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Abstract   

     Over the last two decades, the realm of nanoscience has experienced exceptional expansion, 

positioning nanotechnology at the forefront of advancements across various sectors such as 

computing, sensors, biomedicine, and a plethora of additional applications. Within this landscape, 

the identification and incorporation of graphene into polymer nanocomposites mark a pivotal 

advancement in nanoscience. Graphene, characterized by its single layer of carbon atoms arranged 

in a hexagonal lattice, is renowned for its array of extraordinary attributes. 

     Research into functionally graded graphene-reinforced composite (FG-GRC) laminated plates 

has revealed significant limitations, especially in understanding how interlaminar defects and 

delamination affect their thermal postbuckling performance and overall instability responses. 

While the addition of graphene is proven to increase the stiffness and strength of polymeric 

composite laminates, delamination remains a major obstacle, jeopardizing these improvements. 

The first two chapters of this thesis thoroughly explores the challenges of graphene distribution 

within the laminates, highlighting those inconsistencies in the structural integrity and mechanical 

performance of materials caused by delamination areas and can lead to unexpectable buckling 

mode shapes under different scenarios. 

     In the first chapter, this study conducts a thorough assessment of how diverse distributions of 

graphene reinforcement can counteract the negative effects of delamination, employing a refined 

semi-analytical strategy that leverages the third-order shear deformation theory (TSDT) and the 

Rayleigh-Ritz approximation method. This approach enables to investigate the complex 

delamination cases, moving from basic shape assumptions in the past to circular and elliptical 

shapes of delamination. The study provides insights into local and global buckling in composite 

delaminated plates, focusing on how graphene distribution patterns, delamination configurations, 
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and external conditions impact thermal instability responses. Chapter two delves into how 

graphene distribution affects the energy release rate (ERR) around delamination edges in 

graphene-reinforced laminates. It examines multiple delamination scenarios, which partition the 

laminate into segments with varied graphene reinforcement patterns. This analysis is key to 

understanding how these patterns influence the laminate's vulnerability to delamination by 

studying the ERR across different regions. 

     Moreover, this chapter seeks to understand the effect of both symmetrical and asymmetrical 

graphene distribution patterns, in conjunction with specific delamination configurations, on the 

fundamental frequencies of FG-GRC plates in both pre- and post-buckled thermal states, 

highlighting the complex interplay between material distribution, structural imperfections, and 

their combined effects on the performance of the laminated plate. 

     Recent advancements in manufacturing technologies have transformed the fabrication of 

composite laminates. This innovation offers enhanced design flexibility, customization options, 

and improved production efficiency. The integration of advanced manufacturing with composite 

materials has opened up new possibilities for constructing complex and functional engineering 

structures with unique material characteristics, such as thin-walled composite laminated struts. 

Nonetheless, it is crucial to consider local buckling as a pivotal design factor for these types of 

structures, regardless of their cross-sectional shape. 

     The final two chapters of this thesis introduce a novel study on the application of graphene 

sheet reinforcements within composite laminated channel section structures, one of the most 

practical types of the thin-walled struts. This investigation aims to determine how the integration 

of graphene, in a variety of symmetric and asymmetric patterns, can enhance the structural 
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performance of channel section struts when subjected to compressive mechanical and thermal 

loading, while eliminating the need for additional intermediate stiffeners.  

     The method used to study the instability and thermally induced vibration of FG-GRC channel 

section struts employs the von Karman geometrical nonlinearity and relies on the layerwise, third-

order shear deformation theory (LW-TSDT). For the purpose of confirming the precision of the 

outcomes derived from the LW-TSDT and assessing its computational efficiency, a three-

dimensional (3D) finite element model is constructed for comparison, utilizing ABAQUS 

software. 

     This thesis delivers pivotal numerical insights for solid mechanic designers, highlighting the 

critical need to weave these findings into their design simulations for augmented performance and 

enhanced reliability. Specifically, it was found that the application of the FG-X graphene 

distribution pattern in channel section struts increases their critical buckling resistance by 30%, 

whereas the FG-O pattern leads to a reduction of about 26% when compared to a uniform graphene 

dispersion. These results highlight the critical impact of graphene distribution on the mechanical 

integrity and buckling resilience of composite materials, stressing the value of optimizing material 

distribution. 
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1. Introduction 

1.1. Graphene as a composite reinforcement 

     As a two-dimensional lattice of carbon atoms, graphene has gained much attention in recent 

years because of its outstanding thermal, mechanical, and electrical properties in tandem with its 

applicability for developing reconfigurable nanoscale materials [1–19]. Graphene is referred as a 

sheet of carbon stacked tightly together in a hexagonal ring configuration. Based on the molecular 

dynamic (MD) simulation, it is confirmed that the anisotropic mechanical properties of graphene 

sheets are unaffected by their size [12]. With their broad range of application and high yield 

strength, graphene sheets now become ready for practical applications for fabrication of high-

performance polymer nanocomposites [16]. Contrary to carbon fiber reinforced composites, which 

can contain a high proportion of carbon fibers (<50 wt%), GRCs can only incorporate a small 

amount of weight fraction of carbon nanofillers (about 0.05–5%) [17,18] since adding more carbon 

nanofillers can degrade the mechanical properties of the nanocomposites due to formation of 

agglomerates or clusters, which can cause stress concentrations in the composite material and 

result in the initiation and propagation of cracks. This can ultimately reduce the composite's 

toughness and increase its propensity for fracture [19]. 

1.2. Composite laminates with delamination zones 

     Over the last few decades, composite laminates have been widely used in a variety of 

applications where a relatively high stiffness/strength-to-weight ratio is required. However, these 

materials are susceptible to a wide variety of flaws and degradation, which can result in severe 

stiffness and strength loss. When laminated composites are subjected to compressive loads, 

delamination becomes a restriction in composite design.  
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      A significant proportion of research in delamination analysis has focused on the evaluation of 

linear and nonlinear buckling and vibration behavior of laminated composite plates and beams, 

through experimental methods. Such studies have investigated the characteristics of both single 

and multiple delamination zones within rectangular geometries [20–24]. Pekbay and Sayman [21] 

conducted a comprehensive study on the buckling behavior of single-delaminated, glass-fiber 

composite laminates using both experimental measurements and numerical simulations. In their 

research, they utilized a unique approach of introducing a pre-macro defect, in the form of a 

delamination, by strategically placing rectangular teflon films with a thickness of 13 mm between 

plies of varying orientations during the manufacturing process of the test samples. 

1.3. Delamination propagation  

     Notably, none of the aforementioned papers predict the delamination propagation while 

investigating the influence of this interlaminar flaw on the nonlinear thermal or mechanical 

instability behavior of laminated composite structures. However, due to the devastating effect of 

growth of delamination which most likely happens in the postbuckling regime, it is a great 

necessity to precisely estimate the possibility of delamination growth under different loading 

conditions, which most commonly is done by calculating the energy release rate (ERR) at the 

delamination edge. A brief literature review on this topic was provided hereinafter [25].  

1.4. Thin-walled composite laminated struts 

      In recent years, use of composite laminates has experienced substantial growth in various 

industries, owing to their capacity to provide a beneficial balance between stiffness, strength, and 

weight. Moreover, significant progress has been witnessed in manufacturing techniques, which has 

revolutionized the production of composite laminates, presenting numerous benefits in terms of 

design adaptability, customization, and manufacturing efficiency. By combining the advantages of 
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both advanced manufacturing and composite materials, a groundbreaking approach has unlocked 

fresh opportunities for fabricating complex and functional engineering structures with intriguing 

material properties, including thin-walled composite laminated struts [26,27]. These structures are 

commonly utilized in scenarios involving in-plane compressive loading, particularly in the 

aerospace industry. The industry's focus on developing efficient and lightweight structures requires 

considering the potential occurrence of local buckling/post buckling at designated load levels. The 

precise analysis of compressive instability is crucial for these structures, considering the 

substantial reduction in compressive stiffness and load-bearing capacity during the post-local-

buckling phase [28]. As a result, extensive research involving numerical simulations, analytical 

methods, and experimental investigations has been conducted on thin-walled open- and closed-

section struts for varied sectional geometries composed of diverse isotropic and anisotropic 

materials [29]. 

1.5. Motivations and objectives 

     Upon conducting an extensive review of the literature, it has become evident that a significant 

research gap exists concerning the impact of varying distribution patterns of graphene sheet 

reinforcement on the thermal postbuckling response of laminated composite plates with single or 

multiple interface delaminations in diverse shapes, such as embedded circular and elliptical 

delaminations, as well as edge and through-the-width rectangular delaminations. While 

incorporating graphene reinforcements into polymeric composite laminates has proven to enhance 

their stiffness and strength, the presence of delamination can significantly reduce these desirable 

properties. Hence, assessing which graphene distribution patterns can effectively counteract the 

adverse effects of delamination is essential. This assessment is achieved through an in-depth 

examination of the thermal and mechanical instabilities of FG-GRC plates with delamination. 
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     Another objective of this thesis is to conduct a comprehensive investigation on the distribution 

of ERR along the delamination edges of FG-GRC laminated plates to examine how graphene 

distribution can affect the delamination propagation. The specific parts of the damaged area within 

the composite laminate will be identified that are more susceptible to propagation under varying 

graphene distribution patterns and boundary conditions. An additional objective of this study is to 

assess the impact of various symmetric and asymmetric graphene distribution patterns in 

combination with distinct delamination configurations on the fundamental frequencies of 

thermally pre- and post-buckled FG-GRC plates. 

     Moreover, based on an extensive literature review, it is evident that local buckling should be 

regarded as a critical design consideration for thin-walled struts, irrespective of their cross-

sectional profile. Local buckling significantly impacts the axial compressive stiffness and, 

subsequently, the load-bearing capacity in an adverse manner. Consequently, it is imperative to 

prioritize the resolution of this pivotal concern in this type of practical and extensively utilized 

engineering structures by diligently exploring diverse avenues to identify effective solutions. 

     Considering the established improvements in stiffness and strength resulting from the addition 

of graphene reinforcements to polymeric composite laminates, as another motivation, this thesis 

represents an initial exploration in utilizing graphene as a reinforcement in composite laminated 

channel-section struts to assess how the symmetric and asymmetric distributions of graphene of 

various pattern can improve the performance of channel section struts under compressive loads 

(uniform end-shortening and thermal), while avoiding the addition of intermediate stiffeners.  

     The final objective of this thesis involves undertaking extensive efforts on perfect and 

geometrically imperfect FG-GRC channel section struts to pinpoint the particular arrangements of 

graphene patterns that significantly improve the critical buckling temperature, as well as the 
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fundamental and second-order frequencies, in both pre- and post-buckling states.  

     This thesis is organized in a paper-based format, comprising six chapters. The introductory and 

concluding remarks are confined to the first and final chapters, respectively. Chapters 2 through 4 

have been successfully published in peer-reviewed journals. Additionally, Chapter 5, another 

scholarly paper emanating from this thesis, has been submitted to a journal and is under review 

right now. The details of chapters are briefed as follows: 

• Chapter 2 of this thesis has been published as S.F. Nikrad, Z.T. Chen, A.H. Akbarzadeh 

“Nonlinear thermal postbuckling of functionally graded graphene reinforced composite 

laminated plates with circular or elliptical delamination”, Acta Mechanica. Link In this 

chapter the nonlinear thermal instability responses of FG-GRC laminated plates with 

embedded circular and elliptical delamination as well as edge delamination, subjected to a 

uniform temperature rise and a variety of mechanical boundary conditions is investigated.  

• Chapter 3 of this thesis has been published as Paper No. 2: S.F. Nikrad, Z.T. Chen, A.H. 

Akbarzadeh “Effect of graphene reinforcement distribution on energy release rate and 

vibration of thermally pre/post-buckled delaminated composite plates”, Thin-Walled 

Structures. Link In this chapter the nonlinear thermal instability responses of FG-GRC 

laminated plates with single or multiple through-the-width delaminations, are investigated. 

The possibility of delamination growth is also evaluated using the three-dimensional crack 

tip element (3D-CTE) method, which determines the ERR at the delamination edge. 

Furthermore, the influence of delamination configurations and the types of graphene 

reinforcement distribution patterns on the free vibration of FG-GRC delaminated plates in 

thermally pre/post-buckled regimes is evaluated. 

https://doi.org/10.1016/j.tws.2023.110876
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• Chapter 4 of this thesis has been published as S.F. Nikrad, A.H. Akbarzadeh, M. 

Hamidinejad, Z.T. Chen “Effects of functionally graded graphene reinforcements on 

nonlinear post-local buckling and axial stiffness of laminated channel section struts”, Thin-

Walled Structures. Link  It explores the potential improvements in the postbuckling 

characteristics of polymeric composite laminated channel section struts subjected to a 

progressive end-shortening by employing multi-layer graphene sheets reinforcements. The 

solution methodology incorporates the von Karman geometrical nonlinearity and is based 

on the layerwise third-order shear deformation theory (LW-TSDT). 

• Chapter 5 of this thesis has been submitted to Composite Structures as S.F. Nikrad, A.H. 

Akbarzadeh, M. Hamidinejad, Z.T. Chen “Imperfection sensitivity of free vibration of FG-

GRC laminated channel section struts in thermally pre- and post-buckling equilibrium 

conditions” Composite Structures (Under Review). In this chapter, an extensive analysis 

of nonlinear thermal instability in perfect and geometrically imperfect FG-GRC laminated 

channel section struts is undertaken to discern the graphene distribution patterns that are 

most and least effective in elevating the critical buckling temperature and natural 

frequencies through pre- and post-buckling conditions. 

 

 

 

 

 

 

 

 

  

https://doi.org/10.1016/j.tws.2023.111517
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2. Nonlinear thermal postbuckling of functionally graded 

graphene reinforced composite laminated plates with circular or 

elliptical delamination1 

     This research investigates the nonlinear thermal instability responses of functionally graded 

graphene reinforced composite (FG-GRC) laminated plates with embedded circular and elliptical 

delamination as well as edge delamination, subjected to a uniform temperature rise and a variety 

of mechanical boundary conditions. The thermomechanical properties of the GRCs are estimated 

using the extended Halpin-Tsai micromechanical model that incorporates efficiency parameters to 

take into account nanoscale size and surface effects of the graphene reinforcement. The von 

Karman geometrical nonlinearity is adopted in a solution based on the third-order shear 

deformation theory. The nonlinear equilibrium equations derived by the minimum total potential 

energy principle are solved using the Ritz method in conjunction with the Newton–Raphson 

iterative procedure. Parametric studies reveal that the types of graphene distribution pattern and 

geometry of delamination zones have a substantial effect on the thermal equilibrium paths and 

buckling temperature of the GRC delaminated plates. FG-X graphene sheet pattern raises the 

critical buckling temperature and compressive strength of the baselaminate and reduces the 

nonlinear thermal postbuckling deflection; however, it causes a significant increase in normal 

stress distribution at the top and the bottom surfaces of the delaminated plates. 

2.1. Introduction 

     Because of the technological limitations, fabrication of a perfect (with no defects) functionally 

graded material (FGM) where the mixture of two distinct material phases changes continuously is 

difficult. The ideal alternative to FGMs is a multilayer structure composed of several layers with 

a layer-wise variation in the mixing ratio of matrix and nano reinforcements [30]. To fabricate a 

 
1 A version of this chapter is published in the journal of Acta Mechanica, 5999-6039, 2023, 



8 
 

multilayer functionally graded composite reinforced by graphene platelets (GPLs), which consist 

of stacked parallel two-dimensional graphene layers, epoxy with specified weight fraction of GPLs 

should be combined followed by casting the well-mixed nanocomposite liquid into a mold to create 

the first layer of graphene reinforced composite. This procedure is repeated to produce other 

nanocomposite layers with varying GPL weight fractions that are then bonded together via hot 

pressing to form multilayer nanocomposites [30].  

     Several experiments have been conducted on the graphene/epoxy laminated nanocomposite 

beams; it has been observed that slight increase of the weight fraction of graphene considerably 

improves the critical buckling load of the nanocomposite beam. As a result, with only 0.1% weight 

fraction of graphene platelets, the critical buckling load is increased by 52% compared to a pure 

epoxy beam [31]. Parashar and Mertiny [32] utilized finite element method (FEM) to study the 

buckling behaviour of a single layer graphene/epoxy composite plate subjected to a uniaxial 

compressive load. According to their findings, adding 6% volume fraction graphene increases the 

critical buckling load of the nanocomposite plate by 26%. Yang and co-authors [33–35] analyzed 

the bending, postbuckling, and dynamic instability of functionally graded polymer nanocomposite 

beams reinforced with graphene platelets (GPLs), using the Timoshenko beam theory and by 

employing the von-Karman nonlinear strain-displacement relationship. They also conducted free 

and forced vibration analyses of functionally graded polymer composite plates reinforced with 

graphene with temperature independent material properties [36]. The most significant conclusion 

from these research works is that multi-layer nanocomposite structures with a higher proportion 

of GPLs in their top and bottom layers compared to their middle layers exhibit a superior static 

and dynamic performance. 
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    Recently many research topics have been focused on the static and dynamic responses of 

different FG-GRC structures, including beams, plates, cylindrical panels, and shells [37–48]. Shen 

and colleagues [38] applied a two-step perturbation approach to examine the nonlinear bending 

behavior of FG-GRC laminated plates resting on an elastic foundation. According to their findings, 

the laminated composite plate with the highest volume fraction of graphene in its top and bottom 

layers, referred to as the FG-X type, has the lowest load-deflection curve but the largest central 

bending moment. A numerical study was conducted to evaluate the compressive instability 

response of FG-GRC plates subjected to a uniaxial compression force in thermal environment. The 

governing differential equations for the plate postbuckling analysis were derived according to the 

higher order shear deformation theory. It was found that the buckling load and postbuckling 

strength of the laminated composite plate with the greatest volume fraction of graphene in the 

middle layer, named the FG-O type, is lower than those of other graphene distributions [41]. Ma 

and Jin [47] suggested an improved plate theory capable of satisfying the interlaminar shear stress 

between layers of a thick FG-GRC laminate subjected to compressive load. 

    Chen et al. [49,50] recently examined the compressive and thermal postbuckling behavior of 

sandwich plates and cylindrical shells with an auxetic graphene-reinforced metal matrix composite 

(GRMMC) core. The auxetic GRMMC core with a negative Poisson's ratio (NPR) is expected to 

be functionally graded (FG) piecewise by varying the graphene volume fraction across the 

thickness direction of the core. Temperature-dependent material properties are assumed for both 

the metal face sheets and the GRMMC core. The results confirmed that the FG pattern of the 

graphene sheets affects the compressive and thermal postbuckling equilibrium paths. 

     Over the last few decades, composite laminates have been widely used in a variety of 

applications requiring a relatively high stiffness/strength-to-weight ratio. However, these materials 
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are susceptible to a wide variety of flaws and degradation, which can result in severe stiffness and 

strength loss. When laminated composites are subjected to compressive loads, delamination 

becomes a composite design restriction.  

      A significant proportion of research in delamination analysis has focused on the evaluation of 

linear and nonlinear buckling and vibration behavior of laminated composite plates and beams, 

through experimental methods. Such studies have investigated the characteristics of both single 

and multiple delamination zones within rectangular geometries [20–22,24,51]. Pekbay and 

Sayman [21] conducted a comprehensive study on the buckling behavior of single-delaminated 

glass-fiber composite laminates using both experimental measurements and numerical solutions. 

In their research, they utilized a unique approach of introducing a pre-macro defect, in the form of 

a delamination, by strategically placing rectangular teflon films with a thickness of 13 mm between 

plies of varying orientations during the manufacturing process. 

    Recently a new laminate partitioning scheme was proposed to analyze the postbuckling behavior 

of the composite laminate with a single through-the-width delamination. The advantage of this 

approach is offering a better displacement consistency at the edge of the delamination zone and 

providing access to the interlaminar tractions [52]. Static and dynamic response of a laminated 

composite plate reinforced with curvilinear fibers with an embedded delamination zone were 

studied by Sharma [53]  based on the FEM. There are also several research focus on delamination 

propagation through implementing the isogeometric cohesive elements under static and transient 

dynamic loads [54–56]. Based on the proposed method the cohesive elements are generated from 

CAD data and implemented in MIGFEM. The technique accurately represents composite 

laminates using NURBS elements and allows seamless design integration between CAD and 

analysis. 
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      The presence of interface cracks and delamination within composite materials introduces 

unique challenges that can be effectively mitigated using the extended finite element method 

(XFEM). Composite materials consist of distinct layers or constituents, such as fibers and matrices, 

which are interconnected at interfaces. The occurrence of cracks or delamination at these interfaces 

can significantly compromise the structural integrity and mechanical performance of the 

composite. XFEM, an advanced numerical technique, offers a compelling solution for accurately 

modeling and simulating the intricate behavior of interface cracks and delamination in composite 

materials [57–59]  

    Nikrad et al. [60,61]  has explored the effect of lay-ups, boundary conditions, and delamination 

zone on the thermal instability of laminated composite plates with embedded and through-the-

width delamination. Their analysis revealed that delaminated composite plate may buckle in a 

local, global, or mixed mode, depending on the lay-ups and types of the edge supports. 

Furthermore, using layerwise theory, a computational analysis was performed to examine the 

compressive instability response and delamination propagation of composite plates with multiple 

off-center through-the-width delamination zones. It was discovered that the near-to-surface 

delamination zone leads to the local mode of buckling [62]. 

    Kharazi et al. [63,64] established a novel layerwise theory based on the first order shear 

deformation theory, verified by the results of FEM, to evaluate the critical buckling load and 

compressive instability response of composite plates with multiple through-the-width 

delaminations. Ovesy [65,66] investigated the compressive instability of composite plates with 

various types of delamination zones including through-the-width and embedded delaminations. 

They considered the von-Karman nonlinear strain-displacement relationship and applied the 

single-layer plate theories such as classical plate theory (CLPT) and first order shear deformation 
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theory (FSDT) to derive the instability equations. They discovered that the length and position of 

the delamination zones can influence the postbuckling mode and load carrying capacity. 

    The literature review has demonstrated a significant research gap concerning the investigation 

of interlaminar flaws and delamination, and their impact on the thermal postbuckling and/or 

buckling behavior of FG-GRC laminated plates. Although the incorporation of graphene 

reinforcements into polymeric composite laminates has proven to be an effective strategy for 

enhancing their stiffness and strength, the presence of a delamination zone can lead to a significant 

reduction in these properties. Furthermore, despite the specified and well-arranged graphene 

distribution pattern in the FG-GRC laminated plate, the top sublaminate and bottom baselaminate 

may exhibit irregular graphene dispersion based on the location of delamination. This irregularity 

can cause unexpected responses and different buckling mode shapes under several loading and 

boundary conditions, emphasizing the need for further investigation of these issues. The critical 

objective of this study is to assess the efficacy of graphene sheet reinforcements with alternative 

graphene reinforcement distribution patterns in mitigating the adverse effects of the delamination 

on the thermal instability responses of the sublaminate and baselaminate.  

     Most delamination analyses conducted in the literature using the Rayleigh-Ritz approximation 

technique assumed simple shapes like square and rectangular for delamination to facilitate the 

definition of corresponding shape functions and avoid continuity challenges that may arise from 

more complex shapes. However, in this paper, a more realistic scenario is considered by 

investigating the FG-GRC laminates with embedded delamination regions that have circular and 

elliptical shapes. To accomplish this, an analytical approach based on the higher-order shear 

deformation theory is developed using the Rayleigh-Ritz approximation technique and 

implementing simple and complete polynomial series. The proposed method can evaluate both 
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sublaminate local buckling and baselaminate global buckling; additionally, there are no restrictions 

on the type of boundary conditions that can be handled by the introduced procedure. The effect of 

different graphene reinforcement distributions, size of the graphene sheets, position and the 

geometry of the delamination zone, and boundary conditions on the thermal equilibrium paths, 

thermal bifurcation points of baselaminate, stress distribution, and load-carrying capacity of the 

GRC delaminated plates are investigated in this paper. 

2.2. Theoretical formulations 

2.2.1. Structural model 

     The current research considers a multilayer laminated composite plate comprised of 𝑁𝐿 layers 

having a total thickness ℎ, length 𝐿1 , and width 𝑏1 and between any two arbitrary layers, different 

kinds of delamination zones may occur. A Cartesian coordinate is defined where X and Y are in 

the midplane and Z defines along the upward normal direction. The origin of the reference 

coordinate system is in the center of the midplane as shown in Fig 2.1. 

 

Figure 2-1 FG-GRC laminated plate 



14 
 

     The thickness of all plies is assumed to be the same. Each ply is formed from a polymeric matrix 

reinforced by graphene sheets and may contain a distinct volume fraction of graphene. When the 

graphene volume fraction in layers varies, a piece-wise FG-GRC laminated plate is formed. In the 

present study, two types of graphene reinforcement layers: zigzag (referred to as 0°-ply) or 

armchair (referred to as 90°-ply) are considered. Four different graphene distribution patterns of 

GRCs are studied in this paper, including three non-uniform distributions (FG-X, FG-O, and FG-

A) and one symmetric and uniform graphene distribution (UD), As illustrated in Fig 2.2. 

    

(a) FG-X (b) FG-O (c) FG-A (d) UD 

Figure 2-2 Four types of graphene distributions in GRCs with graphene contents increasing with darkness 

There are various higher order shear deformation plate theories for determining the 

displacement fields. The third order shear deformation plate theory (TSDT) is employed in this 

study. The reason for increasing the displacements up to the cubic term in the thickness coordinate 

is to obtain a quadratic variation of the transverse shear strains and stresses throughout the plate 

thickness. The assumption of straightness and normality of a transverse normal after deformation 

of a plate is relaxed in TSDT by expanding the displacements 𝑢 and 𝑣 as cubic functions of the 

thickness coordinate. The displacement fields for the FG-GRC laminated composite plate is 

expressed according to the TSDT by [61]: 

𝑢(𝑥, 𝑦, 𝑧) = 𝑢0(𝑥, 𝑦) + 𝑧𝜑𝑥(𝑥, 𝑦) −
4𝑧3

3ℎ2
(𝜑𝑥(𝑥, 𝑦) +

𝜕𝑤0
𝜕𝑥

) 
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𝑣(𝑥, 𝑦, 𝑧) = 𝑣0(𝑥, 𝑦) + 𝑧𝜑𝑦(𝑥, 𝑦) −
4𝑧3

3ℎ2
(𝜑𝑦(𝑥, 𝑦) +

𝜕𝑤0
𝜕𝑦

) 

𝑤(𝑥, 𝑦, 𝑧) = 𝑤0(𝑥, 𝑦)                                                                                                                                (2-1)                                                                                                                                                                                                

where 𝑢0, 𝑣0, and 𝑤0 represent the displacement components defined at the midplane of the 

plate; 𝜑𝑥 and 𝜑𝑦 are the middle surface rotations about the 𝑦 and 𝑥 axes, respectively. The 

displacement fields in Eq. (2.1) show that once the plate deforms, a straight line perpendicular to 

the undeformed middle plane becomes a cubic curve. For small strain and moderate rotating 

deformation, the von-Karman nonlinear strain–displacement relation, as given in Appendix A, is 

adopted. 

    As noted previously, the main objective of this research is to perform a thermal instability 

analysis on the FG-GRC delaminated plate subjected to a uniform temperature rise that can act as 

a compressive load when the boundary conditions are constrained along the in-plane directions. 

By assuming linear stress-strain relations and using 𝑇0 as a reference temperature and 𝑇 as a 

temperature distribution over the plate, we have [67]: 

[
 
 
 
 
𝜎𝑥𝑥
𝜎𝑦𝑦
𝜏𝑦𝑧
𝜏𝑥𝑧
𝜏𝑥𝑦 ]

 
 
 
 

=

[
 
 
 
 
�̅�11
�̅�21
0
0
�̅�61

�̅�12
�̅�22
0
0
�̅�62

0
0
�̅�44
�̅�45
0

0
0
�̅�45
�̅�55
0

�̅�16
�̅�26
0
0
�̅�66]

 
 
 
 

(

 
 

{
 
 

 
 
𝜀𝑥𝑥
𝜀𝑦𝑦
𝛾𝑦𝑧
𝛾𝑥𝑧
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− (𝑇 − 𝑇0)

{
 
 

 
 
𝛼𝑥𝑥
𝛼𝑦𝑦
0
0

2𝛼𝑥𝑦}
 
 

 
 

)

 
 

                                                                              ( 2-2)        

where 𝛼𝑖𝑗 indicates the thermal expansion coefficients. Based on the transformation rule in the 

fiber reinforced composite materials, �̅�𝑖𝑗 denotes the transformed elastic constants. 

According to TSDT, the stress resultants 𝑁𝑖𝑗, 𝑀𝑖𝑗 , 𝑃𝑖𝑗 , 𝑄𝑖𝑗, and 𝑅𝑖𝑗 are defined by: 

{

{𝑁}

{𝑀}

{𝑃}
} = [

[𝐴] [𝐵] [𝐸]

[𝐵] [𝐷] [𝐹]

[𝐸] [𝐹] [𝐻]
] {

{𝜀0} − {𝜀𝑡ℎ}

{𝜀1}

{𝜀3}

} 

{
{𝑄}

{𝑅}
} = [

[𝐴𝑠] [𝐷𝑠]

[𝐷𝑠] [𝐹𝑠]
] {
{𝛾0}

{𝛾2}
}                                                                                                                                   (2-3) 

 The stiffness matrices in Eq. (2.3) are defined as: 
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(𝐴𝑖𝑗 , 𝐵𝑖𝑗 , 𝐷𝑖𝑗 , 𝐸𝑖𝑗 , 𝐹𝑖𝑗 , 𝐻𝑖𝑗) = ∫ �̅�𝑖𝑗(1, 𝑧, 𝑧
2, 𝑧3, 𝑧4, 𝑧6)𝑑𝑧,   (𝑖, 𝑗 = 1,2,6)

ℎ
2

−ℎ
2

 

(𝐴𝑠𝑖𝑗 , 𝐷𝑠𝑖𝑗 , 𝐹𝑠𝑖𝑗) = ∫ �̅�𝑖𝑗(1, 𝑧
2, 𝑧4)𝑑𝑧,   (𝑖, 𝑗 = 4,5)

ℎ

2
−ℎ

2

                                                                                                          (2-4) 

     In addition, {𝜀𝑡ℎ} is the thermal strain and is defined as follows: 

{

𝜀𝑥𝑥
𝜀𝑦𝑦
𝛾𝑥𝑦
}

𝑡ℎ

= ∑ ∫ [

𝑐𝑜𝑠2(𝜃𝐾) 𝑠𝑖𝑛2(𝜃𝐾)

𝑠𝑖𝑛2(𝜃𝐾) 𝑐𝑜𝑠2(𝜃𝐾)

2𝑐𝑜𝑠(𝜃𝐾)𝑠𝑖𝑛(𝜃𝐾) −2𝑐𝑜𝑠(𝜃𝐾)𝑠𝑖𝑛(𝜃𝐾)

] {
𝛼11
𝛼22

} (𝑇 − 𝑇0) 𝑑𝑧
ℎ𝐾
ℎ𝐾−1

𝑁
𝐾=1                                           ( 2-5) 

where 𝜃𝐾 is the ply angle in the Kth lamina.  

As previously stated, the minimal total potential energy principle is used to investigate the 

thermomechanical instability performance of the FG-GRC delaminated composite plate. The 

following equation provides the strain energy per unit volume as follows: 

𝑈 = ∫
1

2
 𝜎𝑇𝜀 ̅𝑑𝑉 

=
1

2
∫ ∫ ({𝜀(0)}[𝐴]{𝜀(0)}

𝑇
+ 2{𝜀(0)}[𝐵]{𝜀(1)}

𝑇
+ {𝜀(1)}[𝐷]{𝜀(1)}

𝑇
+ 2{𝜀(0)}[𝐸]{𝜀(3)}

𝑇
+ {𝜀(1)}[𝐹]{𝜀(3)}

𝑇
+

𝐿1
2
−𝐿1
2

𝑏1
2
−𝑏1
2

{𝜀(3)}[𝐻]{𝜀(3)}
𝑇
+ {𝛾(0)}[𝐴𝑠]{𝛾(0)}

𝑇
+ 2{𝛾(0)}[𝐷𝑠]{𝛾(2)}

𝑇
+ {𝛾(2)}[𝐹𝑠]{𝛾(2)}

𝑇
− 2{𝜀𝑇}[𝐴]{𝜀(0)}

𝑇
−

2{𝜀𝑇}[𝐵]{𝜀(1)}
𝑇
− 2{𝜀𝑇}[𝐸]{𝜀(3)}

𝑇
+ {𝜀𝑇}[𝐴]{𝜀𝑇}𝑇)                                                                                            ( 2-6) 

Because the plate is under thermal loading as a compressive load, the total potential energy of 

the plate is equal to the strain energy. 

