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Abstract

Credit risk management, which deals with mitigating losses from lending

activities, is crucial for financial institutions. Hence, credit risk modelling can

be employed to reduce potential losses and avoid financial crises. There are

sometimes monotonic relationships in credit risk models, which can simplify

forms of models, reduce computational time, or be necessary to fulfill restrictions

observed in reality. After reviewing commonly used credit risk models, several

monotonicity testing methods are established and adapted to the situation for

binary output of default indicators. Furthermore, we present a new test using

the weighted sum of differences as the test statistic, with the weights optimized

through combinations of their moments. Finally, we compare the performance

of these tests on simulated data regarding the accuracy and power of the tests.
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Chapter 1

Introduction

Nowadays, loans have become an indispensable part of the modern financial

system. From an individual to a corporation, it can be beneficial to acquire

loans, which are negotiated to repay in the future, for making an investment

or securing the present cash flow. Inevitably, there is some possibility or risk

that the borrower cannot return the total money at the due date. It can occur

that the lender will have a loss. If the amount of loss is large, the lender

may go bankrupt. If the lender also owes money to another lender, it can

result in a cascading effect, which may eventually cause a financial crisis. It

is worthwhile to develop appropriate methods to quantify the risk of lending

for risk management. In financial studies, credit refers to the money offered

by a lender to a borrower and obligated to be repaid by the due date. Credit

risk refers to the risk that a borrower is incapable of paying credit by the

due date. Scholars developed models to quantify credit risk, which can be

useful. Firstly, lenders can use credit risk models to reduce their financial losses.

Secondly, it is helpful to apply the credit risk model to mitigate the impact of

the financial crisis. Thirdly, by adjusting the credit risk models, they can be

used for establishing a credit rating system for customers, or even constructing

a highly interconnected network.

Since credit plays a crucial role in modern Finance, there have been various

concepts and methodologies proposed by researchers over the decades. Initially,

Altman (1968) came up with a numerical measure of credit risk through the

Z-score. According to him, the bankruptcy probability of a firm can be pre-
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dicted with financial data using multivariate discriminant analysis. Despite

some objections to his method for using the historical values only, the Z-score is

still popular among many practitioners thanks to its convenience (Benzschawel,

2012). The next well-known method is developed by Merton (1974) through

more sophisticated techniques, such as stochastic processes and partial differ-

ential equations. With the help of the Black-Scholes framework, which had

been used for option pricing (Black and Scholes, 1973), Merton modelled the

debt and equity of the firm. Meanwhile, a new concept “distance-to-default” is

proposed in his article. Based on the Merton model, there have been several

advanced models to relax the restrictions of the model. These later credit risk

models are known as structural models. Similar to the Merton model, the

structural models require information about the firm’s capital structure and

asset value that may be unavailable for unlisted firms. To that end, reduced-

form credit risk models are suggested. Referring to the views of Jarrow and

Turnbull (1995), and Duffie and Singleton (1999), the reduced-form models

regard the default process as a stopped jump process independent of the firm’s

asset value. More details about the structural and reduced-form credit risk

models will be reviewed in Chapter 2.

Moreover, there are some studies on applying regression models to the

estimation of credit risk. For example, Kruppa et al. (2013) compared the

performance of several regression models (logistic regression, Random Forest,

etc.) to estimate consumer credit risk. Along with the recent development of

artificial intelligence, there have been gradually more experiments on applying

machine learning models to credit risk studies. The machine learning models

are similar to regressions to some extent and may have better performance,

but it is more difficult to interpret the reasoning behind them. It should be

noted that machine learning models are sensitive to the parameters. To put

it more simply, it is likely to obtain a high accuracy in-sample by tuning

the parameters deliberately while unable to perform well out of the sample.

Hence, it is important to delve into the foundations of these models before

implementing them. Moreover, it is necessary to explain meanings in the

economic or financial senses for combining a complicated model with credit

risk management.
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In order to resolve the dilemma, this thesis is interested in seeking some

constraints to simplify the models. These constraints could be based on

theoretical grounds or reality restrictions. To exemplify, Dugas et al. (2000)

stated that it is useful to incorporate some prior knowledge for reducing the

complexity of the model and improving the performance of option pricing.

According to some knowledge from the banking industry, monotonicity is used

in the thesis. As evidence, the Merton model demonstrates that default risks

are decreasing against the asset value returns. In addition, the Vasicek model

indicates that the joint default probability is increasing against the correlation

of the asset value returns. In light of such facts from financial studies, it

is reasonable to impose monotonic constraints on credit risk models. Such

constraints can make it easier to interpret complicated credit risk models.

Therefore, the monotonic relationships in credit risk models will be explored in

this thesis. The definition of monotonicity is described as follows.

Definition 1.1. Assume two real-valued random variables X and Y satisfy

Y = f(X) almost surely for a function f . Then

• Y is said to be (strictly) increasing against X if f is (strictly) increasing

on the range of X,

• Y is said to be (strictly) decreasing against X if f is (strictly) decreasing

on the range of X.

In practice, it is necessary to deal with the problem of how to know the

monotonic relationship exactly from the data. A relatively direct method is to

use the related graphs to determine the monotonicity. In other words, a variety

of figures for the realizations of Y against X can be used to roughly determine

whether they are monotonic or not. These figures can be line plots with

ordering variables, scatter plots for smaller data, or box plots for categorical

variables. Applying graphical methods provides a convenient way to view the

relationship between two random variables. Nonetheless, the conclusion can be

confused or even incorrect due to randomness in datasets.

To avoid these problems, the thesis prefers to use hypothesis testing, which

is involved with developing hypotheses, as a numerical ground for the conclusion.
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Without loss of generality, suppose that the null hypothesis H0 is no monotonic

relationship between X and Y , and the alternative hypothesis H1 is that

there exists monotonicity, which can be further divided into increasing and

decreasing. There are two kinds of statistical tests, parametric tests, and

non-parametric tests, which are both usually adjusted to the study of random

series. Referring to the views of Esterby (1996), the later chapters only focus

on non-parametric tests that are thought to be relatively more suitable for

non-normally distributed data, which is fitted with the real data. To put it

another way, non-parametric tests coincide with the practice in the financial

industry. Three non-parametric tests using the ranks of random variables are

studied in the thesis. In the case of applying these tests to credit risk modelling,

the credit indicators, as Y in credit risk models, only have two values (1 and

0 represent a default or not, respectively). Since the range of Y is relatively

simple, it is possible to make some improvements for three rank-based tests.

That is to say, the issue is to improve and compare the performance of the

monotonicity tests with the binary dependent variable Y . Despite numerous

variants of statistical tests for monotonicity, there is still no specific test for

the case of binary outputs. Hence, we also made an effort to develop a new

test for the Vasicek model.

An overview of the later chapters is as follows. Chapter 2 reviews the

structural and reduced-form credit risk models. For further research, the

priority is put on the Vasicek model. Three types of tests based on correlation

coefficients are discussed in Chapter 3. To improve the performance of these

three tests for credit indicators with binary values, Chapter 4 adjusts these

rank-based tests, and Chapter 5 creates a new test by optimizing the weighted

sums. The performance of three rank-based tests and the new test is compared

in Chapter 6. Chapter 7 draws conclusions for the thesis.
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Chapter 2

Credit Risk Models

Credit risk models can be grouped into two types: structural models and

reduced-form models. The former is based on the fact that the probability

of default is computed through asset values and liabilities, while the latter

estimates the probability of default by introducing an exogenous random event.

2.1 The Merton Model

One of the best known credit risk models is the Merton model that is developed

by Merton (1974) through the Black-Scholes (BS) option pricing formula (Black

and Scholes, 1973). In this model, the equity and debt of the firm are regarded

as options on the asset value.

More precisely, let Vt be the asset value of the firm at time t, T be the

maturity of loan with the notional amount of D. The model assumes that Vt

equals to the sum of the values of equity and debt of the firm, denoted by Et

and D respectively, and we have Vt = Et+D. There are also some assumptions

required:

1. Assets can be fractionally and continuously traded. Short selling is

allowed.

2. The interest rates of borrowing and lending are risk-free rate r, which is

constant and deterministic.
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3. No transaction fees or taxes. No dividends.

4. (Vt)0≤t≤T is a geometric Brownian motion, or in other words

dVt

Vt

= µ dt+ σ dWt, (2.1)

where µ and σ are the expected return and volatility of the firm’s assets,

and (Wt)0≤t≤T is a Brownian motion.

The first three assumptions are necessary for using the BS framework and

the last is the evolution of the asset value Vt. Figure 2.1 depicts the path of Vt

and the horizontal line is the constant loan value D. Naturally, we can observe

that if the asset value is below the default point line, VT < D, the firm will

default, and hence the default can be represented by the shaded area. We

assume that if the default occurs, the firm will compensate the bank for the

total assets value VT .

