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Appendix A: Instructions for running code18

Running simulations19

Simulations are coded in C, but can be run from within R (explained below). The file dfr.exe20

is ready to work on a Windows 64 bit computer. Users of 32 bit Windows operating systems21

should replace this file with dfr32.exe. Mac users should replace this file with dfr mac. They22

should also replace all the *.txt files with the *.txtm versions (txtm stands for text-Mac)23

included in the SI. Users of other operating systems (e.g. Linux) will have to compile the24

source code themselves, which consists of all the attached *.c and *.h files. Linux/Unix25

versions of the text files are called *.txtu (text-Unix) rather than *.txt.26



2

The programme dfr.exe enables the user to simulate paths in an environment with two layers27

that affect the movement as per Equation (8) in the main text. The user needs to construct28

these layers in advance of running the programme. Each layer should be saved as a plain text29

file with tabs separating the x-values and carriage returns separating the y-values. Examples30

are given in random field scale 10.txt and random field scale 1000.txt. The former31

described Layer 1 from the main text and the latter Layer 2.32

The user also needs to construct a file denoting the environment-free jump distribution as a grid.33

The file dfr jump probs exp5.txt provides an example of this. To aid construction, we provide34

both and R script dfr weibull to table.R and a Python script dfr weibull to table.py,35

which turns a Weibull distribution (a generalisation of the exponential distribution) to a grid36

useable for dfr.exe. To construct this using the R script, type the following into the R terminal37

source("dfr weibull to table.R")38

The shape and scale parameters (weibull a and weibull b), together with the size of the39

jump array (array size x by array size y) and the lattice spacing (lattice spacing) can40

be modified in the script.41

For Python users, go to the DOS command line or Unix/Mac/Linux terminal and type the42

following43

python dfr weibull to table.py shape scale x y l > dfr jump probs exp5.txt44

where shape should be replaced with the Weibull shape parameter (e.g. 1 in the case in the45

paper), scale with the scale parameter (e.g. 5), x and y with the width and height (e.g. 79),46

respectively, of the jump distribution grid (outside this grid the jump probabilities are zero, to47

aid computational speed), and l with the distance between adjacent grid points in the layers48

(e.g. 1).49
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Finally, it is necessary to construct a file detailing the start positions of the simulated animals,50

which is a list of x- and y-values of the start positions with x in the left column and y in the51

right, as in dfr start pos random.txt.52

We first explain how to use the DOS command line or Unix/Mac/Linux terminal to perform53

example simulations, which is the recommended method if you are familiar with command line54

invocations. Then we explain how to do the same using R.55

Using the command line/terminal. The following command will print out the positions56

of 100 different individuals, each performing 1000 steps according to the model in Eqn 4 of the57

main text, with α = 1.5, β = 10.58

dfr -l1 random field scale 10.txt -l2 random field scale 1000.txt -spf59

dfr start pos random.txt -jpf dfr jump probs exp5.txt -l1w 1.5 -l2w 10 -kv 060

-i 100 -ts 1000 -bw 1000 -bh 1000 -jpw 40 -jph 40 > dfr.txt61

The output of this simulation, which takes a couple of minutes to run, is found in dfr.txt.62

Typing dfr with no parameters gives a usage statement, as follows, which explains how to63

make general use of this programme.64

Usage: dfr.exe [-l1 <layer-1>]65

[-l2 <layer-2>]66

[-jpf <jump-prob-file>]67

[-l1w <layer-1-weight>]68

[-l2w <layer-2-weight>]69

[-kv <k-val-for-von-Mises>]70

[-i <number-of-indivs>]71

[-spf <start-position-file>]72

[-ts <number-of-timesteps>]73

[-bw <box-width>]74
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[-bh <box-height>]75

[-jpw <jump-prob-array-width>]76

[-jph <jump-prob-array-height>]77

The parameter k is for using correlated random walks. It is the sole parameter of a von Mises78

distribution with mean 0, and gives the distribution of the turning angles between successive79

steps.80

The user is encouraged to adapt the source code to make it useable for other scenarios (more81

layers, individual interactions etc.). However, when doing this, the authors kindly request that82

the user makes the code generally available and keeps the lead author informed of where it can83

be found. This will enable an ad hoc open source situation to evolve.84

Using R. The following command will print out the positions of 100 different individuals, each85

performing 1000 steps according to the model in Eqn 4 of the main text, with α = 1.5, β = 10.86

x=system("dfr -l1 random field scale 10.txt -l2 random field scale 1000.txt87

-spf dfr start pos random.txt -jpf dfr jump probs exp5.txt -l1w 1.5 -l2w 1088

-kv 0 -i 100 -ts 1000 -bw 1000 -bh 1000 -jpw 40 -jph 40", ignore.stderr=TRUE,89

intern=TRUE)90

This takes a couple of minutes to run. Now put the output into a text file called dfr.txt using91

the following command92

write.table(x, file="dfr.txt", quote=FALSE, row.names=FALSE, col.names=FALSE)93

Typing system("dfr") gives a usage statement, as follows, which explains how to make general94

use of this programme.95

Usage: dfr.exe [-l1 <layer-1>]96

[-l2 <layer-2>]97

[-jpf <jump-prob-file>]98
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[-l1w <layer-1-weight>]99

