by a straight forward combinatorial approach.
The one dimensional model did not exhibit a phase transition
for T > 0 . However, at T = 0 , the susceptibility becomes
exponentially infinite, indicating the onset of a spontaneous
magnetization. In this sense the one dimensional model can
be said to have a critical point at T = 0 . As a result

of his studies, Ising erroneously concluded that the two
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dimensional model would also fail to exhibit ferromagnetic
properties. Ising had failed to appreciate the importance

of correlations between spins in two or more directions.

The first convincing argument that the two
dimensional model would exhibit ferromagnetic properties
was given by Peierls (1936). The first exact results for
the two dimensional Ising model were obtained by Krammers
and Wannier (1941) who discovered a certain symmetry -
property between the high and low temperature partition
functions for the square lattice which enabled them to locate
the position of the critical point exactly if it existed.
An exact closed form expression for the zero field parti-
tion function for the rectangular lattice was first given
in the classic paper of Onsager (1944), where he showed that

the specific heat was logarithmically infinite on both sides

of the critical point.

Onsager (see Wannier, 1945) was also able to shed
light on the reason for the. symmetry properly first
observed by Krammers and Wannier. Onsager pointed out that
the observed symmetry was unique. to two dimensional lattices
and could be given a topological explanation based on the-
fact that two dimensional lattices are planar and therefore
dual lattices (Ore 1963) can be constructed from them. The

square lattice is self dual, the reason that Krammers and.
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Wannier were able to locate the critical point exactly.

In 1948 Onsager (see Onsager 1949) enunciated-his
famous result for the spontaneous magnetization of the

rectangular lattice

]/8
I = [1-(sinh 2szinh 2Ky)'2] ' (1-22)
where
Kx = Jx/kT ’
(1-23)
K =7J /kT .
Y Y/

The derivation of this result has never been published by
Onsagerronly quoted in the above reference. The first
published derivation of (1-22) was given by Yang (1952).
Following the work of Onsager and Yang exact expressions
for the zero field partition function and spontaneous
magnetization for several other two dimensional lattices
were obtained. The results, however, were of the same
general form as those for the square lattice, the critical
indices in fact were found to be the same for all two

dimensional lattices.
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To this date no exact expression has been obtained:
for the partition function of the two dimensional Ising
model in a non zero field, and hence no exact expression
has been obtained for the initial susceptibility. By
examining the relationship between the correlations for
pairs of spins and the initial susceptibility Fisher— (1959(a)).
was able to show in a semirigorous manner that near the

critical point the initial susceptibility behaved as

Y
Xg = C(1 -1 /M7, T->'I‘c+,H—O . (1-24)

The three dimensional Ising model has so far
resisted: all efforts to obtain an exact solution,. in.fact
an-exact result of any. kind has yet to be found. The only
rigorous. results obtained so far for the three dimensional
Ising model are those of Griffiths (1964-67) which show

that the three dimensional Ising model does indeed undergo

a transition.

In the absence of any exact analytical results
for the three dimensional Ising model, most efforts at
-elucidating the behaviour of the thermodynamic. functions in
the critical region have been limited to two alternative
ﬁethods, improved closed form approximations and exact

series expansions.
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In order to construct a closedlform approximation
it is necessary to. neglect some of the statistical mechanical
details of the problem so that the partition function can
be summed. The disadvantage of this approach is that the
details -which one is forced to neglect. are usually all
important. Hence one simply reproduces the already well
‘known mean field results which predict the wrong type of
behaviour, both gqualitatively and quantitatively, in the

critical region.

Our. approach to the Ising model in this thesis
is that of exact series expansions, the coefficients of the
series ‘being known exactly as far as they go. The method
involves an exact calculation of the leading terms . (usually
the first ten to twenty terms) of the power series expansion
‘of the thermodynamic quantity of interest. One then attempts
to estimate the critical parameters by employing suitable
‘numerical techniques. The method has been tested on the
two dimensional model and it has proven capable of giving
excellent-estimates of the critical parameters, many of
which are known-exactly. The impetus for this method was
provided by -Domb, Sykes, Fisher and their colleagues at
Kings College, London. As a result of their efforts and
those -of - others who have utilized this method a considerable

amount of -numerical information has been compiled on the
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pehaviour of the three dimensional Ising model  in the ‘region

of the critical point (see Table 1.2).

For example, in the region just above  the: critical
point it is now fairly well established that' the initial

ferromagnetic susceptibility behaves as:

X * C_'_(l—Tc/T)-S/{’,_ TST_ , B0 . (1-25)
+

There is also strong evidence to suggest that the
specific heat:singularity above T, is not logarithmic.
The work of Sykes, Martin,; and Hunter (1967) suggest that
near Tc the specific heat behaves as

- 1/8
C. = A+(1-TC/T) ', T-»T_ , H=0 . (1-26)

H C+

On the low. temperature side of Tc the values
of the critical indices are much less certain. Probably
the best previous estimates of the low temperature

critical indices have been given by Baker and Gaunt (1967) .

They £ind
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. +0.003
,0.312;0.006\

w
[}

. +0.030

Yy© = 1.310_0.050 » . (1-27)
. +0.160

CX. - 0.066-0.040

/

The primary purpose of this research has been to obtain:
improved estimates of the low temperature critical indices.
Such information is not only desirable from the standpoint -
of making a comparison with experiment but it can also serve
as a guide to the validity of the scaling law hypothesis

(Widom 1965, Kadanoff 1966, Kadanoff et al. 1967).
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C. Scope of this Thesis.’

The structure of the three dimensional lattices
on which we have applied the Ising model is discussed in
Chapter II. The derivation of high temperature series
expansions for the zero field partition function and initial
susceptibility is outlined in Chapter III. The derivation
of the low temperature series expansion for the partition
function is discussed in Chapter IV. 1In Chapter V we
review some well known Ising model transformations which
are applicable to the lattices we have worked with. The
self-avoiding walk problem, its relationship to the Ising
model and the derivation of the corresponding series
expansions, is discussed in Chapter VI. Numerical methods
utilized to obtain estimates of critical parameters are
outlined in Chapter VII. A review and discussion of the

results of this research project appear in Chapter VIII.
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CHAPTER II

THE HYDROGEN PEROXIDE, HYPERTRIANGULAR, AND

HYPERKAGOME LATTICES

Prior to the work reported on in this thesis,
most investigations of the three dimensional Ising model
have been confined to five regular lattices, the face
centered cubic, body centered cubic, simple cubic, crystobalite,
and diamond,having coordination numbers 12, 8, 6, 6, and
4 respectively. By a regular lattice we mean one which can
be superimposed on itself by a combination of translation
and improper rotation in such a way that any point can be
superimposed on any other point and any bond can be superimposed
on any other bond. In other words, in a regular lattice all

points and all bonds are equivalent.

The lattice of primary importance in this investi-
gation is an idealized hydrogen peroxide lattice (Fig. 2.1).
This lattice was first reported on in the literature by
Heesch and Laves (1933) and a detailed description of this
and other similar lattices appears in Wells (1954). This
lattice belongs to the cubic system and has the space group
06(14132) (Henry and Lonsdale 1952). The lattice is not
centrosymmetric and so can occur in "left-handed" and "right-

handed" forms. The lattice consists of four interpenetrating



Fig. 2.1.

The hydrogen peroxide lattice.
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body centered cubic lattices (Fig. 2.2) and so has four atoms
per unit cell. A coordinate system can be chosen such that
the atoms in a cubic unit cell have coordinates (0,0,0);
(1/4,1/4,0); (1/2,1/4,1/4); (3/4,0,1/4); (0,3/4,3/4);
(1/4,1/72,3/4); (1/2,1/2,1/2); (3/4,3/4,1/2) (Fig. 2.3).
Idealized crystalline hydrogen peroxide is the only known
substance to have such a structure (Wells, private communi-
cation), hence the name of the lattice. The hydrogen per-
oxide lattice may be constructed by picking out one quarter

of the lattice points of a face centered cubic lattice.

Real crystalline hydrogen peroxide differs from
our ideal model in that it belongs to the tetragonal system
(Abrahams et al. 1951) instead of the cubic system. The
lattice parameters are a = 4,06 A and b = 8.00 A, The
corresponding space group 1s D:(PH1212) (Henry and Lonsdale
1952), enatiomorphous with DE(P,32,2). The oxygen-oxygen
bond distance is 1.49 A, the distance between oxygen atoms
across the hydrogen bond being 2.78 A. The angle made by
the hydrogen bond with the oxygen-oxygen bond 1s 97° and
the azimuthal angle between planes containing the hydrogen
bonds and the oxygen-oxygen bond is 94° (Fig. 2.4). The
hydrogen bonds form a four fold infinite helix in a plane

perpendicular to the c-axis (Fig. 2.5). On the basis of



Fig. 2.2. The four interpenetrating body.
centered cubic lattices which make up the

hydrogen peroxide lattice.
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Fig. 2.3. The cubic unit cell of the

hydrogen peroxide lattice.
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Fig. 2.4. The shape of the hydrogen

peroxide molecule.
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Fig. 2.5. The projection of the lattice
of real crystalline hydrogen §eroxide

onto a plane perpendicular to the c-axis.
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the structure outlined above, it was concluded (Abrahams
et al. 1951) that crystalline hydrogen peroxide has no
measurable entropy at absolute zero. For those interested
in a more detailed description of hydrogen peroxide, from
1ts discovery to the present, one may refer to the lengthy

treatise by Schumb, Satterfield, and Wentworth (1955) .

In studies of the three dimensional Ising model,
the hydrogen peroxide lattice occupies a unique position.
It is a lattice with the lowest possible coordination number
(g=3) and it can be looked upon as the three dimensional
analogue of the two dimensional honeycomb lattice. Further-
more, from the hydrogen peroxide lattice it is possible to
construct two other three dimensional lattices, the hyper-
triangular and hyperkagomé lattices, having coordination

numbers six and four respectively.

The hypertriangular lattice can be formed from
the hydrogen peroxide lattice by first bi-colouring the
sites of the hydrogen peroxide lattice (Fig. 2.6) followed
by a removal of all sites belonging to one of the two given
colours. The remaining sites form what we call the hyper-
triangular lattice (Fig. 2.7). The hypertriangular lattice
serves as a three dimensional analogue of the two dimensional

triangular lattice.



Fig. 2.6.

‘lattice.

A bi-coloured hydrogen peroxide
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Fig.

2.7!

The hypertriangular lattice.
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The hyperkagomé lattice can be constructed from
the hydrogen peroxide lattice in the following manner. At
the mid point of each bond of the hydrogen: peroxide lattice
we place a new lattice site, thus forming a decorated
hydrogen peroxide lattice (Fig. 2.8). These new lattice
sites are then connected together and the original hydrogen
peroxide sites are removed. The remaining lattice of
coordination number four is called the hyperkagomé lattice
(Fig. 2.9). This lattice can be looked upon as being a

three dimensional analogue of the two dimensional kagomé

lattice.

The hydrogen peroxide lattice is a loose packed
lattice whereas both the hypertriangular and hyperkagomé
lattices are close packed. By a loose packed lattice we
mean a lattice in which there are no circuits (loops) made
up of an odd number of bonds (edges). A close packed

lattice has loops with both an even and an odd number of

edges.

One may be inclined to ask the following question,
namely, why study the hydrogen peroxide lattice since it
would seem to be of little direct experimental interest?
The hydrogen peroxide lattice, as we have already pointed
out, occupies a unique position in studies of the three

dimensional Ising model. Because of its low coordination



Flgo 2.8-'

lattice.

The decorated hydrogen peroxide
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Fig.

2.99

The hyperkagomé lattice.

46






47

number, the coefficlent of the low temperature series
expansions for the Ising model on the hydrogen-peroxide

lattice are all of the same slgn, a fact which tends to make
the lattice more suitable for study than lattices of higher
coordination number. A notable exception of course being

the diamond lattice with a coordination number of four (Essam
and Sykes 1963). The low coordinétion number of the hydrogen
peroxlde latticé also gives rise tc a considerable simplif;cé-
tion in the configurational counting problem which arises

in the derivation of high temperature series expansions for

the Ising model. Another reason for studying such a lattice

is that the hydrogen peroxide, hypertriangular, and hyperkagomé
lattices are all related by certain well known transformations,
which are described in Chapter V. These transformations

serve as a valuable check as to the correctness of the
underlying counting problem and they also provide an independent

means of checking the results of the numerical analysis of

the series expansions.

The behaviour of the spontaneous magnetization, initial
susceptibility, and zero field specific heat can all be
interpreted in terms or thelr corresponding correlation func-
tions (see Kadanoff et al. 1967). For example, the initial
susceptibility can be formulated in terms of a sum over spin-

spin correlation functlions. As the eritical point is approached,
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the range of correlation grows, becoming infinite at the
critical point, with the result that the susceptibility becomes
infinite at the critical point. This diveregence in the range
of correlation is the precise cause of this and all other
singularities in the thermodynamic derivatives. Since one
expects the long range correlations to be independent of all
but the grossest features of the interaction, a change in the
behaviour of the long range correlations from one lattice to
another of the same dimensionality 1s not expected. 1In fact
the solutions for the two dimensional Ising model bear this
out, the correlations for the square and triangular lattices
being basically the same. In three dimensions as far as one
can tell, the critical indices are also lattice independent.
Hence, our numerical estimates of the critical indices for
the Ising model on the hydrogen peroxide lattice are also

expected to be valid for other three dimensional lattices.
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CHAPTER III

HIGH TEMPZIRATURE SERIES. EXPANSIONS

A. The Zero Field Partition Function

In this chapter we briefly review some of the
standard techniques used to derive high temperature series
expansions. A thorough review of the various methods of
deriving high temperature series expansions for the Ising
model has been given by Domb (1960). It is not the
intention of the author to give a lengthy review of the
concepts of graph theory, which are widely used in deriving
the expansions we are seeking. The reader unfamiliar with
such concepts should refer to Domb (1960) or Sykes, Essam,

Heap, and Hiley (1966).

The energy of the spin one-half Ising model with
nearest neighbour interactions only can be written in the
form (c.f. Chap. I, eq'n. (1-21)),

Em= -J I 0; 0s -mHZI o, (3-1)
1 [4
<i,j> J i 1
where J is the interaction energy between neighbouring sites,

m is the magnetic moment, and H is the external magnetic

field. The o variables take the values + 1 according to
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whether the magnetic moment is parallel or antiparallel to

the magnetic field,

The thermodynamics of the Ising model are computed
from the partition function, which for a regular lattice of

N sites takes the form

Zy (B,H) = L exp B[JZaioj+ mHZoi], (3=-2)
oy=tl,e e ,op=tl :

where B = 1/kT and the outermost sum is over the 2N possible
values of the o; for the N lattice sites. Since the ¢

variables commute (3~2) can be written as a product

Zy (B,H) = LT, exp (Kojoj) I exp (BmHoy), (3-3)

al=i1' eec 'O‘NEil
where K = BJ/KT. The °i°j satisfy the following relations,

(Gidj)3 = (oicj)“ - (°i°j)6 T

s 5 » (3-4)
(oioj) = (03045)° = (0404)° = =-=
Hence we can write
exp (Kojo5) = cosh K + 0j04 sinh K. (3-5)

Equation (3=5) is the well known Van der Waerden identity
(Van der Waerden 194l1). The first product in (3-3) can now

be written as
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I (cosh K + 0404 sinh K) = Il cosh K (1 + 0504 tanh K)
<i,j> <i,j>

N/2

g :
= (coshK) L[l+(oio5) tanh K

’j’..
+ (oiaj)(qkol) tanh? R+---],
(3-6)

where gqN/2 is the number of nearest neighbour bonds in the
lattice. Setting H=0, the second factor in (3-3) becomes

equal to unity and the zero field partition function is

given by
qN/2
Zy (8,0) = (coshK) . I [1+ (0j04) tanh K
' N R
0181'...'0N=11 (3-7)

+ (Oin) (akol) tanh? K + ---],

We can now give a graph theoretical interpretation
to (3-7). The only terms in (3-7) that will give a non-zero
contribution are those which contain the °£8 to an even
power as the sum over states will cancel all terms which
contain a o; to an odd power. With each (0joj) we associate
a nearest neighbour bond (an edge of a graph) of the lattice,
and since only even powers of the oj can occur in a given
term, an even number of edges must meet at the ith vertex,
or in the terminology of graph theory each vertex is of even

degree. Thus with each term of (3-7) we can associate one
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or more graphs, whose vertices are all of even degree. Such

graphs, connected and separated, are referred to as non-

magnetic graphs.

The partition function can now be written as

N gN/2 gN/2 )
zy (B,0) = 2 (cosh K) {1+ p(L,N) tanh K}, (3-8)
=1

where p{%,N) denotes the total number of ways of construct-
ing (embedding) in a given lattice all graphs of % lines
whose vertices are all of even degree. The p(&,N) are in
general polynomials of degree £ in N, hence the notation.

2N in (3-8) arises when we perform the sum over states.

