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ABSTRACT

The S-matrix of a many-body system is usually
assumed to be an analytic function of the coupling
constant. A system of gquasi-particles inte;acting
through a pairing force is considered . It is shown
that for this sytem the S-matrix is a non-analytic
function of the coupling constant. This suggests that
the many—body problem should not be treated using the
conventional pértﬁrbation methods. Bogoliubov's, non-
perturbative, operator expansion is generalized. This
generalized quasi-particle expansion is derived from
first principles and the subsidiary conditions that are
imposed on the expansion are discussed. The resulting
-lowest order equations are solved. It is found that a
distribution function of bosonscan be defined. This
function depends on the form of the interaction and under
certain condition yields the Bogoliubov's results. For
separable interaction the equations are solved exactly
and it is shown that the energy spectrum has the correct
behaviour in the limit of very long and very short wave
lengths. To investigate the lifg-time of quasi-particles
solvable model Hamiltonians, with effective interaction
between quasi-particles, are proposed. This effective
interaction can be found from the elastic scattering of

two quasi-particles, using the S-matrix. It is found that



in the Born approximation the effective interaction is
density dependent. Finally a 'pairing type' of boson
operator expansion is proposed. This expansion is
especially suitable for treating scattering processes
from a hard core potential. The resulting, G-matrix,
integral equation is discussed. It is shown that the

effective interaction is just the first order approxi-

mation to the G-matrix. A procedure for calculating the

energy levels and the life-time of quasi-particles is

developed.
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CHAPTER 1. INTRODUCTION

In 1908 Karmerlingh Onnes succeeded in producing
for the first time liquid helium. When soﬁe of the
strénge properties of the liquid became known, the research
into the many-body problem started in earnest. As early as
1938 some theoreticians began to realize that liquid helium
could not be understood in the same terms nor by using the
same meﬁhods as applied to ordinary liquids. Since then
the theory of liquid helium has been developed on three

different levels.

The first level is the phenomenological theory of
Londonl and Tiszaz. Here, a comparison with the conden-
sation of a free Bose-Einstein gas leads to a two-fluid
model and predicts a macroscopic occupation of a single
quantum state, the ground state, which is identified with
the superfluid particles. With this analogy the unusual
transport properties of He II as well as the A-transition

of liquid He are well explained.

The second level is based upon the semiphenomenolo-
gical excitation picture derived from quantum hydrodynamics
by Landau3. Here it is assumed that the properties of

liquid helium may be computed by treating it as a gas of



weakly interacting elementary excitations, the phonons and
the rotons. The energy spectrum is fitted from experiment
and the thermal properties of the liquid are calculated

from it.

The third level attempts to explain liquid helium
from first principles, i.e., on microscopic basis. Here
however, we are faced with the impossible task of trying
to treat exactly an ensemble of ~1023 helium atoms inter-
acting via an appropriate potential. 1In view of this, in
seeking an adequate microscopic theory to describe such a
system, we should bear in mind Feynman's4 comment about
the limitation of such an approach: "The quantum mechanics
will not supplant the phenomenological theories. It turns
out to support them." Thﬁs in spite of the great progress
made in this direction by the use of powerful and ingenious
mathematical techniques, the results obtained are, at best,

crude approximations.

The primary aim of every microscopic theory, which
describes a given system, is to calculate the energy level
spectrum of that system. From this spectrum physical pio-
perties such as pressure, specific heat, compressibility,
etc..., can be deduced. Therefore it is essential that we
know how to calculate this energy level spectrum. For

complicated systems this is indeed a difficult problem.



"However) from experimental data we usually find that in cer-
tain energy regions the system can neatly and conveniently
be described by elementary excitations. The reason for

this is that no matter what the statistics of the system

are and without necessarily assuming weak interactions
between the original (bare) particles, the Hamiltonian

of the system can be reduced to the form
= yaP gp
H Ho + Hy ’ (1.1)

where ng is the free part of the Hamiltonian describing

free (dressed) particles (quasi-particles), and H%p des-

cribes the interaction between the particles (quasi-particles).
The reduction (1.1) is by no means unique. However, for

(1.1) to be useful, H%p must be small.

The advantage of the reduction (1.1) is that now the
properties of ng can be determined exactly while H%p can
be treated as a perturbation. Consider the many-body
Hamiltonian which in the frame of second quantization5

takes the form

a{}ar.['l . (1.2)

v(j—g)a a

PN
1o+

1‘
H=) (e~ waa_ + [ ¢,
k ].5 ].5 ].S j 4mn 2+& ’IB+§

PR S

Here € = 52/2m is the kinetic energy, p is the chemical

potential, v(j) is the Fourier transform of a two body



central potential and a; and a, are the creation and anni-
hilation operators respectively. We note that the
Hamiltonian (1.2) is already in the form (1.1) . Since

we know all the properties of the free part, H_ , of (1.2)6,

o
we would like to treag H;=H - Ho are a perturbation. Here
however one is faced with diverging terms in the perturba-
tion series which arise from the macroscopic occupation of
the zero momentum state. These so called "dangerous
diagrams“,7 which describe the self-energy of the system,
appear as a consequence of the considerable energy necessary
to excite particles from the ground state. Bogoliubov8 in
1947 showed how one can overcome this difficulty. 1In his
theory, Bogoliubov assumed macroscopic occupation of the
ground state and proceeded to separate out the zero momentum
states from the Hamiltonian thus eliminating the troublesome
"dangerqus diagrams". The resulting Hamiltonian was then

diagonalized and the energy spectrum obtained agreed with

- the observed results for a weakly interacting boson-gas.

Aside from the semiphenomenological beautiful work

10

of Feynman9 and Feynman and Cohen™ ", most of the work that

followed Bogoliubov's theory was centered around his main

11 were first

assumptions and methods. Penrose and Onsager
to show that Bose-Einstein condensation is possible in the
general case of interacting bosons. Beliaev12 and Hugenholtz

and Pines13 independently extended the Bogoliubov treatment



to higher order approximations by applying the Green's
function formalism of quantum field theory to the many-
body interacting boson system. A different approach was
proposed by Lee, Yang and Huang14 who used a hard sphere
model Hamiltonian with a pseudopotential, which was diago-
nalized by the Bogoliubov transformations. Brueckner and

15 . . .
introduced a reaction matrix or 'T-matrix',

Sawada
which removed the difficulties arising from the singularity

in the interparticle potential. Luban's16 pairing Hamiltonian
and the variational approach of Girardeau and Arnowitt17

and Valatine and Butlerl$ yielded essentially the same

results as Bogoliubov's with perhaps better mathematical

justification and hindsight.

All the theories we referred to (and many more that
we did not) have one tﬁing in common; it is very difficult
to find or calculate higher order corrections to the energy
‘spectrum in a systematic way. While the perturbative
theories give us formal prescriptions by which we should
be able to calculate higher order terms, these theories must
be tailored for the treatment of superfluids so as to get

rid off divergences and other difficulties that might occur.

A difficulty of another nature which is usually over-
looked is the question of the convergence of the perturba-

tive method. Thus if our interaction Hamiltonian HI is



proportional to some parameter g, and the resulting power
series in g that we obtain from perturbation theory con-
verges, then we have a good physical description of the
system. Thus even for non-linear systems such as in
many-body theorf, one always assumes that the solution
would be an analytic function of the coupling constant,
for small enough values of this constant (the reason for
this assumption is discussed at the beginning of Chapter
2). The Bogoliubov8 theory of weakly interacting bosons,

19 clearly indicate

and the BCS theory of superconductivity
that this might not be the case. As a matter of fact some

of the physical quantities20 calculated from the above theories
have essential singularities for vanishing g which indicate
that one would not be able to obtain these results via the
conventional perturbation theory. One would like to know
whether the non—analyticity of the solution in term of g

is of a fundamental nature or an inherent property of the

‘Bogoliubov treatment.

As an example, in Chapter 2 we construct a non-trivial
many-body model Hamiltonian for which the S-matrix can be
calculated exactly. We then investigate the analytic
properties of S as a function of the coupling constant g
and the number of particles N in the system. In Chapter 3
we construct a generalized Bogoliubov transformation from

21

first principles. While many such generalizations have



been proposed and used, none, to our knowledge, has been
derived from first principles and none is as general as

~our expansion. It is instructive to show that such an
expansion can be written consistently and we show that

the usual Bogoliubov transformation is just the first

term of this infinite expansion. The subsidiary conditions
that result from this expansion are discussed in Chapter 4.
In Chapters 5 and 6 we solve the lowest order equation

that we obtain from our expansion. 1In Chapter 7 we cons-
truct a solvable model Hamiltonian for calculating lifetimes
of quasi-particles assuming the effective interaction between
them is known. In Chapter 8 we show how one can calculate
this effective interaction via the S-matrix. 1In Chapter 9
we define a new boson operator expansion which leads to
what we call the G-matrix equation. With this approach we
can calculate improved quasi-particles energy spectra and

their lifetimes.



CHAPTER 2. NON-ANALYTICITY OF THE S-MATRIX

IN THE MANY-BODY SYSTEM

For a given interacting system, if we want to cal-
culate the S-matrix for that system, using perturbation
theory, then we must assume a priori the analyticity of
the S-matrix in the coupling constant g, for vanishing g.
The reason for this is due to the following three

theoremszz.