[-l2w <layer-2-weight>]100

[-kv <k-val-for-von-Mises>]101

[-i <number-of-indivs>]102

[-spf <start-position-file>]103

[-ts <number-of-timesteps>]104

[-bw <box-width>]105

[-bh <box-height>]106

[-jpw <jump-prob-array-width>]107

[-jph <jump-prob-array-height>]108

The parameter k is for using correlated random walks. It is the sole parameter of a von Mises109

distribution with mean 0, and gives the distribution of the turning angles between successive110

steps.111

Analysing data using EMD112

In R, to find the EMDs between the each of the simulated data points in the file dfr.txt,113

created above, and the model used to create it, use the dfr emm.R file. Users should feel free114

to alter the values of pos file, layer1, layer2, jump prob, alpha, and betav.115

Python users should instead run the following from the command line:116

python dfr emm.py dfr.txt random field scale 10.txt random field scale 1000.txt117

dfr jump probs exp5 py.txt 1.5 10 > dfr emm.txt118

In general, the format of the input is as follows:119

python dfr emm.py [positional-data] [layer-1] [layer-2]120

[jump-probability-grid] α β > <output-file>121
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The output of either the Python or the R script is a file <output-file> with four columns.122

The first is the EMD and the second is the standardised EMD. The third and fourth are the x-123

and y-coordinates of the vector v̂n from the main text (Eqn 5). This gives enough information124

for the user to construct wagon wheels, dharma wheels and so forth.125

Please feel free to email JRP for any questions regarding these instructions.126
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Appendix B: Generalizing the Earth Mover’s Distance (EMD)127

The Main Text takes a pedagogical approach to introducing the EMD. Here, we take a more128

formal, mathematical approach, by introducing the Wasserstein Metric in its full generality129

and then proving that it gives Equation (1) from the Main Text with the assumptions stated130

therein.131

Let (Ω, d) be a measure space (Ambrosio, 2005). Let p be a strictly positive integer. Let µ

and ν be two probability measures on M with finite p-th moment. Then the p-th Wasserstein

distance (Vasershtein, 1969) between µ and ν is

Wp(µ, ν) =

[
inf

γ∈Γ(µ,ν)

∫
Ω×Ω

d(x, y)pdγ(x, y)

]1/p

, (1)

where Γ(µ, ν) is the collection of probability measures on Ω×Ω whose first and second marginals132

are µ and ν respectively.133

Suppose now that µ is the measure associated with the probability density function PM (X|Y)134

from the Main Text and that ν(dX) = δ[d(X − Y)], where δ is the Dirac delta measure. If135

the data are noisy then ν could represent a probability distribution with mean given by a data136

point and distribution reflecting the noise in the data. Equation (1) would be more complex137

to compute than if ν is a delta measure, but various methods exist (Ling & Okada, 2007).138

In general, it is guarenteed that the Wasserstein distance is well-defined only if µ and ν are139

Radon measures (Ambrosio, 2005). The Dirac delta measure is not a Radon measure as it140

is not locally finite. However, one of the consequences of the Theorem 1 (below) is that the141

definition is still valid in this particular case.142

Let γ ∈ Γ(µ, ν) and denote by F the function such that
∫
A F (A,B)dAdB =

∫
A γ(dA, dB)143

for any measurable set A. Notice that F may not strictly be a real-valued function. For144

example, it could be a multiple of the Dirac delta ‘function’. However, this is an oft-used abuse145

of notation convenient for calculations. It is also convenient to let δ denote the Dirac delta146

function as well as the Dirac delta measure, with the ambiguity cleared up by the context.147
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With these definitions, the following three results hold.148

Lemma 1. F (A,B) = PM (A|Y)δ(B − Y) for all B /∈ S ∪ Y , where S is a set of measure149

zero. F (A, s) is finite for all A ∈ Ω, s ∈ S. If F (A,Y) 6= PM (A|Y)δ(0) then PM (A|Y) = 0.150

151

Proof. Suppose there exists (A′,B′) such that F (A′,B′) 6= PM (A′)δ(B′ −Y). First we look

at the case when B′ 6= Y. In this case F (A′,B′) 6= 0, since δ(B′ −Y) = 0. Since the second

marginal of γ is δ[d(A−Y)], we have

∫
Ω
F (A,B)dA = δ(B−Y). (2)