∏ = 𝑈                                                                                                                                                                    (2-7) 

2.2.2. Thermomechanical characteristics of GRC laminates 

The thermomechanical properties of GRCs are critical for studying the performance of these 

structures. MD has been used to precisely determine the thermomechanical properties of a 

graphene reinforced polymer nanocomposite [68]. The comparison of the MD simulation results 

with the predictions of the rule of mixture [69]  and Halpin-Tsai model [68] reveals that due to the 

nano size effect and surface effect, these micromechanical models cannot be used directly to 

predict the effective material properties of GRCs and modifications are required [38]. The Halpin-
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Tsai mathematical model is modified by considering efficiency parameters ƞ𝑖, 𝑖 = 1,2,3 obtained 

by matching the MD simulation results to those of the Halpin-Tsai model. Based on this approach 

the elasticity and shear module of composite media reinforced by graphene sheets may be 

evaluated by [37,39,40]: 

𝐸11 = ƞ1

1 + 2 (
𝑎𝐺

ℎ𝐺
) 𝛾11𝑉

𝐺

1 − 𝛾11𝑉
𝐺

𝐸𝑚 

𝐸22 = ƞ2

1 + 2 (
𝑏𝐺

ℎ𝐺
) 𝛾22𝑉

𝐺

1 − 𝛾22𝑉
𝐺

𝐸𝑚 

𝐺12 = ƞ3
1

1−𝛾12𝑉
𝐺 𝐺

𝑚                                                                                                                                                    ( 2-8) 

where 𝑎𝐺 , 𝑏𝐺 , and ℎ𝐺 ,  represent the length, width, and effective thickness of the graphene 

sheet, respectively. The remaining supplementary parameters are as defined by: 

𝛾11 =
(
𝐸11
𝐺

𝐸𝑚
) − 1

(
𝐸11
𝐺

𝐸𝑚
) + 2 (

𝑎𝐺

ℎ𝐺
)

 

𝛾22 =
(
𝐸22
𝐺

𝐸𝑚
) − 1

(
𝐸22
𝐺

𝐸𝑚
) + 2 (

𝑏𝐺

ℎ𝐺
)

 

𝛾12 =
(
𝐺12
𝐺

𝐸𝑚
)−1

(
𝐺12
𝐺

𝐸𝑚
)

                                                                                                                                                                 (2-9) 

It should be noted that 𝐸𝑚 and 𝐺𝑚 represent the elasticity and shear moduli of the homogeneous 

isotropic matrix, respectively. Additionally, in Eq. (2.9), 𝐸11
𝐺 , 𝐸22

𝐺 , and 𝐺12
𝐺  denote the graphene 

sheet elasticity and shear moduli. As noted previously, each layer of the GRC laminates is 

composed of graphene and matrix; thus, in Eq. (2.8), 𝑉𝐺refers to the graphene volume fraction and 

𝑉𝑚 = 1 − 𝑉𝐺  indicates the matrix volume proportion. Graphene efficiency parameters 

ƞ𝑗(𝑗 = 1,2,3), developed in the extended Halpin-Tsai approach, are found by comparing the 
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results of the MD simulations to those derived from the micromechanical models. The Schapery 

model [64] is one of the most extensively used methods for determining the thermal expansion 

coefficients of composite media such as carbon nanotube reinforced composites. This model is 

also applicable to GRC materials: 

𝛼11 =
𝑉𝐺𝐸11

𝐺 𝛼11
𝐺 + 𝑉𝑚𝐸𝑚𝛼𝑚

𝑉𝐺𝐸11
𝐺 + 𝑉𝑚𝐸𝑚

 

𝛼22 = (1 + 𝜈12
𝐺 )𝑉𝐺𝛼22

𝐺 + (1 + 𝜈𝑚)𝑉𝑚𝛼𝑚 − 𝜈12𝛼11                                                                                              (2-10) 

where 𝛼11
𝐺 , 𝛼22

𝐺  and 𝛼𝑚 are the thermal expansion coefficients, and 𝜈12
𝐺  and 𝜈𝑚 are the Poisson’s 

ratios respectively, of the graphene sheet and matrix. The Poisson’s ratios of the GRCs can be 

explained in terms of the Poisson’ ratios of constituents according to the standard rule of mixes. 

As a result, one may arrive at: 

𝜈12 = 𝑉
𝐺𝜈12

𝐺 + 𝑉𝑚𝜈𝑚                                                                                                                                                                   (2-11) 

2.3. Modelling of GRC laminated plate 

2.3.1. GRC laminated plate with circular and elliptical embedded delamination 

zones 

Utilizing the minimum total potential energy is one of the recommended methods for solving 

nonlinear problems. Obviously, this requires the displacement field to describe the variation of 

𝑢, 𝑣, 𝑤, ∅𝑥, and ∅𝑦 across the middle surface. As mentioned, delamination separates GRC 

laminated plates into distinct zones through their thickness and longitudinal directions. In this 

circumstance, it is necessary to define suitable displacement and rotation functions for each zone, 

taking into account the continuity conditions between the boundaries of several divided regions. 

Plate boundary conditions are an additional important requirement that must be satisfied by the 

displacement and rotation functions. As illustrated in Fig 2.3, circular and elliptical embedded 

delamination zones at the center of the square GRC laminated plates separate them into two distinct 

regions along their thickness directions, and into three different zones along their longitudinal 
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directions. Fig 2.3 demonstrates that the radius of the circular embedded delamination is equal to 

R, and dimensions of the major and minor axes of the elliptical delamination are, respectively, 2a 

and 2b. The boundaries of the circular and elliptical delamination are defined in the following 

equations, respectively: 

 

 

Figure 2-3 Segmentation of the GRC laminated plate with embedded delamination into subdomains (a) circular 

delamination (b) elliptical delamination (c) divided regions alongside the 𝑋 axes 

 

𝐶𝑐𝑖𝑟𝑐𝑙𝑒 = 𝑥
2 + 𝑦2 − 𝑅2                                                                                                                    (2-12) 

𝐶𝑒𝑙𝑙𝑖𝑝𝑠𝑒 = 
𝑥2

𝑎2
+

𝑦2

𝑏2
− 1                                                                                                                     (2-13) 

The essential continuity conditions of displacement and rotation functions at the boundaries of 

delamination zones with arbitrary geometry, 𝐶, are therefore expressed as follows: 

𝑊0
(1)
|𝐶 = 𝑊0

(2)
|𝐶 = 𝑊0

(3)
|𝐶   ,

𝜕𝑊0
(1)

𝜕𝑥
|𝐶 = 

𝜕𝑊0
(2)

𝜕𝑥
|𝐶 =

𝜕𝑊0
(3)

𝜕𝑥
|𝐶    ,

𝜕𝑊0
(1)

𝜕𝑦
|𝐶 = 

𝜕𝑊0
(2)

𝜕𝑦
|𝐶 =

𝜕𝑊0
(3)

𝜕𝑦
|𝐶                                                           

 

 

 

 

 

 

𝐿1 

Region 1 Region 4 
Region 2 

Region 3 X 

Z 

h 

ℎ𝑠 
ℎ2 

ℎ3 

(a) 
(b) 

(c) 
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𝑈0
(2)
|𝐶= 𝑈0

(1)
|𝐶 + ℎ2𝜑𝑥

(1)
|𝐶 − ℎ2

3𝐶1
(1)(𝜑𝑥

(1)
|𝐶 +𝑊,𝑥

(1)
|𝐶) 

𝑈0
(3)
|𝐶= 𝑈0

(1)
|𝐶 + ℎ3𝜑𝑥

(1)
|𝐶 − ℎ3

3𝐶1
(1)(𝜑𝑥

(1)
|𝐶 +𝑊,𝑥

(1)
|𝐶) 

𝑉0
(2)
|𝐶= 𝑉0

(1)
|𝐶 + ℎ2𝜑𝑦

(1)
|𝐶 − ℎ2

3𝐶1
(1)(𝜑𝑦

(1)
|𝐶 +𝑊,𝑦

(1)
|𝐶) 

𝑉0
(3)
|𝐶= 𝑉0

(1)
|𝐶 + ℎ3𝜑𝑦

(1)
|𝐶 − ℎ3

3𝐶1
(1)(𝜑𝑦

(1)
|𝐶 +𝑊,𝑦

(1)
|𝐶) 

𝜑𝑥
(2)
|𝐶 = 𝜑𝑥

(1)
|𝐶 − 3ℎ2

2𝐶1
(1)(𝜑𝑥

(1)
|𝐶 +𝑊,𝑥

(1)
|𝐶) 

𝜑𝑥
(3)
|𝐶 = 𝜑𝑥

(1)
|𝐶 − 3ℎ3

2𝐶1
(1)(𝜑𝑥

(1)
|𝐶 +𝑊,𝑥

(1)
|𝐶) 

𝜑𝑦
(2)
|𝐶 = 𝜑𝑦

(1)
|𝐶 − 3ℎ2

2𝐶1
(1)(𝜑𝑦

(1)
|𝐶 +𝑊,𝑦

(1)
|𝐶) 

𝜑𝑦
(3)
|𝐶 = 𝜑𝑦

(1)
|𝐶 − 3ℎ3

2𝐶1
(1)(𝜑𝑦

(1)
|𝐶 +𝑊,𝑦

(1)
|𝐶)                                                                                      (2-14) 

In Eq. (2.14), ℎ2 and ℎ3 denote the distances between the midplanes of the region 2 and 3 and 

the midplane of the whole plate, as shown in Fig 2.3. Additionally, 𝑈(𝑖), 𝑉(𝑖),  and 𝑊(𝑖) represent 

the displacement fields of the  𝑖𝑡ℎ region alongside the X, Y, and Z directions of the plate, 

respectively; 𝜑𝑥
(𝑖)

and 𝜑𝑦
(𝑖)

also indicate the rotation of the midplane of the 𝑖𝑡ℎ region around the 𝑦 

and 𝑥 axes. Additionally, the constant 𝐶1
(1)

 can be expressed as follows: 𝐶1
(1)
=

4

3ℎ2
 , where ℎ 

represents the total thickness of the plate, as illustrated in Fig 2.3.  In this work, two different types 

of boundary conditions are considered for the GRC laminated plates with embedded delamination 

zones including immovable simply supported (SSSS) and clamped (CCCC) at all edges. In the 

case of the GRC laminated plate with a single edge delamination, however, due to the presence of 

this damage area along one of the plate’s longitudinal edges, the stated edge is assumed to be 

unrestricted, while the other three edges are subjected to simply-supported boundary conditions 

(SSSF). The mathematical formulas for different kinds of boundary conditions applied to GRC 

delaminated plates are mentioned in Tables (2.1) and (2.2), respectively. According to the 

continuity and boundary conditions mentioned in Eq. (2.14) and Tables (2.1) and (2.2), the 

displacement and rotation functions are assumed to be polynomial. For brevity, hereinafter, the 
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admissible functions for the GRC laminated plate with a circular embedded delamination zone and 

simply supported boundary conditions are provided. It should be noted that the admissible 

displacement and rotation functions of the GRC laminated plate with an elliptical embedded 

delamination are given in Appendix B for simply supported and clamped boundary conditions.  

Table 2-1 Mathematical expressions of displacement and rotation at different edges of the perfect FG-GRC plate 

(SSSS and CCCC) 

Type of B.C Out-of-plane displacement In-plane displacement Rotation 

Simply 

Supported 

𝑊
|𝑥=

−𝐿1
2

(1)
= 𝑊

|𝑥=
𝐿1
2

(1)
= 0 

𝑊
|𝑦=

−𝑏1
2

(1)
= 𝑊

|𝑦=
𝑏1
2

(1)
= 0 

𝑈
|𝑥=

−𝐿1
2

(1)
= 𝑈

|𝑥=
𝐿1
2

(1)
= 0 

𝑉
|𝑦=

−𝑏1
2

(1)
= 𝑉

|𝑦=
𝑏1
2

(1)
= 0 

_ 

Clamped 

𝑊
|𝑥=

−𝐿1
2

(1)
= 𝑊

|𝑥=
𝐿1
2

(1)
= 0 

𝑊
|𝑦=

−𝑏1
2

(1)
= 𝑊

|𝑦=
𝑏1
2

(1)
= 0 

𝑈
|𝑥=

−𝐿1
2

(1)
= 𝑈

|𝑥=
𝐿1
2

(1)
= 0 

𝑉
|𝑦=

−𝑏1
2

(1)
= 𝑉

|𝑦=
𝑏1
2

(1)
= 0 

𝜑𝑥
|𝑥=

−𝐿1
2

(1)
= 𝜑𝑥

|𝑥=
𝐿1
2

(1)
= 0 

𝜑𝑦
|𝑦=

−𝑏1
2

(1)
= 𝜑𝑦

|𝑦=
𝑏1
2

(1)
= 0 

 

Table 2-2 Mathematical expressions of displacement and rotation at different edges of GRC laminated plate with a 

single edge delamination (SSSF) 

Type of B.C Out-of-plane displacement In-plane displacement 

Simply Supported 

𝑊
|𝑥=

−𝐿1
2

(1)
= 𝑊

|𝑥=
𝐿1
2

(1)
= 0 

𝑊
|𝑦=

𝑏1
2

(1)
= 0 

𝑈
|𝑥=

−𝐿1
2

(1)
= 𝑈

|𝑥=
𝐿1
2

(1)
= 𝐸𝑛𝑑 𝑠ℎ𝑜𝑟𝑡𝑒𝑛𝑖𝑛𝑔 

𝑉
|𝑦=

𝑏1
2

(1)
= 0 

Out-of-Plane displacements 

𝑊(1) = ∑∑(𝑥 −
𝐿1
2
)

𝑁1

𝑛=0

(𝑥 +
𝐿1
2
)

𝑀1

𝑚=0

(𝑦 −
𝑏1
2
) (𝑦 +

𝑏1
2
)𝑊𝑚𝑛

(1)𝑥𝑚𝑦𝑛 

𝑊(2) = 𝑊(1) + ∑∑(𝑥2 + 𝑦2 − 𝑅2)2

𝑁2

𝑛=0

𝑀2

𝑚=0

𝑊𝑚𝑛
(2)𝑥𝑚𝑦𝑛 

𝑊(3) = 𝑊(1) + ∑ ∑ (𝑥2 + 𝑦2 − 𝑅2)2
𝑁3
𝑛=0

𝑀3
𝑚=0 𝑊𝑚𝑛

(3)𝑥𝑚𝑦𝑛                                                                                                                  (2-15) 

In-plane displacements 
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𝑈(1) = ∑∑(𝑥 −
𝐿1
2
)

𝑄1

𝑞=0

(𝑥 +
𝐿1
2
)

𝑃1

𝑝=0

𝑈𝑝𝑞
(1)𝑥𝑝𝑦𝑞  

𝑈(2) = 𝑈(1) −
4ℎ2

3

3ℎ1
2 (𝜑𝑥

(1) +
𝜕𝑊(1)

𝜕𝑥
) + ℎ2𝜑𝑥

(1) +∑∑(𝑥2 + 𝑦2 − 𝑅2)𝑈𝑝𝑞
(2)𝑥𝑝𝑦𝑞

𝑄2

𝑞=0

𝑃2

𝑝=0

 

𝑈(3) = 𝑈(1) −
4ℎ3

3

3ℎ1
2 (𝜑𝑥

(1) +
𝜕𝑊(1)

𝜕𝑥
) + ℎ3𝜑𝑥

(1) +∑∑(𝑥2 + 𝑦2 − 𝑅2)𝑈𝑝𝑞
(3)𝑥𝑝𝑦𝑞

𝑄3

𝑞=0

𝑃3

𝑝=0

 

𝑉(1) =∑∑(𝑦 −
𝑏1
2
) (𝑦 +

𝑏1
2
)

𝑅1

𝑟=0

𝑆1

𝑠=0

𝑉𝑠𝑟
(1)𝑥𝑠𝑦𝑟  

𝑉(2) = 𝑉(1) −
4ℎ2

3

3ℎ1
2 (𝜑𝑦

(1) +
𝜕𝑊(1)

𝜕𝑦
) + ℎ2𝜑𝑦

(1) +∑∑(𝑥2 + 𝑦2 − 𝑅2)𝑉𝑠𝑟
(2)𝑥𝑠𝑦𝑟

𝑅2

𝑟=0

𝑆2

𝑠=0

 

𝑉(3) = 𝑉(1) −
4ℎ3

3

3ℎ1
2 (𝜑𝑦

(1) +
𝜕𝑊(1)

𝜕𝑦
) + ℎ3𝜑𝑦

(1) + ∑ ∑ (𝑥2 + 𝑦2 − 𝑅2)𝑉𝑠𝑟
(3)𝑥𝑠𝑦𝑟

𝑅3
𝑟=0

𝑆3
𝑠=0                                               (2-16) 

Rotational functions 

𝜑𝑥
(1) =∑∑𝜑𝑥𝑗𝑘

(1)

𝐾1

𝑘=0

𝐽1

𝑗=0

𝑥𝑗𝑦𝑘 

𝜑𝑥
(2) = 𝜑𝑥

(1) −
4ℎ2

2

ℎ1
2 (𝜑𝑥

(1) +
𝜕𝑊(1)

𝜕𝑥
) +∑∑𝜑𝑥𝑗𝑘

(2)(𝑥2 + 𝑦2 − 𝑅2)𝑥𝑗𝑦𝑘

𝐾2

𝑘=0

𝐽2

𝑗=0

 

𝜑𝑥
(3) = 𝜑𝑥

(1) −
4ℎ3

2

ℎ1
2 (𝜑𝑥

(1) +
𝜕𝑊(1)

𝜕𝑥
) +∑∑𝜑𝑥𝑗𝑘

(3)(𝑥2 + 𝑦2 − 𝑅2)𝑥𝑗𝑦𝑘

𝐾3

𝑘=0

𝐽3

𝑗=0

 

𝜑𝑦
(1) =∑∑𝜑𝑦𝑖𝑡

(1)

𝑇1

𝑡=0

𝐼1

𝑖=0

𝑥𝑖𝑦𝑡  

𝜑𝑦
(2) = 𝜑𝑦

(1) −
4ℎ2

2

ℎ1
2 (𝜑𝑦

(1) +
𝜕𝑊(1)

𝜕𝑦
) +∑∑𝜑𝑦𝑖𝑡

(2)(𝑥2 + 𝑦2 − 𝑅2)𝑥𝑖𝑦𝑡

𝑇2

𝑡=0

𝐼2

𝑖=0

 

𝜑𝑦
(3) = 𝜑𝑦

(1) −
4ℎ3

2

ℎ1
2 (𝜑𝑦

(1) +
𝜕𝑊(1)

𝜕𝑦
) + ∑ ∑ 𝜑𝑦𝑖𝑡

(3)(𝑥2 + 𝑦2 − 𝑅2)𝑥𝑖𝑦𝑡
𝑇3
𝑡=0

𝐼3
𝑖=0                                                    (2-17)      

In Eqs. (2.15), (2.16), and (2.17), the second series is defined to fulfill the continuity conditions 

that arise due to the delamination. It is worth noting that an unacceptable physical phenomenon 
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known as penetration may occur between the sublaminate and baselaminate where the GRC 

delaminated plate is subjected to compressive loads. The size and location of the delamination 

zone, graphene reinforcement distribution pattern, and type of boundary condition all play 

essential roles in the occurrence of penetration. In this study, the penalty constraint is used to 

prevent penetration violation. By establishing a restriction on the equations, this strategy results in 

equal displacements in the overlapped areas. To do this, various virtual linear springs are assumed 

throughout the contact regions, and the contact stiffness of the corresponding springs (i.e. 𝐾𝑓) is 

changed to assure the consistency of the contact region’s displacements. Thus, the estimated strain 

energy of the assumed virtual springs might be calculated as [64]: 

𝑈𝑐𝑜𝑛𝑡𝑎𝑐𝑡 = ∫
1

2
𝐾𝑓(𝑊

(𝑖) −𝑊(𝑖+1))
2
𝑑𝑠                                                                                                                   (2-18) 

     This study presents novel polynomial series as displacement and rotation functions for each 

region of the GRC delaminated plate, which includes circular and elliptical delamination zones, as 

outlined in Eqs. (2.12)-(2.17) and Appendix B. These functions are derived using the higher-order 

shear deformation theory. After defining the displacement and rotation fields and applying the 

minimum total potential energy principle, we obtain a system of nonlinear equations. The total 

potential energy, which is the sum of the strain energy in each region, can be evaluated by 

substituting the displacement and rotation functions (Eqs. (2.15), (2.16), and (2.17)) into Eq. (2.6).  

     In addition to the strain energy in each region, we need to consider the strain energy of the 

assumed springs in the contact zone as presented in Eq. (2.18). This ensures that the contact zone 

between the delaminated regions is correctly modeled. By incorporating these equations, we can 

obtain a comprehensive understanding of the thermal instability behavior of the FG-GRC 

delaminated plate. 

 𝑈𝑡𝑜𝑡𝑎𝑙 = ∑ 𝑈𝑗𝐽
𝑗=1  
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∏ = 𝑈𝑡𝑜𝑡𝑎𝑙 + 𝑈𝑐𝑜𝑛𝑡𝑎𝑐𝑡                                                                                                                                                                             (2-19) 

Following this stage, the total potential energy should be minimized using the unknown 

displacement and rotation coefficients as shown in Eq. (2.20). [60] 

𝜕∏

𝜕𝜒
= 0                                                                                                                                                                                                           (2-20) 

where 𝜒 is the vector of unknowns χ={𝑈𝑝𝑞
(𝑖) , 𝑉𝑠𝑟

(𝑖) ,𝑊𝑚𝑛
(𝑖), 𝜑𝑥𝑗𝑘

(𝑖) , 𝜑𝑦𝑖𝑡
(𝑖)} . The Eq. (2.20) leads to the 

following matrix representation of the equilibrium equations [60]: 

[𝐾(𝑇, 𝜒)]{𝜒} = {𝐹(𝑇)}                                                                                                                                                                       (2-21) 

where [𝐾(𝑇, 𝜒)] and {𝐹(𝑇)} are the stiffness matrix and force vector, respectively. Eq. (2.21) 

shows a system of nonlinear equation that is solved using the generalized Newton-Raphson 

iterative method. 

2.3.2. GRC laminated plate with a single edge delamination zone 

In Section 3.1, we centered our attention on circular and elliptical embedded delaminations. It 

is noteworthy that the displacement and rotation functions developed for these cases can be 

adapted with minor modifications to model plates with semi-circular or elliptical edge 

delaminations. To expand the scope of our findings and enable the modeling of a broader range of 

delamination geometries, we made the deliberate decision to alter the shape of the edge 

delamination to a rectangular configuration. Similar to the circular and elliptical embedded 

delamination shown in Fig 2.3, the edge delamination also separates the composite plate into two 

distinct regions along the thickness direction, one of which is thicker than the other region and is 

referred to as baselaminate, while the other part is thinner and is called to as sublaminate. 

Additionally, this delamination zone divides the prescribed GRC laminated plate into three 

different zones running parallel to the longitudinal direction of the plate, as displayed in Fig 2.4. 

This figure also shows that the plate is still symmetric around the 𝑌 axis despite the presence of 
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the rectangular delamination zone, which means that delamination is positioned at the center of 

the free edge. 

 As stated in the preceding section, it is necessary to consider the continuity boundary conditions 

between the different areas established through the longitudinal direction of the delaminated plate. 

The essential displacement and rotation continuity conditions that must be satisfied at the edge 

delamination boundaries are expressed in Appendix C. 

 

Figure 2-4 Segmentation of the FG-GRC plate with edge delamination into subdomains (regions) 

Based on the continuity and boundary conditions stated in Appendix C and table (2.2), 

respectively, the displacement and rotation functions of the GRC laminated plate with a single 

edge delamination that has SSSF boundary conditions are just mentioned below. 

Out-of-plane displacements 

𝑊(1) = ∑∑(𝑥 −
𝐿1
2
)

𝑁1

𝑛=0

(𝑥 +
𝐿1
2
)

𝑀1

𝑚=0

(𝑦 −
𝑏1
2
)𝑊𝑚𝑛

(1)𝑥𝑚𝑦𝑛 
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     In the case of a GRC laminated plate with a single edge delamination zone, end-shortening 

strain as a compressive mechanical load is anticipated in addition to the uniform temperature rise. 

This assumption will allow us to assess the impact of various graphene distribution patterns on the 

nonlinear thermomechanical responses of this structure. Therefore, it is required to consider −𝜀. 𝑥 

, 𝜀 =
∆𝐿1

𝐿1
, for the in-plane function through the 𝑋 direction for applying the end-shortening strain.  
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2.4. Results and discussion 

Here, the approach described in the preceding sections is used to investigate the nonlinear 

thermal and thermomechanical instability of composite laminated plates with various types of 

delamination zones reinforced by graphene sheets. It is well established that when the temperature 

dependency of material properties is taken into account, more accurate results can be obtained 

[70,71]. For this reason, temperature-dependent material properties are considered in this paper. 

Poly (methyl methacrylate), so-called PMMA, is selected for the matrix with material properties 

𝐸𝑚 = (3.52 − 0.0034𝑇) 𝐺𝑃𝑎, = 0.34, 𝑎𝑛𝑑 𝛼𝑚 = 45 × 10−6(1 + 0.0005(𝑇 − 𝑇0)) 
1
𝐾⁄  and 

the graphene sheets with effective thickness ℎ𝐺 = 0.188 𝑛𝑚 are selected as reinforcement of each 

layer. Because the material properties of graphene sheets are also highly dependent on temperature 

variation, Lin et al. [69] employed MD simulation to obtain the material properties of graphene 

sheets at various temperatures, which are illustrated in Table (2.3).  

Table 2-3 Thermomechanical properties of single layer graphene sheet with geometrical characteristics 

𝑎𝐺 = 14.76 𝑛𝑚, 𝑏𝐺 = 14.77 𝑛𝑚, ℎ𝐺 = 0.188 𝑛𝑚 [69] 

       

300 1.812 1.807 0.683 0.177 -0.9 -0.95 

400 1.769 1.763 0.691 0.177 -0.35 -0.4 

500 1.748 1.735 0.700 0.177 -0.08 -0.08 

700 1.737 1.721 0.676 0.177 0.25 0.3 

1000 1.660 1.646 0.645 0.177 0.32 0.32 
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Because of the temperature dependency, it is desirable to obtain continuous functions for the 

material properties of graphene sheets in terms of temperature that can be described using a fourth-

order polynomial [72] 

 𝑃 = 𝑃0 + 𝑃1 (
𝑇

𝑇0
) + 𝑃2 (

𝑇

𝑇0
)
2

+ 𝑃3 (
𝑇

𝑇0
)
3

+ 𝑃4 (
𝑇

𝑇0
)
4

                                                                             ( 2-25) 

where 𝑇0 = 300 𝐾 is the reference temperature and the coefficients 𝑃𝑖 are specific to each 

thermomechanical properties as presented in Table (2.4). The out of plane shear moduli of 

graphene sheets can be estimated by 𝐺13 = 𝐺23 = 0.5𝐺12(37)  

Table 2-4 Coefficients 𝑃𝑖  associated to the fourth order interpolation (Eq. (2.25)) for various thermomechanical 

properties [72] 

𝑃 𝑃0 𝑃1 𝑃2 𝑃3 𝑃4 

𝐸11(𝐺𝑃𝑎) 2.1560 -0.5531 2.4378 × 10−1 
−3.3879

× 10−2 

−8.6786

× 10−4 

𝐸22(𝐺𝑃𝑎) 1.9590 -0.0824 
−1.5645

× 10−1 
1.0440 × 10−1 

−1.7550

× 10−2 

𝐺12(𝐺𝑃𝑎) 0.9633 -0.7672 7.2866 × 10−1 
−2.7761

× 10−1 
3.5839 × 10−2 

 0.1770 0 0 0 0 

𝛼11(
10−6

𝐾⁄ ) -7.3133 12.4823 -8.3291 2.5511 
−2.9089

× 10−1 

𝛼22(
10−6

𝐾⁄ ) -6.0633 9.3930 -5.8005 1.7154 
−1.9446

× 10−1 

As illustrated in Eq. (2.8), the extended Halpin-Tsai approach was proposed to improve the 

accuracy of the material properties of GRC laminated plates obtained from the Halpin-Tsai. This 

approach includes some efficiency parameters, ƞ𝑖 , 𝑖 = 1,2,3. Shen et al. [38,39,41]  evaluated these 

parameters for five distinct graphene volume fractions at three different temperatures as shown in 

Table (2.5). 
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Table 2-5 The efficiency parameters ƞ𝑖 , 𝑖 = 1,2,3 for different volume fractions of graphene sheets at three different 

levels of temperature [38,39,41] 

𝑇 (𝐾) 𝑉𝐺 ƞ1 ƞ2 ƞ3 

300 

0.03 2.929 2.855 11.842 

0.05 3.068 2.962 15.944 

0.07 3.013 2.966 23.575 

0.09 2.647 2.609 32.816 

0.11 2.311 2.260 33.125 

400 

0.03 2.977 2.896 13.928 

0.05 3.128 3.023 15.229 

0.07 3.060 3.027 22.588 

0.09 2.701 2.603 28.896 

0.11 2.405 2.337 29.527 

500 

0.03 3.388 3.382 16.712 

0.05 3.544 3.414 16.018 

0.07 3.462 3.339 23.428 

0.09 3.058 2.936 29.754 

0.11 2.736 2.665 30.773 

 

In all cases studied in this work, the specified GRC laminated plates consist of ten plies stacked 

in the sequence [0,90,0,90,0]𝑠. Four different types of graphene distributions are considered to 

reinforce the specified composite plate, including FG-X, FG-O, FG-A, and UD. The graphene 

volume fraction varies symmetrically as [0.11,0.09,0.07,0.05,0.03]𝑠 in the FG-X distribution 

from top to bottom of the plate. In this functionally grading arrangement, the top and bottom layers 

have the highest volume fraction of graphene reinforcement while the layer located at the midplane 

has the lowest volume fraction. The symmetric arrangement of [0.03,0.05,0.07,0.09,0.11]𝑠 is 

referred to as FG-O. Unlike the FG-X distribution, the top and bottom layers contain the least 
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amount of graphene, while the layer at the midplane contains the most amount of this 

reinforcement. FG-A is an asymmetric FG-GRC laminated plate in which the lowest graphene 

volume fraction is dedicated to the two top layers of the plate, and the graphene volume fraction 

increases in the thickness direction until it reaches its maximum at the two bottom layers, which 

can be shown like: [(0.03)2, (0.05)2, (0.07)2, (0.09)2, (0.11)2 ]𝑎, Here subscript “2” indicates 

the number of layers sharing the same volume fraction of graphene from top to bottom, whilst 

subscript “s” and “a” indicate the symmetric and asymmetric distribution of graphene 

reinforcement in the FG-GRC plate, respectively. Uniform distribution, UD, is another symmetric 

configuration of GRC laminate, in which all layers have the same volume fraction of graphene; in 

this study, 𝑉𝐺 = 0.07 is considered for UD, thus, the two cases of FG-GRC and UD-GRC 

laminated plates will have equal values of the total volume fraction of graphene. 

2.4.1. Comparative study 

The thermal instability analysis of a GRC plate with simply supported boundary conditions was 

studied by Shen et al [31] using a two-step perturbation approach. The thermal postbuckling 

behavior of the GRC laminated plate with three different graphene distribution patterns, including 

FG-X, FG-O, and UD, are compared in Fig 2.5. It is observed that our results are in an excellent 

agreement with those reported in the reference [31]. Given that the primary objective of this paper 

is to assess the nonlinear thermal behavior of GRC delaminated plate, it is also necessary to 

compare the results of our method to that of another reliable source on plates with delamination. 

The verification is presented in Fig 2.6, which shows the instability equilibrium path of a 

composite plate with a single through-the-width delamination and clamped boundary conditions 

at the both longitudinal ends subjected to a non-dimensional end-shortening strain. The top 

sublaminate and the bottom baselaminate have lay ups of [0,90,90,0] and [0,90,90,0]3. As shown 
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in Fig 2.6, the current results are in close agreement with findings reported in reference [58] by 

using FEM. 

 

Figure 2-5 Thermal postbuckling of temperature dependent of GRC laminated plates: comparison of the results of 

the current study and those provided by Shen et al. [31] 
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Figure 2-6 Non-dimensional out-of-plane displacement versus the non-dimensional end-shortening: comparison of 

the results of the current study and those finite element results provided by Kharazi et al. [53] 

2.4.2. Parametric study 

2.4.2.1. Thermal instability analysis of GRC laminated plate  

Fig 2.7(a) indicates the effect of boundary conditions on the thermal equilibrium path of  FG-

GRC laminated plates (
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𝑏1
⁄ = 1,
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ℎ⁄ = 20) without delamination zone for two distinct 

graphene reinforcement distribution patterns, FG-X and FG-A, one is symmetric and the other 

asymmetric, additionally, Fig 2.7(b) illustrates the effect of simply-supported and clamped 

boundary conditions on the variation of the total bending moment at the center of the FG-GRC 

laminated plates. As illustrated in Fig 2.7(a), the thermal equilibrium paths of the FG-X laminated 

plates for both simply-supported and clamped boundary conditions are primary-secondary, 
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laminated plate with clamped edges, on the other hand, differs dramatically from that of the FG-A 

laminated plate with simply-supported boundary conditions. When the FG-A laminated plate is 

subjected to thermal loading, non-zero thermal moments are generated through the plate due to the 

asymmetric stretching-bending coupling, as shown in Fig 2.7(b). A simply-supported edge does 

not have the potential to apply an extra moment to keep the FG-A laminated plate flat, as opposed 

to the clamped boundary condition, which can. For this reason, the thermal equilibrium path of the 

FG-A laminated plate with simply supported edges is of the unique and stable nonlinear bending 

type, whereas the response of the FG-A laminated plate with clamped boundary conditions is of 

the primary-secondary path.  
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Figure 2-7 Effect of the boundary conditions of FG-GRC laminated plates subjected to a uniform temperature rise 

on: (a) Thermal postbuckling deflection and (b) Variation of the bending moment at the center of the plates  
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2.4.2.2. Thermal stability analysis of GRC laminated plate with an embedded 

delamination zone    

The influence of the clamped and simply-supported boundary conditions on the nonlinear 

thermal equilibrium paths of the GRC laminated plate (
𝐿1
𝑏1
⁄ = 1,

𝐿1
ℎ⁄ = 40)  with a single 

circular embedded delamination zone reinforced by various types of functionally graded and 

uniform graphene sheets are illustrated in Figs 2.8 and 2.9, respectively. The ratio of the 

delamination area (𝐴𝐷) to the total area of the plate (𝐴) is 0.25 and the thickness ratio of the 

sublaminate (ℎ𝑠) to the total thickness of the plate (ℎ) is 0.2. As indicated, an increase in 

temperature leads to the local buckling of the top sublaminate during the initial thermal loading 

phases. This phenomenon occurs because the top sublaminate is thinner than the bottom 

baselaminate and has a lower graphene volume fraction compared to the thicker segment, resulting 

in reduced flexural rigidity and compressive strength. Therefore, the postbuckling response of the 

top sublaminate is restrained by the bottom baselaminate for further lateral deflection. Regardless 

of the boundary condition types and graphene sheet distributions, the negative out-of-plane 

displacement of the baselaminates grows as the temperature rises, and this thicker segment pulls 

the top sublaminate towards the negative direction of 𝑍 during its deflection. For instance, in Fig 

2.8, by increasing the temperature up to T= 430 K, the deflection of the top sublaminate and bottom 

baselaminate of the FG-X plate increases along the positive and negative directions of Z, 

respectively, which is referred as the mixed-mode buckling. After T = 430 K, the deflection of the 

thicker segment of the FG-X laminated plate further increases in the negative direction and pulls 

down the top sublaminate.  
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Figure 2-8 The influence of graphene reinforcement distribution on the thermal equilibrium paths of FG-GRC 

laminated plates with embedded circular delamination, AD/A=0.25, 
ℎ𝑠
ℎ
⁄ = 0.2, CCCC 

 

Figure 2-9 The influence of graphene reinforcement distribution on the thermal equilibrium paths of FG-GRC 

laminated plates with embedded circular delamination, AD/A=0.25, 
ℎ𝑠
ℎ
⁄ = 0.2, SSSS 
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    The nonlinear thermal responses of the FG-A laminated plate as an asymmetric graphene 

distribution pattern, containing an embedded circular delamination zone are compared in Fig 2.10 

for different boundary conditions. In clamped boundary condition, the top sublaminate and bottom 

baselaminate deflect in opposite directions to create a mixed-mode buckling similar to those of 

plates with symmetric graphene dispersion patterns discussed in Fig 2.8. However, under the 

simply supported boundary condition, the out-of-plane displacements of the top sublaminate and 

bottom baselaminate are identical from the initial step of thermal loading until T = 600 K and are 

alongside the negative direction of 𝑍. We should note that in this case the penalty constraint was 

considered across the delamination zone to prevent the occurrence of unacceptable physical 

penetration of sublaminate and baselaminate. The stiffness of the virtual springs used in this case 

is 𝐾 = 500 𝑁 𝑚𝑚3⁄ . According to the reasons stated about Fig 2.7, the thermal postbuckling 

deflection of the FG-A delaminated plate with clamped boundary conditions is primary-secondary 

and has a bifurcation point at approximately 350 K temperature for its bottom baselaminate. 