Theorem I. If a power series in z converges for some
value of z, say z4 # 0, then it converges absolutely for
all values of z with |z| < |z,].

Theorem II. A function represented by a power series is

analytic at all points inside of its circle of convergence.

Theorem III. A function analytic at a point may be repre-

sented by a power series expansion about this point.

Thus, in order that the power series
s = Y c g (2.1)

that we obtain from perturbation theory, have any physical
significance, it must converge for at least one value of g,
say gl# 0. Then from theorem I the series (2.1) converges
in a circle centered around the origin with radius gy -
Hence from theorem II we conclude that S is analytic at

g = 0. If we calculate the S-matrix exactly and find that



it is not analytic around g = 0, then from theorem III
we see that we cannot Tepresent S by a power series at
this point and hence we would never obtain this exact S-
matrix from perturbation theory. We now consider just

such a case.

Cénsider the following Hamiltonian

N
- too, 1 +)2 +,2
H = izl wi(aiai t35) +g gj (ai + a;) (aj + aj) Fij(t)

(2.2)

where Fij(t) is as yet an arbitrary function of time. Let

1 . + 1 . . 9
A, =T — .+ 1p. ;] A= e = 1 Y = - N e 2.3
1T (a@y+ ipy) iy (4= ipy) Py= -1 4, (2.3)

Under the canonical transformations (2.3) H becomes

H = Ho + HI (2.4)
where
N w 2
B, = 1 5 @ -2y (2.3)
i=]1 aq.;
i
and
N
_ 2 2
HI = 4qg gj qaj qj Fij(t) . (2.6)

Thus H represents N-harmonic oscillators interacting via

H We want now to calculate the matrix elements of the

I'



S-matrix. For simplicity let us assume that
Fij(t) = 6(t) . (2.7)
Recall that formally (in the interaction picture)
0 .
S = P{exp[-i | Hp(t')dt']} (2.8)
-0

where P is the chronological time operator. In our case

¥ 22
S = expl-4ig | qja:l . (2.9)
ij J
and
S = <¢m|s|¢n> (2.10)

where wn are the eigenfunctions of Ho' Since the ground

state is given by;

N
-7 1,2 2
Voldyeeegy) = m exp[- F{a] + q; + ...qfl)] ’
(2.11)
we have from (2.10)
- N o
- 2 (2 2 2
Soo(q'N) =17 _({ dql...qu exp|( (ql + d; + ...qN)
. 2 . 2 2,2
= 4iglgy + q; + q)7] . (2.12)

Thus

10



11

S0 (9/N=1) = — j dg exp[- (q + 41gq )] (2.13)
Ym0
= 4(ing) % expleieIK, (x=) for Im g<0 (2.14)
g PL321g" ™y 321g .
v o n
- _l: Z ( 4l)n'(4n)! gn (2.15)
/T n=0 :
where K is the Bessel function of imaginary argument23.

Eq. (2.15) was obtained by expanding (2.13) in power series

of g. Similarly

1% 2 4
S, (9/N=2) = - [ a f der exp[—r - 4igr”] (2.16)
0
_ T 1 _ /
(TETE) exp[16ig l6lg)] for Im g< 0
(2.17)
I .\ n
= 3 (-41)n§2n)! g" (2.18)

n=0

where (2.16) was obtained from (2.12) by the transformation
q;= r sin 0, 4, = r cos 6, dqldq2= rdrdé. ¢ is the proba-
bility integra123. As can be seen from above equations
Soo(g,N=l,2) is smooth and well behaved function of g, for

Im g <0, and tends to unity for g+ 0. For Im g>0 it diverges.
The radius of convergence of the series (2.15) and (2.18) is

zero (ratio test) and thus Soo 1S non-analytic at g = ¢ and

it cannot be obtained from perturbation theory.

Let us now consider'Soo (g, N 2 3). Define the gen-

alized polar coordinates transformation24



q; = r sin 6, sin 6, +.. sin 6y cos ¢
dq, = x sin el sin 62 «e. Sin 01 sin ¢

d; = r sin 6, sin 6, ... cos Oy (2.19)

= r sin el cos 62

dp4p = ¥ coOs 61

where

N = k+2 k=1,2, .... : (2.20)

Then from (2.19) we can show that

o~
=
X
N

@ = r? . (2.21)

Under the transformation (2.19) Eq. (2.12) becomes

N
-5 © 27 T T
2 k+1
S,o(g/N23) = m [ ar [ a [ d0,...[de, r x
0 0 0 0
exp[-r2—4igr4]sinkelsink—lez...sin 6, (2.22)
-3+l © 3 2
= I(k) [ X expl[-x-4igx“]dx (2.23)
=T I(k) (8ig) P(§~+l) x

1 /1
exp[§7§§] D-E-l( §I§) for Im g< 0 (2.24)
2

where D is the parabolic cylinder function23 and

12
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" . k LA . k-l m .
I(k) = é sin“e,de, {)’ sin ezdez"'{) sing, de, (2.25)
k N
wf ni "
= — = I — (2.26)
r ('2-'!'1) I'(-Z—) '
Hence
N
 asy B 1 /T
Soo(9/N 2 3) = (8ig) exP[?EIE] D_E ( §I§) for Im g< 0
2 (2.27)
©0 . 11
== 7 £ o) o (2.28)
1"(-2—) n=0 N

Thus Soo(g’N 2 3) is smooth and well behaved function of g,
for Im g< 0, and tends to unity for g+ 0. Here again the
radius of convergence of the series (2.28) is zero. Thus
we see that for a given finite N, S(g,N) is a non-analytic

function of g at g = 0.

From the definition of D one can show that

1

D .. [(8ig) %] = z';“‘N'l’w_;a(N_l)’_;a [(16ig) 1] (2.29)

N
2

== 2 0D 1659 (N-1)17% exp [%(N-l)-%(n-l)1n%-(N-1)-2(§—'—1)1’21

64ig
N
— (16igN) ¥ & 4 (2.30)
Thus as N+ «©, g + 0 (see Appendix A)

0,0



In order to show that the non-analyticity of § is
not dependent strictly on our particular choice of H; we

have considered two more general types of interaction:

N

1) Consider Hy = 4g( } a2)V 6(t) with N>2, v » o,
i=1

Then the S-matrix can be written as

1 T (=41)? _ N n
S = e—— Z I'(z + nv) g (2.31)

The radius of convergence R can be shown to be (using the

ratio test)

I'(nv+ I—‘I-+\))

R 1= lim g 2 F— = [lim (nv+)7vy-1 (2.32)
n->c P(Nv-fio n-c
= 1im 4V V"1, (2.33)
n->o
Thus for
0<v<l; R=w, s is analytic everywhere

(o]0

v =1 7 R = %, S is analytic for lg] < %

v 21 i R=0, So o is non-analytic at g=20.
'

N v
2) Let Hyp = 4ig J dg; 6(t) with v > 0 .

i=1
Then

—_—— © 2 . \)N
So.o =T 2 [ [ dge™® ~4iga’;" | (2.34)

0,0

=00
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The radius of convergence of the expression inside the
bracket (when expressed in power series of g) can be

.shown to be (ratio test)

Yy Y_3
R = 1in 1% . (2.35)
n->o
Thus
0 £v<2, R=o, So o is analytic everywhere
4
v =2 R=2 s is analytic for |g| <
’ 4! 0,0 Y g z'
v > 2 + R=0, So o is non-analytic at g = 0 .
’

We see that the non-analyticity of the S-matrix in
the coupling constant is a property of many systems (Appendix B).
Although a rigorous proof does not exist, there are indica-
tions that a similar situation prevails in most non-trivial
theorieszs. However these theories might still be analytic

in N_l or in the product gN and thus in term of this constant

we might still be able to employ perturbation methods.
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CHAPTER 3. QUASI-PARTICLE EXPANSION FOR
A BOSON-SYSTEM

The Hamiltonian for a system of many bosons inter-
acting through two-body forces is given by
L

Z (e -u)a at 52

~

a an (3.1)

eu-+
lb-+

jzgn 8542, min V(i-masa

-~
~

where €x is the kinetic energy of the particle with momen-~
tum k, y is the chemical potential and ak and a; are the
Creation and annihilation operators satlsfylng the commu-

tation relation

Ty =
[aE' aJ] = 65,2 . (3.2)
Also
-ir.(j-m) . 3
v(j-m) = fe ~ * ~ V(r)a’r . (3.3)
If one assumes ¥(r) = ¥(|x|) then
vig) = vi-q) . (3.4)

The Heisenberg equations of motion for ai and ak
can be derived from the definition of the time derlvatlve

of an operator, i.e.
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315 = ilH, aZ] ; ;2 = i[H, a]t] ) (3.5)
From (3.1) and (3.5) we find
a, = -i{(e_-wa_+4 T 6.. . v(i-m) x
q q q 2Q 0 j+2,mtn b
-~ “~ ~ Inn ~ ~ ~ -~
+ +
[Gj,q 2aman-+6 qaJaman]}.

