n University of Alberta

a ;;'

Evaluation of JIAJIA Software DSM System on High
Performance Computer Architectures

by

M. Rasit Eskicioglu and T. Anthony Marsland
and
Weiwu Hu and Weisong Shi

Technical Report TR 98-08
June 1998

DEPARTMENT OF COMPUTING SCIENCE
University of Alberta
Edmonton, Alberta, Canada

Submitted to the 32nd Hawaii International Conference on System Sciences, Software Technology, “Distributed Caching

and Replication” Minitrack, January 1999.

Evaluation of JIAJIA Software DSM System on High Performance
Computer Architectures’

M. Rasit Eskicioglu and Weiwu Hu and Weisong Shi
T. Anthony Marsland Center for High Performance Computing
University of Alberta Institute of Computing Technology
Computing Science Department Chinese Academy of Sciences
rasit@cs.ualberta.ca dsm@water.chpc.itc.ac.cn
June 1, 1998
Abstract

Distributed Shared Memory (DSM) combines the scalability of loosely coupled multicom-
puter systems with the ease of usability of tightly coupled multiprocessors. DSM has received
much attention in the past decade and many consistency models, protocols, and systems were
developed. In this paper, we describe a new software DSM system called JTAJTA, and evaluate
it with a suite of widely different applications running on an IBM SP2 cluster, a high per-
formance computer system. Our experiments show that applications can achieve moderate to
good speedups with JTAJTA and have performance comparable to the commercial TreadMarks
system.

1 Introduction

Shared memory multiprocessors provide an attractive programming model to develop parallel ap-
plications. However, as the number of processors increases, the memory access operations saturate
the interconnection medium and degrade the performance, hence severely limiting the scalability of
the entire system. Distributed memory multiprocessors, on the other hand, scale well but usually
awkward to program because all the data movement between memories must be done explicitly
in the application. Distributed shared memory is a useful abstraction for making non-uniform
memory access (NUMA) multiprocessors more usable and for deploying networks of workstations
(NOWSs) as a parallel multicomputer. The idea behind DSM is to allow processes executing on
different interconnected processors to share memory by hiding the physical location(s) of data,
making the memory location transparent to the entire system. DSM handles “remote” memory
accesses by transparently translating them into messages for the underlying communication media.
An important benefit of this approach is that parallel programs developed for (real) shared memory
multiprocessors can execute on distributed memory architectures without modification. Further,
parallelization of a serial program is usually easier with (distributed) shared memory paradigm.
A DSM system can be realized by software, hardware, or a combination of two. A fundamental
difference between software and hardware implementations is the granularity of the coherent shared
data. Software DSM systems use a physical page as the unit of sharing (coarse-grain), whereas
hardware implementations use smaller sizes (fine-grain), such as a word or a cache line. Generally,
software implementation of DSM is more attractive because it involves no (special) hardware and

"This work is supported in part by NSERC grant IOGP7902 and by the National Climbing Program of China.

therefore less expensive. Due to its practical advantages, software DSM has been an active research
area over the last decade and several approaches have been proposed and implemented [CBZ91,
BZS93, KDCZ94, Kel96].

In this paper, we present the JIAJIA software DSM system [HST98b] and evaluate it with
several parallel applications on a high performance computer system. The results of our experiments
show that applications running on such environments as an IBM SP2 can take advantage of the
DSM approach. Further, the performance of the applications are comparable to the commercial
TreadMarks [KDCZ94] system. In the following sections, we give an overview of the JIAJIA
software DSM system emphasizing on its distinguishing characteristics, tabulate the applications
in our test suite, analyze the results of our experiments, and compare JIAJIA’s performance with
TreadMarks.

2 JIAJIA software DSM

As Figure 1 shows, JIAJIA is build onto UNIX as a user-level runtime library like several other
software DSM systems and uses standard UNIX libraries to accomplish various tasks, such as
remote program invocation, interprocess communication, and memory management. It is originally
developed under Solaris 2.5 operating system to run on a network of Sun Sparc workstations. We
recently ported it to an IBM SP2 cluster running AIX 4.1 to evaluate the performance implications
of software DSMs on high performance computer systems.

Application

[

JIAJIA API

.