However, the thermal postbuckling equilibrium path for the same plate with simply-supported 

boundary conditions is unique. 
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Figure 2-10 Influence of clamped and simply-supported boundary conditions on the thermal equilibrium paths of 

FG-A laminated plates with embedded circular delamination, AD/A=0.25, 
ℎ𝑠
ℎ
⁄ = 0.2 

Figure 2.11 displays the mixed-mode buckling phenomenon of a composite plate. The plate 

includes a circular embedded delamination and a distribution pattern of FG-X graphene that has 

been optimized to boost its compressive strength. The graph reveals that, at a temperature of 620 

K, the entire plate experiences a negative deflection. However, the top sublaminate deflects locally 

in the opposite direction to that of the baselaminate.  

Figures 2.12 and 2.13 indicate the contour of deflection variation and normal stress distribution 

across the top and bottom surfaces of the FG-X delaminated plate at various thermal loading levels. 

Although the loading and boundary conditions through the X and Y in-plane directions of the plate 

are symmetric, the presence of near-surface embedded circular delaminations can result in a 

significant difference in the postbuckling behavior of various segments of the FG-GRC laminated 

plate, including the top sublaminate and bottom baselaminate. As shown in Fig 2.11, the FG-GRC 

laminated plate with a circular embedded delamination experiences mixed-mode buckling during 
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the postbuckling phase. This means that the bottom baselaminate deflects downward by the 

increase of temperature, while the top sublaminate has an opposite out-of-plane displacement, 

resulting in different stress distributions through the top and bottom surfaces of the FG-GRC 

laminated plate. As illustrated in Fig 2.13, the top surface is under the compressive stress, except 

for the top sublaminate, which is locally subjected to tensile stress. For example, at the maximum 

temperature, T=600 K, the average compressive stress at the top surface is approximately -1500 

MPa, while the level of stress at the top sublaminate is roughly 800 MPa. However, the entire of 

the bottom baselaminate undergoes the compressive stress. According to the results shown in Figs 

2.8, 2.9, and 2.13, despite the fact that the FG-X graphene distribution pattern reduces the thermal 

postbuckling deflection of the delaminated plate, the level of normal stress increases significantly 

on the top and bottom surfaces which contain the highest volume fraction of graphene, exposing 

them to failure. 

 

Figure 2-11 Buckled configuration of the FG-X laminated plate with a circular embedded delamination zone, 

AD/A=0.25, 
ℎ𝑠
ℎ
⁄ = 0.2, SSSS 
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Figure 2-12 Comparison of deflection through the sublaminate and baselaminate of FG-X plate with embedded 

circular delamination at three different temperatures AD/A=0.25, SSSS. (a) Sublaminate (b) Baselaminate, 

deflection reported in mm 
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Figure 2-13 Comparison of normal Stress (𝜎11) through the sublaminate and baselaminate of FG-X plate with 

embedded circular delamination at three different temperatures AD/A=0.25, SSSS. (a) Sublaminate (b) Baselaminate 
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To better understand the influence of the delamination zone on the nonlinear thermal responses 

of the GRC laminated plates, the plate (
𝐿1
𝑏1
⁄ = 1,

𝐿1
ℎ⁄ = 40)  is assumed to have an elliptical 

embedded delamination zone rather than a circular one. Figs 2.14 and 2.15 illustrate the thermal 

instability behavior of that GRC delaminated plate with clamped and simply-supported boundary 

conditions, respectively. For both types of boundary conditions, the top sublaminate and bottom 

baselaminate deflect in the same direction while adhering to one another and acting as one GRC 

laminated plate, which is known as the global buckling mode, as contrasted to the circular 

embedded delamination, which exhibited mixed-mode buckling under the same loading and 

boundary conditions. Notably, the penetration phenomenon likely occurs in the global buckling 

mode. To eliminate this undesirable occurrence and obtain realistic results, the penalty constraint 

is adopted for all cases, and the constant spring stiffness is set to 𝐾 = 500 (𝑁 𝑚𝑚3⁄ ). For the 

sake of brevity, additional results about the GRC laminated plate with an embedded elliptical 

delamination zone were attached to Appendix D. 
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Figure 2-14 The influence of graphene reinforcement distribution on the thermal equilibrium paths of FG-GRC 

laminated plates with embedded elliptical delamination, AD/A=0.25, 
ℎ𝑠
ℎ
⁄ = 0.2, CCCC 

 

Figure 2-15 The influence of graphene reinforcement distribution on the thermal equilibrium paths of FG-GRC 

laminated plates with embedded elliptical delamination, AD/A=0.25, 
ℎ𝑠
ℎ
⁄ = 0.2, SSSS 
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2.4.2.3. Thermomechanical analysis of GRC laminated plate with an edge 

delamination 

Fig 2.16 demonstrates the effect of various graphene reinforcement distributions on the 

mechanical potbuckling deflection path of functionally graded and uniform GRC delaminated 

plates (
𝐿1
𝑏1
⁄ = 2,

𝐿1
ℎ⁄ = 20). The edge delamination is located along one of the longitudinal 

edges of the plate.  The lay ups sequence of the top sublaminate and bottom baselaminate are 

[0,90] and [0,90,0,0,90,0,90,0], respectively. The ratio of the delamination area (AD) to the 

overall area of the plate (A) is equal to 0.23. In this case, the GRC delaminated plate is just 

subjected to a compressive stress in the form of end-shortening strain at T0=300 K. The boundary 

conditions applied to this delaminated plate is SSSF, as previously stated. As illustrated, for three 

types of graphene distribution patterns, when the value of the applied end-shortening equals to 

U=0.3, only the sublaminate buckles through the positive direction of the 𝑍 axis, while the 

baselaminate remains flat with no obvious out-of-plane displacement. This condition known as 

local buckling mode, which happens since the baselaminate is four times thicker than the 

sublaminat and contains a higher volume fraction of the graphene reinforcements, resulting in 

greater stiffness. It can also be concluded that the postbuckling strength of the plate with FG-X 

distribution pattern is higher than that with FG-O and UD distribution patterns. In other words, 

when the same end-shortening strain is applied to the plate with different graphene distributions, 

the sublaminate deflection of the FG-X plate is less than that of the FG-O and UD. 

Fig 2.17 also shows the thermomechanical postbuckling behavior of the same plate studied in 

Fig 2.16. When exposed to the constant end-shortening strain, U=0.3, the temperature of the 

functionally graded and uniform GRC delaminated plates rises uniformly. This value of the end-

shortening strain causes local buckling of the GRC delaminated plate, as seen in Fig 2.16. It can 

be inferred from Fig 2.17 that increasing the temperature from T0=300 K to T=600 K leads to 
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substantial deflection of both the sublaminate and baselaminate of the GRC plate. Moreover, the 

delaminated plate with FG-X graphene distribution pattern has a higher thermomechanical 

postbuckling strength than the other graphene distributions. Another feature of Fig 2.17 is the 

distinction between the sublaminate and baselaminate postbuckling equilibrium paths. The 

sublaminate restrained by the rest of the GRC plate is initiated to buckle at the reference 

temperature T0=300 K due to the presence of the compressive load, constant end-shortening strain, 

and has a unique type of equilibrium path without any bifurcation point, however this end-

shortening strain is not able to cause deflection in the thicker baselaminate at this temperature. As 

the temperature increases, the thicker and stiffened segment of the delaminated plate starts to 

deflect considerably and has a primary-secondary equilibrium path with a bifurcation point. Fig 

2.17 also clearly shows that the critical buckling temperature of the baselaminate of FG-X plate is 

greater than the other distribution patterns. This is because the baselaminate layers in the FG-X 

plate are enriched with more graphene fillers, resulting in increased baselaminate stiffness. Figures 

2.16 and 2.17 show the deflections of the points located at the center of the free edge.   
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Figure 2-16 Local postbuckling equilibrium paths of FG-GRC laminated plate with single edge delamination at 

T=300 K, AD/A=0.23, 
ℎ𝑠
ℎ
⁄ = 0.2 

 

Figure 2-17 The influence of graphene reinforcement distribution on the thermomechanical equilibrium paths of FG-

GRC laminated plates with single edge delamination, AD/A=0.23, 
ℎ𝑠
ℎ
⁄ = 0.2, SSSF 
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The normal stress distribution at the top surfaces of the GRC delaminated plates (
𝐿1
𝑏1
⁄ =

2,
𝐿1
ℎ⁄ = 20,

𝐴𝐷

A
= 0.23, SSSF) subjected to the constant end-shortening strain (U=0.3) at T0=300 

K (∆𝑇 = 0) and T=600 K (∆𝑇 = 300) are shown in Fig 2.18. As illustrated, there is a noticeable 

difference in the normal stress distribution across the top surface of FG-X and FG-O graphene 

patterns when there is no thermal-induced stress at T0=300K. As previously mentioned, FG-X and 

FG-O possess vastly dissimilar graphene distributions, with the former's top layer containing 0.11 

graphene and the latter's containing 0.03 volume percentage of graphene. Consequently, these two 

layers have different bending stiffness, which results in different stress levels. The FG-X 

delaminated plate's maximum normal stress is 350 MPa, whereas that of FG-O is approximately 

180 MPa. Additionally, when T=600 K and the normal stress is generated due to the 

thermomechanical compressive loads, the highest difference in the normal stress is also observed 

between the FG-X and FG-O graphene distribution patterns. It is important to note that since the 

thermal loading and the end-shortening strain are applied simultaneously, the level of the stress in 

the current cases is significantly higher than those just under the end-shortening strain. The 

similarity of all six contours is that the maximum stress happens near the center of the free edge, 

where there is the greatest deflection due to the edge delamination. Moreover, the stress levels of 

FG-X and UD do not differ considerably.  
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Figure 2-18 Variation of the normal stress through the top surface of the FG-GRC laminate plates with single edge 

delamination, U=0.3 (a) FG-X, (b) UD, (c) FG-O, AD/A=0.23, 
ℎ𝑠

ℎ
= 0.2, SSSF 

The following parametric studies aim to examine the effect of edge delamination area and depth 

on the nonlinear thermomechanical instability behavior of the FG-X laminated plate, the best 

graphene distribution in enhancing the compressive strength of the plate.  

 Fig 2.19 indicates the thermomechanical deflection curves for three distinct ratios of the 

delamination area (AD) to the plate area (A). In this figure, the delamination size influence is 

examined by maintaining a constant length of the delamination along the free edge of the plate, 

shown in Fig 2.4, while altering the width of the delamination zone for each case. It is essential to 

T= 600 K 

(a) 

(b) 

(c) 
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note that the boundary and loading conditions, the layups and delamination thickness coordinate 

are precisely similar to those analyzed in Fig 17. Based on this assumption, at the reference 

temperature, the out-of-plane deflections of the baselaminates are equal to zero for all three 

different areas; however, the sublaminates experience varying deflections, which directly relate to 

the area of the delamination zone. As demonstrated in this figure, in every case, both the upper 

sublaminate and lower baselaminate exhibit positive deflection along the Z-axis. At each 

temperature, the out-of-plane displacement of the upper sublaminates (solid lines) is consistently 

greater than that of the lower baselaminates (dash lines). This observation confirms the absence of 

any penetration between these regions, thereby eliminating the need for contact constraints in these 

instances. 

 

Figure 2-19 The influence of the delamination area on the thermomechanical equilibrium path of the delaminated 

plate with FG-X graphene distribution patterns, R=AD/A, 
ℎ𝑠
ℎ
⁄ = 0.2 

Fig 2.20 illustrates the load-temperature variation for the same FG-X delaminated plates 
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the load-carrying capacity of the FG-X plates, leading to a substantial decline in their load carrying 

capacity. For instance, increasing the ratio of the delamination area to the total area of the plate 

from 0.18 to 0.34 reduces the load carrying capacity of the FG-X delaminated plate by 68%. 

 

Figure 2-20 The impact of the delamination size on the load-carrying capacity of the FG-X delaminated plate 

subjected to both thermal and compressive loading, R=AD/A 

Fig 2.21 compares the buckling configurations of the FG-X delaminated plates with three 
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between the sublaminate and baselaminate at the free edge of the FG-X delaminated plate is 

reduced. 

 

Figure 2-21 Influence of the delamination area on the out-of-plane displacement of the FG-X delaminated plate 

through the Y direction at X=0, R=AD/A 

Fig 2.22 demonstrates the effect of the FG-X graphene sheet distribution and contact constraint 

on the nonlinear thermomechanical postbuckling responses of the plates with edge delamination. 

The ratio of the sublaminate thickness (ℎ𝑠) to the plate thickness (ℎ) is equal to 0.3 (𝐻 =
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penetration of the baselaminate and sublaminate occurs during the thermomechanical postbuckling 

phase, as discussed is unacceptable from the physical point of view. Therefore, the incorporation 

of the contact between the baselaminate and sublaminate seems necessary. As illustrated in Fig 

2.22(b), when the constant stiffness of the springs is equal to 𝐾 = 700 (𝑁 𝑚𝑚3⁄ ), the 

unacceptable penetration completely vanishes and both sublaminate and baselaminate act as 

unique FG-X plate. At T=600 K, the global buckling mode shapes of this plate without and with 

contact constraint are shown in Fig 2.23. These mode shapes are related to the deflection of the 

sublaminate and baselaminate at the free edge of the FG-X delaminated plate.  
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Figure 2-22 Thermomechanical equilibrium paths of the FG-X delaminated plate R=AD/A=0.23, SSSF. (a) without 

contact constraint. (b) with contact 
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Figure 2-23 Effect of contact constraint on the free-edge’s buckling mode shape of the FG-X delaminated plate 

Fig 2.24(a) depicts the effect of delamination location on the thermomechanical responses of 

the FG-X delaminated plates subjected to the identical loading and boundary conditions as stated 

in Fig 2.22. As the position of the delamination gets closer to the midplane of the FG-X 

delaminated plate, the thickness of the sublaminate and the number of the graphene reinforced 

layers included in this area increase, which results in enhanced stiffness of the sublaminate. As 

shown in Fig 2.24, when the sublaminate thickness (ℎ𝑠) to the total plate thickness (ℎ) ratio 

increases from 0.2 to 0.4, its out-of-plane displacement decreases from 1.55 to 0.84 at the reference 
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sublaminate gradually exceeds that of the thinner sublaminate, as induced by the baselaminate 

deflection and taking the contact constraint into account. In contrast to the sublaminate, the 

thickness and stiffness of the baselaminate reduce by locating the delamination near the midplane 

of the FG-X plate. As a result, when the thickness ratio of the sublaminate rises from 0.2 to 0.4, 

the critical buckling temperature of the baselaminate is reduced from T=460 K to T=350 K. 
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Furthermore, Fig 2.24(b) also demonstrates that increasing the temperature affects the load-

carrying capacity of the FG-X delaminated plate with thicker sublaminates more negatively than 

those with thinner sublaminates. These findings confirm that locating the delamination near the 

midplane of the plate with FG-X graphene distribution pattern makes it more vulnerable. 
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Figure 2-24 Influence of sublaminate thickness on the (a) thermomechanical instability behavior of FG-X 

delaminated plate. (b) Load-carrying capacity. H=ℎ𝑠/h, SSSF 
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showing that the reason for the deflection is only end-shortening strain throughout this interval. 

This is because the delaminated plates reinforced by graphene sheets with g=500 and g=1000 has 

a higher postbuckling strength than those with g=100. 

 

Figure 2-25 Impact of the length to thickness ratio of the graphene sheets on the postbuckling responses of the FG-X 

delaminated plate. 𝑔 = 𝑎𝐺
ℎ𝐺
⁄ , SSSF 

2.5. Concluding remarks 

     The current study analyzes the influence of the various graphene sheet distribution patterns and 

several types of delamination zones including embedde and edge on the non-linear thermal and 

thermomechanical stability responses of the FG-GRC laminated plates. A formulation is developed 

based on the higher order shear deformation theory and von-Karman strain–displacement relation. 

The governing equations are solved through the application of the minimum potential energy and 

the Ritz method in conjunction with the Newton–Raphson iterative procedure. The 

thermomechanical properties of matrix and graphene reinforcements are assumed to be 

temperature dependent obtained using the extended Halpin-Tsai micromechanical model. 
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Numerical results provide an insight into the influence of the boundary conditions, geometry of 

the delamination zone, size and location of the edge delamination, different graphene distribution 

patterns, and size of the graphene sheets on the nonlinear stability behavior of the FG-GRC 

delaminated plates. The numerical results elaborate on the fact that FG-GRC laminated plate 

designers need to carefully consider the following points in their computational simulation: 

• The equilibrium path of the FG-A laminated plate as an asymmetric distribution pattern 

with clamped edge supports is of the bifurcation type. The behavior of this plate with 

simply-supported boundary conditions, on the other hand, is an unique stable equilibrium 

path. The inability of simply-supported edges to apply an extra moment to attenuate 

thermally generated moments is the reason behind this. 

• Comparison of the thermal equilibrium paths of the GRC laminated plate with two different 

types of embedded delamination zones, circular and elliptical, reveals that under the same 

loading and boundary conditions, the circular embedded delamination tends to cause 

mixed-mode buckling, whereas the elliptical embedded delamination causes global 

buckling mode shape in the postbuckling regime. 

• The FG-X graphene distribution pattern is the best case for increasing the postbuckling 

strength of the baselaminate and sublaminate. 

• Although the FG-X graphene distribution pattern increases the critical buckling 

temperature and decreases the nonlinear thermomechanical postbuckling deflection, it 

generates a substantial increase in the level of stress at the top surface of the delaminated 

plates as compared to the FG-O, potentially increasing the risk of damage. 
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• The position and size of the edge delamination have an effect on the critical buckling 

temperature and load carrying capacity of the FG-GRC plates. Increasing the delamination 

area and the thickness of the sublaminate deteriorate noticeably the compressive instability 

response of the FG-GRC plates. 

• Depending on the location of the delamination zone, delaminated segments (sublaminate 

and baselaminate) may come into contact in the postbuckling regime. To acquire correct 

findings, a contact model must be used. 

• By increasing the length-to-thickness ratio of the graphene sheets, the postbuckling 

strength of the FG-X delaminated plate can be improved. 
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3. Effect of graphene reinforcement distribution on energy 

release rate and vibration of thermally pre/post-buckled 

delaminated composite plates2 

     The nonlinear thermal instability responses of functionally graded graphene-reinforced 

composite (FG-GRC) laminated plates with single or multiple through-the-width delaminations, 

are investigated in the article. The possibility of delamination growth is evaluated using the three-

dimensional crack tip element (3D-CTE) method, which determines the energy release rate (ERR) 

at the delamination edge. Furthermore, the influence of delamination configurations and the types 

of graphene reinforcement distribution patterns, on the free vibration of FG-GRC delaminated 

plates in thermally pre/post-buckled regimes is evaluated. The von Karman geometrical 

nonlinearity is adopted in a solution based on the layerwise third-order shear deformation theory 

(TSDT). The nonlinear equilibrium equations derived by the minimum total potential energy 

principle are solved using the Ritz method in conjunction with the Newton–Raphson iterative 

procedure. A three-dimensional finite element model is also developed using ABAQUS to 

corroborate the accuracy of the theoretical results. Parametric studies reveal that while the FGX 

graphene distribution pattern improves the bending stiffness of delaminated composite plates more 

than FGA, the ERR at the near surface delamination edge in FGX pattern is twice as high as that 

in FGA. This implies that the possibility of delamination propagation in FGX plates can be higher 

than FGA. Additionally, while the fundamental frequency of the FGX plate with and without 

delamination exceeds the frequency of other graphene distribution patterns at the reference 

temperature, its natural frequency is the lowest among all patterns in the post-buckled regime. 

 

 
2 A version of this chapter is published in the journal of Thin-Walled Structures, 189 (2023) 110876, 
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3.1. Introduction 

      Over the last few decades, composite laminates have been widely used in a variety of 

applications requiring a relatively high stiffness/strength-to-weight ratio such as aerospace and 

automotive structures [64]. However, these materials are susceptible to a wide variety of 

interlaminar flaws named delamination, which can result in severe stiffness and strength loss 

especially under compressive loads. Delamination may arise between any two composite plies due 

to several reasons such as fabrication issues, stress concentration near geometrical/ material 

discontinuity, and local or global buckling of plies [63]. Due to the instability of delaminated 

composite structures in the postbuckling phase, the probability of delamination propagation, which 

finally leads to the structural failure is extremely high; therefore, it is essential for the reliable 

design to investigate the effect of this interlaminar flaw on the postbuckling behavior and load-

bearing capacity of such structures. 

    Many experimental, analytical, and numerical analysis have been conducted by researchers to 

assess the static and dynamic responses of delaminated and perfect composite structures. Herein, 

a comprehensive literature review is given on this topic [23,60,61,65,66,73–87]. To evaluate the 

critical buckling load and postbuckling load-bearing capacity of a graphite/epoxy composite plate 

with a single delamination zone, a compressive experimental test was conducted [23]. The primary 

objective of that study was to investigate the effect of geometrical parameters such as lay-up, size, 

and delamination location on the critical buckling load. Moreover, using finite element analysis 

(FEA), the nonlinear buckling and postbuckling behavior of composite laminates with two central 

delamination zones subjected to a uniaxial compressive load was studied by Hwang and Huang 

[81]. The most interesting outcome of their work was that when the shorter delamination is close 

to the midplane and the longer one is near to the surface, the buckling behavior of the laminate is 
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almost identical to that of a single long delamination; in other words, in this configuration the 

shorter delamination has no significant effect on the instability response of the structure.   

     Several semi-analytical studies have been also performed to examine the nonlinear buckling 

and postbuckling responses of fiber-reinforced composite laminates with various types of single 

and multiple delamination zones using different equivalent single layer plate theories, including 

the classical laminate plate theory (CLPT) [66] and the first-order shear deformation theory 

(FSDT) [65], additionally the layerwise theory based on the FSDT was implemented for relative 

thick plates [63,64]. In all of these articles the minimum total potential energy principle was 

applied to generate the instability equations solved based on the Ritz method. The most important 

conclusion derived from all these studies was that the mode of post-buckling and the related load-

bearing capacity rely strongly on the size and depth location of the delaminations. This semi-

analytical approach was also utilized to analyze the thermal postbuckling behavior of fiber-

reinforced composite laminates with a single through-the-width [60] and embedded [61] 

delamination zone. It was concluded that when a composite laminate with asymmetric lay-up 

configurations is subjected to thermal loading, non-zero thermal moments are generated through 

the plate due to the asymmetric stretching-bending coupling. A simply-supported edge does not 

have the potential to apply an extra moment to keep the plate flat, as opposed to the clamped 

boundary condition, which can. For this reason, the thermal equilibrium path of the asymmetric 

composite laminates with simply supported edges is of the unique, whereas the response of it with 

clamped boundary conditions is of the primary-secondary path.  

     Recently a new laminate partitioning scheme was proposed to analyze the postbuckling 

behavior of the composite laminate with a single through-the-width delamination. The advantage 

of this approach is offering a better displacement consistency at the edge of the delamination zone 
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and providing access to the interlaminar traction [52]. Static and dynamic response of a laminated 

composite plate reinforced with curvilinear fibers with an embedded delamination zone were 

studied by Sharma [53] based on the finite element method (FEM). The most important conclusion 

that can be drawn from their findings was that the postbuckling deflection path is extremely 

sensitive to curvature, layups, and delamination features. 

     Notably, none of the aforementioned papers predict the delamination propagation while 

investigating the influence of this interlaminar flaw on the nonlinear thermal or mechanical 

instability behavior of laminated composite structures. However, due to the devastating effect of 

this phenomenon which most likely happens in the postbuckling regime, it is a great necessity to 

precisely estimate the possibility of delamination growth under different loading conditions, which 

most commonly is done by calculating the energy release rate (ERR) at the delamination edge. A 

brief literature review on this topic provided hereinafter [25,88–96].  

     The most commonly method used in papers on the postbuckling analysis of delaminated 

composite structures with consideration and prediction of delamination propagation was 

developing a two-dimensional (2D) or three-dimensional (3D) finite element models along with 

the virtual crack closure technique (VCCT). VCCT involves modeling a crack in the material and 

then applying a small virtual load to the edges of the crack. The load is gradually increased, and at 

each step, the energy required to close the crack is calculated. This energy is then used to determine 

the ERR through the delamination edge. The ERR is a crucial material property that determines 

the energy released when a crack propagates in a material. It is expressed as the rate at which strain 

energy is released per unit area of newly formed crack surface as the crack extends, and 

mathematically calculated as the derivative of potential energy with respect to crack length. In 

fracture mechanics, the ERR plays a fundamental role in governing the rate and direction of crack 
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propagation and is widely used to calculate the critical stress intensity factor, a measure of a 

material's resistance to crack propagation.  

     Although developing an accurate and perfect finite element model finally results in conclusive 

outcomes, it is computationally demanding to develop a large finite element model for most 

practical applications because of the need to consider and process a large number of elements and 

nodes. To overcome the numerical and computational limitations of the finite element models and 

accurately calculate the total ERR at the delamination edge, an analytical solution based on the 2D 

or 3D crack tip element (CTE) was presented [92,93], which operates on the basis of the near-tip 

forces and moments extracted from the various plate theories. 

     Upon conducting an extensive review of the literature, it has become evident that a significant 

research gap exists concerning the impact of varying distribution patterns of graphene sheet 

reinforcement on the thermal postbuckling response of laminated composite plates with single or 

multiple interlaminar flaws, delamination. While incorporating graphene reinforcements into 

polymeric composite laminates has been proven to enhance their stiffness and strength, the 

presence of delamination can significantly reduce these desirable properties. Therefore, it is crucial 

to evaluate which types of graphene distribution patterns can effectively mitigate the detrimental 

effects of delamination. In addition, the presence of one or multiple through-the-width 

delaminations between the arbitrary layers of a laminated composite plate can cause the plate to 

be segmented into multiple sublaminates across its thickness, such as top, middle, and bottom 

sublaminates. The number and location of delamination zones determine the number of graphene 

reinforced composite plies in each segment, and the volume percentage of graphene reinforcement 

may vary irregularly through these divided regions. This means that the distribution patterns of 

graphene in each sublaminate can be either symmetric or asymmetric, depending on the number 
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and location of delamination zones, regardless of how graphene is distributed throughout the entire 

thickness of the plate. As an illustration, FG-X is recognized as a symmetric distribution pattern 

of graphene that enhances the bending stiffness of laminated composite structures. Nonetheless, in 

the case of a delamination in an FG-X composite laminate, the delamination configuration may 

lead to asymmetric dispersion of graphene in the divided regions. Consequently, such irregularity 

can have substantial influence on the thermal equilibrium paths, load-bearing capacity, and types 

of the buckling mode shapes under different loading and boundary conditions, emphasizing the 

need for further investigation of these issues. 

     Another objective of this article is to conduct a comprehensive investigation on the distribution 

of ERR along the delamination edges of FG-GRC laminated plates to examine how graphene 

distribution can affect the delamination propagation. We identify parts of the damaged area within 

the composite laminate that are more susceptible to propagation under varying graphene 

distribution patterns and boundary conditions. An additional objective of this study is to assess the 

impact of various symmetric and asymmetric graphene distribution patterns in combination with 

distinct delamination configurations on the fundamental frequencies of thermally pre- and post-

buckled FG-GRC plates.  

     To attain the research objectives, a layerwise theory on the basis of the third-order shear 

deformation theory (TSDT) is employed. The proposed method can evaluate both sublaminate 

local buckling and baselaminate global buckling; additionally, there are no restrictions on the type 

of boundary conditions that can be handled by the introduced procedure. The effect of different 

graphene reinforcement distributions, number and position of the delamination zones, and 

mechanical boundary conditions on the thermal equilibrium paths, load-bearing capacity, ERR 

distributions, and fundamental frequencies of the FG-GRC delaminated plates are explored. 



66 
 

3.2. Theoretical formulations 

3.2.1. Basic parameters of the FG-GRC laminated plates 

     The current research considers a multilayer laminated composite plate comprised of 𝑁𝐿 layers 

having a total thickness ℎ, length 𝐿1 , and width 𝑏1 and between any two arbitrary layers, different 

kinds of delamination zones may occur. A Cartesian coordinate is defined where X and Y are in 

the midplane and Z defines along the upward normal direction. The origin of the reference 

coordinate system is in the center of the midplane as shown in Fig 2.1, in previous chapter. 

     The thickness of all plies is assumed to be the same. Each ply is formed from a polymeric matrix 

reinforced by the graphene sheets and may contain a distinct volume fraction of graphene. When 

the graphene volume fraction in layers varies, a piece-wise functionally graded graphene 

reinforced composite (FG-GRC) laminated plate is formed. In the present study, two types of 

graphene reinforcement layers: zigzag (referred to as 0°-ply) or armchair (referred to as 90°-ply) 

are considered. This article investigates eight distinct patterns of non-uniform graphene 

distribution, comprising of four symmetric distributions (FGX, FGX-FGX, FGO, and FGO-FGO) 

and four asymmetric distributions (FGA, FGA-FGA, FGV, and FGV). Table. (3.1) illustrates 

different lay-up configurations of the FG-GRC laminated plates, which incorporate varied graded 

graphene volume fractions. 
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Table 3-1 Lay-up arrangements of the FG-GRC laminated plates with different graded graphene distributions. 

Distribution 

patterns Lay-up arrangements of graphene volume fraction  Schematic distribution 

patterns 

FGX 
[0.11,0.09,0.07,0.05,0.03]𝑆 

 

 

FGX-FGX 
[0.09,0.07,0.03,0.07,0.09]𝑆 

 

 

FGO 
[0.03,0.05,0.07,0.09,0.11]𝑆 

 

 

FGO-FGO 
[0.05,0.07,0.11,0.07,0.05]𝑆 

 

 

FGA 
[(0.03)2, (0.05)2, (0.07)2, (0.09)2, (0.11)2] 

 

 

FGA-FGA 
[0.03,0.05,0.07,0.09,0.11,0.03,0.05,0.07,0.09,0.11] 

 

 

FGV 
[(0.11)2, (0.09)2, (0.07)2, (0.05)2, (0.03)2] 

 

 

FGV-FGV 
[0.11,0.09,0.07,0.05,0.03,0.11,0.09,0.07,0.05,0.03] 
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     In Table. (3.1) the color-coded layers denote the volume fraction of graphene sheets. The darker 

shade of blue represents the layers with the highest graphene volume fraction (0.11), while the 

lighter shade of blue indicates the layers with the lowest volume percentage of graphene sheets 

(0.03). Furthermore, the subscripts "2" and "s" indicate two distinct characteristics. Specifically, 

"2" refers to the number of layers that possess an identical volume fraction of graphene, extending 

from the uppermost layer to the lowermost layer. On the other hand, "s" signifies the symmetric 

distribution of graphene reinforcement throughout the plate’s thickness. 

    It's important to note that the equations required to calculate the thermomechanical properties 

of GRCs, using the modified Halpin-Tsai mathematical model, are identical to the ones detailed in 

section 2.2.2. 

3.3. Structural model 

     The general higher order shear deformation theory (GHSDT) is a theoretical model used to 

analyze the behavior of thin-walled structures under bending, buckling, and vibration. In GHSDT, 

the shear strains are assumed to vary linearly through the thickness of the plate, and the 

displacement field includes higher-order terms than those in conventional classical plate theories. 

The third order shear deformation theory (TSDT) is a simplified version of the GHSDT. In TSDT, 

the displacement field includes only third-order terms, and the shear strains are assumed to vary 

linearly through the thickness of the plate. The TSDT can accurately predict the behavior of thin-

walled structures under various types of loading and boundary conditions, and it is widely used in 

engineering applications [67]. 

     As stated earlier, the primary objective of this study is to determine the ERR using the 3D-CTE 

method, which utilizes the resultant forces and moments in the vicinity of the crack tip or 

delamination edge. In order to accomplish this objective, the current investigation employs an 
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approach by integrating the layerwise theory with the TSDT methodology. This combination 

provides a novel framework for analyzing laminated composite plates with single and multiple 

through-the-width delaminations, and accurately evaluating the forces and moments at the 

delamination edges. Given the layerwise theory's capacity to divide composite plates into several 

numerical layers along their thickness direction, it represents a valuable modeling approach for 

capturing interlaminar defects, including delamination and debonding [64].  