L R R . "™ ~~~~~

With the help of (3.4) we find

aayl.

~ e

(3.6)

Ol =

a_ = —1{(eq-—u)aq +

q Y o8 .. vig-m)a.

3 3 jmn g+l ,min

~

e

Suppose we define A; and Ak to be creation and anni-

~ ~

hilation operators such that

A (3.7)

k

2
i
tIR'D~
! W:u—l-

is the number operator. Furthermore, assume the Hamiltonian

(3.1) written in terms of Ai and Ak commutes with N, i.e.

~

H will have the form

AA€ + LI I Y . (3.8)

-‘.

If one finds Ai and A, in terms of ak and ak and determines

i

the coefficients €k €k g *°° etc., then the problem is

~ o~
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completely solved. Since such a complete diagonalization
of the Hamiltonian, except for some solvable models, at
present seems impractical, one can try to find approximate
methods of diagonalization. Among.these, the quasi-particle
method of Bogoliubov seems to be the simplest one. The
method considered here is an extension of a technique due

to Valatinela.

We define bi and bk as the creation and annihilation

~ ~

operators for quasi-particles of momentum k if they satisfy

the following conditions:

a) - Commutation relation:

T :
[b_, bk] =6 . (3.9)

q

~ ~

a.k

b) - Time derivative of: bk

A N
b : 1bk = wgb (3.10)

LR+

¢) - Certain symmetry properties and invariances of H, aﬁ

-~

and a should also be satisfied by the equations expressing
these~operators in terms of b; and bk (see below). In this
way the quasi-particle operat;rs are~characterized by one
parameter, Qk which is associated with a quasi-particle

in the state k. The parameter Wy will play the same role as €

-~
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in Eq. (3.8). For exactly solvable problems however, the
equation of motion for Ak is not the same as that of bk

i.e., instead of (3.10) we have

. _ 1 +
iA [e + ol egl(A&

q q A)) + ....]Aq . (3.11)

L

LR 1o ]

~

Let us consider a system of interacting bosons.
The bulk properties of such a system (like pressure) depend
on the energy level spectrum of the particles. Therefore
we can conceive of a model of this system, where different
states (quasi-particles) are non-interacting and are charac-
terized by their energies wk. This model, which is useful
in calculatlng the gross propertles of the original system,
has a relatively 51mple mathematical structure. However,
it will not provide a complete description of the actual
system, because there will be interaction between the quasi-
particles caused by the residual part of the Hamiltonian.
Thus, we want to find the operators bk such that wk will be
very close to the actual energies of the dlfferent states,
and then consider the weak interaction between the quasi-
particles. To this end we aséume that as t+ 1to we have a
system of non-interacting quasi-particles, and, in this
limit, the operaton;ai and ak can be expressed as linear

combinations of bi and bk i.e.
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lim a —-)h(k)b +g(k)b*

tr+oo ].5 _,,

(3.12)
Lin al — h(k)b* + g )b
=>+00 ~ ~

where.h(k) and g(k) are assumed to be real and symmetric
coefficients to be determined. The transformations (3.12)

for 5 # 0 take into account the fact that the propagation

of a single particle by itself, in the medium, is no longer mean-
ingful, due to the interaction, and there is a back flow of other
particles around it as it moves through them. If a particle has
no motion (5 = 0), there is no reason why a, should have the

same relation to bo as for other values of 5. However, it

is convenient to assume that Egs. (3.12)are valid for all 5.

We shall see later on that this will mean that we have to

impose a subsidiary condition on g(0).

To find the complete expansion of . for finite
values of t, we must first study the symme;ries and the
invariances of such an expansion. Now, if by a unitary
transformation of a; and ap, which does not depend expli-
citly on time, the ﬁamilto;ian (3.1) or the equation of
motion (3.6) remain invariant, then the invariance should
be preserved as t + o . This implies that the Hamiltonian,
expressed in terms of bk and b; must have symmetries cor-

responding to the unitary transformation under consideration.
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Let e1S be the generator of such a transformation, then H

must commute with eis, i.e.,
[H, exp(iS(a,alk))] = o . (3.13)

Here S(a,éﬁk) denotes that S is a functional of all of the
operators ay and a; and in addition, it may also depend on

~

the momenta of the particles in the system.

The following two symmetry properties of the Hamil-
tonian are useful in deciding the form of the expansion.

l) - Galilean transformation - Let S be defined in such a

way that
. imv.q

1S -1S _ ~T 2

e ag e = ag e '
(3.14)

. 3 -imv.q

elS af e 1S _ aT e ~E
q d

where v is a constant (velocity) vector and m is the mass
of a particle. The Hamiltonian (3.1) and the equation of
motion (3.6) remain invariant under this transformation.

An explicit form of the operator S can be obtained by the

method outlined below. Hére we give the result:

t t
§=-m[} (k.v)aa - ¥ (k.vial,a .1 .
O O R i -

(3.15)
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2) - Invariance under a unitary transformation el such
that
ivu -iu
e a_e = - 3.16
q ag ( )
iv _t+ _-iU ¥
e a = - . 3.17
ge ag ( )

Again H and the equation of motion (3.6) remain invariant

under this transformation. A method for constructing the
operator U is as follows: We write equation (3.16) as
ivu -ivu _ ei(2n+l)1r

e a_e
q

-~

aq n=0,+1,%2, .... (3.18)

Then equation (3.17) has the form

ivu

e a -iU -i(2n+l)m _t

; e = e aq ’ (3.19)

i.e., once we fix the phase in equation (3.16) the phase
in equation (3.17) is fixed. Thus equations (3.18) and
(3.19) are consistent. Now rewrite (3.18) as

ivu log aq log a

el ¢ = e q e1(2n+l)1r 1l

. (3.20)

If we assume that the commutator of U and log aq is a c-

number then one has
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eiU log aq log a i[U,log ag]

q _ivu

e = e 2 e e . (3.21)
- Comparing (3.21) and (3.20) we find that
[U,1log aq] = (2n+l)71 . (3.22)

In a similar fashion one obtains from Eg. (3.19)

[U,log a;] = -(2n+l)1 . (3.23)
(2n+1) 1
From Eq. (3.22) one sees that the two operators — U
and log aq are quantum mechanical conjugates of each other.
There are an infinite number of operators conjugate to

log aq (corresponding to different values of n). Thus
U = {Un/[Un, log aq] = (2n+l)7} .

The general form of Un is

U +
U, =-@ntl)n[ }J] aa - ] a.,a,] +F_ (a) (3.24)
n k30 £ K k50 “k-k n-"k

~

where Fn(ak) is an arbitrary function of its argument.
Since from Egs. (3.16) and (3.17) one can show that U = U+
we find that Fn(ak) must be a c-number (we choose it %o

be zero). Hence,
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U = =(2n+l)7] a,a_ - ) a,a ] (3.25)
n ko K% T doPxx

satisfies (3.18) and (3.19) as can easily be checked by

using the identity

2

A

AR =B + A[A,B] + 2~ [A,[A,B]] + ... (3.26)

M geAA

2

Since U commutes with the Hamiltonian, then as t tends to
tw, the invariance under the change of sign of the crea-
tion and annihilation operators should hold even when H

is expressed in terms of bi and bk' To prove this we want

?

to show that

1im eV b eV - p (2w ,
t>too 9 9

(3.27)
1im eV pt 73U - it (+) .

trtoo ! -4

‘We note that Egs. (3.27) imply that U should have the same
functional form (up to a c-number) under the transformations

(3.12). Now in Egq. (3.25) the term

transforms as required (as we shall show below). However,
the term for k = 0 1i.e. aZao does not. Thus we cannot
satisfy Egs. (3.27) for q = 0. However, Eqs. (3.27) are

valid for q # 0. To see this, substitute Egs. (3.12) into
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into Eq. (3.25) and obtain

Ut >22) — = (2n+1)7{ §  [h?(k)-g% (k) Ib] (=)D (2e)
k>0 - ~ T2 ~

~

2 2 T - T
- kgo [h° (k) -g (E)]b_k(iw)b_g(iw) + #(b_,b )} (3.28)

~

where

ty = 120010 2 t Lt
F(bgsby) = h*(0)beb + g*(0)b b+ h(0)g(0) (b b+ bibl) .
(3.29)

Eq. (3.28) can be simplified if we note that
h®a) - o®) = 1, (3.30)

which is the condition that the transformation (3.12) be
a canonical transformation, i.e., the condition that both

Egs. (3.2) and (3.9) are satisfied when t + %o,

From the equation of motion for bk and bi (Egq. (3.10))

-~

we have

bk(t) = bE(iT) exp[—in(t +T)] ,

T-arbitrary (3.31)

b, (£T) exp[iw, (£ F T)] ¢

~

1-
by ()

AR



26

from which it follows that

b;(t)bk(t) = b;(iT)bk(tT) . (3.32)

~ ~

Hence we can write Eq. (3.28) as

Ut) = ~(2ntl)m J bl (e)b, (¢) - BT, (£)b_, (£)
k>0 < ~ ~ ~

-~

“+ F (b (£) ,b] (£)) (3.33)

provided the relation hz(g) - gz(g) = 1 can be satisfied
for all values of t. Note that we used in (3.33) the fact,
which we shall discuss in a later chapter, that W, = 0.
The validity of (3.30) for all times, will be imposed on
the expansion of ak(t) as a subsidiary condition. Thus

~

we can write

iU (%) by (£) ~1U(t) _ b (t) g #o0 . (3.34)

~ ~

?