Figure 2.1: Dynamics of the Merton Model, Source: Vasicek (1984)

Since the amount paid at time T should be D or VT , if the firm defaults or

not, we know that the debt at the due date is

BT = min(VT , D) = D −max(D − VT , 0).
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According to (2.1), we can view the debt value as the payoff of the portfolio,

which consists of a zero-coupon bond with a face value D while shorting a

European put option on the firm’s assets value with the exercise price D.

Moreover, the equity payoff ET = max(VT −D, 0) can be viewed as the payoff

of a European call option as well. Recall that we aim to calculate the shaded

area in Figure 2.1 as the probability of default, and with the BS framework we

have

P [VT < D] = Φ(−d2),

where

d2 =
ln V0

D
+
(

µ− σ2

2

)

T

σ
√
T

,

and Φ(·) is the standard normal distribution function. d2 is sometimes called

the “distance-to-default”.

It should be noted that Figure 2.1 shows the credit risk at the maturity

date T , while Black and J. D. Cox (1976) enhanced the Merton model allowing

that the default can be at any time between 0 and T .

2.2 The Vasicek Model

Following the Merton model, Vasicek (1984) studied the credit risk of the loan

portfolio, rather than some financial contracts or a specific derivative. Hence,

the Vasicek model still belongs to the structural models. The Vasicek model

not only regards the joint loss distribution across multiple obligors but also

divides risks into systematic and idiosyncratic parts.

Fix a complete probability space (Ω,F , P ). Considering a group of borrow-

ers with the size of n > 1, the value of the loan portfolio for j = 1, 2, . . . , n at

the maturity time T is

V j
T = ρWT +

√

1− ρ2Bj
T , (2.2)
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where (Wt)0≤t≤T is a Brownian motion (BM) as a common factor of the model,

(Bj
t )0≤t≤T is a BM specific to borrower j, and ρ 6= ±1 can be viewed as a

correlation coefficient.

Assume that (Wt)0≤t≤T and {(Bj
t )0≤t≤T}nj=1 are pairwise independent. Con-

sider the default indicator for any borrower j, which should equal to one if j

defaults,

Y j
T =







1 if V j
T < cj,

0 if V j
T ≥ cj,

(2.3)

where cj is a capital criterion for borrower j. We assume that c is a deterministic

variable with the discrete range of {cj}nj=1. Taking an outcome ω ∈ Ω, we

can think of (2.3) as a functional VT (ω) : c 7→ YT (ω), where YT is a random

variable depending on c. Take the realizations of YT as {yjT}nj=1. We want to

test the monotonicity between {yjT}nj=1 and {cj}nj=1.

If the common factor WT is given, the conditional probability of default

could be examined. Let pj = P [Y j
T = 1|WT ] and qj = P [Y j

T = 0|WT ] = 1− pj.

According to the definitions of pj and qj , we initially know that for any integer

j between 1 and n

pj(x) = P
[

Y j
T = 1|WT = x

]

= P
[

V j
T < cj|WT = x

]

= P

[

Bj
T <

cj − ρx
√

1− ρ2

]

= Φ

(

cj − ρx
√

(1− ρ2)T

)

,

qj(x) = 1− pj(x),

which suggests that pj is increasing against j if c1 < c2 < · · · < cn.

8



A special case is that

[n
2
]

∏

j=1

P [Y j
T = 0|WT = x]

n
∏

j=[n
2
]+1

P [Y j
T = 1|WT = x]

=

[n
2
]

∏

j=1

(

1− Φ

(

cj − ρx
√

(1− ρ2)T

))

n
∏

j=[n
2
]+1

Φ

(

cj − ρx
√

(1− ρ2)T

)

.

Subsequently, we know that Y j
T is conditionally independent of each other

given the normal random variable WT . Note that the conditional moments of

Y j
T and the covariance of Y i

T and Y j
T (i 6= j) can be expressed as follows

E[Y j
T |WT ] = pj,

Var(Y j
T |WT ) = pjqj, (2.4)

Covar(Y i
T , Y

j
T |WT ) = P [Y i

T = 1, Y j
T = 1|WT ]− pipj = 0.

Hence, the conditional probability of default will be P [Y j
T = 1|WT ] for each

j, which is the focus of our study. Our main concern is to find the best methods

for testing the monotonicity of YT against c through the realizations. We will

compare different tests with the assumption that c is ascending. The main

difficulty is that the relation of YT and c is hidden, which means that we cannot

get the first-order derivative as a good measure of the monotonic relation. The

randomness of data can hinder the testing of monotonicity as well. It is better

to give up the traditional definitions of increasing and decreasing since the

range of YT is {0, 1}. We would like to investigate whether the values or order

of {cj}nj=1 have a great impact on the performance of tests. Furthermore, the

model’s sensitivity to correlation ρ and maturity T would be examined.

2.3 Other Structural Models

In 1997, Credit Suisse Financial Products (CSFP) released an approach, Cred-

itRisk+ (Credit Suisse First Boston, 1997). Its main idea comes from that the

loss in actuarial science is determined by the probability of a disaster and the

9



degree of loss or damage caused by it. Unlike the CreditMetrics model (Gupton,

1997), CreditRisk+’s credit risk metric does not include the case that the credit

rating of the credit instrument is reduced. Moreover, an important assumption

of the model is different from the CreditMetrics model. The CreditMetrics

model generally measures the risk of portfolio loans and indirectly calculates the

risk impact of individual loans on portfolio loans by calculating the marginal

risk contribution of new loans. However, the CreditRisk+ model treats each

loan as independent, and the probability of default on each loan is considered

small. The default probability of each loan in the loan portfolio is random and

constant, so it is consistent with the Poisson distribution. In addition, credit

migration risk is not explicitly modelled in this analysis. Instead, CreditRisk+

allows for stochastic default rates which partially account for migration risk.

The advantages of this model are that it is assumed that the probability

of a single asset default is subject to the Poisson distribution, only one case

of default is considered, and the variables considered are small. All of those

make the calculation process simple. The shortcomings of the model are that

assuming the independence of each default may not be consistent with the

actual situation. The model neglects the influence of market risk and credit

rating decline and credit term changes.

At the end of the 20th century, KMV Corporation1, a firm specializing in

credit risk analysis, developed a credit risk methodology to evaluate default

probability and the distribution related to the default. The KMV model is

based on that the equity of the listed firm is regarded as the call option of the

asset, while the liability is regarded as the put option of the asset (Crouhy

et al., 2000). The default risk of the corporation is measured by estimating

the probability that the future asset value of the corporation is lower than a

certain value. The value cannot be directly observed but needs to be estimated

based on the transaction data of the corporate capital market and the financial

data. It is necessary to mention that KMV’s model differs from CreditMetrics

as it relies upon the Expected Default Frequency (EDF) for each issuer, rather

than upon the average historical transition frequencies produced by the rating

1KMV Corporation was named after Stephen Kealhofer, John McQuown, and Oldrich
Vasicek.
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agencies for each credit class.

The advantages of the KMV model are that the calculation of the required

data is easy to obtain, and it is convenient for the researcher to carry out

the risk assessment of default. In addition, the daily update of the data can

dynamically manage the default risk of the corporation. Nonetheless, the

assumptions of the model may not be consistent with reality. For example,

the asset value is subject to normal distribution, and the liabilities can be

simply divided into long-term liabilities and short-term liabilities, which is

questionable. Moreover, the model can only measure the default risk of listed

companies.

2.4 Reduced-Form Models

The development of reduced-form models is mainly driven by the restrictions

of structural models due to assumptions. The first breakthrough is to relax

the limitation of deterministic default timing. For example, a structural model,

proposed by Hull and White (1995), allows the default to happen stochastically

at any time between 0 and T by taking the default probability as a process

over a time interval. The model assumes that the joint default probability

of different individuals is given by a multivariate normal distribution, which

is consistent with the implied moments of the derivatives. Therefore, the

default probability is highly correlated to the real information from the market.

Some other structural models suggest some new concepts, which would not be

discussed in this thesis.

Nonetheless, such models are still not independent of the asset values of

the firms, which requires estimations through the financial data of the firms.

In other words, it could cause inaccuracy since the estimation is based on

historical data and even the financial data can be hard to access as some firms

are not listed. For resolving these limitations, the reduced-form models are

one of the recent solutions. The dependence on the asset value is neglected

in these recent models and the arrival of default is not the most important to

be captured in these models. The Merton model and its successors consider

the default as an endogenous event and focus on computing the probability

11



of default at an exact time. By contrast, the reduced-form models view the

default as an exogenous event and imply the default probability over a small

period via default intensity, which is the reason that they are also known as the

intensity models. The grounds of the intensity models are stochastic calculus

and risk-neutral pricing. The theory of risk-neutral pricing counts on that

the present value of the future payoff of a derivative can be equivalent to the

market value of the derivative.