The procedure outlined in the preceding paragraphs
is perhaps best illustrated by means of an examplé. The
first six p(%,N) for the hypertriangular lattice are shown

in Table 3.1

In Table 3.1 we have enclosed in parenthesis
those graphs contributing to a given p(2,N). This notation
denotes the number of such graphs per lattice site and is

commonly referred to as the lattice constant for a given

graph.,

Instead of (3-8) what we are really interested in

is the dimensionless Helmholtz free energy per site defined
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TABLE 3.1
The first six coefficients in the power series expansion

for the zero field partition function of the hygertriangular

lattice.
p(l,N) =0 p(4,N) =0
p(2,N) =0 pism =58 (O
p(3,N) =N (A) = 3N _
-N ple. M) =8 (0 ) +N (M)
+ N (AA)

= 1/2 N2 + 14 1/2 N

TABLE 3.2
The first four coefficients, calculated by the direct
method, in the susceptibility series for the hypertriangular

lattice.
by = (/) =3 by = (/) =72
b = (A) =15 | by = (/M) + (D)

+ (A/)
= 345
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by

-£/kT = lim {1n 2y (B,0) I/N, (3-9)

N>

Hence

-f/KkT = 1n 2 + (q/2) 1ln (cosh K)
qN/2 L
4+ 1lim {ln [1 + I p(L,N)V']I/N, (3-10)
N-+» =1

where v = tanh K. It is customary to denote the logarithm

of the configurational partition function per site by 1lnA,

i, e.
gN/2 L
InA = {In [1 + I p(2,N)V']}/N, (3-11)
Q=]
hence
-£f/kT = 1n 2 + (q/2) ln (cosh K) + lim 1lnA. (3-12)

N+

Upon formally working out the logarithm in (3-11l) one finds

gN/2
Ima= ¢ p 2, (3-13)
L=l &

where pél) is just the coefficient of N in p(4,N).

For example, for the hypertriangular lattice we

have (c. f. Table 3.1)
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n A = % 1n [1+p(3,N)vi+p(5,N)vi+p(6,N)ve+ecc], (3-14)

Expressing (A A) in terms of connected lattice constants
(see Appendix C, page 162) and expanding the logarithm on the
right-hand side of (3-19) we havei

n A=} N AN VS [ ) 2 (D)-2N () v

[N2(A)2vS+eea]/24e0s}

AV (G v+ (O _%(A)]vu.,.

pgl) v + p§1>vs pgl)v‘ + see (3-15)

The coefficients in (3-15) are alllinear in configurational
lattice constants and no configurations with cutting points
enter, a result which exactly parallels the Mayer theory of
cluster integral expansions in the theory of imperfect gases.
A rigorous derivation of the cluster expansion method as

applied to lattice statistical problems has been given by Sykes

et al. (1966),

The reason we must stipulate N+« is that if we do
not, the partition function will just be a finite polynomial,
which is everywhere analytic and hence would show no singular

behavicur. Hence the free energy per siet for a regular

lattice of coordination number q and N sites in the limit

N+« can be written as

(-f/kKT) = 1n 2 + (q/2) 1ln (cosh K) + L pél)vn,v (3-16)
=1 .
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where we now have

A=z pt, (3-17)
g=1 %

| Using the techniques outliqed above we have
derived the series expansion for the free energy of the

hydrogen peroxide lattice up to order twenty-eight and

for the hypertriangular lattice up to order fourteen.

The dimensionless free energy per site for the

hydrogen peroxide lattice is given by
(-£/kT) = 1ln 2 + (3/2) ln (cosh K) + 1 1/2 v'*
+ 1 1/2 v!* + 10 1/2°v!® + 23 1/2 vi®
+ 6 3/4 v3® + 178 1/2 v3? + 484 v?*
+ 774 v2s 4+ 3023 1/4 vl o4 e, (3-18)
and for the hfpertriangu;ar lattice by
(-£/kT) = 1n 2 + 3 1n (cosh K) + v® + 3v® + 14 1/2 v¢
+ 33v’ + 57v® + 218 1/3 v® + 961 172 v!*®
+ 3045v?! + 8925 1/4 v!'? + 32676v??®

+ 120352 1/2 w3 4 oo (3-19)
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The coefficients of v in (3-19) up to and includ-
ing v!? were calculated by graphical enumeration on the
hypertriangular lattice. The last two terms of (3-19)
were obtained from (3-18) via the star-triangle transfor-

mation as outlined in Chapter V.

The configurational data required to derive the
first twelve terms of the zero field partition function and
dimensionless free energy for the_hypertriangular lattice
are given in Appendix A. The only conneeted graphs which
contribute to the first twenty-eight terms of the zero
field partition function and dimensionless free energy for
the hydrogen peroxide lattice are the p-graphs (polygons)
listed in Appendix D, where we have tabulated separately
for both lattices the "star" graphs (see Sykes, Essam;
Heap, and Hiley 1966), which are required in the calcula-
tion of the lattice constants of the separated configura-

tions listed in Appendix C.

The remainder of the thérmodynamic functions of
interest, with the exception of the initial susceptibility,

can be obtained from (3-16) byfdifférentiation; The

internal energy per site is given by

)
U = kT2 a_'r (-£/KT) (3-20)
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and the zero field specific heat per site by

C = au/aT (3-21)

For the hydrogen peroxide lattice we have

U/J = -11/2 v - 15v? + 15vil - 21vl3 - 147v!5
- 254v17 + 288v19 - 3792v2l - 7689v23
~ 8508v25 + 64527v37 + ..., (3-22)
C/k = K2[1 1/2 = 1 1/2 v + 135v® - 300vi0 + 438vl2
+ 1932vi% + 2130v16 - 9807v18 + 85104v20
97215v22 + 35853v2% + 1529529v26 +..., (3-23)

+

whereas for the hypertriangular lattice we have

U/J =

C/k =

hydrogen

- 3v - 3v2 - 12vY% - 87v5S - 216vE - 369v’

.1734v8® - 9159v9 - 31530v}? - 97488vi!

391293vi2 - 1703832vi3 - ..., (3-24)

K2[3 + 6v - 3v2 + 42v3 + 1248vS + 2148v®
12576v7? + 79848ve + 301428v? + 989937vi0
4380216v!i! + 21077448vI2 + ..., (3-25)

In terms of the variable K alone we have for the

peroxide lattice



C/k =

and for

C/k =
+
+

+

relation
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1.5K2 - 1.5K% + K6 - 0.566666K8+ 135,2952381K30
660.1462434K12 + 2002.070046K1* - 2394,318471K!6
401.5388552K18 - 8224.447893K20 + 145141.528K22

677416.1035K2% + 1829923,.386K26 -~ 1989842,638K28
ooo" (3"26)

the hypertrinagular lattice we have

3k2 + 6KY - 3K“ + 40KS + 43786 + 1206.8K’
1566.866667K® + 10526.47619K? + 76074.59048K!0
274283.2423K11 + 781916.7583K}2

3515116.625K!3 + 18106355,75K1" + oo (3-27)

The entropy per site is obtained from the

S/k = (U/KT)-(£/kT). (3-28)
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B. The Initial Susceptibility

In the previous section we have concerned our-
selves with the calculation of the zero field partition.
function and the thermodynamic variables derivable from
it. 1In order to derive the inpitial susceptibility per

site defined by
Xo = (3%/3H?) (f/kT)|H=0 , (3-29)

we must also consider the effect of the factor containing

the magnetic field H in (3-3). The end result is given by

X = X,/(Nm2/kT) = 1+ 2 £ b, v*, (3-30)

=1
where X is the reduced initial susceptibility per site.
b, is the coefficignt of N in the total number of ways of
embedding in the lattice all graphs of % lines and exactly
two vertices of odd degree. Such graphs are referred to
as magnetic graphs. This method of calculatiné-the'initial

susceptibility we shall refer to as the direct mdthod.

The calculation of the first nine terms in the
susceptibility series for the hypertriangular lattice using
the diréct method is given in Appendix E., For example,
those graphs contributing to the first four terms of X for

the hypertriangular lattice are shown in Table 3.2.



The calculation of the initial susceptibility by

the method of (3-30) requires the enumeration of graphs
having vertices of degree one. As these graphs are
exceedingly numerous, this method is very susceptible to

error and excessively labourious.

Sykes (1961) discovereé a theorem which greatly
reduces the labour involved in calculating the series for
the initial susceptibility. Sykes' theorem, as later
derived from graph-combinatorial arguments by Nagle and

Temperley (1968) can be written in the form

- -2 2 » -+ )
Xx =1+ (l-ov) [qv(l-ov)=-2(1-v*)I g(p)iv
M
p

- a
+ (1+v)? I g(;) vz I s(s=2) pg
; s=0

61

+ 2 (l+v)? z g(p) v (ay-1) {s4-1)1, (3-31)

P

where ¢ = (g-1), q being the coordination number of the
lattice. E,ﬂ (Pogr Pye Par *°% pq) is a (gq+l) tuple or
vector partially describing a graph by the number pg

->
of its vertices of degree s. gl(p) is the number of graphs

with description B, which may be embedded in the lattice

and for which pe = 0.
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In (3-31) the singly primed summation is over
all graphs (nonmagnetic) whose vertices are all of even
degree, whi;e the doubly primed summation is over all graphs
(magnetic) with exactly two odd vertices, i and j, of odd
degree s; and sj. Note that if either s; or sj or both

equal one, the graph does not contribute to (3-31).

Using Sykes' theorem we have derived the first
twenty-seven terms in the expansion of the reduced initial

susceptibility per site for the hydrogen peroxide lattice

T =1+ 3v+ 6v¢ + 12v¥ '+ 24v' .+ 48v° + 96v°
+ 192v7 + 384v® + 768v® + 1506v'°® + 2952v!!
+ 5814v'2 + 11448v'? + 22494v'" + 44192v'°
+ 86514v'® + 169320v!7 + 330858v'® + 646524v!?
+ 1263696v2° + 2469456v2! + 4817616v3?
+ 9397740v3? + 18315734v2* + 35694200v?°
+ 69538944v2¢ + 135463148v37 + oo (3-32)

For the hypertriangular lattice we have obtained
the first twelve terms in the series for the susceptibility
by way of Sykes' theorem. We have also added one more
term by star-triangleitransformation from (}-32) (c.f. eq'n

(5-37)). The initial susceptibility for the hypertriangular

lattice is given by
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X =1+ 6v + 30v? + 144v® + 690v* + 3276v°
+ 15360v® + 71532v’ + 332166v® + 1537836v°
+ 7097244v° + 32677584v'! + 150203012v'?
+ 689366094vi? + oo (3-33)

The graphs required to derive the suscepti-
bility series for the hypertriangular lattice via
Sykes' theorem are given in Appendix B. For the hydrogen
peroxide lattice the only connected graphs required ih
calculating the first twenty-seven terms of the suscepti-
bility in this way are the p-graphs and theta graphs of
Appendix D, and the dumbell graphs of Appendix J.
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CHAPTER 1V

LOW TEMPERATURE SERIES. EXPANSIONS OF

FERROMAGNETS AND ANTIFERROMAGNETS

A. The Direct Method.

Consider an Ising model. of a ferromagnet at
T = 0. All the spins are aligned and give rise to a
spontaneous magnetization. As the temperature is raised
above T = 0 thermal fluctuations will perturb the ground
state. The probability of any given perturbation will be
given by the appropriate. Boltzmann factor. As overturning
almost any spin causes an increase -in. energy, the most:
important perturbations will correspond to a relatively
few overturned spins. Thus we can group the perturbations-
according to the number of overturned spins, the energy
of any particular perturbation depending on the relative

positions of these spins.

Denote by -J the interaction energy of a pair
of aligned first neighbour spins and by -mH the interac-
tion energy of a spin aligned with the magnetic field H.
Then 1if we overturn s spins of magnetic moment m with

r first neighbour bonds between them there will be a

gain in energy of
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2(gs=2r)J + 2msH , (4-1)

where gq is the coordination number of the lattice, i.e.

the number of first nearest neighbours. Thus .the
Boltzmann factor for a perturbation having its energy

given by (4-1) will be

exp{[-2(gs-2r)J-2msH] /kT} . (4-2)

Letting exp(-4J/kT) = u = z? and exp(-2mH/KT) =y ,

(4-2) can be written as

igs-r s

exp{[-2(gs-2r)J-2msH] /kT} = u? TR (4-3)

The energy of the ground state is given by

)

Thus we can write the partition function as follows

where

Ay (u,n) = G, (s,r)u
. 1oy

£ = - N(%qJ+mH) . (4-4)

exp(—eo/kT)AN(u,u) ’ (4-5)

1



66

For a given lattice the GN(s,r) in (4-6) denote
the total number of strong embeddings (c.f.Domb 1960, Sykes
et al. 1966) of s spins with r nearest neighbour bonds
between them. In general GN(s,r). will be a polynomial in
N. For the hydrogen peroxide lattice the first few

G, (s,r) are given by

N
GN(l,O) = N \
G.(2,1) = 11y
N'<’ 2
G.(2,0) = ly2-on
N'“’ 2 \ ,
G (3,2) = 3N » (4-7)
G..(3,1) = 13n2-9N
N'Z 2
_ lus_og2, el
GN(3,O) = 6N 2N +63N

o )

The free energy per spin is given by

£ = - k7 1im 1P Qlusw) (4-8)
N-+c0 N |

In Ay (u,u) (4-9)

= - %qJ-mH—kT lim
N-»c0 N
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Exactly the same arguments are valid here as were applied
in Sect. A of Chapter III in dealing with the taking of
the limit, i.e. upon taking lim [1n Ay(u,n)]/N we find

N-+w

that only the coefficient of N in Gy(s,r) falls to vanish

and hence
- kqs-r s
1im [1nA (u,u)Ii/N = In A{u,u) = & [s,rlu M
N N s,r (4-10)

where by [s,r] we mean coefficient of N in Gy(s,r).

It is customary to group the expansion (4-10)
as a series in powers of u, the successive coefficients

then being finite polynomials in u, LS(u), defined by
In A (u,u) = Z Ls(u)us° (4-11)
s

The polynomials Ls(u) are called low temperature ferro-
magnetic polynomials. A given polynomial Ls(u) is
.completely specified by a knowledge of all perturbations
with s overturned spins,

s(s=-1) -
Lg(u) = I [s,rJukqs r
r=(

(4-12)
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When using the method outlined above, which we
call the direct method, one usually groups the perturbations
according to the topology of their nearest neighbour
linkages. As an example, we have listed in Fig. 4.1 those

perturbations on the hydrogen peroxide lattice contributing

to [706]»

The low temperature ferromagnetic polynomials of
the hypertriangular lattice which. have been derived via

the direct method are listed in Appendix F.

We will now describe the low temperature anti-
ferromagnetic counting problem.. We consider a lattice which
can be decomposed into two equivalent sublattices. By this
we mean that each site of the. lattice can be coloured in
one of two ways such that a given site is surrounded by
nearest neighbours all of the opposite colour. In the
terminology of graph theory the lattice is bi-colourable
(c.f. Fig. 2.6). Let one of the sublattices be denoted by
A and the other by B , and to avoid the use of fractions
we consider a lattice of 2N sites, N of which are A-sites
and N B-sites. Furthermore, as. we are now discussing

an antiferromagnet for which J < 0 , we shall take J* = =J.

For small fields the lowest energy state is now

one of antiparallel ordering in which each A-spin is in



Fig. 4.1. Topological breakdown of the
perturbations on the hydrogen peroxide
lattice contributing to [7,6]. The

coefficient of z! in L,(z) = 143,

69
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Mf\ (48N)
r v (48N)
:}J (8N)

Gy (7,6) = 143N

Total Contribution to [7,6] = 143
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a state which is the opposite of its first nearest neighbours

each of which is a B-~spin. If we perturb such a state by

overturning s A-spins and t B-spins with r nearest

neighbour bonds between them the resultant gain in energy

will be

2[g(s+t)-2r]J +2msH-2mtH , (4-13)

where we have chosen the direction of the field as that of
the unperturbed A-sites. It should be pointed out that
equation (4-13) for the case of zero field reduces to
(4-1) , which simply expresses the well known result that in
zero field the configurational problem for a loose packed

Ising antiferromagnet is isomorphic with the ferromagnetic

one.

We now introduce the variables y = exp(-2J7/kT)

and w = y* . The energy of the ground state is given by

e? = -NqJ‘/Z. Hence the partition function is given by
a a a y
Qg (w,u) = expl-e /kT)Ag(w,u) (4-14)
a ' 2q(s+t) s -t .
where Aglw,m) = ] Gyls+t,r)uw? T TR (4-15)

s,t,r
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The free energy per spin is given by

£=-3q3° - kT 1In A% (w,0) (4-16)
1 - -
where 1n A%(w,u) = ] [s+t,r]w2q(s+t) TuSu t. (4-17)
s,t,r

For zero field the low temperature expansion of

the partition function will be given by

1n A%(w,1) = § [s+t,r]usd(stR)T (4-18)
s,t,r

where as in the discussion of the ferromagnetic problem
we denote by [s+t,r] the coefficient of N in

GN(s+t;r)

Now consider the case of a ferromagnetic loose
packed lattice. Again we denote one sublattice by A and
the other by B . To the A-sites we assign a magnetic
moment m, and to the B-sites we assign a magnetic moment
my - In our previous description of the ferromagnetic
problem we were concerned with perturbations of s spins
with r first neighbour bonds between them. We are now

concerned with enumerating perturbations consisting of

s A-spins, t B-spins , with r first neighbour bonds
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between them. The coefficient of N in the total number of
ways of embedding s A-spins, ¢t B-spins, with r first

neighbour bonds between them will be denoted by [s,t;r] .