UDP/IP

welboid

JIAJIA Runtime

-

U N I X Kernel

Figure 1: A JIAJIA Node

JIAJIA is a page-based software DSM system which supports scope consistency and uses write-
invalidate approach to handle dirty data. Multiple writers are used to alleviate the false sharing
problem, typical of software DSM systems. We choose write-invalidation because processors often
modify different locations of the page (the unit of sharing) consecutively, thus making the alternative
write-update protocol inefficient and more expensive. Such protocol invalidates all copies of the
shared page and update only the original copy, which in our case, is the copy on the home (processor)
of the page. JIAJIA is different from other software DSM systems in several ways. First, it provides
data coherence with the scope consistency model [ISL96], which is implemented through a locked-
based protocol [HST98b]. Second, it manages the shared memory using a “home”-based scheme.
Third, it employs a unique (global) address mapping method and utilizes all the memory available
on the processors by combining them to form one large global memory.

2.1 Scope Consistency

The first software DSM prototype IVY [Li88] successfully implemented sequential consistency (SC)
[Lam79] over a network of workstations, but suffered greatly from high communication overhead
as a consequence of “false sharing” (i.e., concurrent access to different variables on the same page,
with at least one being a write operation) caused by coarse sharing granularity. More recent
systems exploit relaxed models, such as entry consistency (EC) [BZ91] or lazy release consistency
(LRC) [KCZ92] to address this problem. These memory models delay, and if possible restrict, the
communication among processors until a synchronization operation occurs. Furthermore, relaxing
the consistency requirements generally reduces the overhead of coherence operations. The relaxed
models guarantee a “sequentially consistent” execution of programs with the help of two basic
synchronization operations: acquire (request access to shared data) and release (grant access to
shared data).

In the EC model, each shared data item is explicitly associated with a synchronization variable
(e.g., alock). At an acquire, only the data item associated with the current synchronization variable
is guaranteed to be the most recent. The goal of EC is to minimize the communication costs that
are caused by unnecessary data movements. Unfortunately, this approach imposes a programming
burden on users by requiring explicit association of each shared data object with a synchronization
variable. For simple programs, this may not be a problem. However, additional coding effort is
usually needed for programs that use complex data structures, such as nested arrays and these
programs may get unnecessarily large as well.

In contrast, LRC, a more relaxed form of release consistency (RC) [GLL190], guarantees that
the shared data are the “most recent” at all acquires. This model also allows multiple writers to
modify data on the same shared page without any communication among the processors, assuming
that the modifications are made to disjoint sections of the page. Furthermore, LRC delays prop-
agating consistency information until the next acquire following a release operation. A (shared)
page is duplicated before it is modified the first time. On the next acquire, the releaser compares
the original pages (twins) with the modified copies and creates diff's (record of the changes made
to a shared page) to capture the changes. These diffs are then propagated to the new owner of the
pages. The drawback of this approach is that all the modifications made on the shared data are
propagated to the acquiring processor, even if only a few of them are used later.

Scope consistency (ScC) [ISL96] is proposed to bridge between these two relaxed models, where
synchronization variables are not associated with shared data, instead they are associated with
sections of code (critical sections) implicitly. The ScC, also a relaxed model, is a refinement of both
EC and RC, which establishes a binding between critical sections and the synchronization variables
dynamically and transparently. Usually, the critical sections protected by locks imply the “scope”
of the desired consistency. In this context, a “consistency scope” can be viewed as the collection
of the critical sections protected by a lock. In addition to individual “local” scopes, there is also a
“oglobal” consistency scope which is typically marked by barriers and covers the entire program. A
program enters a local scope and “opens” a new session when it acquires a lock. Any modification
made during a session is guaranteed to be seen by other processors that later enter the session(s)
of the same (local) scope. General rules for the ScC can be summarized as follows:

— An ordinary memory access (read or write) is allowed to perform with respect to any other
processor only after all previous acquires are performed.

— A release is allowed to perform with respect to any other processor only after all previous
ordinary memory accesses to the region (protected by the same lock) are performed.

— Synchronization accesses are sequentially consistent.