A number of reduced-form models have been developed since the end of

the last century. Two of them would be introduced here because they are

well-known and have relatively greater impacts. One model is proposed by

Jarrow and Turnbull (1995) during their studies of derivative pricing. The

model assumes the default process as a stopped jump process and defines

the intensity of default as the hazard rate. The hazard rate is a concept in

probability theory, which is often used in survival analysis. Likewise, the

survival probability is computed as the probability of the default process at a

specific time. It is worthwhile to mention that the default intensity is regarded

as a Poisson process while the default process depends on the intensity. This

model is independent of the accounting data of the firm and extends the default

arrival to a stochastic case. The other famous reduced-form model is developed

by Duffie and Singleton (1999). Their research indicates that a defaultable

zero-coupon bond can be equivalently replaced by a default-free bond with

the interest rates modelled as default intensity. And then such a bond can

be priced using the risk-neutral theory. Their work suggests a framework for

converting the defaultable contract into a default-free one, which is crucial to

dealing with gradually more complex financial contracts nowadays.
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Chapter 3

Statistical Tests for

Monotonicity

This section will introduce several testing for detecting monotonic relations.

There are commonly used correlation-based tests and their variants for different

situations, including the multivariate version.

3.1 Spearman Rank Test

The Spearman Rank (SR) test is a rank-based non-parametric statistical test

that can be used to detect a monotonic trend in a time series (Lehmann and

D’Abrera, 1975).

Given a sample data set Xi, i = 1, 2, . . . , n the null hypothesis H0 of the SR

test against trend tests is that all the Xi are no monotonic trend; the alternative

hypothesis is that Xi increases or decreases with i. The test statistic is given

by

D = 1−
6

n
∑

i=1

[R (Xi)− i]2

n (n2 − 1)
, (3.1)

where R(Xi) is the rank of i-th observation Xi in the sample of size n.

There are some restrictions for the simplified formula (3.1): the data set

should be without ties. If ties exist, we should assign the rank to each value, and

then replace the rank with the arithmetic average of the tied values. Meanwhile,

13



it is better to use the Pearson correlation coefficient in (3.2) as the test statistic

to avoid incorrect results.

D =
Cov(R(Xi), i)

σXi
σi

, (3.2)

where σXi
and σi are the standard deviations of Xi and its rank, respectively.

Under the null hypothesis, the distribution of D is asymptotically normal

with the mean and variance as follows (Lehmann and D’Abrera, 1975)

E(D) = 0,

Var(D) =
1

n− 1
.

The p-value of the SR statistic (d) of the observed sample data is estimated

using the normal cumulative distribution function (CDF) as its statistics are

approximately normally distributed With the mean of zero and variance of

Var(D) for the SR statistic. Using the following standardization

ZSR =
D

√

Var(D)
,

the standardized statistic Z follows the standard normal distribution Z ∼
N(0, 1) when n > 4.

Yue et al. (2002) compared the power of both the SR test and the following

MK test to detect a trend. They also studied the influence of sample sizes and

sample variations on the power of the tests.

3.2 Mann-Kendall Test

Another rank-based non-parametric test is the Mann-Kendall (MK) statistical

test, which has been commonly used to assess the significance of trends in time

series. The basic principle of MK tests for the trend is to examine the sign of all

pairwise differences of observed values. Mann (1945) published the univariate

form of such tests at first, while Hoeffding and Robbins (1948), Kendall (1955),

and Dietz and Killeen (1981) expanded it to the multivariate situation.
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The MK test is based on the test statistic S defined as follows:

S =
n−1
∑

i=1

n
∑

j=i+1

sgn (xj − xi) , (3.3)

where the xj are the sequential data values, n is the length of the data set, and

sgn(θ) =



















1 if θ > 0,

0 if θ = 0,

−1 if θ < 0.

Mann (1945) and Kendall (1955) have documented that when n ≥ 8,

the statistic S is approximately normally distributed with the mean and the

variance as follows:

E(S) = 0, (3.4a)

Var(S) =
n(n− 1)(2n+ 5)−

∑

p tp(tp − 1)(2tp + 5)

18
, (3.4b)

where p indicates the p-th group of tied variables, and tp is the size of this

group. Such an adjustment for ties was proposed by Helsel et al. (2005). The

standardized test statistic Z is computed by

ZMK =























S−1√
Var(S)

if S > 0,

0 if S = 0,

S+1√
Var(S)

if S < 0.

(3.5)

The standardized MK statistic Z follows the standard normal distribution with

the mean of zero and variance of one when n > 10.

The p-value (probability value, p) of both the MK statistic (S) and the

SR statistic (D) of sample data can be estimated using the normal CDF or

simulation. If the p-value is small enough, the trend is quite unlikely to be

caused by random sampling. For instance, at the significance level of 0.05, if

p ≤ 0.05, then the existing trend is considered to be statistically significant.
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Although this test is widely used, a rather incomplete picture of the power

of the MK test for the detection of the trend under various circumstances is

the current state of the art.

There are several factors with impact on the performance of standard MK

tests, such as serial correlation, missing data, and values below the detection

limit. Due to the existence of auto-correlation, several seasonal MK tests have

been developed (e.g., Robert M. Hirsch et al., 1982). From the practical point

of view, missing data have been handled by ignoring the missing data and

calculating the test statistic as if the sample is complete. We mainly discuss

two directions of development for MK tests.

On the one hand, the variables can affect each other due to some hidden

relations. When coping with practical data, we often face up to correlated

variables. In order to apply the MK test, we need to get the covariance and use

a general formula from Kendall (1955). Hipel and McLeod (1994) proposed a

method for such a situation. He also extended the method to the multivariate

case.

On the other hand, many factors are affecting the main studied response

parameter, which can bias the trend results. To overcome this problem, the

partial Mann-Kendall (PMK) tests have been developed. The PMK tests

were first proposed by Clark and El-Shaarawi (1993), which can be derived

from the general theory of multivariate MK tests by computing the conditional

distribution of one MK statistic given a set of other MK statistics. Libiseller and

Grimvall (2002) presented different variants of the PMK tests and compared

their performance of them.

3.3 Cox-Stuart Test

D. Cox and Stuart (1955) improved the MK test and proposed new statistical

testing. However, it requires several assumptions for ensuring linear regression.

In other words, it requires that there is a linear relationship between the

explanatory and response variables, which is not directly fitted with our case

of a binary response variable.

Considering its limitation, we only give some brief review of the Cox-Stuart
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(CS) test. Still, for the same denotation, the corresponding test statistic C is

as follows:

C =

n/2
∑

k=1

(n− 2k + 1)hk,n−k+1,

where

hij =







1 if y′i > y′j,

0 if y′i ≤ y′j.

The CS statistic is proved to be asymptotically C ∼ N(n2/8, n(n2 − 1)/24).

However, the test is originally designed for considering a linear regression with

an upward or downward trend.

3.4 Possible Extensions

In practice, the datasets typically contain several variables which have trends in

different directions. This has led to the studies of multivariate techniques. Dietz

and Killeen (1981) described an extension of the MK statistic for multivariate

data where the trend for individual variables can be in different directions.

An example of such data is given by the matrix Yj = (yijk) for season j,

where the element yijk is the observation for variable k in season j of year

i and i = 1, 2, . . . , n and k = 1, 2, . . . ,m. The test statistic is the quadratic

form S ′V −S of the vector, S = (S1, S2, . . . , Sm), of the MK statistics for the

m parameters and V , the covariance matrix of S.

Lettenmaier (1988) proposed as a test statistic the sum of the squares of

the Sk for k = 1, 2, . . . ,m, which he called the covariance eigenvalue (CE)

method. To account for the additional dimension of season, the MK statistics

are calculated separately for each season within the variable and then summed

over the season for each variable.

The performance of these multivariate tests has been evaluated for some

water monitoring programs (Lettenmaier, 1988; Ward et al., 1991). Assuming

a linear trend, normal or log-normal error distributions, and between-variable
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and between-season correlations, the first two studies showed that the CE

method was more powerful than the method of Dietz and Killeen (1981), called

covariance inversion (CI), and, although both had empirical significance levels

lower than the nominal, the CE method was less conservative than the CI

method. Ward et al. (1991) evaluated modifications that retained dependence

between variables but assumed independence between seasons, the latter as-

sumption having been shown to be tenable for the datasets which motivated

their study. The major result of the study was to show that these multivariate

tests are more powerful than individual tests with nominal significance levels

modified by a Bonferroni inequality.

The modified seasonal Kendall trend test given by Robert M Hirsch and

Slack (1984) can also be viewed as a multivariate test and has been called the

covariance sum test. It was evaluated in the above studies, but, as it does not

allow for trends of different directions, it would not always be applicable.

Douglas et al. (2000) give a general framework for multivariate trend tests

and show how the tests discussed here fit into this framework, as do tests

based on the Spearman trend statistic. Further results are also given on testing

the heterogeneity of trend, the null distribution of the CE statistic, and the

identification of variables that are important contributors to the overall trend

through canonical analysis.
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Chapter 4

Modification of Classical Tests

for Binary Outputs

We attempt to extend the application of the tests discussed in the last chapter

to the case of the binary response variable. For the following simplification, we

would like to discuss the realizations of variables, which would be deterministic.