The expression for the. free energy per site will.

be given by
£ = - Lqd-myH-m H-kT 1o A(u,u,v) (4-19)
where
In A(u,u,v) = [s,t;r]usd (SYE) - 8.E (4-20)

The variables pu and Vv are defined by

exp(-ZmAH/kT)

i
=

I
<

exp(-ZmBH/kT) =

If we set v =1/u and u = w we have

Y - -
In A (w,u) = } [s,t;r]wzg(s+t) TS t,. (4-21)

s,t,r

which can be looked upon. as a formal isomorphism with (4-17).

We have retained the [s,t;r] of the ferromagnetic problem
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even in the presence of a field. The isamorphism between
1in 2 (w,u) (4-17) and. 1n.A(w,u) (4-21) is only formal
since the two series have different regions of physical

validity.

The low temperature polynomials for the sub-

lattice ferromagnetic problem are defined by

i -
= T s, t;r)ud(ste)r (4-22)
r

Ls,t
Again the method of topological breakdown can be used to

enumerate the various [s,t;r].

While the above.method (the direct method) is
simple and quite straight forward it is difficult to derive
more than a few terms as the number of perturbations.
contributing to a given [s,r] or [s,t;r] increases
rapidly. A further disadvantage is that there is.no
systematic way of checking whether one in fact has listed
all the perturbations correctly or. if one has calculated
the contribution of a. given perturbation correctly.
However, there is another method, being both more
sophisticated and more powerful and essentially self-
checking, by which. we: can attack the problem of enumerating
the required perturbations. We shall proceed to describe

this method in the following section.
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B. The Shadow Lattice Method.

We shall now describe a method, which was introduced
by Sykes, Essam, and Gaunt (1965), of enumerating low
temperature perturbations on a loose packed lattice. This
method eliminates the need for any topological description
of the perturbations contributing to a given [s,t;r] and

instead simply provides us with the numerical values of

the required [s,t;r}] .

We define a generating function F by

F(X,¥,b) = [ [s,t;x]1xSy%T . (4-23)

s,t,r

If we could find a closed form expansion for F we would
in fact have the equivalent of an exact solution to the
low temperature enumeration problem. Instead of using
the generating function . F. , we shall find it more
convenient to work with a partial generating function

FA(X,b) defined by

F(X,Y,b) =] YAFA(X,b) ' (4-24)
A

where
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F,(X,b) = ] [s,A;x]X5b" . (4-25)
s,r

The partial generating function Fk(x,b) is equivalent to
an exact solution of the problem when the number of over-
turned spins, A , on one sublattice is held constant. In
fact since.the sublattices are symmetric, a knowledge of
the first n partial generating functions makes it

possible to determine all the [s,t;jr] for s + t < 2n + 1.

We shall now show how one can derive the first
three paratial generating functions for the hydrogen
peroxide lattice. The derivation of partial generating

functions of higher order will be quite straight forward.

The zeroth. order. generating function Fo
corresponds to configurations for which all the sites are
on one sublattice, say. the A-sublattice . As the sites of
a given sublattice are not nearest neighbours of each
other, r = 0 always. Since we have an infinite lattice of
ON sites, the first site on the A sublattice may be.

chosen in N ways, the second in (N-1) ways and so on,

If we want to choose s A-sites and no B-sites-

the number of ways we can do this is simply

N(N-1) (N-2) -+ (N-s+1)/s: . (4-26)
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We want [s,0;0], which. is simply the coefficient of N in

(4-26), hence

[s,0;0] = (-1)5+% | (4-27)
3]
Therefore for Fo we have
Fo(x,b) = 1ln(1l+X) . (4-28)

To derive F1’ we must choose one site on the:
B sublattice, and there are N ways of doing this. Upon.
choosing the B-site .we observe that it casts a "shadow"
on its three nearest neighbours, all of which are A-sites
(see Fig. 2.6 and Fig. 4.2(a)) in the sense that if an
A-site is chosen from. the sites of the shadow a nearest

neighbour bond is formed.

If we choose o A-sites from the three sites:
in the shadow and B . A-sites from the remaining (N-3)

sites we shall obtain a nearest neighbour bonds in
N(3) (N-3) (N-4) - - - (N-p+1) /B! (4-29)

ways. The coefficient of N in (4-29) is given by



Fig. 4.2,(a) A B-site (o) and its corres-
ponding' "shadow" composed of three A-sites
(e) . The dashed lines indicate nearest
neighbour bonds while the solid lines con-
necting the A-sites form the "shadow."

(b) The possible overlappings of the
shadow cast by two B-sites. The figures
refer to the hydrogen peroxide lattice.

The A-sites (and also the B;sites) each
form the sites of a hypertriangular lattice.
The occurrence factors are just the number
of strong embeddings of the given configura-

tion on the hypertriangular lattice.

78
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Occurrence Factor

(N)

Isolated Triangle

(a)

Shadow Occurrence Factor

(3N)

(/2 N2 -3 1/2 N)

(2) Separated
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B -3
(a) ( 6) . (4-30)

The term in F1 corresponding to (4-30) is thus

¢ B By (-3 -
(xb) ™ X" () ( B) ’ (4-31)

and therefore by the binomial theorem we have
-3
F (X,b) = (1+bX) ® (1+x) . (4-32)

To derive. F2 .we turn over two B-sites and

observe that the shadows may overlap as shown in Fig. 4.2(b).

Consider. the configuration of two triangles
placed corner to corner. in Fig. 4.2(b). Since the two
triangles have one corner. in common, only five A-sites
are shaded by the two B-sites . Of these five sites the
one on the common corner will create two first neighbour
bonds if chosen since. it is adjacent to both B;sites .

If one of the remaining four A-sites 1is chosen-one first
neighbour bond will be formed. If an A-site other than

one of these five is chosen no bonds will be formed.

Let us now. choose from this configuration o

A-sites , which each form two first neighbour bonds, and
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B A-sites , which each form one first neighbour bond, and
y A-sites ' which form no first neighbour bonds. The

o A-sites can be chosen. in

ways; the B A-sites can be chosen in

ways, and the remaining Yy A-sites can be chosen in
(N-5) (N=6) * ** (N=5-y+1) /¥v! (4-33)

ways.

The corner to corner configuration of two
triangles can be placed. on the hypertriangular lattice in
3N ways, therefore on the hydrogen peroxide lattice the
number of ways of choosinhg two B-sites casting a shadow-
of the corner to corner type plus oa+B+y A-sites with

200 + 8 bonds between them is

3 (1) (2) (9-5) (N-6) -+ - (N=5-y+1) /v (4-34)
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and the term linear in' N in this is simply
1, ,4, -5
3(a)(8)( Y) . (4-35)

Hence the contribution.of configuration (1) of Fig. 4.2(b)

to F2 is given by

37 G et enf T = 3t (e

a,B,Y
x (1+X) ° .

(4-36)

For the two separated triangles there are six
A-sites that can form a first neighbour bond with a
B-site and hence (N-6) A-sites that will form no first
neighbour bonds. Choosing o A-sites. from the six
A-sites of the shadow and B A-sites from the remaining
(N-6) A-sites, we can form on the hydrogen peroxide
lattice configurations of o + 8 A-sites and two B-sites

with o * first neighbour bonds in
l.2 -1 6 . '
(3n2-33N) (8) (N-6) (N-7) * ** (N-6-8+1) /B! (4-37)

ways. The coefficient of N in (4-37) is given by
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1,6, ,-6
- BE(a)( B) .

Hence the separated.configuration gives the following

contribution to F2

1 6 -6 1 e -
- 3§ a%g (a)(bX)a( B)XB = - 3§(l+bX)s(l+X) 6
(4-38)

Therefore the second partial generating function for the

hydrogen peroxide lattice is simply

Fz(x,b) = 3(1+bX) " (1+b2X) (1+X) 5

_ 3l (14bx) S (14%) " (4-39)
1 .

The general term in Fn(x,b) will be of the

form

(1+bx)“(1+b2x)6(1+b3X)Y"'/(1+X)“+B+Y+'" r (4-40)

which we shall denote by the following code

(AIQIBIYI...)I A= a+B+Y+'.'l (4‘41)
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which forms a convenient déscription for supplying such
data to a computer. The brackets are closed when the
factors to the right_terminate. However, any intermediate

zeros must be included in‘the code.

Very simply the code tells us the following.
For a given "shadow" éompoéed of X A-sites, a of these
each form one first neighbour bond with the B-sites,
g A-sites each form two first neighbour bonds with the
B-sites, and so on. The coded form of F, and F, are

shown below.

F, (X,b) = (3,3)
. (4-42)

Fp (X,b) = 3(5,4,1)-33(6,6)

'In this manner we have calculated completely
the first seven partial geherating functions for the
hydrogen peroxide lattice and we have also calculated
the leading téxms of Fgy Fgs Fygo and F,,, which are
listed in coded form in Appendix G. The Bhadow con-
figurations réquired to calculate the partial generating

functions of the hydrogen peroxide lattice are listed

in Appendix H.
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In order to:obtain the various ([s,A;r] from the
partial generating functions it is necessary to expand
them in the form of.a power series. This can only
conveniently be done..on .a computer and for this purpose.
the coded partial generating functions form the input data.
We have written a program to perform such a task. However,
as the output is. very extensive we shall not list it here.
We have pointed out. previously that this method is.
essentially self-checking since the two sublattices are
symmetric, i.e: [s,A;r) = [A,s;r]. This is a great

advantage of the shadow lattice method over others.

As an example of how we use the partial generating
functions consider the topological description of the
perturbation of Fig. (4.1). We need the coefficient of
b® for all s+t = 7. Expanding the first three partial

generating functions we find the coefficient of b® is

given by
3X5Y2 + 140x*y?® + 140x°y"* + 3x2y% . (4-43)
Adding the coefficients together we obtain

[7,6] = 286 for 2N sites

1143 for N sites ,
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which is the same as [7,6] quoted in Fig. 4.l.

The first seven partial generating functions are
sufficient to determine completely the first fifteen low
temperature ferromagneticlpolynomials for the hydrogen
peroxide lattice.v We have also calculated the leading terms
of higher order polynomials up to and includin; Lzz(q).

The low temperature ferromagnetic polynomials for the

hydrogen peroxide lattice are listed in Appendix I.

In addition to the energy, specific heat, and
initial susceptibility, which have been previously defined,
we are also interested in the spontaneous magnetization

defined by

1= - 2L |
BH H = O ° (4-44)

From the polynomials listed in Appendix I, we have calcu-
lated ferromagnetic low temperature series expansions for
the Ising model on the hydrogen peroxide lattice. The

series are-as follows:
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free energy

(-£/kT) = (q/2) K+ 23 +1 1/2}25 + 3 25 + 5 28
+9 27 +15 3/& z8 + 28 1/3 29 + 52 1/2 210
"~ 4+ 108 z!! + 254 z!2 + 657 z!3
+ 1738 1/2 2% + 4511 1/5 zl5
+ 11463 3/8 z1€ + .-, (4-45)

configurational energy

u/3 = (-q/2) + 6 z3 + 12 z* + 30 z5 + 60 2©
+ 126 z7 + 252 28 + 510 z? + 1050 z!0
" 4+ 2376 z!! + 6096 z!2 + 17082 z}3
+ 48678 zl% + 135356 z15 + 366828 216
+ eee, (4-46)

specific heat

c/k(lnz)2 = 9 z3 + 24 z* + 75 2° + 180 z + 430 1/2 z7
+ 1008 z® + 2295 2% + 5250 z!0 + 13068 z!!
+ 36576 z!2 + 111033 z!3 + 347462 zl*
+ 1015020 z15 + 2934624 z!® + ..., (4-47)
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spontaneous magnetization.

T =1 223 -6 2% - 18 25 - 48 26 - 126 27 - 234 28
- 830 z9 - 2154 z10 - 5784 z!l - 16146 z!2

46302 z13 - 134082 z1% - 387724 z!5 - 1119024 zl6
- 00O (4-48)

’

and initial susceptibility

¥ = 4 z3 + 24 2% + 108 25 + 416 26 + 1476 27 + 4968 z®
+ 17156 2% + 51912 210 + 167568 zl1 + 545456 z12
+ 1787364 z!3 + 5838360 z!“ + 18949712 z!°

+ 61171104 236 + <o+ (4-49)

The ferromagnetic low temperature series expansions

for the hypertriangular lattice are listed in Appendix F.
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CHAPTER V

ISING MODEL TRANSFORMATIONS

A. The Star-Triangle Transformation

The star-triangle transformation was originally
developed by Onsager (see Wannier 1945). By ﬁtilizing
both the star-triangle and dual transformation Onsager
was able to calculate exactly the critical points of the
triangular and honeycomb lattices. In this work the dual

transformation is of no direct interest as it is applicable

to two dimensional lattices only.

The star-triangle transformation replaces a star

consisting of three spins interacting with a central spin
by a triangle of spins interacting with one another
(Fig. 5.1). The partition function for the star (Fig. 5.1(a))
is given by

Zy = L exp Ky (gg0y + 040, + 0,0,4), (5-1)

00‘1‘1
01,02 ,Oa-il

where Ky = JY/kT° Since the o variables commute and obey

the Van der Waerden identity (3-5), we .can write (5-1) as



Fig. 5.1. The star-triangle transformation.
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(a)

(b)
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Z, = cosh? KYc £+1[1 + (0,0, + 040, +0,0,) tanh Ky
L J—

2
+ (olo2 + 0,0, + ozc,) tanh KY

+ 0,0,0,0, tanh® Kyl. (5-2)
Upon performing the sum over o in (5-2) we obtain

Zy = 2 cosh® Ky I [l + (0,0, +0,0,+040,) tanh® K,] (5-3)

01,02,03=+1

for the "star" partition function.

The partition function for the triangle of spins
(Fig. 5.1(b)) is given by

Zy = I exp Ky (0,0, + 0,04+ 0,04), (5-4)
g1,02,03=+1

where K, = JA/kT. Again we make use of the properties of
the ¢ variables, commutivity plus the Van der Waerden

identity to obtain

ZA = COShs KA I [l + (0'10'2 + 0,04 + 0'30'3)

0y,0,,0 4=+
x (tanh K, + tanh? K,) + tanh® K;],  (5-5)

which can be cast into the form
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z, = (cosh® Ky + sinh? Kp) I [1 + (0,0, + 0,0, + 0,0,)

& G1+02,0y=+1

cosh? Ky sinh Kp + cosh Kp sinh? Kjp
cosh® Ky + sinh® Ky

x 1. (5-6)
Comparing (5-3) and (5-6) we see that if we

choose K, to satisfy

cosh Kx sinh K, (cosh K + sinh K,)
a A A A*'c tanh? Ky,

S ’
cosh' Ky, + sinh” K (5-7)

the partition functions of the star and triangle will be

related to each other by the simple factor

¢z = 2 cosh® Ky/(cosh® K, + sinh® Kp), (5-8)

that is

Equations (5-7) and (5-9) constitute the star-triangle

transformation.

The temperature variables (K, = Jy/kT, K,= Jp/kT)
of star-triangle lattices are related through (5-7) , which
can be greatly simplified by the use of certain well known

hyperbolic identities to yield



94

exp (4 Kp) = 2 cosh (2 KY) - 1. (5-10)
In terms of the variables z = exp (-2J/kT), we have

2p = zy/(l - zy + 2g), (5-11)
and in terms of v = tanh (J/kT) = tanh K, we have

v§ = (v, + vZ)/(l + vi). (5-12)

If we apply the star-triangle transformation to a

lattice of connected stars we can write
2 (R,) = T 2. (K,) (5-13
2NKY g N Al ! ‘)

where Y and A denote "star" and "triangle" lattices respec-
tively. The subscripts 2N and N refer to the number of sites

on the respective lattices. In three dimensions we have

Y = HP (hydrogen peroxide)

A = HT (hypertriangular)

and in two dimensions we have

Y = HC (honeycomb)
A = T (triangular)

The significance of the star-triangle transforma-

tion for this work is that it provides us with an exact
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relationship between the critical points of the hydrogen
peroxide and hypertriangular lattices, and hence provides
us with a valuable check of our numerical apalysis of the
series of Chapter III. The star-triangle transformation
also enables uﬁ to @erive from the hydrogen peroxide
lattice the partition function and intial susceptibility
of the hypertriangular lattice. We shall have moﬁe to say
about this iﬂ Section C of this Chapter.
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B. The Decoration Transformation

The decoration transformation was first suggested
by Syozi (1951) and later developed by Naya (1954) . The
decoration transformation combined with the star-triangle
transformation enables one to calculate exactly the
solution of the Ising model on the kagomé lattice from the
solution of the Ising model on the honeycomb lattice. 1In
this work we shall combine the decoration transformatiqn
with the star-triangle transformation to calculate the pro-
perties of the Iéing model on the hyperkagomé lattice
(Fig. 2.9) from the properties of the Ising model on the

hydrogen peroxide lattice (Fig. 2.1).