Most of the applications tailored for LRC can run under ScC without any modification. How-
ever, some applications may require certain modifications to produce correct results. A typical
modification is to expand the critical sections by moving the synchronization operations around in
the applications. A more detailed description of the ScC model can be found in [ISLI6].

We adopted the ScC model in JTAJTA because of its overall advantages and its simpler protocol.

rd, wt rd, acq, rel

rel (wtnt, diff), acq

Notes

rd, wt : read, write
acq, rel : acquire, release
Initial State acqginv : invalidate the page on acquire
getp : get the page from its home
wtnt : send write-notices to lock
diffs : send page diffs to home(s)
twin : create a twin of the page

wt (twin)

Figure 2: JIAJIA’s Coherence Protocol

2.2 Lock-based Coherence Protocol

Based on the observation that the overhead caused by the complexity of a software DSM may easily
offset the benefit of such system, the coherence protocol of JTAJIA is designed to be as simple as
possible. Figure 2 summarizes the state transitions of the coherence protocol.

Each shared page in an application can either be “local” or “cached” on a given processor. In
the former case, the processor is the home of that page. These pages can be in one of three states:
Invalid (INV), Read-0Only(R0), and Read-Write (RW). Since multiple write accesses to shared data
are allowed, a page may be cached by several processors in different states concurrently at a given
time. Initially, all shared pages are in RO state at their home processors. Ordinary read and write
accesses to a RW page, or read access to a RO page, or acquire and release on an INV or RO page
do not cause any transition. Like the shared pages, each lock has a “home” processor which is
assigned in a round-robin fashion during the system initialization.

On a release, the processor generates diffs for all modified pages and sends them to their
respective homes eagerly. Also, the processor sends a release request to the lock’s home processor
along with the write-notices (basically, a list of modified pages) for the associated critical section.
Similarly, acquiring processor sends a request to the lock’s owner and waits until it receives a grant
message for the lock. Multiple acquire requests for a lock are queued at the lock’s home processor.
When the lock becomes (or is) available, a lock grant message is sent to the first processor in the
queue, piggy-backed with the applicable write-notices. After receiving the lock grant message, the
acquiring processor invalidates the pages listed in the write-notices and continues with its normal
operation. The correctness of the protocol is proved with an event ordering framework in a previous
study [HST98a].

All processors exchange the write-notices for the entire shared memory and invalidate applicable
pages, and pending diffs are applied to the shared pages at barriers. Thus, the processors start
with a fresh up-to-date view of the shared memory after a barrier.

In summary, the protocol propagates a modified page to its home processor on a release and
to the next processor on the following acquire, where, stale data are updated later than in EC but

sooner than in LRC. This approach keeps the diffs only for a short period of time, hence avoiding
extensive local diff keeping overhead.

Unlike other DSM systems, JTAJIA does not keep any global directory structure separately,
instead, locks keep the necessary information, such as ownership, for the relevant pages. This
approach further reduces the space overhead of the system.

Currently, JIAJIA provides two synchronization operations (though, others can easily be added):
lock—unlock and barrier. Fither of these operations can be used in an application to control a
critical section. A barrier can be viewed as a combination of a lock—unlock pair, but in reverse
order: arriving at a barrier exits from the “previous” critical section and leaving a barrier enters
the “next” (new) critical section. Since two barriers are needed to enclose a critical section, the
start of an application is considered an implicit entry to the first critical section.

Cached Cached
Cached

Home

Home

Cached

Sached Home = = om

Cached

Cached

Home

Interconnection Network

Figure 3: Memory Organization in JTAJTA

2.3 Memory Organization and Address Mapping

As Figure 3 shows, JIAJIA organizes the shared memory in a different and unconventional way.
The global shared memory is distributed across the processors. Each processor acts as the home of
a portion of the shared memory. Users can specify home size of each processor in a configuration file
and hence control initial distribution of shared data. A page is accessed normally when referenced
by its home processor. A remote page, on the other hand, is first fetched from its home processor
and cached locally for subsequent and future accesses. A page is always kept at the same user space
address, in other words, the logical address of a page is identical on all processors, whether it is a
home page or has been cached by the processor. This approach eliminates any address translation
upon a remote access and provides a uniform view of the shared memory across the processors.
Furthermore, each processor uses a local page table to keep information only about its “cached”
pages. The page table contains the address, current state and a twin (if in RW state) for each cached
page.