     The TSDT-based expression for the displacement fields of each numerical layer, as defined 

under the layerwise theory, in the FG-GRC laminated composite plate can be stated as follows: 

𝑢𝑖𝑗(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢0
𝑖𝑗(𝑥, 𝑦, 𝑡) + 𝜃1

𝑖𝑗(𝑧)𝜑𝑥
𝑖𝑗(𝑥, 𝑦, 𝑡) + 𝜃2

𝑖𝑗
(𝑧)𝜓𝑥

𝑖𝑗
(𝑥, 𝑦, 𝑡) 

𝑣𝑖𝑗(𝑥, 𝑦, 𝑧, 𝑡) = 𝑣0
𝑖𝑗(𝑥, 𝑦, 𝑡) + 𝜃1

𝑖𝑗(𝑧)𝜑𝑦
𝑖𝑗(𝑥, 𝑦, 𝑡) + 𝜃2

𝑖𝑗
(𝑧)𝜓𝑦

𝑖𝑗
(𝑥, 𝑦, 𝑡) 

𝑤𝑖𝑗(𝑥, 𝑦, 𝑧, 𝑡) = 𝑤0
𝑖𝑗(𝑥, 𝑦, 𝑡)                                                                                                               ( 3-1) 

     As illustrated in Figs 3.1 and 3.2, u0
ij
, v0

ij
, and w0

ij
 represent the displacement components 

defined at the midplane of the 𝑖𝑡ℎ numerical layer located at the 𝑗𝑡ℎ region; φx
ij
 and φy

ij
 are also the 

middle surface rotations of those regions around the 𝑌 and 𝑋 axes, respectively. Additionally,𝜓𝑥
𝑖𝑗

 

and 𝜓𝑦
𝑖𝑗

 denote the higher-order terms related with Taylor series. These parameters can be written 

as: 

𝜓𝑥
𝑖𝑗
=
𝜕wij

𝜕𝑥
, 𝜓𝑦

𝑖𝑗
=
𝜕wij

𝜕𝑦
 , θ1

ij(𝑧) = z −
4𝑧3

3hij
2  , θ2

ij(𝑧) = −
4𝑧3

3hij
2  , 𝜑𝑥

ij
= 
𝜕uij

𝜕𝑧
, 𝜑𝑦

ij
= 
𝜕vij

𝜕𝑧
 

(3-2)                                            

    For the sake of brevity, the von-Karman nonlinear strain–displacement and linear stress-strain 

relations, as well as stiffness matrix equations are given in Appendix A. 

3.3.1. FG-GRC laminated plate with a single through-the-width delamination 

     When analyzing composite laminates with Equivalent Single Layer (ESL) theories, the 

discontinuous shear stress distribution at the layer interface causes a noticeable inaccuracy in 
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determining the critical buckling load for especially thick plates. However, in the layerwise 

theories, displacement fields as shown in Eq. (3.1) are defined for each individual numerical layer, 

incorporating discrete material and shear effects into the assumed displacement fields, resulting in 

a higher degree of accuracy at the expense of increased computational cost compared to the ESL.    

     As shown in Fig 3.1, we assume that the plate is initially divided into four separate regions due 

to the presence of a single through-the-width delamination situated between any two arbitrary 

composite layers. Regions 2 and 3 denote the top and bottom sublaminates within the delamination 

area, respectively. As per the layerwise theory, the next step involves dividing each region into 

multiple numerical layers along its thickness direction, as illustrated in Fig 3.2. The figure indicates 

that both regions 1 and 4 have been discretized into five numerical layers. Moreover, the top 

sublaminate comprises a single numerical layer, while the bottom sublaminates have been 

discretized into four numerical layers. Consequently, the laminated FG-GRC plate with a single 

delamination includes a total of fifteen numerical layers. 

    The number of layers required may vary based on the desired level of accuracy, and this count 

may either exceed or fall below the number of graphene-reinforced composite plies. It is essential 

to define the displacement and rotation functions at the midplane of each numerical layer, based 

on the TSDT. The most crucial aspect is that the displacement and rotation functions must fulfill 

the plate's boundary conditions and continuity conditions between any separated regions and 

numerical layers defined through the X and Z axis, respectively. 
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Figure 3-1 Division of the FG-GRC laminated plate with a single through-the-width delamination into four regions 

along the X and Z axis 

 

Figure 3-2 Segmentation of the FG-GRC laminated plate with a single through-the-width delamination into fifteen 

numerical layers along the Z axis 

     For the FG-GRC laminated plate with a single through-the-width delamination, the essential 

continuity conditions for displacement and rotation at the boundaries of several regions are 

expressed as: 

(𝑤𝑖2, 𝑢𝑖2, 𝑣𝑖2)|
𝑥= 

−𝐿2
2
= (𝑤𝑖1, 𝑢𝑖1, 𝑣𝑖1)|

𝑥= 
−𝐿2
2
 ,     {𝑖 = 1} 

(𝑤𝑖3, 𝑢𝑖3, 𝑣𝑖3)|
𝑥= 

−𝐿2
2
= (𝑤(𝑖+1)1, 𝑢(𝑖+1)1, 𝑣(𝑖+1)1)|

𝑥= 
−𝐿2
2
 ,     {𝑖 = 1. .4} 
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(𝑤𝑖2, 𝑢𝑖2, 𝑣𝑖2)|
𝑥= 

𝐿2
2
= (𝑤𝑖4 , 𝑢𝑖4, 𝑣𝑖4)|

𝑥= 
𝐿2
2
 ,     {𝑖 = 1} 

(𝑤𝑖3, 𝑢𝑖3, 𝑣𝑖3)|
𝑥= 

𝐿2
2
= (𝑤(𝑖+1)4, 𝑢(𝑖+1)4, 𝑣(𝑖+1)4)|

𝑥= 
𝐿2
2
 ,     {𝑖 = 1. .4} 

(𝜑𝑥
𝑖2, 𝜑𝑦

𝑖2)|
𝑥= 

−𝐿2
2
= (𝜑𝑥

𝑖1, 𝜑𝑦
𝑖1)|

𝑥= 
−𝐿2
2
 ,     {𝑖 = 1} 

(𝜑𝑥
𝑖3, 𝜑𝑦

𝑖3)|
𝑥= 

−𝐿2
2
= (𝜑𝑥

(𝑖+1)1
, 𝜑𝑦

(𝑖+1)1
)|
𝑥= 

−𝐿2
2
 ,     {𝑖 = 1. .4} 

(𝜑𝑥
𝑖2, 𝜑𝑦

𝑖2)|
𝑥= 

𝐿2
2
= (𝜑𝑥

𝑖4, 𝜑𝑦
𝑖4)|

𝑥= 
𝐿2
2
 ,     {𝑖 = 1} 

(𝜑𝑥
𝑖3, 𝜑𝑦

𝑖3)|
𝑥= 

𝐿2
2

= (𝜑𝑥
(𝑖+1)4

, 𝜑𝑦
(𝑖+1)4

)|
𝑥= 

𝐿2
2

 ,     {𝑖 = 1. .4}                                                                                                                    (3-3) 

     In Eq. (3.3), 𝑢𝑖𝑗 , 𝑣𝑖𝑗 , 𝑎𝑛𝑑 𝑤𝑖𝑗  represent the displacement fields of the  𝑖𝑡ℎ numerical layer 

located at the 𝑗𝑡ℎ region alongside the X, Y, and Z directions, respectively; 𝜑𝑥
𝑖𝑗

and 𝜑𝑦
𝑖𝑗

also indicate 

the midplane rotation of the 𝑖𝑡ℎ numerical layer around the 𝑌 and 𝑋 axes.  

     This paper investigates two distinct types of boundary conditions for FG-GRC delaminated 

plates: immovable simply supported or clamped on the longitudinal ends and assumed free 

transverse ends (SFSF or CFCF). Table. (3.2) presents the mathematical formulas for different 

boundary conditions applied to the FG-GRC laminated plate with a single central through-the-

width delamination. The table also shows that the only distinction between the shape functions 

utilized for modelling the FG-GRC delaminated plates with SFSF and CFCF boundary conditions 

is related to the rotational functions. In the case of CFCF, it's necessary to constrain the rotations 

of the midplanes of the numerical layers located at both end regions (Regions 1 and 4). The 

allowable polynomial displacement and rotation functions for the FG-GRC laminated plate with a 

single through-the-width delamination and SFSF boundary conditions are also presented below.  
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Table 3-2 Mathematical expressions of the boundary conditions at longitudinal ends of the FG-GRC plate with 

single delamination 

Type of B.C Out-of-plane displacement In-plane displacement Rotation 

Simply Supported 
𝑤
|𝑥=

−𝐿1
2

𝑖1 = 𝑤
|𝑥=

−𝐿1
2

𝑖4 = 0 

𝑖 = 1. .5  

𝑢
|𝑥=

−𝐿1
2

𝑖1 = 𝑢
|𝑥=

−𝐿1
2

𝑖4 = 0 

                  𝑖 = 1. .5 

_ 

Clamped 
𝑤
|𝑥=

−𝐿1
2

𝑖1 = 𝑤
|𝑥=

−𝐿1
2

𝑖4 = 0 

𝑖 = 1. .5  

𝑢
|𝑥=

−𝐿1
2

𝑖1 = 𝑢
|𝑥=

−𝐿1
2

𝑖4 = 0 

𝑖 = 1. .5 

𝜑𝑥
|𝑥=

−𝐿1
2

𝑖1 = 𝜑𝑥
|𝑥=

−𝐿1
2

𝑖4 = 0 

𝑖 = 1. .5 

 

The out-of-plane displacement functions for various regions of the delaminated FG-GRC plate 

are mentioned below: 

𝑤11 = ∑∑(𝑥 −
𝐿1
2
)

𝑁

𝑛=0

(𝑥 +
𝐿1
2
)

𝑀

𝑚=0

𝑤𝑚𝑛
11 𝑥𝑚𝑦𝑛    ,     𝑤11 = 𝑤𝑖1   𝑖 = 2. .5 

𝑤12 = 𝑤11 + ∑∑(𝑥 −
𝐿2
2
) (𝑥 +

𝐿2
2
)

𝑁

𝑛=0

𝑀

𝑚=0

𝑤𝑚𝑛
12 𝑥𝑚𝑦𝑛     

𝑤13 = 𝑤12 + ∑∑(𝑥 −
𝐿2
2
) (𝑥 +

𝐿2
2
)

𝑁

𝑛=0

𝑀

𝑚=0

𝑤𝑚𝑛
13 𝑥𝑚𝑦𝑛     , 𝑤13 = 𝑤𝑖3    𝑖 = 2. .4      

𝑤𝑖1 = 𝑤𝑖4    ,     𝑖 = 1. .5                                                                                                                                                                                      (3-4) 

     Eq. (3.4) stipulates that the out-of-plane displacement functions of different numerical layers 

placed in the same region must be identical to satisfy the out-of-plane continuity condition at their 

interfaces. Additionally, owing to the in-plane symmetric loading and boundary conditions, regions 

1 and 4 exhibit analogous responses. As a result, their displacement and rotation functions must be 

identical. Given these conditions, it follows that the total quantity of unknown coefficients 

associated with the out-of-plane displacement of the FG-GRC laminated plate with a single 

delamination can be determined as 3(𝑀 + 1)(𝑁 + 1). 

   Also, in-plane displacement functions of different divided regions through the X and Y 

directions are mentioned in Eq. (3.5).  
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𝑢𝑟𝑒𝑓,1 = ∑∑(𝑥 −
𝐿1
2
)

𝑄

𝑞=0

(𝑥 +
𝐿1
2
)

𝑃

𝑝=0

𝑢𝑝𝑞
𝑟𝑒𝑓,1

𝑥𝑝𝑦𝑞  

𝑢0
11 = 𝑢𝑟𝑒𝑓,1 + 𝜃1

31 (
ℎ31

2
)𝜑𝑥

31 + 𝜃2
31 (

ℎ31

2
)𝜓𝑥

31 + 𝜃1
21(ℎ21) 𝜑𝑥

21 + 𝜃2
21(ℎ21)𝜓𝑥

21 + 𝜃1
11 (

ℎ11

2
)𝜑𝑥

11 + 𝜃2
11 (

ℎ11

2
)𝜓𝑥

11 

𝑢0
21 = 𝑢𝑟𝑒𝑓,1 + 𝜃1

31 (
ℎ31

2
)𝜑𝑥

31 + 𝜃2
31 (

ℎ31

2
)𝜓𝑥

31 + 𝜃1
21 (

ℎ21

2
)  𝜑𝑥

21 + 𝜃2
21 (

ℎ21

2
)𝜓𝑥

21 

𝑢0
31 = 𝑢𝑟𝑒𝑓,1 

𝑢0
41 = 𝑢𝑟𝑒𝑓,1 + 𝜃1

31 (−
ℎ31

2
)𝜑𝑥

31 + 𝜃2
31 (−

ℎ31

2
)𝜓𝑥

31 + 𝜃1
41 (−

ℎ41

2
)  𝜑𝑥

41 + 𝜃2
41 (−

ℎ41

2
)𝜓𝑥

41 

𝑢0
51 = 𝑢𝑟𝑒𝑓,1 + 𝜃1

31 (−
ℎ31

2
)𝜑𝑥

31 + 𝜃2
31 (−

ℎ31

2
)𝜓𝑥

31 + 𝜃1
41(−ℎ41) 𝜑𝑥

41 + 𝜃2
41(−ℎ41)𝜓𝑥

41 + 𝜃1
51 (−

ℎ51

2
)𝜑𝑥

51

+ 𝜃2
51 (−

ℎ51

2
)𝜓𝑥

51 

𝑢𝑟𝑒𝑓,2 = 𝑢0
12 = 𝑢0

11 +∑∑(𝑥 −
𝐿2
2
) (𝑥 +

𝐿2
2
)𝑢𝑝𝑞

𝑟𝑒𝑓,2
𝑥𝑝𝑦𝑞

𝑄

𝑞=0

𝑃

𝑝=0

 

𝑢𝑟𝑒𝑓,3 = 𝑢𝑟𝑒𝑓,1 + 𝜃1
31 (

ℎ31

2
)𝜑𝑥

31 + 𝜃2
31 (

ℎ31

2
)𝜓𝑥

31 +∑∑(𝑥 −
𝐿2
2
) (𝑥 +

𝐿2
2
) 𝑢𝑝𝑞

𝑟𝑒𝑓,3
𝑥𝑝𝑦𝑞

𝑄

𝑞=0

𝑃

𝑝=0

 

𝑢0
13 = 𝑢𝑟𝑒𝑓,3 + 𝜃1

13 (
ℎ13

2
)𝜑𝑥

13 + 𝜃2
13 (

ℎ13

2
)𝜓𝑥

13 

𝑢0
23 = 𝑢𝑟𝑒𝑓,3 + 𝜃1

23 (−
ℎ23

2
)𝜑𝑥

23 + 𝜃2
23 (−

ℎ23

2
)𝜓𝑥

23 

𝑢0
33 = 𝑢𝑟𝑒𝑓,3 + 𝜃1

23(−ℎ23)𝜑𝑥
23 + 𝜃2

23(−ℎ23)𝜓𝑥
23 + 𝜃1

33 (−
ℎ33

2
)𝜑𝑥

33 + 𝜃2
33 (−

ℎ33

2
)𝜓𝑥

33 

𝑢0
43 = 𝑢𝑟𝑒𝑓,3 + 𝜃1

23(−ℎ23)𝜑𝑥
23 + 𝜃2

23(−ℎ23)𝜓𝑥
23 + 𝜃1

33(−ℎ33)𝜑𝑥
33 + 𝜃2

33(−ℎ33)𝜓𝑥
33 + 𝜃1

43 (−
ℎ43

2
)𝜑𝑥

43

+ 𝜃2
43 (−

ℎ43

2
)𝜓𝑥

43 

𝑢0
𝑖4 = 𝑢0

𝑖1     ,     𝑖 = 1. .5 

𝑣𝑟𝑒𝑓,1 =∑∑𝑣𝑟𝑠
𝑟𝑒𝑓,1

𝑥𝑟𝑦𝑠
𝑆

𝑠=0

𝑅

𝑟=0
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𝑣0
11 = 𝑣𝑟𝑒𝑓,1 + 𝜃1

31 (
ℎ31

2
)𝜑𝑦

31 + 𝜃2
31 (

ℎ31

2
)𝜓𝑦

31 + 𝜃1
21(ℎ21) 𝜑𝑦

21 + 𝜃2
21(ℎ21)𝜓𝑦

21 + 𝜃1
11 (

ℎ11

2
)𝜑𝑦

11 + 𝜃2
11 (

ℎ11

2
)𝜓𝑦

11 

𝑣0
21 = 𝑣𝑟𝑒𝑓,1 + 𝜃1

31 (
ℎ31

2
)𝜑𝑦

31 + 𝜃2
31 (

ℎ31

2
)𝜓𝑦

31 + 𝜃1
21 (

ℎ21

2
)  𝜑𝑦

21 + 𝜃2
21 (

ℎ21

2
)𝜓𝑦

21 

𝑣0
31 = 𝑣𝑟𝑒𝑓,1 

𝑣0
41 = 𝑣𝑟𝑒𝑓,1 + 𝜃1

31 (−
ℎ31

2
)𝜑𝑦

31 + 𝜃2
31 (−

ℎ31

2
)𝜓𝑦

31 + 𝜃1
41 (−

ℎ41

2
)  𝜑𝑦

41 + 𝜃2
41 (−

ℎ41

2
)𝜓𝑦

41 

𝑣0
51 = 𝑣𝑟𝑒𝑓,1 + 𝜃1

31 (−
ℎ31

2
)𝜑𝑦

31 + 𝜃2
31 (−

ℎ31

2
)𝜓𝑦

31 + 𝜃1
41(−ℎ41) 𝜑𝑦

41 + 𝜃2
41(−ℎ41)𝜓𝑦

41 + 𝜃1
51 (−

ℎ51

2
)𝜑𝑦

51

+ 𝜃2
51 (−

ℎ51

2
)𝜓𝑦

51 

𝑣𝑟𝑒𝑓,2 = 𝑣0
12 = 𝑣0

11 +∑∑(𝑥 −
𝐿2
2
) (𝑥 +

𝐿2
2
)𝑣𝑝𝑞

𝑟𝑒𝑓,2
𝑥𝑟𝑦𝑠

𝑆

𝑠=0

𝑅

𝑟=0

 

𝑣𝑟𝑒𝑓,3 = 𝑣𝑟𝑒𝑓,1 + 𝜃1
31 (

ℎ31

2
)𝜑𝑦

31 + 𝜃2
31 (

ℎ31

2
)𝜓𝑦

31 +∑∑(𝑥 −
𝐿2
2
) (𝑥 +

𝐿2
2
) 𝑣𝑝𝑞

𝑟𝑒𝑓,3
𝑥𝑟𝑦𝑠

𝑆

𝑠=0

𝑅

𝑟=0

 

𝑣0
13 = 𝑣𝑟𝑒𝑓,3 + 𝜃1

13 (
ℎ13

2
)𝜑𝑦

13 + 𝜃2
13 (

ℎ13

2
)𝜓𝑦

13 

𝑣0
23 = 𝑣𝑟𝑒𝑓,3 + 𝜃1

23 (−
ℎ23

2
)𝜑𝑦

23 + 𝜃2
23 (−

ℎ23

2
)𝜓𝑦

23 

𝑣0
33 = 𝑣𝑟𝑒𝑓,3 + 𝜃1

23(−ℎ23)𝜑𝑦
23 + 𝜃2

23(−ℎ23)𝜓𝑦
23 + 𝜃1

33 (−
ℎ33

2
)𝜑𝑦

33 + 𝜃2
33 (−

ℎ33

2
)𝜓𝑦

33 

𝑣0
43 = 𝑣𝑟𝑒𝑓,3 + 𝜃1

23(−ℎ23)𝜑𝑦
23 + 𝜃2

23(−ℎ23)𝜓𝑦
23 + 𝜃1

33(−ℎ33)𝜑𝑦
33 + 𝜃2

33(−ℎ33)𝜓𝑦
33 + 𝜃1

43 (−
ℎ43

2
)𝜑𝑦

43

+ 𝜃2
43 (−

ℎ43

2
)𝜓𝑦

43 

𝑣0
𝑖4 = 𝑣0

𝑖1     ,     𝑖 = 1. .5                                                                                                                                                                                   (3-5) 

     In Eq. (3.5), ℎ𝑖𝑗indicates the thickness of the 𝑖𝑡ℎ numerical layer placed at the 𝑗𝑡ℎ region. As 

per Eq. (3.5), to meet the in-plane continuity conditions between different numerical layer 

interfaces, it is necessary to consider several reference values along the X and Y directions for each 

separated region that can be considered at any arbitrary thickness coordinate of the FG-GRC 
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delaminated plate without compromising the accuracy of the results. As depicted in Eq. (3.5), the 

in-plane displacement functions pertaining to the middle of each numerical layer should be defined 

based on these reference values. Therefore, the total number of unknown coefficients of the in-

plane displacements are equal to 3((𝑃 + 1)(𝑄 + 1) + (𝑅 + 1)(𝑆 + 1)). 

     In addition, the midplane rotation of each numerical layers FG-GRC delaminated plates with 

SFSF and CFCF boundary conditions can be expressed as Eqs. (3.6) and (3.7), respectively, with 

considering the continuity conditions at the boundaries of different regions. 

Rotational functions SFSF: 

𝜑𝑥
𝑖1 =∑∑𝜑𝑥𝑗𝑘

𝑖1

𝐾

𝑘=0

𝐽

𝑗=0

𝑥𝑗𝑦𝑘      ,     𝑖 = 1. .5 

𝜑𝑥
12 = 𝜑𝑥

11 +∑∑(𝑥 −
𝐿2
2
) (𝑥 +

𝐿2
2
)𝜑𝑥𝑗𝑘

12 𝑥𝑗𝑦𝑘
𝐾

𝑘=0

𝐽

𝑗=0

 

𝜑𝑥
𝑖3 = 𝜑𝑥

(𝑖+1)1 +∑∑(𝑥 −
𝐿2
2
) (𝑥 +

𝐿2
2
)𝜑𝑥𝑗𝑘

𝑖3 𝑥𝑗𝑦𝑘
𝐾

𝑘=0

𝐽

𝑗=0

     ,     𝑖 = 1. .4 

𝜑𝑥
𝑖4 = 𝜑𝑥

𝑖1     ,     𝑖 = 1. .5 

𝜑𝑦
𝑖1 =∑∑𝜑𝑦𝑑𝑡

𝑖1

𝑇

𝑡=0

𝐷

𝑑=0

𝑥𝑑𝑦𝑡      ,     𝑖 = 1. .5 

𝜑𝑦
12 = 𝜑𝑦

11 +∑∑(𝑥 −
𝐿2
2
) (𝑥 +

𝐿2
2
)𝜑𝑥𝑑𝑡

12 𝑥𝑑𝑦𝑡
𝑇

𝑡=0

𝐷

𝑑=0

 

𝜑𝑦
𝑖3 = 𝜑𝑦

(𝑖+1)1 +∑∑(𝑥 −
𝐿2
2
) (𝑥 +

𝐿2
2
)𝜑𝑦𝑑𝑡

𝑖3 𝑥𝑑𝑦𝑡
𝑇

𝑡=0

𝐷

𝑑=0

     ,     𝑖 = 1. .4 

𝜑𝑦
𝑖4 = 𝜑𝑦

𝑖1     ,     𝑖 = 1. .5                                                                                                                                                                                 (3-6)  
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Rotational functions CFCF: 

𝜑𝑥
𝑖1 =∑∑(𝑥 −

𝐿1
2
) (𝑥 +

𝐿1
2
)𝜑𝑥𝑗𝑘

𝑖1

𝐾

𝑘=0

𝐽

𝑗=0

𝑥𝑗𝑦𝑘      ,     𝑖 = 1. .5 

𝜑𝑥
12 = 𝜑𝑥

11 +∑∑(𝑥 −
𝐿2
2
) (𝑥 +

𝐿2
2
)𝜑𝑥𝑗𝑘

12 𝑥𝑗𝑦𝑘
𝐾

𝑘=0

𝐽

𝑗=0

 

𝜑𝑥
𝑖3 = 𝜑𝑥

(𝑖+1)1 +∑∑(𝑥 −
𝐿2
2
) (𝑥 +

𝐿2
2
)𝜑𝑥𝑗𝑘

𝑖3 𝑥𝑗𝑦𝑘
𝐾

𝑘=0

𝐽

𝑗=0

     ,     𝑖 = 1. .4 

𝜑𝑥
𝑖4 = 𝜑𝑥

𝑖1     ,     𝑖 = 1. .5 

𝜑𝑦
𝑖1 =∑∑𝜑𝑦𝑑𝑡

𝑖1

𝑇

𝑡=0

𝐷

𝑑=0

𝑥𝑑𝑦𝑡      ,     𝑖 = 1. .5 

𝜑𝑦
12 = 𝜑𝑦

11 +∑∑(𝑥 −
𝐿2
2
) (𝑥 +

𝐿2
2
)𝜑𝑥𝑑𝑡

12 𝑥𝑑𝑦𝑡
𝑇

𝑡=0

𝐷

𝑑=0

 

𝜑𝑦
𝑖3 = 𝜑𝑦

(𝑖+1)1 +∑∑(𝑥 −
𝐿2
2
) (𝑥 +

𝐿2
2
)𝜑𝑦𝑑𝑡

𝑖3 𝑥𝑑𝑦𝑡
𝑇

𝑡=0

𝐷

𝑑=0

     ,     𝑖 = 1. .4 

𝜑𝑦
𝑖4 = 𝜑𝑦

𝑖1     ,     𝑖 = 1. .5                                                                                                                                           (3-7) 

     In the layerwise theory, independent rotation functions should be taken into account for each of 

the numerical layers to precisely evaluate their stress and strain distribution. According to Fig 3.2, 

the FG-GRC delaminated plate with a single through-the-width delamination is discretized into 

fifteen numerical layers. The study noted that the mechanical response of the numerical layers 

placed in regions 1 and 4 are equivalent as a result of the symmetric loading and boundary 

conditions. Consequently, it can be inferred that there exist ten layers that necessitate the 

consideration of independent rotations. Therefore, the total number of unknown coefficients 

relating to the rotational functions amounts to 10((𝐽 + 1)(𝐾 + 1) + (𝐷 + 1)(𝑇 + 1)). In Eqs. 

(3.4), (3.5), (3.6), and (3.7) the second series are defined to satisfy the continuity conditions at the 

boundaries of several regions those arise due to the existence of delamination.  
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3.3.2. FG-GRC laminated plate with double through-the-width delaminations 

Similar to the plate with a single delamination, the graded graphene reinforced laminated plate 

with two central through-the-width delaminations whose length are the same and located in 

different thickness coordinates has been divided into a number of layers by two different steps. 

Due to the presence of these interlaminar flaws, the FG-GRC laminated plate has initially been 

divided into five distinct regions through the X and Z directions, as depicted in Fig 3.3. It should 

be noted that the regions 2, 3, and 4 refer to the top, middle, and bottom sublaminates. In the second 

step, in order to modelling the zigzag behavior of the in-plane displacements along the thickness 

direction, the specified FG-GRC laminated plate should be discretized into a number of layers 

along the thickness direction, as shown in Fig 3.4. The figure demonstrates that both regions 1 and 

5 have been discretized into five numerical layers. It is noteworthy that these regions display 

analogous characteristics as a result of in-plane symmetric loading and boundary conditions. 

Furthermore, the top sublaminate comprises a single numerical layer, while both the middle and 

bottom sublaminates have been partitioned into two numerical layers. Consequently, the laminated 

FG-GRC plate featuring two central delaminations encompasses a total of fifteen numerical layers 

in the through-thickness direction. 

As mentioned in the preceding section, it's crucial to take into account the continuity conditions 

between the different regions established along the longitudinal direction of the delaminated plate. 
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The necessary displacement and rotation continuity conditions that must be fulfilled at the 

boundaries of the FG-GRC laminated plate with double delaminations are expressed in Eq. (3.8). 

 

Figure 3-3 Segmentation of the FG-GRC laminated plate with two equal length through-the-width delaminations 

into five regions along the X axes 

 

Figure 3-4 Segmentation of the FG-GRC laminated plate with multiple through-the-width delaminations into fifteen 

numerical layers along the Z axis 

(𝑤𝑖2, 𝑢𝑖2, 𝑣𝑖2)|
𝑥= 

−𝐿2
2
= (𝑤𝑖1, 𝑢𝑖1, 𝑣𝑖1)|

𝑥= 
−𝐿2
2
 ,     {𝑖 = 1 

(𝑤𝑖3, 𝑢𝑖3, 𝑣𝑖3)|
𝑥= 

−𝐿2
2
= (𝑤(𝑖+1)1, 𝑢(𝑖+1)1, 𝑣(𝑖+1)1)|

𝑥= 
−𝐿2
2
 ,     {𝑖 = 1. .2 

(𝑤𝑖4, 𝑢𝑖4, 𝑣𝑖4)|
𝑥= 

−𝐿2
2
= (𝑤(𝑖+3)1, 𝑢(𝑖+3)1, 𝑣(𝑖+3)1)|

𝑥= 
−𝐿2
2
 ,    {𝑖 = 1. .2 
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(𝑤𝑖2, 𝑢𝑖2, 𝑣𝑖2)|
𝑥= 

𝐿2
2
= (𝑤𝑖5 , 𝑢𝑖5, 𝑣𝑖5)|

𝑥= 
𝐿2
2
 ,     {𝑖 = 1 

(𝑤𝑖3, 𝑢𝑖3, 𝑣𝑖3)|
𝑥= 

𝐿2
2
= (𝑤(𝑖+1)5, 𝑢(𝑖+1)5, 𝑣(𝑖+1)5)|

𝑥= 
𝐿2
2
 ,     {𝑖 = 1. .2 

(𝑤𝑖4, 𝑢𝑖4, 𝑣𝑖4)|
𝑥= 

𝐿2
2
= (𝑤(𝑖+3)5, 𝑢(𝑖+3)5, 𝑣(𝑖+3)5)|

𝑥= 
𝐿2
2
 ,    {𝑖 = 1. .2 

(𝜑𝑥
𝑖2, 𝜑𝑦

𝑖2)|
𝑥= 

−𝐿2
2
= (𝜑𝑥

𝑖1, 𝜑𝑦
𝑖1)|

𝑥= 
−𝐿2
2
 ,     {𝑖 = 1 

(𝜑𝑥
𝑖3, 𝜑𝑦

𝑖3)|
𝑥= 

−𝐿2
2
= (𝜑𝑥

(𝑖+1)1
, 𝜑𝑦

(𝑖+1)1
)|
𝑥= 

−𝐿2
2
 ,     {𝑖 = 1. .2 

(𝜑𝑥
𝑖4, 𝜑𝑦

𝑖4)|
𝑥= 

−𝐿2
2
= (𝜑𝑥

(𝑖+3)1
, 𝜑𝑦

(𝑖+3)1
)|
𝑥= 

−𝐿2
2
 ,     {𝑖 = 1. .2 

(𝜑𝑥
𝑖2, 𝜑𝑦

𝑖2)|
𝑥= 

𝐿2
2
= (𝜑𝑥

𝑖5, 𝜑𝑦
𝑖5)|

𝑥= 
𝐿2
2
 ,     {𝑖 = 1 

(𝜑𝑥
𝑖3, 𝜑𝑦

𝑖3)|
𝑥= 

𝐿2
2
= (𝜑𝑥

(𝑖+1)5
, 𝜑𝑦

(𝑖+1)5
)|
𝑥= 

𝐿2
2
 ,     {𝑖 = 1. .2 

(𝜑𝑥
𝑖4, 𝜑𝑦

𝑖4)|
𝑥= 

𝐿2
2

= (𝜑𝑥
(𝑖+3)5

, 𝜑𝑦
(𝑖+3)5

)|
𝑥= 

𝐿2
2

 ,     {𝑖 = 1. .2                                                                                         ( 3-8) 

The out-of-plane displacement functions for various regions of the FG-GRC laminated plate 

with two central delaminations and CFCF boundary condition are mentioned below: 

𝑤11 = ∑∑(𝑥 −
𝐿1
2
)

𝑁

𝑛=0

(𝑥 +
𝐿1
2
)

𝑀

𝑚=0

𝑤𝑚𝑛
11 𝑥𝑚𝑦𝑛    ,     𝑤11 = 𝑤𝑖1   𝑖 = 2. .5 

𝑤12 = 𝑤11 + ∑∑(𝑥 −
𝐿2
2
) (𝑥 +

𝐿2
2
)

𝑁

𝑛=0

𝑀

𝑚=0

𝑤𝑚𝑛
12 𝑥𝑚𝑦𝑛     

𝑤13 = 𝑤21 + ∑∑(𝑥 −
𝐿2
2
) (𝑥 +

𝐿2
2
)

𝑁

𝑛=0

𝑀

𝑚=0

𝑤𝑚𝑛
13 𝑥𝑚𝑦𝑛     , 𝑤13 = 𝑤23       

𝑤14 = 𝑤41 + ∑∑(𝑥 −
𝐿2
2
) (𝑥 +

𝐿2
2
)

𝑁

𝑛=0

𝑀

𝑚=0

𝑤𝑚𝑛
14 𝑥𝑚𝑦𝑛     , 𝑤14 = 𝑤24       

𝑤𝑖1 = 𝑤𝑖5     ,     𝑖 = 1. .5                                                                                                                                                                         (3-9)      

     In this case, the total number of unknown coefficients pertaining to the out-of-plane 

displacement of the FG-GRC laminated plate with two central through-the-width delaminations 

can be calculated as 4(𝑀 + 1)(𝑁 + 1). 
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 Additionally, Eq. (3.10) presents the in-plane displacement functions at the midplanes of 

various numerical layers, while considering the continuity conditions across interfaces. 