The decoration transformation replaces a central
spin interacting with two neighbouring spins plus the
interaction with the magnetic field by a single bond con-
necting the two outer spins plus a new interaction with the

magnetic field. The partitioﬁ function for the system shown

in Fig. 5,2(a) is given by

2 = z exp (KD 0001 + KD 0002 + LD 00)' (5-14)

where KD = Jp/kT, Lp = mHD/kT° The subscript D denotes a

decorated system. Again using the commutivity of the o



Figo 5920

The decoration transformation.
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variables plus the Van der Waerden identity, (5-14) can

be written as

2, = cosh? Kp cesh LDo £+1{1 + (0, + 0;) tanh K, tanh L,
[ S

ozﬁoz-;;
+ 0102 tanh? Ky + 0o [(gy + 0,) tanh Kp + tanh L
+ 0,0, tanh? K, tanh Lpll. (5-15)
Performing the sum over o, we are leét with

2, = 2 cosh® Kp cosh Lp I [1 + (0, + 0,) tanh Kj tanh Ly
g 1 MY} z.i'.l

+ 0,0, tanh? KD]° (5-16)

The partition function for the system shown in
Fig. 5.2(b) is given by

2=3 exp (Ko,0, +Lo, +La,), (5-17)

where K = J/kT and L = mH/KT. Using arguments previously

given (5-17) can be written in the form

I [1+ (0, +o0,)

gz = [Sosh K cosh? L
' 1 + tanh K tanh? L

«[tanh L + tanh X ‘tanh L) _ [tanh K + tanh? L ]
1 + tanh K tanh? L 1”2 11 + tanh K tanh? L]’°

(5-18)
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Comparing (5-16) with (5~18) we see that if we require

tanh K tanh L = tanh L + tanh K tanh L
1 + tanh K tanh?® L

» {5-19)
tanh? K_ = tanh K + tanh? L
1 + tanh K tanh? L

the partition functions for the decorated systeﬁ (Fig. 5.2(a))
and the undecorated system (Fig. 5.2(b)) will be related in

the following way:

2. = EZ, (5-20)

where

cosh? Kp cosh Lp
E= 2 (1 + tanh K tanh? 1), (5-21)
cosh K cosh? L

From (5-19) we see'that for zero field the rela-

tionship between the temperature variables (K, = Jp/kT,

K = J/kT) of decorated and undecorated Ising lattices is

given by

tanh? Kp = tanh K (5-22)

or

VB = v, (5-23)

In terms of the variable z we have
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z=2zp/(1 + z;)o (5-24)

If we apply the decoration transformation
(5-20,-21) to a lattice of A sites and coordination number
q we will get a decorated lattice of N+ (q472) sites. The
corresponding partition functions will be related by

&(2p) = aqk?z Z (K). (5-25)

N+ (ah72) N

Applying the decoration transformation to the
hydrogen peroxide lattice (Fig. 2.l) we get the decorated
hydrogen peroxide lattice (Fig. 2.8). The partition func-
tions of hydrogen peroxide and decorated hydrogen peroxide

lattices are related by

3N

z (Xpgp) = ¢ Z  Ryp), (5-26)
where DHP and HP denote the decorated hydrogen peroxide and
hydrogen peroxide lattices respectively. We have taken the
number of sites on the hydrogen perpxide lattice as 2N, and
since the hydrogen peroxide lattice has a coordination
number of three, we obtain 5N sites for the decorated

hydrogen peroxide lattice.

If we now apply the star-triangle transformation
to the open circles (o) of the decorated hydrogen peroxide

lattice (Fig. 2.8) we get the hyperkagomé lattice of Fig. 2.9.
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The partition functions for these twotlattices.a:e related

by
2 (Kyp) =282 (K. ) (5-27)
sy | DHP 3N HK'’ :
where HK denotes fhe hyperkagomé lattice. The hyperkagomé
lattice has only 3N sites as 2N sites of the decorated
hydrogen peroxide lattice are removed in the process of

carrying out the star-triangle transformation.

The relationship between the partition functions
of the hyperkagomé and hydrogen peroxide lattices is
obtained by combining {5-26) and (5-27). For zero magnetic

field we have
N

3 PN 2
= 2 (?OSh. KHK f SInh KHK) Z (KHP)O (5-28)
cosh? Kyp 2N

2 (Kuee)
3y K

Equation (5-28) enables us to calculate from the hydrogen
peroxide lattice the zero field partition function, engery,

and specific heat of the hyperkagomé lattice.

The relationship between the temperature variables
(Kyg = Jug/kT, Kyp = Jyp/kT) of hyperkagomé and hydrogen
peroxide lattices is obtained from (5-7) and (5-22). The

result is

exp ‘4KHK) =_(l + 3 tanh‘KHP)/(l + tanh KHP)O (5-29)
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In terms of the variable v we have

Vp = (Vgg + Vig)/(1 + vged, (5-30)

and in terms of z we have

z;K = z,5/(2 - 2Zgp). (5-31)
The development we have outlined above has been
concerned only with the transformation from the hydrogen
peroxide lattice to the hyperkagomé lattice, which are
three dimensional lattices. Exactly the same procedure
holds for the transformation from the honeycomb lattice to
the kagomé lattice, which are two dimensional lattices. The
only change that is required is one of notation, HP + HC,
and HK + K, where HC and K stand for the honeycomb and
kagomé lattices respectively. A very thorough review of
the star-triangle and decoration transformations with

arbitrary interactions has been given by Fisher (1959(b)).
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C. Exact Relétionships Between the Thermodynamig

Variables

The star-triangle and decoration transformations
discussed in the previous section make it possible to
determine from the hydrogen peroxide lattice the ther-
'modynamie variables (partition function, energy, specific

heat, etc.) of the hypertriangular and hyperkagomé lattices.,

The partition functions of star-triangle lattices
are related by (5-13), and hence the relationship between
the dimensionless Helmholtz free energy per site for star-

triangle lattices is given by

L YooYy o1 1 LY _
.ﬁ-lnzzN(K) 2[1nc+NanN(K)] (5-32)

where (c¢c.f. eq'ns 3-9, -10)

1 Y Y o 3 Y S (1) »
N in Z2N (X)) ln 2 + 5 ln cosh K~ + z:l b, vy (5-33)
and
® ,Q
iin Zﬁ (KA) = 1n 2 + 3 1n cosh KA + I p (1) vt (5-34)
N g=1  * A

The meaning of the coefficient pz(l) was explalned in
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(3-13) . From (5-8) we have .

ln=1n2+ 3 1ln (cdsh KYﬂ - 3 1n (cosh ﬁA)

- 1n (1 + VZ)" (5-35)
Hence
[- -] - -] .
(1) 2 ' (1) *
I = ln (1 + v + 2 I V. 5-36
z-1p’~ v, ( A) z-ipl v ( )

-where the relationship between vy and vy is given by (5-12).

From (5-36) we see that.if we know the first 2N
terms of the free energy for the star lattice (denoted by
Y), we can calculate the first N terms of the free energy
for the triangle lattice (denoted by A)o.,Thg same holds
true for the internal energy and‘speéific heat as they are

found from the free energy by differentiation.

In this way we obtained from the series for the
free energy of the hydrogen peroxide lattice, for which we
have calculated the first twenty-eight terms, the first
fourteen terms in the series for the free energy of the
hypertriangular lattice. The first twelve terms in the
vseries-for the free energy 'of the hypertriangular lattice

were also calculated directly from the hypertriangular

lattice'ksee Appendix A) and as far as they go the two
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series agree exactly.

Fisher (1959(h)) has shown how one can relate
the initial susceptibilities of star-triangle lattices.

The result is simply
X () = 1/2 X (+vy) + X (-vy)]. (5-37)

As was the case with the free energy, the first 2N terms
in the series for the init;al susceﬁtibility for the star
lattice give rise to the first N terms in the series‘for
the initial susceptibility of the t:ianglg J.attice° Thus
from the first twenty-six terms in the susceptibility
series for the hydxogén peroxide lattice we obtained the
first thirtezen terms in the susceptibility series for the
hypertriangular lattice. The first twelve terms in the
series for the initial susceptibility of the hypertriangular.
lattice were also calculated independently of the hydrogen
peroxide lattice (see Appendix B). The results of the two
methods agree exactly, indicating that for b9th lattices

the graphical enumeration is correct.

As was pointed out in Chapter I, in the critical
region the specific heat and initial susceptibility can be

represented by the asymptotic forms
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Cea, (1- KKy (5-38)
X =C, (1 - kKT (5-39)

where A, and C, denote the amplitude of the specific heat
and initial susceptibility respectively. By the use of
equation (5-13) and (5-28) we can derive exact expressions,
valid in the critical regicn, which relate the amplitude

on one lattice to that of the other lattice.

For example, for star-triangle laftices the
partition functions are related by (5-13). Since we are
interested only in the singular part of the partition
function the factor ¢ in (5-13) cah be neglected. Thus
for the singular part of the dimensionless Helmholtz free

energy per site we have

(-2/e0® = § 1n 28 (k) = 205% 1n 2l kD)7 - 2(-f/kT)f§ )
. , -40

The specific heat is defined by

C = kK2 32 (-f/kT)/3K2 (5-41)
From (5-10) we have
-1
exp (-MKﬁ) ;EK = (sinh 2K§) E%Y (5-412)

Hence in the critical region we have
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2

(Kg)2 exp (—8K2) CA(Kg) = 2(Kg)2(sinh 2K§)- CY(Kz)' (5-43)

Upon substituting in (5-43) the asymptotic form (5-38)

we get

Y -
(K,)* exp(-8K3) A% (1 - K%/Kg ™"

Y

Y, y.-a
. (1~ K /KY) (5-44)

-2
= 2(K})2(sinh 2x2)7 a

Taking the logarithm of (5-44) and applying (5-42) we
find

-:'x - Y -
K. exp (~4k3)(1 - K8/KD ™ = K& (stnn 2k)™' (1 - K /KLy
(5-45)
From (5-44) and (5-45) we find for the final result
1 'Y, & Y_ 2-¢
AL/Ab = 2 [(Kg/Kg) exp (-UK3) sinh 2K,] (5-46)
which is valid for star-triangle lattices of arbitary

dimension.

An expression similar to (5-46) can be derived
for the amplitude of the suscéptibility of star-triangle
lattices., For example; on a star-lattice, which has a
coordination number of three and 2N sites consisting of

primed and unprimed sublattices, the reduced initial
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susceptibility per site i: riven by

-y Y lN

X' = xo/(2Nm2/kT) = 5 I \<0y0,> + 2 <0,0/>
1= *

<ajol>).  (5-HT)

These three sums are in gernal distinct, but in the critical
region where the spin correlations become long range, the

sums beccme equal, hence

Y .5 b (k¥y /2, (k) (5-48)
X = I <0101> I o
1=1 2N 2N 4
where
N
ng(KY) =2z T e I 0404 ( L eee I
is1 0221 o =%l o,=t1 ox=t 1
y N3
x exp K" T I ofag). (5-49)
i=1 §=1

The subs~ript § indicates the three nearest neighbours of
the ith spin. The star-triangle relation can be applied to

(5-49) and we end up with
D) = 2 (ko). (5-50)

Now proceeding exactly as in the case for the specific

heat we find
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cl/ct = 2[(KL/Kg) exp (-lKc) sinh 2k 17" (5-51)
Results similar to (5-46) and (5-51) can be
obtained for the hydrogen peroxide and hyperkagomé lattices
(honeycomb and kagomé lattices in two dimensions). The
procedure is exactly as outlined for the star-triangle
lattices except now one has the intermediate decoration
process. Instead of (5-13) one now uses (5-28) and in

place of (5-42) one has

exp (-HK}:K) ?—_I-'I—i
9K

9
- [(1 - tanh K7F)/(1 + tanh Kg')] P (5-52)

The specific heat amplitude relation is given

by
2-a
HK HX HP
= HK -
A L2 | B ) exp (uke) i tamh R (5-53)
HP 3 K 1 + tanh K
A, c c

while the amplitudes of the initial susceptibilities are

related by

-
HK H - HP .
s . 3 (KQK) exp (uxiK) 1= tanh Ke (5-54)
H HP c
C+P K, 1 + tanh g,
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For the two dimensional honeycomb and kagomé lattices

one has only to make the following change in notation in

(5-53) and (5-54): HP+HC, HK+K.

The symmetry between (5-46), (5-51) and (5-53),
(5-54) 1is quite obvious. In fact, having derived the
amplitude relationships for the star-triangle lattices
one could write down by inspection the expressions (5-53)
and (5-54). However, (5-53) and (5-54) were derived

independently of the results for the star-triangle lattices.

The validity of the expressions (5-46, -51, -53,
-54)can be tested for two dimensions. In two dimensions,
where fhe star lattice is the honeycomb lattice and the
triangle 1a£tice is the triangular lattice, o« = 0,

y = 7/4, exp (HKE) = 3, and sinh 2Kl:C = /3 yleld

He ,, T oo
ALC/A, = 0.95799K

and

HC T o 0 o0
c,°/C, = 1.132234

in precise agreement with the ratios as quoted, for

example, by Fisher (1967). For the kagomé lattice
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exp (hxg) = 3 + 2/3 and we find

a¥/a8% = 1.004091°

c' /CIIC n |°0u8238°°°
+ + .

The first ratio agrees exactly with the ratio as
computed from the individual specific heat amplitude
estimates as quoted by Fisher (1967). However, using the
estimates of the amplitudes of the susceptibility from

Fisher's table we find

K, HC
Ci/CC = 0.9723°° .

This 8% discrepency indicates either that our relation
(5-54) 1s incorrect or that the estimate of the amplitude
of the susceptibility of the kagomé lattice .is in error.
The other three expressions for the amplitude ratios are
clearly correct and the fourth, as already pointed out,
could be written down by symmetry, and thus we believe
(5-54) 48 correct. Sykes (private communication) has
recently reexamined the susceptiblility series for the
kagomé lattice and could find no error. It 1s the view of

the author that this contoversy is still unresolved.
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CHAPTER VI

SELF-AVOIDING WALKS

A. Relgtionship To Ising Model

Self-avoiding walks are random walks with the
restrictions that there can be no immediate reversals and
no self intersections. Hence self-avoiding walks define
a non-Markovian process and the statistical properties
of such walks are not well known. The generating function

for self-avoiding walks is define by

)

C(x) =1+ I c,x , (6-1)

g=l >

where c, is the number of self-avoiding walks of length
2 on a lattice. The problem is to determine the asymptotic

behaviour of the cz o

The relationship between the self-avoiding walk
problem and the Ising model has been studied by |
Temperley (1956) and by Fisher and Sykes (1959). A more
recent review has been given by Domb (1969). It is now
generally recognized that the relationship between the two
problems is very subtle and not entirely clear. Nonethe-

less the self-avoiding walk problem providés a very good
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approximation to the.high temperature ferromagnetic suscepti-
bility of the Ising model. For example, the asymptotic

behaviour  of self-avoiding walks can be represented by the

form

C(x) ~ (l-ux)~Y , (6-2)

where u (the "critical point") is called the attrition
parameter and for.a very long walk represents the number of
ways the walk can. be .continued for one more step. A
rigorous proof of the existence of the attrition parameter
was given by Hammersley (1957). The numerical values found
for the attrition parameter u and the index Yy in (6-2)
differ only by a few per cent from the values of the
corresponding quantities for the high temperature ferro-

magnetic susceptibility of the Ising model.
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B. Enumeration of Self-Aveiding Walks

The enumeration of self-avoiding walks is usually
carried out in one of two ways, a sampling of walks of very
long length via Monte-Carle techniques (Gans 1965) or an
exact enumeration of the first few walks (Martin et al. 1967).

In either case the problem can only conveniently be attacked

with the aid of a computer.

We have carried out an exact enumeration of
self-avoiding walks on the hydrogen peroxide and hyper-
triangular lattices. Such a calculation is most easily carried
out by means of a chain counting theorem derived by Sykes
(1961). In this section we shall briefly outline the

derivation of this theorem along the lines originally

followed by Sykes.

We focus our attention on a self-avoiding walk of
(n-1) steps on a lattice of coordination number q. If we
add one more step. to the walk in any one of the (g-1) =0
allowable directions, one of three things can occur. We
can form a self-avoiding walk of n steps, or one of two

topologically distinct linear graphs (Fig. 6.1).
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o//\/. 2 b
2 d+b =2 Q

(a) (b) | (c)

Fig. 6.1. The result of adding a step to a self avoiding
walk of (n-1) steps. (a) Self-avoiding walk of & steps.

ib) Tadpole, Ta,b‘ (c) Polygon, py.

In Fig. 6.1, graph (b), which is known as a
tadpole, results from a self intersection a steps. from the
origin. The number of such graphs on a lattice is denoted
by Ta}b' Every. tadpole will be walked twice, the head
being walked once. in each sense. Graph (c) results from
a self intersection at the origin. The number of such
graphs per site is..denoted by Py . the number through a

given point on the lattice is given by zpz . The % steps
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forming the polygon: will also be walked twice, once in each

sense. We can combine the above statements into an equation
of the form

=3

[} 2-1 azl a, 8 -a~ 24Py (6-3)

which gives us a simple recursive relation between c, and

C g1 ~in terms of tadpoles and polygons of order % .

We can extend the idea of the previous. paragraph
and use the same technique to count the tadpoles. If we
add a step to the. tail of a tadpole Tx—l,y' the result will
be either a new tadpole. T or one of three topologically

X,y
distinct linear graphs shown in Fig. 6.2.

aO=() a(OX )b a b/ )e

(a) (b) (c)

Fig. 6.2. The three topologically distinct linear graphs
that result from the addition of a step to the tail of a
tadpole. (a) Dumbell, (a,b,c)db. (b) Figure eight, (a,b)a.

(c) Theta graph, (a,b,c)6 .
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For a given: lattice the number of dumbells, figure eights,
and theta graphs.per: site are denoted by (a,b,c)db, (a,b)a,
and (a,b;c)b"respectively. Thus by eliminating the
tadpoles’the'number”oj gself-avoiding walks of order 2% can
be made to' depend: on: four types of topologically distinct
linear graphs, namely polygons, dumbells, figure eights,

and theta graphs.