With the above memory organization, JIAJTA is able to support shared memory that is much
larger than the physical memory of any single processor in the system. Since the shared pages are
distributed across all processors, the total size of the shared memory is not limited by the physical
memory of a single processor, but only by the virtual memory settings (e.g., maximum allowable
user-mappable address range) of the underlying hardware and operating system.

2.4 JIAJIA’s Programming Interface

JIAJIA implements the single program multiple data (SPMD) programming model, in which each
processor runs the same program on different parts of the shared data. Figure 4 summarizes JTA-
JIA’s simple, yet powerful programming interface to support shared memory parallel programming.

‘ Function ‘ Purpose ‘
jia-init) Initialize JIAJIA
jia_alloc() Allocate shared memory
jia-lock() Acquire a global lock

jia_unlock() | Release a global lock
jia barrier() | Perform a global barrier

jiawait () Sync without coherence
jia_clock() Return elapsed time
jia_error() Print out an error message
jia_exit () Shut JIAJIA down

Figure 4: JIAJIA API

Additionally, JTAJIA provides two variables, jiapid and jiahosts, to the user. They specify
the host identification number and the total number of hosts of a parallel program, respectively.
The programming interface is defined in a C header file jia.h, which should be included by the
application.

3 Experimental Platform and Applications

We tested JIAJTA software DSM system on an IBM SP2 cluster at the Center for High Performance
Computing at the University of Utah. The SP2 cluster consists of 64 nodes, with slightly different
characteristics. The results reported here were collected on 16 identical “thin nodes” of the SP2
cluster, each equipped with 120 MHz POWER2 Superchip processor and 128 MB physical memory.
The nodes are interconnected with a high performance multi-stage Omega switch which provides a
minimum of four simultaneous paths (with a bandwidth of 80 megabits each) between any pair of
nodes. The nodes are also connected to the outside world by both an Ethernet and a FDDI links.
Full version of AIX 4.1.5 operating system runs on each node. Our experiments were executed on
the nodes in dedicated mode, i.e., with no other user process, thus utilizing the full capacity of each
node.

Our test suite includes five applications, namely, Water, LU, EP, TSP, and Matmul, covering
a broad range of problem domains with varying behaviors. Water and LU are from the SPLASH
[SWG92] and SPLASH-2 [WOT™"95], respectively. SPLASH is a collection of parallel applica-
tions developed for use in the design of shared-memory multiprocessors, as well as in the study
of centralized and distributed share memory multiprocessors. SPLASH2 is the next generation
of the SPLASH suite of applications. Consequently, these applications are tailored for hardware
(sequential) cache-coherent systems with cache line granularity. EP is from the NAS Parallel Bench-
marks [BBLS94]. NAS benchmarks are developed for evaluating the performance of highly parallel
supercomputers. TSP is developed at the Rice University in conjunction with their commercial
TreadMarks software DSM system [KDCZ94]. Our last application Matmul is a simple matrix
multiplication program. Table 1 lists relevant characteristics of the applications in the test suite.
Note that for simplicity JIAJTA allocates a new page for each jia alloc() call, thus the page

count in the last column of the table does not necessarily reflect the actual size of the shared data,
except for LU and Matmul, which share large amounts of data. Below, we briefly summarize the
applications in our test suite. More detailed descriptions for most of them can be found elsewhere
[SWG92, WOT 195, BBLS94].

Appl. | Sync | Data Set | Sh Mem
Sm/Md/Lg | (4K pgs)
343 mols 27
Water | B, L | 1000 mols 71
1728 mols 121
1K x 1K 2,059
LU B 2K x 2K 8,205
3K x 3K 18,447
224 1
EP B 226 1
228 1
18 cities 197
TSP L 20 cities 197
19 cities 197
1K x 1K 3,075
Matmul B 2K x 2K 12,294
3K x 3K 27,657

Table 1: Application Characteristics (B=barriers, L=locks)

Water is an N-body molecular simulation program that evaluates forces and potentials in a
system of water molecules in the liquid state using an O(n?) brute force method with a cutoff radius.
Water simulates the state of the molecules in steps. Both intra- and inter-molecular potentials are
computed in each step. The most computation- and communication-intensive part of the program
is the inter-molecular force computation phase, where each processor computes and updates the
forces between each of its molecules and each of the n/2 following molecules in a wrap-around
fashion. We used the slightly revised TreadMarks version [LDCZ95] of Water in our experiments.

