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ABSTRACT

This thesis is concerned with the practical implementation of one member of coa-
strained long range range predictive coatrol algorithm, namely the generalized predictive
coatrol (GPC of Clarke et al. (13,14]). It evaluates the performance of adaptive constrained
GPC on a single-input, single-output (SISO) system aad a fixed parameter or non-adaptive
constrained GPC as applied to multi-input multi-output (MIMO) systems, through simu-
lations and experimeatal runs. wmhﬂm‘uﬂ-ﬂnﬁqthinlmd
constraints on the performance of the coatrol algorithm. Analytical solutions of constrained
GPCalptithnmabomudhquﬂcﬂmdm&ﬂutnﬁnn‘md
practical importaacs.

mdmluhlndoxpci-aulnumthm“dthm-
strained GPC algorithm. The experimental runs evaluate the performance of adaptive
mmusmocmummmmnuumua-
varying dysamics. mmuocrcm.m-m.mm-ad. The
deWmumMWMMJGPC
in the presence of process noa-linearities, messurement noiss, otc. It aleo shows the effect of
mammwummdummudm
MWM.MMMGPCBMM.MW
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It describes the necessary and suflicient conditions for optimally scaling a square matrix in
iy-aorm. The study demoastrates the increase in sumerical robustness of an system with
optimally scaled inputs. The optimal scaling methods for systems with equal numb.r of
inputs and outputs is extended to systems which have an unequal number of inputs aad

outputs.
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Chapter 1

Introduction

Automatic coatrol of industrial chemical procesees is a challenging task due to the pres-
schemes such as multiloop PID schemes is often not satisfactory, depending on the severity
widely ceed in industry, suffers from maay drawbacks:

. medlpmmhnmdhthmﬁdpﬂ&n

¢ Tuaing of a PID loop is time consuming. The tuning of a meltiloop PID coatroller
is at best a nom-trivial task. In the abssnce of a model, it is performed on-line by
' ment of &

mhﬂﬁﬂﬂ;pﬂmﬁphmmmﬁdmmhth




o Chaage of process dynamics (dwe to catalyst decay, fouling of heat exchangers, change
in production levels, variation in raw material quality and quaatity etc.) will lead to
a degraded performance unless the controller is retuned.

by Kalmaa (23]

1.1 Adaptive or Self-Tuning Control

Adaptive controllers’ are capable of ideatifying the parameters of the process on-line and
are able to compensate for the variations in the characteristics of a process. The general
structure of this control strategy is shown in figure 1.1.

.rzm--ﬂﬂm_aﬁ—ﬂm-ﬂ-d echangeably




increase in the speed of controller coms ing. Furthermore, the use of self-tuners would

nmmmnﬁwdmuﬂ&mnthiﬂmhnﬁqthqﬂtyd

1.2 Long Range Predictive Control

alos [54]).
Thpmunﬂﬁmddq-g-ﬂui-iﬁthkﬂap:mdpnﬂ:ﬂﬁmndm
iiﬁt@ttﬂiiﬂiﬁﬂﬁ:ﬁﬁ:tﬂtﬁthtnthpidiﬁdﬂtﬁtﬁ:iﬁﬁiith

pole-placement and long rengs prediction P&ﬂnﬂ(mgdmm
The second alternstive I—j-_pniﬂﬁﬂd(lﬂc).h:m-ind




and is relatively insensitive to time delays and non-minimum phase systems.

The early LRPC algorithms such as ideatification/commaad (IDCOM of Richalet
et al. [44]) and dynamic matrix control (DMC of Cutler aad Ramaker [15]) were based
on deterministic impulse or step response models. Though easy to obtain, the relatively
large parameters in the process model make these immediately not suitable for adaptive
implementatioa.

LRPC algorithms based oa traasfer function or input-output models have the po-
teatial to become self-tuning as they are capable of represeating the processes in a simple
maaner with fewer parameters. The importaat LRPC algorithms based oa such models
are: Peterka's infinite stage predictive coatroller [40), Multistep Multivariable Adaptive
Regulator (MUSMAR) approach of Mosca [38), extended horizon adaptive coatrol (EHAC)
algorithm of Ydstie [58,60] based upoa GMV with the output prediction well beyond the
time delay, extended prediction self-adaptive coatrol (EPSAC) algorithm of De Keyser et
i(l&lﬂvﬂdha“ﬂuﬁudmwmmm&wﬁa
horison of future valuss, and the generalised predictive coatrol (GPC) algorithm of Clarke
et ol [13,14]. The latter is a generalization of previcus multistep predictive algorithms as
well as being the natural long-range extension of GMV.

Geaeralized predictive control involves explicit ideatification of the process and the
minimization of & multistep quadratic cost fenction of future predicted errors to compute
the incremental comtrol sigaal. Use of coatrolled auto-regressive integrated moving av-
erage (CARIMA) model structure for the process model ensures inherent integral action
(Clarke (12]). The calculation of the control sigaal by minimisiang the quadratic cost fane-
tion is based on the assumption that after & weer specified contre! Aerisen all coatrol incre-
ments are assumed to be sero. This idea is borrowed from the DMC algorithm of Catier and
Ramaber (15]. Preper ssloction of prediction herisen and the control horison malts GPC
relatively inssasitive to uaknowa or variable time delay and ace-miasimum phase processes.

The phyuical constraiats of a precess, such as saturation of actusters, can be la-



as comstraints on the incremental control signal and the quadratic cost function of the al-

1.3 Objective of Study

The LRPC algorithm, GPC, was experimentally evaluated oa single-input single-output
(SISO) and multi-input multi-output (MIMO) processss. Performance of an edaptive con-

ﬂﬂ:ﬂtﬁhﬂﬁhﬂ&uﬁ:hh“ﬁmﬂhumﬁn
with comstraiats on amplitude, incremental change of coutrol signal, aad amplitude
coastraints oa the process outputs.

o to develop analytic solutions for special cases of NU = 1 and 2 for SISO aad NV = |

¢ 1o evaluate the performance of adaptive constrained SISO GPC for processes with




o to compare the performance of constrained and uncoastrained LRPC algorithms for
SISO and MIMO processes.

1.4 Structure of the Thesis

This thesis is mainly concerned with the prectical application of a constrained LRPC algo-
rithm, GPC, oa SISO and MIMO systems. The structure of the thesis is outlined below
with emphasis oa the coatributions of this work. A more detailed introduction is given at
the start of each individual chapter.

Chapter 2 reviews the basic GPC algorithm aad existing exteasioas to incorpo-
rate various desiga polysomials. It aleo formulates GPC for haadling constraints on the
controlled and manipulated variables in the algorithm. This chapter also describes the
extensioa of GPC to multivariable systems.

Chapter 3 develops an analytical solution for special cases of constrained GPC al-
gorithm. mwmummwuumx:gﬁﬁm
method. This chapter preseats a solution to the coastrained SISO GPC for control horizoa
valuer of 1 aad 2 and a solutica to constrained multivariable GPC for a control horisoa
of 1. This chapter also gives a geometrical interpretation of the constraints aand the cost
fanction of GPC.

Chapter 4 evaluates the performance of GPC with the help of simalations
study of the Shell control problem [42] is presented ia this chapter. The simulations show
the offect of variation of varices ‘tuning knobs’ of the fixed parameter muktivariable con-
trol algorithm. The effect of constraints cn the performance of the system is llustrated
through some of the simulations ia this chapter. A sumber of simalations are pressated to
show the performance of multivasioble GPC algorithm ia the pressnce of various degress of
modd process mismatch ia the gain. Desed ca these simulations, » suggestion on tuning
of output weighting (pue) is suggested. The simulations also poiat cut the limitations of




mismatch.

Chapter 5 describes the application of adaptive coastrained SISO GPC and fixed
parameter constrained multivariable GPC to control the stirred taak. Special emphasis is
placed on highlighting the benefits of wsing the constrained algorithm. The multivariable
experiments also demounstrates that output weighting is a critical coatroller tuning parame-
pressure in a dog. This is a highly non-linear and time varying system and the successful
application of GPC oa this system demonstrates the effectivencss of the algorithm.

scaled square matrix in /3 norm. The effects of scaliag controlied and/or mas
method for systems with an equal sumber of inputs and cutputs is extended to systems
with an unequal sumber of inputs and outputs.

Chapter 7 draws conclusions from the results preseated
suggestions for future work.




Chapter 2

Constrained Generalized

Predictive Control

Generalised predictive coatrol (GPC) of Clarke et ol [13,14] is a loag-range, multi-step pre-
dictive coatrol algorithm. Adaptive SISO GPC is experimentally evaluated oa a contirous
stirred-tank heater as described in chapter 5. The mulitivariable extension of generalized
predictive coatroller (MGPC) is described in Mohtadi [35] aand Shah ef ol [46). A fixed-
parameter or non-adaptive MGPC was weed for simulations discuseed in chapter 4 and

perimental runs described in chapter 5. The development and interpretation of the con-

2.1 Introduction

GPC is one of the more recent long range predictive control algorithms. It combines several
1. The wee of long-renge prediction (Richalet et ol. [44]) over & finite multi-step hor




aids in achieving offset-free comtrol for step-type or random-walk disturbances and
set-poiat changes.

3. The assumption of a control horizon, NU (Cutler and Ramaker [15]), after which
all projected coatrol increments are assumed to be zero. By comstraining the calcu-
lation for the coatrol signal in this fashion, GPC reduces the computational effort
sigaificantly and simplifies control of non-minimem phase plaats.

4. The optional weighting of coatrol increments in the cost function ens.res offset-free
rejection of noa-stationary disturbances as a result of inherent integral actioa.

This chapter is concerned with the development of basic SISO GPC aad MGPC,
ﬁﬁmuummmhutmﬂmummnﬂaawm
of the identification algorithm. The chapter is organized as follows: sections 2.2 aad 23
Mﬁh&WdMGPC&MM&SBOn‘WNOWMﬂy.
mmm.u.immwa.ummmuimmm
GPC algorithm. The identification algorithm ueed in adaptive SISO GPC for conducting
experimental runs is briefly described in section 2.5.

2.2 The Basic SISO GPC

NWJ&SBOGPCMMW“ﬂMdnmw.
suitable for the prediction of future process outputs. The algorithm is extended to produce

a range of fature predictions. Muuu—mu.wmm.
Mmhdﬂﬂdwmmmmu

2.3.1 The CARIMA Process Model

mm“wm“mmmum.m

A o) = e~ ete - 1)+ S et @1)



ively; A is the difference

where y(t) and w(t — 1) are process output aand input respect

operator, A = 1 — ¢g~!, {(t) is an uncorrelated random noise sequence with zero mean aad

jals in the backward shift operator ¢! i.c.

A ) =1 +ag7" + ...+ a4

B )=bo+he™ +...+ bae”*?
If a plaat has & non-2ero time delay, them the leading elements of the polynomial B(q~?)
are sero. Although C(q™!) is another polynomial in the delay operator, it will be chosen as
1 for simplicity. Thus the CARIMA representation looks like:

A~ = Bla~ e - 1) + 2 (22)

is made on the basis that the noise term (C(g™")(¢))/A is a more realistic model of typ-
intervals or as drifts. Ia practice, however, the main justification for the use of this model

presence of aa intagrator in the model.
output, i.e. {§(t+ 5),j = 1,2,...}, given information up to time t and assumptions about

ors, it can be justified 2s a form of linearisa-




CARIMA plaat model description of (2.1) is rearranged into a form suitable for the gener-
ation of j-step ahead predictions, using the Diophantine identity:

1= Ej(s~")A(e™)A + ¢ Fi(e™") (2.3)
where E; and F; are polynomials of degree j — 1 and §A — 1 respectively, and are uniquely
defined for a given A(q~") and the prediction interval j. Substitution of this identity in 2.1
gives a prediction equation for the y(t + j):

§(t + jlt) = Gi(a~")Au(t + j = 1) + Fi(¢~")n(t) (24)

where G;(¢~") = Ej(¢7")Bj(¢™") and the associated p1

e(t + jlt) = E;(g™" (¢ + ) (28)
T\u,llpnlﬁph,lt-pﬁmhiiﬂﬂﬂlyﬂﬂthMMsz.lﬁs
each prediction interval, j, and to substitute it into 2.4 to obtaia the required predictions.
hmithwmiégtmdﬁzilﬁtiﬂumﬁﬁigi F; and then to
calculate subsequent values of E;y and Fiyy using a recursioa of the Diophantine equation
(Mcintosh [30]) .

He+iit) = Cila™)as(t+j-1)+Cie™)as+ Fila™ (1) (26)
= Gi(g™")an(t+j- 1)+ f(t+]) 27

Thus the prediction §(¢ + j) can be split iato two distinct parts:
o f(t+ 5), the predictioa of the output sssuming no future changes in the control signal

ie. Au(t+j-1)=0,j=12... This corresponds to the ordinates of the process

‘fres-responss’.

oé,(q")A-(t-l-j-!),tbpdﬁhﬂthpﬁmm'ﬂhﬁ-ﬂ-ﬂgﬁtb

1n



future control increments and the ‘step-response’ of the process and thus the individual

G parameters correspond to the appropriate ordinates of process step-response.
While implementing the GPC algorithm for simulations and experimeatal runs, the free-
response of the process was calculated by setting Au(t + j - 1) = 0,5 = 1,2..., without
using the Diophantine equation, because it is computationally less intensive for adaptive
coatrol.

2.2.3 The Predictive Control Law

The prediction equatioa (2.4) not only allows the calculation of future predictions givea
future coatral signals, but also allows the calculation of future comtrol signals given the
desired valuwe of future predictions. For GPC this calculation proceeds by definition of a
quadratic cost-function represeating the differeace betweea future predictioas of the output
and a prespecified set-point trajectory {w(t + j),j = 1,2,...}:

Jarc = E{,_g‘[v(t +5) -t + i) + ,‘Z:' AjMawe +5 - DY) (28)
where
o Nj is the minimum prediction horizon,
o Nj is the mezimum prediction horison,
o A(j) is a weighting upoa future coutrol increments, aad
o E is the expectation operator.

The above equation (2.8) minimises the prediction error over a range of future
predictions, starting from N; samples into the future aad ending after N3 samples. The
future predictions are calculated wsing the equation (2.7). The minimum prediction horison,
Ny, is normally assumed to be 1; but for processes with knows minimum time-delay, it can
be chosen equal to or greater thaa minimam time-delay, to minimise computation for the



thaa 1 for the comtroller to overlook the non-minimum phase behavior of the process. The
maximum prediction horizon, N, in general, should be chosen to extend across most of the
pmmthnhmmhmbynychﬁgeilthﬁrﬁtmuﬂﬂﬁﬂi
Thaus, it should be chosen at least to be greater thaa the degree of the B(q™!) polynomial
of CARIMA process model (equation 2.2) aad if possible should correspond to the rise-time
of the plaat itself.

The derivation of the control law from the cost-function in equation 2.8 is exteasively
described in the literature ( Clarke et ol [13,14], Mohtadi [35]). It caa be proved that the
cost function (2.8) can be vectorized as:

Jorc =[G+ 1 - w|T[Ga + 1 - w)+ AdT& (2.9)
and its solution is :
@=[GTG+M]'GT(w-1) (2.10)
[w(t+ M) w(t+ Ny +1) ... w(t+ M)
e+ M) S+ N +1) .. e+ M)

& = [Aw(t) As(t+1) ... Au(t+ Na=1)T

f

;:df(t’+j),ithﬁnmgiuﬂibdhthnﬂiﬂ(izz)gdﬁh;ﬂﬁxd
dimension (N3 - Ny 4+ 1) x Nj:

Q,HIQ! e p n o [ X o

g=| ™ TR @)

h=1 °°° »
3 - o



d+1- N, rows and last d columns of G will be eatirely sercs. As GPCisa 7
coatrol policy, only the first element of the control sequence is actually implemented and,
therefore, it is necessary to calculate oaly the first row of [GTG + AI]-'GT, at each sample
interval.

2.2.4 The Control Horison

While implementing the adaptive GPC on a process, it is necessary to invert on-line the
matrix in equation 2.10. The dimeasion of this matrix is N3 x N; and results in heavy
computational load, since N; is typically large. Moreover, if the plant has physical dead-
times such that d > N;, the matrix GTG is singular aad a finite non-zero value of omtrol
weighting, ), is necessary for [GTG + AI]"? to exist. These limitations can be overcome
by the use of a specified coatrol horizon.

The specification of a coatrol horizon, NU, is an idea borrowed from the dynamic
matrix control (DMC) algorithm of Cutler and Ramaker (15] . It assumes that after.an
interval of NU future samples, the projected coatrol increments are sero, ic.

Aw(t+j-1)=0 ; j>NU (2.12)
The coatrol horison, NU, represents the number of non-zero coatrol increments the cou-

troller is free to select for minimizing the cost function gives by equation (2.8). The incor-
poration of this idea iato algorithm results in two immediate advantages:

o Simplification of the control calculation: Incorporation of the control horisoa modifies
the matrix G (2.11) to be of dimension (N3 -~ N, + 1) x NU

r'"l-l oo . n o s D
.0 .- 0 ,
g=| ™ h» 7 (2.13)
"&-. coe m_w{

which means that the matrix 10 be inverted [GTG + AT} is iteslf of dimension NU x
NU. f NU = ), this reduces to a scalar computation.