It follows that

∫
Ω
F (A,B′)dA = 0, (3)

so F (A′,B′) must be finite, as F is non-negative. Furthermore, since B′ is an arbitrary point152

not equal to Y, F must be zero outside the subset B = Y except on a set S of measure zero,153

and F (A, s) must be finite for all A ∈ Ω, s ∈ S.154

Next suppose B′ = Y. Then F (A′,Y) is finite, since δ(B′ −Y) =∞. Since F (A′,B) = 0

for any B /∈ S ∪ Y and is finite for B ∈ S, it follows that

∫
Ω
F (A′,B)dB = 0. (4)

However, since the first marginal of γ is the probability measure associated with the probability

density function PM (X|Y), we have

∫
Ω
F (A′,B)dB = PM (A′|Y). (5)

Thus PM (A′|Y) = 0.155
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Lemma 2. Let f : Ω× Ω→ R≥0 be integrable. Then

∫
Ω×Ω

f(A,B)F (A,B)dAdB ≥
∫

Ω×Ω
f(A,B)PM (A|Y)δ(B−Y)dAdB

156

Proof. Let T be the set of points A ∈ Ω such that F (A,Y) 6= PM (A|Y)δ(0). Then, by Lemma

1,

∫
Ω×Ω

f(A,B)[F (A,B)− PM (A|Y)δ(B−Y)]dAdB

=

∫
T
f(A,Y)[F (A,Y)− PM (A|Y)δ(0)]dA

=

∫
T
f(A,Y)F (A,Y)dA ≥ 0. (6)

The final inequality comes from the fact that F and f are both non-negative.157

Theorem 1. The p-th Wasserstein distance between δ[d(X−Y)] and the measure µ associated

to PM (X|Y) is

Wp(µ, δ) =

[∫
Ω
d(X,Y)pPM (X|Y)dX

]1/p

. (7)

158

Proof. Follows directly from Lemma 2 and the definition in Equation (1).159

Equation (1) from the Main Text is simply Equation (7) with p = 1. Fig 1 demonstrates160

what happens when p 6= 1. This allows the user to decide how to penalize the areas in and161

around the peaks of multi-modal distributions.162
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Fig. 1. The Wasserstein metric for arbitrary p. Panels (a) and (b) are figures 1b and 1c from
the main text respectively. Panel (a) shows a probability distribution and a Delta function at x = xo.
Panel (b) shows the Wasserstein metric with d Euclidean and p = 1. Panel (c) has p = 2. Though the
Wasserstein metric is not formally defined for non-integer p, it can still be calculated in certain cases.
Panel (d) shows the case p = 1/2. These three cases demonstrate how to change p dependent upon
whether the user wishes to penalize troughs in the middle of two peaks more than, less than, or the
same as the peaks themselves.

Appendix C: literature search for movement models163

Here we explain our search that led to the conclusion ‘a search for the 20 highest cited papers164

that fit animal movement models to data reveals that none assess absolute quality’ from the165

Main Text. We searched ISI Web of Knowledge for ‘animal movement model’ in the ‘topic’ field166

then refined our research results to incorporate just those research articles from the subjects167

‘Zoology’ and ‘Ecology’ (search results are in the SI file ‘MovementPapers.xlsx’). We discarded168

any papers that either did not fit a model to data, or did not include a model of animal169

movement. The 20 top cited papers according to these criteria were examined for assessment of170

absolute quality of the best fit movement model to reality. None of them made this assessment.171
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Fig. 2. Dharma wheels. The dharma wheels were all created using a simulated data set of the
model in Equation (7) from the main text with α = 1.5 and β = 10. The dharma wheels obtained by
calculating the EMD from this data set to four different models of the form in Equation (7) are shown
here. The mean EMDs, denoted 〈EMD〉, are given within the panels, together with the parameter
values used. The latter correspond to models f1, f2, f3, f4 from the main text for panels (a,b,c,d)
respectively.



12

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

X
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Y

Amazonian bird wheel

Fig. 3. Amazon bird dharma wheels. Stadardized dharma wheel of the best-fit model from Potts
et al. (2014b) compared against the data from the same study.
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Fig. 4. EMD binned by values of environmental covariates. Figure (a) (resp. b) shows the
EMDs of each step from the amazon bird data histogrammed by the canopy height (resp. topography)
at the end of the step. Figure (c) (resp. d) shows the EMDs histogrammed by the canopy height (resp.
topography) at the end of the step minus the canopy height (resp. topography) at the start of the step.
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Fig. 5. SEMD binned by values of environmental covariates. Identical to SI Figure 4 but
using Standardized EMD rather than EMD.
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