The mathematical steps involved in eliminating
the tadpoles from the recursive relation (6-3) are straight
forward but rather lengthy and we shall not reproduce

them here, but quote only the final result, i.e.

c2+l—2oc£+o‘cm_l = 22 p -2(M1l)py, 18 gl(a,b,c)db

(alb) 8+12 X (alblc) ) ’ (6"'4)

+8 )
j s 2+1

1
where £ > 1 and the summations are over all dumbells,
figure eights, and theta graphs of order 2+1 on the
lattice. Equation (6-4) is known as Sykes' chain counting
theorem. The great advantage of this theorem is that the
polygons, dumbells etc. are much less numerous than the

walks themselves, resulfing in a large saving of computer

time, which enables one to calculate walks of higher order
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than would otherwise be possible.

Equation (6-4) can be cast into the alternative

form

Cix) = 1+(1-0%)° [gx(l-ox)-2(1-x) [ & P x
%
+ 8 ) (a,b,c)dbxz+8 ; (a,b)axl
2
+12 | (a,b,e)gx’ 1. (6-5)
L

It is perhaps worth mentioning that (6-5) is not simply a
restricted form of the susceptibility counting theorem of
the Ising model (c.f. egn.(3-31) Chapter I1I). If one
restricts the susceptibility in the Ising model to a sum
over polygons, dumbells, figure eights, and theta graphs,
the counting weights for polygons and theta graphs differ
from the counting weights for the same graphs in (6-5).
In both cases,(3-31) and (6-5), the counting weights for
dumbells and figure. eights remain the same. This simply
points out the well known fact that although the expansions
for self-avoiding walks and the Ising model susceptibility
appear to be similar, there are fundamental differences
between the two problems, namely that the counting weights
in (6-5) not only depend on the degree of the verficeé

[}

but also on the topology of the graphs as well.
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Using (6-5) we have enumerated walks of up to
thirty steps for the hydrogen peroxide lattice and walks of
up to fourteen steps for the hypertriangular lattice. The
self-avoiding walk generating functions for these two

lattices are given by

(Hydrogen Peroxide)

C(x) = 1 + 3x + 6x2 + 12x% + 24x"* + 48x° + 96x% + 192x7
+ 384x°® + 768x% + 1506x'° + 2982x'! + 5904x!?2
+ 11688x'°% + 23094x'* + 45678x'% + 90000x!®
+ 177660x'7 + 349938x'°® + 690192x'° + 1359288x2°
+ 2678808x2! + 5271558x2%2 + 10381926x?°
+ 20419224x%"% + 40191204x%5 + 79025742x2¢
+ 155470668x%7 + 305587564x%°% + 600950160x32°

+ 1180825386x3° + ... (6-6)

and

(Hypertriangular)
C(x) =1 4+ 6x + 30x2 + 144x° + 696x" +3330x° + 15774x°%.

+ 74484x7 '+ 351192x? + 1651806x° +- 7753182x1 9
+ 36342882x'! + 170163366x'% + 795893904x'3

+ 3719252820x'“* + .., , (6-7)



121

The number of polygons, dumbells, figure eights,
and theta graphs of order £ embeddable in the hydrogen
peroxide and hypertriangular lattices arxe listed in

Appendix J.
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CHAPTER VII

ANALYSIS OF SERIES EXPANSIONS

A. Methods of Analysis

The thermodynamic functions of the three dimen-
sional Ising model, initial susceptibility, specific heat,
spontaneous magnetization, etc., are known to us only
through their power series expansions, which for the
hydrogen peroxide and hypertriangular lattices have been
derived by methods outlined in previous chapters. From
these series we hope to locate the position of the critical
point and pfedict the behaviour of the various thermodynamic

functions near the critical point.

Power series expansions for the Ising model
generally féll into three categories (see C. Domb in

Proceedings of the International Conference on Phenomena

near Critical Points 1965):

(1) The coefficients are all of the same sign,

(2) The coefficients alternate in sign,

(3) The magnitudes and signs of the coefficients
exhibit more complicated behavior than (1) or
(2).

In (1) the dominant singularity (the physical singularity or
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critical point) lies on the positive real axis, while in
(2) the dominant singularity lies on the negative real axis
and in (3) the dominant singularity lies elsewhere in the

complex plane. We are primarily interested in series of type

(1) or (2).

For the Ising model of a ferromagnet in zero field
we expect to find a singularity on the positive real axis
(the Curie point or critical point) and possibly a singularity

on the negative real axis corresponding to the antiferromag-

netic Néel point.

The power series for the high temperature initial
susceptibility of the spin one-half Ising model ferromagnet
is of type (1) for all regular lattices and experience has
shown this series to be the most useful for obtaining esti-
mates of the critical point. The power series for the
spontaneous magnetization of the hydrogen peroxide lattice
is also of type (1), the only three dimensional lattice other

than diamond for which this is so.

Assuming that the asymptotic form of the thermo-
dynamic functions of the three dimensional Ising model is
the same as that for the two dimensional Ising model (see
Chap° I), i. e,

W(x) = A (1 - x/%¢) ° x > Xg, (7-1)
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there are two methods which have been shown capable of
giving accurate results from an analysis of the power series
expansions. These two methods are the ratio method (Domb

and Sykes 1961) and the Pade approximant method (Baker 1961).

The ratio method follows directly from (7-1),

where the ratio of successive terms is given by
an/an-1 * ¥g [1 + (p-1l)/nl, (7-2)

wheie jig = 1/Xc. Provided the assumption (7-1) is valid and
the convergence of the series is fairly rapid, a plot of

an/ap-]1 against 1/n should yield a straight line. The inter-
cept of this line with the (1/n) = 0 axis gives the critical

point g, and from the slope one can find the critical index

ps i. e. slope = uc(p-1l).

Given an estimate of the critical point we can

obtain successive estimates of the critical index p from the

relation
(P), = 1 + n [(up/ug) - 1l, (7-3)

where u, = ap/an-1. If we have an accurate estimate of the
critical index p, a refined estimate of the critical point

can be obtained by calculating the successive estimates
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Provided we have accurate estimates of both the critical
point uc and the critical index p we can obtain successive
estimates of the amplitude A by factoring out of the nth term
of the power series expansion that part arising from the

binomial expansion, i. e.
+ p- n
(A), = ap/(® * P7h) 0, (7-5)

The Padé approximant method, which was first
applied to the Ising model by Baker (1961), approximates a
function by the ratio of two polynomials. The (L,M) Padé
approximant to a power series is defined by

Wix) = LX) o botblx+bax?+eovsbrx’ | (7-6)
PM (x) co+c1x+c2x3+°-°+cM§M

The coefficients bge bls*c°, by, Co. Cl,*** Cy are calcu-
lated by requiring the expansion of the right hand side of
(7-6) to agree exactly with the given power series, W(x),

through order (L + M) < R, where R is the order of the term

at which W(x) terminates.

In order to use the Padé approximant method most
effectively for the type of functions we are dealing with

one tzkes the isgarithmic derivative of (7-1),

(d/dx) In W(x) = -p/(x-x¢c), (7-7)
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a process which converts the singularity into a simple pole.
The (L,M) Padé apprcximant has M simple poles in its denomin-
ator and hence there is the possibility that the Padé

approximant may be able to locate the pole we are seeking.

If we have an accurate estimate of the critical
index p we can obtain estimates of the critical point by

forming Padé approximants to

i) 1P & AP x_/(x-xc) (7-8)

which has a simple pole at x = X..

Having obtained estimates of the critical point
from Padé approximants to (7-7) or (7-8) we can use that

estimate to obtain estimates of the critical index p by

forming Padé approximants to
(%-x%c) (d/dy) in W(x) = -p (7-9)

and evaluatihg them at the critical point x = Xg. Another
technique for obtaining estimates of the critical index was
introduced by Baker et al. (1967). This method consists of

forming Padé approximants to the function
(d/dx) in [(d/dx) W(x)1/(d/dx) 1n W(x) = (p + 1)/p (7-10)

and evaluating them at the critical point.
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One can also use the Padé approximant method to
calculate estimates of the amplitude. Taking Padé approxi-

mants to the function

(x-xg) W(x)1Y7/P = AP« , (7-11)

and evaluating them at the critical point we can get

estimates of A.
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B. The Ising Model

The series expansions derived in Chapter III and
IV have been analyzed using the methods outlined in the
previous section° The results of a Padé approximant
analysis are most conveniently displayed in the form of a
table consisting of a rectangular array of the (L,M)
approximants. As we have several such tables they have
been grouped together to form Appendix K. The results
of the ratic analysis are displayed in Fig. 7.1 and

Table 7.1.

The series expansion for the high temperature
initial susceptibility of the hypertriangular lattice was
analyzed firsf:° Since it has been rather well established
for some time that the susceptibility critical index
vy = 5/4, we have obtained estimates of the critical point,
/5

ves, from Padé approximants to [x(V)]4 , as shown in

Table K.1l, Without assuming a value f?r v, estimates of
vc were obtained from (d/dv) 1n x(v), and are listed in

Table K.2. The two methods yield results consistent to

five decimal places. Taking as our best estimate of the
critical point of the hypertriangular lattice,

Ve = 0.222087 + 0,000005 from Table K.1l, estimates of y

were obtained from Padé approximants to (vc-v) (d/dav)1n x(v)
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and are listed in Table K.3. Estimates of y obtdined from
Padé approximants to (d/dv) [lIn (d/dv) x(v)]1/(d/dv) 1ln x(v)
are listed in Table K.4. The results of the two methods
are quite consistent and to four decimal places the entries

of Table K.3 are consistent with y = 5/4.

The amplitude, C;(vg), of the susceptibility
singularity in x(v) = C+(l-v/vc;Y has been estimated
from Pade approximants to (vg-V) [x(v)]4/5; the results
are shown in Table K.5, Padé approximant estimates of the
dimensionless free energy per site and internal energy,
evaluated at the critical point, are given in Tables K.6
and K.7 respectively. Finally, estimates of the amplitude,
A4 (Kg), of the specific heat singularity in C (K) = Ay
(l—K/Kc)—a were obtained from Pade approximants to

1/ (2+a)

(K-Kg) {(d2/dK?) C (K)} and are listed in Table K.8.

The high temperature series expansions for the
hydrogen peroxide lattice have been analyzed in the same
way as those for the hypertriangular lattice, with one
important difference. Our best estimate of the critical
point v, of the hydrogen peroxide lattice, taken from
Table K.9 is v¢ = 0.51815 + 0.00006, However, using owr
best estimate of the critical point of the hypertriangular

lattice, v¢ = 0.222087 + 0.000005, and the star-triangle
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relation (5-12), we get v, = 0.518140 + 0.000006 for

the critical point of the hydrogen peroxide lattice. It is
this latter estimate that we have used in calculations
requiring an estimate of the critical point of the hydrogen
peroxide lattice. As an indication of the precision that
has been achieved in estimating the critical points of the
hypertriangular and hydrogen peroxide lattices, it may be
noted that the best estimates obtained from Tables K.l and
K.9 satisfy the relation (5-12) to five figures with an

error of only 4 parts in 105,

We have also used the ratio method to analyze
the susceptibility and specific heat series of the hyper-
triangular lattice and the susceptibility series of the
hydrogen peroxide lattice. A plot of bn/bp-1 against 1/n
for the susceptibility of the hypertriangular lattice is
given in Fig. 7.1, where g = vy-1 and M= l/vec. A com-
parison of the estimates listed in Table 7.1 with the
corresponding estimates obtaiﬁed from Pade analysis shows

that the two methods have yielded consistent results.

For the hydrogen peroxide lattice it was not
possible to obtain any meaningful estimates for the
specific heat singularity amplitude. In principle it is

possible to obtain AEP from AET using (5-46). However,
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Fig. 7.1. Plot of successive ratios bn/bn-1
against 1/n for the initial susceptibility
of the hypertxj.angular lattice. ¥o= 1/vg,

g = Y-lc
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we have only rough estimates of AET (c.f. Tables K.8 and

7.1) and so we can do no better for AEP.

Precise estimates of the amplitude of the
susceptibility have been obtained for both lattices and
thus a comparison with the ratio predicted by (5-51) is
possible. From (5-51), taking KgT = 0,225850 and
KEP = 0,573794 we find

P (ko) /cET (K) = 1.248055,

whereas from separate estimates from Tables K.5 and

K.13 we find

cHP (ko) /cHT (ko) = 1.2488

where

C+ (Kg) = (sinh 2Ke/2Kg)' Cy (Vo).

The coefficients in the low temperature series
expansions for the hydrogen peroxide lattice are all of

the same sign and thus the dominant singularity is the

133

physical singularity or critical point. As pointed out in

Section A of this chapter the ratio method is applicable

to such series. However, the convergence of the various

low temperature series expansions for the hydrogen peroxide

lattice has proven to be painfully slow and as a consequence
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it has been impossible to draw any conclusion about the
behaviour of these functions from a ratio analysis. By
necessity then we have been forced to rely solely on the

Pade approximant method.

In Table K.1l6 we have listed for the hydrogen
peroxide lattice, estimates of the critical point
zg = exp (-2J/kT¢) obtained from Pade approximants to
(d/dz) 1ln I(z). A critical point given by 2¢ = 0.316
+ 002 is consistent with the entries of Table .16
However, our best estimate of the critical point of the
hydrogen peroxide lattice is given by vg = 0.518140
+ 0.000006, or since zc = (l-veoi/(1+vg) by z¢ = 0.317402
+ 0.000005, It is this value that we have used in all

calculations requiring an estimate of 2zc.

Estimates of the critical indices a', Band y',
the critical indices of the specific¢ heat, spontaneous
magnetization, and susceptibility respectively, have
been obtained by employing the Pade approximant method
as given by (7-10). The estimates of 8 given in Table K.17
are consistent with the value g = 0.305 + 0.005. The
estimates of y' listed in Table K.18 show a fair amount
of scatter and no one particular value occurs with any

frequency. However, as it is generally thought that the
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diagonal and near diagonal Pade approximants are the most
reliable, we estimate y' = 1.27 + 0.02. Estimates of a'
given in Table K.i3 like those of B are fairly consistent,

and we take as our best estimate a' = 0.23 + 0.01.

In Table K.20 we have listed estimates of
(~£o/KTc) (the dimensionless free energy per site) obtained
from Pade approximants to f£/kT evaluated at the critical
point. As our best estimate we take (fc/kT¢) = 0.931,
which to three figures agrees exactly with the estimate

cbtained from the high temperature series.

We have also calculated estimates of the critical
energy by forming Padé approximants to U(z)/J and
evaluating them at the critical point. These results
are shown in Table K.21, The entries in Table K. 2l seem
to indicate a value for Ug/kTg of = 0.51. However, it
should be noted that the (8,8) Pade approximant,a diagonal
approximant making use of all the terms of the series,
is in good agreement with the high temperature result
Uc/kTc = -0.479. Since the en;ropy is related to the free
energy and the internal energy through (3-28), our best
estimate of the critical entropy for the hydrogen peroxide
lattice obtained from low temperature series expansions is

Sc¢/k = 0.458, as opposed to the high temperature estimate

of S¢/k = 0.451.
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C. The Self-Avoiding Walk Problem

The generating functions for self avoiding walks on
the hypertriangular and hydrogen peroxide lattices have also
been analyzed by the ratio and Padé approximant methods. In
Fig. 7.2 we have plotted the ratios of successive terms of
c(x) for the hypertriangular lattice. Nearly all the points
lie on a straigth line, which indicates that (7-1) is pro-
bably a valid assumption for this problem also. From
Fig. 7.2 we estimate that u = 4,6179 and g = 0.1665, from
which we conjecture that g = 1/6 exactly, in agreement with
estimates from other three dimensional lattices (Essam and

Sykes 1963, Martin et al. 1967, Guttman et al. 1968) .

In Table 7.2 we have listed estimates of the
attrition parameter u, ana the singularity amplitude A, for
the hypertriangular and hydrogen peroxide lattices. The
estimates of the attrition parameter are calculated from
(7-4) and the estimates of the amplitude from (7-5). In
calculating both ¥, and A, we have assumed g = 1/6
exactly. For the hypertriangular lattice the limiting value
of y in Table 7.2 agrees very well with the value of u
taken from Fig. 7.2, which indicates that the conjecture

g = 1/6 is probably correct.

Because of a very troublesome oscillation in the
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Fig. 7.2. Plot of successive ratios cp/cp.)
against 1/n for the self-avoiding walk
generating function of the hypertriangular

lattice.
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TABLE 7.2

Ratio estimates of the attrition parameter

and the amplitude of the singularity

Hypertriaqgu}gr. Hydrogen Perokide

n un An n i'("n“"n-l) Ap
7 4.612135 1.09898 20 1.95417 1.1226
8 4.618775 1.09894 21 1.95419 1.1216
9 4.617910 1.09870 22 1.95415 1.1194
10 4.616814 1.09819 23 1.95416 1,1184
11 4.617517 1.09786 24 1.95424 1.1163
12 4.618026 1.09764 25 1.95426 1.1153
13 4.618029 1.09742 26 1.95450 1.1135
14 4.618074 1,09722 27 1.95450 1.1125
' -— — 28 1.95460 1.1108
’ - — 29 1.95462 1.1099
' - -—— 30 1.95469 1.1083

® 4.6181 + 1.095 + ' —-— -

~ 0.0046 0.011

' - -

' - -
© 1;956 + 1,10 +

0.020 0.11

v, = (ncp/cp.y)/(ntg) Ap = cnul/ (P19)

138
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ratios of successive terms of C(x) for the hydrogen peroxide
lattice, we have calculated an average of successive pairs of
estimates of u. For the same reason we have not attempted to

estimate y and g for the hydrogen peroxide lattice from a

ratio plot such as Fig. 7.2,

We have also obtained estimates of the inverse of

the attrition parameter using the Padé approximant method
(see TableK.22 and Table K.23 of Appendix K). These estimates

are quite consistent with those obtained from the ratio

method.