14



comstraint wpon the coatrol calculation that allows stable comtrol of non-minimem
ﬂmpma_ﬁhtthmﬂiuﬁimndbymdmpﬂcﬁwmtml
algorithm (for instance the GMV algorithm). The coatrol signal is preveated from
m,thﬂmﬂﬁqm-mlhpmmﬁplyﬁealdenltmedg Ny
is not mecessary, for appropriate NU (Mohtadi (33]).
mﬁdﬁnmuﬂlymgﬁﬁmuﬂﬂ;_ﬂﬂ:ﬂ-ﬂﬁﬁmmm-

2.3 Basic Multivariable GPC

Snﬁnhb-kSlSDGPCﬂgnﬂthhuhnm.hﬁnmhﬂhmﬁﬁ.th
gu&nﬁﬂﬁmmcﬁ.hnmtpt&hptmDﬂﬂ-i-ulﬁnﬂ;hk
m&cﬁghhﬂhmm»];ﬂsmﬂi(m
2.3.1 The MV CARIMA Process Model
Coasider a CARIMA procsss model for a n-output m-input system ) represented by
Alg~")Ay(t) = BAwu(t — 1) + Cea(t) (2.14)
where A and C are diagonal polynomial matrices jces of dimension n X B
B is a polynomial matrix of dimensioa psion 8 X m
Ay and @ are the differenced ced output and noles vectors respectively, of dimension » x |
Au is a differenced input vector of dimension m x 1
Hmﬂ&-mﬁnéﬂ‘d;pﬁ_m;n&mm&m
2g polynomial in matrix 5 are sere. For the MGPC, the out-

19



multivariable process can be represented by the above CARIMA model (equation 2.14).
and its implications will

are elaborated in section 2.2.1. In this sactios

matrix of the noise vector, C, has been set to the Identity matrix
be discussed in section 2.4.1.
2.3.2 Long Range Prediction in MGPC
process is achieved via the matrix Diophantine equation shown below:
I=EAA +q7°F (2.15)
When combined with the process modal of 2.14, this gives:
F(t +5) = Gi(e~)Aaw(t + j - 1) + Fi(¢~")x(?) (2.16)

where G; = £;5. This caa be rewritten as:

Gile~)an(t + j - 1) + Gi(¢~")Au(t - 1) + Fi(e"W(t)  (217)

= Gi(e~")au(t+j - 1)+t +j) (2.18)

¥t +5)

where, just as in the SISO case, the prediction §(t + j) can be split into two distinct parts:

o f, the prediction of the output assuming no future changss in the coatrol signal. This

o Ci(e=")Au(t + 5 — 1), the prediction of the cutput that is dependent upon the future
madvars = T+ w4 P04 - wit 45

»w i
+3 At +i-1)TAu(t+j-1) (2.19)
!



M

A= (2.20)
b W
The cost fanction of MGPC is similar to the cost fanction of the SISO GPC (238).
As in SISO GPC, it is possible to calculate the F(t + j) simply by iterating the estimated
plant model for “free response’ of each output, usiag the MV CARIMA process model (2.14).
The clements of the polynomial matrix, ; in equation (2.18), correspoud to the appropriate
dements of the step-responses of individual channels.
Following the standard derivation of MGPC in Mohtadi (35) and Shah et ol. [46]
leads to the multivarishle contsol law give by the following cost function:
min Jugre = [G0 + € - wfF(G0 + £ - w] + AuTAAw (2.21)
and its solution is:
Aw(t) = [In0 .. JOTG + A" 'Hw -1 (2.22)
where
0 = [Aw(t)Au(t+1) ... Au(t+NU -1)]
w o= [m(t+1)...w(t+1) vee Wy(t 4 5) .o. wa(t+ )N
. (A@4+1) . falt+1) .. (8 45) o St 43N
A = matrix of NU block diagons

iy
N

w(N3 - Ny 4 1) x (mNU):
-G"i!’i - & e O --- ]

G G-"‘ oo Gy Go O - ? (m)

Gmy-r Gwy-mv



where each G; is a submatrix of dimension 8 X m, the dements of which are the step-

input, hence the pre-multiplication by (/.. 0... ] in (2.22).
algorithm, the only difference being the increased order of calculation at each stage with
respoadiag features of the SISO algorithm. If the GPC desiga parameters correspondi
input/output ordering or pairing has 20 effect upon the coatrol performance

2.4 Extensions to the Basic GPC Algorithm

algorithm forms the main part of the control law, it is not capable of effectively controlling
outputs of the process.

The term C(¢~')¢(t)/A, ia the CARIMA plant model description (2.1), is assumed %o




The relation betweea the C(g~") and T(¢™?) is well illustrated by the following

AleY) Blg ') C(e”!
'_‘)A’(t) )A-(: D+ Fem =3 _g(t)

Nﬂrlf‘f(q“)=C-'(q§‘)th&hpmﬁetmmlﬁdﬁ;ﬂhﬁ;hmm

(2.24)

m—ﬁiMichMAb.QHmmmﬂs(t)h“kiﬁ-udm
be approximated. For these reasons, a fixed estimate of C, the T polynomial, is wsed for
Thmﬁnﬂtthdyﬂﬂiithnlpﬂtl:_hliithmﬂ;h
T = EAD +47'F; (2.28)
¥(¢ + jit) = G;Ad(t+ j - 1) + Fiy/(0) (2.20)
The discussion above was for incor loa of T(¢™") in the control algorithm for

for the MGPC s

T = A +¢7'F,; (227
T(¢™") = dingllh ... Ti) . (239)

The peodiction equation for MGPC Is medified as:
e+ ) = TG0~ )au(s + § = 1) + Fhe™ WOl (229)



From a practical view point, this design parameter can be described as a filter
which heips in handling high froquency disturbances in the system, which caa be due to the
uamodelled dynamics or the preseace of high frequency uameasurable load disturbances.
The use of this low-pass filter polysomial in the controller design enhances the robustaess
of the control and gives better load disturbance rejection properties. The property of this
tuning parameter to reject load disturbances independent of servo performance, in the ideal
case whea there is 2o model process mismatch, led to the T(g~?) being called the iced
disturlance tsiloring polynomiel. This polynomial is also called as T-filter in the control
literature.

3.4.2 PFeedforward Compensation

In the process control industry, there are maay physical systems with measurable load dis-
turbances. Instead of relying on the load disturbance properties of the coatroller, wee of
measurable lcad disturbances in the control strategy caa substantially enhance the perfor-
maace of the closed-loop system, particularly for systems with significant time-delay and/or

sluggish response.
For SISO GPC feedforward can be incorporated by exteadiag the CARIMA
modd iec.
Ale~")ap(t) = B(g~")An(t - 1) + D(g™")Ax(t - 1) + (1) (2.30)

where (t) is the measurable disturbence; D(¢™") is & polynomial in backward shift operator
that may be estimated in the same manser as A or B aad thus eaable dynamic fesdforward
compeasatics.

Alternatively, fosdforward ia SISO system can be viswed as an extended maitl-
isput single-cutput (MISO) qystem. For & MIMO systems with n-outputs aad m-inputs,
d-disturbance variables will result ia wsiag 2a extended CARIMA medel of n-cutputs and
(m + d)-lapute. This extended medel should be used for calculating the ‘Sres-response’
(ouctions 2.2.2 and 2.3.3) of the system. Howover, the actual CARIMA precess medel



should be used for the remaining parts of the calculation i.c. for forming the step-response
M(GQGLMMQWMCQ& For SISO systems, this result
ia the same law as given by equation 2.30.

2.4.3 Constraints

Tiemudutiuiupl-uudusmicdmuﬁmgﬁn,ﬁhhminﬁn
dmhm*mﬂnmdym“thmpﬂﬂﬁlﬁn
for example the reflux ratio of a distillation colema caanot be negative. It is possible to
the control sigaals by minimising the cost function (2.19) subject to the physical constraints.
Wdcm“hwumqtﬁwmi
thm.vﬂdﬁnhmhmwby(zu)héz

Thnﬁtﬂnmuuthmhmmhmﬂnnﬁm-uﬂ
the Au as follows for NU = 1:

Smia S wt) S e (2.31)

» Smia=0(t=1) € Au(t) S U =u(t-1) (2.32)

m-ﬂu&mhsmvﬂNUu’mﬂhﬁ:ﬂugﬂﬁl
MIMO system will be:

aa—wt=1] [10 - 0] awn ] e = Wt = 1)
Swia — 9t - 1) < 11 .- 0 Ai‘f‘) < Snee =98 = 1)
L) B DR | L A2 LA e - Wt =1)




where in the above equation all the vectors are of the dimension (m X NU) x 1 and the
lower diagonal matrix is of dimension (m x NU) x (m x NU).

The rate coastraiats are comstraints on Au and heace caa be used directly. The
comstraints oa the process output also should be mapped as coastraints on Au. This can

be doae by using equatioa 2.1%:

IA

¥ (234)

£ Ymes
B Ymin—f £ A8 £ Yuee-f (2.35)

Ymin

where all the above vectors and matrices are vectorised for appropriate minimum,
maximum aad coatrol horisons. However, it must be kept in mind that the mapping of
comstraiats oa process cutput depend on the exactasss of the model. If the model is poor,
the mapping of cutput constraints as constraints oa Awu will act achieve the required effect.

The solutioa to the constrained GPC is achioved by minimisiag the cost function
(equation 2.9 or 2.21) subject to the inequality constraints described above. Commercial
optimization software packages like QPSOL (19] and TOLMIN [41] are available in the
marhet which solve such problems.

Impleomentiag constrained control algorsithm is computationally more intensive thaa
the uaconstrained cass. For the geaeral case, analytical sclution of the comstrained cost
function doss not exist and is calculated by the use of commercial software packages, which
use efficient ssarch algerithms of different kinds. For some special cases, it is possible to solve
the constrained GPC algorithm analytically. Tsaag and Clashe (58] have doveloped analytic
soluticas for rate or amplitude (but not both) constrained SISO GPC for the special cases of
NU = 1 :ad 2. Ia chapter 3, asalytical seluticas are developed for rate and/or amplitede
constrained SISO GPC for NU = 1 sad 2 sad for rates sad/or amplitudes constrained
MGPC for NU = 1. The implamestation of an analytical sslution is computationslly much
move eficient thea aa algerithmic seluticn.



pﬂdhmm&mhhhﬁmuﬂnhgﬂﬁiﬂmpmdhd

2.4.4 Output Weighting

minJuarc = £y, Bt +3) - ot + ) + Ei, lin(e + 5) - wlt + )P

+TNY aw(t+j-1)TAAu(t +5 - 1) (2.36)

° Migyﬁr“iﬁhgmw-ﬁhﬁh rorrespoadi
éiﬁihthﬁhhﬁi(!ﬂﬂdm




2.5 Long Range Predictive Identification Algorithm

So far in this chapter, the generalised predictive control algorithm has been developed for
sxperimental runs, on a SISO process, described in chapter 5. Long Range predictive iden-
tification (LRPI) scheme of Shook et al [47,48,49] was used for identifying the parameters

of the process, for these experimental runs.

is a dual of the loag range predictive control schemes. The closed-loop performaace of
multi-step ideatification-prediction algorithm is better than algorithms wsing a single-step
abead estimation and these parameters to obtain multi-step ahead prediction. The cost
function of the LRPI is:

N M .
Juner =3 3 (W(0) - #elt - 5))? (237)
tal jul,y
The coafiguration of the LRPI aad GPC in the closed loop is shown in figure 2.1.
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Figere 2.1:



Chapter 3

Analytical Solution for Simple
Cases of Constrained GPC

An analytical solution exists for the unconstrained Generalized Predictive Coatrol algorithm
(equation 2.22). But no analytical solution exists for the general case of constrained GPC.
The solution for the gemeral case of coastrained GPC caa be found by using commercial
optimization software packages. The on-line use of optimisation software packages is com-
putationally intensive and should be avoided as far as possible. However, the unconstrained
GPC algorithm cannot account for the physical constraints of the actuators in a process. To
accommodate the physical constraiats and calculate signals which are physically realizable
by the process, it is necessary to implement constrained GPC algorithm. The formulation
of constrained GPC has been discuseed ia section 2.4.3.

Albeit no analytical solution exists for the general case of the cost function of the
constrained GPC algorithm, amalytical solutions exist for some simple cases of GPC aad
are of practical importance. The computation required by these analytic solutions is sub-
stantially lower than that required by algorithmic solutions and hence are more oficient.
In this chapter, an analytical solution for the rate and amplitude coustrained GPC will be
considered for the special cases of NU = 1 aad 2 for & SISO system and NU = 1 for a

MIMO system.



3.1 Development of Analytical Solution

3.1.1 Introduction

The GPC algorithm can be subjected to rate and amplitude constraiats on the manipulated
variable, and can be used for systems with physical limitations on the implemented coatrol.
The solution of the objective function of the constrained GPC caa be calculated on-line with

the help of efficient quadratic programmiag(QP) tation software packages which are

computationally very inteasive. Therefore, the use of an analytical solution to solve the cost
fanction of constrained GPC, wherever possible, is highly desirable as it requires reduced
computation. Unlike most of the algorithmic solutions, which may or may not coaverge to
the true solution, analytical solutions do not suffer from this problem.
ImndmlﬁlhﬁMﬁnﬁﬁ-hMmﬂﬁNU52.
hﬂk@thmtﬂmhthmggﬂtﬂmcﬁhtmm
rate and amplitude constraints simuitanecusly. This chapter develops aa algorithm for
computing the analytical solution of GPC with comstraints on rate and amplitude of the
m;ﬂghhdvuﬁbh(s),ﬁth:péﬂmﬂﬂﬂqnﬂh!aid?ﬁ:;SlSD:ym
aad NU equal to 1 for a MIMO system. A geometric iBustration of constraints and their
thnmpt‘:‘udtbqﬁiﬂnhtﬁihthﬂﬂiﬂmhuﬂnvﬁlh;hﬂi
-ithh:npn'lﬂipt‘al-‘inhlﬁtd:hmI‘huﬂyﬂd-ﬂuﬁnﬂthmntﬂld

3.1.1.1 Kuha Tucher Multipliors Method
ned as follows:




Coasider the minimization of a function subject to comstraints, i.e.
min f(z) 3.1)
such that
a(s) <0 fori=1top
bi(z) =0 forj=1tog
The cost function of GPC is a quadratic function. Heace the cost function of f(x)
for the quadratic programming (QP) problem caa be stated in the following form:
Jop=min 27z 42THs (3.2)
» ()
@A p) = () + ) meil) + 3 Aibi@) (33)
sl j=l
where the 4;'s are the Kuhn-Tucker multipliers and the A;'s are the Lagraagiaa multipliers.

o =0

ep20fwinltop



Iith;hndiaiithg,ntmh;ﬂﬁgthmﬁﬁmﬁmﬂﬁdthﬂlh-
'Iiehﬁulﬁplhﬂp,dggiﬁththnﬂmﬂpmﬂﬁuﬁﬁihhﬂ:il

the constraint Max f(s) | Mis f(z)

cubject to a;(z) SO| m<O | w20

subject t0 6j(2) 20} 20 <0

Tﬁ;hiﬁﬁhﬁnn-ﬂnhm&mp-ﬂhmm-nﬁ!nﬁm

3.1.3 Constrained SISO GPC for NU =1
ained GPC for NU = 1 is:

Joro = S [yt +5) - wit + ) + Aawie) (34)
=M

The constraiats oa the rate and amplitude of the » sd variable are:

Sin S 9(t) S Sumer (3.9)

Avgia S Au(t) S At%nes (3.8)

hlb:ﬂhnﬁﬁ(qnﬁid)hhﬁﬂthuﬂﬁhén,nﬂthm

must be transiated as comstraiats oa Au. ﬁ-mﬂhhm-tmh:;ndn
constraint on Aw, 8¢ explained ia section 24.3.

mmammﬁ-ﬂ-h‘-ﬂ-u)ﬂmﬁﬁmi—w

a = max{Avmia, Smin = %t - 1)} @0



A = min{Atnes Smes — Wt - 1)}

The solution (Au*(t)) for the unconstrained GPC caa be calculated using the equa-
tion 2.10. Then the solution of the constrained GPC is givea by clipping the unconstrained
Au’(t) to the appropriate bound i.c.

a if Av’(t) € a
Ast(t)={ Aw(t) if a < Aw’(t) < 8 (3.8)
s if A < Aw'(8)

3.1.3 Constrained SISO GPC for NU =2

In this section, the solution to the rate and amplitude constrained SISO GPC will be
developed for NU = 2. The Kuha-Tucker’s multiplier method described ia section 3.1.1.1
is used for finding the solution of the constrained problem. The vectorized cost functioa of
the unconstrained GPC (equation 2.9) is:

minJogpc = [GE&+1-w|T[GE+1 - w)+ 2&TE (3.9)
= TGTG+ANE+Af-w)TGE+(f-w)T(f-w) (3.10)

where, for NU = 2:

w o= [wttrN)e(t+M+1)... w(t+N)T
f = [f6+M)f(t+ Ny +1)... f(t+ Ny)T
& = [Au(t) Au(t +1)F

o1 o3 |

Ga o, SN

i -1 SN-3 )



N&emﬂndpmbbn,thmh:cﬁudqaﬁnimjﬂhnbﬁld
to rate and amplitude constraints. The coastraints caa be written as:

Simin
$2min
Atimin

Avrmin

A

o) £ Simes
wt+1l) € Vpmer
Av(t) <

Au(t +1) € Avimes

A

(.11)

IA

Avypes

T2

l‘henboctipuludzht&mﬂmit*mdmmﬁi&bnbipﬁty_

wqumm,tumam-ammmndgq
caa be equal to u; and Aw; respectively. To apply the Kuha-Tucker multipliers method for

solviuequﬁoa&lbnbjxttothmuilq-niulu,&imﬂfi:hihﬂ]h

rewrittea as:

o= Aw(t) -
ey = —-Aut) +5

=
&=
ag =
a =
where

> 8 » 2 » 2

~As(t) -Au(t+1) +M

w

v

Au(t) +Aw(t+1) a3 o
(3.12)

Aw(t+1) -o3
-Au(t+1) +5

w

[\ L

2ax( A¥imin, Simin — Wt = 1)) (3.13)
MIR(ASimas: Simes — ¥t = 1))

Samin = Wt - 1)

Yomes = ¥t - 1)

Avmia

Avgmes

m&wmcnﬁﬂvaﬂhﬁjﬁhl,tbﬂﬁ:i
the‘hﬂh(mﬂ-llﬂﬂbubhe“t“(ﬂlﬂ)ﬂhm

n



Define A as the set of constraints in equation 3.12:
A = [8) o &y aq ag ag]T (3.14)
The corresponding Kuha-Tucker multiplier for the constraints are:
5= [y 3 o g g pa]” (3.15)
The unconstrained cost fuuction 3.10 can be augmented with the comstraints,A using the

minJ = &7(GTG + AN+ 2Af - w)TGE + (f - w)T(f - w) + uTA (3.10)

GTG+Al = HAnuxnu =

My My
Ais b:] (317
€-wG = T =l al |
Note that the term (f - w)T(f ~ w) in equation 3.16 can be dropped as it is independent
of & The matrix & in 3.17 is the Hesslan (matrix of second partial derivative) of the cost
function. With the above definitions, equation 3.16 can be rewritten as:
min/ = ETHE+2T04pA

M1du(t)? + 20 3Au(t)Au(t + 1) + Anadu(t + 1)
+20,Au(t) + 20Au(t + 1) + 5TA (3.18)

8J/0k =0
apmbfcallinlvéouchthat a;=0 f <@

o« a§>0 H =0



—8:;’(:) =20 A0(t) + 203An(t + 1)+ 20+ m = p3t s —pe =0 (3.19)

a8 o o i
mSziuéﬂ(l)*l‘ﬁaé!(“‘1)*32*'!:?&415?&;5 (3.20)

Step 1: Determine the unconstrained solution.