𝑢𝑟𝑒𝑓,1 = ∑∑(𝑥 −
𝐿1
2
)

𝑄

𝑞=0

(𝑥 +
𝐿1
2
)

𝑃

𝑝=0

𝑢𝑝𝑞
𝑟𝑒𝑓,1

𝑥𝑝𝑦𝑞  

𝑢0
11 = 𝑢𝑟𝑒𝑓,1 + 𝜃1

31 (
ℎ31

2
)𝜑𝑥

31 + 𝜃2
31 (

ℎ31

2
)𝜓𝑥

31 + 𝜃1
21(ℎ21) 𝜑𝑥

21 + 𝜃2
21(ℎ21)𝜓𝑥

21 + 𝜃1
11 (

ℎ11

2
)𝜑𝑥

11 + 𝜃2
11 (

ℎ11

2
)𝜓𝑥

11 

𝑢0
21 = 𝑢𝑟𝑒𝑓,1 + 𝜃1

31 (
ℎ31

2
)𝜑𝑥

31 + 𝜃2
31 (

ℎ31

2
)𝜓𝑥

31 + 𝜃1
21 (

ℎ21

2
)  𝜑𝑥

21 + 𝜃2
21 (

ℎ21

2
)𝜓𝑥

21 

𝑢0
31 = 𝑢𝑟𝑒𝑓.1 

𝑢0
41 = 𝑢𝑟𝑒𝑓,1 + 𝜃1

31 (−
ℎ31

2
)𝜑𝑥

31 + 𝜃2
31 (−

ℎ31

2
)𝜓𝑥

31 + 𝜃1
41 (−

ℎ41

2
)  𝜑𝑥

41 + 𝜃2
41 (−

ℎ41

2
)𝜓𝑥

41 

𝑢0
51 = 𝑢𝑟𝑒𝑓,1 + 𝜃1

31 (−
ℎ31

2
)𝜑𝑥

31 + 𝜃2
31 (−

ℎ31

2
)𝜓𝑥

31 + 𝜃1
41(−ℎ41) 𝜑𝑥

41 + 𝜃2
41(−ℎ41)𝜓𝑥

41 + 𝜃1
51 (−

ℎ51

2
)𝜑𝑥

51

+ 𝜃2
51 (−

ℎ51

2
)𝜓𝑥

51 

𝑢𝑟𝑒𝑓,2 = 𝑢0
12 = 𝑢0

11 +∑∑(𝑥 −
𝐿2
2
) (𝑥 +

𝐿2
2
)𝑢𝑝𝑞

𝑟𝑒𝑓,2
𝑥𝑝𝑦𝑞

𝑄

𝑞=0

𝑃

𝑝=0

 

𝑢𝑟𝑒𝑓,3 = 𝑢𝑟𝑒𝑓,1 + 𝜃1
31 (

ℎ31

2
)𝜑𝑥

31 + 𝜃2
31 (

ℎ31

2
)𝜓𝑥

31 +∑∑(𝑥 −
𝐿2
2
) (𝑥 +

𝐿2
2
) 𝑢𝑝𝑞

𝑟𝑒𝑓,3
𝑥𝑝𝑦𝑞

𝑄

𝑞=0

𝑃

𝑝=0

 

𝑢0
13 = 𝑢𝑟𝑒𝑓,3 + 𝜃1

13 (
ℎ13

2
)𝜑𝑥

13 + 𝜃2
13 (

ℎ13

2
)𝜓𝑥

13 

𝑢0
23 = 𝑢𝑟𝑒𝑓,3 + 𝜃1

23 (−
ℎ23

2
)𝜑𝑥

23 + 𝜃2
23 (−

ℎ23

2
)𝜓𝑥

23 

𝑢𝑟𝑒𝑓,4 = 𝑢𝑟𝑒𝑓,1 + 𝜃1
31 (−

ℎ31

2
)𝜑𝑥

31 + 𝜃2
31 (−

ℎ31

2
)𝜓𝑥

31 + 𝜃1
41(−ℎ41) 𝜑𝑥

41 + 𝜃2
41(−ℎ41)𝜓𝑥

41

+∑∑(𝑥 −
𝐿2
2
) (𝑥 +

𝐿2
2
) 𝑢𝑝𝑞

𝑟𝑒𝑓,4
𝑥𝑝𝑦𝑞

𝑄

𝑞=0

𝑃

𝑝=0

 

𝑢0
14 = 𝑢𝑟𝑒𝑓,4 + 𝜃1

14 (
ℎ14

2
)𝜑𝑥

14 + 𝜃2
14 (

ℎ14

2
)𝜓𝑥

14 
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𝑢0
24 = 𝑢𝑟𝑒𝑓,4 + 𝜃1

24 (−
ℎ24

2
)𝜑𝑥

24 + 𝜃2
24 (−

ℎ24

2
)𝜓𝑥

24 

𝑢0
𝑖5 = 𝑢0

𝑖1     ,     𝑖 = 1. .5           

𝑣𝑟𝑒𝑓,1 =∑∑𝑣𝑟𝑠
𝑟𝑒𝑓,1

𝑥𝑟𝑦𝑠
𝑆

𝑠=0

𝑅

𝑟=0

 

𝑣0
11 = 𝑣𝑟𝑒𝑓,1 + 𝜃1

31 (
ℎ31

2
)𝜑𝑦

31 + 𝜃2
31 (

ℎ31

2
)𝜓𝑦

31 + 𝜃1
21(ℎ21) 𝜑𝑦

21 + 𝜃2
21(ℎ21)𝜓𝑦

21 + 𝜃1
11 (

ℎ11

2
)𝜑𝑦

11 + 𝜃2
11 (

ℎ11

2
)𝜓𝑦

11 

𝑣0
21 = 𝑣𝑟𝑒𝑓,1 + 𝜃1

31 (
ℎ31

2
)𝜑𝑦

31 + 𝜃2
31 (

ℎ31

2
)𝜓𝑦

31 + 𝜃1
21 (

ℎ21

2
)  𝜑𝑦

21 + 𝜃2
21 (

ℎ21

2
)𝜓𝑦

21 

𝑣0
31 = 𝑣𝑟𝑒𝑓,1 

𝑣0
41 = 𝑣𝑟𝑒𝑓,1 + 𝜃1

31 (−
ℎ31

2
)𝜑𝑦

31 + 𝜃2
31 (−

ℎ31

2
)𝜓𝑦

31 + 𝜃1
41 (−

ℎ41

2
)  𝜑𝑦

41 + 𝜃2
41 (−

ℎ41

2
)𝜓𝑦

41 

𝑣0
51 = 𝑣𝑟𝑒𝑓,1 + 𝜃1

31 (−
ℎ31

2
)𝜑𝑦

31 + 𝜃2
31 (−

ℎ31

2
)𝜓𝑦

31 + 𝜃1
41(−ℎ41) 𝜑𝑦

41 + 𝜃2
41(−ℎ41)𝜓𝑦

41 + 𝜃1
51 (−

ℎ51

2
)𝜑𝑦

51

+ 𝜃2
51 (−

ℎ51

2
)𝜓𝑦

51 

𝑣𝑟𝑒𝑓,2 = 𝑣0
12 = 𝑣0

11 +∑∑(𝑥 −
𝐿2
2
) (𝑥 +

𝐿2
2
)𝑣𝑝𝑞

𝑟𝑒𝑓,2
𝑥𝑝𝑦𝑞

𝑆

𝑠=0

𝑅

𝑟=0

 

𝑣𝑟𝑒𝑓,3 = 𝑣𝑟𝑒𝑓,1 + 𝜃1
31 (

ℎ31

2
)𝜑𝑦

31 + 𝜃2
31 (

ℎ31

2
)𝜓𝑦

31 +∑∑(𝑥 −
𝐿2
2
) (𝑥 +

𝐿2
2
) 𝑣𝑝𝑞

𝑟𝑒𝑓,3
𝑥𝑝𝑦𝑞

𝑆

𝑠=0

𝑅

𝑟=0

 

𝑣0
13 = 𝑣𝑟𝑒𝑓,3 + 𝜃1

13 (
ℎ13

2
)𝜑𝑦

13 + 𝜃2
13 (

ℎ13

2
)𝜓𝑦

13 

𝑣0
23 = 𝑢𝑟𝑒𝑓,3 + 𝜃1

23 (−
ℎ23

2
)𝜑𝑦

23 + 𝜃2
23 (−

ℎ23

2
)𝜓𝑦

23 

𝑣𝑟𝑒𝑓,4 = 𝑣𝑟𝑒𝑓,1 + 𝜃1
31 (−

ℎ31

2
)𝜑𝑦

31 + 𝜃2
31 (−

ℎ31

2
)𝜓𝑦

31 + 𝜃1
41(−ℎ41) 𝜑𝑦

41 + 𝜃2
41(−ℎ41)𝜓𝑦

41

+∑∑(𝑥 −
𝐿2
2
) (𝑥 +

𝐿2
2
)𝑣𝑝𝑞

𝑟𝑒𝑓,4
𝑥𝑝𝑦𝑞

𝑆

𝑠=0

𝑅

𝑟=0

 

𝑣0
14 = 𝑣𝑟𝑒𝑓,4 + 𝜃1

14 (
ℎ14

2
)𝜑𝑦

14 + 𝜃2
14 (

ℎ14

2
)𝜓𝑦

14 
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𝑣0
24 = 𝑣𝑟𝑒𝑓,4 + 𝜃1

24 (−
ℎ24

2
)𝜑𝑦

24 + 𝜃2
24 (−

ℎ24

2
)𝜓𝑦

24 

𝑣0
𝑖5 = 𝑣0

𝑖1     ,     𝑖 = 1. .5                                                                                                                                                                          (3-10) 

     The total number of unknown coefficients associated with the in-plane displacements are equal 

to 4((𝑃 + 1)(𝑄 + 1) + 𝑅 + 1)(𝑆 + 1)). In addition, the rotational functions of the midplane of 

each numerical regions with considering CFCF boundary condition can be found in Eq. (3.11). 

𝜑𝑥
𝑖1 =∑∑(𝑥 −

𝐿1
2
) (𝑥 +

𝐿1
2
)𝜑𝑥𝑗𝑘

𝑖1

𝐾

𝑘=0

𝐽

𝑗=0

𝑥𝑗𝑦𝑘      ,     𝑖 = 1. .5 

𝜑𝑥
12 = 𝜑𝑥

11 +∑∑(𝑥 −
𝐿2
2
) (𝑥 +

𝐿2
2
)𝜑𝑥𝑗𝑘

12 𝑥𝑗𝑦𝑘
𝐾

𝑘=0

𝐽

𝑗=0

 

𝜑𝑥
13 = 𝜑𝑥

(𝑖+1)1 +∑∑(𝑥 −
𝐿2
2
) (𝑥 +

𝐿2
2
)𝜑𝑥𝑗𝑘

𝑖3 𝑥𝑗𝑦𝑘
𝐾

𝑘=0

𝐽

𝑗=0

     ,     𝑖 = 1. .2 

𝜑𝑥
𝑖4 = 𝜑𝑥

(𝑖+3)1 +∑∑(𝑥 −
𝐿2
2
) (𝑥 +

𝐿2
2
)𝜑𝑥𝑗𝑘

𝑖4 𝑥𝑗𝑦𝑘
𝐾

𝑘=0

𝐽

𝑗=0

     ,     𝑖 = 1. .2 

𝜑𝑥
𝑖5 = 𝜑𝑥

𝑖1     ,     𝑖 = 1. .5 

𝜑𝑦
𝑖1 =∑∑𝜑𝑦𝑑𝑡

𝑖1

𝑇

𝑡=0

𝐷

𝑑=0

𝑥𝑑𝑦𝑡      ,     𝑖 = 1. .5 

𝜑𝑦
12 = 𝜑𝑦

11 +∑∑(𝑥 −
𝐿2
2
) (𝑥 +

𝐿2
2
)𝜑𝑦𝑑𝑡

12 𝑥𝑑𝑦𝑡
𝑇

𝑡=0

𝐷

𝑑=0

 

𝜑𝑦
𝑖3 = 𝜑𝑦

(𝑖+1)1 +∑∑(𝑥 −
𝐿2
2
) (𝑥 +

𝐿2
2
)𝜑𝑦𝑑𝑡

𝑖3 𝑥𝑑𝑦𝑡
𝑇

𝑡=0

𝐷

𝑑=0

     ,     𝑖 = 1. .2 

𝜑𝑦
𝑖4 = 𝜑𝑦

(𝑖+3)1 +∑∑(𝑥 −
𝐿2
2
) (𝑥 +

𝐿2
2
)𝜑𝑦𝑑𝑡

𝑖4 𝑥𝑑𝑦𝑡
𝑇

𝑡=0

𝐷

𝑑=0

     ,     𝑖 = 1. .2 

𝜑𝑦
𝑖5 = 𝜑𝑦

𝑖1     ,     𝑖 = 1. .5                                                                                                                                                                         (3-11) 

      The total number of unknown coefficients relating to the rotational functions amounts to 

10((𝐽 + 1)(𝐾 + 1) + (𝐷 + 1)(𝑇 + 1)). 
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     As discussed, the total number of numerical layers established along the thickness direction of 

FG-GRC laminated plates with single and double through-the-width delaminations remains the 

same, at fifteen. Consequently, the number of required rotational functions taken into account for 

both types of plates is identical. However, in the latter case, owing to the presence of double 

delaminations, the plate has been partitioned into five distinct regions alongside the X axes, one 

more than the former case. This implies that the number of out-of-plane and in-plane displacement 

functions for the FG-GRC laminated plate with double delaminations is greater than that of the 

single delamination case, resulting in a higher computational cost. 

3.3.3. Energy expressions for FG-GRC laminated plates with delamination 

The minimal total potential energy principle is used to analyze the thermal instability response 

and thermally pre- and post-buckled vibration of the FG-GRC laminated plates with several 

delamination configurations. Using the layerwise theory, the FG-GRC delaminated plates have 

been discretized into multiple numerical layers, as previously mentioned. The following equation 

illustrates the total strain energy per unit volume (𝑈𝑇𝑜𝑡𝑎𝑙) of the FG-GRC laminated plate with a 

single through-the-width delamination obtained by summing the strain energy of each numerical 

layer. 

𝑈𝑇𝑜𝑡𝑎𝑙 =∑𝑈𝑖1 +

5

𝑖=1

∑𝑈𝑖2 +∑𝑈𝑖3 +

4

𝑖=1

1

𝑖=1

∑𝑈𝑖4
5

𝑖=1

 

𝑈𝑇𝑜𝑡𝑎𝑙 = (
1

2
) [∑∫(𝜎𝑖

(1)
)
𝑇
𝜀𝑖
(1)
 𝑑𝑉 +

5

𝑖=1

∑∫ (𝜎𝑖
(2)
)
𝑇
𝜀𝑖
(2)
𝑑𝑉 +∑∫(𝜎𝑖

(3)
)
𝑇
𝜀𝑖
(3)
𝑑𝑉 +

4

𝑖=1

1

𝑖=1

∑∫(𝜎𝑖
(4)
)
𝑇
𝜀𝑖
(4)
 𝑑𝑉

5

𝑖=1

] 

(3-12)                                                                                                                              

     To maintain brevity, the strain energy of the first numerical layer positioned in the first region 

(𝑈11), illustrated in Fig 3.2, is just extended based on the mechanical and thermal strains as well 

as the stiffness matrixes in Eq. (3.13). 
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𝑈11 = ∫
1

2
 𝜎𝑇𝜀 ̅𝑑𝑉 

=
1

2
∫ ∫ ({𝜀0}11[𝐴]11{𝜀0}11

𝑇
+ 2{𝜀0}11[𝐵]11{𝜀1}11

𝑇
+ {𝜀1}11[𝐷]11{𝜀1}11

𝑇
+ 2{𝜀0}11[𝐸]11{𝜀3}11

𝑇
+

−𝐿2
2

−𝐿1
2

𝑏1
2
−𝑏1
2

{𝜀1}11[𝐹]11{𝜀3}11
𝑇
+ {𝜀31

(1)
}[𝐻1

(1)
]{𝜀31

(1)
}
𝑇

+ {𝛾0}11[𝐴𝑠]11{𝛾0}11
𝑇
+ 2{𝛾0}11[𝐷𝑠]11{𝛾2}11

𝑇
+

{𝛾2}11[𝐹𝑠]11{𝛾2}11
𝑇
− 2{𝜀𝑇ℎ}11[𝐴]11{𝜀0}11

𝑇
− 2{𝜀𝑇ℎ}11[𝐵]11{𝜀1}11

𝑇
− 2{𝜀𝑇ℎ}11[𝐸]11{𝜀3}11

𝑇
+

{𝜀𝑇ℎ}11[𝐴]11{𝜀𝑇ℎ}11
𝑇
)                                                                                                                                               ( 3-13) 

     Similarly, the total kinetic energy ( 𝑇𝑡𝑜𝑡𝑎𝑙) of the plate with a single through-the-width 

delamination can be expressed as follows: 

𝑇𝑇𝑜𝑡𝑎𝑙 =∑𝑇𝑖1 +

5

𝑖=1

∑𝑇𝑖2 +∑𝑇𝑖3 +

4

𝑖=1

1

𝑖=1

∑𝑇𝑖4
5

𝑖=1

 

𝑇𝑇𝑜𝑡𝑎𝑙 = (
1

2
)

[
 
 
 
 

∑ ∫ ∫ 𝐼𝑖1 [(
𝜕𝑢𝑖1

𝜕𝑡
)

2

+ (
𝜕𝑣𝑖1

𝜕𝑡
)

2

+ (
𝜕𝑤𝑖1

𝜕𝑡
)

2

] 𝑑𝑥 𝑑𝑦

−𝐿2
2

−𝐿1
2

𝑏1
2

−𝑏1
2

5

𝑖=1

+∑ ∫ ∫ 𝐼𝑖2 [(
𝜕𝑢𝑖2

𝜕𝑡
)

2

+ (
𝜕𝑣𝑖2

𝜕𝑡
)

2

+ (
𝜕𝑤𝑖2

𝜕𝑡
)

2

] 𝑑𝑥 𝑑𝑦

𝐿2
2

−𝐿2
2

𝑏1
2

−𝑏1
2

1

𝑖=1

+∑ ∫ ∫ 𝐼𝑖3 [(
𝜕𝑢𝑖3

𝜕𝑡
)

2

+ (
𝜕𝑣𝑖3

𝜕𝑡
)

2

+ (
𝜕𝑤𝑖3

𝜕𝑡
)

2

] 𝑑𝑥 𝑑𝑦

𝐿2
2

−𝐿2
2

𝑏1
2

−𝑏1
2

4

𝑖=1

+∑ ∫ ∫ 𝐼𝑖4 [(
𝜕𝑢𝑖4

𝜕𝑡
)

2

+ (
𝜕𝑣𝑖4

𝜕𝑡
)

2

+ (
𝜕𝑤𝑖4

𝜕𝑡
)

2

] 𝑑𝑥 𝑑𝑦

𝐿1
2

𝐿2
2

𝑏1
2

−𝑏1
2

5

𝑖=1
]
 
 
 
 

 

(3-14) 

      As an illustration, the extended format of the kinetic energy associated with the first numerical 

layer situated in the first region (𝑇11), shown in Fig 3.2, are written as follows: 

𝑇11 = (
1

2
)∫ ∫ 𝐼𝑖1 [(

𝜕𝑢11

𝜕𝑡
)
2

+ (
𝜕𝑣11

𝜕𝑡
)
2

+ (
𝜕𝑤11

𝜕𝑡
)
2

] 𝑑𝑥 𝑑𝑦 =  (
1

2
)

 

−𝐿2

2
−𝐿1

2

𝑏1

2
−𝑏1

2

∫ ∫ [𝐼0
11 (

𝜕𝑢0
11

𝜕𝑡
)
2

+ 2𝐼1
11 (

𝜕𝑢0
11

𝜕𝑡

𝜕𝜑𝑥
11

𝜕𝑡
) +

−𝐿2

2
−𝐿1

2

𝑏1

2
−𝑏1

2

𝐼2
11 (

𝜕𝜑𝑥
11

𝜕𝑡
)
2

+ 2𝐼3
11 (

𝜕𝑢0
11

𝜕𝑡

𝜕𝜓𝑥
11

𝜕𝑡
) + 2𝐼4

11 (
𝜕𝜑𝑥

11

𝜕𝑡

𝜕𝜓𝑥
11

𝜕𝑡
) + 𝐼5

11 (
𝜕𝜓𝑥

11

𝜕𝑡
)
2

+ 𝐼0
11 (

𝜕𝑣0
11

𝜕𝑡
)
2

+ 2𝐼1
11 (

𝜕𝑣0
11

𝜕𝑡

𝜕𝜑𝑦
11

𝜕𝑡
) + 𝐼2

11 (
𝜕𝜑𝑦

11

𝜕𝑡
)
2

+

2𝐼3
11 (

𝜕𝑣0
11

𝜕𝑡

𝜕𝜓𝑦
11

𝜕𝑡
) + 2𝐼4

11 (
𝜕𝜑𝑦

11

𝜕𝑡

𝜕𝜓𝑦
11

𝜕𝑡
) + 𝐼5

11 (
𝜕𝜓𝑦

11

𝜕𝑡
)
2

+ 𝐼0
11 (

𝜕𝑤0
11

𝜕𝑡
)
2

] 𝑑𝑥 𝑑𝑦                                                            ( 3-15)   

 The inertial terms are obtained through the integration of the density. 
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{𝐼0
𝑖𝑗

𝐼1
𝑖𝑗

𝐼2
𝑖𝑗

𝐼3
𝑖𝑗

𝐼4
𝑖𝑗

𝐼5
𝑖𝑗} = ∫ 𝜌(𝑧){1 𝜃1(𝑧) 𝜃1

2(𝑧) 𝜃2(𝑧) 𝜃1(𝑧)𝜃2(𝑧) 𝜃2
2(𝑧)}

ℎ𝑖𝑗

2

− 
ℎ𝑖𝑗

2

𝑑𝑧                   (3-16)    

      A notable concern with delaminated composite structures that undergo compressive loads is the 

potential occurrence of a detrimental physical phenomenon known as penetration, where the 

sublaminates can intrude into each other. The likelihood of this phenomenon is dependent on 

various factors, such as the size and location of the delamination zone, the distribution pattern of 

graphene reinforcement, and the applied boundary conditions. In this study, the penalty constraint 

(61) has been used to prevent penetration violation. By establishing a restriction on the equations, 

this strategy results in equal displacements in the overlapped areas. To do this, various virtual linear 

springs are assumed throughout the contact regions, and the contact stiffness of the corresponding 

springs (i.e., 𝐾𝑓) is changed to assure the consistency of the contact region's displacements. Thus, 

the estimated strain energy of the assumed virtual springs might be calculated as [64]: 

𝑈𝑐𝑜𝑛𝑡𝑎𝑐𝑡 = ∫
1

2
𝐾𝑓(𝑊

𝑗 −𝑊𝑗+1)2                                                                                                                                                        (3-17) 

     In conclusion, it can be inferred that the total potential energy of the FG-GRC laminated plate 

with a single delamination can be expressed as follows: 

∏ = [∑(𝑈𝑖1 + 𝑇𝑖1) +

5

𝑖=1

∑(𝑈𝑖2 + 𝑇𝑖2) +∑(𝑈𝑖3 + 𝑇𝑖3) +

4

𝑖=1

1

𝑖=1

∑(𝑈𝑖4 + 𝑇𝑖4)

5

𝑖=1

] + 𝑈𝑐𝑜𝑛𝑡𝑎𝑐𝑡  

  ( 3-18) 

Following this stage, the total potential energy should be minimized using the unknown 

displacement and rotation coefficients as shown in Eqs. (3.19) and (3.20). [60] 

𝜕∏

𝜕𝜒
= 0                                                                                                                                                                                                         (3-19) 

where 𝜒 is the vector of unknowns. 

χ={∑ ∑ ∑ 𝑢𝑝𝑞
𝑟𝑒𝑓,𝑗𝑄

𝑞=0
𝑃
𝑝=0

3
𝑗=1 , ∑ ∑ ∑ 𝑣𝑟𝑠

𝑟𝑒𝑓,𝑗𝑆
𝑠=0

𝑅
𝑟=0

3
𝑗=1 , ∑ ∑ ∑ 𝑤𝑚𝑛

𝑟𝑒𝑓,𝑗𝑁
𝑛=0

𝑀
𝑚=0

3
𝑗=1 , (∑ ∑ ∑ 𝜑𝑥𝑖𝑘

𝑗1𝐾
𝑘=0

𝐼
𝑖=0

5
𝑗=1 +

∑ ∑ ∑ 𝜑𝑥𝑖𝑘
𝑗2
+ ∑ ∑ ∑ 𝜑𝑥𝑖𝑘

𝑗3
)𝐾

𝑘=0
𝐼
𝑖=0

4
𝑗=1

𝐾
𝑘=0

𝐼
𝑖=0

1
𝑗=1 , (∑ ∑ ∑ 𝜑𝑦𝑖𝑘

𝑗1𝐾
𝑘=0

𝐼
𝑖=0

5
𝑗=1 + ∑ ∑ ∑ 𝜑𝑦𝑖𝑘

𝑗2
+∑ ∑ ∑ 𝜑𝑦𝑖𝑘

𝑗3
)𝐾

𝑘=0
𝐼
𝑖=0

4
𝑗=1

𝐾
𝑘=0

𝐼
𝑖=0

1
𝑗=1 }           
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                                                 ( 3-20) 

The Eq. (3.19) leads to the general dynamic matrix equation of the FG-GRC delaminated plate: 

[𝑀]{�̈�} + [𝐾(𝑇, 𝜒)]{𝜒} = {𝐹(𝑇)}                                                                                                                           (3-21)          

where [M] is the mass matrix, [𝐾(𝑇, 𝜒)] is the stiffness matrix; {�̈�} and {𝜒} are the Jacobi expanded 

coefficients, and {𝐹(𝑇)} is the force matrices. 

     It is important to note that, similar to the plate with a single delamination, in the case of an FG-

GRC laminated plate with two central through-the-width delaminations, the total strain energy can 

be determined by summing the strain energy contributions of all the numerical layers defined in 

accordance with the layerwise theory. 

To solve Eq. (3.21), it can be assumed that the 

𝜒 = 𝜒𝑠 + 𝜒𝑡                                                                                                                                                            ( 3-22) 

     where 𝜒𝑠 is the time-independent particular solution which means the incremental thermal large 

deflection, and  𝜒𝑡 is the time-dependent. Therefore, by substituting Eq. (3.22) into Eq. (3.21), two 

sets of system of equations can be obtained as: 

[𝐾(𝑇, 𝜒)]{𝜒𝑠} = {𝐹(𝑇)}                                                                                                                                           ( 3-23) 

[𝑀]{�̈�𝑡} + [𝐾(𝑇, 𝜒)]{𝜒𝑡} = 0                                                                                                                                ( 3-24) 

     Eqs. (3.23) and (3.24) relate to the investigation of thermal postbuckling and vibration in a plate 

that has undergone buckling because of temperature-induced changes. In addition, the subscripts 

's' and 't' denote the static and dynamic displacement of the plate, respectively. The Newton-

Raphson iterative procedure method is a commonly used technique to solve nonlinear system of 

equations in the analysis of thermal postbuckling, as described by Eq. (3.23). Once the equation 

has been solved and the displacement at the specified temperature load is obtained, the tangent 

stiffness matrix [K(T,χ)] should be updated and inserted into Eq. (3.24). This enables the 
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eigenvalue equation to be solved, which in turn allows for the calculation of the linear fundamental 

frequencies. 

3.4. Determination of energy release rate (ERR) using crack tip element 

(CTE) method 

     The three-dimensional, 3D-CTE method was initially presented by Davidson [92] to analytically 

calculate the total energy release rate (ERR) and mode mix in terms of the plate theory force and 

moment resultants. In comparison to other numerical approaches, such as three-dimensional finite 

element analysis, one of the most noticeable advantages of the CTE methodology is its low 

computational cost while maintaining a high level of accuracy. In addition, this method permits 

the definition of a mix mode based on the assumption of linear elastic fracture mechanics in order 

to eliminate the oscillatory nature of the singularity. Fig 3.5 illustrates a three-dimensional section 

of the crack tip region. The origin of the coordinate system is assumed to be at the crack tip with 

respect to 𝑋 and the center of the thickness with respect to 𝑍 for all plate theory investigations. 

The crack or delamination area is assumed lies in the 𝑋 − 𝑌 plane at constant 𝑍. In CTE 

methodology, the most significant assumption to consider is that the length of the cracked and 

uncracked regions of the element should be greater than their thickness, so that various plate 

theories can be used to predict the deformations and strain energy. 

 

Figure 3-5 three-dimensional crack tip element 
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     As depicted in Fig 3.5, the 3D CTE consists of three principal parts: the section located at the 

front of the uncracked region (∆𝑎 ∗ ℎ1), referred to as 1, and two other regions located at the top 

and bottom of the cracked area, referred to as 2 and 3, respectively. The subsequent 3D-CTE 

analysis is based on the loading close to the crack tip. A double-plate model is employed to 

determine this loading. In other words, the problem depicted in Fig 3.5 is represented by two plates, 

one of which is placed at the top of the crack plane and the other at the bottom as shown in Fig 

3.6. 

 

Figure 3-6 Free-body diagram for a delaminated plate above and below the crack plane 

     We have from the overall static equilibrium equation of the geometry shown in Fig 3.5 that 

𝑁𝑥
1 = 𝑁𝑥

2 + 𝑁𝑥
3 

𝑀𝑥
1 = 𝑀𝑥

2 +𝑀𝑥
3 + 𝑁𝑥

2
ℎ2
2
− 𝑁𝑥

3
ℎ3
2

 

𝑄𝑥𝑧
1 = 𝑄𝑥𝑧

2 + 𝑄𝑥𝑧
3                                                                                                                                                                        (3-25) 

     Based on the 3D-CTE, the ERR can be expressed in terms of the crack tip normal force 𝑄𝑥𝑧
𝐶 , 

shear force 𝑁𝑥
𝐶 , and bending moment 𝑀𝑥

𝐶  derived from the static equilibrium equations of one of 

the segments above or below the crack plane illustrated in Fig 3.6. Therefore, we have: 

𝑁𝑥
𝐶 = 𝑁𝑥

2 − �̂�𝑥
2 

𝑀𝑥
𝐶 = 𝑀𝑥

2 − �̂�𝑥
2 + 𝑁𝑥

𝐶
ℎ2
2

 

𝑄𝑥𝑧
𝐶 = 𝑄𝑥𝑧

2 − �̂�𝑥𝑧
2                                                                                                                                                   (3-26) 
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     As stated previously, according to the layerwise theory, a laminated plate can be subdivided 

along its thickness into several numerical layers. The primary purpose of using this method in this 

paper is to simplify evaluating the normal and shear forces as well as bending moments at regions 

2 and 2̂, shown in Fig 3.6, which are equivalent to the numerical layers 1(1) and 1(2) in Fig 3.2 for 

which independent and appropriate displacement and rotation shape functions were defined and 

whose unknown coefficients can be obtained at each temperature load step using the minimum 

total potential energy principle in conjunction with the Newton-Raphson method. Then by 

evaluating the stiffness matrix and strain at the mid-plane of the specified numerical layers, 1(1) 

and 1(2), and substituting in Eq. (A-4) all the required forces and bending moments can be 

calculated.  

     Normal and shear forces as well as bending moments are all zero at the delamination front 

section (crack tip) before its propagation initiates. The applied load, uniform temperature rise, 

gradually increases until a crack extends by a small amount ∆𝑎; in this situation, all the forces and 

moments have the values required to close the crack to its original length. These values are derived 

from the Eq. (3.25). The energy release rate G of the elements at the crack tip can be calculated 

using a modified virtual crack closure technique (VCCT), as shown below [93]. 

𝐺 =
1

2
(𝐶𝑁(𝑁𝑥

𝐶)2 + 𝐶𝑀(𝑀𝑥
𝐶)2 + 𝐶𝑄(𝑄𝑥𝑧

𝐶 )2 + 2𝐶𝑁𝑀𝑁𝑥
𝐶𝑀𝑥

𝐶)                                                                                  ( 3-27) 

where constants 𝐶𝑖 are given in Eq. (3.28): 

𝐶𝑁 = 𝐴11
′(2) + 𝐴11

′(3) + 𝐵11
′(2)ℎ2 − 𝐵11

′(3)ℎ3 + 𝐷11
′(2)
ℎ2
2

4
+ 𝐷11

′(3)
ℎ3
2

4
 

𝐶𝑀 = 𝐷11
′(2) + 𝐷11

′(3) 

𝐶𝑄 = 𝐴𝑠11
′(2) + 𝐴𝑠11

′(3) 

𝐶𝑁𝑀 = 𝐷11
′(3)
ℎ3
2
− 𝐷11

′(2)
ℎ2
2
− 𝐵11

′(2) − 𝐵11
′(3) 

Where: 
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[
𝐴11
′(𝑖) 𝐵11

′(𝑖)

𝐵11
′(𝑖) 𝐷11

′(𝑖)
] = [

𝐴11
(𝑖)

𝐵11
(𝑖)

𝐵11
(𝑖)

𝐷11
(𝑖)
]

−1

                                                                                                                              ( 3-28) 

     The mode I (opening mode) and mode ІІ (shearing mode) energy release rates could be 

determined by [93]: 

𝐺І = 
1

2
(−𝑁𝑥

𝐶√𝐶𝑁𝑠𝑖𝑛𝛺 +𝑀𝑥
𝐶√𝐶𝑀cos (𝛺 + 𝛤))

2
+
1

2
𝐶𝑄(𝑄𝑥𝑧

𝐶 )2 

𝐺ІІ = 
1

2
(𝑁𝑥

𝐶√𝐶𝑁𝑐𝑜𝑠𝛺 + 𝑀𝑥
𝐶√𝐶𝑀𝑠𝑖𝑛 (𝛺 + 𝛤))

2
                                                                                                  ( 3-29) 

 where: 

𝛺 = {

−24                                                          𝜁 < −0.468

60.409𝜁 + 41.738𝜁3    − 0.468 < 𝜁 < 0.468
24                                                           𝜁 > 0.468

,      𝜁 = 𝑙𝑜𝑔 (
ℎ3

ℎ2
)                                                                                                 ( 3-30) 

and sin 𝛤 =
𝐶𝑁𝑀

√𝐶𝑁𝐶𝑀
 . 