LU is a matrix decomposition kernel that factors a dense matrix into the product of a lower and
an upper triangular matrices. The dense n x n matrix is divided into an N x N array of B x B blocks
(n = NB) to exploit temporal locality on sub-matrix elements. This version of the kernel (LU-
Contiguous) factors the matrix as an array of blocks, allowing blocks to be allocated contiguously
and entirely at the processors that own them, even though these blocks are not contiguous in the
original array. The algorithm factors the matrix in several steps separated by barriers.

EP (embarrassingly parallel) kernel benchmark accumulates two-dimensional statistics from a
large number of Gaussian pseudo-random numbers, which are generated according to a particular
scheme that is well-suited for parallel computation. EP requires almost no communication, thus in
some sense it provides an estimate of the upper achievable limit for floating-point performance on
a particular system.

TSP solves the classical traveling salesman problem using a branch-and-bound algorithm to
find the shortest path (tour). The cities are represented as the nodes of a directed graph in the
program. Each processor performs the algorithm on a different branch and updates shared data.
The program starts with an initial partial path and recursively permutes over the remaining nodes,

Appl. Size ‘ SEQ ‘ 1-proc | 2-proc | 4-proc | 8-proc | 16-proc
343 mols 42.96 43.02 30.98 15.93 14.74 26.07
Water | 1000 mols 370.41 369.93 | 195.13 | 102.52 60.91 55.09
1728 mols | 1114.74 | 1115.76 | 575.32 | 294.60 | 158.53 110.99
1K x 1K 44.16 44.19 25.93 14.66 9.11 6.23
LU 2K x 2K 353.64 358.58 | 195.27 | 102.91 59.59 36.58
3K x 3K | 1193.90 | 1192.55 | 647.45 | 333.51 | 184.66 103.92

224 74.69 74.72 37.58 19.27 9.37 4.37

EP 226 300.41 300.46 | 151.24 75.05 37.51 19.27
228 1203.67 | 1203.83 | 607.34 | 301.15 | 150.66 75.62

18 cities 42.82 42.80 22.74 12.44 7.34 4.92

TSP 20 cities 277.20 277.07 | 149.61 80.22 47.03 34.08
19 cities 435.17 | 434.92 | 226.41 | 118.75 99.38 33.56
1K x 1K 45.68 48.58 24.63 13.61 8.19 11.31
Matmul | 2K x 2K 367.13 | 447.87 | 193.50 | 104.00 98.65 47.37
3K x 3K | 1251.18 | 1748.95 | 773.78 | 351.35 | 190.35 120.02

Table 2: Results of JIAJIA (in seconds)

updating the partial path if and when necessary, until it finds the shortest path between two cities.

Matmul is a simple implementation of the inner product algorithm used to multiply two N x N
matrices. Both multiplicand matrices and the product matrix are shared by the processors. The
work is divided among processors, where each processor computes the result for a certain number
of rows. The partial results are then merged at a barrier after the computations.

4 Analysis of the Experimental Results

We used gcc with option -02 to compile both JIAJTA and TreadMarks versions of the applications.
The statistics collection code has a negligible overhead (less than % 1) on the execution times of
applications. Table 2 summarizes the results of our experiments. Because some of the applications
do not have sequential versions, we created pseudo-sequential executables by linking them with a
special (NULL) library, in which all the APT functions except jia_alloc (), return immediately. This
dummy function calls malloc (), whereas the actual one uses mmap() to allocate (shared) memory,
even on a single processor. The SEQ column shows the execution times of the pseudo-sequential
runs. In fact, JIAJTA runtime reduces the system overhead to a bare minimum for most of the
applications when the number of hosts is one. Thus, the values in the columns SEQ and 1-proc are
comparable, with the exception of Matmul. The slight variation between the results of sequential
and 1-processor versions can be attributed to the fact that the malloc() system call is cheaper
than mmap () on most architectures. The sequential version of Matmul performs increasingly faster
with larger matrices. This anomaly is likely caused by caching, as well as paging effects due to the
large amounts of memory mapped data. Note that although a row of a 1K x 1K matrix fits into a
single 4096-byte page, each row of a 3K x 3K matrix needs 3 pages. Thus, the side effect of this
anomaly is only %6 for a 1 K x 1 K matrix, whereas it increases to almost %40 for a 3K x 3K matrix.
Additionally, we ran each application with three different data sets, small, medium, and large, to
see the effect of problem size on application performance, Also, we ran the same set of applications