4.1 Modification for Spearman Rank Test

Suppose that n > 3 and {cj}nj=1 is ascending ordered. To apply the SR test,

we need to obtain the ranks initially

R(yjT ) =







n0+1
2

if yjT = 0,

n+n0+1
2

if yjT = 1,

where n0 means the number of 0 in the realizations {yjT}. The mean and

variance of the ranks can be computed

R(y) = y =
n+ 1

2
,

Var[R(y)] =
(n− n0)n0

4
.
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Using (3.2), the observed SR statistic should be

D̂ =

n
∑

j=1

[

n+ 1− 2R(yjT )
]

(n+ 1− 2j)

n
√

n0(n−n0)(n2−1)
3

with the variance of Var(D) = 1/(n− 1). Meanwhile, it can be standardized

as follows

ẐSR =
D̂

√

Var(D)
=

n
∑

j=1

[

n+ 1− 2R(yjT )
]

(n+ 1− 2j)

n
√

n0(n−n0)(n+1)
3

.

Using the same hypotheses in the previous chapter, we assume that H0 will

be rejected at the significance level α. As is mentioned in Section 3.1, ZSR

satisfies the standard normal distribution asymptotically. Hence, the p-value

of the test should be

p = P
[

|ZSR| ≥ |ẐSR|
]

= 2
[

1− Φ
(

|ẐSR|
)]

.

If p < α, we can reject H0. Meanwhile, the critical values are Φ−1 (1− α/2)

and Φ−1 (α/2) where Φ−1(·) is the quantile function of N(0, 1). Supposing H1

is true, we can obtain the power of the SR test as follows

B(θ) = P
[

θ
√
n− 1 > Φ−1

(

1− α

2

)

or θ
√
n− 1 < Φ−1

(α

2

)]

,

where θ 6= 0.

4.2 Modification for Mann-Kendall Test

Before presenting the details, it is necessary to introduce the definitions below.

Definition 4.1. Given a sequence {Ai} = {A1, A2, . . . }, we can define an

increasing sequence {ik} such that
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{

i0 = 0,

ik = min{i > ik−1 : Aik−1+1 = · · · = Ai 6= Ai+1}.

The integer ik, k ≥ 1 is called a break-point for the sequence {Ai}. If Aik <

Aik+1, ik is called a upwards break-point. If it is the reverse, ik is called a

downwards break-point.

Definition 4.2. Let {J+
i } be the set of upwards break-points for {yjT}nj=1,

where J+
i−1 < J+

i . The size of {J+
i } is denoted by m+.

Similarly, let {J−
i } be the set of downwards break-points for {yjT}nj=1, where

J−
i−1 < J−

i . The size of {J−
i } is denoted by m−.

If there is no break-point or only one break-point, the observed MK test

statistics can be computed using (3.3) as follows

Ŝ = n0n1.

Consider that there are two break-points: one is upwards (J+), the other is

downwards (J−), which means m̂+ = 1 and m̂− = 1. According to the previous

definitions, it implies that y1T = ynT . Without loss of generality, assume that

y1T = 0. If Ĵ+ > Ĵ−, then yĴ
−

T = y1T , yĴ
−+1

T < 0. It is a contradiction and

meanwhile J+ 6= J− based on their definitions. Hence, Ĵ+ is less than Ĵ−.

Because there is only one upwards break-point, yjT = 0 for all Ĵ− < j ≤ n. In

Table 4.1, we show what the realizations {yjT} looks like.

j = 1 · · · Ĵ+ (Ĵ+ + 1) · · · Ĵ− (Ĵ− + 1) · · · n

yjT = 0 · · · 0 1 · · · 1 0 · · · 0

Table 4.1: Structure of the Realizations

On the contrary, consider the case that there are more break-points Ĵi

where i = 1, . . . ,m. According to Table 4.1, we can express the observed test
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statistic as

Ŝ =
n−1
∑

j=1

n
∑

i=j+1

sgn
(

yiT − yjT
)

=
∑

1≤j<Ĵ1

n
∑

i=j+1

sgn
(

yiT
)

+
∑

Ĵ1≤j≤Ĵm̂

n
∑

i=j+1

sgn
(

yiT − yjT
)

+
∑

Ĵm̂<j<n

n
∑

i=j+1

sgn
(

yiT − yjT
)

= n1(Ĵ1 − 1) + Ŝp + (n− Ĵm̂)(n0 − Ĵ1 + 2),

where n1 = n− n0 indicates the number of 1 in the observations, and

Ŝp =
∑

Ĵ1≤j<i≤Ĵm̂

sgn
(

yiT − yjT
)

.

Meanwhile, based on (3.4b), the variance of this statistic should be

Var(S) =
n(n− 1)(2n+ 5)−∑1

i=0 ni(ni − 1)(2ni + 5)

18
=

n0n1(n+ 1)

3
.

Using (3.5), the standardized observed test statistic can be obtained

ẐMK =
Ŝ

√

Var(S)
=

n1(J1 − 2) + Ŝp + (n− Jm)(n0 − J1 + 2)− 1
√

n0n1(n+1)
3

if Ŝ > 0 that indicates the ascending order exists.

We can do similar procedures for the SR test and then obtain the p-value

and power of the MK test as follows

p = 2
(

1− Φ(|ẐMK|)
)

,

B(θ) = P

[

θ − 1
√

Var(S)
> Φ−1

(

1− α

2

)

or
θ + 1

√

Var(S)
< Φ−1

(α

2

)

]

,

where θ 6= 0.
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4.3 Modification for Cox-Stuart Test

We will not discuss too many details about the CS test due to the limitation

of its assumptions. However, we still give an idea for simplifying the test.

Since the CS test consists of a comparative indicator similar to the sign

function, we can employ a similar method as the MK test. In exact, the CS

test statistic can be computed as follows

Ĉ =

n/2
∑

k=1

(n− 2k + 1)hk,n−k+1,

where

hij =







1 if y′i > y′j,

0 if y′i ≤ y′j.

It is possible to replace the sgn with h in the previous derivation, which is

omitted here.
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Chapter 5

A New Test for Binary Outputs

Fix the complete probability space (Ω,F , P ), which is the same as the space

mentioned in Section 2.2. Without the loss of generality, assume that n > 3

and {cj}nj=1 is ascending ordered, c1 < c2 < · · · < cn. We aim to create a

different hypothesis testing with the better performance for the Vasicek model.

The hypotheses are still the same as follows:

H0 : There is no monotonicity of YT against c.

H1 : YT monotonically increases as c, or YT monotonically decreases as c.

For an integer 1 ≤ k < n, we define the so-called original monotonicity as

follows.

Definition 5.1. Let µ be a measure on natural numbers N and ε, η > 0 be

positive numbers. We say that

• YT is (µ, ε, η)-originally increasing against c if

µ({j ∈ N : 1 ≤ j ≤ k, P [Y j
T = 0] < P [Y j

T = 1] + η}) < ε

and

µ({j ∈ N : k + 1 ≤ j ≤ n, P [Y j
T = 1] < P [Y j

T = 0] + η}) < ε,
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• YT is (µ, ε, η)-originally decreasing against c if

µ({j ∈ N : 1 ≤ j ≤ k, P [Y j
T = 1] < P [Y j

T = 0] + η}) < ε

and

µ({j ∈ N : k + 1 ≤ j ≤ n, P [Y j
T = 0] < P [Y j

T = 1] + η}) < ε.

Let Yl = {Y j
T : 1 ≤ j ≤ k} and Yr = {Y j

T : k + 1 ≤ j ≤ n}. In the case

that the original monotonicity is increasing, some values of YT may decrease

against c due to the randomness. In other words, it is possible that Y j1
T > Y j2

T

for Y j1
T ∈ Yl and Y j2

T ∈ Yr. To examine the effect of randomness, we can

employ a weighted sum of difference as the test statistic

δ =
k
∑

j=1

wj1{Y j
T
=1} +

n
∑

j=k+1

wj1{Y j
T
=0}

=
k
∑

j=1

wjY
j
T +

n
∑

j=k+1

wj(1− Y j
T ), (5.1)

where wj ≥ 0 are weights summing up to 1, Y j
T and 1− Y j

T can be viewed as

the difference with ideal values. Similarly, the test statistic can be chosen as

δ =
k
∑

j=1

wj1{Y j
T
=0} +

n
∑

j=k+1

wj1{Y j
T
=1}

=
k
∑

j=1

wj(1− Y j
T ) +

n
∑

j=k+1

wjY
j
T ,

in the case that the original monotonicity is decreasing.

Suppose that there is a positive number δ∗ used for giving the result of

test. If δ ≤ δ∗, we say that the there is monotonicity, same as the original

monotonicity, between YT and c and reject the H0. Meanwhile, the hypotheses

can be expressed as

H0 : δ > δ∗, H1 : δ ≤ δ∗. (5.2)
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5.1 Important Parameters

There are two undetermined parameters: k and δ∗. On the one hand, given a

relatively smaller number α0 ∈ (0, 1), called an acceptance level, then consider

the optimization problem as follows

max
δ∗

{P [δ ≤ δ∗|W T ] ≤ α0} (5.3)

or

min
δ∗

{P [δ > δ∗|W T ] ≤ α0}.