    In contrast to the total energy release rate, as represented mathematically in Eq. (3.27), the mix 

mode energy release rate is determined as a function of the mode mix parameter, Ω. This parameter 

depends on the elastic and geometrical properties of the regions above and below the crack or 

delamination plane, but not on the type of loading.                                                                                                                                                       

3.5. Results and discussion 

3.5.1. FG-GRC laminated plate with a single through-the-width delamination 

The thermal equilibrium paths of FG-GRC delaminated composite square plates reinforced with 

four distinct, symmetric graphene distribution patterns (FGX, FGX-FGX, FGO, and FGO-FGO) 

are compared under SFSF and CFCF boundary conditions in Fig. (3.7). Additionally, the ratio of 

the top sublaminate’s thickness (ℎ𝑡) to the thickness of the bottom segment (ℎ𝑏) is assumed to be 

0.25. It is worth noting that the buckling mode shapes of all four cases are identical.  

At the first glance, it is clear that there is an excellent agreement between the results obtained 

using the layerwise TSDT (shown with LW in figures) and those evaluated by the commercial 

finite element software (ABAQUS) (shown with FEM in figures). Notably, the total freedom 
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degrees considered for the analysis of the FG-GRC laminated composite plate with a single 

delamination in the layerwise TSDT is 126, which means that the order of the tangent stiffness 

matrix of this case is 126*126. However, In the finite element model that has been developed, the 

hexahedral 3D 8-node linear isoperimetric element (C3D8) has been employed, resulting in a total 

of 16,000 elements and 21,853 nodes. This discernible difference in the degrees of freedom 

handled by these two semi-analytical and numerical approaches demonstrates that the layerwise 

TSDT is significantly more computationally efficient than the developed finite element model.  

As illustrated in Fig 3.7, for both boundary conditions, at the onset of thermal loading, the 

thinner top sublaminates (includes two graphene reinforced composite plies) exhibit positive out-

of-plane displacements, whereas the thicker bottom sublaminates (consists of eight graphene 

reinforced plies) experience negative out-of-plane displacements. Additionally, for both boundary 

conditions and regardless of the type of graphene distribution, the negative out-of-plane 

displacement of the bottom sublaminates grow as the temperature rises, and in SFSF cases this 

thicker segment pulls the top sublaminate towards the negative direction of Z during its deflection. 

For instance, by increasing the temperature up to T= 330 K, the deflection of both top and bottom 

sublaminates of the FGX plate with SFSF boundary condition increases along the positive and 

negative directions of Z, respectively, which is referred as the mixed-mode buckling. After T = 

330 K, the deflection of the thicker segment of the FGX laminated plate further increases in the 

negative direction and pulls down the top sublaminate. 
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Figure 3-7 Influence of boundary conditions and several symmetric graphene distribution patterns on the thermal 

postbuckling deflection of the composite laminated plates with single through-the-width delamination (a) FGX, (b) 

FGX-FGX, (c) FGO, (d) FGO-FGO ( 
ℎ𝑡

ℎ𝑏
=

1

4
 ,
𝐿2

𝐿1
=

1

2
 ,
𝐿1

𝑏1
= 1 ). 

     In Fig 3.8, the impact of different asymmetric graphene distribution patterns (FGA, FGA-FGA, 

FGV, and FGV-FGV) and two different boundary conditions (CFCF and SFSF) on the nonlinear 

thermal postbuckling deflection curves of delaminated composite plates is examined. The 

geometry parameters and thickness coordinate of the delamination is same with those analyzed in 

Fig 3.7. 

    Regardless of graphene distribution patterns, all four cases with CFCF boundary conditions 

exhibit mixed-mode buckling mode shapes, in which the top and bottom segments within the 

delamination area deflect in opposite directions. However, for plates with SFSF boundary 
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conditions, the types of buckling mode shapes strongly depend on the graphene distributions. For 

example, for FGA, FGV, and FGV-FGV graphene distribution patterns, the top and bottom 

sublaminates deflect simultaneously in the same direction, which is known as the global buckling 

mode shape, where the top and bottom sublaminates stick together during their deflection and act 

as a perfect plate (without any interlaminar defect). It's important to note that there is a difference 

in the deflection direction among the three cases that exhibit global buckling mode shapes. 

Specifically, the delaminated plate with FGA graphene distribution pattern deflects downward, 

while the plates with FGV and FGV-FGV graphene dispersions experience upward out-of-plane 

displacement. This phenomenon can be attributed to the plates' different bending stiffness, which 

arises from their varying functionally graded patterns. 

    For the simply supported delaminated composite plate with FGA-FGA graphene distribution 

pattern, however, the top and bottom sublaminates deflect in different directions, indicating mixed-

mode buckling. 
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Figure 3-8 Influence of boundary conditions and several asymmetric graphene distribution patterns on the thermal 

postbuckling deflection of the composite laminated plates with single through-the-width delamination(a) FGA, 

(b)FGA-FGA, (c) FGV, (d) FGV-FGV, ( 
ℎ𝑡

ℎ𝑏
=

1

4
 ,
𝐿2

𝐿1
=

1

2
 ,
𝐿1

𝑏1
= 1 ). 

    In Fig. (3.9), an examination is conducted on the influence of various symmetric and 

asymmetric graphene distribution patterns and boundary conditions on the variation of in-plane 

displacements across the thickness direction of delaminated composite plates. This analysis 

illustrates the coherence of these factors at the numerical interfaces established according to the 

layerwise theory.  
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Figure 3-9 Distribution of the in-plane displacements through the thickness direction of the FG-GRC laminated 

composite plates at the center of the delamination front 𝑈(
−𝐿2

2
, 0, 𝑧) (a)symmetric, CFCF (b)asymmetric, CFCF (c) 

symmetric, SFSF (d) asymmetric, SFSF 

    Table. (3.3) illustrates the schematic buckling mode shapes of graphene-reinforced laminated 

composite plates with a single through-the-width delamination for all eight symmetric and 

asymmetric graphene distribution patterns at T=500 K for two different boundary conditions 

(CFCF and SFSF). 
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Table 3-3 The buckled configurations of clamped and simply-supported FG-GRC laminated composite plates with 

single through-the-width delamination zone and several graphene graded patterns. 

Distribution 

patterns 

Lay-up arrangements of graphene volume fraction 

and delamination location 
CFCF (T= 500 K) SFSF (T=500 K) 

FGX 
[0.11,0.09,0.07,0.05,0.03]S 

[2  //  d  //  8] 

  

FGX-FGX 
[0.09,0.07,0.03,0.07,0.09]S 

[2  //  d  //  8] 

  

FGO 
[0.03,0.05,0.07,0.09,0.11]S 

[2  //  d  //  8] 

  

FGO-FGO 
[0.05,0.07,0.11,0.07,0.05]S 

[2  //  d  //  8] 

  

FGA 
[(0.03)2, (0.05)2, (0.07)2, (0.09)2, (0.11)2] 

[2  //  d  //  8] 

  

FGA-FGA 
[0.03,0.05,0.07,0.09,0.11,0.03,0.05,0.07,0.09,0.11] 

[2  //  d  //  8] 

  

FGV 
[(0.11)2, (0.09)2, (0.07)2, (0.05)2, (0.03)2] 

[2  //  d  //  8] 

  

FGV-FGV 
[0.11,0.09,0.07,0.05,0.03,0.11,0.09,0.07,0.05,0.03] 

[2  //  d  //  8] 
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    Fig 3.10 confirms that the type of boundary condition, play a significant role in the load-

bearing capacity of the FG-GRC delaminated plates. For instance, Changing the boundary 

conditions at the longitudinal ends of the FGX delaminated composite plate from clamped to 

simply supported reduces dramatically the plate's load-bearing capacity by 87% at T=500 K.  

     The load-bearing capacity and stiffness of graphene-reinforced plates are also significantly 

influenced by the distribution patterns of the reinforcement. For instance, under the CFCF 

boundary condition, a delaminated plate with FGX graphene dispersion shows the highest load-

bearing capacity compared to all other symmetric and asymmetric patterns at T=500 K. This 

pattern offers approximately 1.5 times more load-bearing capacity than that of the delaminated 

plate with FGO graphene distribution, which represents the worst-case scenario. Furthermore, it 

can be deduced that in the context of the SFSF boundary condition, the load-bearing capacity of 

three asymmetric graphene distribution patterns, FGA, FGV, and FGV-FGV, which undergo global 

buckling mode shapes, surpasses that of patterns exhibiting mixed-mode buckling. 
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Figure 3-10 Influence of the boundary conditions and several graphene distributions on the load-bearing capacity of 

the FG-GRC laminated composite plates with a single through-the-width delamination (a)symmetric CFCF, 

(b)asymmetric CFCF, (c)symmetric SFSF, (d)asymmetric SFSF, ( 
ℎ𝑡

ℎ𝑏
=

1

4
 ,
𝐿2

𝐿1
=

1

2
, 
𝐿1

𝑏1
= 1 ). 

     The comparison of the impact of two distinct boundary conditions and symmetric distribution 

patterns of graphene on the variation of the energy release rate (ERR) for fracture modes I and II 

(opening and shearing) at the delamination edge is presented in Fig 3.11. It is worth mentioning 

that the delaminated composite plates' geometrical and layup sequences are the same as those 

analyzed in Figs 3.7 and 3.8. 

     As shown in Eqs. (3.26) and (3.27), according to the 3D-CTE method, the ERR strongly 

depends on the stiffness matrix and material properties defined for the numerical layers located 
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above and below the delamination or crack plane; thus, functionally graded distribution of the 

graphene reinforcements plays a crucial role in ERR variation, as shown in Fig 3.11.  

    The presence of mixed-mode shapes in delaminated composite materials can have a 

significant impact on the ERR at the delamination edge. This is due to the fact that mixed-mode 

shapes can cause a redistribution of stresses and strains in the material, resulting in changes in the 

mode of delamination growth and ultimately affecting the mode II ERR, therefore it is great of 

importance to evaluate the variation of ERR. 

    As shown in Table. (3.3), the delaminated composite plates with symmetric graphene 

distribution patterns (FGX, FGX-FGX, FGO, FGO-FGO) with both CFCF and SFSF boundary 

conditions exhibit mixed buckling mode shape and Fig 3.11 confirms that the ERR of mode II 

exceeds that of mode I for all aforementioned patterns. This indicates that in mixed-mode buckling, 

the sliding fracture mode exhibits greater activity than the opening fracture mode. Furthermore, 

the analysis reveals that the ERR is higher for nodes located near the center of the delamination 

edge, for both the opening and shearing modes, when compared to the regions closer to the free-

edges of the plate. 

    Additional results about the influence of asymmetric graphene distribution patterns on the 

variation of ERR of Modes І and ІІ of the delaminated plates are also illustrated in Fig. (3.12). 
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Figure 3-11 Variation of the ERR (Modes І and ІІ) along the delamination edge of the FG-GRC laminated composite 

plates with different symmetric graphene distribution pattern(a)FGX, FGX-FGX, GІ, (b)FGX, FGX-FGX, GІІ, 

(c)FGO,FGO-FGO, GІ, (d)FGO, FGO-FGO,GІІ, ( 
ℎ𝑡

ℎ𝑏
=

1

4
 ,
𝐿2

𝐿1
=

1

2
 , 
𝐿1

𝑏1
= 1, T=500 K). 
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Figure 3-12 Variation of the ERRS (Modes І and ІІ) along the delamination front of the FG-GRC laminated 

composite plates with different asymmetric graphene distribution patterns(a)FGA, FGA-FGA, GІ, (b) FGA, FGA-

FGA, GІІ, (c)FGV,FGV-FGV, GІ, (d) FGV,FGV-FGV,GІІ,  ( 
ℎ𝑡

ℎ𝑏
=

1

4
 ,
𝐿𝐷

𝐿
=

1

2
 , T=500 K). 

    To gain a better understanding and enable comparison of the propagation possibility of 

different portions of a single near-surface through-the-width delamination in FG-GRC composite 

plates, the total ERR is assessed for various graphene distribution patterns under two distinct 

boundary conditions CFCF and SFSF. The results of this analysis are depicted in Fig 3.13 and 

indicate that under the CFCF boundary condition, the total ERR tendency among symmetric and 

asymmetric graphene reinforcement patterns is consistent. The cause for this lies in the similar 

buckling mode shapes (mixed-mode) observed in all plates with different graphene distributions 

and CFCF boundary condition. Across these cases, regions near the center of the delamination 

edge are more susceptible to propagation than the other areas.  
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     Of particular significance is that their level of total ERR are different, because of the 

functionally graded distribution of graphene along the thickness direction of the plate, which 

effects on the bending stiffness of different numerical layers including top and bottom 

sublaminates and results in various thermal postbuckling deflection. An increase in stress 

concentration at the delamination edge due to deflection can cause a rise in ERR, accelerating the 

propagation of delamination. On the other hand, if deflection leads to a redistribution of stress 

away from the delamination edge, it can decrease the ERR, inhibiting delamination propagation.  

     Additionally, when subject to the SFSF boundary condition, the ERR distribution at the 

delamination front section of plates with FGA, FGV, and FGV-FGV graphene patterns 

significantly differs from that of other graphene dispersions. In particular, points located near the 

transverse edges of these three plates (
𝑦

𝑏
< −0.4 ,

𝑦

𝑏
> 0.4) experience a higher ERR than those 

near the center of the delamination edge. This finding supports the notion that the graphene 

distribution patterns, which can influence the buckling mode shapes of delaminated plates, have a 

noticeable impact on the total ERR and probability of delamination propagation. 
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Figure 3-13 Effect of different kinds of graphene graded patterns and boundary conditions on the variation of total 

ERR along the delamination edge of FG-GRC laminated composite plates (a) symmetric, CFCF, (b) asymmetric, 

CFCF, (c) symmetric, SFSF, (d) asymmetric SFSF, ( 
ℎ𝑡

ℎ𝑏
=

1

4
 ,
𝐿2

𝐿1
=

1

2
 , 
𝐿1

𝑏1
= 1, T=500 K). 

     The variation of the fundamental frequencies versus temperature change for delaminated and 

perfect (without delamination) plates reinforced with FGX as a symmetric graphene distribution 

patten and FGA as asymmetric are illustrated in Fig 3.14. The thermally induced pre- and post-

buckled non-dimensional fundamental frequencies of delaminated plates with CFCF boundary 

conditions demonstrate notable distinctions from those of perfect plates with the same boundary 

conditions, irrespective of the type of graphene distribution pattern. The present study has 

demonstrated that the pre- and post-buckled frequency-temperature relationship of a FG-GRC 
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perfect plate is characterized by a single concave point associated with the critical buckling 

temperature. In contrast, the frequency-temperature curve of a FG-GRC plate with a near-surface 

through-the-width delamination exhibits three distinct concave points, corresponding to the critical 

buckling temperatures of the top and bottom segments within the delamination zone. 

     In the case of delamination, the non-dimensional fundamental frequencies of the plate are 

affected by temperature within the pre- and post-buckling domains. Specifically, an increase in 

temperature during the pre-buckling stage results in a decrease in the fundamental frequency due 

to the corresponding reduction in stiffness. Once the temperature reaches the critical buckling 

temperature, the top sublaminate deflects upward while the bottom sublaminate remains flat, 

which is known as local buckling mode shape. This behavior is illustrated in Figs 3.7 and 3.8. 

During the post-buckling regime, the thermal large deformation of the top sublaminate increases 

the nonlinear stiffness of the plate, leading to an increase in the fundamental frequency up to the 

second concave point. At this point, the thicker bottom sublaminate starts to deflect, resulting in a 

reduction in the bending stiffness of the plate and a subsequent decrease in the non-dimensional 

fundamental frequency up to the third concave point, where a mixed-buckling mode shape occurs. 

It is important to note that the frequency increases again following the thermally induced deflection 

of both the top and bottom sublaminate. 

     Another notable aspect of the CFCF boundary condition is that, unlike the reference 

temperature (𝑇 = 300 𝐾) where the non-dimensional fundamental frequency of the FG-GRC 

delaminated plate is lower than that of the perfect plate without considering the graphene 

distribution pattern, during the post-buckling domain, the fundamental frequencies of the specified 

delaminated plate, ( 
ℎ𝑡

ℎ𝑏
=

1

4
 ,
L2

L1
=

1

2
, 
L1

b1
= 1), are higher than those of the perfect plate.   
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     Observing the FGX and FGA graphene distribution patterns under the SFSF boundary condition 

in Fig 3.14, it can be inferred that FG-GRC plates with a single through-the-width delamination 

exhibit thermally induced pre- and post-buckled fundamental frequency variations similar to those 

of perfect plates. This means that across these curves just one concave point can be seen associated 

with the critical buckling temperature. According to Fig 3.7, the delaminated FGX plate with SFSF 

boundary condition exhibits mixed-mode buckling mode shapes from the initial loading stages and 

both the top and bottom segments deflect at the same temperature. As a result, there is only one 

critical buckling temperature for this type of scenario. Furthermore, as depicted in Fig 3.8, the 

thermal postbuckling equilibrium path of the delaminated plate with SFSF boundary condition and 

FGA graphene dispersion, is identical to that of a plate without any delamination. This implies that 

during the postbuckling regime, both the top and bottom segments within the delamination area 

remain attached and deflect in unison. Therefore, this scenario also exhibits only one critical 

buckling temperature. 

     Fig 3.15 compares the influence of different symmetric and asymmetric graphene distribution 

patterns on the pre- and post-buckled fundamental frequencies of GRC delaminated and perfect 

plates with CFCF boundary conditions. The geometrical parameters of the single delamination are 

similar to those discussed above. In both perfect and delaminated FG-GRC plates, a more 

significant difference exists between fundamental frequencies when symmetric graphene 

distribution patterns (FGX, FGX-FGX, FGO, and FGO-FGO) are implemented, compared to when 

asymmetric dispersions (FGA, FGA-FGA, FGV, and FGV-FGV) are utilized.  

     During the pre-buckling phase, it has been observed that the FGX graphene distribution pattern 

exhibits the highest fundamental frequencies in both perfect and delaminated plates. Additionally, 

the critical buckling temperature of the FGX perfect plate is greater than that of other graded 
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distributions, and the FGX delaminated plate experiences higher critical buckling temperature 

loads for both the thin top sublaminate and thick bottom baselaminate, owing to its higher plate 

stiffness. These findings provide evidence that the FGX perfect and delaminated plates enter their 

post-buckling phase at a later stage than the other graphene distributions, which implies that natural 

frequencies of the FGX plates are at the lowest during this phase. 

  

  

Figure 3-14 Effect of FGX and FGA graded patterns and boundary conditions on thermally pre- and post-buckled 

vibration of delaminated and perfect GRC plates (a)FGX, CFCF (b)FGA, CFCF(c)FGX, SFSF(d) FGA, SFSF,( 
ℎ𝑡

ℎ𝑏
=

1

4
 ,
𝐿2

𝐿1
=

1

2
, 
𝐿1

𝑏1
= 1 ). 
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Figure 3-15 Effect of several symmetric and asymmetric functionally graded patterns on thermally pre- and post-

buckled vibration of perfect and delaminated GRC plates (a)perfect plate, symmetric (b) delaminated plate, 

symmetric (c) perfect plate, asymmetric, (d) delaminated plate, asymmetric, ( 
ℎ𝑡

ℎ𝑏
=

1

4
  ,
𝐿2

𝐿1
=

1

2
, 
𝐿1

𝑏1
= 1 ). 

3.5.2. FG-GRC laminated plate with multiple through-the-width delaminations 

    To have a better understanding about the influence of interlaminar defects on the thermal 

compressive instability behavior of the FG-GRC plates, it is assumed that double central through-

the-width delaminations with the same size (
L2

L1
=

1

2
) as illustrated in Fig 3.4 take place at different 

thickness coordinates of the plates. In this section, for the sake of brevity, only two types of 

graphene distribution patterns are considered: FGX as a symmetric and FGA as an asymmetric 

dispersion, with the CFCF boundary condition. Fig 3.16 compares the thermal equilibrium paths 
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of the FGX and FGA composite plates with consideration four different delamination 

configurations, including [2 / d / 2 / d / 6] as the first case, in which the top sublaminate consists 

of two graphene-reinforced composite plies, the first delamination occurs, the middle sublaminate 

also consists of two graphene-reinforced composite plies, another delamination zone occurs, and 

the bottom sublaminate includes six composite plies. By maintaining the thickness of the top 

sublaminate constant (consists of two composite plies) while adjusting the location of the second 

delamination through the thickness of the plates, which changes the thickness of the middle and 

bottom sublaminates, the influence of the delamination location is studied as well. As can be seen, 

changing the location of the delamination causes some unexpected thermal postbuckling behaviors 

in the top, middle, and bottom sublaminates of the FGX and FGA plates. In the first case, where 

the delamination configuration is [2 / d / 2 / d / 6], for both FGX and FGA graphene distribution 

patterns, increasing the temperature causes the top and middle sublaminates to deflect upward, 

while the bottom sublaminates experience a negative out-of-plane displacement. However, In the 

second and third cases, when the delamination configurations are [2 /d / 3 / d / 5] and [2 / d / 5 / 

3], respectively, the middle sublaminate responds in an entirely different way and buckles through 

the negative Z direction. It should be highlighted that between the middle and bottom sublaminates 

in the second and third configurations a penalty contact constraint is implemented to prevent the 

penetration, a physically unacceptable phenomenon.  

     The buckling mode shapes of the FGX and FGA laminated composite plates differ in the final 

case, [2 /d / 6 / d / 2], when both delamination zones are symmetrically located close to the top and 

bottom plate surfaces. When the temperature increases uniformly from 300 K to 500 K, the middle 

sublaminate of the FGX delaminated composite plate remains flat, but the top and bottom 

sublaminates deflect in opposite directions. The middle and top sublaminates of the FGA 
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delaminated plate, however, deflect in positive direction, whereas the bottom sublaminate buckles 

downward. It should be noted that at the beginning of the temperature loading, the top and middle 

sublaminates of the plate with FGA graphene distribution deflect independently. As the 

temperature rises, the middle sublaminates' deflection increases until it reaches the top 

sublaminates around T=420 K, where they connect to each other and deflect simultaneously. To 

evaluate the accuracy of the results obtained using the layerwise TSDT, a finite element model was 

developed for the multiple through-the-width delamination as well. An excellent agreement 

between these results can be seen.  
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Figure 3-16 Influence of the double same size through-the-width delaminations with different configurations on the 

thermal potbuckling deflection paths of the FGX and FGA laminated composite plates with CFCF boundary 

condition (a)FGX, [2/d/2/d/6] (b)FGA, [2/d/2/d/6](c)FGX, [2/d/3/d/5](d)FGA, [2/d/3/d/5](e)FGX, 

[2/d/5/d/3](f)FGA, [2/d/5/d/3](g) FGX, [2/d/6/d/2](h) FGA, [2/d/6/d/2],  (
𝐿2

𝐿1
=

1

2
 , 
𝐿1

𝑏1
= 1  ) 

     Table. (3.4) presents the buckling mode shapes of FGX and FGA graphene reinforced composite 

plates with CFCF boundary condition that contain double through-the-width delaminations. It is 
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red, and dark blue, respectively. Moreover, when the middle sublaminate's deflection is equivalent 

to either the top or middle ones, it was removed to provide a clearer representation of the mode 
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shapes. Consequently, in some instances, only the yellow and dark blue sublaminates are 

presented. 

Table 3-4 Buckled configurations of the FGX and FGA laminated composite plates with double through-the-width 

delaminations at T=350 K and T=500 K. 

Distribution 

patterns 

Lay-up arrangements of the graphene volume 

fraction and delamination locations 
CFCF (T= 350 K) CFCF (T=500 K) 

FGX 
[0.11,0.09,0.07,0.05,0.03]S 

[2  //  d  //  2  //  d  //  6] 

  

FGX 
[0.11,0.09,0.07,0.05,0.03]S 

[2  //  d  //  3  //  d  //  5] 

  

FGX 
[0.11,0.09,0.07,0.05,0.03]S 

[2  //  d  //  5  //  d  //  3] 

  

FGX 
[0.11,0.09,0.07,0.05,0.03]S 

[2  //  d  //  6  //  d  //  2] 

  

FGA 
[(0.03)2, (0.05)2, (0.07)2, (0.09)2, (0.11)2] 

[2  //  d  //  2  //  d  //  6] 

  

FGA 
[(0.03)2, (0.05)2, (0.07)2, (0.09)2, (0.11)2] 

[2  //  d  //  3  //  d  //  5] 

  

FGA 
[(0.03)2, (0.05)2, (0.07)2, (0.09)2, (0.11)2] 

[2  //  d  //  5  //  d  //  3] 

  

FGA 
[(0.03)2, (0.05)2, (0.07)2, (0.09)2, (0.11)2] 

[2  //  d  //  6  //  d  //  2] 
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         According to Fig 3.16, it was assumed that double central through-width delaminations with 

the same size occurred at distinct thickness coordinates on the FG-GRC laminated plates. In order 

to determine which is more susceptible to propagation, it is necessary to examine the variation of 

total ERR at their front sections for both FGX and FGA graphene reinforcement distributions. As 

illustrated in Fig 3.17, the thickness of the top sublaminate remains constant (consists of two 

graphene reinforced composite plies), and several delamination configurations are investigated 

through changing the thickness coordinate of the bottom delamination. This illustration 

emphasizes that if the delamination zones are present in the top half plate, the total ERR at the 

delamination edges is almost equivalent for both FGX and FGA graphene reinforced composite 

plates. However, if the second delamination occurs in the bottom half plate, there is a significant 

disparity between the total ERR at the delamination edges of FGX and FGA plates, which is due 

to different buckling mode shapes. Moreover, apart from the last configuration of FGX 

delaminated plate, the total ERR at the edges of the upper delamination is higher than that of the 

bottom delamination, implying that the propagation possibility of the upper near-surface 

delamination is more than the bottom delamination in the thermal postbuckling regime. However, 

in the final case, FGX delaminated plate with two delamination zones placed symmetrically near 

the top and bottom surfaces of the plate ([2 / d / 6 / d / 2]), the lower delamination is more prone 

to propagation than the upper one.  
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Figure 3-17 Influence of several delamination configurations on the distribution of total ERR along their edges for 

the FGX and FGA graphene reinforced composite plates(a)FGX, [2/d/2/d/6] (b)FGA, [2/d/2/d/6](c)FGX, 

[2/d/3/d/5](d)FGA, [2/d/3/d/5](e)FGX, [2/d/5/d/3](f)FGA, [2/d/5/d/3](g) FGX, [2/d/6/d/2](h) FGA, [2/d/6/d/2], 

(
𝐿2

𝐿1
=

1

2
 , 
𝐿1

𝑏1
= 1, T=500 K). 

     In Fig 3.18, we can see the fundamental frequency-temperature curves of FGX and FGA 

graphene-reinforced plates with double central delamination zones. Notably, there is a significant 

difference between the pre- and post-buckling vibration response of the double delaminated plates 

compared to the perfect plates shown in Fig 3.15. 

     This difference is due to the presence of double delaminations, which affects the buckling mode 

shapes of different segments within the delamination area. These segments include the top, middle, 

and bottom sublaminates, each exhibiting a different postbuckling response. The fundamental 

frequency-temperature curves display fluctuations and concave points that correspond to different 

postbuckling responses. The location of delamination zones plays a crucial role in determining the 

behavior of these curves. In particular, when the delamination zones are symmetrically placed near 

the upper and lower surfaces of an FGX graphene reinforced plate with CFCF boundary condition, 

the post-buckling fundamental frequency-temperature curve shows a noticeable jump and is higher 

than other delamination configurations. This phenomenon occurs because of a special 
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postbuckling deflection mode shape illustrated in Fig 3.16, where the middle sublaminate remains 

flat while both top and bottom sublaminates deflect in opposite directions. The unique buckling 

mode shapes enhance the nonlinear stiffness of the plates, resulting in an improvement in their 

natural frequencies. 

  

Figure 3-18 Effect of several delamination configurations on thermally pre- and post-buckled vibration of 

delaminated FGX and FGA graphene reinforced plate with CFC (a) FGX, (b)FGA, ( 
𝐿2

𝐿1
=

1

2
, 
𝐿1

𝑏1
= 1 ). 

3.6. Concluding remarks 

     The present research investigates the impact of graphene distribution patterns and delamination 

configurations on the nonlinear thermal stability responses of FG-GRC laminated plates. The study 

aims to assess and predict the likelihood of delamination propagation in such plates. Furthermore, 

the study elucidates the influence of various delamination configurations and graphene distribution 

patterns on the pre- and post-buckling vibrations induced by thermal loading and compare them 

with those in perfect FG-GRC plates. A formulation was developed based on the layerwise TSDT 

and von-Karman strain–displacement relation. The governing equations are solved through the 

application of the minimum total potential energy principle and the Ritz method in conjunction 

with the Newton–Raphson iterative procedure. The thermo-mechanical properties of matrix and 
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graphene reinforcements were assumed to be temperature-dependent obtained using the extended 

Halpin-Tsai micromechanical model. The numerical results elaborate on the fact that FG-GRC 

laminated plate designers need to carefully consider the following points in their computational 

simulation: 

• The equilibrium paths of composite plates with a single through-the-width delamination 

reinforced with asymmetric graphene distribution patterns (FGA, FGA-FGA, FGV, FGV-

FGV) with clamped edge supports are bifurcation types. The behavior of these plates with 

simply supported boundary conditions is a unique stable equilibrium path. This is due to 

the inability of simply supported edges to apply an extra moment to neutralize thermally 

induced moments. 

• For the FG-GRC plates with a single central near-surface through-the-width delamination 

and CFCF boundary condition, the mixed mode buckling is the moderate one, regardless 

of the type of graphene distribution patterns, in contrast to the SFSF boundary condition, 

where the global buckling mode shape is most likely to occur for plates with asymmetric 

graphene distribution patterns. 

• FGX as a symmetric graphene distribution pattern reduces the thermal postbuckling 

deflection of the composite plate with a single delamination, whereas FGA as an 

asymmetric graphene distribution pattern is not suitable for enhancing the bending stiffness 

of the delaminated composite plates. However, ERR at the delamination front of the FGX 

plate is greater than that of the plate reinforced with FGA graphene dispersion; 

consequently, the near-surface delamination zone in the FGX laminated composite plate 

can be more prone to propagation than in the FGA composite plates.  
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• For the FG-GRC laminated plates with a single near-surface delamination and CFCF 

boundary condition, it is discovered that the variations of the buckling mode shapes and 

tendency of  ERR variation are independent to the functionally graded graphene patterns. 

For plates with multiple through-width delaminations and CFCF boundary condition, 

however, the graphene reinforcement distribution may have noticeable influence on both 

the buckling mode shapes and ERR distributions. 

• The presence of delamination between the layers of FG-GRC laminated plates results in 

distinct differences in the pre- and post-buckling vibration responses compared to perfect 

plates (i.e., those without delamination). 

• The findings of this study suggest that in some cases, specifically for FG-GRC plates with 

CFCF boundary conditions, the presence of delamination can lead to an enhancement in 

the post-buckling thermally induced fundamental frequencies, as compared to perfect 

plates without any delamination. 
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4. Effects of functionally graded graphene reinforcements on 

nonlinear post-local buckling and axial stiffness of laminated 

channel section struts3  

     The role of local buckling on the behavior of slender members under compression has received 

considerable attention in the field. For thin-walled sections, in particular, there is a noticeable 

decrease in the axial compressive stiffness, resulting in a substantial reduction in their load-bearing 

capacity due to the occurrence of local buckling. The principal purpose of this article is to explore 

the potential improvements in the postbuckling characteristics of polymeric composite laminated 

channel section struts subjected to a progressive end-shortening by employing multi-layer 

graphene sheets reinforcements. The solution methodology incorporates the von Karman 

geometrical nonlinearity and is based on the layerwise third-order shear deformation theory (LW-

TSDT). To verify the accuracy of the results obtained based on the LW-TSDT and to evaluate its 

computational efficiency, a three-dimensional (3D) finite element model is also developed using 

ABAQUS for comparative analysis. A thorough examination of nonlinear stability is conducted 

on composite laminated channel section struts, featuring distinctive graphene distribution patterns 

through the thickness directions of the flanges and webs to identify the most effective material 

distribution with the objective of a significant increase in critical buckling end-shortening and axial 

compressive stiffness. The influence of the geometrical parameters on the critical buckling end-

shortening, postbuckling equilibrium paths, and load-bearing capacity of functionally graded 

graphene reinforced composite (FG-GRC) laminated channel section struts are also elicited. The 

conducted parametric analyses emphasize that altering the distribution patterns of graphene 

reinforcement across the flanges and web, while keeping the geometrical parameters constant, can 

 
3 A version of this chapter is published in the journal of Thin-Walled Structures, 195 (2024) 111517, 
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enhance the critical buckling end-shortening and load-bearing capacity by approximately 80% and 

25%, respectively. 

4.1. Introduction 

     In recent years, composite laminates have experienced substantial growth in various industries, 

owing to their capacity to provide a beneficial balance between stiffness, strength, and weight. 

Moreover, significant progress has been witnessed in manufacturing techniques like 3D printing, 

which has revolutionized the production of composite laminates, presenting numerous benefits in 

terms of design adaptability, customization, and manufacturing efficiency. By combining the 

advantages of both 3D printing and composite materials, this groundbreaking approach has 

unlocked fresh opportunities for fabricating complex and functional engineering structures with 

intriguing material properties, including thin-walled composite laminated struts [26,27]. These 

structures are commonly utilized in scenarios that involve in-plane compressive loading, 

particularly in the aerospace industry. The industry's focus on developing efficient and lightweight 

structures requires considering the potential occurrence of local buckling/post buckling at 

designated load levels. The precise analysis of compressive stability is crucial for these structures, 

considering the substantial reduction in compressive stiffness and load-bearing capacity during the 

post-local-buckling phase [28]. As a result, extensive research involving numerical simulations, 

analytical methods, and experimental investigations has been conducted on thin-walled open and 

close section struts for varied sectional geometries composed of diverse isotropic and anisotropic 

materials [28,29,97–115]. 