using TreadMarks version 0.9.4 to allow a fair comparison with JIAJIA. In the following sections,
we first discuss the performance of each application under JIAJIA separately and then present a
comparative analysis of JIAJTA and TreadMarks.

= Vv
(a) Water (b) LU (c) EP
Legend
T e Small data set
m Medium data set
T] Ao Large data set
(d) TSP (e) Matmul

Figure 5: Speedups of JTAJIA

4.1 Performance of JTAJIA

The performance of the applications in our test suite with JTAJIA on a 16-node SP2 cluster is as
follows:

Water: We simulated 343, 1000, and 1728 molecules, each for 25 steps. The amount of shared
data in the revised Water code is smaller because the molecule data is split into shared and non-
shared parts in this version. As shown in Figure 5 (a), with fewer molecules, the speedup is not
good, in fact, the performance degrades after eight processors. The major cause of this problem,
which is usually more degrading with fewer number of molecules, is extensive fine-grain sharing
because the algorithm requires that each processor fetches modified data from half of the other
processors. Moreover, the program to some degree suffers from false sharing [SWG92]. On the
other hand, with larger number of molecules, this overhead is compensated by higher computation
rate, and therefore better speedups are achieved. In our test runs, we obtained speedups 1.65, 6.72,
and 10.05 on 16 nodes for 343, 1000, and 1728 molecules, respectively.

LU: Figure 5 (b) shows the speedups obtained ranging from 7.09 for a 1K x 1K matrix to 11.48
for a 3K x 3K matrix. Our results confirmed the findings of others that a better performance is
achieved for larger problem sizes. We selected a block size of 64 bytes, because after performing

some additional tests, we observed that a block size of 64 (as opposed to 16 recommended by the
developers of the application) yields the best performance. Based on this observation, we conclude
that with page based software DSM systems, it is more important that the blocks to fit into the
coherence unit of the software system (i.e., a physical page) rather than the hardware cache lines.

EP: This application achieved an excellent performance as expected and scaled well. As shown
in Figure 5 (c), the speedups are near linear (for example, 15.92 on 16 processors with 22® random
numbers), because the only communication among the processors, which is compensated by the high
computation rate, occurs at the end of the number generation phase to accumulate the tabulated
results.

TSP: This application uses only locks for synchronization while executing the branch-and-bound
algorithm. There are also two barriers in the application, before and after the recursive evaluation
of the tours. We tested TSP with 18, 19, and 20 cities with recursion levels (-r option) of 14, 14,
and 15, respectively. Incidentally, the program finds the minimum tour length with 20 cities faster
than with 19 cities due to the setup of the input data. The speedup for all three cities up to four
processors is near linear. However, beyond four processors, as the number of processors increases,
the larger data sets are penalized by our lock-based protocol. JTAJIA transfers mostly complete
pages because the accumulation of lock releases unnecessarily invalidate more pages on acquire.
Figure 5 (d) shows the speedups achieved, despite the above deficiency. The reason for such good
speedups is the high computation to communication ratio of this application.

Matmul: Our locally developed application Matmul also achieved good speedups, especially for
larger data sets as shown in Figure 5 (e). The speedup on 16 processors is low (4.30) for 1K x 1K
matrices, whereas it is near linear (14.57) for 3K x 3K matrices. Since JIAJTA allows the initial
distribution of the shared data among processors, Matmul clearly benefits from our home-based
coherence protocol.