Step 2: Test to determine if any of the constraints are viclated. If all o; 2> 0 (no const

constrained optimal solution, which gives a value of &. Therefore, all other u's

sare 5 0.
Mnhﬂh“&lhh“hnﬂﬂ&uﬂl—ﬂndmhl



quadratic and geometrically represeats an ollipse on the An(t)—Awu(t + 1) plane and if the
unconstrained solution does not lie in the fonsible region of the constraints thea the solution
to the constrained probles lies on the boundary of the feasible region or at the intersection
of two or more constraints (if a solution exists). This fact is used in the above algorithm.
3.1.4 Simulations

discrete-time control algorithm. The algorithm is described in section 3.1.3 and its solution
is Ested in appeadix A.1. The simulations were performed wsing the software MATLAB-38¢.

%4, with the reflux ratio, R, as the manipulated variable is:
Xél!-lﬂh‘“"
Rs) 43 +1

simulations, the GPC ‘tuning knoks’ weresst to Ny = | N3 = NU =2, a0d A = 0.
wes weed. The ry plot of this simulation is shown in figure 3.1. The

(321)
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Figure 3.2: Simulation of a distillatien columa under rate constrained G
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the control law is very aggressive i.c. some of the control moves are very large in
rate constraints in the algorithm.

crastraints were set to 0 and 100 oa the manipulated variable. The time-trajectory
#hﬁﬁdﬁnihhﬁmﬂﬁhmﬂdbhnﬁn&knﬂsh

bMﬂhFﬁ“hmh&MﬂGE“ﬁ- The
3.1.5 Constrained MIMO GPC for NU = 1
GPCiw NU =12,
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Recall the cost function and its solution for the unconstrained MGPC (equatioas
2.21 aad 2.22). For NU = 1, the cost fanction is:
Iucpc = [GAW1) +1 - w|T[GAW(t) + £ - w] + Au(t)TAAR(?) (3.22)
and its solutioa is:
Au(t) = [CTG + A '¢T(w - 1)
where:
wa{w(t+1) ... wa(t+1) ... w(t+]) ... w(t+ )T
f=[fit+1) ... fa(t+1) ... H(t+]) ... fa(t + DIT
and the G matrix is of dimensioa (n x (N3 = N; + 1) X m):
Gy -1

G= Gf"‘

.GH’EI.
where each G; is a submatrix of dimension & X m, the slements of which are the step-
responses of the i, sampling interval of each individual input-output relations.
Mmmdﬂpﬂh.thﬁhmdqmagnmhnhﬁﬂd
to rate and amplitude comstraints. The coastraints can be writtea as:
Unin S Wl € upe
Aupia S AW(t) S Aun,
To apply the Kuha-Tucker multipliers method to solve the equation 3.22 subject to
the equatioa 3.23, the above constraints should be rewritten as:
aq= Aul) -a 2 0
aa= -Aut) +4 2 0

(323)

(324)

a = Bax(Atuin, Smia = 9t - 1)) (3.25)
mia(Avney, Snes = 9(t - 1))

k-]
[ ]



Solution of Constrained MIMO GPC for NU = |

In this section, the solution of the cost function (equation 3.22) subject to the
constraints (equation 3.24) will be developed.

Note that both a; and ay in equation 3.24 represent m comstraiats, for an n-output
m-input system. The corresponding Kuha-Tucker multipliers for the constraints are:

wlu ml’ (3.26)
where s and p, are of dimension m X 1 each.
The unconstrained cost fanction can be augmented with the constraints, a) and ay
using the Kuha-Tucker multipliers, s as:
J = Awt)T(GTG + A)Au(t) + Af - w)TGAu(t)
+HE - w)T(f - w)+ i m + ulae
= Awt)T(CTG + A)Aw(t) + Af - w)TGAW(?)
+u](Au(t) - a) + Wl (-Au +5) (3.27)
In the above equation, the terms (f — w)T(f — w) has been dropped as it is independent of
Awu(t) and does not affect the solution.
The Kuha-Tucker multipliers method requires that for Aw(?) to be optimal, it should
9J/(0Aw(t)) = 0

aijpi; =0 forimluandjm1tomouchthat ;=0 i M <0
or ;>0 U p;=0

41



respect to Aw(t) to sero, we have
- 8J

daw(t) 2AGTG + A)Aw(t) + 26T(f = w) 4 i — pu = 0 (3.23)

equations satisfying the second order conditions will give the optimal solution. Therefore,
the solution algorithm will be as follows:
Algorithm for solution of MIMO GPC for NU =1

ed solution.

Step 1: Determine the uncoastrai
Step 2: Test to determine if any of the constraints are violated. If all ¢; > 0 (no comstraints
are violated) thea go to Step §.

Step 3 Saturate a coastraint aad verify if the solution satisfies the conditions of Kuha-

Tucker multipliers method i.c.

© ANuUMS ARY 0B OF more (say &y and &y, Where i,j = /,u and p,¢g = 1 to m) of
the constraiats are satisfied by the coastrained optimal solution, which gives a
value of Aw(t). Therefore, all other x's other than y;, and u;, are sero.
o Calculate the Kuha-Tucher multipliers s, and p;, with the help of equations
3.19 aad 3.20. Verify if the Kuhn-Tucker multipliers are < 0.
If the Kuhn-Tucher multipliors are negative, then go to Step §
Step 4 Repeat Step 3 for the next (set -{) constraint(s).



coastraints.
3.2 Geometric Interpretation of Constrained GPC
In this section, geometric interpretations of the objective function of GPC, the constraints
with coatrol horison NU = 2. However, most of the discussion is also valid for MGPC,
ﬁi;i':xz)mﬂﬁﬂif=l.wiﬁAi(i);:dA-(3+l)mn§hQiEyAg;(i)nd
Awuy(t).
mnu,nd;hhﬂnh-:ﬁﬂmﬂhWthﬁ-dduhaﬁhm
3.2.1 Geomstric Shape of the GPC Cost Function

asd + 2z +es? +d=0 (3.29)

(81 3] B (5 5T +d=0 (3.30)

equation 3.10 as:

Jorc = 8T(GTG + AN+ A - w)TGA + (1 - w)T(f - w)



where & = [Au(t) Ask +1)[F for NU = 2. By subjecting this equation to change of
coordinates, it is possible to write the equation in a form similar to equation 3.30. The
matrix (GTG + AI) is similar to matrix & in equation 3.30. (G7TG + Al) is a positive
definite matrix and hence all its eigenvalues are positive. For differeat positive valwes of
Japc, the cost function of GPC represeats lodi of ellipees on Au(t)—Au(t + 1) plane. The
objective of the uncoastrained optimization problem is to find the smallest ellipee satisfying
the cost fuaction.

The cigeavalues aad sigeavectors of (GTG + AJ) indicate the lengths of major aad
minor axis and their orientation on Aw(t)—Aw(t + 1) plane. Hence, the ratio of the square
root of the larger to the smaller cigenvalue, which is also the condition number of the matrix,
indicates whether the ellipses are oblong or circular.

3.2.2 Geometric Shapes of the Feasible Region

The region which satisfies all the constraiats is defined as the foasible region. The feasible
regions for rate constraints, amplitude constraints, aad rate plus amplitude constraints can
be shown graphically ca Au(t)—Au(t + 1) plane, for NU = 2. Geometric shape of different
con.traints is illustrated below:

3.3.2.1 Rate Constraints

The rate constraiats on the & can be represented as (equatioa 3.11, section 3.1.3):

Qtgin £ Aut) < Avmee
Avgnin € A¥(t+1) € Avgnes

On the Au(t)—Au(t + 1) plans, the constraints form a rectangular fessible region.
u.mmdmmmudmmwm@u
change with time. The feasible region for rate constraiats is shown ia figure 3.5.
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3.2.3.3 Amplitude Constraints

hmﬁll;itimmmﬁplhhmgm panipulated variable can

be represented a8 comstraints ou & (equations 3.11, 3.12) as follows:
Smin S W) S Simes
Simin S Wt4+1) S Vames
- < aw(?) < A
a3 S Au(t)+Au(t+1) S B

(331)

@ = Gmia—-wt-1)
A = Gmee-ut-1)
@ = W -ut-1)
By = Spmes~u(t-1)



on the Au(t)—Au(t + 1) plane, as shown ia figure 3.6. For a given walue of amplitude
aj, ffori=1,2isafenction of w(t~1). Becanse of this property of amplitude constraints,

Amain $ Ad(t) S Awee
Avgein S Au(t+1) § Avgnee



Aw(t) <
Au(t) + Au(t +1) <
Aw(t +1) <

2
IA
»

3
»

(3.32)

8
>

= max(Avimin) Yimin — (¢ = 1))
= MIR(Aimes: Simes = ¥t - 1))
= Wpwia —w(t-1)
Shmes - Wt - 1)

= AWmia

> 8 » &8 » 2
N

= AU

jon of the Optimal Solution
The objective of aa aconstrel t-fanction is te fiad a §° such that the valee
of Japo in eyustien 3.10 s minisum. Gosmetrically, the ebjective is to flad & &° such

«@
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Figure 3.7: Feasible regioa of the rate plus amplitude constraints

that the ellipes is of smallest sise. Geometrically, whea the cost function is subjected to
constraints, the objective is to fiad a solution &% such that the ellipes is of smallest size
and the solution aiso belongs to the fossible ragion. This is iustrated by the gure 3.5. The
cost of ellipee J; is less than the cost of ellipss J3. §° is & point ellipes and has the smallest
possibie esst. The J; ellipes is the smallest ellipee which has a poiat §* ia common with
the feasible regica. The optimal sclution of the unconstrained cost function is &° and of
the constrained cost feaction is &°*.

wsed ia develeping the analytical selution in section 3.1.







and for MGPC for NU = 1. It is computationally much more eficient thaa algorithmic
the algorithm is of practical interest.

for NU = 2, on the Au(t)—Au(t + 1) plane. The rate comstraints form a rectaagle and
the amplitude constraiats form a parallel on the Au(t)—Au(t + 1) plane. The rate
Au(t+41) plans. H the solution of the unconstrained GPC doss not Lie in the feasible region,
touching the feasible region, on the Aw(t)—Au(t + 1) plane.




Chapter 4

Performance Evaluation of the
MGPC

hmmm;mmmmﬂdwuﬂdﬁvﬁﬁpﬂ
bdmwwd(lcm)mm&uudyﬂduhﬂﬂhmqﬂd
cases of the comstrained coutrol algorithm were developed. In this chapter the MGPC al-
pdhﬂhm&mm“sdﬂudm The performance of
a multivariable control scheme can be evaluated in terms of its performance in handling
forward compeasation, and model process mismatch. In this chapter, the performance of
-dﬁmﬂkmd“.ﬂkﬁnw&d(lﬁ&)hmhﬂ&ﬂdmby
simelating a discretised 3 X 3 multivasiable process.

The organisation of this chapter is as follows: Section 4.1 describes the sotware
whmmmw.mummmﬂmnf
section 4.3.

4.1 Software Development for MGPC

Qwsmbw*bmﬂwﬂ&dﬂﬂh
some special cases of contrelier settings. Though it is computationally eficient, it cannot



developed at the Stanford University, Stanford, by Gill et ol. (19}, and TOLMIN, a linearly
of MGPC. QPSOL aad TOLMIN are briefly described as follows:

QP minimise 2+ %:fﬂs

z
subject to 15{ }Sl
As

where ¢ is a constant n-vector and K is a comstant » X » symmetric matrix; note




gramming (LP) problems by setting the Hessiaa i to sero matrix or by setting »
workspace. The package contains appro y 6000 ines of ANSI (1966) standard
FORTRAN, of which 44% are commenats. It can be implem

ited on-line for real-time

applications, as demoastrated by the experimental runs. The execution time is of the
order of hundreds of milkiseconds for a QP problem with 6 to 9 variables subjected to
60 to 80 comstraints on a IBM PS/2 model 70 386 computer.

TOLMIN: n:p&pdﬁﬂ!nbwﬂmhtﬁ.ﬁiﬂnﬁnﬂndﬁnﬁh

tion F(z) of N variables subject to linear constraiats. The problem solved by
minimize F(z)
subject to afz=8; j=12,... . MEQ

Jesd; j=MEQ+1....M

wﬁm:bw@mgih,hﬁ-ﬁMEdﬂdhm
towards the boundary of & constraiat that has & small residual at the initial poiat of
a Ene search. Otherwiss it is a typical active set method (Gill ot ol (18}).




that of QPSOL. However, it was observed for several runs that the convergeace properties
of QPSOL were better than that of TOLMIN for quadratic cost functions subjected to
constraints. As GPC is based on a quadratic cost function, QPSOL was used for minimising
the cost-function in the software developed for implementing MGPC.

The convergence properties of QPSOL were reasonably good for most of the simu-
lations and experimental runs conducted with this software. It can handle rate constraints
very well and amplitude constraints reasonably well. The handling of the output constraints
is not very good but still manageable.

The alternative of using a cost function minimizing the sum of absolute errors results
in a linear programming (LP) problem. The computational load in solving a LP problem
is much lower thaa solving a QP problem. However, the use of LP cost functioa results in
relatively poor dynamic decoupling than QP cost function. This is due to the fact that LP
will always results in a solution at the tip of ints whereas QP caa also have a solution
in the foasible region or at the boundaries (nef wecessarily tips) of coustraiats. Depending
on the requirements of a process, the GPC cost functioa can be selected as a LP or QP
problem.
mabes it the obvious choice. It is possible to dynamically memory in ‘C’ and
‘C’ malies this programming language convenient for writing various subssts of application
As mentioned eerlier, QPSOL is available in FORTRAN. Therefore, to solve the objective
fenction generated by the control algorithm, mined language programming was necessary
features:




o It can implemest MGPC algorithm for aa m-output m-input system, where

flag as ON or OFF for identification (in the MULTICON data table for experimental
ﬁn)Kmmnmwﬂﬂ.hﬁdmﬁm“thﬁmﬁalpmi-!nll
as an adaptive control strategy.
4.1.1 The MGPC Algorithm
i:mﬂxcmﬂﬁmdﬁﬁ:hhﬂ_ﬁum
o Set MGPC tuaing parameters Ny, Ny NU sad all the flags to ON or OFF. The

o Read the process transfer function matrix description from a fenction.

variebles and lower and upper constraiats ca process cutpet.



o Generate the comstraint matrix as required by QPSOL.
o Vectorize A, upper and lower bounds of comstraiats depeading oa N;, N3, NU aad
number of inputs and cutputs of the process.
e do: {
I if the flag for the algorithm to be on/off is non-2e10 then break from do loop.
I1 if the flag for controller to be on/off is non-2er0 then MGPC is ON {
parameter update is ON {
}
2. Read new comtrolier s (M, Ny, NU, A, aad constraints) aad




lower and upper bounds on the constraints as required by Qi SOL.
c. Copy all matrices (with dynamic memory allocation) to two dimensional

arrays for achieving FORTRAN and ‘C’ compatibility during transfer of
d. Invoke the QPSOL program (which is in FORTRAN) to solve the

quadratic programming problem gonerated by MGPC for calculating
}

the process outputs to a file.
}

o end
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4.2 The Shell Control Problem—A Case Study

To evaluate the performaace of MGPC, the coatrol of the Shell heavy cil fractionator as
documented in the Shell Process control Workshop [42] was simulated for differeat criterions
listed in the introduction of this chapter.