     A novel P-version technique was introduced to construct a 3D finite element model (FEM) for 

the assessment of local, overall, and interactive buckling behavior in thin-walled components. The 

considered sectional geometries encompassed channel sections, boxes, and I section. One of the 



121 
 

key findings from this study highlights the significant influence of the length-to-web width ratio 

(𝐿 𝐵𝑤
⁄ ) on the types of buckling. Specifically, for short struts with an 𝐿 𝐵𝑤

⁄ ratio close to 1, a 

moderate mode of local buckling was observed. In contrast, the transition between local and 

overall buckling modes occurred at low 𝐿 𝐵𝑤
⁄ ratios, leading to an interactive buckling mode shape 

[97]. 

     The local buckling analysis of fiber reinforced composite laminated beams subjected to a 

uniformly compressive load with diverse sectional geometries, including I, C, Z, T, and L shapes, 

was conducted analytically using two distinctive methods [101,102,108]. In the initial approach, 

the beam's sub-elements, such as flanges and webs, were examined individually according to the 

energy based semi-analytical approach, applying elastic rotational conditions at the junction where 

the flange and web are connected. Alternatively, another study introduced a comprehensive 

technique based on the Ritz method. This method involved the simultaneous analysis of individual 

webs and flanges in one system, incorporating appropriate continuity conditions at the junctions 

of the webs and flanges. Both approaches provided closed-form formulas to determine key 

quantities, such as the critical buckling load. This characteristic renders these two approaches 

highly valuable and practical from an engineering standpoint.  

      The impact of geometrical imperfections and the elastoplastic material behavior on the post-

local-buckling response, compressive stiffness, and failure of thin-walled I and box section struts 

was assessed using finite element analysis [104]. The objective was to accurately compare the 

variation in axial compressive stiffness under elastic conditions to scenarios where material 

nonlinearity was taken into account. A series of experimental tests were also carried out on thin-

walled sectional structures with intricate cross-sectional profiles, incorporating multiple 
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intermediate stiffeners. The obtained strength test results were compared with numerical 

simulations, validating the finding that the presence of intermediate stiffeners increases the local 

buckling stress level [106]. The exact finite strip method (FSM) was employed to assess the local 

buckling and initial postbuckling behavior of thin-walled I section struts [105]. Furthermore, the 

postbuckling stiffness and geometrically nonlinear response of channel section struts were 

evaluated using two distinctive analytical methods: the semi-energy and the full-energy FSM [28], 

[116], In the initial approach, only the out-of-plane displacement is stipulated, whereas in the 

subsequent approach, both in-plane and out-of-plane displacement functions are encompassed in 

the computation right from the outset of the solution process. It is worth noting that in a compelling 

previous study, the impact of interlaminar flaws, specifically delamination, on the post-local 

buckling behavior of fiber-reinforced composite laminated angle section and T-section struts was 

examined according to the layerwise theory. The investigation revealed that the presence of 

delamination between the layers of the flanges significantly diminished the load-bearing capacity 

of composite laminated thin-walled structures [104].  

     In summary, based on an extensive literature review, it is evident that local buckling should be 

regarded as a critical design consideration for thin-walled struts, irrespective of their cross-

sectional profile. Local buckling significantly impacts the axial compressive stiffness and, 

subsequently, the load-bearing capacity in an adverse manner. Consequently, it is imperative to 

prioritize the resolution of this pivotal concern in this type of practical and extensively utilized 

engineering structures by diligently exploring diverse avenues to identify effective solutions.  

    Given the proven enhancements in stiffness and strength achieved by incorporating graphene 

reinforcements in polymeric composite laminates, this paper represents an initial exploration into 

utilizing this two-dimensional nanomaterial as a reinforcement in composite laminated channel 
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section struts to assess how the incorporation of graphene with several symmetric and asymmetric 

distributions can improve the performance of channel section struts under compressive loads 

(uniform end-shortening), while avoiding the addition of intermediate stiffeners. 

     This study aims to compare different configurations of functionally graded graphene sheets 

distributed along the thickness directions of the flanges and web plates in channel section struts to 

determine the combination of patterns that has the greatest influence on enhancing the critical 

buckling end-shortening and the compressive axial stiffness. In addition to the material 

configuration study and comprehensive comparison of the post-local buckling characteristics 

between the most and least influential cases with the uniform distribution (UD) graphene pattern, 

the effect of geometrical parameters on critical buckling ends-shortening, post-local buckling 

equilibrium paths, and load-bearing capacity is also examined for various graphene distribution 

patterns in this research.  

     To achieve the research objectives, a layerwise theory based on the third-order shear 

deformation theory (TSDT) is developed for the first attempt on the channel section struts. 

Additionally, a detailed 3D finite element study is conducted by using the commercial software 

ABAQUS to incorporate the results obtained from the LW-TSDT. Furthermore, this paper includes 

a comparative analysis of the central processing unit (CPU) time between the two methods. These 

methods necessitate distinct total numbers of displacement and rotational degrees of freedom 

(DOFs) for an accurate assessment of the nonlinear response in channel section struts. 

4.2. Theoretical formulation 

     This study specifically investigates multilayer laminated composite channel section struts, 

which consist of several subelements including two vertical plates referred to as flange1&2 and a 

horizontal plate known as the web, as illustrated in Fig. (4.1). The dimensions of the flanges and 
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web, represented by 𝑡𝑓 , 𝑏𝑓 , 𝑡𝑤, and 𝑏𝑤, respectively, are defined in terms of their thickness and 

width.    

      The overall length of the channel section strut is also denoted as 𝐿. Fig. (4.1) also visually 

represents the establishment of a local Cartesian coordinate system, with its origin positioned at 

the center of the mid-plane for each subelement within the structure. These coordinate systems 

serve as the basis for defining appropriate displacement and rotational shape functions. 

  

Figure 4-1 (a) A schematic FG-GRC laminated channel section struts with their local coordinate systems (b) detailed 

view half of the piecewise functionally graded graphene reinforced cross-section 

     As previously noted, every subcomponent (flanges and web) comprises N composite layers, 

with each layer composed of a polymeric matrix reinforced by graphene sheets, wherein the 

volume percentage of graphene varies. This variation leads to the formation of a laminated 

structure called a piecewise functionally graded graphene reinforced composite. In this study, two 

types of graphene reinforcement layers are considered: zigzag (referred to as 0°-ply) and armchair 

(referred to as 90°-ply). This article concentrates on analyzing and assessing six distinct non-

uniform distribution patterns of graphene, comparing their reinforcing influence on that of the UD 

graphene dispersion. These non-uniform patterns include four symmetric distributions (FG-X, 
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FGX-FGX, FG-O, and FGO-FGO) and two asymmetric distributions (FG-V and FGV-FGV) 

presented in Table. (3.1), chapter 3. 

     Various combinations of the graphene distribution patterns outlined in Table. (3.1) can be 

chosen independently for both the flanges and the web. In order to enhance clarity, Fig. (4.2) 

presents schematic depictions of channel section struts where the flanges and web incorporate the 

same FG-X graphene distribution pattern. 

 

Figure 4-2 Schematic depiction of the cross-section with an FG-X graphene distribution pattern within both the 

flanges and the web. 

     It is imperative to acknowledge that the equations necessary for determining the 

thermomechanical properties of GRCs through the modified Halpin-Tsai mathematical model are 

congruent with those elaborated in section 2.2.2. Furthermore, the examination of the nonlinear 

instability behavior of the channel section struts employs the TSDT in conjunction with the 

Layerwise Theory. The comprehensive displacement equations derived from the TSDT were 

discussed in section 3.3. 
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4.3. Structural modelling of channel section struts 

4.3.1. Modelling based on the LW-TSDT 

     According to the layerwise theory, the flanges and web plates need to be discretized into 

multiple numerical layers along their thickness directions. The number of numerical layers can 

vary, either being equal to, lower than, or higher than the number of graphene reinforced polymeric 

composite plies form the flanges and web. Increasing the number of numerical layers promises 

more accurate results. However, it is important to bear in mind that this advantage comes with a 

trade-off: an increase in the computational cost and CPU usage.  In the context of the layerwise 

theory, it is necessary to assume independent rotational functions around the X and Y axes for each 

of the discretized layers. In this paper, the in-plane and out-of-plane displacement functions at the 

midplane of each numerical layer are defined by employing the TSDT. 

    Figure (4.3) depicts in detail the sequential procedures involved in accurately implementing the 

LW-TSDT. Initially, the FG-GRC channel section strut is divided into three distinct plates: two 

flanges and a web, each having its own local coordinate system positioned at the midplane center. 

Subsequently, each of these individual plates is discretized into arbitrary number of numerical 

layers along the thickness direction. During this stage, each of the divided numerical layers is 

treated as a plate. Accordingly, rotational and displacement shape functions can be established for 

their respective midplanes, in accordance with the principles of the TSDT. A critical aspect to be 

mindful of is ensuring that the shape functions meet the continuity conditions at the interface 

between any two adjacent, divided numerical layers. Additionally, they have to address the 

boundary conditions at both longitudinal ends of the channel section struts. The proposed 

theoretical advancements do not impose any limitations regarding the use of various types of edge 

supports. However, for the sake of conciseness, the present analysis focuses exclusively on the 
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FG-GRC channel section struts with clamped boundary conditions at both longitudinal ends, 

shown mathematically in Table. (4.1). 

Table 4-1 Mathematical expressions of the boundary conditions at longitudinal ends of the FG-GRC channel section 

struts 

Boundary condition Out-of-plane displacement Rotation 

Clamped-Clamped 

Flange 

𝑤𝑓
(𝑖)

|𝑥=
−𝐿1
2

= 𝑤𝑓
(𝑖)

|𝑥=
𝐿1
2

= 0 

𝑖 = 1. . 𝑛 

𝜑𝑥𝑓
(𝑖)

|𝑥=
−𝐿1
2

= 𝜑𝑥𝑓
(𝑖)

|𝑥=
𝐿1
2

= 0 

𝑖 = 1. . 𝑛 

Web 
𝑤𝑤
(𝑖)

|𝑥=
−𝐿1
2
= 𝑤𝑤

(𝑖)

|𝑥=
𝐿1
2
= 0 

𝑖 = 1. . 𝑛 

𝜑𝑥𝑤
(𝑖)

|𝑥=
−𝐿1
2
= 𝜑𝑥𝑤

(𝑖)

|𝑥=
𝐿1
2
= 0 

𝑖 = 1. . 𝑛 

     

     In the final step, the three plates (two flanges and a web) are assembled together to form a 

unique system for analysis. An essential consideration in this assembly process is ensuring that the 

rotational and displacement functions defined in the previous step satisfy the continuity conditions 

at the junction of the flange and web, where these plates are interconnected.  

     In-plane stress-free edge has been extensively adopted as a continuity condition at the junction 

of flange and web in different open section struts to bring the analytical and numerical approaches 

closer to reality when investigating their nonlinear post-local-buckling response. According to this 

condition considered in this paper, the nodes of the flanges and web plates located at the junction 

are allowed to move in-plane freely and their out-of-plane displacements are restricted. In details 

there are two coincidental nodes at any particular length location along the junction. One of which 

correspond to the flange, while the second node is associated with the web plate. This specific 

continuity condition limits the in-plane displacement of those nodes in the X-direction with the 

same value and have the same rotation around X and Y-axis. The physical meaning of the in-plane 
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stress-free edge condition is that after local buckling of the wall sections the junctions remain flat 

without any out-of-plane displacements, the mathematical formula is expressed as follows: 

 

Figure 4-3 A typical channel section strut and segmentation of the flanges and web (a) Separation of flanges and 

web, (b) Discretization of flanges and web through their thickness based on the layerwise theory 
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𝑥′ ′  

𝑦′ ′  

𝑥′  𝑦′  

𝑦′  
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𝑧′  
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(𝑢𝑓
(𝑖)
, 𝜑𝑥𝑓

(𝑖), 𝜑𝑦𝑓
(𝑖))|

𝑦′= 
−𝑏𝑓
2

= (𝑢𝑤
(𝑖)
, 𝜑𝑥𝑤

(𝑖) , 𝜑𝑦𝑤
(𝑖) )|

𝑦= 
𝑏𝑤
2

 ,     {𝑖 = 1. . 𝑛} 

(𝑢𝑓
(𝑖)
, 𝜑𝑥𝑓

(𝑖), 𝜑𝑦𝑓
(𝑖))|

𝑦′′= 
𝑏𝑓
2

= (𝑢𝑤
(𝑖)
, 𝜑𝑥𝑤

(𝑖) , 𝜑𝑦𝑤
(𝑖) )|

𝑦= 
− 𝑏𝑤
2

 ,     {𝑖 = 1. . 𝑛} 

𝑤𝑤
(𝑖)

|𝑥=
−𝐿1
2

= 𝑤𝑤
(𝑖)

|𝑥=
𝐿1
2

= 𝑤𝑤
(𝑖)

|𝑦=
−𝑏w
2

= 𝑤𝑤
(𝑖)

|𝑦=
𝑏w
2

= 0,     {𝑖 = 1. . 𝑛}                                                                        ( 4-1) 

     These factors contribute to the increased complexity involved in designing the rotational and 

displacement functions for FG-GRC channel section struts. In Eq. (4.1), indexes "𝑓" and "𝑤" 

associated with the flange and web, respectively. For instance, (𝑢𝑓
(𝑖), 𝑤𝑓

(𝑖)) and (𝑢𝑤
(𝑖), 𝑤𝑤

(𝑖))  

represent the in-plane and out-of-plane displacements of the 𝑖𝑡ℎ numerical layer located through 

the thickness of the flange and web, respectively. Additionally, (𝜑𝑥𝑓
(𝑖), 𝜑𝑦𝑓

(𝑖)) and (𝜑𝑥𝑤
(𝑖) , 𝜑𝑦𝑤

(𝑖) ) 

correspond to the midplane rotation of the 𝑖𝑡ℎ numerical layer of the flange and web, respectively.  

     As expressed in Eq. (4.1), all these rotational and displacement shape functions are defined 

according to the local coordinate systems established at the mid-plane center of the flanges and 

web plates. 

     Based on the boundary and continuity conditions described in Table. (4.1) and Eq. (4.1), the 

displacement fields for the assumed regions are modeled using polynomial expressions. The 

permissible functions for out-of-plane displacements are then determined according to Eq. (4.2): 

𝑤𝑤
(1)
= ∑∑(𝑥 −

𝐿

2
)

𝑁

𝑛=0

(𝑥 +
𝐿

2
) (𝑦 +

𝑏𝑤
2
) (𝑦 −

𝑏𝑤
2
)

𝑀

𝑚=0

𝑤𝑤,𝑚𝑛
(1)

𝑥𝑚𝑦𝑛    ,     𝑤𝑤
(1)
= 𝑤𝑤

(𝑖)
   𝑖 = 2. . 𝑛 

𝑤𝑓1
(1)
= ∑∑(𝑥 −

𝐿

2
)

𝑁

𝑛=0

(𝑥 +
𝐿

2
) (𝑦′ +

𝑏𝑓

2
)

𝑀

𝑚=0

𝑤𝑓1,𝑚𝑛
(1)

𝑥𝑚𝑦𝑛    ,     𝑤𝑓1
(1)
= 𝑤𝑓1

(𝑖)
   𝑖 = 2. . 𝑛 

𝑤𝑓2
(1)
= ∑ ∑ (𝑥 −

𝐿

2
)𝑁

𝑛=0 (𝑥 +
𝐿

2
) (𝑦′′ −

𝑏𝑓

2
)𝑀

𝑚=0 𝑤𝑓2,𝑚𝑛
(1)

𝑥𝑚𝑦𝑛    ,     𝑤𝑓2
(1)
= 𝑤𝑓2

(𝑖)
   𝑖 = 2. . 𝑛                                         (4-2) 
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     As shown in Eq. (4.2), the out-of-plane displacement of the web (𝑤𝑤) is restricted at its four 

longitudinal and transverse edges to meet both the boundary and continuity conditions. As 

discussed, these conditions involve the web being clamped at both longitudinal ends and 

maintaining straight at the junctions. This ensures proper alignment and structural integrity of the 

system. Furthermore, as a result of satisfying the continuity condition at the junctions, the 

deflection of the flanges is also restricted at those points. Given the absence of any interlaminar 

flaws, such as delamination, between the graphene reinforced composite plies in the flanges and 

web, all the plies included at each of these regions (flanges/web) experience the same out-of-plane 

displacement during deflection. Consequently, it is assumed that the out-of-plane displacements 

of all the discretized numerical layers within each flange or web are identical. This assumption 

ensures the continuity condition is met at the interface of numerical layers along the out-of-plane 

direction. With these explanations, it can be established that the total number of degrees of freedom 

considered for the out-of-plane displacements of channel section struts amounts to 3(𝑀 + 1)(𝑁 +

1). 

     The presumed polynomial displacement functions within the X and Y directions for both the 

flanges and web are expressed in Eqs. (4.3) and (4.4), respectively: 

𝑈𝑤
𝑟𝑒𝑓

= −𝜀 × 𝑥 +∑∑(𝑥 −
𝐿

2
) (𝑥 +

𝐿

2
)

𝑄

𝑞=0

𝑈𝑤,𝑝𝑞
𝑟𝑒𝑓

𝑃

𝑝=0

𝑥𝑝𝑦𝑞 

𝑈𝑤
(1)
= 𝑈𝑤

𝑟𝑒𝑓
+ 𝜃𝑤

(1)
(
ℎ𝑤
(1)

2
)𝜑𝑤,𝑥

(1)
+ 𝛾𝑤

(1)
(
ℎ𝑤
(1)

2
)𝜓𝑤,𝑥

(1)
 

𝑈𝑤
(2)
= 𝑈𝑤

𝑟𝑒𝑓
− 𝜃𝑤

(2) (
ℎ𝑤
(2)

2
)𝜑𝑤,𝑥

(2) − 𝛾𝑤
(2)
(
ℎ𝑤
(2)

2
)𝜓𝑤,𝑥

(2)
 

⋮ 
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𝑈𝑤
(𝑛)

= 𝑈𝑤
(𝑛−1)

− 𝜃𝑤
(𝑛−1) (

ℎ𝑤
(𝑛−1)

2
)𝜑𝑤,𝑥

(𝑛−1) − 𝛾𝑤
(𝑛−1)

(
ℎ𝑤
(𝑛−1)

2
)𝜓𝑤,𝑥

(𝑛−1)
− 𝜃𝑤

(𝑛) (
ℎ𝑤
(𝑛)

2
)𝜑𝑤,𝑥

(𝑛) − 𝛾𝑤
(𝑛)
(
ℎ𝑤
(𝑛)

2
)𝜓𝑤,𝑥

(𝑛)
 

𝑈𝑓1
𝑟𝑒𝑓

= [∑∑(𝑥 −
𝐿

2
) (𝑥 +

𝐿

2
)

𝑄

𝑞=0

(𝑦′ +
𝑏𝑓1

2
)𝑈𝑓1,𝑝𝑞

𝑟𝑒𝑓

𝑃

𝑝=0

𝑥𝑝𝑦𝑞] + 𝑈𝑤
𝑟𝑒𝑓

(𝑥,
𝑏𝑤
2
) 

𝑈𝑓1
(1)
= 𝑈𝑓1

𝑟𝑒𝑓
+ 𝜃𝑓1

(1)
(
ℎ𝑓1
(1)

2
)𝜑𝑓1,𝑥

(1)
+ 𝛾𝑓1

(1)
(
ℎ𝑓1
(1)

2
)𝜓𝑓1,𝑥

(1)
 

𝑈𝑓1
(2)
= 𝑈𝑓1

𝑟𝑒𝑓
− 𝜃𝑓1

(2) (
ℎ𝑓1
(2)

2
)𝜑𝑓1,𝑥

(2) − 𝛾𝑓1
(2)
(
ℎ𝑓1
(2)

2
)𝜓𝑓1,𝑥

(2)
 

⋮ 

𝑈𝑓1
(𝑛)

= 𝑈𝑓1
(𝑛−1)

− 𝜃𝑓1
(𝑛−1) (

ℎ𝑓1
(𝑛−1)

2
)𝜑𝑓1,𝑥

(𝑛−1) − 𝛾𝑓1
(𝑛−1)

(
ℎ𝑓1
(𝑛−1)

2
)𝜓𝑓1,𝑥

(𝑛−1)
− 𝜃𝑓1

(𝑛) (
ℎ𝑓1
(𝑛)

2
)𝜑𝑓1,𝑥

(𝑛) − 𝛾𝑓1
(𝑛)
(
ℎ𝑓1
(𝑛)

2
)𝜓𝑓1,𝑥

(𝑛)
 

𝑈𝑓2
𝑟𝑒𝑓

= [∑∑(𝑥 −
𝐿

2
) (𝑥 +

𝐿

2
)

𝑄

𝑞=0

(𝑦′′ −
𝑏𝑓2

2
)𝑈𝑓2,𝑝𝑞

𝑟𝑒𝑓

𝑃

𝑝=0

𝑥𝑝𝑦𝑞] + 𝑈𝑤
𝑟𝑒𝑓

(𝑥,
−𝑏𝑤
2
) 

𝑈𝑓2
(1)
= 𝑈𝑓2

𝑟𝑒𝑓
+ 𝜃𝑓2

(1)
(
ℎ𝑓2
(1)

2
)𝜑𝑓2,𝑥

(1)
+ 𝛾𝑓2

(1)
(
ℎ𝑓2
(1)

2
)𝜓𝑓2,𝑥

(1)
 

𝑈𝑓2
(2)
= 𝑈𝑓2

𝑟𝑒𝑓
− 𝜃𝑓2

(2) (
ℎ𝑓2
(2)

2
)𝜑𝑓2,𝑥

(2) − 𝛾𝑓2
(2)
(
ℎ𝑓2
(2)

2
)𝜓𝑓2,𝑥

(2)
 

⋮ 

𝑈𝑓2
(𝑛)

= 𝑈𝑓2
(𝑛−1)

− 𝜃𝑓2
(𝑛−1) (

ℎ𝑓2
(𝑛−1)

2
)𝜑𝑓2,𝑥

(𝑛−1) − 𝛾𝑓2
(𝑛−1)

(
ℎ𝑓2
(𝑛−1)

2
)𝜓𝑓2,𝑥

(𝑛−1)
− 𝜃𝑓2

(𝑛) (
ℎ𝑓2
(𝑛)

2
)𝜑𝑓2,𝑥

(𝑛) − 𝛾𝑓2
(𝑛)
(
ℎ𝑓2
(𝑛)

2
)𝜓𝑓2,𝑥

(𝑛)
          (4-3) 

𝑉𝑤
𝑟𝑒𝑓

=∑∑𝑉𝑤,𝑟𝑠
𝑟𝑒𝑓

𝑆

𝑠=0

𝑅

𝑟=0

𝑥𝑟𝑦𝑠 

𝑉𝑤
(1)
= 𝑉𝑤

𝑟𝑒𝑓
+ 𝜃𝑤

(1)
(
ℎ𝑤
(1)

2
)𝜑𝑤,𝑦

(1)
+ 𝛾𝑤

(1)
(
ℎ𝑤
(1)

2
)𝜓𝑤,𝑦

(1)
 

𝑉𝑤
(2)
= 𝑉𝑤

𝑟𝑒𝑓
− 𝜃𝑤

(2) (
ℎ𝑤
(2)

2
)𝜑𝑤,𝑦

(2) − 𝛾𝑤
(2)
(
ℎ𝑤
(2)

2
)𝜓𝑤,𝑦

(2)
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⋮ 

𝑉𝑤
(𝑛)

= 𝑉𝑤
(𝑛−1)

− 𝜃𝑤
(𝑛−1) (

ℎ𝑤
(𝑛−1)

2
)𝜑𝑤,𝑦

(𝑛−1) − 𝛾𝑤
(𝑛−1)

(
ℎ𝑤
(𝑛−1)

2
)𝜓𝑤,𝑦

(𝑛−1)
− 𝜃𝑤

(𝑛) (
ℎ𝑤
(𝑛)

2
)𝜑𝑤,𝑦

(𝑛) − 𝛾𝑤
(𝑛)
(
ℎ𝑤
(𝑛)

2
)𝜓𝑤,𝑦

(𝑛)
 

𝑉𝑓1
𝑟𝑒𝑓

=∑∑𝑉𝑓1,𝑝𝑞
𝑟𝑒𝑓

𝑆

𝑠=0

𝑅

𝑟=0

𝑥𝑝𝑦𝑞 

𝑉𝑓1
(1)
= 𝑉𝑓1

𝑟𝑒𝑓
+ 𝜃𝑓1

(1)
(
ℎ𝑓1
(1)

2
)𝜑𝑓1,𝑦

(1)
+ 𝛾𝑓1

(1)
(
ℎ𝑓1
(1)

2
)𝜓𝑓1,𝑦

(1)
 

𝑉𝑓1
(2)
= 𝑉𝑓1

𝑟𝑒𝑓
− 𝜃𝑓1

(2) (
ℎ𝑓1
(2)

2
)𝜑𝑓1,𝑦

(2) − 𝛾𝑓1
(2)
(
ℎ𝑓1
(2)

2
)𝜓𝑓1,𝑦

(2)
 

⋮ 

𝑉𝑓1
(𝑛)

= 𝑉𝑓1
(𝑛−1)

− 𝜃𝑓1
(𝑛−1) (

ℎ𝑓1
(𝑛−1)

2
)𝜑𝑓1,𝑦

(𝑛−1) − 𝛾𝑓1
(𝑛−1)

(
ℎ𝑓1
(𝑛−1)

2
)𝜓𝑓1,𝑦

(𝑛−1)
− 𝜃𝑓1

(𝑛) (
ℎ𝑓1
(𝑛)

2
)𝜑𝑓1,𝑦

(𝑛) − 𝛾𝑓1
(𝑛)
(
ℎ𝑓1
(𝑛)

2
)𝜓𝑓1,𝑦

(𝑛)
 

𝑉𝑓2
𝑟𝑒𝑓

=∑∑𝑉𝑓2,𝑝𝑞
𝑟𝑒𝑓

𝑆

𝑠=0

𝑅

𝑟=0

𝑥𝑝𝑦𝑞 

𝑉𝑓2
(1)
= 𝑉𝑓2

𝑟𝑒𝑓
+ 𝜃𝑓2

(1)
(
ℎ𝑓2
(1)

2
)𝜑𝑓2,𝑦

(1)
+ 𝛾𝑓2

(1)
(
ℎ𝑓2
(1)

2
)𝜓𝑓2,𝑦

(1)
 

𝑉𝑓2
(2)
= 𝑉𝑓2

𝑟𝑒𝑓
− 𝜃𝑓2

(2) (
ℎ𝑓2
(2)

2
)𝜑𝑓2,𝑦

(2) − 𝛾𝑓2
(2)
(
ℎ𝑓2
(2)

2
)𝜓𝑓2,𝑦

(2)
 

⋮ 

𝑉𝑓2
(𝑛)

= 𝑉𝑓2
(𝑛−1)

− 𝜃𝑓2
(𝑛−1) (

ℎ𝑓2
(𝑛−1)

2
)𝜑𝑓2,𝑦

(𝑛−1) − 𝛾𝑓2
(𝑛−1)

(
ℎ𝑓2
(𝑛−1)

2
)𝜓𝑓2,𝑦

(𝑛−1)
− 𝜃𝑓2

(𝑛) (
ℎ𝑓2
(𝑛)

2
)𝜑𝑓2,𝑦

(𝑛) − 𝛾𝑓2
(𝑛)
(
ℎ𝑓2
(𝑛)

2
)𝜓𝑓2,𝑦

(𝑛)           (4-4) 

     One crucial aspect that requires attention is the inclusion of reference values, 𝑈𝑟𝑒𝑓 and 𝑉𝑟𝑒𝑓, 

for in-plane displacements of the flanges and web through the X and Y directions. These reference 

values are essential to maintain in-plane continuity condition at the interface of the numerical 

layers discretized throughout the thickness of each different subelements (flanges and web). 



133 
 

Moreover, in order to fulfill the continuity condition at the junction, the reference in-plane 

displacements of the flange (𝑈𝑓
𝑟𝑒𝑓
, 𝑉𝑓

𝑟𝑒𝑓
) must be equivalent to the reference values of the web 

(𝑈𝑤
𝑟𝑒𝑓
, 𝑉𝑤

𝑟𝑒𝑓
) through the junction at any specific length coordinate.  In Eq. (4.3), the expression 

ε×x represents the longitudinal compression-induced end-shortening applied to the channel section 

strut. Additionally, ℎ𝑓
(𝑖)

 and ℎ𝑤
(𝑖)

 indicate the thickness of the 𝑖𝑡ℎ numerical layer within the flanges 

and web, respectively.  Drawing from the outlined requirements concerning continuity and 

boundary conditions necessary for in-plane displacement functions in both X and Y directions, it 

can be deduced that the overall number of degrees of freedom pertaining to these functions is given 

by 3[(𝑃 + 1)(𝑄 + 1) + (𝑅 + 1)(𝑆 + 1)]. 

     In addition, the midplane rotation of each numerical layers defined through the flanges and web 

can be expressed as follows with considering the continuity conditions at the boundaries of 

different regions, 
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     As depicted in Eq. (4.5), the midplane rotation of various numerical layers around the Y-axes, 

(𝜑𝑤,𝑥
(𝑖)
, 𝜑𝑓,𝑥

(𝑖)
) is constrained at the longitudinal ends of the channel section strut. This constraint 

arises due to the presence of fixed boundary conditions at those edges. In the layerwise theory, it 

is essential to consider individual rotation functions for each numerical layer to accurately assess 

their stress and strain distribution. Referring to Fig. (4.3), the FG-GRC channel section strut is 
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discretized into 3𝑛 numerical layers. Thus, we can conclude that there are 3𝑛 layers requiring 

independent rotation considerations. Therefore, the total number of unknown coefficients relating 

to the rotational functions amounts to 3𝑛((𝐽 + 1)(𝐾 + 1) + (𝐷 + 1)(𝑇 + 1)).  

     In the evaluation of the nonlinear compressive behavior in FG-GRC laminated channel section 

struts, the analysis employs the minimum total potential energy principle. The total potential 

energy involves the summation of two components: the potential energy of external loads, which 

accounts for the work done by external forces on the structure, and the total strain energy, which 

considers the internal stresses and deformations within the material of the structure [67]. Regarding 

the fact that the channel section strut experiences uniform end-shortening, it follows that the 

potential energy associated with external forces is negligible, resulting in the total potential energy 

of the structure being equivalent to the total strain energy. As previously discussed, the laminated 

structure is discretized into multiple numerical layers along the thickness direction of the flanges 

and web. To account for deformation effects, rotational and displacement shape functions are 

applied to each of these layers, based on the TSDT, consequently, it can be inferred that the total 

potential energy which is equal to the total internal strain energy of the structure can be derived by 

summing the individual strain energy contributions from each of the numerical layers, as illustrated 

in the following equations: 
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     To maintain brevity, the strain energy of the first numerical layer positioned in the web (𝑈𝑤
(1)

), 

illustrated in Fig. (4.3), is just extended based on the mechanical strains as well as the stiffness 

matrixes as follows 
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Following this stage, the total potential energy should be minimized by using the unknown 

displacement and rotation coefficients as shown in Eqs. (4.9) and (4.10) [60] 

𝜕∏
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where 𝜒 is the vector of unknowns, expressed by 
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Eq. (4.10) leads to the nonlinear matrix equation of the FG-GRC channel section strut: 

[𝐾(𝑇, 𝜒)]{𝜒} = {𝐹}                                                                                                                                                    (4-11)          

where [𝐾(𝑇, 𝜒)] is the stiffness matrix; and {𝜒} is the Jacobi expanded coefficients, and {𝐹} is the 

force matrices. 

     The Newton-Raphson iterative procedure is a commonly used technique to solve nonlinear 

system of equations in the analysis of nonlinear postbuckling, as described by Eq. (4.11).  

4.3.2. Modelling based on the finite element simulation 

     As part of the verification process to ensure the accuracy of the results obtained from the LW-

TSDT approach, a 3D FEM is developed using ABAQUS nonlinear finite element code. Notably, 

conducting a nonlinear postbuckling analysis with ABAQUS requires two crucial steps. First, after 
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creating the 3D model and incorporating appropriate material properties, loading, and boundary 

conditions, a linear perturbation buckling analysis is performed to determine various buckling 

mode shapes of the channel section struts. Once this step is completed, the linear buckling analysis 

is replaced by the static Riks method in the next step. The Riks method accounts for nonlinear 

geometric effects, and the first buckling mode shape obtained in the first step is introduced into 

the Riks method as an imperfection. It is essential to emphasize that the amplitude of this 

imperfection significantly influences the convergence of the nonlinear postbuckling problem. In 

this paper, the amplitude assigned to the channel section struts is set at 0.001 times the magnitude 

of the first buckling mode shape. 

     The clamped boundary condition adopted as edge support in this study, as depicted in Fig. (4.4) 

(a), is implemented in the finite element simulation to confine the local out-of-plane displacement 

of the flanges and web. Additionally, a displacement load, functioning as an end-shortening, is 

uniformly applied to both ends of the channel section strut.  

     In the finite element simulation, the 3D, 8-node, linear isoperimetric element (C3D8) is utilized. 

The C3D8 element in ABAQUS represents a brick-shaped volume with eight nodes situated at 

specific coordinates in the 3D space, defining its geometry. It is capable of deformation and shape 

alteration when subjected to applied loads or constraints. With each node having three DOFs, 

translation displacement along the X, Y, and Z axes, the element possesses a total of 24 DOFs (8 

nodes * 3 DOFs per node). 
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Figure 4-4 A typical channel section strut modelled based on the finite element simulation (a) Implementing loading 

and boundary conditions, (b) Diagrammatic representation of the mesh for the channel section strut 

4.4. Results and discussion 

4.4.1. GRC laminated channel section strut with UD graphene pattern 

     As elucidated in this paper, the main objective is to perform a comparative analysis focused on 

the distribution patterns of graphene. This analysis involves evaluating how these patterns impact 

both the post-local-buckling behavior and the axial compressive stiffness of composite channel 

section struts. To accomplish this, a comparison is necessary between various distribution patterns 

and a reference case, where the UD pattern is considered as the benchmark for the analysis. 