Appl. No. of Speedups
Procs | JIAJIA | TreadMarks
Water 2 1.94 1.85
1728 mols. 16 10.05 9.40
LU 2 1.84 1.43
3K x 3K 16 11.48 2.82
EP 2 1.98 2.00
228 16 15.92 15.96
TSP 2 1.92 1.94
19 cities 16 12.96 13.22
Matmul 2 2.31 1.66
2K x 2K 16 9.45 2.33

Table 3: Comparison of JIAJTA and TreadMarks Speedups

4.2 Comparison of JIAJTA and TreadMarks Performance

Table 3 shows the speedups of applications on 2 and 16 processors for both JTAJIA and TreadMarks.
Water, LU, and Matmul achieved better speedups with JIAJTA, whereas EP and TSP performed
only slightly better with TreadMarks. Overall, JTAJIA versions of the applications outperformed
TreadMarks, mainly due to the relatively low overhead of our simple coherence protocol. We also

10

collected the total number of messages and data exchanged by the processors with JIAJIA and
TreadMarks. Table 4 shows these statistics.

Although the number of messages in TreadMarks version of Water is an order of magnitude
more than that of JIAJTA version, the total data transferred is only twice as much. The reason
for the higher data transfer rate is the fact that JIAJTA usually sends whole pages because of the
write-invalidate protocol, but causes less diff accumulation. On the other hand ,TreadMarks sends
many small diff messages.

The amount of transferred messages and data are quite similar in both JIAJIA and TreadMarks
versions of LU on 2 processors. However, the data amount quadruples with TreadMarks when the
we scale to 16 processors, whereas it only doubles with JTAJTA on the same number of processors.
Also, the message count on 16 processors is more with TreadMarks, even though it is less on 2
processors. This indicates that JTAJIA’s protocol scales better in applications like LU.

EP performs nearly identical with both JIAJTA and TreadMarks. JTAJIA sends more messages
and data because of unnecessary invalidation of the shared page.

JIAJIA’s lower speedup in TSP is due to the extensive amount of message (5 times more) and
data (75 times more) transfers. However, speedups achieved by TreadMarks does not reflect this
advantage, because it also suffers from the higher overhead of its diff management.

Matmul transfers slightly more data and messages with JIAJTA, but again, its simple protocol
helps achieve better speedups.

The design of TreadMarks does not allow to share large number of pages. For this reason,
TreadMarks cannot execute Matmul, for example, with 3K x 3K matrices. On the other hand,
JIAJIA’s shared memory allocation scheme is only bound by the virtual memory management lim-
itations of the underlying (UNIX) operating system. This feature of JIAJIA allows parallelization
of applications that require large amounts of shared data.

No. JIAJIA TreadMarks

Appl of No. of Total No. of Total
Procs | Messages | Data | Messages | Data

Water 2 12,100 | 34 MB 200,526 | 60 MB
1728 mols. 16 210,299 | 325 MB | 1,546,692 | 719 MB
LU 2 38,040 | 72 MB 37,613 | 73 MB
3K x 3K 16 152,288 | 144 MB 155,777 | 298 MB
EP 2 18 8 KB 9 4 KB
2%8 16 270 | 128 KB 177 | 83 KB
TSP 2 13,000 | 20 MB 2,763 | 268 KB
19 cities 16 27,357 | 43 MB 10,759 5 MB
Matmul 2 16,396 | 32 MB 12,303 | 24 MB
2K x 2K 16 245,834 | 480 MB 236,314 | 468 MB

Table 4: Message count and data sizes with JTAJTA and TreadMarks

5 Conclusions

We described the implementation of a new software DSM system called JTAJIA and its performance
on high performance computing environments, such as an IBM SP2 cluster. We also demonstrated
that many applications can take advantage of the shared memory programming model on NUMA

11

architectures using the software DSM approach. The applications described above achieved a
moderate to good speedups with JTAJTA. The main reason for this is the simplicity of the coherence
protocol and the memory organization scheme. We measured the performance of applications with
JIAJIA on up to 16 nodes of the SP2 cluster. The implications of larger number of nodes is yet
to be investigated. We believe that as the speed of interconnection media increases, the overhead
of extensive message exchange will be less important and coherence protocols with less space and
computation overhead will be the winner.