This sectioa evaluates the performance of the fixed parameters MGPC on the Shell
coatrol problem. The Shell control problem is first described in section 4.2.1; section 4.2.2
illustrates the decoupling achieved by MGPC; section 4.2.3 evaluates the load rejection prop-
erties of MGPC-with and without fesdforward compensation; and section 4.2.4 evaluates
the performance of MGPC ia the presence of model-process mismatch.

4.2.1 The Shell Control Problem

Figure 4.1 shows the heavy oil fractionator weed as the Shell control problem [42], with
three product draws and thres side circulating loops. The fractionator can be described
as follows: The heat requirement of the column enters with the feed, which is a gaseous
stream. Product specifications for the top and side draws are determined by economics
aad operating requirements. There is 30 product specification for the bottom draw, but
there is an operating constraiat ca the temperature in the lower part of the columa. The
three circulating loops in thess loops reboil columas in other parts of the plant. Therefore,
they have varying boat duty requirements. The bottom locp has an eathalpy coatrel which
regulates heat removal in the loop by adjesting steam maks. Its heat duty can be weed as
a manipulated variable to control the columa. The beat duties of the other two loops act
a8 disturbences to the columa.

The relovant information regasding the Shell contrel probiem is stated in the fol-
lowiag twe subsections.

4.3.1.1 Couatrel Objestives and Counstreaints

The contrel eljective of the simulations can be stated as fellows:



Figure 4.1: !ﬁ:ﬁ:miﬁ-h—rydm-ni:thﬂﬂipﬁh



problem [42] specifies regulatory control (0.0 + 0.005 at steady state). But to illustrate
strategy, with the set-points being + 0.05.

2. The bottom reflux heut duty is also constrained within the hard bounds of 0.5 and

-0.8.

and -0.5.

4.3.1.3 Procsss Moedel and Uncertaintios in the Gains of the Medel

The Shell contral problom describes a T-output S-input process to model the heavy oil
dimensicnal preblom since thay are mere tractable. The original 7 x § preblem does indesd
probiom of 3-outputs 2ad S-inputs is considered have.




algorithm was implemented subject to all the constraints described in section 4.2.1.1, for
all the simulations performed on the fractionator. The process model is described by a
collection of first order plus time delay transfer function relating the input-output pairs.
The parameters of the transfer fanction represented as LT are given in table 4.1.

mthmo‘mudthqu-mwpu‘pdu.“adpdm.nd
bottom reflux temperature and the three inputs are top draw, side draw, and bottoms reflux
duty. Intermediate reflux duty and upper reflux duty are the disturbance variables. The
model was discretised with a sampling time of 4 minutes. This is compatible with most of
the time comstants. This choice was also necessitated to avoid large sampl~ interval delays.
Tboopabopnqmﬁ-rmjxmﬂahuhmhm&lpntz
The tower exhibits significant interaction for all the inputs.

To evaluate the performance of MGPC in haadling model-process mismatch, the
Mmﬂmmwhmmmmm“u
are reproduced in table 4.2 for conveaiencs.

The Shell control problem defined in the above sections was simulated to evaluate
mmamwucrcwa.umuhmm
subeections. M&mmwﬁﬁt&uﬁuwhmuﬂ
diocrotised with a sampling time of 4 minutes. All the simulations were subjected to the
constraints defined in section 4.2.1.1. Amplitude constraints were set up as suggeeted in the
Shell contrel problem. The T(¢~") polysomial was set equal to identity, ualess otherwise
“ﬂ.hd&cmmm"dy“b&hnumwdth
mmmuammumummamdmm
perameters. Althﬁ-hthhdah.m'miu-mumm
instances (which are 4 minutes each).
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and with differest values of rate constraints, specified in next paragraph.

The simulations in Agures 4.3 and 4.4 were performed with MGPC tuning knobs
MuN=lL,N=IS,NU=2 =M=l =01,a0d poa = Joca = s = 1. The
rate constraints were {Am; = Awy = Awg)uee = 0.2 20d {Aw; = Awy = Aug)uia = 02
for the simulation in figure 4.3 sad {Aw; = Ay = Auy)nee = 0.0025 and {Aw; = Awy =
Avy)nia = ~0.0025 for the simulation in figure 4.4.
with the figure 4.2, which shows the extent of interaction preseat ia the open-loop plast.

cast of more aggressive contrel actics.
the cutputs (with gue), 2 suggested by Maurath of ol [34). Decoupling of » particular leep
thes decoupling that cutpet from set-point changes in ether leops. Also, the decoupling can
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Figure 4.3: Interaction botwesn diffeorent cutputs of the clesed loop system ia the Shell
coatrol yeoblem with rate constraints of £0.2
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specified in 4.2.1.1. The variables intermediate-reflux duty (d,) and upper-refiux (d;) duty

ously given siep

4.2.3.1 Without Fesdforward Compensation

The simulations in figures 4.5 and 4.6 were performed with MGPC tuning knobs set a8
Ny=1, Na=m15, My = Mg=Ag= 01, a0d ot = Juz = Jus = 1, {Awy = Ay =
Atg)mes = 0.2 3ad {Aw; = Awg = Avg}uia = —0.2. The coatrol horison, NU, for

ance with NU = 1 (figure 4.5) is better than with NU = 2 (figure 4.6). With

The simulations in figures 4.7, 4.8 and 4.9 were performed with MGPC tuning
ﬁ:ijii&glg:liﬁgsmhih-h-miﬂggiﬁgghnh
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{Aw; = Avy = Atg)mes = 0.2 20d {Aw; = Ay = Atg)mia = ~0.2. The control horison,
NU, for simulation in figure 4.7 was 1, in figure 4.8 was 2, and in figure 4.9 was 3. The
disturbance variables d, and d; were simultanecusly given step changes betweea +0.01 and
~0.01, five times larger than in the simulations without feedforward compensation.

The time-trajectory plots (figures 4.7, 4.8, 4.9) of these simulations show that the

of the systems without feedforward compensation (figures 4.5 and 4.6). It is also seen that
the performaace of the feedforward compensated system improves with increass in comtrol
horizon, NU, uanlike the performance of the system without feedsf i

4.2.4 Effect of Model Process Mismatch

This section evaluates the effect of model plast mismatch (MPM) oa the performance of
the Shell control problem with MGPC algorithm. While MPM is always a reality, the exteat.
and type of mismatch that commoaly occur can differ in differeat processes. Variable delays
aad time-constants are common types of MPM problems. Variation in steady-state gain,

employed om a table-look-up basis. However, for the the purpose of this simulation, GPC
control in the presence of MPM in the steady-state gains was evaluated as if an abrupt

control algorithm will act be of practical importan= if it cassot handle MPM. The MPM
at high frequencies is due to uameasured dynamics and noiss and at low frequencies is due
to steady state gaia mismatch. The high froquency mismatch can be handled with the help
of the T(q~") polynomial (section 2.4.1). Mohatadi [36) demonstrates the ecessity of the
stch of

of the contreller.
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ferent tuning parameters of MGPC on a system with MPM is also illustrated through these
were performed with constraints specified in section 4.2.1.1. In the following subsection, the

Note: Notation:

Gi; is the (i,5) clement of the transfer function matrix i.e. ix output j, imput

with MGPC tuniag knobs set as Ny = 1, Ny = 15, A = 3y = 15, Ay = 25, and pon = 25,
o = Yoo = 1, {Aw; = Auy = Avg)aee = 0.001 2ad {Aw; = Avy = Aug)min = —0.001.
The coatrol horison, NU, for the simulation was 1 and the MPM was introduced at the

Joctory plot in figure 4.10 it is observed that the coatrol algorithm

L]
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Figure 4.10: Costrol of Shell control problem with MPM ia Gy,



4.34.2 MPM ia G,,,Gz, and Gyt

The model process mismatch was introduced in channels Gy, G33, aad G by changing
the process steady state gaias to 6.16, 5.15 and 8.53 from the actual values of 4.05, 5.72 aad

7.20. Maay simulations were performed for this case to study the effect of cutput weighting
Yot A weighting and rate coastraints. The ‘tuning knobs’ of MGPC were set to: Ny = 1,
N3 = 15 aad NU = 1 for all the simulations with MPM ia Gy;,Gn;, and Gy3. The modael
process mismatch for all the simulations was introduced at the sampling interval 400.

The first simulation was performed with ‘defauit values’ for the remainiag tuning
parameters of MGPC: Ay = A3 = Ay = 001, guar = Yz = S = |, {Aw; = Auy =
At3)mes = 0.001 and {Aw; = Awg = Atg)min = —0.001. The time-trajectory plot for this
simulation is shown in figure 4.11, which shows aa offest in the tracking of outputs and
therefore the performaace of the controller with the above settings is not acceptable.

In the next simulation the input coatral weightings were chaaged to Ay = Ay = 18,
A3 = 25 and the remaining settings were ot unchanged. The time-trajectory plot for this
tuaing is shown ia figure 4.12. The performance of this simulation is 80 better thaa the
previous simulation (figure 4.11).

Output coatrol weightings were changed in the next simulation. The setting of the
controller were: Ay = Ay = 15, A3 = 25, and puns = 15, Jurt = Jus = 2, (Aw; = Ay =
Atg)mes = 0.001 and (Awy = Aug = Atg)mia = ~0.001. The simulation of the Shell
coatrol problem with MPM in the diagonal clements of the transfer fanction matrix with
this tuning is showa ia figure 4.13. It is seea that the closed loop process is able to track
the set-points without any offest and the performance is satisfactory. It must be noted that
the degree of MPM ia channel G}, is highest and also that the output weighting oca this
chaanel is highest.

To evaluate the contribution of iaput contrel weighting in achieving ohest free stable



N =1, N!SIG. NU=1, A‘S-Ol.A,S.Ol.A,-.Ol
R AR LR (Auu.,)"&om.(Auu")*x-.om

0.06 NO MPM | MPM 3
0.03 .
Y, 0.00 -
-0.03 -
-0.06 4 o.08
4 004
Y2 4 0.00
4-004
0.10 b 4 -0.08
0.05 | -

Y3 0.00 i}
-0.05 -
-0.10

1000
0.03 ' Y T Y
0.01 -
Y9  —0.0t} -
-0.03 }+ 4 o0.02
| 4 o0
uz 4 0.00
L A 4 -0.01
_ 4 -0.02
0.008 | -
0.004 -

Us 0.000 | -
-0.004 |- -
_o.ms [ 1 1 4

0 200 400 600 800 1000

Sampling interval

Figure 4.11: Coatrol of Shell control problem with ‘defaskt’ control setting for MPM ia G1s,
Gy and Gn



Figure 4.12: Control of Shell contrel problem with A weighting for MPM ia Gy, Gy3 and

Gxn
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coatrol, the coatrol weightings were set to A = Ay = Ay = 0.0]1 and the remaining setting
from the previous simulation were left unchanged. The MPM was introduced at sampling
interval 400. The time-trajectory plot with these settings is shown in figure 4.14. The
performance of this simulation is almost identical to the previous simulation results shown
in 4.13. It can be inferred from the simulations in figures 4.12, 4.13 and 4.14 that A
weighting, at least in this example, does not coutribute to offset free comtrol.

To evaluate the effect of rate comstraints, a simulation was performed with the
following settings of the controller: A, = Ay = 15, Ay = 25, and yo = 15, yurz = Jos = 2,
{Aw; = Auz = Augluee = 0.01 and {Awy = Auz = Aug)ia = —0.01. All the knobe
are ideatical to the simulation in figure 4.13 except that maximum aad minimum rate
constraints were chaaged to +0.01 aad -0.01 from +0.001 and -0.001. The MPM was
figure 4.18. uummmmw—mmmmmﬂh
introduced. Also note that the instability of the process resalts in the QP solving package,
QPSOL, not coaverging to a feasible solution and thereby generating aa error message. It
by compariag the simulations in figures 4.13 and 4.18.

4.343 MPM ia G);,Gy, and Gyt

So far in this subsec: ‘on, the MGPC algorithm could coatrol processes with MPM by tuaing
the coatroller appropriately. This may not be possible for processes with large MPM ia
different chaanels. This point is illustrated by a simulation of the process with MPM ia
chaanels Gy, G, and Gy by chaaging their steady state gains of the process 10 6.16, 2.10
of at least SO% of the actual gains. After a lot of trial and error, the following values were
selocted for tuniag the contaeller:y = Ay = )y = 3, and pun = 2.5, pua = 4.8, g = 3.5,
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{Awy = Awy = Avg)uer = 0.0008 and {Aw; = Awy = Aug)uia = —0.0005. The MPM
The time-trajectory plot for this simulation is shown in 4.16. It is observed that
the comtroller is integrating the error in the outputs in & ‘wroag’ direction. This is aot
surprising because the controller is trying to integrate the error between the setpoints and
the process outputs using a .a0del with gain mofilligrocess mismatch of move thaa 50%in
the elements Gy, Gn, and G3; of the process traasfer function matrix.
the T(¢~') polynomial equal to ideatity. T(¢~") is a low pass filter and cannot coatribute
wre 4.16) with T(g™") oqual to 1 — 1.6¢™" + 0.64¢2. The time-trajectory plot for this
simulation is shown in figure 4.17. The plot shows that the offset between the outputs and.

4344 Discussion

Effect of outpat (ye) i';"’,jif'
tions in figures 4.11, 4.12, 4.13 and 4.14, it is sesn that the output weighting pleys & major
A generel guideline for sslecting the ouiput weighting Jor system with MPM is:
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set-poiat for the channel with larger MPM can be achieved by the larger output weighting
on this channel in addition to the integral action of the controller.

M-)ﬁﬁhmﬂlﬁmﬂnﬂhmhﬁhwgﬂuhmﬂ
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Also it is menticaed ia the Merature (4] thet tis clsments of the cutput scaliag
cutputs such that the weighted errer frem each output is of aquel erder of magaiteds. In
the content of tuning poc guidelins, it is equivalont to assuming thet ol the chansels hove



MPM proportional to the gain of the chaanel. If nothing is known about the degres of MPM
in a process, thea this method is appeepriate for tuning the output weighting parameter.

The above logic also explains the performance of the MGPC algorithm in figure 4.16.
The coatroller cannot handle large MPM (of > 50% in the steady state gaine) in all the
output chaanels. The time-trajectory plots in figure 4.16 show that the coatroller is trying
to integrate the error betwesn the set puint and the cutputs—but ia the ‘wroag direction’.
This may be due to the improper decoupling of the intaractions between different outputs,
due to the large amouats of MPM ia different output channels.

This tuning knob caa aleo be used for improving the decoupling propertiss of the
closed loop system (Maurath et ol. [34)).

Efiect of A weighting and rete constraints:

From the simulations showa ia the figures 4.14 and 4.15 it is clear that tighter rate’
coastraints caa stabilise some systems which could be otherwise uastable. The effect of
weighting ca input increments (A) gets eclipesd in the pressace of tight rate constraiats.
However, from the simulaticns in figures 4.11 aad 4.12, it can be seen that A weightiag can-
aot improve the MGPC algorithms properties in haadling MPM. The effect of A weighting
in MIMO systems is very similar to SISO systems. Also, from the simalstions ia figures
4.13, 4.14 aad 4.18 it is cbesrved that rate constraiats can handle uastable systoms better
thaa the A weighting. Howewer, ualibe rate constraiats, {f very lazge A weightiag caa sta-
bilise the system, thea it would result in & ‘smoother’ control action.

Limitations of ined paramster MGPC

In the abeve simulaticns, the tunsd MGPC could conticl the fractionater with
reasonable MPM. Eowever, for the simulation ia figure 4.16, the contrelier conld not achiove
ofibet fres contrel. This is becanse of lasge MPM (of 2 30% ia the steady state guins) in
all the cutput channdls. The integral actien of the controlier wes integrating the errer ia



In this chapter, the performance ce of the MGPC algorithm was evaluated by simulating g the
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Chapter 5

Experimental Application of GPC

mmammgmcmummmm
subject of *he previous chapter. Whereas evaluation by simulation is helpful in giviag
aa ineight oa the performance of the algorithms under different parameter settings, there
is no substitute for evaluation of the algorithm under real conditions-i.c. experimental
evaluation oa a real process. &dmhﬁb“t&nﬁmdum.-
for uameasurable dynamics, for nca-Encerities and model-process mismatch.

The adagtive GPC with and without constraints was implomented cu SISO systems
aad the fixed parameter GPC wes implemented ca & two-input two-output system. Por
comperisca with MGPC, aa experimental run was also conducted with two maukiloop PID
coatrollers oa the two-iaput two-output system.

This chapter cutlines the hardwase uweed for implementing the control algorithm
in section §.1; sections 5.2 and 5.3 describe the process aad the experimental evaluations
conducted en the stirved tank heater for SISO aad MIMO coafiguratires respectively; sec-
tion 5.4 describes the physical setup and the expesiments performed to contrel the mesa
arterial biood pressure of & dog with a constrained adagtive SISO GPC.