Similarly we also have

N s ~g
els b (t) e 18 _ by (t) e Y g (3.35)

-~

(Note that Eq. (3.35) is true for all q because of the
term k.v in Eq. (3.15)). Since H commutes with U and s,

the transformations (3.34) and (3.35) should leave H
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invariant. This means that in the expansion of H in

terms of bk's and b;'s every term must contain an even

~ -~

number of creation and/or annihilation operators (a
consequence of Eq. (3.34)). The correct dependence upon
E will be deduced from Eg. (3.35). The same argument can
be applied to the expansion of ak and a;, with the result
that each term in the expansion has an odd number of b's.
The most general expansion which preserves the above
mentioned invariances to each order is

eoltl 2 1 a3xa’yad;

1.
h(k)b, + g(k)bl, +

a
E ~ ~ (2n

X

t t
{fl(f'z'f)b-xbybz + f2 (i‘r!lf)b .b Y >

lb

+ f3(§'¥'§)b~byb~ + f4(§’¥’§)bixbiybiz}

~

X

6(§—§-¥—5) + terms having five operators + ... (3.36)

where @ is the volume of quantization and.a is a small(a<<wk)
positive number. The functions h(f), g(g), fl, f2' f3

and f4 are all assumed to be real functions of their argu-
ments. We shall assume that this expansion is valid for

all 5 including E = 0 (see paragraph after Eq. (3.12)).

From (3.36) we find the expansion.for a; , which will

depend on the same functions as a doest Equation (3.36)

~

together with its complex conjugate, and the definition



of the time derivative of bk (Eq. (3.10)) will give the

~

complete expansion of the boson operators ap and a; in

terms of the gquasi-particle operators bk and bl. The

complete dynamics of the system can be ;pecifi;d by the
equation of motion (3.6), the canonical commutation
relations (3.2) and (3.9) and by the expansion (3.36).
The physical significance of the functions h, g and the

f's will be considered later.

28
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CHAPTER 4. COEFFICIENTS OF THE EXPANSION

If we truncate the expansion of a, (Eq. 3.36) and
keep all of the terms containing product; of m operators
or less, then the number of the coefficients of the ex-
pansion is %4m+l)(m+3) (mn=1,3,5...). The non-linear
integral equations satisfied by these coefficients are
determined by substituting Eq. (3.36) and its conjugate
in the equation of motion (3.6) and arranging the products
of the operators in the normal order. By equating the
coefficients of the same set of operators on the two sides,
after using (3.10), we find %(m+l)(m+3) coupled integral
equations for the unknown functions. Since the transfor-
mation.of a to bk is a canonical transformation, the
commutation~relation (3.2) should be preserved to the same
order 6f the expansion. This means that on %{m+l)(m+3)
functions we have a number of subsidiary conditions. For
example if m=1, we have two functions h(E) and g(E) and
one subéidiary condition (3.30). In general by keeping m
operators in the expansion, we find from Egs. (3.2) and

(3.9) that there are %‘-(m+l)2 of these conditions.

Thus by substituting (3.36) in (3.6), eliminating

the time derivatives of b, using (3.10) and then equating

~

the coefficients of the normal products of bk's we find

-~

for m=3 (finite time)
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luy-ehuln () = G T (v(0)+v(e-3) 197 (1) In ()

-~

LEN

+ {5 ] vk-1)h (3 g() }g (k)
J

2

+

Lol 1 ]

ey men VD (265 (3, miK) g ()0 ()

~ N A o

.
8™

+ 2£; (j,-n,k)g(j)g(n)+6£f, (k,n,m)g(m)g(n)} + .....

logte-ulg (k) = =(% ] [v(0)+v (k-3)19% (3) }o? (k)
~ = j

-~

- & ] v(k-j)h(3)g(3) Ih (k)
J

~

- % .gn g3, men VE-MI{2£, (k,j,-n)g(j)g(n)
J & R A o~

A e

+ 2f,(n,m,-k)g(m)g(n)+6£, (j,-m,k)g(j)h(m)} + .....

[w +my—“’z_€x+y+z

-~ -~ ~

+ulf; (x,y,2) = & {v(k-y)h(x)h(y)h(z)

+ v(k-2)g(x)g(y)g(z) + v(k-x)g(x)h(y)g(z)} + .....

1
[ogtu ~w +e Lyrz W1 Ey (Xry,2) == {vi(k-y)h(x)g(y)h(2)

~

+ v(k-z)h(x)g(y)h(z) + v(k-x)g(x)g(y)g(z) + .....
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-1 -
[w§+w¥+wz-ex+y+z+u]f2(5,2,5) =g Vk-y)g(x)h(y)h(z) + ...
(4.5)
= 1 -
[w§+w¥+w§+ex+y+z-u]f4(§,¥,§) = -5 v(k g)h(f)g(g)g(§)+ ces

(4.6)

The number of terms in these relations (especially for fl’
f2, f3 and f4) is large and we have given only the leading

terms in each case.

There are four subsidiary conditions on h(k), g(k), fl’

£, £5, £
1. h? (k) - g2(k) = 1 (3.30)
2 2 _
2. f3(§l¥l§) - f4(§l¥l§) =0 : (407)
3. £,(x,s,k)h(k) - £,(k,x,s)g(k) + £;(-s,-r,q)h(q)
- £, (q,~s,~r)g(q) + —2— [a3ya3z s (k+s-y-2)
R P ~ s

x [£y)(-s,y,2)E)(r,y,2) ~- 9f,(y,2,-s)f,(y,2,2)]

Q
(2m)

3

3 f&3ya3z § (k+r-y-z) [£,(y,z,-r)

X

fz(grgr‘§)-9f3(¥I§l-£)f3(¥lEl§)]

=0 ;  qg-k = r+s ' (4.8)
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4. f,(z,s,k)h(k) - £1(gr-s/x)g(q) - 3f,(k,s,r)g(k)

+ 3£3(q,-s,-r)h(qg)

+ 22 1430432 s (ktsmy-2)f. (y,2,-8)F (r,y,2)
3 ~ A N o~ 3~~~l~~~
(2m)
- 28 _ 1a%a%s s (ktr-y-2)f. (v,2,-1)¢ (y,2,s)
(27)
=0 : g~k = r+s . (4.9)

The eigenvalues w, can be found from Egs. (4.1)-(4.6) by
first solving fl’~f2’ f3 and f4 in terms of h(k) and g(k).
We note that Egs. (4.3)-(4.6) are inhomogeneous integral
equations, and therefore their solutions will be func-
tionals of h(E) and g(E). By substituting fl' f2, f3 and
f4 in Egs. (4.1) and (4.2) we find a coupled set of non-
linear equations which determines h(g) and g(g) and the
eigenvalues wy+ Except for the lowest order term, i.e.
form = 1, it~is difficult to consider the question of the
compatibility of the solutions with the subsidiary condi-
tions obtained from the requirement that the a's and the
b's both satisfy canonical commutation relaticns. 1In
practice, it may be more convenient to find approximate
solutions of Egs. (4.3)-(4.6) which are compatible with

these subsidiary conditions.



CHAPTER 5. QUASI-PARTICLE ENERGIES IN THE

LOWEST ORDER APPROXIMATION

In the lowest order of approximation (m = 1l) we

have the following equations for h(g) and g (k)

[ue- et u - AK)Ih(K) = A(k)g(k) (5.1)
[ug+ €= u + AGk)Ig (k) =-a(k)h(k) |, (5.2)
where T
A) = £ 1 VO) +vk-0)1g2(e) (5.3)
k ) k-2)19" (2
and
A(k) = = ] V(k-2)h(2)g(2) : (5.4)

L

Equations (5.1) and (5.2) are obtained from Egs. (4.1)
and (4.2) by neglecting terms containing fl’ f2, f3 and

- £ The linearized form of the equations (5.1) and (5.2)

4'
yield the energy spectrum W, as

o = {leg = u + a1 - 420 )% (5.5)
Note that equation (5.5) does not give Wy explicitly since
A(k) and A(k) depend on Wy - Multiplying (5.1) by g (k)
and (5.2) by h(k) and adding the resulting equations we

find, using Eq. (3.30):

33
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AK)
gl)h(k) = - == . (5.6)
k

~

From (5.4) and (5.6) we obtain an integral equation for

4 (k)
- 1 A(L)
Ak) = - 5= ) vik-2) — . (5.7)
L ~ L

~

The solution of this equation is subject to the subsidiary
condition (3.30). In addition, the number of particles

in the system is given by the expectation value of the
number operator,

n = <0| [0> = n_ + <0] ¥ a£a510> , (5.8)

1.
a, a
k'k ° k#0

~

TR

where |0> denotes the ground state of the entire system,
and is the vacuum state for the quasi-particle operator.
Using the lowest order expansion of ai and a) we find

-~ . -~

that

2
n = n_+ g (k) . : (5.9)
ot g T -
Let us define
X
n, = g%(0) . | (5.10)
Then
n = ]t . (5.11)
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Thus gz(E) is the average number of bosons in the state of
momentum E.