Note that we consider the conditional probability for a given WT . We define δ∗

as the solution to (5.3). According to this definition, δ∗ depends on α0 and the

variables. Hence, its value would be obtained through the distribution of δ.

On the other hand, k is related to the variables and hence it is valued

numerically. Let k change from 1 to n − 1 and compare the result of the

experiment. The value of k should have the best experimental performance,

which maximizes (5.3). The reason is that as k varies, the result of δ would be

different, which also impact on the result.

5.2 The Distribution of Test Statistic

According to the conditional moments of Y j
T in (2.4), if the original monotonicity

is increasing, the conditional expectation and variance of test statistic δ are

E[δ|WT ] =
k
∑

j=1

wjpj +
n
∑

j=k+1

wjqj, (5.4a)

Var(δ|WT ) =
n
∑

j=1

w2
jpjqj, (5.4b)

where pj = P [Y j
T = 1|WT ] and qj = P [Y j

T = 0|WT ] = 1− pj. On the contrary,

if the original monotonicity is decreasing, the conditional expectation and
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variance of test statistic δ should be

E[δ|WT ] =
k
∑

j=1

wjqj +
n
∑

j=k+1

wjpj,

Var(δ|WT ) =
n
∑

j=1

w2
jpjqj.

Since Y 1
T , . . . , Y

n
T are conditionally independent and Bernoulli distributed

variables, we can apply the Central Limit Theorem and know that δ is asymp-

totically normal. This conclusion helps to evaluate the performance of the test

for numerical experiments.

5.3 The Selection of Weights

This section provides some examples of weights at first. Then, the optimized

weights are derived through the method similar as mean-variance optimization.

The performance of these weights would be compared in details in the next

chapter.

5.3.1 Uniform Weights

The first example is a natural form of weights. In other words, all values of

weights are equal as follows

wj =
1

n
,

where j = 1, 2, . . . , n.

5.3.2 Equivalent Weights to Mann-Kendall Test

If the original monotonicity of YT against c is increasing, it is possible to derive

some form of weights to build a relationship between the new test and MK

test. Consider that

wj =







2(j−1)
q

if j ≤ k,

2(n−j)
q

if j > k,
(5.5)
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where q = n2 − (2k + 1)n+ 2k(k − 1). With the weights in (5.5), we can get

the corresponding statistic δMK. And we have the following relationship

S = qδMK + k(n− k)− (n− 1)

[

k
∑

j=1

Y j
T +

n
∑

j=k+1

(1− Y j
T )

]

,

where S is the test statistic of the MK test.

If the original monotonicity is decreasing, we get similar weights as follows

wj =







2(n−j)
q

if j ≤ k,

2(j−1)
q

if j > k,

which satisfies

S = qδMK − k(n− k)− (n− 1)

[

k
∑

j=1

Y j
T +

n
∑

j=k+1

(1− Y j
T )

]

.

5.3.3 Probability-Related Weights

Assume that the capital criterion follows the form

cj = f(j,M),

where M is not hidden but based on some given information. If the original

monotonicity is increasing, we would like to find weights by estimating the

range of M . If the original monotonicity is decreasing, we can convert it into

the similar case by replacing Y j
T with 1− Y j

T .

Based on the definition, k should perform as a good splitting point such

that

pk(x) = P
[

Y k
T = 1

∣

∣WT = x] <
1

2
≤ P

[

Y k+1
T = 1

∣

∣WT = x] = pk+1(x).

In other words,

P
[

V k
T < ck

∣

∣WT = x] <
1

2
≤ P

[

V k+1
T < ck+1

∣

∣WT = x].
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Further,

Φ

(

f(k,M)− ρx
√

(1− ρ2)T

)

<
1

2
≤ Φ

(

f(k + 1,M)− ρx
√

(1− ρ2)T

)

,

f(k,M) < ρx ≤ f(k + 1,M), (5.6)

where Φ is the distribution function of N(0,1). Using (5.6), we can firstly

estimate the range of M and then the range of pj(x). Let the range of pj(x)

be (aj, bj) and pmid
j = (aj + bj)/2.

Hence, the probability related weights are defined as follows:

vj =







1− pmid
j if j ≤ k,

pmid
j if j > k,

and

wj =
vj
n
∑

`=1

v`

.

5.3.4 The Optimized Weights

The goal is to find a better weights by optimizing some metrics of the test. Fix

α0 and remain the same hypotheses as (5.2) and regard δ as a function of inputs

{cj}nj=1. For robustness of testing, we attempt to interchange two of {cj}nj=1,

which is assumed to be an ascending sequence, and then the monotonicity

should not hold. Ideally, the test statistic δ is expected to reveal the change of

order. Put it more simply, we aim to solve the following minimization:

min
w1,...,wn

{

E2[δ|WT ] + aVar(δ|WT )
}

(5.7)
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subject to

min
{c̃j}nj=1

E[δ({c̃j}nj=1)|WT ] ≥ α0, (5.8)

n
∑

j=1

wj = 1, (5.9)

w1, . . . , wn ≥ 0, (5.10)

where a > 0 is a tolerant factor, and c̃j = cj for all except for two different

integers j1 ≤ k < j2, such that c̃j2 = cj1 and c̃j1 = cj2 .

In the case that the original monotonicity is increasing, come back to the

optimization problem (5.7). Initially, we attempt to solve the optimization

without the inequality constraints (5.8) and (5.10). Using the conditional

moments of δ in (5.4) we can provide the Lagrange function

L(w1, . . . , wn, η) =E2[δ|WT ] + aVar(δ|WT )− η

(

n
∑

j=1

wj − 1

)

(5.11)

=

(

k
∑

j=1

wjpj +
n
∑

j=k+1

wjqj

)2

+ a
n
∑

j=1

w2
jpjqj − η

(

n
∑

j=1

wj − 1

)

,

where wj should be non-negative for all 1 ≤ j ≤ n.

Subsequently, the first order derivative of L over wj should be

∂L

∂wj

=







2pjSσ + 2apjqjwj − η if 1 ≤ j ≤ k,

2qjSσ + 2apjqjwj − η if j > k,
(5.12)

where Sσ = E[δ|WT ] =
∑k

j=1 wjpj +
∑n

j=k+1 wjqj. Using the first order condi-

tion, the linear system can be obtained as follows



















2pjSσ + 2apjqjwj = η if 1 ≤ j ≤ k,

2qjSσ + 2aqjpjwj = η if j > k,
∑n

j=1 wj = 1.

(5.13)
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According to (5.13), we have the following proposition.

Proposition 5.1. The optimized weights are as follows

If j ≤ k, then

wj =
1

qj
· 1

n
∑

`=1

1
p`q`

− U2

V+a

(

1

pj
− U

V + a

)

.

If j > k, then

wj =
1

pj
· 1

n
∑

`=1

1
p`q`

− U2

V+a

(

1

qj
− U

V + a

)

,

where

U =
k
∑

`=1

1

q`
+

n
∑

`=k+1

1

p`
, V =

k
∑

`=1

p`
q`

+
n
∑

`=k+1

q`
p`
.

The proof can be seen in Appendix A.1. Meanwhile, the sum of weights should

be

Sσ =
a

n
∑

j=1

1
pjqj

− U2

V+a

· U

V + a
.

The next is to consider a sequence {c̃j}nj=1 such that c̃j = cj except for

c̃j1 = cj2 and c̃j2 = cj1 . Similarly, the conditional probabilities can be denoted

by p̃j and q̃j, where p̃j + q̃j = 1. Assume that k becomes k̃ as the order of

{cj} changes. In this context, the values and sum of weights would be w̃j and

S̃, respectively. Furthermore, the constraint (5.8) is equivalent to that for all
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j1 ≤ k < j2

E[δ({c̃j}nj=1)|WT ] =
k̃
∑

j=1

w̃j p̃j +
n
∑

j=k̃+1

w̃j q̃j

= S̃σ

=
a

n
∑

j=1

1
p̃j q̃j

− Ũ2

Ṽ+a

· Ũ

Ṽ + a

≥ α0,

where

Ũ =
k̃
∑

`=1

1

q̃`
+

n
∑

`=k̃+1

1

p̃`
, Ṽ =

k̃
∑

`=1

p̃`
q̃`

+
n
∑

`=k̃+1

q̃`
p̃`
.

Finally, combining the above inequality with (5.14), there are several re-

strictions about a for the rightness of constraints as the below proposition

states.

Proposition 5.2. The tolerant factor a and acceptance level α0 should satisfy

that

for any 1 ≤ j ≤ k,

1

qj
· 1

n
∑

`=1

1
p`q`

− U2

V+a

(

1

pj
− U

V + a

)

≥ 0; (5.15a)

for any k < j ≤ n,

1

pj
· 1

n
∑

`=1

1
p`q`

− U2

V+a

(

1

qj
− U

V + a

)

≥ 0; (5.15b)
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for any 1 ≤ j1 ≤ k < j2 ≤ n,

a
n
∑

j=1

1
p̃j q̃j

− Ũ2

Ṽ+a

· Ũ

Ṽ + a
≥ α0. (5.15c)

Note that U > 1, Ũ > 1, U > V and Ũ > Ṽ . Despite that we may calculate

the range of a, we want to focus on the existence of the best weights rather than

the complete selection of a. Therefore, we only provide a sufficient condition.