On the basis of successive estimates of the attri-

tion parameter and singularity amplitude shown in Table 7.2
our best estimates for the hydroéen peroxide lattice are
u=1,956 + 0.020, A = 1.10 + 0.11, and for the hypertri-
angular lattice they are u = 4.6181 + 0.0046 and A = 1.095

+ 0,011,
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CHAPTER VIII

REVIEW AND DISCUSSION

A. The Ising Model

Our primary goal in this work as stated in the
irircluction was to obtain improved estimates of the low
temperature critical indices of the three dimensional Ising
model. It is the opinion of the author that we have obtained
improved estimates of the low temperature critical indices,
though admittedly we have not obtained the precision we
had hoped for. However, we intend to pursue this problem
in the future with the hope of extending the low temperature
series. This combined with a more sophisticated analysis

should shed further light on this problem.

The first stage of this work consisted in deriving
high temperature series expansions for the hydrogen peroxide
and hypertriangular lattices. The reason for this was to
obtain a highly precise value for the critical temperature
of the hydrogen peroxide lattice. This precision was
achieved by first obtaining a highly precise estimate of the
critical temperature of the hypertriangular lattice from the
series expansion for the initial susceptibility and then using

the star-triangle transformation to obtain the final estimate
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for the critical temperature of the hydrogen peroxide lattice.

A further result of this work is that critical
parameters for the three dimensional Ising model are now
known for the very lowest coordination number, i.e. g=3,
hence we are in a position to examine the dependence of these
parameters on coordination number. In Table 8.1l we have
tabulated most of the known results for the two dimensional
Ising model. For the three dimensioghal Ising model we have
listed the critical parameters in Table 8.2. For a given
dimension the linear chain represents the lower limit of
coordination number (q=2) while the mean field theory repre-
sents the upper limit (g==~). Although Tables 8.1 and 8.2
represent almost all that is known about high temperature
lattice dependent critical parameters, the dependence of
these parameters on coordination number is better appreciated

when displayed graphically.

In Fig. 8.1 we have displayed the dependence of
vce = tanh(J/kT¢c) on coordination number g for two and three
dimensional lattices. The letters labelling the calculated
critical temperatures are obvious abbreviations for the
lattices listed in Tables 8.1 and 8.2. The curves are not
a best fit to all the calculated points but are obtained by

a simple procedure. They represent the function
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Fig. 8.1. The dependence of the critical
point; v = tanh(J/kTs), on coordination
number q for t&o and three dimensional Ising
models. Circles indicate calculated points
for loose-packed lattices; triangles, closef
packed lattices. The dashed curve repre-
sents the function Vo = (q-l)-o 806 the

solid curve the function v, = (g-1) -0. 950
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vo(@ = (g-1) 3, (8-1)

where ag is chcsern so that ve(2d) = vghc' the critical point

of the simple hypercubic lattice.

In two dimensions the simple hypercubic lattice
is the sguare lattice and a, = 0.806; in three dimensions
the simple hypercubic lattice is the simple cubic lattice and
ag = 0.950. We see that the curve for d=3 is an excellent
£it to most of the critical points over the whole range of
q and thus (8-1) has predictive value for higher dimensions.
Fisher and Gaunt (1964):have computed ve for simple hyper-
cubic lattices only in fout, five, and six dimensions.

From their data we obtain a, = 09954, ag = 0.996, and

a, = 1.000., Since the completion of this work, Moore (1969)
has obtained the critical points of the four dimensional
hyper-simple cubic (hsc), hyper-body-centered cubic (hbce),
and hyper-face-centered cubic (hfcc) Ising lattices. Moore
found VS = 1/6.725 = 0.149, viPCC - 1/14.510 = 0.0690,
and vRECC = 1/21.984 = 0.0455. The coordination numbers of
the hsc and hfcc lattices in four dimensions are eight and
twentv-four respectively. For the hbcc lattice Moore has
considered only the sixteen nearest‘neiéhbours lying on the
crystal axes, overlooking the eight nearest neighbcurs lying

hsc _

off the crystal axes. Hence, taking q = 8, qhbcc = 16,
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ghfCC = 24, and using (8-1) we £find vgsc = 0.149,
vgbcc = 0.0700, and vgfcc = 0,0460, all in excellent
agreement with Moore's results and further substantiating

the usefulness of (8-1) for estimating critical points of

Ising models.

The amplitude of the specific heat singularity,
AL, is rather insensitive to g and also is not well known
for most lattices. C,, on the other hand, is well deter-
mined for most lattices and varies appreciably from lattice
to lattice. However, the variation depends strongly on other
aspects of lattice struéture besides q. Hence we have not
displayed graphically the q dependence of either A, or C,.
The critical energy and entropy both vary rather smoothly
with q as illustrated in Figs. 8.2 and 8.3, but no such

simple expression as (8-1) has been found for these guantites.

As is well known, the Ising model serves as a
model for a lattice gas (Yang and Lee 1952) so we have com-

puted the pcritical ratios (Fisher 1964 (b)),
Po/pckTe = 2[Sg/k - Ug/kT¢ - a/2Kq]. (8-2)

The dependence of the critical ratio on coordination number

is displayed in Fig. 8.4.



Fig. 8.2, The dependence of the critical energy, Ug, on
coordination number, q, for two and three dimensional
Ising models. Circles indicate calculated points for
lqoée packed lattices; triangles, close packgd-lattices.
The top curve is a best fit for two dimensions; the

bottom curve for three dimensions.
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Fig. 8.3. The dependence of the critical entropy, Sc.
on coordination number, q, for two and three dimensional
Ising models. Circles indicate calculated points for
loose~-packed latticeé; triangles, close-packed lattices.
The top curve is best fiﬁ for three dimensions; the

bottom curve for two dimensions. .
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Pig. 8.4. The dependence of ‘the critical ratio, Po/pckTq,
on coordingtion number, q, for two and three dimensional
Ising modelé. Circles indicate calculated points for
loose packed lattices; triangles, close-packed latticeg.
The top curve is a best fit for three dimensions; the

bottom curve for two dimensions.
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At this point it might be worth noting that for
argon S /k = 0.43 (Betts and Ditzian 1968), in very‘good agree-
ment with the value for the hydroggn peroxide lattice. Also,
Mikolaj and Pings (1968) have recently arguéd thaﬁ the
coordination number of a liquid is meaningful and that q = 3
for argon at the critical point. However, the value for the
critical energy for argon corresponds to q = 5. Nevertheless
we believe this is sufficient justification for the further
study of the applicability of the Isipg model on the hydrogen.

peroxide lattice to simple liquids.

v

Briefly the main results of this work are as

follows:

l. Three "ne&“ regular lattices have been intro-
duced for the study of lattice statistical probiems.

2., A large number of weak lattice‘congtants have
been obtained for the hydrogen peroxide and hypertriangular

lattices.

3. A large number of strong lattice constants
have been obtained for the hypertriangular‘lattice°

4. Exact relations have been derived, valid in
the critical region, relating amplitudes of (a) specific
heats and (b) susceptibilities for a triple of generalized

honeycomb, triangular, and kagomé lattices.
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5. The critical temperatures for the Ising model
on all three lattices has been obtained to high precision.

6. The previously accepted value for y has been
confirmed.

7. "Improved" éstimates of[the low temperature
critical indices a”;, 8 , and y° have b;en obtained, which
indicate the scaling iaw hypothesis is not valid for the
three dimensional Ising model. The estimates found for y
and 8 are in excellent agreement with the experimental
results for beta brass, jndicating that the Ising model
provides a valid description of the order-disorder transi-
tion in binary alloys.

8. The susceptibility amplitude, critical energy,
and critical entropy have been determined to reasonable

precision on all three lattices.

9. A simple dependence of critical temperature on
dimensionality and coordination number has been discovered.

10. The possible relevance of the hydrogen pgrexide
lattice for simple fluids near the critical point has been

indicated.
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B. The Self-Avoiding Walk Problem

We have derived exact series expansions of the
self-avoiding walk generating functions for the hydrogen
peroxide and hypertriangular lattices. From a numerical
analysis of the series coefficients we have obtained esti-
mates of the attrition parameter, critical index, and
amplitude for both lattices. The value found for the critical
index agrees with the value previously found for other three

dimensional lattices.

A considerable amount of effort was expended
searching for the equivalent of the star-triangle trans-
formation for the self-avoiding walk problem, since such a
transformation would provide us with a rigorous check of the
numerical analysis and would presumably also show us how to
transform the generating function from the hydrogen peroxide
lattice to the hypertriangular lattice. However, these
efforts have so far been fruitless. It has been pointed out
to us by Sykes (Sykes, private communication) that the
attrition parameters of the hydrogen peroxide and hypertri-

angular lattices should obey the following inequality,

v> /T W (8-3)



153

where v and p denote the attrition parametérs of the hydrogen
peroxide and hypertriangular lattices respectively. Taking

p = 4,6181 we find v > 1.948 which it just is at 1.956, a
difference of only 0.4%. The equality in (8-3) holds for

ﬁhe attrition parameters of Bethe lattices of coordination

numbers six and three respectively.

Part of the work reported on in this thesis has
also appeared in the physics.literature. The high temper-
ature behaviour of the Ising model on the hydrogen peroxide,
hypertriangular, and hyperkagomé lattices is discussed in
Leu, Betts, and Elliott (1969). A discussion of the self-
avoiding walk problem on the hydrogen peroxide and hyper-

triangular lattices appears in Leu (1969).
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APPENDIX A

The first twelve coefficients i the series expansion
for the zero field partition function of the hypertriangular

lattice.
P(1,N) =0
P(2,N) =0

P(30N) = N(A)

P(4,N) =0

p(s,N) =N (Q)
= 3N

p6,N) =N (O) +n (D) + N (AA)
=1/2 N2 + 14 1/2 N

p(7,8) =n ({)
= 33N.

pigm) =8 () +n () +n (D)

= 3N2 + 57N :



P (9,N)

P(10,N)

P(11,N)

P(12,N)
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'NMORELI% EELEY 4

+ 8 (M) + 8 (DA) + 8 (MAD)
+ N (AAA)
1/6 N¥ + 14 1/2 N2 + 218 1/3 N

v (D)) +n Q) +w 00
+N(OO.)+N(OA)

37 1/2 N2 + 961 1/2 N

N(O)+N(DO)+N(O<1)
+N(OM)+N<DO<J)+N<VQ,>

sn (O (AR (O D)
+N(QO)+N(OA)+N(QAA)

1 1/2 N® - 121 1/2 N2 + 3045 N

N (‘(_))-!-N (OQ ) + N (OO)

en (00 ) +x (A + 8 (&P +n A0
+N (KK ) +N (O@)+N (DAAqQ) + N (qu)
sn (B #x (@D +n (Foren(Han
+ 8 ((O4A) + 8 (444) + N (daaa) + N (DA'DA )
+n (Qaa) + 8N (QQO) # N (OO

+ 8 (0 AA) + ¥ (AdLA) + N (AAAA)

1/24 N“ + 7 1/4 N3 + 369 13/24 E2f+'993l 1/4 N
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APPEND1IX B

Weak lattice constants of non-magnetic graphs required to

calculate the partition function and initial susceptibility

of the hypertriangular lattice.

Gragh

(A)

(<O
(O
(D<)
(AA)
(O
(O
(1)
(O A
((»
(K
(58
(AMA)
(Oa)
(DAA)
(A AA)
()

(X )

Lattice , Lattice
Constant Graph _ Constang
1 (00) 51

3 (Qa) 33 N-462

15 (OO 4 1/2 N-76 1/2

3 () 3846

N7

1/2 N=3 1/2 (D0 ). 459
33 ((X) 651

72 (0A4) 60

15 () 15

3 N-30 (M) 15
293 (D) 18

105 ((a) 72 N-1134

1 (OO0 45 N-840
12 (OM) 9 N-135

15 N-180 (O4A) 15 N-210
3 NQ.33 (Oan)ll/2W¥ - 19 1/2N + 300
1/6 N2-3 1/2 N + 20 1/3 ((:‘:,') 13229
oouse (k) 2664
291 () 972
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Lattice Lattice
Constant Graph Constant
1179 (O 99 N-2037
208 (OQ0) 112 1/2'N-2353 1/2
120 (Oq) 45 N-804
120 (D) 4 1/2 N-78 1/2
54  Qan) 7 1/2 N2-232 1/2 N
15 + 1974
48 (DdAA) 1 1/2 N2-43'1/2N + 351
8 (AAAA) 1/24 N3-1 3/4 N2
12 + 26 11/24 N-147 3/4°
132
6
293 N-5079
105 N-1668
N-15
12 N-180
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Weak lattice constants of magnetic :graphs which are required

to calculate the initial susceptibility of the hypertriangular

latticeAfrom Sykes' theorem.

Graph

(O
(-4 )
(O
()
()
(L)
(<o)

(D

({2 )
()
(0r4)
(£4)
()
(<))
(<)
Nies)
(&3
( 9 )
(&P

Lattice
Constant Graph
15 (D)
12 (&)
60 ()
s (&)
60 (M)
111 (DAY)
18 (§4)
36 (MW))
12 ()
15 ((O4)
120 (HA)
273 (pqo)
354 ((f\; )
258 ((:(i'_})
78 (QQ)
102 (@)
66 ((23)
s (O
12 (O

Lattice
Constant
12
30
30
30
15
96
12
1302
522
. 648
15 N-180
12 N-156
1866
690
699
276.
570
114
117



Lattice

Constant Graph -

66 (¥q)

60 (&9

2¢ (Oa)

48 (Qa)

36 (DA)

Y

63 (<))

3 (O

15 ()

120 (G

6 (&

150 (33))
150 Q)
120 3)

24 (D)

s (O

1542 ((f}])

2028 (D)

2484 (I

6174 ((jj)

222 (D)
2 ()

450 (7))
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Lattice
Constant
60

180

60 N-840
6 N-78
60 N-885
7392
1566
328ﬁ\
1536"

780
666

576

1326

49

288

246

36

216

432

36

144

132

72



Lattice

Constant Graph
8¢ (OO0
a8 ()

s (GH
456 (3))
18 (O™
18 ([()ﬁf
6 (DA
6 (PY)
30 (O
12 (&7 )
12, ()
2 (O
222 (COYM)
6 (O -
36 (OW)
12 (bwy)
206 (ON\Q)
102 (O
312 (pM4)
282 (DNK))
135 (MX)
75 (D4Q)
72

160

Lattice
Constant
36
216
84
48

72
84
36
15
60
30
30
© 3852
7134
13644
11616
28971
;194
2628
2094
642
258
234
240



Gragh

(>-(})
(BAQ))
(>
(FQ)

39
(9%}
(e
(0a)
((Ha)
(D a)
(& a)
(>=C8)
(¢a)
G o)

(~4O)

Lattice
Constant
228

462

60

60

816

648

72

111 N-1680
18 N-270
36 N-558
12 N-180
15 N-210
120 N-1896
273 N-4581
45 N-828
36 N-648
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APPENDIX C

Symbolic equations for calculating the lattice constants
of separated non-magnetic graphs for the hypertriangular

lattice.

N(A) N(A) = N(A) + 2N (M) + 2N (AA)

N(O) N(A) =N (OHN(QHN(OA)

N(DG) N(A) =28 (D) 3+ 3N (40) + 2v (MA)
+ N (AA Q)

N(AA) N(A) = 2N (AA) + 2N (bAA) + N (444)
+ 3N (AAA)

N (B +n (O +n (X))
+ N (A

MO IO )=n (Oyem (D<) + 28 ( (O
s2 (D) + 2w (OO

N(() ) N(A) =N(©>+N(©)+N(O<J)
N ((OA)
N ) Na) =N () + N (kD) + N (X))

N(@q"'N(O‘M)*?N(VQ)
+ 28 (404 ) + 8 ((X4)

N(CH ) N(O) -N(@)+N(?)+N((}4<l)
+ N (O + 3 (OD)

N({ ) N (4)

-+

+



N N((D)

N(.()) Na)

N( p ) N(AA )=

N(Q) N(A)

NN ) N(A)

N (%) N(A) - -

N(AAA) N(A)

N(AA) N(AA)
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N (00 )+ 8 () + 28 (D)
s (O +n (OO )N (D )
s (Y)Y +Nv (O Q)

N(Oq)+N(O>)-0;N(®:>)
+N(<})+N(OA )

N(-Q)*N("Q)+N(5-)+-N (M)
+N ({20 + N (B a)+w (&)
+N (QLA)

-4
.
2
.
2
O

N (K + N (OxA ) + v (O )
+2N(Q)+2N(3})+2N(DOQ)
+ N (O 8 0 )+N<Q)
+N(&)+N(O><])+N(Oq)
+ N (<O4d) + 2N (g)fN (X4 A)

3N (%) + N (%A) + N (LQ4)

3N (AMA) + 2N (Maa) + 3N (aXA)
+ 2N (404) + N (AMA)

N (DA) + 6N (%) + 2N (AAA)
+ 2N (AAAA) + 2N (%A) + 2N (AAM)



le4

N midg) = n (& >+N(é)+|N(E7)
sn (E8 ) + 0 (O + 8 (0N )

+N(O@)+N(Q).+2ﬂ(@)

+N (O D)

O v =N (O)+28 (OO ) + 68 ()
s () + v ¢ QO
+2N.(&))+2N(@)+2N(@)
+ 2N (v@)+2N(m)f2N(@)
sen (v (D) + 2w )
+4N(g.)+zn(<[@)+éu(@)
+2 (OO )

N(O)N(O)-N(OO)+N(©)+N(@)
+N(CO)+N(W)+N(Q)
() e (D) + v (B
+N(@)+N(<:®)+2N(Q)
+N(OO)

CEIN )N(A)aN(Ox)HN(OQdHN(OA)
+N(©A)+N(OA)+N(O4A)
+ 28 (ODg ) + 28 ({OQAA)

N(M A) N(A) =+ 2N (DAAA) + N (%A) + 3N (D A)
+ 4N (DA AA) + 2N (AMAA)
+ 3N (%A) + 2N (DA DA A)
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N(AAA) N(A) = N (AXA) + N (AAAA) + 3N (AAA)
+ 28 (AAM) + 4N (AAAA)
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Symbolic equations for calculating the lattice constants

of separated magnetic graphs for the hypertriangular

lattice.