Since f;om general considerations one has W= 0,26
we must treat the E = 0 state differently. Thus we impose
on our equations the condition (5.11) and the requirement
w§= 0. From w = 0 we determine the chemical potential u
and from (5.11) we determine g2(0) (=no). Note that since
we imbose the condition W= 0, we must be careful in deal-
ing with the E = 0 state (for example, Eq. (5.7) is valid
only for k # 0). Similarly, as we shall see later, Eq.

(5.7) must be modified if it is to be true for all k.

If Q is the volume of the system then

F) = 2 g%k (5.12)
| represents the normalized distribution function for bosois.

Thus,

1
(2m)

s [ Fdk = 1 . (5.13)
From Eq. (3.30) we obtain

h(o = [1+3F@IZ. (5.14)
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We now solve the coupled eigenvalue equations (5.1) and
(5.2) by approximating A(k) and A(k) using a known dis-
tribution function F(k). This approximation, in effect,

linearizes the equations for h(k) and g(k). Thus we write

=1 1 -
A(k) = 5 [V(0) + 3 % V(k-2)F ()] (5.15)
B) =Sy ve-prrm &+ renr® . (5.16)
SN R 2
Replacing % )} by 1 3 fd3k, we find
k (2m)
Ak) =5 [V(0) + V()] (5.17)
Ak) = V&K , - (5.18)
where
V) = — 3 [ vik-)F(ady . (5.19)
. 2m) mrl
In arriving.at (5.18) we have assumed that % << F(&) for

all values of %. Using the above equations and Eg. (5.5),

we obtain:

2

op = {legm w + 2 Vo) + 2 T1% - 25 52 0))® (5.20)

-~

o)

for all k. We now determine the chemical potential u from

W= 0. Since €L 0, we find
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u=+%v<o>

(5.21)

and

w={le, +BTx))2 - 0 T2 (k) 1% (5.22)

A A '

If we choose F(E) to be

Flk) = (2m)2 sx) (5.23)
then from (5.19)

Vk) = vk, (5.24)
and (5.22) now becomes

n 2 hz 2 % '
W = {[ek t g VKT - 55 ve(k)} (5.25)

which is just the result obtained by Bogoliubov.8
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CHAPTER 6. SEPARABLE INTERACTIONS

We shall now proceed to study the exact solution
of Egs. (5.1) and (5.2). However, we first must modify
the integral equatign (5.7). As we have seen, the
requirement fhat W= 0, which we imposed on our equations,
implies that Eq. (5.6) is valid only for 5 # 0. However

Eq. (5.4) is valid for all k. Thus we rewrite (5.7) as

1 1 ' A(%)
A(k) = 5 V(k)h(0)g(0) - 35 [  V(k-8) ——, (6.1)
L L

where the prime on the summation indicates that 2= 0 is

omitted.

Now let us consider a non-separable potential.
Let us assume that it is square integrable (almost all

potentials satisfy this summation ) i.e.

|<§|v|g>|2 a3k d3q < o . 6.2)

oY-—8
o— 8

Define a set of functions gn(k) by the integral equation:

-]

3
g, (k) = A_ £ <k|v|g>g (q) d’q . (6.3)

Then according to Mercer's theorem27

e~ 8

<]‘Slvlg> =

RSN (6.4)
n n

1
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Since this series is convergent we can, therefore, appro-
ximate any non-separable potential, very well, by a finite

number of separable terms. Hence let
nl
V(k-2) = nzl At (Ko (L)

= Aj0; Klag () + ¢, (k,2) (6.5)

where n' is a given number. Substituting Eq. (6.5) into

Eg. (6.1) we obtain

A(R)

AK) = £(k) - cja, (k) - %% = 01061, (6.6)
where : )

£(k) = 5 Doy (K)ag(0) + ¢, (k,0010(0)g(0) , (6.7)
and

‘. - _;2% " al(f)A(&) . ..o

) %

Define

A () = a(K) + cyag (k) . (6.9)
Then from (6.8) and (6.9) we have

oy Ay e 0500 -1 g (£)8, (2)

c= 35 [1+ -2—9-]2{ ™ I JZL ™ . (6.10)

From Egs. (6.6), (6.9) and (6.10) we find an integral

equation for Al(E);



20 7 wl
“A1 S e 0 (210 (kL")
20 %18 ) Woy }
x ¢1(k,2) - - 5 2 . (6.11)
- Al al(z')
1+ 557" -
2 %, w&,
We now write

and repeat the whole procedure till we run through all
the terms in (6.5). Thus if n'= 2 then ¢2(k,£) = 0 and

equation (6.11) becomes

(k) = £(k) + cyu, (k) | (6.13)
where
¢S
c, = -7} —— D(L) , (6.14)
2 2 ~
and
A o, (2)a, (L")
1 o S NLJ05
A, 30 @1 (%) %, Wy,
D(L) = 5= la,(2) - 5 = : (6.15)
Ay o 972
1 + -é?z- z m
2" L

Substituting (6.13) into (6.14) we have

£(2)

- %: '—w-z—- D(%)
c, = = . (6.16)
, a2(2) .
1+ —— D (2)

DY)
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With the help of Egs. (6.9) and (6.13) we finally have
A(k) = £(k) - clal(lj) + czaz(lf) . (6.17)

Let us now consider the simplest form of a separa-

ble interaction;
V(E—&) = Aa(g)a(&) . . (6.18)

Then the solution of Eq. (6.1) can easily be found to be-

3 T
A (k) = 5 =d, alk) , (6.19)
A gr @ (2
1l + '25'
g g
where
I, = h(0)g(0)a(0) , (6.20)
and
A
=T
d, = 1o . (6.21)
1 A zl o (&)
+ L
29 & wz

Also we note that Eq. (5.3) can be written as

ato) =2 o®(0) + 4, ali) , (6.22)

where

a =% 1 wawedw (6.23)
all &
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and

n= 7 g% . (6.24)
all &

From Eq. (5.5) we have

we = {lep= u + B o?(0) + 400012 aZa? (x))*

~ ~

(6.25)
Imposing the requirement W= 0, we get
w=2t 42 - (dy= d;) «(0) . (6.26)
Hence
w,= {[e,.+ (d.-d )oc(())-l-o'l.ou'k')lz--dzozz(k)}l/2 (6.27)
k 5 2 71 1° 2 2 ~ °

~

In order to determine the distribution function F (k) we

eliminate h(k) between Egs. (3.30) and (5.6) to obtain

8% (x)
w2
k

~

gt ) + g% ) -

=0, k#0 . (6.28)
4 ~

This quadratic equation has the acceptable solution

) 1 2% (%) %
g“(k) = 5 {[1+—51 -1} k#o0
“k
€k'N+A(]§)
=3 (= -1} k#o0 . (6.29)

“k
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We then determine g (0) (and hence h? (0) since h2(0) =
1+ g (0)) from

g%(0) =n - J' g2(x)

k
A" (k) 3%
=n 27{[1+ ] -1} . (6.30)
“x

Let us discuss the dependence of gz(g) on k. For a short

range potential

a(f) 0

~

which implies that w, tends to
4 52
*k T om

for large values of k (sea Eq. (6.25)). 1In this limit
(see Eq. (6.19))

22 (x)
—— << 1 ' (6.31)

“x
“and by expanding Eq. (6.29) we find the asymptotic form
of g(k)

226)  m a2 o2x)

) . (6.32)

1
(k) 7

k+oo

)
Wy k

For a potential V(r) which depends only on the distance

of the particles, the Fourier transform v (k) is a function
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of 52 only. It can be obtained either as a power series
in 52, Oor as a limit of such V(k)'s. Thus we shall assume

that our a(k) is a function of 52

only. Hence as k goes
to zero by using a Taylor expansibn of the expression

inside the square root of Eq. (6.27) we obtain

a(0) do 3 %
S 55T Ikl (255- + (a- dz)(y)k%o a(0)1* (24,)%. (6.33)
Rewriting Eq. (6.29) as
U = g Tl + 2201% - ), (6.34)

~

we have that

2 Idza(]j)l 1
TR BT T W

~

(6.25)

provided a(0) # 0. Note that in order that g2(k) be
finite for k +0 we must treat the g==9 state differently.
We also note that for small k (long wavelength) W, pre-
dicts phonon-type spectrum whereas for k large (sﬁort
wavelength) the spectrum is that 4(»15

of free particle. These results
agree qualitatively with the
spectrum first proposed by X

~

Landau3 and verified experi- » c

28
mentally by Henshaw and Woods . The detailed structure of
the spectrum (see diagram) for intermediate values of k

depends on the particular form of the interaction.