Proposition 5.3. There is a sufficient condition of Proposition 5.2 that

a ≥ max(pn, q1) · U − V (5.16)

and

α0 < min(p1, qn). (5.17)

Proof. We know that (5.15a) is equivalent to







1
pj

≥ U
V+a

∑n
`=1

1
p`q`

> U2

V+a

or







1
pj

≤ U
V+a

∑n
`=1

1
p`q`

< U2

V+a

for all 1 ≤ j ≤ k. Since pj is increasing, we have







1
pk

≥ U
V+a

∑n
j=1

1
pjqj

> U2

V+a

or







1
p1

≤ U
V+a

∑n
j=1

1
pjqj

< U2

V+a

Then







a ≥ pkU − V

a > U2

∑n
j=1

1

pjqj

− V
or







0 < a ≤ p1U − V

a < U2

∑n
j=1

1

pjqj

− V
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According to the Cauchy–Schwarz inequality, we can get that

V

n
∑

j=1

1

pjqj
=

(

k
∑

j=1

pj
qj

+
n
∑

j=k+1

qj
pj

)

n
∑

j=1

1

pjqj

=

[

k
∑

j=1

(
√

pj
qj

)2

+
n
∑

j=k+1

(
√

qj
pj

)2
]

n
∑

j=1

(√

1

pjqj

)2

≥
(

k
∑

j=1

1

qj
+

n
∑

j=k+1

1

pj

)2

= U2,

which means that U2/[
∑n

j=1 1/(pjqj)] − V ≤ 0. Consequently, the set of

available a should be






a ≥ pkU − V,

a > 0.
(5.18)

Similarly, the set of all solutions to (5.15b) is







a ≥ qkU − V,

a > 0.
(5.19)

Remark 5.3.1. What is necessary to mention is that pkU − V and qkU − V

can be any real number. To illustrate, suppose that n = 3, k = 2 and

p1 = 1/16, p2 = 1/8, p3 = 1/4. At this point,

pkU − V =
1

8

(

16

15
+

8

7
+ 4

)

−
(

1

15
+

1

7
+ 3

)

= −73

30
< 0.

Conversely, for the same n and k let p1 = 1/2, p2 = 3/4, p3 = 7/8, resulting in

pkU − V =
3

4

(

2 + 4 +
8

7

)

−
(

1 + 3 +
1

7

)

=
17

14
> 0.

Note that pn > pk, q1 > qk and

max(pn, q1) · U − V ≥
(

k
∑

j=1

pn
qj

+
n
∑

j=k+1

q1
pj

)

−
k
∑

j=1

pj
qj

−
n
∑

j=k+1

qj
pj

> 0.
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Therefore, we can know that both (5.18) and (5.19) are satisfied.

Before considering (5.15c), note that for any j 6= j1, j2 and j1 ≤ k < j2

q̃j = 1− p̃j, p̃j = pj, p̃j1 = pj2 , p̃j2 = pj1 .

As a result,
n
∑

j=1

1

p̃j q̃j
=

n
∑

j=1

1

pjqj
.

Return to (5.15c), it implies that for any j1 ≤ k < j2







aŨ − α0(Ṽ + a)
∑n

j=1
1

p̃j q̃j
+ α0Ũ

2 ≥ 0,
∑n

j=1
1

p̃j q̃j
> Ũ2

Ṽ+a
,

or







aŨ − α0(Ṽ + a)
∑n

j=1
1

p̃j q̃j
+ α0Ũ

2 ≤ 0,
∑n

j=1
1

p̃j q̃j
< Ũ2

Ṽ+a
.

We still employ the Cauchy-Schwarz inequality to get Ũ2/[
∑n

j=1 1/(p̃j q̃j)] ≤ Ṽ .

Then, we obtain that for any j1 ≤ k < j2







(

Ũ − α0

∑n
j=1

1
pjqj

)

a ≥ α0

(

Ṽ
∑n

j=1
1

pjqj
− Ũ2

)

,

a > 0.

Note that Ũ <
∑n

j=1 1/(p̃j q̃j) =
∑n

j=1 1/(pjqj). To assure the existence of a,

for each pair of j1 and j2, α0 > 0 should be small enough to satisfy

Ũ − α0

n
∑

j=1

1

pjqj
> 0. (5.20)

According to (5.17), we know that α0 < pj and α0 < qj for all 1 ≤ j ≤ n.

Furthermore, the order of sequence is the only difference between {c̃j}nj=1 and
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{cj}nj=1 so that α0 < p̃j and α0 < q̃j for all 1 ≤ j ≤ n. Then we know that

Ũ − α0

n
∑

j=1

1

pjqj
=

k̃
∑

j=1

1

q̃j
+

n
∑

j=k̃+1

1

p̃j
− α0

n
∑

j=1

1

p̃j q̃j

=
k̃
∑

j=1

p̃j − α0

p̃j q̃j
+

n
∑

j=k̃+1

q̃j − α0

p̃j q̃j
> 0.

Hence, the last step is to show that for any possible j1 and j2, (5.16) is a

subset of solutions to

a ≥ α0

Ṽ
n
∑

j=1

1
pjqj

− Ũ2

Ũ − α0

n
∑

j=1

1
pjqj

. (5.21)

Put it another way, rearranging terms in (5.21), we can obtain that

a ≥
α0Ṽ

n
∑

j=1

1
pjqj

− α0Ũ
2

Ũ − α0

n
∑

j=1

1
pjqj

=

Ṽ

(

α0

n
∑

j=1

1
pjqj

− Ũ

)

+ Ũ Ṽ − α0Ũ
2

Ũ − α0

n
∑

j=1

1
pjqj

=
Ṽ − α0Ũ

Ũ − α0

n
∑

j=1

1
pjqj

Ũ − Ṽ . (5.22)

Then based on (5.17), we can obtain that

Ṽ − α0Ũ

Ũ − α0

n
∑

j=1

1
pjqj

=

k̃
∑

j=1

p̃j
p̃j−α0

p̃j q̃j
+

n
∑

j=k̃+1

q̃j
q̃j−α0

p̃j q̃j

k̃
∑

j=1

p̃j−α0

p̃j q̃j
+

n
∑

j=k̃+1

q̃j−α0

p̃j q̃j

<

pn
k̃
∑

j=1

p̃j−α0

p̃j q̃j
+ q1

n
∑

j=k̃+1

q̃j−α0

p̃j q̃j

k̃
∑

j=1

p̃j−α0

p̃j q̃j
+

n
∑

j=k̃+1

q̃j−α0

p̃j q̃j

,
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and hence
Ṽ − α0Ũ

Ũ − α0

n
∑

j=1

1
pjqj

≤ max(pn, q1).

Appendix A.2 demonstrates some ideas for extending this proposition.
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Chapter 6

Numerical Experiments

6.1 Setups of Simulation

Now that we have a new test for detecting monotonicity, we would like to use

Monte Carlo simulation to generate the data for examining its performance.

Let N be the number of simulations with the value of 1000. For each simulation,

the criteria {cj} has a size of n = 100 and is ascending ordered based on our

assumption. Meanwhile, the observations of {yjT} are obtained by generating

individual random variables {Bj
T} in (2.2) with the maturity T = 1 and the

correlation ρ varying between 0 and 1. According to the previous discussion,

we mainly consider conditional probability with respect to the Vasicek model,

and hence, we set the condition to be WT = 0.1, which equals to the risk-free

rate.

To employ a well-rounded experiment, the total data {(cj, yjT )} are equally

divided into four groups: increasing, almost equal (most of yjT are the same),

nearly no monotonicity (weakly increasing), and no monotonicity. For each

group, we choose a different range of {cj} to control the monotonicity between

yjT and cj . Figure 6.1 illustrates 4 scatter plots of the corresponding situations.

In Figure 6.1, we could observe that the upper left plot has sparse points

for cj < 0, yjT = 1 and cj ≥ 0, yjT = 0, which implies an increasing relationship

between yjT and cj . The upper right one is relatively a special case, due to fewer

points with yjT = 1, that indicates that is not strictly increasing. According
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Figure 6.1: Examples of Four Groups in Total Data

to our expectation, the testing method should detect the monotonicity in this

case. Increasing the number of points for cj < 0, yjT = 1 and cj ≥ 0, yjT = 0, we

got the other two plots that are considered to be weakly increasing and not

monotonic, respectively. In these situations, the monotonicity could be more

sensitive due to the randomness, and hence, we labelled the monotonicity for

each simulation. Out of the same consideration, we only choose the part of

data showing nearly no monotonicity when comparing the power of different

tests.