N(D<) N(A) =28 (D<) + N (DA + 2w (Y
+ N (AMA) + N (DG A)

N(®)+2N(€7)+2_N(U)
+N((><0)+N(64)+N(Oq )
sn (<X +N (D 8

W (DY) + N (DANG ) + 28 (¥ng )

s 8 (D) + 8 (DA + 8 (Ep)
+ N (DA4q) +. N (DNJA)

N (B e (& en (>
s () +8 (O )+ v (D)
s (THr+xw (O + 2w ()

+ M AT )+ N (> Aa)
N ) N(A) SN (D) +x () +n (D)
N () + N () + 8 (D)
s (<G eN QD

TR R 1Y

N(DN\Q ) N(A)

N &) )+ n(a)

+
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N(O)N(O) -N(O)+N(OO>)+N(OO)
+N (K ) +8 (D0 ) + 29 (D)
+n GO+ D)+ QD
NN oRER NEGINEE N>R
+6N(®)+N(®)+N(OO)

N(Dq ) () =8 (A3 + 8 (O e n (O
N(OA-<]>+N(O<]>+N<VOD)

NP N (D) + N () bg)

N ) na= N (O + 8 (OAd) + v (OB )
N (O )+ (O )+ 28 ()
s (89 e (O )+ (O
+ N (D )+ N (D)

fn (XX ) +n Q) +n (KA

N(DY N ) N(A) = 28 (D] ) + N (AAAG ) + N (DAY )
+N(I>-A—<])+2N(X/\—<j ) + N (DWW )
sn () + N (D) +w (DAY
+N (gAY

2N(@)+2N(@)v+N(1v)
+N<5’)+N(€7[>)+N(E7<z')
+'N(EZ )y + N ( KY A)

+

+

+

N( Y ) N(A)



NI(C>) N(A) =

N ) N(A) =

168

N O w8 O+ v (P
+2N(Q)+2N(D)+2N(©)
!

+N(@)+N(Q)+‘N (<)
+2M (Y + 2w (Y )+ 2w ()

+N(®>+N(@.A)

N((f))+N(<:5)+N(CO<])
8 (D) + N (CO) +8 (D)

+ N () + v (DA

N(&Hn("@)n«(@)
+N (X)) + N (&) + 8 (D)
+8 (O)r+9 (&) + v (D)
fn(©)+N(®)+N(®)
+ N () + () + 8 (D)

N(@q)+N(@)+N(g)
+N(Q)+N(®)+N(@)
+8 QA
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APPENDIX D

Weak lattice constants of polygon, theta, alpha, beta,
and gamma star graphs for the hydrogen peroxide and hyper-

triangular lattices.

a
P 8
e
a c q
d
a .

B
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Weak lattice constants of p graphs or polygons

hydrogen peroxide lattice hypertriangular lattice -
L (:c)p L (2)p
10" 11/2 3 1
i2 0 4 0
14 11/2 5 3
16 101/2 6 15
18 231/2 7 33
20 45 8 72
22 1781/2 9 293
24 5871/2 10 1158
26 1579 1/2 11 3846
28 5026 1/2 12 13229
30 16,6031/2 13 50145
14 192054

"The first p graph embeddable on the hydrogen peroxide
lattice is the decagon and no graphs of odd order are

embeddable on it.
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Weak lattice constants of 6 graphs

for the hydrogen peroxide lattice”

a b ¢ 2 (a,b,c)e
5 5 5 15 1l 1l 9 .15 25 381
3.7 15 - 25 189
3 7 7 17 3 311 11 25 12
5 5 15 25 61
2 8 8 18 12 5 9 11 25 24
7 7 11 25 12
l1 9 9 19 19 1/2 7 9 9 25 42
5 5 9 19 0 | R
2 8 1l6 26 483
4 6 10 20 6 2 12.'12 26 12
4 6 15 26 249
3 7 11 21 I2 4 10 12 26 42
5 5 111 21 15 6 8 12 26 15
7 7 171 21 0 6 10 10 26 30
' 8 8 10 . 286 18
2 8 12 22 24
4 6 12 22 36 l 9 17 27 882
6 g8 .8 22 3 1l 13 13 27 34 1/2
' 3 7 17 27 552
1 9 13 23 54 3 11 13 27 120
3 7 13 23 78 5 5 17 27 240
5 5 13 23 30 5 9 13 27 48
5 9 9 23 0 5 11 11 27 120
7 7 9 23 0 7 7 13 27 21
7 9 11 27 84
2 8 14 24 216 9 9 9 27 7
4 6 14 24 72
4 10 10 24 0
6 8 10 24 24
8 8 8 24 4
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a b c 2 (a,b,c) g a b c 2 (a,b,c)y

2 8 18 28 1047 2 8 20 30 4458

2 12 14 28 252 2 12 16 30 522

4 6 18 28 990 2 14 14 30 948

4 10 14 28 150 4 6 20 30 3300

4 12 12 28 237 4 10 16 30 234

6 8 14 28 96 4 12 14 30 870

6 10 12 28 222 6 8 l6é 30 390

8 8 12 28 78 6 10 14 30 564

8 10 10 28 78 6 12 12 30 342
8 8 14 30 249

1l 9 19 29 2028 8 10 12 30 366

1l 13 15 29 489 10 10 10 30 42

3 7 19 29 1890

3 11 15 29 231

3 13 13 29 786

5 5 19 29 984

5 9 15 29 144

5 11 13 29 531

7 7 15 29 48

7 9 13 29 216

7 11 11 29 135

9 9 11 29 72

*Many 6 graphs which are by inspection obviously not enbed-

dable in the hydrogen peroxide lattice are not listed.



Weak lattice constants of 6 graphs for the

hypertriangualr lattice
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a b c 2 (a,b,c)e a b c 2 (a,b,c)y
1 2 4 7 15 1 2 9 12 7392
1l 4 7 12 1546
1l 2 5 8 60 l 5 6 12 3288
2 3 3 8 6 2 3 7 12 1326
2 4 6 12 ;536
1l 2 6 9 111 2 5 5 12 780
1 4 4 9 18 3 3 6 12 666
2 3 4 9 36 3 4 5 12 576
3 3 3 9 12 4 4 4 12 49
1 2 7 10 354 1 2 10 13 2514
1l 4 5 10 258 1l 4 8 13 6609
2 3 5 10 78 l 5 7 13 8022
2 4 4 10 102 l 6 6 13 3579
3 3 4 10 66 2 3 8 13 5403
2 4 7 13 6678
1l 2 8 11 1866 2 5 6 13 3756
1 4 6 11 690 3 3 7 13 3234
1 5 5 11 699 3 4 6 13 3165
2 3 6 11 276 3 5 5 13 831
2 4 5 11 570 4 4 5 13 855
3 3 5 11 114
3 4 4 11 117 1l 2 11 14 101610
1l 4 9 14 29070
l 5§ 8 14 35832
1l 6 7 14 18324
2 3 9 14 20106
2 4 8 14 28971
2 5 7 14 16254
2 6 6 14 4689
3 3 8 14 11544
3 4 7 14 13686
3 5 6 14 7422
4 4 6 14 4197
4 5 5 14 4113

*Many 6 graphs which are by ingpection obviously not embed-

dable in the hypsritriangular lattice are not listed.
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Weak lattice constants of a graphs for the hydrogen

peroxide and hypertriangular lattices

a b c d e 3 £ (a,b; c,d; e, f),
(i) hydrogen péroxide lattice
2 2 3 3 5 5 20 11/2
1 3 2 4 5 7 22 6
1 4 1 4 5 8 23 12
2 5 2 5 3 6 23 6
1 1 2 6 7 7 24 3
1l 5 2 6 3 7 24 6
2 6 2 6 2 6 24 2
1 2 1 6 7 8 25 - 24
1 6 1 6 3 8- 25 12
1 6 2 7 2 7 25 24
2 3 3 8 4 5 25 6
1 1 1 7 8 8 26 36
1 7 1 7 2 8 26 24
2 2 2 8 6 6 26 3
1 8 1 8 1 8 27 13
(ii) hypertriangular lattice

1 2 1 2 2 1 9 2
1 2 1 2 3 1 10 12
1 1l 1 3 1 3 10 6
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Weak lattice constants of B graphs for the hydrogen

‘peroxide and hypertriangular lattices

b c d e f ¢ (a,b; c,d; e,f)B

WWOHKFFME &aWNHFFHF MMDONHRFEREFE 28NN WwHEH N w

(i) hydrogen peroxide lattice

7 5 5 1 1 22 0
8 5 5 1 2 23 12
9 5 5 1 3 24 18
9 5 5 2 2 24 6
7 3 7 1 3 24 3
7 3 7 2 2 24 3
8 3 7 1 4 25 24
8 3 7 2 3 25 12
6 5 5 1 4 25 0
6 5 5 2 3 25 0
9 3 7 1 5 26 30
9 3 7 2 4 26 30
9 3 7 3 3 26 .18
9 7 7 1 1 26 -9
8 2 8 1 5 26 36
8 2 8 2 4 26 36
8 2 8 3 3 26 21
9 2 8 1 6 27 120
9 2 8 2 5 27 126
9 2 8 3 4 27 120
12 5 5 1 2 27 12
7 4 10 1 2 27 0
6 7 7 1 2 27 0
9 1 9 1 7 28 102
9 1 9 2 6 28 102
9 1 9 3 5 28 99
9 1 9 4 4 28 52 1/2
8 6 10 1 1 28 12
7 5 11 1 1 28 6
13 5 5 1 1 28 18
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(ii) hypertriangular lattice

d e £ ¢ (a,b; c,d; e,f)B
3 2 1l 2 1l 2 9 15
1l 2 1l 2 1 3 10 30
1 2 1l 2 2 2 10 30
1l 2 2 3 1l 1l 10 12
1l 2 1l 2 1l 4 11 36
1 2 1l 2 2 3 11 51
1l 2 1l 4 1l 2 11 72
1l 2 2 3 1l 2 11 36
1l 2 2 4 1l 1 11 36
1l 2 3 3 1 1l 11 24
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Weak lattice constants of y graphs for the

hypertriangular lattice

a b c d e 2 (a,b; c,d; e)Y
1 2 I 2 3 9 15
1 2 1l 2 4 10 45
1 2 2 3 2 10 12
1 2 3 3 1 10 12
1 2 1 2 5 11 66
1 2 1 4 3 11 60
1 2 2 3 3 11 24
1 2 3 3 2 11 36
1 2 2 4 2 11 48
1 2 3 4 1 11 60
1 4 1 4 1l 11 63
2 3 2 3 1l 11 3
1 2. 1 2 6 12 288
1 2 1 4 4 12 246
1 2 2 3 4 12 36
1 2 2 4 3 12 216
1 2 1 5 3 12 432
1 2 3 3 3 12 36
1 2 2 5 2 12 144
1 2 3 5 1 12 72
1 2 3 4 2 12 132
1 2 4 4 1l 12 84
1 4 2 3 2 12 48
1 4 1 5 1l 12 9
1 4 3 3 1 12 18
2 3 2 4 1 12 18
2 3 3 3 1 12 6
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APPENDIX E

The first nine coefficients, calculated by the direct method,-
in the power series expansion of the high temperature’

ferromagnetic initial susceptibility of the hypertriangular

lattice,
b = (/)
1
b = ()
rd
b = ()
3
b; = (A + (D) + (A7)
b = (Av) + (K ) + (Dv) + (AAN)

b= MA) + (D) + (D) + (O )+ (O7) + (A

b = (AW = (DM )+ (IXY )+ (B )+ (O )

O )+ () + (PR o+ (=) + (K
(O DA OB+ (D7 )+ g/
+ (D= + AAY) |

b= (W) = (XM ) + (XM + (YW + (YV )
P 0+ (O (O ) s (<D s (D
P BT+ (D )+ (B )+ (DG )+ (Do )
r (O ) (D )+ C )+ (O + QA
OV DAV (DALY £ (DKA) + (DA

(AAA)

4



b

3
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(VMWW + (DWA) + (XMW ) + (DY ) + (XX )
(O + (M) + () + (OVv)

+

+

+

((}C )
(< )
SO

+

+

+

(O

+

-+

+

+

+

-+

(X))
(D )
(g )
O
¥e}

(N}
(v A)
(Oay)

+

+

+

Q)
(O™ )

<)
(<0 )
(&
(o)
(X A)

(A ANV)

(Vv )
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Lattice constants per. site of weak graphs required. in the -

calculation, by the direct.method, of the high temperature -

ferromagnetic initial susceptibility of the hypertriangular

lattice.

Graph
(/)
()
(/)
(AN)
(D)
(A& 7)
(AN)
(BX)
(D)
(A A)
(AN
()
(P"-)
)
1y /)

(O )
(AAAY)

Numbexr of Edges.

Lattice Constant’

3

15

72

348

12
3N-15
1665

18

60
15N-105
7887
168

288

60
9N-75
72N-648

37242



Graph

(D>"MN)
(>C )
(DX )
(D)
(D<)
| - )
(><7)
(D7)
(D)
(&)
(O )
(O N)
(A /W)
(D<)
(D~ AN}

(A A /)

VAVAVAVAN

(>X™M)
(DC7)
(™)
(OX)

Number of Edges

O 0 ©00 O 00 O N N N NN N NN NN NN NN NN

Lattice Constant

1362
396

816

270

90

330

12

48

6

15
45N-435 .
45N-510
348N-3813
9N-72

12N-108

1 1/2 N%-25 1/2N+117

175596
6420
3816
3810-
1296

780



G:agh

()
(OX)

(C o)
(D)
([;Z]g\)

( )
(<)
(>xQ)
()
(Q)

()

(&)
(> /)
() A)
() 7V)
(L ANNV)
(D< N\
(>N D)
(> /)
(N A A

(" \NVVV)
(>NAN)

Number of Edges

Lattice Constant

©w YW W W W o © 0 o o © © o0 oo o o o0 O o0 o o0 o

1518
450
804
60
72
240
72
30
3
60
6
90
99N-1095
225N-2934

72N-3108

7887N-21465

18N~-198
60N-660

45N-495

7 1/2 N?-157 1/2 N+915

825903
- 30336
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Graph Number of Edges Lattice_Constant
( >XM) 9 17808
(D) 9 17628
(DY 9 9072
(O™ 9 6096
(X)) 9 3768
(<><> ) 9 1680
(™) 9 7236
(<) 9 3924
(o/\) 9 3726
(CX) 9 1041
(>X)) 9 273
() 9 336
(D) 9 96
(DA 9 336
(<) 9 120
(D<) 9 - 1122
(<) ; 672
(L ) 9 144
(E) 9 24
(<) 9 120
9 30

()



Graph
[
(K1)
¢ <)
(D)
(D)
()
()
(65
(&)

(<)
() /)
(X /)
(o)
(Y A)
(g V)
(- D)
(D A)
(D A)
(AN A)
(> )

Number of Edges

Lattice Constant:

120

120

111

18

36

12

420

330

36

135

15
216N-2751
45N-510
495N-7338
1080N-17748
216N-3009
60N-720
288N-3714
168N-2184
7887N-116979:
36N-480
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Graph Number of Edges Lattice Constapt.
(O N) 9 348N-18108
(O A7) 9 9N2-156N+1320

(A A N) 9 36N2-900N+6249



186

Ssympolic equations used to calculate the weak lattice

constants of separated configurations required in the

calculation by the direct method of the high temperature

ferromagnetic initial susceptibility of the hypertriangular

lattice.
NAIN(/)
N(A)N(A)

N (A)N (#)

N(QIN(/)
N(O IN{/)
N(D<d IN(/)
N () INiA)

N (D~ N (4)

N{M)N (&)

IN(A) + N(D>-) + N(A/)
IN(A) + 2N(D-) + N(PA) + N(X) + N(AA)

IN(>~) + 2N(DA) + N(€ ) + N(>PV) + N (> )

+ N(AN)

sN(O) + N(O) +‘N(0/)

eN((J ) + N(O-) + N(O ) + NO/)