CHAPTER 7. LIFE-TIME OF A QUASI-PARTICLE

The interaction between the excited states of a
many-boson system and the ground  -state gives rise to a
finite life-time for the excited quasi-particles. Con-
sidering the ground state as a source for these excita-
tions we can describe the coupling between the source
b£]0> and the excitation c+kh>by the Hamiltonian

~

b.b. + Q¢

~

e+ I Wi bic + cfb 1 (7.1)

-~ ~

L+

Wy

o]

i
R
R

where W(k) represent the quasi-particle-quasi-particle
interaction and Q is the energy of the excited state

c*|0>. The equations of motion for b, and c are

ib. = w. b +w'(1~<)c , (7.2)

-~ ~

ic = Qc+ ] Wk)b, . _ (7.3)

~

X

Let x(t) and wk(t) denote the following amplitudes

x(t) = <0fc(t)]|1> , (7.4)
and

¥y (£) = <0|by (£)]1> . - (7.5)

Taking the expectations values of Egs. (7.2) and (7.3) we

find
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i (£) = wy, (6) + W)X () © (7.6)

AX(E) = ax(E) + § Wl () . (7.7)

~

We solve these equations by the following method: Let

e (8) = § P(@)p, (z) e L(EHAIE (7.8)

~ ; ~ .

x(t) =7 P()x(g) e tlEtMIE (7.9)
L |

where P (z) is, as we shall show below,

P(z) = x(z) (t=0) + é Uy ()P (£=0) . (7.10)

~

Substituting Egs. (7.8) and (7.9) in Egs. (7.6) and (7.7)

we find a set of algebraic equations

(2 = 6,9, (2) = W(k)x(z) (7.11)

gx (z) = E wik)y (z) (7.12)
where

65 = ug C Q. (7.13)

We can think of Egs. (7.11) and (7.12) as eigenvalue

equations. In matrix notation we can rewrite these



. equations as

47

)

(;-6151 0 0 eoe oo -W(lsl) hpkl
0 ;-6]‘52 O ¢eeo oo -W (]52) w]’sz
a0 = | : = 0
L-W(].Sl) —W(]‘SZ) eeoscosee c J NX J (7.14)
Non-trivial solutions exist if and only if
w2 (k)
det A =1 (£ - §)(¢ = ] =) =0 (7.15)
k ~ ko =¢
or if
W° (k)
A(g) = ¢ -] = 0 . (7.16)
kK &=

Equation (7.16) determines the eigenvalues z. The eigen-

functions x(z) and wk(c) are real (since 6k, W(E) and

hence ¢ are real),

x(@)x(zg') +

I x%()
z

1

orthogonal and may be assumed normalized:

E Ve @)Uy (2) =8, (7.17)
D) bg(Dlv () =6, o . (7.18)
g = = '3

From Egs. (7.8) and (7.9) we have



Yy (£=0) =} P(2)y, (z)
~ 4 ~

X (t=0) I P(o)x(z) .
z

From these two equations one can derive Eq. (7.10).

(7.19)

(7.20)

Now using Eqs. (7.17), (7.11), (7.12) and (7.16)

one obtains

(z) . (z) bk
xig) = i Y, () = s
733} X (c=8, ) VET(T)
where
an(2) w2 (k)
M) = Sgphl =14 ) "> 0 .
ke =gy

If we now assume that our initial conditions are

x(£=0) =1 ;  y (t=0) =0 |,

then

and we have

W(k) e-i (;+Q)t

(T=§) 6°(5)

by (£)
£ ;

and

(7.21)

(7.22)

(7.23)

(7.24)

(7.25)
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e-i(;+Q)t
x(t) = z ——KTTET-— . (7.26)
4

It is convenient to write x (t) as

(t) = el ¢ dz e izt (7.27)
X 271 4 TA(z) *

where the contour g contains all roots z of A(z) = 0.
Clearly the residues at the poles z = ¢ of the integrand
of (7.27) are

-igt
. €
i ETEr

We shall now assume that the eigenvalues ¢ are dense on

the x-axis and evaluate (7.27) along the contour o shown.

Hence
P
Ty
—>
N X
it o .
_ € -ixt 1 1
X(t) - 27Ti —o{ dX e [A_(X) A+(X)] [ 4 (7'28)
where
© 2 2
b4(x) = Lim A(xrin) = lim (xxin-—2 S8 axy . (7.29)
= n+0 n-+0 2n“ 0 XFINTO,
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Note that we have transformed the sum in (7.16) to an

integral over k. Thus we obtain

A, (%) = x - A(x) * ir(x) , (7.30)
where
o« 2 2
Q Wo(k)k
Alx) = =<_p - dk , (7.31)
2n2 é X 6k
and
-9 57 .22 _
r(x) = 5= P é kKW (k) 6§ (x § )dk . (7.32)
Since
1 1 _ 2iT (x) (7.33)

A_(x) ~ A, (x) (x-A(x))2+ PZ(X)

we have

L(t) = e"1ht 7 dx o~ 1Xt I (x) .
m e (x—A)2+ F2

(7.34)

As a first approximation in evaluating (7.34) assume A
and T are independent of xX. Then the integrand has poles

at x = A+iT. Choosing a contour in the lower half plane

we get

x(t) = e t(@)E It (7.35)

Thus A represents the shift in the energy of y because of



the coupling, and T' is the life-time of this state.

These quantities are obtained from the coupled equations
Re A(A - iT') =0 , (7.36)

(7.37)

I
o

Im A(A - iT)

Therefore A and T can be determined if W(k) and Gk are

known.

A more realistic and yet solvable Hamiltonian for

this system would be the following

_ ot t t ¥
H= Qcc + E wEbEbE + % W(E)[bkc + c bE]
+X 7 uk,jbib, . (7.38)
2 ko ~'="737k
2] ~ o~

In this Hamiltonian one takes into account the quasi-

particle self interaction.

In the next two chapters we shall show how the
two quasi-particle potential W(k) can be calculated from
v(k-j) using the S-matrix approach and the G-matrix

method.
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CHAPTER 8. INTERACTION BETWEEN TWO

QUASI-PARTICLES

In the previous chapters we treated the many-
body problem via the equation of motion approach.
Here we shall try to treat the Hamiltonian (3.1)

directly.

We define the creation and annihilation operators
for quasi-particles by Bi and By s with the condition

that

1‘ —
[315' BE] 6‘5'13 s (8.1)

To lowest order, we write the operator a, as a linear
combination of Bk and Bl for all values of k including

the zero-—momentum state13

h' (k)8 + g' (k)8

v
0

(8.2)

1))
i

T '
% = h'(l_f)B_k + g (]5)8k .
Here h' (k) and g' (k) are real functions of k and

h' (k) = M(-k) ; g'(k) = g-k) . (8.3)
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For the transformation (8.2) to be canonical we have
h2x -g'2@x = 1 . (8.4)

We determine h' and g' by substituting (8.2) in the
Hamiltonian, rearranging all the terms in the normal
order and equating the coefficient of the term

B;BIk + B, B_, to zero. Thus

~ ~

[ep- u + AT (0T ()g'k) + 3 8" G200+ g %001 = 0,
i | (8.5)
where
AT(K) = £ [v(0) + vis-D1g () = AT (k). (8.6)
L k
and
A k) = LT vaenntmigt) = Atk . (8.7)
k ) v k- k

Using Egs. (8.4) and (8.5) it can be shown that h' and
g' satisfy the same equations as h and g which we defined
in previous chapters (in the lowest order). Thus we shall

drop the primes on h and g.

The Hamiltonian written in terms of the quasi-

particle operators is

_ +
H = e + E E BEBE + Hy (8.8)
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where

e =] (e - u+320016° K + 7 4E0NEITE |,  (3.9)

-~

and
B = leg =1+ A1 I0°0) + g% 001 + 20 ()R g (k)

= ey - w+ 20017 - 22001 . (8.10)
The last relation is obtained by using Egs. (8.4) and

(8.5). The chemical potential p is to be determined

from the equation

T 2
n=)N =) <0laa|0>=7 g“k) . (8.11)
g T E Ol = et

The residual interaction Hp expressed in terms of the
Bk's contains all the quartic terms of creation and

annihilation operators Bi and Bk’ i.e.

_ 1 ¥ ot
Hy = 35 jzén O5+g,min [F1B56_ oBnfn * FpB8,B 8,

~ o~ o~

t,1,1 + + F o+
where
Fi = 2(@rme@hm h(hm + g(igm] ©(8.13)
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¥z
]

2 = 2[v(j-m)+v(§+2) 1n()g (2)h (m) g (n)

* v(-m) [h()h(Lhmh@) + g(ilg()gmgn)] (8.14)

F3 = 2v(3-mh(2)g(n) [h(j)h(m) + g(j)g(m)] (8.15)
Fy = v(G-mh(j)h(2)g(m)g(n) (8.16)
Fg = v(j-m)g(j)g(2)h(m)h(n) . (8.17)

The equation of motion for the quasi-particle operator

Bi can be found from the Hamiltonian (8.8),

Br(e) = 1 Egl(t) + 1 1(g,8(8) (8.18)

~

where

(o]

T@B(E) = & T 6,5 p.v(g-2):h(@)a apasta(glalia_ja

~3%-2%n

1o —+

~

(8.19)

In Eq. (8.19) the symbol : implies that after the a's are
replaced by the B's from (8.2), then the resulting expres-
sion must be rearranged in the normal order with respect

to the B's.