6.2 Estimation of Parameters

For our new test, there are three parameters to be determined, which is discussed

in Section 5.1. The values of a and α0 are restricted by Proposition 5.3, which

suggests that a = max(pn, q1) · U − V + 1 and α0 = min(p1, qn)/2. The

parameter k is determined by minimizing the objective function in (5.7). The

acceptance level α0 controls the critical value of the new test, while the tolerant

factor a affect the derivation of weights. When changing {cj}, the conditional
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probabilities pj and qj can be so different that the effect of a vary. We found that

eliminating the monotonicity has an impact on the effect of a. To illustrate, we

explored the conditional moments of the test statistic δ, the objective function

for finding weights, and the values of k appearing in (5.1).
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Figure 6.2: Performance of New Test against a

Figure 6.2 depicts the performance of the new test when changing a in the

situations of increasing and no monotonicity. The left four line plots are for the

increasing case, while the right four line plots are for the case of no monotonicity.

At first glance, we found that as a increases, δ’s conditional expectation and the
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objective function increases, δ’s conditional variance decreases, and k fluctuates

initially and stays the same for larger a. Especially, the conditional moments

of the test statistics show a stable trend when a is increasing. On the other

hand, the stabilization of these values over a are magnificent when there is no

monotonicity. Meanwhile, the stable value of k are different and k even takes

the maximum of its range (n− 1) when there is no monotonicity, which seems

to be reasonable referring to our definition of δ. The findings suggests that we

should change a for different {cj}, and it is worthwhile to take a smaller a for

minimizing the objective function. In other words, it is better to find the value

of a numerically rather than using the sufficient condition in Proposition 5.3.
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Figure 6.3: Optimal Weights for Different a

To delve into the underlying of the effect of a, we compared the best weights

for several values of a. The illustration are shown in Figure 6.3, where the

top plot is for increasing and the bottom one is for no monotonicity. On the

one hand, the best weight decreases for j ≤ k and then increases for j > k.

Meanwhile, the magnitude of these changes are much slighter as a becomes

larger. Further, it should be noted that the best weight for increasing data goes
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negative if a = 25, which could cause the fluctuations of k in Figure 6.2. On

the other hand, the optimal weights for no monotonicity show a decline over j

as a result of k = n− 1. That could explain our findings from Figure 6.2 since

the absolute value of gradients are bigger when the monotonicity is diminishing.

Lastly, it indicates that we could use the minimal a that makes all of the

weights positive to improve the performance of the new test.

6.3 Results

Now that we had methodologies to get all of the parameters. The next step

is to examine the effect of ρ, which is a correlation in the Vasicek model.

From the theoretical perspective, the correlation ρ would affect the conditional

probabilities pj, qj, and δ. In a financial sense, the correlation determines how

the individuals impact on each other. Therefore, it is worthwhile to study

the performance of the test against ρ. Figure 6.4 depicts the line plots of

δ’s conditional expectation and variance over ρ. The left two plots are for

increasing and the right two are for no monotonicity.The other two situations

are not presented since they look similar to these plots. On the one hand,
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Figure 6.4: Conditional Moments of δ against Correlation ρ
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the values of the conditional moments decreases as ρ grows. Especially, the

decreasing speed (the absolute value of the first derivative) are larger as ρ comes

closer to 1. On the other hand, the magnitude of declining for no monotonicity

is greater than that of the increasing case.

The monotonicity shown in Figure 6.4 seems to originate from the relation-

ship between the optimal weights and ρ and the formula of δ. For the former

one, we apply the similar methods used for analyzing the effect of a to it. The

line plots of the optimal weights for different values of ρ are illustrated in

Figure 6.5, where the top plot has increasing data and the bottom one has no

monotonic data. Observing the upper graph, we can find the pattern of weights

still be that the value decreases for j ≤ k and increases for j > k, which seems

similar to the plot of the optimal weights over tolerant factor a. However, the

second plot demonstrates difference that the value of weights has the fair same
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pattern as the increasing data plot if ρ is small enough. Furthermore, that

the value of k is shifting towards right seems to be the grounds that drives

the decreasing speed of the moments faster. However, it is notable that the

magnitude of increasing and no monotonicity are different, which ensures the

correctness of the test.

From the previous results, it seems the shape of the weights curve (the

relationship between wj and j) plays a role in detecting monotonicity. Hence,

we attempt to compare the performance of the new test with some different

weights introduced in Section 5.3. Table 6.1 lists the value of test statistic δ

and testing results p-value of three methods for constructing the new test. The

table does not contain the MK-equivalent weights that would be examined later.

To exclude the influence of biased results due to different {cj}, we compare

the performance on the nearly-no-monotonicity data as a representative group.

Meanwhile, we choose an appropriate a to make k fixed based on our previous

findings. On the other hand, we would like to mitigate the impact of correlation

ρ, which is examined before. To illustrate, we can observe that the difference

caused by changing ρ is slight for the value of δ or p-value. Therefore, we

could focus on studying the factor of the weights curve. To combine the testing

results for each simulation, we reported the medians of test statistic δ and then

employed the bootstrapping method to generate sample data for calculating

empirical p-value. We did not use the analytical p-value out of the consideration

that the new test depends on some parameters, such as k, that are sensitive to

data. The data generating process is still based on Monte Carlo method with

the same {cj}. Now that we obtain all values in Table 6.1, we could say that

ρ = 0 ρ = 0.25 ρ = 0.5 ρ = 0.75
Optimal δ 0.1410 0.1407 0.1399 0.1382

p-Value 0.0160 0.0160 0.0120 0.0120
Uniform δ 0.1531 0.1531 0.1531 0.1531

p-Value 0.0240 0.0240 0.0240 0.0240
Probability Related δ 0.1531 0.1529 0.1572 0.1523

p-Value 0.0240 0.0240 0.0240 0.0240

Table 6.1: Summary for Tests with Different Weights
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the weights curves bring about the difference of testing results to some extent.

According to Table 6.1, the testing with the optimal weights outperformed the

testings with the other two weights. It is interesting that the probability-related

weights have a similar performance as the uniform distributed weights. That

may be because the setting of cj = f(j,M) are not very complicated, which

deserves some further discussions.

To figure out the comparative power of the new test, we attempt to apply

three hypothesis testings on the simulation data. Table 6.2 demonstrates the

statistical significance, power and effort (used time) of new test, the SR test

and the MK test. There is no result of the CS test because of two reasons. One

reason is that the assumption of the CS test is not fitted with the situation,

which needs to be a linear relationship. Another reason is that the performance

of CS test is not comparable with other testing methods even if applying some

transformations in Chapter 4.

ρ = 0 ρ = 0.25 ρ = 0.5 ρ = 0.75
New p-Value 0.0144 0.0168 0.0128 0.0068

Power 0.9856 0.9832 0.9872 0.9932
Elapsed Time 0.0159 0.0165 0.0161 0.0155

SR p-Value 0.1352 0.1236 0.0792 0.0124
Power 0.8648 0.8764 0.9208 0.9876
Elapsed Time 0.7275 0.7391 0.7269 0.7335

MK p-Value 0.1364 0.1244 0.0792 0.0132
Power 0.8636 0.8756 0.9208 0.9868
Elapsed Time 0.1956 0.1974 0.1926 0.1832

Table 6.2: Comparative Power of Different Tests

According to Table 6.2, we can see that new test outperforms the other two

tests with lower computation time for the total 10,000 simulations. The SR

test cost the most time for running the program, whereas the fastest new test

only cost approximately 1/50 of its time. That follows the previous analysis in

Chapter 3 that the SR test computes the covariance and the MK test compares

pair-wise values, while the new test can mainly use arithmetic operators. On

the other hand, the significance of the three tests are relatively similar. Under
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the circumstance that yjT is mostly equal or nearly not monotonic against cj,

the new test brings about a lower p-value and a higher power of the test. On

the contrary, the testing significance p-values and powers are not as well as the

SR and MK tests.
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Figure 6.6: Power of Different Tests against Sample Size

To get some further information about the three testing methods, we

randomly sample the data to compute the power of the test, which is shown

in Figure 6.6. The supposing alternative hypothesis is that yjT is nearly not

monotonic against cj , which account for 25% of the total simulation. Observing

the figure, we could view that all three tests have a growing curve of the power

and the difference actually is not large. Further, it demonstrates that all powers

exceed 0.8 when the sample size is 500 or above, which is an evidence of the

ability to detect the monotonicity. Meanwhile, all values of the power almost

stay stable as the sample size reach at 1000. The findings offer us some insights

for future application.
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Chapter 7

Conclusion

In credit risk modelling, practitioners maintain monotonic relationships regu-

larly when dealing with banking data whose sizes are much more considerable

nowadays. The subsequent issue, lacking enough specific studies, is how to

precisely detect the monotonicity, particularly for variables in a huge dataset.

Even though there are a few widely-used hypothesis testing methods, we still

attempt to pursue simplified statistical tests for the binary response variable

that frequently occurs in banking data. Using the Vasicek model framework, we

modified three existing monotonicity tests for the binary credit risk indicator.