5.1 Implementation Details

Implomentation of & long reage predictive contrel algerithms soquires mere sophisticated
hardware and sshuase than conventional precess centrel aigerithms. K is accessasy to



program that runs under dor QNX operating systam. It is created to support the following:

ation of the hardware

4. Display ca-line graphics task.



kaowledge of the message system of QNX. For farther description of the program, the
reader is referred to Lau (28] aad Qiu [43)

The computer communicates with the process through the Opto-22 intrrface. The
Opto-22 behaves as a front end computer to officed the host computer (IBM PS/2 model
70) of the I/O tasks. It is connected to the host machine through a RS-232 serial line. Its

responsibility includes:

1. optically isclating the process from the computer,

2. coatinwously scanniag the 1/0 channels and providing sigaal conversioas for inputs

aad outputs (eg. analog to digital conversion), and
3. respoading to requests from the host computer.

Whenever the host computer needs t0 access & process variable, it sends a command
to Opto-22. For example if the computer wasts to sample the cutput, Opto-22 seads the
most recent digital data from the appropriate transducer and loads it onto the serial line to
sead the data to the host computer. A complete set of communication protocols to operate
Opto22 is provided in Optomux Analog User's Manual [62].
mental runs. As described in the earlier chapter, mined language programming was weed to

optimisation pecinge QPIOL (19] from Stanford University, which was in FORTRAN. The
contrel algesithms were malaly programmed ia C, to facilitate the wee of dynamic memery
allecation. The contrel algerithem is described ia section 4.1 and the MATLAB vessicn of
the algerithm is ia appendix C.

) |



5.3 Control of Stirred Tank Heater with Adaptive SISO
GPC

WumMMuQmMyMMM(CSTl)wm&e
mdcm.mmmnmwmmuhmmgm
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tusmmmumamsumummdmmnmm
were conducted.

5.3.1 Process Equipment

AMN&MIMWM&M!MNSBO“WOMMN
runs. The SISO configuration of the equipment is illustrated schematically in figure 5.1.
mmuwu,mmmmmpmmmwmm
pipe. mmhmwmkhwht“wﬂnlhnmw.m
wu&MMWuMMh&M The steam flow
mmmmaumwmnmmmmmuw
by two separate pueumatic valves. h&m&wd&mm«m
d&”ﬂmmﬁhmﬂwﬂw‘usm-m
manipulated variable. The cold water flow rate was used as a disturbence vasieble. The
level of water in the taak was maintained constant by manipulating the exit water flow rate.
Mummmawmmmmwuwu.

ter Tomperature — ¢
Inlet Water Flow rate 53 cmfs
Water Lowd #U o=
Secam Valve Opening %
Outist Water Tomperatuse | 3 *C

Teble 8.1: u—u.mmummammm
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mmmm&ﬂ-bmﬂnuhdmm Beowever,






is approximately 1/6th of the dominant process time constant and 1/5th of time deley whes
m!gtbsnmlﬂ!#!,mthmppﬂnhﬂhnkﬂmm
5.2.2 SISO Experimental Runs
mmmMinmﬂ:ﬂgﬂgimm

As explained earlier, the SISO ex) rim

The loag raage adaptive identificat ,:,(lmmdﬁﬂi[ﬁ“h

alg.ithm Is beiefly described a section 2.5. The estimation sRtware is capable of changing
the order of model being st




the incremental nature of the coatrol law. The coatrol algorithm can haadle constraiats on
amplitude and rate of change of manipulated variables as well as constraints oa output. The

GPC algorithms. The tuning parameters of GPC for all the SISO experiments were set
to Ny = 1, Ny = 10, NU = 1, A = 0.005, default values as suggested in Mohtadi [35]. A
T-Riter of 1 - 0.8¢~" was used by the control algorithm, as suggested by Mciatosh [30]. The

$.2.3.1 Effect of Rate
rate constraints of —10% < Au < +10% were imposed as upper and lower bounds ca the
| variable é.c. the valve could open or closs by & maxisam of 10% per

sampling interval. The constraiats were further aarrowed down t0 —5% < Au < +5% at
sampling interval 206 aad thea %o —2% S Au S +2% ot campling interval 335. The perfor



Wﬂmﬁhthhﬁmmd-lﬁsAggﬂﬂmmm
GPChMgdnLikuthnmcmnhﬁﬁ; Whea the rate constraiats
mmmddﬁintnsﬂEA:E+5§ﬂn§q¢aﬂyﬁiﬂ§A:§+ﬁ‘t&
respoase of the system becomes relatively sluggish i.c. the time constaat of the closed loop

GPC
mum:ﬂpﬂ-u-ﬂbyn—ﬂgzbmﬂmm-dmﬁ
uaconstrained GPC algorithms.

Performance of the unconstrais i GPC is shown in figure 5.3 and of the constrained
GPC is shown in figure 5.4. Aﬁiﬂﬁ“mhﬁﬂ“iﬂﬂhﬂh“
i-ph-.tdnmmulﬂﬁﬂbynwﬂﬁﬁmnm
macrc(gmuuﬂu)mmmq:um-rmmﬂ
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$.2.3.3 Effect of Output Coastraints

with the tuning par meters st to Ny = 1, Ny = 16, NU = 1, and A = 0.08.

uaccmﬂ:ummm(h)_mﬁm-cﬁgﬁ
disturbance at sampling interval mhﬁ&thhpﬁhﬁﬂﬁdgﬂ:ﬁﬁlﬂm
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5.3 Control of Stirred Tank with Fixed Parameter MGPC

al runs for evaluation of MGPC were conducted on a two-input two-cutput

maiatained betwesa § 00 10 degress contigrade and 45 and 30 dagroms contigrade respec-




cm?/s
cm?/s

sgsegis

ts was to coatrol the temperature () and level of wa-
ter (y3) in the tank by manipulating the percentage opening of cold (v ) and hot water (w2)
ot system is shown in fig-

p1—w system, and in figure 5.10 for the yy—uy system.

the tank would be to have three mas
mixner. This 2 X 3 problem can aleo be handied by the existing GPC sotware. However, for
th!s:pﬁd-ﬁhd-:hﬁm This 2 x 2 problem, in iteslf proved

wed &t Wermecouple # 1:

AR

o g is tompereture of the resultant water i “Cuntigrade,
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e 3 is level of water in tank as perceatage of maximum height of the tank,

o u, is percentage cold water valve opening, and

followiag transfer function matrix model was used by the coatroller:

Tl -

valve opening as inputs is showa in figures 5.11 and 5.12. Notice that the two time-constants
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As has been stated earlier, the inlet hot water and cold water are at temperatures

[ constant heat capacity of the water, is

temperature of the resultant exit water, assumin
given by the equation:

Qfltgi!g
h+/e

The steady state gain of the system with temperature as output aad hot water

flow rate as input can be found by gemerating a step change in hot water flow rate aad

! lly, this can be defined as 3T’/ 8/, at

T= (5.3)

tics of 3T/ 8/, the range of linearity of

o8/

M I+

As can be soen from the sbove equation, the steady state gaia of the temperature-

Aot water system gives by OT/ 34 is ou-linear and is stroagly dependent oa /s and /..
The plot of the OT/0f, is shown in figure 5.13, for different values of /.. Each poiat
on the y-axis shows a gain of the process for differeat operating points with the 3-axis

(8.4

of water in the taak and the resistance offered by the long copper tube to the exiting
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function matrix of equatioa 8.1 is:
0.580 0420 ]
A= (8.5)

0420 0.580

and the RGA for the traasfer function matrix in equation 5.2 is:
[ 0385 0.644

Ay = , (5.6)

The RGA’s in equation 5.5 and 5.6 suggest different diagoaally dominant systems
under different operating conditions. Also note that the elements of the RGA matrices are
This highly aon-Enear, interacting, and opea loop unstable system is a chullenging

time was decreased whea compared with the SISO experimental rus

5.3.2 Simulation of the MIMO Stirred-tank Process

tuning perameters set toc Ny = 1, NU = 2, )y = My = 06, and put = o = 1,
(A% = Avs)nee = 100 aad (Am; = Aug)uin = ~100. For practical purposss, the rate
constraints were absent as all of the calculated contrel moves were less thaa 100 uaits ia
magaitude. The T(¢~"!) pelynsmial was sslected to be 1 — 0.8¢"". The maximum contrel
herisen Ny is 18 for the initial 236 sampling intervals and then was changsd to § for the



figure 5.14. This simvulatios

put weighting (yuwe) 30d rate constraints. The tusing parsmeters of the controller were
st to Ny =1, Ny = 18, NU = 2, \y = Mg = 05, and gus = 1. The T(¢~') was
selected to be 1 — 0.8¢~".The simulation was started with yoa = 1 and rate comstraints
{Avi = Atg)mes = 100 20d (8w = Aw3}mia = -100. The simulation of this rus is
shown in figure 5.15. At sampling interval 225, yucs was changed t0 0.3. It is obeerved
Mthdﬂﬂhqqn—mbm—h;mhmmmhﬂ“dﬂ
sampling interval 275 as: {Aw; = At)nee = 5 ad (Awy = Auz)mia = -5 It can be

ﬁﬁdhmﬁnul.ﬁhh;ﬂﬂmhﬂlﬂﬁdﬁ-mdﬁ
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of variation of maximum prediction horison and the effect of variation of output weighting
respectively, section 5.3.3.5 pressats the performance of a well tuned MGPC for thermo-
w;:ammmnmuﬂmmmmﬂa

5.3.3.1 Perbormance of a Tuned MGPC

NymS NU =2, M = 15, 0 = 15, gort = 18, gocs = 0.2. nmm

n—ﬂnmmnﬂln_ﬁgmauﬂymmmm
coutrolied process with the above tuning parameters is shown in figere 5.16.

with rate constraiat ea beth the manipulated variables of -2 < Aw S +2. The Step
disturbances for this ren were introduced ia the process at sampling interval 380 by closiag
the steam valve from 5% t0 3% and at sampling interval 500 by changiag the exit flow-rate
of water from the stirred tank. The performance of this systom is shown in figuse 8.17.

cﬂﬁgﬂmlﬂ-hm:ﬁqm Theugh the contreller for cach of

‘ﬁiﬁﬁﬁﬁ—i—l—!h_dﬂﬁqﬂhﬁﬂhﬂ.ﬁ
csndussd st ia the oo i vanced steam pipe lae weuld ast give the dusived distesbanse
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ta;hlnpmtd‘ﬂpmﬁ:ﬂndmﬂﬂtydhmhm

in lly mot well tuned, to explicitly illustrate the advantage of using the
to: Ng:’lgﬂgsT—,Iilfxz.Agilih:liﬁnil*hﬁsm‘ﬁnﬁlﬁnﬁ
manipuiated variables of ~2 S Au S +2. After 200 sampling intervals, the rate constraints

sod variables were changed to ~1 € Au € +1. At sampling instance
showa in figure §8.18.
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5.3.3.3 ESect of Variation of Maximum Prediction Horison

This run emphasises the importance of selecting appropriate Nj for processes with large
model plaat mismatch. The MGPC tuning parameters for this experimental

to: Ny = 1, NU =2, )y = 1.5, A3 = 1.5, gonr = 1.0, g = 0.2. These settings are the
same as those of the well tuned MGPC ia section 5.3.3.1. The controller was started at

sampling interval S, with N3 = 2. N; was chaaged to 4, 6 and 8 at sampling intervals

200, 350 and 480 respectivaly. Rate comnstraint of -2 < Auw < +2 was imposed on both
the manipulated variables, oa the hitherto unconstrained MGPC, at sampliag interval 500.
The performaace of this rua is shown in figure 5.19.

For coatrol horison, N3, equal to 2, the performance of the control system is poor.
For control N3 = 4, the performance of the system is good ( N3 = 4 setting makes this
mmemﬂn-dcrcmamsul)i For N3 = 6, the
controller is aggressive and has poor sstpoint trackiag characteristics. For Nj = 8, the
dadbopuyﬂ.hnohhhhnﬂudmw»mimm:ith
oa the manipulated variables stabilised the otherwiss uastable system.

From this rua, it Is seea that selection of N3 is not a trivial matter for systems
with substaatial model process mismatch. Selecting a small Ny caa resuht ia poor coatrol
linear, there is a large model process mismatch. For larger maximem coatrol horison, Ny,
coatrol signals thereby driving the closed loop process to instability. Lasger N3 can be
manipulated variables can stabilise the unstable process, by rasteleting the |
control sigaal.
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MGPC has aa additional tuning parameter to SISO GPC: the output weighting (yue). In
MGPC, the control algorithm can weight the error in differeat outputs of the process by
this tuning parameter. SISO processes have caly one output and hence y¢ is irrelevant.
dramatically influence the performance of the system. The experimental runs also support
the statement in section 4.2.4.4 (page 83) that larger y,. for outputs with larger model
mnhlﬂminﬁmthmdthdndmmhthmt
process, the temperature (output y1) chaanel has relatively larger model process mismatch
when compared with level output (93).
ThHGPCtﬂigMibm:tmﬂlsLH;SS,NU:LA;SLDQ
A = 1.2, g = 1.0. This run was conducted with the fixed parameter model given
byq-gim.'s.lM&mﬁbﬂmuﬁit-iﬁﬁmndmthkm“vﬂnh
hm.thnmt-dghﬁq(m)uh_mhnntpﬂwlniqnﬂtﬂlud
thutp:tnlﬁﬁlj(m)mm-hﬂumtmnﬁdlhm:udhti:nuﬂdn
iiﬂrﬁhl@,ﬁﬂ.iﬂn«l@mﬂd.uﬂ&ﬂiThmilﬁ:ﬁihsh-n
fncﬁniiﬁg-l;hdulylﬁnmiuﬂthmh:hhﬂntnt-hﬂ-iuﬂ
ature output. The performance

to the weight it gives to control the error in the tempe
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1 for achieving closed-loop stable system. A very large ratio, when yy3 was 0.01, also
is not desirable as it results in poor coatrol of ome of the outputs. This rua shows that

achieving stable and desirable control. This experimental run also supports the statement
in section 4.2.4.4 (page 83) that larger cutput weighting is require
model process mismatch for better comtrol.

for outputs with larger

§5.33.5 Performance Of The MGPC for Thermocouple # 2

Thilnnmpafotmedwitithumpcﬂiﬁmidgnmih#ﬂﬁshmh
figure 5.6). The fixed pazameter model described by equation 5.2 was used by the MGPC
tuning parameters were st to: Ny=1,N3=10, NU =2, ) =30, Aoy = 35, goa = 1.0,
yoza = 0.05. No constraints were imposed on the rate of change of manipulated variables.
The controller was turned on at the sampling interval 3. A step disturbances was introduced
in the process by closing the steam valve from 5% to 3%, at san 1 g interval 400, and by
mdthqumeﬂﬁﬁ&imtﬂgmhéﬁﬂl
msmmmmamhhmﬁﬁﬂmmmmgﬂ
wmmwumu-mﬁ_;h:mﬂs,JﬁmQhQﬁit:hﬂ‘cgsy
As can be seen from the performance of this system i figure 5.21, it is able to track
of delays in different channels of the process.
and N3 for all the output channels. While conducting this experiment, it was falt that &

1M



N =1, N,=10, NU=2,

L~

uﬂgi’ﬁ. yﬂ,Si,yﬁzso.DS. A, =3, A;=l5

S L L

Sampling Interval

MGPC




mmmpcﬁmdmd—nmﬂhﬁ-imim&mnd@m(m
on the performance of the system. This rua was performed with temperature measured
from thermocouple # 2, schematically shown in 5.6, and with the model described by
equation 5.2.

For this run, the tuning parameters of the controller were set to: Ny=1, N3 =10,
NU = 2, o = 1.0, yuaa = 0.065. The coatroller was started at sampling interval § with
wwo\lsﬂﬁihiiﬂnlﬁﬁ!‘iﬁ,q‘ﬂﬂnhSﬂﬁd;\giiﬁg
n-plhgmunlﬂl,mlg:Huﬂh:ﬂgﬁiﬂﬁgimm.nh;ﬁﬂ
A3 = 3.5 at sampling interval 770, and to Ay = 2.5 and M3 = 3.0 at sampling interval 1085.
The performance of this reais shown in figure 5.22.
stable for Ay = 2.5, = 36. Also, for Ay = 2.5,)p = 3.5, for sampling intervals betwesa
of non-linear systems.
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mwupmunhucmvudﬁ—-ﬂnﬂnﬂﬂtphhgdgmn:ﬂ
(mA)My&kuumdymﬁ;imﬁtﬂiqmﬂhMi
dynamics aad delays in the process. H the RGA based on the steady state gain matrix of
the thermocoupledt 2 (equationS.§) is weed, then the pairing will get reversed. Note that
mwyumnhmhmﬂ-ﬂgitlmiﬁﬂinmmdﬁj
of the process at different operating conditioas (section 5.3.1).
ingml(,:-e.os,l(.---m.lt‘c—Lllﬁihﬁﬂq&hﬁﬁ&m;
hot water valve opening were K, = 06, K; = 0.02, Ky = 0.5. Note that the large deriva-
detivative gains in the PID coatrollers. The performance of this rus is shown ia figure 5.23.
at sampling interval 828.

As caa be sesa from figure 5.23, the re of this costrol strategy Is very

MGPC showa in figure 8.16.
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5.4 Arterial Pressure Control with Adaptive SISO GPC

robust.