Now consider the scattering of two quasi-particles.

Let p and q be the initial momenta and m and n the final

~ ~
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momenta of the two quasi-particles. The scattering

matrix S for this process14 is

892732 = <mn out ]gg in >
_ tin
= <mn out]Bq |p out>
+ -iE t
= lim <mnout| B (t)|p out>e ¢,
tr—e " q ~
(8.20)

Using the well-known LS% formalisng, we find

-iE t

uQ

(s-1)

(o]
> T s T
mn; gp ‘_i dt<§§l[8q(t)-lﬁq6q(t)]|g out> e

© -iE t
= =i f dt<mn out]I(q,B(t))[p out > e g r
- 00 ~ ~ ~
(8.21)
where we used (8.18) to get the last relation. The
lowest order contribution to the scattering matrix comes

out

from the term I(q, B (t)) in (8.21). This functional

is obtained by iterating Eq. (8.18) once, i.e., since

+tout . +out
= E 8.22
Bg 1 g Bg ’ ( )
therefore
o . + . out
X E + iI(q, . 8.23
Bg i q BBg i (g B (t)) ( )
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This is a valid approximation when the interaction is
weak. With this approximation we can calculate the
matrix elements in (8.21) and do the time integration

with the result that

- = e 3 + _ - ; N
(S 1)99132 21r16(E~ E£1 Eg EB)V(Eg gg) ' | (8.24)
where
, . )
ViRegimn) = 5 81 men V(@M (@b m)+g(q)g (m) ]

* [h(p)h(n)+9 (p)g (n) 1+v(g-n) [h(g)h (n) +g (@)g(n)]

* [h(p)h(m)+g (p)g(m) 1+v(g+p) [g (p)h(g) (g(m)h (n)

+ h(m)g(n))+h(p)g(qg) (h{m)g(n)+g(m)h(n))]1} . (8.25)
Thus the V-matrix is just the Born term for elastic
scattering of two quasi-particles. Had we used the

exact equation of motion in (8.21), the V-matrix would

have been replaced by the T-matrix.

In the barycentric coordinate system30

(8.26)

3=
i
R
I

I
=}

E=}f=-q

~

and the V-matrix becomes (Egq. (8.25)
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Vik',k) = (21)3 CLv (k= ") +v K+ ) T [h (k)R (k') +g (k) g (k') 12
T
tAV(Ohh(kgKRIgE)} (8.27)

where we went over from box normalization to the continuous

case. Doing partial wave analysis we find that

vV, (k'k) = (21)3 (v (' k) [+ -1 *1 [h (k) h (k) +g () g (k') 12
m
+ 4vz(0)h(k)h(k')g(k)g(k')} . (8.28)
For |k| = [k'| we have

Vel = =t (v (0 11+ -1+ A [y 0y (14 (1) v, 0013

(2m) 3 Ey
(8.29)
Using Egs. (3.30), (5.6) and (5.12) we have
Az(k) 2 2 n n
> = 4h"(k)g“ (k) = 4[1 + o] F(k)] ) F (k)
E
k
= 4[1 + pF(k)]p F(k) , (8.30)

where we defined the density o =V%. Thus in the high
energy limit if we assume that vz(k) goes to zero faster

than F (k) then we have

Volk) 2 — pF)v,(0) . (8.31)
(27)



In the low energy limit assuming that F(k) = 1 for k

small we have

, [4p2 if p >> 1

8% (k
2( ) k-+0 (8.32)
By [4 if p << 1
and
2 2
3 [40%(1 + (-1) )]Vz(O) for p >> 1

v, (k) —= |2

L k=0

1 3 [5(1 + -0n% + 4]v,(0) for p << 1
| (27)

(8.33)

Once we know the V-matrix, (which approximates
the T-matrix) we can find the effective potential W(r)
between two quasi-particles from the equation

iq.r 3
T W(f)w(g',f)d r , (8.34)

T(q',q) can also be written in terms of the phase shifts
Gz(k) as
! 2i§

2m 1 g-4
= T(q',q) = 55= ] (22+1)P (=) (e
21~ ¢ % 'qq

o1y . (8.35)

Thus in our approximation Eg. (8.35) relates the phase
shift in each partial wave to V. Knowing Gg(k) for all

values of k enables us to obtain an expression for the




two quasi-particle interaction W(r), according to the

well known method of the inverse scattering problem.
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CHAPTER 9. THE G-MATRIX

In this chapter we develop a different approach
to the many-body problem. Suppose that the Hamiltonian

(3.1) after diagonalization can be written as
H=E + ) w ala . (9.1)
i k"k7k :

In this equation we have neglected higher order terms

such as Z € .aTaTa.a. etc... Again the quasi-particles

ij 137173747
are characterized by their energy-momentum relation Wy *

We divide H into two parts, H0 and HI'

H = H_ +H ' (9.2)

with

_ t
H =¢ + % Elfslfslf . (9.3)

The quantities ¢, Ek and HI are given by Egs. (8.9),
(8.10) and (8.12) re;pectively. Since E and € are c-
numbers they can be absorbed in H and Hy respectively.
We would like to point out here that the specific split-

ting of H we chose is not essential to this method and

any other choice of H and Hy is acceptable.

For a given state, with momentum Er the difference

W, = Ek measures the energy shift caused by the interaction,
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and since Ek is known we will calculate wk in terms of Ek'
;

To this endee expand the operator aqap in terms of qup

~ < ~

ap "gp

~ ~

00 =8 B+ ) K(p,qiu,v) B B+ vec. . (9.4)
u, v#p q

Both H and Ho are diagonal, the former in ak's and the
latter in Bk's. Using (9.1) and (9.3) we find the

following commutation relation:

H = - + 9.5
[H, agag] (wB wq) apag ( )

~ ~

[Byr Bubyl = ~(E; + B,) 8.8, - (9.6)

~ o~ ~ o~

With the help of expansion (9.4) we have

[HI' o ap] = [H-HO, a o]

q a’p

~

= (E_+E_-w_- + K ; E +E_-y - .
( q*Ep g wB)BgBE ) (p,qiu,v)( v g wy) ByBy
BIY?‘PI%

~

~ ~ ~ ~ o~

(9.7)

The kernel K can be found by taking the matrix element of

Eq. (9.7) between the state<0| and bib;|0>, where x and

~ o~

Yy are assumed to be different from p and gq.

~

Yool tuy,0 0 18T8T 05 (9.8)
I™p g "x"y

~

-1 —_ - -
K(g,g,f,g) =3 (EX+Ey g wp)

~ -~ ~ ~
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Substituting (9.8) into (9.4) we have

Tt
<o|[HI,agag]BBsy|0>

Q
Q
n
hord
hos)
+
O] b

qg P qQap 2 - - B.B, « (9.9)
FE IR Tuvpig TEF B ugm w0

~ ~ - ~

We now define the V and the G-matrix in terms of theif

matrix elements

<mn|V|pg> = -<0|[HI,Bqu16;Bz|O> (9.10)
and

<mn |G|pg> = -<O0| [H.,o o _lg7aT 0> (9.11)
~~ =320 - I'"gp ' "m'n : *

Substituting (9.9) into (9.11) we have

<mn|v|u,v><u,v|Glp.g>

X w_+ - E-E
wyvFp.g g “p Tul Ty

<nn|G|pg> = <mn|Vipg> +
(9.12)

This integral equation relates the G-matrix to the effec-
tive interaction between quasi-particles V (W in Chapter
7). We note that (9.12) differs from the T-matrix integral
equation in two ways. First instead of the usual two boson
potential, we have an effective potential which depends on
the properties of the system, such as the number of exci-
tations and their distribution etc. ... . The second

difference is in the energy denominator of (9.12). Here
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the energies of intermediate states have different depen-
dence on the momenta than the energies of the initial or

final quasi-particles.

Using the explicit form of Hp (Eq. (8.12)) in
(9.10), we find that the matrix elements of V are the
same as given in (8.25). Therefore if the effective

potential is weak then
<mn|G|pg> = <mn|V|pg> , (9.13)

and the matrix elements of S-1 are proportional to the

matrix elements of G.