Currently, JTAJIA uses UDP/IP over the high performance switch for the inter-node communi-
cation. We are developing a new version to use MPI as the communication layer and also porting
new applications to study the possible benefits of JTAJIA on a variety of other application domains.
We’re hoping to report more results for additional applications in the final version of the paper.
Our future work with JIAJIA on high performance computer architectures includes experimenting
with various techniques, such as multicast messages and write-update protocol, to improve the
performance of the system.

6 Acknowledgments

We gratefully acknowledge the Center for High Performance Computing (CHPC) at the University
of Utah for the allocation of computer time to run our experiments. CHPC’s IBM SP system is
funded in part by NSF Grant #CDA9601580 and IBM’s SUR grant to the University of Utah.

References

[BBLS94] D. Bailey, J. Barton, T. Lasinski, and H. Simon. The NAS parallel benchmarks. Tech-
nical Report RNR-94-007, NASA Ames Research Center, March 1994.

[BZ91] B. N. Bershad and M. J. Zekauskas. Shared memory parallel programming with entry
consistency for distributed memory multiprocessors. Technical Report CMU-CS-91-
170, School of Computer Science, Carnegie-Mellon University, September 1991.

[BZS93] B. N. Bershad, M. J. Zekauskas, and W. A. Sawdon. The Midway distributed
shared memory system. In Proc. of the 38th IEEE Int’l Computer Conf. (COMPCON
Spring’93), pages 528-537, February 1993.

[CBZ91] J. B. Carter, J. K. Bennett, and W. Zwaenepoel. Implementation and performance of
Munin. In Proc. of the 13th ACM Symp. on Operating Systems Principles (SOSP-13),
pages 152-164, October 1991.

[GLL'90] K. Gharachorloo, D. E. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. L. Hennessy.
Memory consistency and event ordering in scalable shared-memory multiprocessors.
In Proc. of the 17th Annual Int’l Symp. on Computer Architecture (ISCA’90), pages
15-26, May 1990.

[HST98a] W. Hu, W. Shi, and Z. Tang. A framework of memory consistency models. Journal of
Computer Science and Technology, 13(2):110-124, March 1998.

[HST98b] W. Hu, W. Shi, and Z. Tang. A lock-based cache coherence protocol for scope consis-
tency. Journal of Computer Science and Technology, 13(2):97-109, March 1998.

12

[ISL96]

[KCZ92]

[KDCZ94]

[Kel96]

[Lam79]

[LDCZ95]

[Li88]

[SWG92]

[WOT+95]

L. Iftode, J. P. Singh, and K. Li. Scope consistency: A bridge between release con-
sistency and entry consistency. In Proc. of the 8th ACM Annual Symp. on Parallel
Algorithms and Architectures (SPAA’96), pages 277-287, June 1996.

P. Keleher, A. L. Cox, and W. Zwaenepoel. Lazy release consistency for software
distributed shared memory. In Proc. of the 19th Annual Int’l Symp. on Computer
Architecture (ISCA’92), pages 13-21, May 1992.

P. Keleher, S. Dwarkadas, A. L. Cox, and W. Zwaenepoel. Treadmarks: Distributed
shared memory on standard workstations and operating systems. In Proc. of the Winter
1994 USENIX Conference, pages 115-131, January 1994.

P. Keleher. The relative importance of concurrent writers and weak consistency models.
In Proc. of the 16th Int’l Conf. on Distributed Computing Systems (ICDCS-16), pages
91-98, May 1996.

L. Lamport. How to make a multiprocessor computer that correctly executes mul-
tiprocess programs. IEEE Transactions on Computers, C-28(9):690-691, September
1979.

H. Lu, S. Dwarkadas, A. L. Cox, and W. Zwaenepoel. Message-passing vs. distributed
shared memory on networks of workstations. In Proc. of Supercomputing’95, December
1995.

K. Li. Ivy: A shared virtual memory system for parallel computing. In Proc. of the
1988 Int’l Conf. on Parallel Processing (ICPP’88), volume II, pages 94-101, August
1988.

J. P. Singh, W-D. Weber, and A. Gupta. SPLASH: Stanford parallel applications for
shared memory. Computer Architecture News, 20(1):5-44, March 1992.

S. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The SPLASH-2 programs:
Characterization and methodological considerations. In Proc. of the 22th Annual Symp.
on Computer Architecture, pages 24-36, June 1995.

13