Post-operative drug therapy often requires blood-pressure regulation in many pe-
tieats. The vasodilator, sodiem nitroprusside (SNP), is routinely used in clinical practics for
(MAP) of a patieat, in this case a dog, at a desired set-point using SNP. The experimental

algorithms. The model of the peecess was identified on-line using & recursive least square

algorithm with a variable forgetting factor. The details of this al

Seborg et ol. [45].

documented here sarve o show the performa ined and laed GPC

wmmwmummdﬁm This application

is being developed oa dogs aad will be eventually weed for regulating the MAP of buman
Subsection 5.4.1 describes the exj satal equiptment weed by Kwok for conduct-

imental russ.



8.4.1 Process Description

were detected. The monitor calculates mesn arterial pressure (MAP) and produces aa
digital board aad was made available as 2 0 to 3 volt analog sigaal corresponding to 0 to 300
mm Hg. The blood pressure signal was sampled by the Opto22 system every 10 seconds.
The Opto22 converted the sampled analog signal to a 12-bit digital signal.

The computer running under QNX operating system, described in section 5.1, re-
algorithm in the computer calculates the control sigaal aad sends it to aa IMED 929 com-
’uacuilddrqhhdum’. The pump has a capacity to pump from 0 to 1500
mi/h. This process is repeated every sampling instast.

The infusion of the drug sodium nitroprusside (SNP), & vasodilator, reduces blood
Noradrenaline (NOR) and Adencsine Monophosphate (AMP) ware weed to create distur-

oquipment ase descridbed ia the next subsecticn.
SA pesduct dovelaped by the IMED Cospesstisn, Sea Deige, Calilesnle
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tal runs conducted by Kwok oa a dog in the laboratory

The tuning parameters of the GPCwere sst 0o N; = 2, N3 = 10, NU = 1, A = 0.001
and T(¢™?) = 1-0.8¢"" for both the runs. The model of process was identified by a recursive
model with a 5**-order B polynomial was identified. The trajectories of 3 of the 7 parameters

The first run was conducted with the uncoastrained GPC. The time trajectory plot
for this rua is shown in figure 5.25. The second run was conducted with GPC, having con-
straints on the change of the masipulated sigaal. The constraint was: -0 ml/Air< Au <0
mi/hr. The time trajectory plot for the constrained GPC rus is shown ia figure 5.26. Both
ing the runs by Noradrenaline (NOR) and Adensone Monophosphate (AMP) are showa at
i oo ot sampling interval 378 of the unconstrained GPC rus (figure §.28), the arterial
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rate constrained GPC is better at haadling disturbances.
5.5 Conclusions

The experimental ruas conducted on the stirred taak and for coatrolling the blood-pressure
demonstrate that generalised predictive control is a powerful control algorithm capable of
effectively controlling SISO aad MIMO systems. The algotithm can haadle fairly noa-
linear, open-loop unstable systems. Adaptive GPC caa coatrol systems with varying time
delays aad dynamics. MGPC is capable of haadling different time delays in different output
channels, and caa “optimally” decouple the interaction between various loops, depending
oa the model and the tuning parameters.

The coastrained GPC has distinct advaatages over the unconstrained GPC. Rate
ndmpﬁtmmtdluu&ouﬁnwmhﬂ-mlmﬁpmﬂﬂ-
uﬁoudthpmmhthmmnu.hmmi-ﬁg,;hnﬁmhmnﬂmﬂﬂ
aad 100% oa minimum and maximum valve opeaings were incorporated in the coatrol algo-
rithm. This coastraints help ia avoiding “integral windup”. Though the pilot scale stirred
tank did mot have physical constraiats on the rate of change of masipulated variables, it
is not uncommon o see them in the industry. The rate and amplitude constraints can be
w&-mwcmw,mmnmmnddmmm
has beea demonstrated by some of the experimental runs, implementation of constraiats oa
the rate of change of manipulated variables caa stabilise poorly tuned systems. However,
mmu&o-umnﬁabwm&mmiaﬂﬁdmhu



region of the constraiats.

The tuning of the MGPC for the two input two output system was moa-trivial
cannot predict the nature of controller settings for a non-linear system. Though the tuning
of MGPC was achieved by trial and error, it was much easier thaa the effort required to
tune the PID comtrollers. Furthermore, the performaace of MGPC is far superior to that

of PID controllers.



Chapter 6

Scaling in Multivariable Systems

Whikcv;!nﬁ:gthpcﬁ:ﬂad!&‘?ﬂﬁththiﬂpﬂdﬁﬂghi(m-l)ud

sults from various techniques used for desigaing and asalyzing multi-input multi-output

The singuler values and the coadition sumber of & matrix can be altered by scaling &

dnm_hﬂﬁ-pﬁmdm It is possible to improve the
performance of & system by scaling the inputs and outputs of & system. Maay scaling




and Boavia [24), Lau and Jensen [29]). However, none of thess scaling policies have bema
evaluated for improvement in numerical stability of ill-conditioned systems om a finite pre-
cisioa computing machine. The effect of scaling of inputs and outputs on the performance
of a closed loop feedback system has aleo not beea considered.

This chapter analyses the effects of scaling on the closed loop performance of a
multivariable system. It describes the necessary aad sufficient conditions required for a best
scaled square matrix in /; norm. The effects of scaling are demonstrated on & multi-input
multi-output system uader long range predictive coatral (MGPC), with coatrol computation
output and input scaling and gives insight oa their individual effects. The optimal scaling
method for systems with equal aumber of inputs and outputs is extended to systems with

unequal aumber of inputs aand outputs.

The organisation of this chapter is as follows: Section 6.1 describes the motivation
in multivariable systems with the help of simulations and explaine the individual effects of
input and output scaling, section 64 extends the scaliag procedure to systems with wa-
oqual sumber of iaputs and cutputs in a process, and section 6.5 concludes the chapter by
summing up the cause and effect of scaliag the coatrol and lated ]

6.1 Introduction

In multivarisble systoms, we encounter systems with high gains for some inputs and low
the controlied and/or menipulated variabies as for example in the simuitancous contrel of
average meleculer weight and tempersture iz a polymer reactor system. This can lead



following two input two output multiva; able systm
[ B |
G(o) =
O

- qﬁ_;

Let the steady state gain matrix be:

by b 10-* 1.00
K= = 7 (6.1)

MAmmmﬂ:mkimﬂgmuhﬁ-dﬂn The MGPC
tuning parameters where oot to Ny = 1, Ny = 10, @ = @ and NU = 4. The sissulation
results for this system are shown in figure 6.1. It is obesrved that the output p cannot
track the set poiat.

This is due to the high condition number of the steady state gaia matrix, which is
T&uﬂhmhcﬂyhnﬁibyﬂijﬁlhﬁhﬂlnmim multivariable
Wmmﬁmhmthﬁﬂﬂlmwpﬁ
pertaisiag to the scaling ase
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o illustration of how scaling matrices D; (output scaling) and/or Dy (input scaling)

6.2 Best [; Scaling of a Matrix

1ARIAT B

To understand why the ;; norm (also called the spectral norm) should be weed for
evaluating the condition sumber, Jot us look at the physical interpretation of singular valus,
decomposition (SVD), as described by Moore [33).

6.2.1 SVD—A Physical Interpretation

K =ULVT

o K is a n X m matrix (the steady state gain matrix) ( weually m 2> a)
¢ U is a n x n orthonormal or unitary matrix called the “IeRt singular vector”

¢ L s an nXxm dingenal matrix of scalers called the “siaguler
ctgaissd such that &y > 0y--- > ¢, >0



The singular values ¢; provide the ideal decoupled gain of the i* open loop process
Consider i = Opas/Omin = 01/0n. g is the condition number of the matrix K ia the

that is free of computations

K = vE'UT

Mnmmhm&m-ﬁxhqﬂnﬂhmhhﬂﬂh

miﬂmhhﬁ-ﬂﬂnim;ﬂm“ﬁhhﬂhh
6.3.3 Condition for Best Scaling of a Matrix
Let X be the n X m steady state gaia matrix. The question to pese is: what ase the best



condition sumber of Dy K D; is a minimum, i.c.
ﬂ(ﬁ(ﬂz K D3)/oa( D) K Dy))
where oy(Dy K D3) 2 03(Dy K Dy3) 2 - - 04(Dy K D3) > 0 are the singular values of Dy K Dy.

in the /3 norm.

6.3.3.1 EMC Property

Lot A = UZVT be the singular value decomposition of » square matrix A, of order » X .
isbestscaled inthe ly norm if | uyy |=| w |, Ia |=| 9| fori=1,...0. Thatis, A s
Golub and Varah [30] show that if a square matrix A, with simpie (distinct) o, and
Oa, is in the best scaled form, thea the EMC property is necessary and suficlent for
best two sided I3 scaling. For multiple @, and ¢,, the EMC property is only sufllclont for
optimal ecaling (D) of the sutputs, U nesds %o satiely the EMC property and for optimal
distinct. !



hhﬁﬁ&qﬁdnﬁgdﬁpﬂnﬂﬂﬂn&tbﬂhﬂlﬂﬂnnﬁiﬂ

(10 20 30

A=|10 -10 10

00 10 10

The singular value decomposition of A = UyE1V; results in:

[ 09327 00483 03872 ) [ 02682 -0.5352 0.8010

Uy= | 01476 09003 0230 | Vi=| 05122 o784 03820
03312 02747 -0.9027 05150 -0.3150 —0.4842
£, mdiag(4.0101, 1.7022, 0.1468)
and the condition sumber of A is approimately 274. The optimal scaling matrices Dy
Dy= | 0.0000 1.7321 00000 | Dy = | 0.0000 05000 0.0000

isn of DyAD; = U3Ty W4 ghves:

‘e7em1  ese0 e.mT 05000 07071  0.0000 |
U | 03538 —00000 03836 | %= | 05000 o701 00000
00134 03000 -1 oTTI 0NN -0.NT




is further illustrated by the following example:

st Consider an example from Shogestad et ol. [51). The steady state gain matrix
of the two input two output system is

o o

of A = U,E\V; gives:

o Dot Y v

L) ndiag(1.972, 0.0129)
and D; are Dy =ding(1.000, 0.7908) D, =diag(1.000, 1.0016)
o ON7T1 -0.T071 % e ol -o.mm
|emnn omm | ~e1en -eem
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of the optimally scaled matrix Dy AD; could not be decreased substastially. This is becasse
of the approximate linsar depeadency of the rows (or columas) in matrix A. This results in
both the inputs u; and u; affecting the cutputs yy and y; similarly ie. the system is weakly
output comtrollable. This is an inherent design problem. No amount of scaling can alter

corrected by scaling the inputs and/or cutputs.

6.3 Use of Scaling In MIMO Systens

It is a well know fact that ill-conditioned systems cause control problems. If the system is
ill-conditioned due to linear dependency of rows or columas in the steady state gaia matrix

problems caa oaly be corrected by physical plast re-desiga or modi
m-thmdﬁomﬁﬁﬁqhﬂlﬂﬁnm
c&m,m“dmumm-mwmmﬁ _
usmmmmwﬁdﬁﬂwﬁ@dﬂﬂﬂ
ol. {13,14]. The multivarioble extension of the algorithm is described in Mobtadi (35] and
Shah ¢f ol (46} The system is scaled by disgonal scaling matrices as shown ia figure 6.2.
Thumudthmmmwmmxbgﬁmnmnm_d
are a part of the system. The coatroller outputs are scaled through the matrix D; sad are
with positive sign.




6.3.1 Fornmliation of Scaled MGPC

inistric process:

Ale™")y(t) = BAw(t - k) (6.2)

e y(t) and Aw(t) are m x 1 output and incremental input vectors
o A(g~') and B(¢~!) are polynomial 1satrices in the backward shift operator and
o Ag™') = Alg™)A, where A = 1 - ¢~

Recall the cost fanction wsed by MGPC (equation 2.19) to calculate the control
sgnal:
Jugrc = j-imli‘(‘fhi')-'(i-i‘.i)]’i[’t(l-iﬁ.i)-W(i-i-,i)l
+§A!(!+.i - 1)TAAu(t+j-1) (6.3)
where .
o § is the system output
o Au is cotrolier output
o Ny and Ny are lower aad upper prediction horisons
o NU is the control horison

o w(t + j) is the desired output or set-poiat.

19



the system. If A(j) is a non-sero matrix in any specific problem for the unecaled system,
thes A(j) may have to be modified, after scaling, as per the performance requirements
The TNY Au(t + j)TA()Aw(t + j) term in equation 6.3 is omitted for brevity, as scaling
umdqudntdltmmmmﬁﬁqthmm&mjgglﬁEm

A(g~1)yY (t) = B.(¢~1)AW(E - 1) (6.4)

scaled system is given by:

A, = A (6.5)

B, = BD; (‘J}

The cost function of MGPC for this scaled system is:

Ny .,
min Jocsled = jiZmli’(t +3) = w(t+ )Tt +5) - w(t+i) (6.7)
mmhdudmthmﬂm,-mhﬂﬁ_lpnizbmm
equatioas:

y(t+5) = Dyt +j) (¢.8)
w(t+j) Dyw(t + j) (6.9)

Aw(t + j) DiAY'(t + §) (6.10)

With this
offects of various types of scaling.
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6.3.3 Scaling And Their Effects
6.3.2.1 Best D, Scaling Of The Steady State Gain Matrix In MGPC

The best D) scaling matrix is found by using a search procedure oa the steady state gain
matrix K, such that the condition number of D, K is minimum. D; is set equal to the
identity matrix. Matrix U from singular value decomposition of scaled steady state gain
mattix D1 K = ULV, is verified for satisfying the EMC coadition.

The scaling matrix Dy scales the system outputs (figure 6.2). This scaling can be

interpreted as being equivalent to output wei
(equation 6.7) gives variable weight to the differeat cutputs of the system. The equation 6.7

can be expanded as:

N _

Jooied = T (D150 +5) = wit 4 NTIDUF(E+ ) = wit 430 (8.11)

if Dy and (2 + j) are defined as:

Dy = ding(d),dy, -, d)

ot+]) = [ e2 - ea]T = $(t4+]) - w(t+j)

thea equatioa 6.11 can be rewritten as:
Jocated = jglldm(ﬂfi) dres(t+5) -+ duen(t+i)lrer(t4]) daes(t+]) --- duea(t+5))T
Which means that the control objective is being changed, such that the weight givea to
different outputs is proportional to the element of the diagonal scaling matrix D,.
state gaia matrix X', so as to misimise the condition sumber of X Dy, assuming D, te be
the EMC conditien.



Uslike Dy, which scales the system outputs, D; does not affect the concrol law and it
gives better aumerical conditioning for the system. This helps in improving the performance
of ill-conditioned systems. The controller has the model of the process including matrix D,
as a part of the model. Therefore, the control law computes the inputs to the system :
GD,.

The condition aumber of the scaled steady state gain matrix KD, is much lower
thaa the unscaled system. The inversion of matrix K D; can be performed with better
lunuidmmmmilm:mﬁxﬂ;hiukﬂg Hence the control law
for unscaled and the D; scaled system is shown in appendix B. The scaling matrix D

¢3.2.3 Best Two Sided Scaling Of the Steady State Gain Matrix in MGPC

isfying the EMC conditioa. The system is scaled on both sides by the matrices Dy and
Ds. This gives the best condition aumber, among the thres possible cholces. It increases
weight to the system cutputs, as explained above.

6.3.3 Simulation Example
M(tl)dmwuﬁkﬂ-ﬂﬁmdmﬂﬂ!mmg
in the unscaled case.



6.3.3.1 Optimal Output Scaling

The system is optimally scaled with D;, which is found by a search procedure and verified
for satisfying the EMC coadition. D; is set to the identity matrix.

[wo 0.00
D‘s
0.00 10°°

The condition aumber of the matrix Dy K is 2 x 10%. The results from the simulation of this
system are shown ia figure 6.3. Ia this simulation the set point tracking of y; is achieved.
But the performance of y; is not acceptabls.

6.3.3.2 Optimal Input Scaling
The system is optimally scaled with Dy. D, is set to identity matrix.

[z

000 104
The coadition sumber of the matrix K D; is 200.01. The simulation of this system = shown
in figure 6.4. The performance of this system is satisfactory.

6.3.3.3 Optimal Input and Output Scaling
The system is optimally scaled with D, and D3, which are found by a ssarch procedure and
verified for satisfying the EMC conditioa.

D= o
o8 10 080 109
The coadition aumber of the system Dy X Dy is 1.002. The simulation of this system
point trackiag of gy is still not acceptable.

109 0.00 D’.[u- 0.0
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6.3.4 Discussion
coatrol in different ways. If the outputs are scaled with a noa-identity matrix D,, thea the
relatively high weight to the control of cutput g than to g3 by a factor of 10°. Heace, the

In the discrete inear quadratic regulator (LQR) problem, the objective is to find
Jiils{lﬁ)’ﬁl +3) + ot + )T Re(t + j) (6.12)
If we sssume that the states of the system are the same as the outputs of the multivariable

=(t + j) = ot + ) — w(t 4 j)

where y is the output vector and w is the sstpoint vector. The performance index of
equation 6.12 is similar to objective index of output scaled MGPC in equation 6.11. The
matrix Q in equation 6.12 s equal to D] D, in equation 6.11. Some recommended procedure
available ia the Mterature for the selection of Q matrix in LQR problem can aleo be ueed
for sslecting the D; matrix in oquation 6.11. &t has besa suggested ia the Neerature that
(Astslen snd Wictonmark [4]). It is aleo peinted eut that & particuler dificalty exiots ia
orver. Semetimes the specification of the system s given in terms of the maximam allowed
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disturbance ia states. One rule of thumb to decide the waighting in equation 6.12 is to
choose the diagonal elements as the inverse value of the square of the allowed deviations.
This and many other similar arguments in selecting the matrix Q ia LQR problem caa be
unmmmmumm«md;mmm.