The energies W and wp in (9.12) are related to

the diagonal elements of G and can be determined in the

following way: First we calculate the commutator

-r
H] = 2 = E + H - 9.14
[apap, 1 W00 [apap, g EBEBE 7l ( )

~ o~ ~ o~ oA ~ o~

Then we find the matrix elements of (9.14) between the

state <0| and B;B;|0> i.e.,

~ e~

t fo 1atet
2 0> = <0 E 0
wE<OIaEaEBEBB| > = <0flaja E EBEBEIBPBPI >

-4

~ o~ ~ o~

tot
- . 9.15
<0|[HI,aEaE]Bpo|0> (9.15)

~ o~
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Using Eq. (9.9) we find

<0|apapB grlo> =2 (9.16)

~ o~

Y

+
P

and

~ o~ ~ o~ ~

' + + ot
0 E 0> = 4E .. .
<0| a0 g 53k3k13239| > b (9.17)

By substituting these results in (9.15) we obtain the
following relation between wp and Ep

~ ~

_ 1
wg = Ep + Z<EEIGIEP> . (9.18)

~

In general the elements of G-matrix depend on the
momentum of the center of mass of the two interacting
guasi-particles. If we assume, however, that the motion
of the center of mass gives a small contribution to the
G-matrix, we can reduce the integral equation (9.12) and
then correct the result for the case where the center of
mass is not at rest. In the barrycentric coordinates
system we have p = -q = kand m = n = k', therefore (9.12)

~ ~ ~ ~

can be written as

<'|v|p><p|G|k>
wk - Ep

-~ -~ ~

(9.19)

<k'|Glk> = <k'|V]k> + T ]
kK'IGIK k'Vik L

where we have assumed that w, = w_p. It is convenient at
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this point to go over from a discrete set of states to a

continuous set by defining

G(k' k) = —_ <x'|c|k> (9.20)
~ ~ 3 ~ ~
' (27)
Vik',k) = — k' |v]k> .
~ -~ 3 -~ ~
(27)

We have

1,3 V(&',p)G(p,k)
G(k',k) = V(k' k) + gfd’p ——Z— ==

— (9.21)
wk Ep

~

where V(E',E) is given by Eq. (8.27). We observe that

the denominator of the integrand in (9.22) may vanish for
certain values of P, say p.. which are different from §°
Therefore, we assume that W, can have a small imaginary
part. Since Ep definéd by (8.10) is a real quantity the
integral in (9.22) will be finite but G(k',k) will also be

a complex quantity. Let us write

=g -4
G(k'/k) = E(k',k) - 3 T(k',k) . (9.24)

Substituting for Wy and G(E',E) in Eq. (9.22) and separat-
ing the real and the imaginary part, we find two coupled

equations
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V) (2 (R oK) (=Ep) + 31 (5K vy ]

@ - )% + y2/4

~

E(K',K) = V(K'J)+ 2fap

(9.25)
V(k',p)IT'(p,k) (0, -E Y=y, E(p,k)]
1,403~ ~ = =7~k Tpt Tk 21000
I'(k'/k) =5/a’p 5 5 . (9.26)
( QE - EB) + yk/4
Also from Eq. (9.18) it follows that
3
= (2m)~ .
QP = Ep + T _(g,g) (9.27)
and
_ (27)
Yy = g Tok) . (9.28)
Defining F' (k',k) by
F'(B'IE) = I (k',k)/r (k,k) (9.29)
and substituting into (9.26), we obtain
(21r)3
V(k',p) [F'(p,k) (Q,~-E_) - E(p,k)]
1 3 ~ ~ ~ o~ k P 49 ~ o~
F'(k',k)=zfdp B
oo 2 2
~ ~ ~ (9.30)

For k'= k, P'(k,k) =1 angd therefore (9.30) becomes

~ ~
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3
V(k,p) [F' (p,%) (@,-E ) - 20" =5 1))

l¢.3 ~
7/ap 3
(Qk - Ep) + Y

~ ~

o]

f
[

. (9.31) -
/4

R )

Thus we have three unknowns E(E,E'), F'(E.E') and Yi
that can, in principle, be determined from the three~
equations (9.25), (9.30) and (9.31). Once these quantities
are calculated the energy shift Qq and the life-time of the

~

quasi-particle Yy can be found.
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CHAPTER 10. CONCLUSIONS

We have tried, in this work, to develop different
approximation techniques for the treatment of a many-boson

system,

As we discussed in the introduction and in Chapter
2, the conventional perturbation methods should not be
used to treat such a system. This is because the S-matrix
and probably the transformations that diagonalize H are
non-analytic in the coupling constant. Thus the need for

a systematic, self consistent approximation theory remains.

The non-perturbative theory of Bogoliubov, when
proposed, seemed promising because it predicted qualita-
- tively the correct observed results. However, there
remain many difficulties with the theory such as the
origin of the singularities of the transformations employed,
the treatment of the condensate, high order corrections
etc. ... . In Chapters 3 and 4, we showed how one can
generalize or "derive" a generalized Bogoliubov transfor-
mation from first principles. While one can write such
an expansion consistently the resulting equations (aside
from léwest order) are very complicated indeed. The
lowest order equations obtained from the generalized

expansion can be solved consistently (as was done in
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Chapters 5 and 6) without separating a priori the zero
state in the Hamiltonian. The results obtained are

essentially the same obtained by Bogoliubov.

A more practical approach to the problem is the
model Hamiltonian approach. In Chapter 7, we showed
how to construct exactly solvable model Hamiltonians
which are relatively simpler to deal wiéh. In order
that the model Hamiltonian shall describe approximately
the many-boson system we have to determine the effective
interaction between two quasi-particles. While this in
itself is a difficult problem, we have shown in Chapter
8 how one can find (approximately) this effective potential

via the S~-matrix method.

Finally in Chapter 9 we developed yet another,
totally different approach based upon a 'pairing' type
of boson operator expansion. This expansion yields a
complicated integral equation for our G-matrix. We have
shown the connection between the G-matrix and the effec-
tive interaction of quasi-particle and indicated how the
quasi-particle life-time and energy shift can be calculated

using the G-matrix.
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APPENDIX A

We want to investigate the S-matrix as a function

of N. To this end, consider the Hamiltonian

N w. N
_ i 2 2 2
H= [ o7 @) tag | oag ) . (3.1)

Using the same procedure as of Chapter 2 we have

S(n),0 = V(n)lSl¥y>

-3 N o -(lt4ig)qg>
=m " n c,  Je J H, (gy)da; - (a.2)
=1 73 == ‘ J
Here w(n) = wnl' Dyy eeer My is the unperturbed wave
function of (A.l) and
n. =%
C_ = [/7 n,! 23] . (A.3)
n. j

We note that for nj = odd integer, the integrand in (A.2)
is an odd function of qj and S(n) o vanishes for this
14

case. Hence n. must be even. Let
n. = ij ‘ m. =0,1,2,... . (A.4)

Then



Stmy,o =T T Cp [e Hyp (a)dqy
J=1 J -
N \/(2m.) ! _ m.
=5 .0 —d— z?-1 3 (A.5)
27 3= 2" (n oy
j

with 2 = (1 + 4ig)% . The probability of transition

between the state 0 and (n) is

N (2m.)! m.
2 2
P),0 =IS(my,ol” = I8,,0l° 1. —15 &3 . (2.6)
’ ’ ’ j=1 (mj!)
Here
~ N

'So,o|2 = |Z_N|2 = (1 + 16g2) 2 ' (A.7)
and

y = 16g%[1 + 1692171 . (a.8)
Consider

N © (2m,)! m.
2 .
(g) (n),0 | °'°l j=1 m.zo (m.!)2 4
3 3
N
2 -3
= 15 I (1 -y) (A.10)
l 0,0l R
N
= ISo,ol2 (1-y) 2 (A.11)
N N

(1 +16g%) 2 (1 + 16922 = 1 . (A.12)
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Hence, while the dependence on N of each S(n) o might
. 4

be very complicated, the sum of all the elementsls(n) olz
14
is equal to 1 and is independent of N.
For this particular model we can calculate the
S-matrix in closed'form;
m.+n.
s =8 1; c.C 2mj+ J(c4dg , 2 r(m'+n'+l)
(n), (m) 0,0 j=1 nj mj 1+4ig 2
l-m.-n.
_ . J 3., l+4dig
X 2Fl ( mjl njl 2 [ 819. ) (A'13)

with n.+m. = even.
J ] :
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APPENDIX B

Consider the Hamiltonian

w. N
i 2 2
5 (qi + pi) + 4g F(Z

a?) s(t) . (B.1)
i=1

=
il
| 2

i=1

We want to find under what conditions the S-matrix, for

the system (B.1l), will be non-analytic. Thus consider

s =1 T dq; .. dgy expl-(qi+..q?) - 4igF (gF+..q2)1 .

(B.2)

Going over to polar coordinates (see Chapter 2) we have

(N = k+2)
S = 2 ? e-r2—4igF(r2) rk+l ar
0,0 N
P(E) 0
w X
= 1 f %2 o~ X om4igF(x) 4
N
F(f) 0
k
L . n o -
= 7 L49 pax X5 (r” ax. (B.3)
N nl
P(j) n=0 ‘ 0
Suppose we can write
s 2
F(x) = ] axx , (B.4)
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then, it can be shown23 that
[+ ] n . o0
FMx) = [ ) azle = 7 Cz(n)xz . (B.5)
2=0 =0
Here
n 1 m
Co =8, i Cy(n) = EE; k;l(kn-m+k)akcm_k . (B.6)

Hence eq. (B.3) becomes

s e 1_ 7 L@ om, (.7)
0,0 T(N/2) n, =0 n! L % * *
Define

B(n) = ] C,(n) T'(3+4) . (B. 8)

=0 °
Then
1 v (-ai)? n :
So,o(g) = TIN/2) ) —r— B g . (B.9)

n=0

Using the ratio test, the radius of convergence, Ry of

the series (B.9) is given by

-1 . 4 B(n+l)
R = lim . (B.10)
oo n+l B(n)
Thus if
. B(n+l)
lim ————= > n (B.11)
mm B '

then the S-matrix is a non-analytic function of g.