GN(D ) + N(bd ) + N(PI) + N(X/)

s (Y ) + 28(O) + NON) + N+ N O
+ N(OA) o

N(D~ ) + 4N(D]) + 2N(P]) + N(>L)

+ 2N(D-q) + N(D-D)

IN(DA) + N ) + 28(DV ) + NIAY)

+ N(DW) + N(XV) +N(1>C)+N(©)
+ N(AM)
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6N(AA) + N(D]) + N(P-A) + N{AA/)

NABIN)
N N = W) +nO- 3+ 8y ) O/

N({D IN(A) = 6N(O)+2MQ")+4N(©)+N(Q/\)
s )+ Sy T @ s )

+ (O A

Nibg IN(M) = 10N(E<Q) + 2N(DXL. ) + 4aN( D)
FN(PTN) + NOPf )+ N(DR ) + N )
+ N(PQA)

N((:? iNn) = sN( Q) +»2N(Q )y + 28Ny 4 2N('© )
en( ) N O D)
s+ nOM)

N({BA IN@) = N(DN ) + an( DG ) + N(DL ) + 4N(D] )

FN (DY) + 29( PR )+ N )+ 22N
+ N(DNA)

NP IN(D) = N(DK ) + 2N( DG ) + 4N( B ) + N(AX )
+2N(00 ) + N(Dy) + N(XA)

N(D< IN@) = N(DL ) + 2N(DQ ) + 4N( PR ) + N(AAL )
+ N B0 ) +n( x4 ) F N(D< D)

N(AWWING) = 20(DAV) + N ) + 28D ) +.2N(6 )
en( D ) enC AN ) s N DWW N XN

+ N(DCY )+ N( © ) + N 6’ ) + N(AAY)
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N(A AIN(A) = 6N(AA) + 4N(D~Q ) + 2N(A L) +N(D] )
+ N(D ) + M(DDPA) + N(A X )
+ N(AAA)

NOIVIEN TGN 10 BES NI@RIER (S e oF
+N(O/)

N(Dq)IN() = sN([) +N(Q<r) *N‘Oﬂ’
+N([F<]) +N(J:>4) +N(/)

N(O)N(I\)= w( ) + 2= + O + N (X))
+4N(®)+N(C>)+N(C?)+N( & )

WD )+ (A
O = ex( Q)+ )+ Q)+ 2O

+N(Q)+2N(©’)+N(©_ ) + 28 (> )
+2N(<f> )+4N(@)+N(O’\—)+N(O</)

+N(6)+N(6/\)+N(©/)+N(6')
+ N )+ 3D )+ Ty + nON)
N(DQINW) = 8N(D] ) + aN(DS™ ) + 4aN( D) + N(D><L )
+N(DQ ) + 2(DAN) + N B + NI )
+ N ) )+N(D%)+N(D§ ) + N @)
+ N(PDJNV)
N(Q- N = 2N(©)+N(©~)+N(Q")+N(¢ )
+ (K )+N(O§1 )+N((bﬂ ) + N(—OA )
+ N(O— ) + (O )
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N(DV) + N(DL ) + 4an( D<)+ N(DAN)

+ N(ODA ) + 4N (D) + N(DQW)

+2N( B ) + NP ) + N

+ 2N (D) +2N(-@ ) + N(D-A)
CN(DK )+ aN( DA )+ N(DXT ) + AN )
FNeHA) + B+ v B

+ N(DAC) + N(Dxd) + 28( Dy ) + NI )
+ N(DCA)

N(<I><)+N(<]:'\_)+2N([>M)+N(<f\\/’>
+N(<I_\_/V)+2N(D’W)+N([>O<)

+ (DG, )+ NP )+ NPV

+ N 6 ) + (<) + (> )+ N CE )
F N ) +8CCH )+ NP+ NIAM)
e IR IR0 SRR e B [R O Ip
+ (D<) + 80K ) + (0O |
+N(O—4)
5N(O)+2N(6)+2N(O/\)+N-(‘Q/)
+ 3D ) + 2OV + N( Q,)+N( 6 )
S+ O an) + N )
s + ) s+ KD
+ (D) + N )+ v OM)

sn(OA) + 0O A) +8(OD) + N O )
+ 8 OA7)

N( DV IN(D)

N (DX IN(A)

N(/VW )N (A)

() IN-)

N(Q nm

N(() 4 IN(/)



N(AA)INWN)

sN(D—] ) + 28(D>- D) + 2n8( Dy )
+ NP + (D) + N A
+ 2(DA A) + N (DA ) + NDOY)
+ N(D- ) + NN + N(BVA)
+ N(DCA) + N(AAN

190
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Lattice constants of weak graphs, with more than two odd

vertices, required in the calculation of the lattice

constants of. the separated graphs

Graph Number of Edges Lattice Constant-

() 5 48
(<) 6 480

(Q:\/) 7 1185
() 7 2274
(XY) 7 240
( C( ) 7 225
({\:) 8 11130
() 8 10656
( Q/) 8 2040
() 8 1140

(D<) 8 96
(D<) 8 96
() 8 192

() 8 60
(@-) 8 120
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APPENDIX F

The first seven low temperature ferromagnetic polynomials

for the hypertriangular lattice

Ly = ul |

L, = 3u5 - 3 1/2 uf

L, = ub - 12u7 - 33u® + 20 1/3 u§

L = 12u® + 41u? - 256 1/2 ul? + 351ull - 147 3/4 ul?

L. = 3u? + 11lul!0 - 24ul! - 1673ul2 + 4164ul3 - 3798ul"

+ 1217 1/5 ul5

L, = 8lull + 765 1/2 ul2 - 2481ul? - 7644ul" + 39481luls
- 61267 1/2 ul6 + 41928ul” - 10863 1/6 ul®

L, = 45ul2 + 1059ul3 + 3186ul* - 31423ul!5 + 12628ul®
+ 296067ul? - 762932ul® + 859836ul?® - 470943u??

+ 102477 1/7 w2l
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Low temperature ferromagnetic series expansions for the

Ising model on the hypertriangular lattice.

free energy

(=£/kT) = (q/2) K+ ud + 3 us - 2 1/2 uf- 12 u’
- 21 ud + 64 1/3 u® - 145 1/2 ul?
+ 408 ull - 1010 1/4 ul2 + ...

configurational energy
(U/J) = = (q/2) + 12 ud + 60 us - 60 ué - 336 u’
- 672 u® + 2316 u® - 5820 ull + 17952 ull

- 48492 ul2 + s

specific heat
C/k(ln u)2= 9 ud + 75 us - 90 ué - 588 U7 - 1344 u®
+ 5211 u? - 14550 ul® + 49368 u!!

- 145476 ul? + ...

spontaneous magnetization

I =1 =2ud-12u5 -8 ub - 72 u? - 102 ub
+ 480 u® - 942 ul0 + 3540 ull

- 8096 ul2 + ...
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initial susceptibility
X = 4 ud + 48 us5 - 20 ué - 432 u? - 420 u®
+ 3656 u? - 5316 ul? + 31728 ul!

- 57704 ul? + oo
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APPENDIX G

Partial Generating Functions for the Hydrogen Peroxide Lattice.

Fo = 1ln(1+X)
F = (313)
1
F2 = 3(5,4,1) - 3 1/2 (6,6)
F’ = 12(7,5,2) + (7,6,0,1) - 33(8,7,1) + 20 1/3 (9,9)
3
F‘ = 56(9,6,3) + 12(9,7,1,1) - 256 1/2 (10,8,2)
- 15(10,9,0,1) + 351(11,10,1) - l47~3/4-(l2,12)
F_ = 3(10,5,5) + 273(11,7,4) + 108(11,8,2,1) + 3(11,9,0,2)
- 1862(12,9,3) =~ 297(12,10,1,1) + 4164(13,11,2)
+ 189(13,12,0,1) - 3798(14,13,1) + 1217 1/5(15,15)
F5 = 30(12,6,6) + 15(12,7,4,1) + 1329(13,8,5)
+ 820(13,9,3,1) + 66(13,10,1,2) - 12918(14,10,4)
- 3810(14,11,2,1) - 84 1/2 (14,12,0,2) + 41753(15,12,3)
+ 5274(15,13,1,1) - 61267 1/2 (16,14,2) - 2272(16,15,0,1)
+ 41928(17,16,1) -.10863 1/6(18,18)
F = 2(13,6,6,1) + 237(14,7,7) + 213(14,8,5,1) + 30(14,9,3,2)

+ 6321(15,9,6) + 4524(15,10,5,1) + 846 (15,11,2,2)

+ 13(15,12,0,3) - 86502(16,11,5) - 39370(16,12,3,1)

- 2475(16,13,1,2) + 378465(17,13,4) + 89130(17,14,2,1)
+ 1626(17,15,0,2) - 789853(18,15,3) - 82398(18,16,1,1)
+ 859836(19,17,2) + 26921(19,18,0,1) - 470943(20,19,1)

+ 102477 1/7 (21,21)
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12(15,6,9) + 30(15,7,7,1) + 12(15,8,5,2) + 1653(16,8,8)
+ 2119(16,9,6,1) + 585(16,10,4,2) + 30(16,11,2,3)
+‘.l.

3(16,7,7,2) + 6(16,7,9) + 144(17,7,10) + 429(17,8,8,1)

+ 237(17,9,6,2) + 30(17,10,4,3) + ....

54(18,8,8,2) + 21(18,9,6,3) + ....

12(19,8,8,3) + ...



APPENDEIX H

Shadow configurations for the hydrogen peroxide lattice.
The lattice constants are the numer of strong embeddings
of a given graph in the hypertriangular lattice. The

codes refer to the partial generating functions of the

. hydrogen peroxide lattice.
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APPENDIX I

Low Temperature Ferromagnetic Polynomials Lg Z) for the

Hydrogen Peroxide Lattice.

3

L = 2
1
L = 11/2 z* - 22°
L3 = 325 - 92" + 6 1/3 z2°
L = 72% - 33 3/4 z° + 51z*° - 24 1/2 z*¢
&
L5 = 18z7 - 1212z° + 288z!'' - 291z'% + 106 1/5 z'°®
L = 49 1/2 z® - 4292'° + 1410 1/2 z!'? - 2220z'*

+ 1684 1/2 z'® - 495(2/3)z'®

L = 143z° - 1521z'‘ + 6420z'° - 13872z'°% + 16271z’

| - 9888z*% + 2437 1/7 z?*!

L — 429z!0 - 5414 1/2 z'? + 27999z‘* - 77398 7/8 z'®
+ 1241652'°% - 116077 1/2 z?" + 58755z%2 - 12457 1/4 z**

L = 1326z'' - 19380z'°% + 118864z'° - 4017932’
+ 822360z'° - 1047420z%'. + 8132162z%% - 352791z%°.
+ 65618 1/9 z*7

L = 1 1/2 z*° + 4184z'% - 69700 1/2 z'*"
+ 495463 1/2 z°% - 1984976z °-+ 4959838 4/5 22°.
- 804232522% + 8485862 1/2 z*“ - 5631619 1/2 z*°

+ 2137315 1/2 z*® - 354044 9/10 2*°
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15
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15211 4+ 13371z'% - 251461z°*° + 2037402z'7
- 9458250z'% + 27985130z%‘ - 55320660z%%
+ 74182779z%% - 66776053227 + 38687790z2%°

- 130482242z%- + 1948161 1/11 2z°°

97 1/2 z'? + 43029z’ - 908463 3/4 z'® + 8286908 1/3 2'°
- 43833172 1/2 2?° + 150201585222 - 351274376 1/4 z**

+ 573569217z%° - 6552204902z2° + 514088399z°°

- 264244883 1/4 z°? + 80188977z%" - 10896827 1/6 z3°

525z:3 4+ 138830z-° - 3281880z'7 + 33392535z'°

1986657852z%‘ + 775265400223 - 2098448703z2°

+ 4050218774227 - 5627965959z2° + 5597194944z%"
3891121690z°%% + 1797133827z3°% - 495661896z°7

+ 61800078 1/13 z3°

z'2 4+ 2536 1/2 z'* + 447481 1/2 z'° - 11841776z'*%
+ 133444096 1/2 z2° - 883929669222 + 3877211902z%*

11944978402 1/2 z2% + 26666016898 5/7 z*°®

43765361029 1/2 z°° + 52896457630 1/2 z32

46565246611z %% + 29055837352z%% - 12182650104z°%°

+ 3079314606z°° - 354674912 11/14 z**

122'% + 11425z'5 + 1436253z'7 - 42636642z'°
+ 529247008z2! - 38715871532z%% + 18889738137 3/5 z?°

65375406444 1/3 z?7 + 1660214443142%°
314961411369z°%! + 449306269607z°°% - 480296343859 4/5 z

+ 379171416132z°%7 - 214589972615z3%° + 82377179820z"*"

19215911169z“? + 2056526543 3/5 z**’

35
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17

18

29
20
21

22

93z'* + 49072 1/2-z'% + ....
598z!5 +.....

1 1/2 z'*+ 3433 1/2 z'% + ....
21z'% '+ ....

184 .1/2 z'*®

( Hz'7 + ....

6z!% + ....

234
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The number of polygons. (p graphs), theta graphs; dumbell

graphs, and figure eight graphs on the hypertriangular

lattice.
) 2(2) %(a,b,c)e %(a,b,c)db, %(a,b)a
3 3 0 0 0
4 0 0 0 0
5 15 0 0 0
6 90 0 0 3
7 231 15 12 0
8 576 66 60 15
9 2637 177 393 105
10 11580 858 2472 342
11 42306 4332 13350 1110
12 158748 17179 69039 4815
13 651885 68046 355116 20136
14 2688756 295818 1787898 77334
15 10897530
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The number of polygons. (p graphs), theta graphs, and

)

dufnbell graphs on the hydrogen peroxide lattice

- rap——

) 2y Habie)g Hab,o) g,
10 15 0 0
11 0 0
12 0 0 0
13 0 0 0
14 21 0 0
15 0 1 0
16 168 0 0
17 0 3 0
18 423 12 0
19 0 19 1/2 0
20 900 6 0
21 0 27 37'1/2
22. 3927 63 72
23 0 162 141
24 14100 316 270
25 0 721 645
26 41067 849, 1221
27 0 2108 1/2 3135
28 140742 3150 6318
29 0 7554 14305 1/2
30 498105 12285 27474




Weak lattice constants of dumbell graphs for the hydrogen

peroxide lattice.

237

a c (a,b,c-)db
10 10 21 37 1/2
10 10 22 72
10 10 23 141
10 10 24 270
10 14 25 93
10 10 25 552
10 14 26 174
10 10 26 1047
10 16 27 708
10 14 27 372
10 10 27 2055
10 16 28 1470
10 14 28 - 714
10 10 28 4134
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a b c % (a,b,e) g
10 1 18 29 1830
10 3 16 29 2802
10 5 14 29 1398
10 9 10 29 8217
14 1l 14 29 581/2
10 2 18 30 3366
10 4 16 30 5382
10 6 14 30 2688
10 10 10 30 15933
14 2 14 30 105




Weak lattice constants of dumbell graphs for the hyper-

triangular lattice.

a b c L (a,bic‘).db
3 1 3 7 12
3 2 3 8 60
3 3 3 9 273
3 1 5 9 120
3 4 3 10 1302
3 2 5 10 522
3 1 6 10 648
3 1 7 11 1542
3 2 6 11 2928
3 3 5 11 2484
3 5 3 11 6174
5 1 5 1l 222

239
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A

Ao

a c [} (a,b,¢) g
3 1 8 12 3852
3 2 7 12 7134
3 3 6 12 13644
3 4 5 12 11616
3 6 3 12 28971
5 1 6 12 2628
5 2 5 12 1194
3 1 9 13 17634
3 2 8 13 17412
3 3 7 13 32880
3 4 6 13 64182
3 5 5 13 54606
3 7 3 13 135807
5 1 7 13 6594
5 6 13 13098
5 3 5 13 5439
6 1 6 13 7464
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a b c 2 (a,b,c)db
3 1 10 14 74730
3 2 9 14 77754
3 3 8 14 80724
3 4 -7 14 155202-
3 5 6 14 301944
3 6 5 14 255570
3 8 3 14 636798
5 1 8 14 15438
5 2 7 14 31506
5 3 6 14 60228
5 4 5 14 25389
6 1 7 14 36570
6 2 6 14 36045
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Weak lattice constants of figure eight graphs. for the hyper-

triangular . lattice.

a b L (a,b)a a b 2 (a-,b)a
3 3 6 3 3 10 13 12036
5 8 13 2619
3 5 8 15
6 7 13 5481
3 6 9 105
3 11 14 44814
3 7 10 291 5 9 14 12243
5 5 10 51 6 8 14 13554
7 7 14 6723
3 8 11 651
5 6 11 459
3 9 12 2664
5 7 12 972

6 6 12 1179
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'APPENDIX K

Table of Pade approximant estimates‘of critical parameters

for the hypertriangular and hydrogen peroxide lattices.
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TABLE K.8

Estimates of the amplitude of the specific heat, A, (Kg),

of the hypertriangular lattice obtained from Pade approxi-

1/2+a

amants to (K,-K) {d /dK C(K)} evaluated at K=K =0.573794

M\’ 3 4 5 6 7 8
3

4

5 1.085  0.958 1,260 1,314

6 1.085 1,091 1.043 1.326
7 0.983 1.047 1.073

8 1.356
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