The simulations of the Shell control problem in section 4.2 and the experimental
runs with the stirred tank heater in section 5.3.3.4 show that large cutput weightiag oa
umuﬂawuummmmmamm.m
dmdduﬁqthmmmﬂrdthamnh-cmdihm.

Input only Scaling with D;: By scaling the inputs with the matrix D; based oa the EMC
mmﬁmnmm-hummmmmm
to the controller and generates better contral sigaals. The condition umber of the steady
mmumammm(xm)hmmummm'
of the unscaled steady state gain matrix. Heuce, the numerical stability of the coatrol
wmmmmuo,hm.n.mu.muwﬁum
modifying the control law. This scaling has 50 negative side effects. It is shown ia the
MIM&ﬂGthhmmu‘t&wWhhﬂ
of Dy for aa infinite precision machine. Dy afects sumerical computation ia the MGPC
coatrol calculation since D is a pre-multiplier to the process.

uhwmummwubmmmsmmwhmuum
muummwmmummumuw. But it
does nct produce the best results. Though, sumerical stability is created ia the system by
mudhmmmmmapﬂnmumumm
m.mumuum*munwmmu-m»
hhabﬂﬂ.ﬂnb“mmwhmbu



6.4 Scaling for Systems with an Unequal Number of Inputs
and Outputs

Cousider a system of » outputs and m inputs (with m > n). There are C* submatrix
combinations of order n x n of steady state gaia matrix X of the system. Golub and
Varah [20] have given a conjecture for best scaling of a rectangular matrix. They state that
there exists aa  x ® submatrix of X' which, when best scaled, gives the best scaling for K
aleo. This can be one of the many best scaling matrices and is not necessarily unique. It
is not easy to scale all the submatrices of X aad thea pick the best scaled matrix among
them. A suboptimal alternative while scaling caa be achieved as follows:

o Select a square submatrix of X such that the submatrix has least condition aumber
amoag the C® submatrices. The submatrix caa be chosea by the procedure described
by Keller and Bouvia 24}, for selection of dominant inputs. This procedure is ferther
elaborated in the next subsection.

o Scale the submatrix with the belp of the EMC property and find diagonal scaling
matrices D; and Dy

¢ Lot min-clement = smallest diagonal clement of D; or
= omaliost diagonal clement of D3/10.0.

¢ For the columas not considered in submatrix, a value equal to min-cloment is used ia
the scaliag matrix. The conditicn sumber of the submatrix and final scaled matrix
are almost equal.

This procedure is intuitively appealing becanse we are sslecting a submatrix with
misimem condition sumber ameng the vasious submatrices to ensuse that the inputs se-
locted in the submatsix have better contrellability of the system among the other possible
iaput combiastions. The columas net pressat in the submetrix ase equivalent to belag



state gain matrix is almost equal to the condition number of the scaled submatrix.
6.4.1 Selection of the Submatrix
K (» x m matrix, m > n) should be done as described below.
K=UtVT=U = ’ v;"'
| 0o : 0 VI

P=wVT

of dimension m x m.
input % that is transmitted through I;. The following procedure, as described by Keller
Kou:

to be retained.
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corresponding to » retained input.

6.4.2 Example

The above procedure has been applied 0 an example with four cutputs aad six iaputs,
from Boavia and Mellichamp [8]. The unscaled steady state gain matrix of the system is
[ 243e-1 -1180c-2 112%-1 -1478¢-3 -200lc-20 —-2.280¢~19
2406e+2 -121le+1 4.715¢+1 —1513¢+0 ~1.108¢-01  4.080¢ + 02
~2007¢4+0 1151e4+0 1973 +1 143e-1 4M8e-18 4.840¢-17

~270e40 1906 +0 3000 +1  2482-1 90M4c-02 1430400
The condition samber of the matrix K is 3.92400+04. A submatrix with iaputs 1,
3,5 and 6 was selected, using the procedure described by Keller ef al. [34), which had the

24%e-01 1122¢-01 -2.001¢-20 -2.200¢ - 19 |
2408+ 02 ATMe+01 -1.108¢-01  4.000¢ +02
~2007¢+00 19736401 4M8c—18 4540 - 17
| 27016400 2000401 00— 18306400

Ko =




Dy = diag( 1.0e4-0, 6.518¢-5, 2.172e-2, 1.019e-3)
Dt = diag( 1.0e40, 5.769¢-1, 2.757¢+3, 8.403:40)
The condition number of the scaled system D) Koo D1ous is 1.101118. To extend the
:ﬂi-guﬂhnh—uﬂ—mthm:pkhqn—ﬂg

D, = diag( 1.004+0, 5.769¢-1, 5.780e-1, 5.760e-1, 2.757¢+3, 8.403e40 )

The condition aumber of the matrix Dy K D, is 1.1013. This procedure gives a good
scaling for systems with unequal sumber of inputs and outputs. This procedure can aleo
be used for one sided scaling of multivariable systems. For oaly inputs being scaled i.e. Dy

Dy = diag( 1.004+0, 5.447¢-1, 8.5000-1, 5.447¢-1, 2.0240+2, 5.447¢-1 )

6.5 Conclusions

Numerical robustasss caa be incorpe hlj-mby;ﬂnjthhp-nﬁﬁ




for the selection of cutput scaling matrix Dy. The simulations of the Shell control problem
(section 4.2.4.4) and experimental runs conducted om a stirred tank heater (section 5.3.3.4)
result in a better overall performaace of the closed loop system.

Numerical robustacss caa be achieved by scaling inputs with the matrix Dy, 50 as to
minimizse the condition aumber of K D; (where K is steady state gain matrix). Input scaling
does aot modify the cost function of the coatroller. The matrix Dy should be selected such
that X D, fulfills the EMC condition.

For designing the scaling matrices, chooss a output scaling matrix based oa the
physical process (model process mismatch in different outputs, allowed deviatioas for differ-
eat output specifications etc). The input scaling matrix must be selected such that D, K D,
satisfy the EMC conditios. |



Chapter 7

Conclusions

This thesis has evaluated the performance of a constrained long range predictive coatrol
algorithm, the generalised predictive control (GPC) for single-input single-output (SISO)
and multi-input multi-output (MIMO) processes. The performance of adaptive constrained
GPC was evaluated oa SISO processes and the performance of noa-adaptive (or fixed pe-
rameter) GPC was evaluated on MIMO processes. Coutnintsmi-padummb
amplitude and the rate of change of coatrol sigaals and also oa the amplitude of process
outputs. The thesis has also focused on the analysis of the effects of scaling the inputs aad
outputs in a multivariable system with some guidelines for scaling them.

The main contributions of the thesis are preseated below in a logical order to indicate
how they are related to each other.

1. Analytic Solutions of Simple Cases of Constrained GPC

No analytical solution exists for the general case of constrained GPC. However, it is possible
to calculate an analytical solution for some simple cases of constrained GPC. For most of
mmm.mmmduv-mzmﬂhm
good contrel. This thesls pressats an analytic sclution of the rate aad amplitude constrained
SISO GPC for NU = 1 and 2 aad MIMO GPC for NU = 1. Analytical solutions are much
mmmuwamummw

CORVErgence.



resents a set of concentric ellipses on the Au(t)—Awu(? + 1) plane. Rate and amplitude
constraints on the coatrol signal can be respectively represented by a rectangle and a par-
allelogram on the Au(t)—Au(t + 1) plane. The feasible region for rate and amplitude
of the rectangle aad the parallelogram, which caa have
is the point of contact of the smallest ellipes (lowest cost) with the feasible region on the

Aw(t)—Ax(t + 1) plane.

coastrained GPC is the intersection

Software was developed for implementing the constrained multivariable generalized predic-
tive contral (MGPC) algorithm for processes with = cutputs and m inputs (where n can
be greater than or equal to or less than m). Both amplitude and rat: constraints can be
imposed on coatrol signals and amplitude constraiats caa be imposed oa pmagtp-u
turbances. If a multivariable ideatific. oa package is available, the software package can
implemented as an adaptive algorithm.

The software solves the constrained cost function generated by GPC using a com-
mercial quadratic programming software package, QPSOL [19). QPSOL coasists of a set of




effects of comstraints. The SISO GPC was implemented as an adaptive control strategy
while MGPC was implemented as a noa-adaptive (fixed parameter) control strategy.

To evaluate the performance of non-adaptive multivariable GPC (MGPC), the con-
trol of the Shell heavy oil fractionator as documented in the Shell process coatrol work-
adaptive MGPC to study the effects of model plaat mismatch (MPM). Well tuned MGPC
Mhmm;mﬂmdl?lhhﬁmtmthﬁnpt weighting
(;_..)p!;y-ninpmntmhhzuhgm!(imggﬂti:hmﬁﬁmﬂuru
in different channels of the process. Adaptive MGPC has not been examined in this thesis.
Simv'atioas also demonstrate thaa the rate constraints om the coatrol signal can stabilize
systems which would otherwise be uastable.
ﬁﬁnn.ndbyK-ﬂlﬁ]undqﬁtmmllqmm:ﬂﬂﬂhhﬂmhﬂsﬁ

coupling interactions betwesn various loops. The experimental russ also demoastrate that
thpcﬁiﬂﬂei!ﬁmhhnpghtb:ﬂﬁsbﬂpﬂbmﬂ.

mm-m-dercihmmmgﬁmﬂm-unm
manipulated variables can stabilise poorly tuned systems. The experimental runs also show




guideline for selecting the output weighting factors in a multivariable system, based on the
results of simulation and experimental runs. The suggested guideline is:
outpuls of channels with higher model precess mismatch.

This thesis describes the procedure for best scaling of a matrix in /3-norm (Golub
and Varah [20]). It is suggested that the manipulated variables also be scaled such that

variables in & multivariable systems with equal number of inputs aad cutputs has also been
extended for systems with unequal number of inputs and outputs. |

7.1 Recommendations for Future Work

1. The MGPC algorithm has boen implemented as a non-adaptive control strategy. If
a multivariable estimation package is available, the control algorithm caa be imple-

should be given to outputs with larger model process mismatch is qualitative in -
ture. Mm&dﬁ:-ﬁmﬂn&nlﬂumhﬂﬁ;mﬁmﬁ
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Appendix A

Analvtical Solution of Some Cases
of Constrained GPC

A.1 Analytical Solution of SISO GPC for NU =2

The possible optimal solutions for the analytical solution of rate and amplitude coastrained
SISO GPC for NU = 2 are shown in this section. The notation of section 3.1.3 is used in
describing the solution.

Case 0: No coastraints violated

Axzey = Myzey
Au(t
o) = 2T Ak

Apcs = My
Au(t+1) = —y———
n ) M3’ = bubn

Suficient conditions for optimality ;20 V i=1t0 6

Case 1: If optimal solution is on 8y, thea

Aw(t) = a

c3 + Mgy
[ ™

Sufficient conditivns for optimality: &, 20 V i=2%w§; m<0

Au(t+1) = -

Case 3: If optimal solution is on a3, thea
Au(t) = h
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_+hib
[

Sufficient conditions for optimality: ;20 V i=1,3,4,5,6;

As(t+1) =

Case 3$: If optimal solution is on a3, then
_aha-An)+ta-a

ast) = oxth hu;?)“u-hn
n-=8g)+a-o
Adt+]) = =Ty

Sufficieat conditions for optimality: ;20 V =1,2,4,5,6;

Case 4: If optimal solution is on a¢, thea
_Bha-bm)tea-c

avt) = Al 'm;?;u-'m
u-—-~M3)+e—-c
As(t+1) = Ay = 203 - Mgy

Sufficieat conditions for optimality: ;20 V i=1,23,5,6;

Case §: If optimal solutioa is on ag, thea

Au(t) = - "L":_"'ﬂ.
1l

Av(t+1) = a
Sufficient coaditions for optimality: ;20 V i=1,2,3,4,6;
Case 6: If optimal solution is on ag, thea
Aw(t) = _b"i’J
n
As(t+1) = p
Sufficient conditions for optimality: ;20 V i=1,2,3,4,5;
Case T: I optimal sclution Is at intersection of ¢; and a3, thea

Au(t) = &

Av(t+1) = ;my-a
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Sufficient coaditions for optimality: ;20 V i=2,4,5,6;

Case 8: If optimal solution is at intersection of ) and ag, then

Aw(t) = o

Ax(t+1) = -y

20V i=213,5,6;

Case 9: If optimal solution is at intersection of &, and &, then

Aw(t)

Aw(t +1)

ay

Sufficient conditions for optimality: ;20 V i=23,4,6;

Case 10: If optimal solution is at intersection of &, and aq, thea

Ax(t)

Au(t +1)

= fy

Sufficient conditions for optimality: «; 20 V i=2,3,4,5;

Case 11: If optimal solution is at intersection of e; and a3, thea

Ax(t)

Au(t +1)

A
a3 -5

Sufficient conditions for optimality: «;20 V i=1,4,5,6;

Au(t)

As(t +1)
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B - b

«20V im1,3,8,6

Prpy <0

Y ] <0

Brps <0

Mrpe <0

pa.p <0

Pape <0



Case 13: If optimal solution is at intersection of a3 and a5, thea

Aw(t)
An(t +1)

b

Sufficieat coaditions for optimality: ;20 V i=1,3,4,6;

Case 14: If optimal solution is at intersection of a; and ag, thea

Aw(t) = B,

As(t +1)

Sufficient conditions for optimality: «;20 V

Ps

i=1,3,4,5;

Case 185: If optimal solution is at intersection of a3 and a5, thea

Au(t) = a3—-a3

As(t+1) = a

Sufficieat coaditions for optimality: ;20 V i=1,2,4,6;

Case 16: If optimal solution is at intersection of a3 and ag, thea

Au(t) = a3-p5

Au(t+1) = By

Sufficieat conditions for optimality: ;20 V i=1,2,4,5;

Case 17: H optimal solution is at intersection of a¢ and &g, thea

As(t) = fy-a

Au(t+1) = ay

Suficient conditions for optimality: ;20 V i=1,2,3,6;
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Case 18: I optimal solution is at intersection of a4 and ag, thea

Aw(t) = B-5
Ax(t+1) = By

Sufficient conditions for optimality: ;20 V i=1,2,3,5; pue,pue <0
Case 19: No feasible solution dee to incoasistent coastraiats.
A.2 Analytical Solution of MIMO (2 x 2) GPC for NU =1

This section gives the solution of rate and amplitude constrained GPC for a 2 x 2 MIMO
system. The solution is based on the algorithm developed in section 3. 5 for a n-output,
m-input system aad wses the same notation.

For NU = 1, the equation 3.28 caa be rewrittea as:

2AM1An(t) + Msdwp(t) + 1) + pn — a1 = 0 (A.1)
2AM3Au(t) + hnAu(t) +e3) + pn — pua =0

Ay M
g’.g+A = 'ﬂl- = [hu “” (A.z)

f-w)T6 = = [a o
mpmibkﬂlth.ﬁlthmudl-ﬂi“d.wlﬂuO(zxz)Gl’Cﬁt

NU = 1 are showa below:

Case 0: No coastraiats vioclated

sy - Mgcs
an() = M - Mibn

Mics - Mgy
Au(0) = A1a® = Mubn

Suficieat conditions for optimality: ay,841,8u1,6u3 20

1%



Case 1: If optimal solution is on &, thea
All(l) =

Aug(t) = - %’?m

Sufficient conditions for optimality: a;3,6,1,8.320 un <0
Case 2: If optimal solution is on a,;, thea

Awy(t)

L

Au(t) = - 2710 i';::’ﬁ’

Sufficient conditions for optimality: e ,812,8.320 . <0
Case 3: If optimal solution is on a3, them

Moy + &

Ail(‘) = - A

Awt) = a
Sufficient conditions for optimality: e 61,8320 3 <0
Case 4: If optimal solution is on a.3, thea
Aw(t) = -“":’%
cw(t) = B

Suficient conditions for optimality: an,813,801 20 s <0

Case §: If optimal solution is at intersection of e, and ey, then
An(t) = o
Aug(t) = ay

1832 ® snpn <0

1n



Case 6: If optimal solution is at intersection of a; and a,j,then

Aw(t) = o

Auy(?) Pa

Sufficient conditions for optimality: a13,8a1 20 sn,pe2 <0

Case 7: If optimal solution is at intersection of ey and ap, thea

An(t) = 5
Auy(t) = o3

Sufficient conditions for optimality: en,8s3 20 pupn <0

Case 8: If optimal solutioa is at intersection of &y and &,3, then

Aw(t) = B

Awy(t) = B

Sufficient conditions for optimality: en,8220 pupsez <0

Case 9: No feasible solution due to inconsistent constraints.
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Appendix B

unscaled system is invariant of D; for aa infinite precision computing machine.
Equation 2.16 can be rewrittea in the vector form as

Y=gl+r

(N

[Aw(t),...,Au(t + NU - 1))T
F = mgiﬁ!ﬁ)...ﬂg.t.gmi‘

(G-t - Go 0 0 - 0
Gy, - Gy Go 0 --- 0

| Mt o G-y |
h&miﬁﬁgi—ﬂ;ﬁﬂmgﬁﬁqﬂ:ﬂ-!)nhé‘(t+
j)=0 (Vi =0,1,32,..,NU=1) The dimensions of vectors (¢ + i),f(¢ + i) and

Au(t+j) VimNyto Ny, j=00(NU-1))aren, s and m respoctively

17



If vector W = [w(t + Ny),..., w(t + N3)}T defines the setpoint trajectory, thea the

0 = (676)"'¢T(W - F) (8.2)
the submatrices G; of G are pos® multiplied by the matrix Dy, ic. the comtroller sees
G(8)D; as the process. Define a block diagoaal matrix D as:

D= ﬁ(DilD!v-uDi)

0, = (66.)7'0F (W - 7,) (B.5)
Lat us assume that scaled control law (equation B.5) gives control action related to unscaled
coatrol law (equation B.2) related by equation (BA4). If this assumption is true, the free
respouse for the scaled (F5) and unscaled system (F) will be ideatical. To prove the
wnscaled control law (equation B.2) by equation (B.4), conslder equation (B.8):

"



» U, =((@D)Y6D) " (GD)'(W -¥)
» 0, =D'ET6)'¢T(W-x)

» Dﬁ. = 6

Which coafirms equation (B.4). This proves that the comtrol law with uascaled
inputs and scaled inputs is identical. The control trajectory to the physicei system should
be same for both the cases, if the aumerical computation is of infinite precision.