We introduced crucial assumptions and pros and cons of these testing methods

in details. In addition, we briefly discussed their computational complexity as

a performance metrics.

Motivated by the MK test and cross-entropy, we propose a new hypothesis

test using a weighted sum of difference as the statistics with flexible parameters.

Via a similar methodology for the mean-variance optimization, we analytically

solved for the optimal weights, and restricted the parameters in some regions.

There are also other options for weights that we supplement. In particular, we

employ a weight specification to convert the new test into the MK test. Besides,

the asymptomatic distribution of the test statistic δ is derived from central

limit theorem and moment generating function under suitable assumptions.

After laying these theoretical foundations for the topic, we implement the

statistical simulation with four scenarios to examine the impact of parameters

from the Vasicek model and our new test. The analysis on the results of the
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10,000 simulations demonstrates that the conditional moments of the statistics

δ of the optimal new test reduce as the correlation ρ in the Vasicek model

grows from 0 to 1. This is because most of the conditional moments except

for the conditional variance are positively related to the tolerance factor a.

Furthermore, both parameters have dominant influence on the optimal weights.

Based on this conclusion, we investigated the effect of the shape of the weights

curve by comparing several weights. It indicates that the different options for

weights can affect the performance of our new test to some extent. Last but

not least, by comparing all mentioned tests, we find that the new test can

perform as well as the existing with a remarkably lower computation time. In

some extreme case, our new test outperforms the other tests. In general, not

only does our new test improve the performance of monotonicity testing for

some extreme situations, but it also notably reduces the computation time for

monotonicity testing.

There are still some potential topics for further discussion. On the one

hand, we can enhance the methodology of credit risk modelling or create a

monotonicity testing based on variants of the SR and MK tests. We mainly

studied the conditional probability under the Vasicek model framework. It

is possible to expand it to either marginal probability for the Vasicek model

or another credit risk model. In addition, some variants are likely to perform

well for the binary response variable. On the other hand, we may improve

the design of the new test. For the optimization of weights, it is possible to

employ some other objective function from Mathematical Finance, such as

log-utility. Moreover, the formula of the test statistics can be more complicated

for flexibility by adding more parameters.
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Appendix A

Derivations and Proofs in

Section 5.3

A.1 Proof of Proposition 5.1

For (5.13), assume that none of pj and qj are zeros at first. That is for

avoiding some extreme cases. In the meanwhile, it can be achieved by choosing

appropriate values for ρ and each cj. Hence, the following proof will be in the

context that all of pj and qj are non-zero.

Since the sum of the weights is 1, we can get the expression of η as follows

η =
2a

n
∑

j=1

1
pjqj

−

(

k
∑

j=1

1

qj
+

n
∑

j=k+1

1

pj

)2

k
∑

j=1

pj

qj
+

n
∑

j=k+1

qj

pj
+a

,

where

n
∑

j=1

1

pjqj
·
(

k
∑

j=1

pj
qj

+
n
∑

j=k+1

qj
pj

+ a

)

6=
(

k
∑

j=1

1

qj
+

n
∑

j=k+1

1

pj

)2

.

Therefore, the values and sum of weights can be derived by replacing the η.
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If j ≤ k, then

wj =
1

qj
· 1

n
∑

`=1

1
p`q`
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∑
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+a











1

pj
−

k
∑

`=1

1
q`
+

n
∑

`=k+1

1
p`

k
∑

`=1

p`
q`
+

n
∑

`=k+1

q`
p`
+ a











.

If j > k, then

wj =
1

pj
· 1

n
∑

`=1

1
p`q`
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∑
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1

q`
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∑
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∑
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∑
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and

Sσ =
a

n
∑

j=1

1
pjqj

−

(

k
∑
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1

qj
+

n
∑

j=k+1

1

pj

)2
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pj

qj
+

n
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qj
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·
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1
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+
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1
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qj
+

n
∑
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qj
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+ a

.

A.2 Extension of Proposition 5.3

We have showed that sufficient conditions for a and α0 in Section 5.3. However,

we would like to offer some ideas for finding out the complete available sets of

α0 and a. The goal is to find the maximum of the right-hand side of (5.21).

If using the parameter k̃, which is used after the order of {cj}nj=1 varies, the

situations can be divided into three: k̃ ∈ [1, j1), k̃ ∈ [j2, n) and k̃ ∈ [j1, j2).

Albeit that k̃ can be useful for categorizing, it is still difficult to establish the

analytic relationship between k̃ and {cj}nj=1. For this reason, we will find a

way to represent Ũ and Ṽ with U and V , which is computed by k and the

conditional probabilities that is used before rearranging {cj}nj=1.

Let ∆Ũ = Ũ − U and ∆Ṽ = Ṽ − V . Put Ũ = U +∆Ũ and Ṽ = V +∆Ṽ
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into (5.20). It provides that U and
∑n

j=1 1/(pjqj) are independent of {c̃j}nj=1.

On the one hand, the total range of the acceptance level should be

α0 <
U

n
∑

j=1

1
pjqj

+
∆Ũmin
n
∑

j=1

1
pjqj

, (A.1)

where ∆Ũmin is the minimum of ∆Ũ over all possible values of j1 and j2.

On the other hand, by replacing Ũ , Ṽ with U, V , we can get that

a ≥ α0

(

V +∆Ṽ
)

Σ−
(

U +∆Ũ
)2

U +∆Ũ − α0Σ

= −α0

(

U +∆Ũ + α0Σ− V +∆Ṽ − α2
0Σ

U +∆Ũ − α0Σ
Σ

)

= −2α2
0Σ− α0





(

U +∆Ũ − α0Σ
)

−

(

V +∆Ṽ
)

Σ− α2
0Σ

2

U +∆Ũ − α0Σ



 ,

where Σ =
∑n

j=1 1/(pjqj). There are three cases that need handling.

Firstly, if k̃ < j1 < j2, then

Ũ = U +
1

pj1
− 1

qj1
+ error(k, k̃), ∆Ũ =

1

pj1
− 1

qj1
+ error(k, k̃),

Ṽ = V +
qj1
pj1

− pj1
qj1

+ error(k, k̃), ∆Ṽ =
qj1
pj1

− pj1
qj1

+ error(k, k̃),

where the term error(k, k̃) can be eliminating through the optimization of the

value of k. To obtain the minimum of ∆Ũ , consider a function defined on the

interval (0, 1) as follows

g(x) =
1

x
− 1

1− x
, x ∈ (0, 1).

Provided that its first derivative is

g′(x) = − 1

x2
− 1

(1− x)2
< 0,
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g(x) is strictly decreasing against x. In fact, we observe that ∆Ũ = g(pj1) so

that ∆Ũ arrives at its minimum when pj1 is largest. That is, j1 = k and

∆Ũmin =
1

pk
− 1

qk
.

Subsequently, we can get an upper threshold of the acceptance level in (A.1)

α0 <
U

n
∑

j=1

1
pjqj

+

1
pk

− 1
qk

n
∑

j=1

1
pjqj

=

k−1
∑

j=1

1
qj
+

n
∑

j=k

1
pj

n
∑

j=1

1
pjqj

.

Secondly, if j1 < j2 ≤ k̃, then

Ũ = U +
1

qj2
− 1

pj2
+ error(k, k̃), ∆Ũ =

1

qj2
− 1

pj2
+ error(k, k̃),

Ṽ = V +
pj2
qj2

− qj2
pj2

+ error(k, k̃), ∆Ṽ =
pj2
qj2

− qj2
pj2

+ error(k, k̃).

With the help of g(x) defined before, we can derive that ∆Ũ = −g(pj2). As

−g(x) increases strictly over x, ∆Ũ arrives at its minimum when pj2 is smallest.

That is, j2 = k + 1 and

∆Ũmin =
1

qk+1

− 1

pk+1

.

Accordingly, the acceptance level should has an upper boundary in (A.1)

α0 <

k+1
∑

j=1

1
qj
+

n
∑

j=k+2

1
pj

n
∑

j=1

1
pjqj

Thirdly, if j1 ≤ k̃ < j2, then

Ũ = U +
1

qj2
+

1

pj1
− 1

qj1
− 1

pj2
+ error(k, k̃),

55



∆Ũ =
1

qj2
+

1

pj1
− 1

qj1
− 1

pj2
+ error(k, k̃),

Ṽ = V +
pj2
qj2

+
qj1
pj1

− pj1
qj1

− qj2
pj2

+ error(k, k̃),

∆Ṽ =
pj2
qj2

+
qj1
pj1

− pj1
qj1

− qj2
pj2

+ error(k, k̃).

In this case, we can find that ∆Ũ > 0 and ∆Ṽ > 0. For seeking the minimum

of the ∆Ũ , we rearrange the terms of ∆Ũ and get that

∆Ũ =

(

1

pj1
− 1

qj1

)

−
(

1

pj2
− 1

qj2

)

= g(pj1)− g(pj2),

where g(x) = 1/x− 1/(1− x) is a function on the interval (0, 1).
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