The above proof assumes that the control weighting matrix A()) in equation (6.3)
is a zero. For a noa-sero A(j) in equation (6.3) of the unscaled system, the coatrol law will
be unchanged. If A,(j) = DTA(J)D is used as the control weighting matrix of the scaled
system thea the control law for the scaled system is “ivea by:

0, = (TG, + A)'GT(W - F,) (BS)
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Bij = dail swrese(q-length(dnil)) i.e. all Bij axe of length g.

TIRE OTIER INPORTAST VARIABLES WNICE VILL BE UOED IN OTWER PILES oF
THIS ALOGRITIN ARE:
senigulated verishle ‘SELTA ¥°
precess cutpmt
T-filtered amipulated varishle ‘OELTA ©*
T-filtered preocess eutput
the shesluts valus of the inplenmted signal
of the precess
B satrix and F vecter as required by sstlad function
fer detineing the cest te be sinimised.

gagee

Rajendra Batha; July 4, 90.

clear; 1 CILEMR ALL TIE PREVIOWILY DEFINED VARIADLRS

(- H X B9. OF OUTIVUTS O&F TIR NIND SYSTINM

=3; X 85. OF IN-TS OF TIR IIIBB STSTIM

sotpt=[10,10,10; 30,20,20) °; 1 SETPOIETS A8 ST CADODS

step_sise = §; % CHANERE TIR SETPOINT EVERY step_sine

ITER = 30; % YOTAL 00. OF SIWNLATION ITERATIONS.

T={1 -8 1; L T~tilear

Bi=1; B=16; BO=2; % @&r¢ TVEINS RDEDS

o1,:)={.2 .1 .1); % CONTREL WEINTING (LABDE VEDNTING) ;

to=0.1; % SISCAETIZIING TIIR FOR TRANS.FN. MR & T0 =
 § s 10 s DGR

4 0V NEFIIE IR TRADEPER FUNCTION OF N PROCEES IF o-DENAIN AS

3 SAERATOR AFD SRDGNINATER VECTURS AED SCALAR SE1AY:

suniie dmite {¢ 1); (i, i) O;

sm1ed dmid> (B 1); (1,2)= 0;

il dmide (0 1); (1,3)= 32;

smdte. 7 ; dmite (1 1); *(2,1)" 3;

a2t s> (1 1); (2,2 1;

sadd=§ dondd> [32 1); *1(2,3)=0;

smdieg deadts [N 1); 4(3,1)= 3;

amdd=4.8 ; md®= (1 1); *w(3,2)= ¢;

] dmS= (12 1); (3,9 1;

3 SFTIE TIE LOVER COUSTRAINTS AND WPER CONSTRAIRNTS @8 ‘U’ ABD ‘SELTA ¥

L= (~1000; ~-10000 ; -50000 ;U= (10000 ;10000 ; 10000); %
K= (=2000; -20000 ; ~10000 )00 (10000 ;30000 ; 10000); % ds COUNTRAINTS

§ TIR GAAT NNEL, SUIP MNNNEIE MATRIZ, TIR LOVWER ASD WPER DOUNDD
1 OF VIR CUROURATNUS, VIE CUNDURAIDY AURIX.
L

”WW
for 121:00,%ampo00(1,1). 0.6, 0epl)send; T30 PENER 0.8 A8 (1E2-FI| IN FUNSTID
uttag( senp®: % Joi MRQUENES §°0.8

% OCONIETIIR WIE TANIIER FUNSTINNS.
Can11,0838,94(1, 1) )eotentaumt s ,ansl, 0,%8(1,1));



(dn21,4821,34(2, 1) Joten(aundl . a1, %s,%4(2,1));
(22,0422, 24(2, 2) Joten (mm2 den2 ts, 0(2,2)) ;
{dn31,8421,44(3, 1) Joston(amnd1 A1, %, 83, 1));
(dn32,4432,%4(3,2) ) "oten (and2,.4m32,. . 0003, D)) ;

stepiindetep(dnil adt 1, 1403);
stepid=dotapldnil. 4d12,1+83);
stapii=ioteplinld 4il), 1400) ;
stapdindovep(dudl 4421, 1482);
stepDindntep(dnd? 462, 1482);
sSapiinistapldad’  4i23, 1483)
stepdindotep(dndl, &i31,1002);

staplivetapl1(2:W2e1);
stapivetapi2(2:82+1) ;
apiieatepld(2:E3+1) ;
staplieatepli (2:02+1);
faptimerap2(2:02¢01) ;
stapXi=atapdi(2:03+1) ;
steplivetepdi (2:02¢1) ;
stepXiotepk2(2:N)+1);
stapIiutapld(2:82+1);

-l:a-ﬁ-.“ mm

“pﬂﬂ_ﬁﬂﬁ“ig!m

daidednid(ed(1,.2)+32: Langih{dnil));
&21=daB1(o4(3, 1)+8: 1engthianlt)) ;
S (04(2, 3)42: Jangthidndd) ) ;
Ea3=da3B(04(3,2)+2: Langebianin));




qu(q,3); % A NEEEN SIIE @F 3 IS PR DPLEESTING T-PILTER (7)

Atildes{al meres(l,p-length(al)) ;a2 seree(l, p-length(a2));ad sexes(l.p-leagih(ad)));

=

a1l seres(l,.q-length(dnll)) dni2 swres(l,q¢-laagth(inil2)) dall seres(l,q-length(dnlld)]
dal1 seres(l.q-length(dnd1)) @23 seres(l,q-length(dn2?)) &a3) seree(i,.q-lengthidndd)|
a1 seres(l.q-length(ind1)) a2 seres(l,.q-langth{fndl)) &3 seres(l,q-langthidald)!

1 GENERATE THE COESTRAINT HMTRIX AS NENTIES BY TR o-FIIR ‘LKI.N°
fow Fﬂl-l
i2(joel), commmti((i-1)ewe1:isn, (j-1)earl:jen)mapeln) jand;
12 (jov1) , commmt2((1-1)%we1: den, (}~1)e0¢1 : joudaapela) ;and;
and




it delta > O;
(12, a2} =c2d(phis, gems , d0lta) ;
hieb-delta;
(313, g} =c2d(phis, , gens . bd) ;

3=phidogand;
(s, an)=es2tt (pht ,gund , deltes , cmagas . 1) ;
(he2, an)=ee2te (phi .08, deltas, enagan, 1)
soc(hat 0J¢f0 2];
else;
(s, as)vea2tt (pht . gen,doltas, cnnges. 1)
oad;
it e, m‘o.’ m‘“‘
sd=l;
zetura

Function: mcaly.m

i
%
)

Milds setriz beving diageusal clements of Atildes? = B dal(W), in (q-1)
MRS 4l (M) ia erms of (g-1)
mm*ﬁqﬂﬁu

| ]
y
to y(t-p); mmtris wmder (a x p)
& proviows csmtreller eniputs fres uwls-1)
% éu(t-mandelag=q): miriz exder (@ = (prmamdel))
sands]l masiown delag of the spwten (aealar)

emtriz
ipst ot swplisg imterval t. This is calculated givea
“W“ "'—’)i ﬁ‘ijiliii-ii

3 opder of mxionn ammerster polynendal in A + 1;
q oame a8 p, but fer awiriz B; /o zeliex to fa. ININIT WN.B o/

Majendre Betha; July 11, 00.



Function: mgeag.m
function (g] =ugewg(s.B1.02,.00.0.8.0)
g ) ?7ﬁiﬁini-i-t-iﬂ

i |
I

The step respenses of the tramsfer functions of the

NI syotan (w-eutput s-isgut). Tie step Fespemsse
of onth trenefer functisn is frem 1 to 2 isatamce
diﬁ

gap = ) gii-1) ..g(J).. gD g) 00 .. &];

( The index of fixet columm of g(j) is (W2=j)ewri )

oach g(h) and 0 fo a sutriz of & x 0. There are W matrices of
she end of OTHOP.

‘i L. E F . R B B N B B B DlillHi‘ﬂ‘Nlllhﬂ‘lllﬂillllluﬂﬂﬂﬂll‘
|

fer =B1:0R,
Senpeghenp(: , (H3-1)eue1: (M-t en); | IV varies frem 6 %o B9-1; N
grigrvmptd; %i.0 J has varistien of w(300) to w(tel-1)
£ @ is & dlageusal uAriz of ool = oV (MFEND I8 INITW).
) ﬂqﬂmm A0-1))

&uﬂﬁidghm:ﬂ:



function [fl-ugeat(A.D,.y7.8uf.7.8.8.p,.q,00nd0], 44,02, 702, 1)
m;.ﬂ.ﬁ.-.--rﬂ.—hl.u.n,ﬁ.n

tershoborisen of 1 t¢ M in the matriz £; It is deme by

a surix baving diageasel clamssts of Ay = B &l(W), ia (q-1)
» sutriz of Ay = B &0l(W) ta terms of (g-1)
vt proviens filvared plants sutpmt frem y1(s-1)
te yi(vp); smtrizexder @ x p
duf proviom filtared contreller swiputs frem olt-1)
%o duf(s-mandslag-q); motriz erder (» = (prmandal))
msnde]l sasises delay of the speten (scalaw)
dulay amtriz (a x 0)
T-tiltar
order of mmerster pelynenials in Aef;
rgmtuq-ltﬂri) o

- w-I\l

4 Hm“i__‘ﬁ‘-..
4 ﬂ-mﬂ.
duts{pavesin,.i) ul(:.1:einedud(D)-1)];

dulegils o (7 . 0ul);
l CALANLATE TIR PRICEIS OUYFOY MEEPOBNE OB THE INPOT da = §.
4 Hmﬂliﬁﬂm‘-ﬂﬂ-‘y.

taapemsaly(A . D.yf .00l ,5.5.p .4.muuisl , 0d)
yi={vanp 51(:,1:10i009(D)-1));
4 SEOEVELIER TIR T-filter T GALOVLATE TIR y FREN yf AND STOORE ID

TR MFONE WTNIX f.
20 . B-THD 2 )udaf 12¢(T, 91);

] ST TR SN OF THES THES PRONNES B48 W IR ITHMMTED A
L] NPT TR S0 STIS TIIL TR ODRENVED WLAE IS S00-EN00.
T=-1;
it Th =y,

m-ﬁ-ﬂ:imﬂﬂi“-!ﬂl

]



Function: genF.m
tunctisa [F.NaglogulPisetpe.?.1.01.50.00.8,.f10g .90 _sise)

4
1 . ageal (setpt .£,4,.1,52,flag)
) 4 This a_fils vill gemerets the F o required by the
3 a_file of lsi for nininizsiag the castfunction |IEs-Fi11-2;
]
1 Pajendra Wetha; July 4, M.
4 VECTEAIZE THR CTPOINT, »v, PR AFPROFRIATE B1.M2;
4 7ol TIE PRI DESPONNE VEICTER F PR TR MATXIX F ABD VIKCTERIIED
: 4 SETVRINT. AFPEED TENES AT TEE OTTEN OF VICTER F T ACOREIT PR
| T MIEESTINAL CENSISTEECY WITH TIE IATRIX K = [ ¢ +(lamban)+I].
NI I FE T E MENNE &F (Qabde)+I FENET 1IN E.
it (ren(i.step_siza)==9),
flag="flag:
and
wentpi(:.flagel); setpeint=y’
senpee(] ; sampt=0) ;
far =H1: 2,
sanpt={tanpt ;1(: .10)];
L H

PoF(:) * PV sarea(l . 0el)] *;
— 2] L.V, 0., .0);
(1 4n] ~ERILINCL. U, 0L .00, wa, B9)

g’iﬁﬂjﬁ ﬂ-—n—mg mﬂini:
piresssts of functisn ‘lsi.a’




Function: filt_ t.m

functien(yt)=tils_s(T,91)

(ygd=tsle_s(T,91);
This algwrithe filtere the first colum of §

vith the ¥ pelymemial.

§ satriz of precess ewtput with y(i,:) wfiltered
T vecter of T filter.

lentt = laagth(T); sisy « sim(yf);
if (lemtt==® | lemtt > siny(2) )

arer(’'tilter sise bMgger y is filt.m or T is mll’)
oad

T(:)°;
if (lemtt "= 3)
fer i=i:sisy(1)
tesp =0;
for j=3:lemtt
teap= temp - T(§)eyt(i.j);
od
y2(1,1)=(y2(1,1) ¢ tamp);
oad § for 4
ond % if '
return

Function: defilt.m
function (y)=dafils(T,.y1)

: t’)‘“u'“om
: COLINE OF A CIVED INTRIZ AND IETVRES IT AS A COUOE VECTGA.
: Majendre Sathe; July 4, 1900,
lentt=length(T);
eisyfesine(yt);
yuervelsiny2(1),1);
fexr i=t:1lamte
Fgoye i )M(i);
ond
sotuEn
: SORIPY FILY::: sine gps.a
3
-n--m.ﬂmni TR ML
4 ..---_::_Tﬁ‘!h.--:'
: fait_av.c HFLANS VARDOW VALALES YN I TEIS ALAORIVEN.
4 Sajendoe Bnthe; July ¢, 9.



imit_mw
ws{serea(Ila.1)); X SET INITIAL VALUES OF THE ADDOLETE CONTROL STGENAL TO 0.

[ displacensat vecter sutpat frea time 0 1.0 igeere wa(:,0);
ymﬁgt&:iﬂﬁy(n—m:

tor i=1, u(l) amd cexvrespending y(2) =e svalmtad.

IllllNIl'l

L In 1
[ AT ITHR =i:: w(i=1) AND y(i) AVAILABIE; CALCULATE w(i);
% DPLEST u(i) AND EVAURTR y(I+1);

flag=0:sisedureize(da) ;sizey=sinely);
ylivy dufadn;
cle

CALCNLATE TIE E-MATRIX AS BRQUIA
m“-ii 52,00,0,8,8);

faxr i=1:TTHR ,

i

1 GIEERATE THE MR MESPONEE OF TIR FROCENS .
!q-i(lpl-ﬂ-ﬁlﬂ.l-l-h!m-ﬁ-ﬂ n.0;
Or.flag) sgeuFisetpt .2,1.01,02,10,.0, flag . step_sise) ;

1 CENERATE THR WPIR AID LENER DOORNS 80 TR MANTILATED VARIANLES
linegenlin(L V.00 .00, wn(:,1),M00; Jea--displecemnt vecter of output;

7 B—h’ﬂ-hﬁl.ha—i.lﬂ :
Yeeapdurpiav(D)el; TIE THIS LINE POR VNCSESTRAINED CALCULATION INSTRAD OF LSI.

In(:.4)=tenpén; £ ‘In’ STERES THR ¢u SIONMLS PR THE CINPLETR SINNLATION.
wa(: ,ie1)mpn(: . 1)oInz,4);
it (chabe=1) ,exven{’chock for incespatible comstiveints’).emd;

3 WPATE TIE CALOWLATED du BATRIX UITH CUMRENT CALOWLATED CBNTREL SDOSAL.
a=(In(1:0,1). du(:,.1:einedelD)-1)];

(s .M-!M-ﬁq.—lﬂ.ﬂ H

 } WMIE TIE CALORATED y IATRIX WITH CHRSENT CALOWLATED SWINUTS.
yolomt (1 . 4#1), 3(1,1:0i009(0~-10)s

3 Sjﬁ!_-ﬁﬁﬂmiﬁ_
i2(i1<@® -



systen_sutput=sut (i:m,4i:141)
slse

comtrel _vectervwa(i:m,1-3:1+1)

systen_sutput=eut(1:n,i=-314+1)
dut=(In(1:n,1), dutf(:,1:0inedu(2)~1)];
Yf‘—tﬂ“! li“) * ’i(‘ -l!li’—y(.‘!)"ﬂ] H
dufefilt_t(T duf);

end;: 1 MEFEAT TRR ITER LOOP