      The initial assumption dictates that all distinct regions of the channel section struts, 

encompassing two vertical plates (flanges) and a horizontal one (web), are composed of ten 

graphene-reinforced composite plies exhibiting the UD distribution pattern. Consequently, all 

outcomes pertaining to the analysis of nonlinear compressive stability are obtained based on this 

configuration. Subsequently, the analysis proceeds with an assumption that the UD graphene 

reinforcement distribution pattern for the web remains unaltered. Meanwhile, the graphene 

distribution patterns across the thickness directions of both flanges undergo modification, 

transitioning to non-uniform distributions including FG-X, FGX-FGX, FG-O, FGO-FGO, FG-V, 

and FGV-FGV. The purpose is to assess the influence of different non-uniform graphene 

(a) 
(b) 
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distribution patterns applied to the flanges on the post-local-buckling response of channel section 

struts, while keeping the web's graphene distribution constant (UD) to identify the most and least 

effective non-uniform distributions can be chosen for the flanges of channel section struts. 

     Finally, the optimal non-uniform graphene distribution pattern is chosen for the flanges, 

remaining unchanged. In contrast, various non-uniform graphene distribution patterns are 

examined for the web, replacing the UD pattern, to compare their effects with the reference case 

(flanges and web with UD graphene distribution pattern). This comparative analysis is performed 

to identify the most advantageous graphene distribution patterns to be adopted for this open-section 

strut. Furthermore, this process will be reiterated using the least favorable non-uniform graphene 

distribution patterns obtained for the flanges to ultimately determine the weakest graphene 

distribution patterns that can be chosen for the entire channel section strut. 

     There are two essential points to emphasize: first, this paper considers the same graphene 

distribution for both flanges in all cases under evaluation to maintain the symmetric condition. 

Second, the total graphene volume percentage remains constant across all case studies; the only 

variation lies in the graphene distribution patterns. 

       As illustrated in Fig. (4.5), the influence of the geometrical parameter, specifically the ratio of 

the flange width to the web width, on the critical buckling end-shortening of the UD channel 

section struts (Web: UD, both flanges: UD) is evaluated through conducting a nonlinear buckling 

analysis. The purpose is to identify the ratio at which the structure exhibits the maximum value of 

critical buckling end-shortening. The results demonstrate a strong concurrence between the 

outcomes obtained through the LW-TSDT and those assessed using the FEM. Clearly, an optimal 

shape factor (the ratio of flange width to web width) exists (
𝑏𝑓

𝑏𝑤
= 0.25), where channel section 
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struts with a UD graphene distribution experience the highest level of critical buckling end-

shortening which is approximately 𝑢𝑐𝑟0 = 0.225. Conversely, an increase in the shape factor 

adversely impacts the critical buckling end-shortening of the structure, leading to a weakening of 

the channel section strut. Notably, the highest critical buckling end-shortening is around 1.5 times 

the minimum value, 𝑢𝑐𝑟0 ≈ 0.15,  associated with a shape factor of 1. 

 

Figure 4-5 Variation of the critical buckling end-shortening with the shape factor 

     Based on the conclusions drawn from Fig. (4.5), the best shape factor ratio of  
𝑏𝑓

𝑏𝑤
= 0.25  is 

chosen for the subsequent comparative analysis, where the flange thickness is equal to that of the 

web (
𝑡𝑓

𝑡𝑤
= 1).  

     It is noteworthy that the LW-TSDT analysis considers a total of 6615 DOFs for the buckling 

analysis of the UD laminated composite channel section strut, resulting in a tangent stiffness matrix 

order of 6615*6615. In contrast, the finite element model employs hexahedral 3D 8-node linear 

isoperimetric elements (C3D8), leading to 16272 independent DOFs. This significant difference 
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in number of DOF handled by the two approaches (semi-analytical and numerical) illustrates the 

LW-TSDT's superior computational efficiency over the developed finite element model. Table. 

(4.2) provides a comprehensive overview of the analysis's runtime and CPU usage. Upon a brief 

examination of the table, it is evident that the proposed method (LW-TSDT) exhibits a relative 

running time approximately 31% quicker than the FEM. 

Table 4-2 Comparison of computing time and CPU usage in performed simulations and computational performance 

of proposed methodology (UD, 
𝑏𝑓

𝑏𝑤
= 0.25, 

𝑡𝑓

𝑡𝑤
= 1 ) 

Solution method   

Present Method 

(LW-TSDT) 

DOF 

Running time (s) 

CPU usage (%) 

𝑈𝑐𝑟  

6615 

758 

21 

0.22541 

Finite Element Method 

(ABAQUS) 

DOF 

Running time (s) 

CPU usage (%) 

𝑈𝑐𝑟  

16272 

993 

37 

0.22541 

Discrepancy performance time (%) 

(𝐴𝐵𝐴𝑄𝑈𝑆 − 𝐿𝑊𝑇𝑆𝐷𝑇)

𝐿𝑊𝑇𝑆𝐷𝑇
 × 100 

 31 % 

 

     Fig. (4.6) depicts the postbuckling equilibrium paths of the flanges and web in a channel section 

strut with UD graphene distribution patterns by considering the straightness of the junctions (post-

local-buckling). The out-of-plane displacement of the flange is related to the center of the flange's 

free-edge, while the deflection of the web is connected to its center. Like Fig. (4.5), there is a 

remarkable agreement between the results obtained through the LW-TSDT and those evaluated 

using the finite element analysis.  
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     Another noteworthy observation from this figure is that in this particular geometry, both the 

flange and web deflect simultaneously. 

 

Figure 4-6 Nonlinear postbuckling equilibrium paths of flange and web in a channel section strut with UD graphene 

distribution pattern 

4.4.2. Comparison analysis on the nonuniform graphene distribution patterns 

     In this phase, the substitution of various non-uniform graphene distribution patterns is 

necessitated. Specifically, four symmetric patterns (FG-X, FGX-FGX, FG-O, and FGO-FGO) and 

two asymmetric patterns (FG-V and FGV-FGV) are introduced in place of UD along the thickness 

direction of the flanges. Meanwhile, the web maintains a constant UD graphene pattern. The 

objective is to compare the impact of these symmetric and asymmetric substitutions on the 

nonlinear stability of the channel section struts as depicted in Figs. (4.7) and (4.8), respectively.  

     Firstly, it is important to emphasize that in Figs. (4.7) and (4.8) as well as subsequent figures in 

this section and section 4.3, the UD graphene distribution pattern serves as the reference case. 
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Consequently, all cases' end-shortening and compressive loads are normalized based on the critical 

values associated with the UD dispersion, namely 𝑢𝑐𝑟0
∗ = 0.225 (𝑚𝑚) 𝑎𝑛𝑑 𝑃𝑐𝑟0

∗ = 60 (𝐾𝑁). 

     The results shown in Figs. (4.7)(a) and (4.8)(a) imply that beyond the bifurcation point (at that 

point the deformation of the structure commences), at any level of loading (𝑢∗), the 

nondimensional out-of-plane displacement of the flange with FG-X graphene distribution pattern 

is consistently lower than other symmetric and asymmetric graphene distributions. Conversely, the 

nondimensional out-of-plane displacement of the flange with FG-O graphene dispersion is higher 

than other cases.  

     Furthermore, Figs. (4.7)(b) and (4.8)(b) reveals that the load-bearing capacity of the channel 

section strut with flange of FG-X graphene distribution surpasses that of the other distributions. 

For example, when the nondimensional end-shortening reaches 𝑢∗ = 2, the nondimensional 

compressive load (𝑃∗) of the channel section strut with FG-X flange amounts to 1.62, whereas the 

weakest case, FG-O flange, has a value of 1.5. Notably, at this end-shortening, the nondimensional 

out-of-plane displacement of the FG-X and FG-O flanges are approximately 1 and 1.5, 

respectively, providing clear evidence that the flange's compressive stiffness with FG-X graphene 

distribution patterns is higher than the other cases, as it exhibits lower deflection under greater 

compressive loading. 

     Additionally, it is evident that at this particular value of shape factor (
𝑏𝑓

𝑏𝑤
= 0.25), the 

postbuckling response of the web takes precedence. On one hand, the variation of the graphene 

distribution pattern of the flange does not exert any discernible influence on the postbuckling 

equilibrium paths of the web, with all cases showing almost identical responses when the webs 

have UD graphene patterns. On the other hand, despite the flanges being composed of several 
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distinct graphene distribution patterns and displaying different postbuckling responses, the 

bifurcation points of all evaluated cases nearly coincide with each other. 
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Figure 4-7 Comparison of nonuniform symmetric graphene distribution patterns of the flanges on (a) nonlinear 

postbuckling response and (b) load-bearing capacity of the FG-GRC channel section struts with web: UD   
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Figure 4-8 Comparison of nonuniform asymmetric graphene distribution patterns of the flanges on (a) nonlinear 

postbuckling response and (b) load-bearing capacity of the FG-GRC channel section struts with web: UD 
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graphene distribution pattern as the weakest case for the flanges of the channel section strut, in 

contrast to the previous employment of FG-X. 

      Figure (4.9) presents bar charts that depict the correlation between the nondimensional critical 

buckling end-shortening of the channel section struts and the different graphene distribution 

patterns utilized for the web plate. It is important to note that Fig. (4.9)(a) corresponds to cases 

where the FG-X graphene distribution pattern is used for the flanges, while Fig. (4.9)(b) represents 

the results associated with the implementation of FG-O through the thickness direction of the 

flanges. As previously elucidated, the critical buckling end-shortening values (𝑢𝑐𝑟) for all 

nonuniform configurations are normalized with respect to the critical buckling end-shortening of 

the UD graphene dispersion (𝑢𝑐𝑟0 = 0.225).  

     The analysis of this figure leads to the following key findings: when FG-X graphene 

distribution patterns are employed for both flanges and web, the critical buckling end-shortening 

of the channel section struts is 1.3 times that of the case reinforced with the UD graphene 

dispersion. On the other hand, when FG-O graphene distribution patterns are utilized for both 

flanges and web, this ratio reduces to 0.74. These results conclusively establish that FG-X and FG-

O graphene distribution patterns represent the most favorable and least favorable combinations, 

respectively, in terms of their impact on the critical buckling end-shortening for this particular type 

of open section struts. Moreover, with respect to the given geometry (
𝑡𝑓

𝑡𝑤
= 1 &

𝑏𝑓

𝑏𝑤
= 0.25), the 

web buckling is predominant. As a result, any alterations in the graphene distribution pattern of 

the web significantly impact the critical buckling end-shortening of the channel section struts. This 

stands in contrast to the scenarios depicted in Figs (4.7) and (4.8), where changes in the graphene 

reinforcement distribution patterns of the flanges, while keeping the graphene distribution pattern 
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of the web constant (UD), do not exert substantial effects on the critical buckling end-shortening 

of the structure.  

     It is important to observe that the nonlinear postbuckling responses of all the cases assessed in 

Fig. (4.9) are depicted in Figs (4.10) and (4.11). 
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Figure 4-9 Influence of the nonuniform graphene distribution pattern of the web on the critical buckling end-

shortening of the FG-GRC channel section struts (a) Flanges with FG-X, (b) Flanges with FG-O 

     Fig. (4.10)(a) displays the postbuckling equilibrium paths of the flanges and web, considering 
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points observed in different case studies. This observation ascertains the significance of the web 

graphene distribution patterns on the overall structural response. A comprehensive comparison of 
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phase, the out-of-plane displacement of the flanges and web with FG-X graphene distribution 

pattern is consistently lower than those of the other cases, regardless of the level of compressive 
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pattern also exerts a favorable influence on the postbuckling behavior.  
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     Figure (4.11) illustrates the influence of various functionally graded graphene distribution 

patterns along the thickness of the web plate on the nonlinear stability responses of channel section 

struts, while in all cases the flanges are reinforced by the FGO graphene distribution pattern. The 

key inference drawn from this figure is that when employing FGO graphene distribution patterns 

for both flanges and web, the channel section strut exhibits the most vulnerable nonlinear 

postbuckling response. This is evidenced by higher deflections of both flanges and web compared 

to other graphene dispersions under the same level of loading. 
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Figure 4-10 Influence of the nonuniform graphene distribution pattern of the web on the postbuckling behavior of 

the FG-GRC channel section struts where flanges: FGX (a) web with symmetric graphene distributions, (b) web 

with asymmetric graphene distributions 
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Figure 4-11 Influence of the nonuniform graphene distribution pattern of the web on the postbuckling behavior of 

the FG-GRC channel section struts where flanges: FGO (a) web with symmetric graphene distributions, (b) web 

with asymmetric graphene distributions 
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approximately 25%, without altering the geometrical parameters such as the shape factor or flange 

thickness. The enhanced load-bearing capacity is accompanied by a notable reduction of 

approximately 30% in the maximum deflection of the FG-X flanges and around 11% in the 

maximum deflection of the FG-X web, as compared to the channel section struts with the FG-O 

graphene distribution pattern. Furthermore, under this specific level of nondimensional end-

shortening, the out-of-plane displacement of the FG-X flanges and web is reduced by 

approximately 17% and 9%, respectively, in comparison to the channel section struts with the UD 

graphene dispersion. 
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Figure 4-12 Comparison the influence of FG-X, UD, and FG-O graphene distribution patterns on (a) nonlinear 

postbuckling response, (b) load-bearing capacity, (c) postbuckling compressional stiffness ratio of the channel 

section strut 
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of the web and flange at the buckle crest, half length of the channel section struts. Due to the 

symmetry condition about the Z local axis of the web, as shown in Fig. (4.3), the deflection 

variations are demonstrated for only half of the cross-section. The local deflection is showcased at 

an end-shortening equivalent to four times the critical buckling end-shortening of the UD channel 

section struts, which is regarded as the reference case. The initial deduction drawn from the 

presented results is that the out-of-plane displacement of the channel section struts is consistently 

zero at the junction of the flange and web (Point B in the figure), regardless of the type of graphene 

distribution pattern. This is a consequence of the local-buckling assumption taken into account in 

this study. As depicted, the out-of-plane displacement of the channel section struts with the FG-X 

graphene distribution pattern is consistently lower across the entire cross-section than those with 

UD and FG-O graphene dispersions. 

 

Figure 4-13 Local deflection at the crest of the buckle for channel section struts with different graphene distribution 

patterns 
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     Figure (4.14) illustrates the longitudinal membrane stress distribution along the half cross-

section of the channel section strut, ABC shown in Fig. (4.13), with varying types of graphene 

distribution patterns, namely FG-X, UD, and FG-O. It is important to note that the stress 

distribution is reported at the mid-plane of three cross-sections located in different longitudinal 

coordinates, which include the buckle crest (half length), section ends or buckle nodes, and a 

quarter length of the strut (mid-way between the buckle nodes and buckle crest). The stress 

evaluation in the figure is conducted at a load equivalent to twice the critical buckling end-

shortening of the UD channel section struts.  

     One of the consistent responses observed across various cross-sections located in different 

length coordinates, is that the stress level at the midplane of the channel section strut with FG-X 

graphene distribution is lower than the other two cases with UD and FG-O graphene dispersions. 

This difference in stress distribution can be attributed to the variation in graphene volume fraction, 

as presented in Table. (3.1). In the FG-X graphene dispersion, the midplane contains the lowest 

percentage of graphene (0.03), whereas in the FG-O dispersion, the midplane contains the 

maximum percentage of graphene (0.11). Consequently, the midplane of the FG-O is stiffer than 

that of the FG-X, leading to a higher level of stress under the same applied load. 

     In the design process, a critical aspect involves identifying specific regions within a structure 

that are more vulnerable under various loading conditions. Upon a comprehensive examination of 

the various graphs presented in Fig. (4.14) it is evident that regardless of the graphene distribution 

pattern, the junction of the buckle crest cross-section experiences the highest longitudinal 

membrane stress. For the three different graphene distribution patterns indicated in Fig. (4.14) (a), 

the compressive stress levels at the center of the web (location A) range from 100 to 170 MPa, 

while at the flange free-edge (location C), the stress levels range from 50 to 150 MPa. Notably, the 
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maximum compressive stress occurs at the section-junction (location B). This phenomenon of load 

shedding toward the section junction is a typical characteristic observed in the post-local-buckling 

mechanics of thin-walled structures. This observation confirms that as the compressive load 

increases, this region becomes more prone to failure compared to other locations. Since the buckle 

crest is one of the heavily buckled regions in the channel section struts under the compressive load.  

     The longitudinal membrane stress depicted in Fig. (4.14) (b) and (c), pertaining to the cross 

sections located at the quarter length and the buckle nodes of the struts, respectively, reveal that 

load shedding through the FG-X web and flange exhibits a notably smoother distribution than the 

other graphene patterns UD and FG-O, particularly at the cross section situated at the quarter length 

of the strut. Consequently, the stress distribution near the junction along the FG-X flange width 

appears to be more uniform. 
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Figure 4-14 Influence of various graphene distribution patterns on the longitudinal membrane stress distribution at 

(a) buckle crest, (b) quarter length of the strut, (c) buckle nodes 

     Figure (4.15) illustrates concurrently the influence of geometrical parameters and graphene 

distribution patterns on the critical buckling end-shortening of channel section struts. This 

−50 −45 −40 −35 −30 −25 −20 −15 −10 −5 0 5 10 15 20 25

−50 −45 −40 −35 −30 −25 −20 −15 −10 −5 0 5 10 15 20 25

0

100

200

300

400

500

600

700

0

100

200

300

400

500

600

700

Coordinate [Y(mm)]

C
o

m
p

re
ss

iv
e 

S
tr

es
s 

[-
σ

x
 (

M
P

a)
]

 Flange:FGX , Web:FGX

 Flange:UD , Web:UD

 Flange:FGO , Web:FGO

bw / 2 bf
A B C

B: Junction

A: Center of the web

C: Free edge of the flange

u* = u / ucr0= 2

−50 −45 −40 −35 −30 −25 −20 −15 −10 −5 0 5 10 15 20 25

−50 −45 −40 −35 −30 −25 −20 −15 −10 −5 0 5 10 15 20 25

0

100

200

300

400

500

600

700

0

100

200

300

400

500

600

700

Coordinate [Y(mm)]

C
o

m
p

re
ss

iv
e 

S
tr

es
s 

[-
σ

x
 (

M
P

a)
]

 Flange:FGX , Web:FGX

 Flange:UD , Web:UD

 Flange:FGO , Web:FGO

bw / 2 bf
A B C

B: Junction

A: Center of the web

C: Free edge of the flange

u* = u / ucr0= 2

(b) 

(c) 

 

 

 



159 
 

evaluation includes composite laminated channel section struts with three distinct graphene 

distribution patterns: FG-X, UD, and FG-O, each having varied shape factors. This study examines 

three distinct thickness ratios (defined as the ratio of flange thickness to web thickness). In each 

scenario, the web thickness remains consistent at 𝑡𝑤 = 2 𝑚𝑚. Consequently, the flange thickness 

is adjusted to achieve the specific ratio as illustrated in Fig. (4.15).  Furthermore, a similar 

methodology is applied to varying the shape factor ratio, defined as the proportion between the 

width of the flange and the width of the web. Here, the web width remains constant at 𝑏𝑤 =

100 𝑚𝑚.  

     A noteworthy and mutual observation evident from these findings is that across all three 

different thickness ratios, irrespective of the shape factor of the channel section struts, those with 

FG-X graphene distribution patterns consistently exhibit a greater critical buckling end-shortening 

compared to struts reinforced with UD and FG-O graphene dispersions. This outcome further 

substantiates the superior structural stiffness imparted by FG-X graphene distributions when 

compared to the other patterns.  

     Additionally, in cases where the flange is thicker than the web (
𝑡𝑓

𝑡𝑤
= 2), regardless of the type 

of graphene distribution patterns, they exhibit higher critical buckling end-shortening than the 

other situations. In summary, it can be concluded that across the range of three different graphene 

distribution patterns utilized within the channel section struts, all share a uniform web thickness, 

and designs incorporating thicker flanges consistently exhibit higher levels of compressive 

stiffness than other cases.  

     By conducting a thorough comparison of the results depicted in Figs. (4.15)(a) (
𝑡𝑓

𝑡𝑤
= 0.5) and 

(4.15)(b) (
𝑡𝑓

𝑡𝑤
= 1), it becomes evident that as the shape factor increases, there is a noticeable 
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decrease in the critical buckling end-shortening experienced by the graphene reinforced channel 

section struts. This observation strongly supports the idea that, in these specific scenarios 

characterized by thinner or equal flange thickness compared to the web, augmenting the flange 

width leads to a reduction in the overall compressive stiffness. However, as shown in Fig. (4.15)(c) 

where the flange is thicker than the web (
𝑡𝑓

𝑡𝑤
= 2), the changes in the shape factor do not 

significantly affect the critical buckling end-shortening, which confirms that across all the 

considered shape factors, the primary mode of buckling stems from the web, which is inherently 

weaker than the flange.  
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Figure 4-15 Influence of various graphene distribution patterns and geometrical parameters on the critical 

buckling end-shortening of FG-GRC channel section struts (a) 
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shapes, as shown in Table (4.3). These mode-shapes pertain to the FG-X channel section struts, 

where both flanges and web have identical thickness. For instance, when the applied end-

shortening is u=0.2 mm, the FG-X channel section strut with 
𝑏𝑓

𝑏𝑤
= 1 experiences a maximum out-

of-plane displacement of approximately 0.6 at the free-edge of the flange. However, when reducing 

the shape factor to 
𝑏𝑓

𝑏𝑤
= 0.25, the flange remains nearly flat under the same compressive end-

shortening loading. 

Table 4-3 Influence of different shape factors and compressive end-shortening loads on the buckling mode-shapes of 

FG-X channel section struts where 
𝑡𝑓

𝑡𝑤
= 1. 

 U=0.2 mm U=0.5 mm 

𝑏𝑓

𝑏𝑤
= 1 

  

𝑏𝑓

𝑏𝑤
= 0.8 

  

𝑏𝑤 

𝑏𝑓  
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𝑏𝑓

𝑏𝑤
= 0.5 

  

𝑏𝑓

𝑏𝑤
= 0.25 

  

 

     Based on the preceding results, which indicate the superior compressive stiffness of the FG-X 

graphene distribution patterns compared to other graphene dispersions, an investigation into the 

impact of the flange to web thickness ratio on the nonlinear postbuckling equilibrium paths and 

load-bearing capacity of FG-X channel section struts is conducted and presented in Figs. (4.16) 

(a) and (b), respectively. The evaluation is performed under a constant shape factor of 
𝑏𝑓

𝑏𝑤
= 0.25, 

which is considered the optimum ratio. It is important to emphasize that the end-shortening and 

compressive load values for all three distinct case studies have been normalized with reference to 

the critical buckling end-shortening and compressive load of the scenario featuring identical flange 

and web thickness represented as 𝑢𝑐𝑟[𝑅=1] = 0.292 𝑚𝑚 and 𝑃𝑐𝑟[𝑅=1] = 72 𝐾𝑁 in Fig. (4.16).  

     As depicted in Fig. (4.16)(a), it is evident that the critical buckling-induced end-shortening of 

FG-X channel section struts, wherein the flanges possess greater thickness than the web (𝑅 = 2), 

is approximately 15% and 25% higher than those with flanges of equal (𝑅 = 1) and reduced (𝑅 =
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0.5) thickness, respectively. Additionally, within FG-X channel section struts characterized by 

uniform flange and web thickness, or in the scenario featuring thinner flanges, the points at which 

the flanges and web reach their respective bifurcation thresholds coincide. This indicates a 

simultaneous deflection of both plates (flange and web). However, in the context of thicker flanges, 

a noticeable difference in the bifurcation points between the flange and web becomes apparent. 

     An additional deduction that can be drawn is that, under the specific condition of 
𝑏𝑓

𝑏𝑤
= 0.25 for 

the shape factor, the primary buckling behavior of the channel section strut is attributed to the web. 

However, when the flange thickness equals (𝑅 = 1) or is less (𝑅 = 0.5) than that of the web, there 

is a lack of significant impact of R on the postbuckling behavior of the web which means that the 

flanges are too weak to provide a great deal of constraint on the buckled web. In these two 

scenarios, the out-of-plane displacements of the webs are nearly equal to each other.  

   The influence of the flange becomes increasingly significant in shaping the postbuckling 

behavior of the web as its thickness increases. This augmentation subsequently leads to an 

enhancement in the overall compressive stiffness of the structure. It can also be supported through 

the results indicated in Fig. (4.16) (b), at a nondimensional end-shortening of 𝑢∗ = 3, where the 

nondimensional compressive load for the FG-X channel section strut with 𝑅 = 2 stands at 𝑃∗ =

3. In comparison, the corresponding values for cases with 𝑅 = 1  and 𝑅 = 0.5 are 𝑃∗ = 2.1 and 

𝑃∗ = 1.25, respectively, while the deflection of both flange and web are much larger than that of 

the case with thicker flange.  
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Figure 4-16 Influence of different flange to web thickness ratios on (a) nonlinear postbuckling equilibrium paths, 

and (b) load-bearing capacity of the FG-X channel section strut 
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4.5. Concluding remarks 

     Considering the vulnerability of laminated composite open section struts, a widely employed 

type of engineering structure, to local buckling when subjected to compressive loads, the present 

research undertakes an investigation to explore the potential solution of this susceptibility through 

the incorporation of graphene sheet reinforcements. The main purpose of the paper is to recognize 

how distinct arrangements of graphene sheet reinforcements, distributed across the thickness of 

the flange and web plates within channel section struts, influence their compressive stability 

responses. The focus has been directed towards discerning which combination of graphene 

distribution patterns yield the most and least advantageous impact on augmenting the critical 

buckling-induced end-shortening and compressive stiffness of these structures. A formulation is 

developed based on the LW-TSDT and von-Karman strain–displacement relation. The governing 

equations are solved through the application of the minimum total potential energy principle and 

the Ritz method in conjunction with the Newton–Raphson iterative procedure and the obtained 

results finally compared with those evaluated using the 3D finite element simulation. The thermo-

mechanical properties of matrix and graphene reinforcements are evaluated using the extended 

Halpin-Tsai micromechanical model. This research not only contributes to a deeper understanding 

of the complex interplay between material properties and structural behavior but also provides 

valuable insights for designing more resilient and efficient engineering structures. Specifically: 

• The application of the FG-X graphene distribution pattern along the thickness of the web 

and flanges in channel section struts leads to a substantial 30% improvement in the critical 

buckling-induced end-shortening of the structures, as compared to channel section struts 

with identical geometric parameters reinforced using the UD graphene dispersion. 
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However, the FG-O pattern brings about a noteworthy reduction of approximately 26% in 

the critical buckling-induced end-shortening. 

• In situations where the buckling of the web is predominant, any modifications in the 

graphene distribution patterns across the thickness direction of the flanges exhibit an 

almost negligible influence on the stability response of the web with a uniform graphene 

dispersion. Conversely, adjustments in the graphene distribution patterns along the web's 

thickness, while flanges possessing constant graphene dispersion, noticeably affect the 

critical buckling end-shortening and post-local buckling equilibrium paths of the entire 

channel section struts. 

• Nondimensional axial compressive stiffness of the channel section struts with FG-X 

graphene distribution pattern is higher than the stiffness of sections with UD or FG-O 

graphene dispersions. 

• Disregarding the specific graphene distribution patterns, the point of highest membrane 

stress occurs at the junction of the flange and web, precisely positioned at the buckle crest 

of the channel section struts. 

• In channel section struts with FG-X graphene distribution patterns, membrane stress within 

the central plane of the web and flange is notably lower than in sections reinforced with 

UD and FG-O graphene dispersions. This decline is attributed to lower graphene 

percentage at the midplane, resulting in decreased stiffness. 

• In scenarios where the flange thickness equals or is less than that of the web, the optimal 

shape factor signifying the highest critical buckling-induced end-shortening remains 

constant at 
𝑏𝑓

𝑏𝑤
= 0.25, irrespective of the varied graphene distribution patterns employed. 
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• When the flange thickness is equal to or less than the web thickness, it fails to provide 

adequate stiffness to restrict web deflection, resulting in the alignment of their bifurcation 

points. Conversely, if the flange surpasses the web in thickness, it effectively restrains the 

web from buckling, enhancing its resistance and stiffness. This leads to a noticeable 

disparity in bifurcation points between the flange and web. 
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5. Imperfection sensitivity of free vibration of FG-GRC laminated 

channel section struts in thermally pre- and post-buckling 

equilibrium states4 

     This study explores the effect of local buckling on the compressive performance of slender 

structural elements, particularly those with thin-walled sections. The phenomenon of local 

buckling significantly reduces the axial compressive stiffness, leading to a notable decrease in the 

load-bearing capacity of these elements. The main goal of this research is to examine how the post-

buckling characteristics of polymeric composite channel section struts can be improved under 

thermal loading by incorporating multi-layer graphene reinforcements. The solution methodology 

incorporates the von Karman geometrical nonlinearity and is based on the layerwise third-order 

shear deformation theory (LW-TSDT). To ascertain the precision and computational performance 

of the results derived from LW-TSDT, a three-dimensional (3D) finite element model is created in 

ABAQUS for comparative evaluation. An extensive analysis of nonlinear thermal instability in 

perfect and geometrically imperfect FG-GRC laminated channel section struts is undertaken to 

discern the graphene distribution patterns that are most and least effective in elevating the critical 

buckling temperature and natural frequencies through pre- and post-buckling conditions. The 

comparative analysis indicates that employing the FG-X graphene distribution pattern across the 

thickness of the web and flanges in channel section struts leads to a projected increase of 12% in 

the critical buckling temperature for clamped channel section struts, in contrast to those that adopt 

the FGO graphene distribution pattern. For cases with simply-supported boundary conditions, this 

increase is noted to be approximately 9%. Moreover, findings confirm that incorporating an 

asymmetric graphene distribution pattern (FGV) or introducing geometrical imperfections in the 

flanges and web that generate a bending moment within the structure from the beginning of thermal 

 
4 A version of this chapter is currently under review in the journal of Composite Structures 
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loading effectively prevents the primary natural frequencies of FG-GRC channel section struts 

from declining to zero close to the critical buckling temperature. This is significantly different 

from scenarios involving perfectly structured and symmetrically reinforced graphene distribution 

patterns such as FGX. 

5.1. Introduction 

      In reference to the matter at hand, it is imperative to acknowledge that the discourse presented 

herein extends the investigations delineated in Chapter 4. The methodological framework and 

micromechanical models employed within this study remain consistent with those expounded in 

the preceding section. Furthermore, it should be noted that there exists a significant overlap in the 

reference materials cited in these concurrent papers. To maintain conciseness and avoid 

redundancy, these references have not been reiterated in the current chapter. This approach ensures 

a streamlined presentation of our findings while upholding the integrity and continuity of the 

research narrative. 

     This research conducts a comparative analysis of various arrangements of functionally graded 

graphene sheets, distributed along the thickness directions of the flanges and web plates in channel 

section struts. The aim is to identify the specific pattern combinations that most effectively enhance 

the critical buckling temperature, as well as the fundamental and second-order frequencies, in both 

pre- and post-buckling states. Alongside examining various material configurations and 

conducting an in-depth comparison of the thermal post-buckling characteristics between the most 

and least impactful cases against the uniform distribution (UD) graphene pattern, this study also 

assesses how boundary conditions and localized geometrical imperfections, applied either 

individually or collectively to each flange and web, influence the thermal instability response and 

variation of pre- and post-buckled frequencies.  
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     To fulfill the research goals effectively, an advanced, layerwise theoretical model based on the 

third-order shear deformation theory (TSDT) is developed. This innovative approach is 

instrumental in analyzing the thermal and mechanical instability responses of thin-walled 

structures. The initial step in this methodology involves treating the constituent plates (including 

flanges and web) as separate, distinct elements. This is followed by a discretization process, 

wherein each plate is segmented into several numerical layers along its thickness. A pivotal 

element of this method is the establishment of displacement and rotation shape functions at the 

midplane of each layer. It is crucial to underscore the importance of ensuring these shape functions 

adhere rigorously to the continuity and boundary conditions that govern the structural entirety. 

Moreover, a 3D finite element model is implemented, utilizing the commercial software 

ABAQUS, to incorporate some of the findings derived from the LW-TSDT. Additionally, this study 

presents a comparative evaluation of the central processing unit (CPU) time required by both 

methodologies. These approaches demand differing quantities of displacement and rotational 

degrees of freedom (DOFs) to precisely evaluate the nonlinear behavior observed in channel 

section struts. 

5.2. Theoretical formulation 

     It is crucial to recognize that the equations required to calculate the thermomechanical 

characteristics of GRCs using the modified Halpin-Tsai mathematical model align with those 

detailed in section 2.2.2. Additionally, the analysis of the nonlinear thermal instability behavior of 

channel section struts utilizes the TSDT alongside the Layerwise Theory. The detailed 

displacement equations based on the TSDT are presented in section 3.3. 
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5.3. Structural modelling of channel section struts 

5.3.1. Modelling based on the LW-TSDT 

     It is imperative to recognize that the layerwise theory, in conjunction with the TSDT framework, 

is utilized for conducting the nonlinear thermal instability analysis of FG-GRC channel section 

struts. This approach aligns with the methodology employed for the nonlinear compressive 

analysis of analogous structures subjected to uniform end-shortening, as elaborated in Chapter 4. 

Consequently, the specialized formulations employed in both instances for the incorporation of the 

layerwise theory into the channel section strut analysis remain consistent. Due to this 

methodological consistency, the detailed formulations can be found in section 4.3. 

     This paper focuses on examining the influence of geometrical imperfections on the nonlinear 

thermal compressive behavior of channel section struts. These imperfections, which happen due 

to several reasons including manufacturing tolerances, material defects, thermal effects, and aging, 

add a realistic dimension to the study. Essentially, these imperfections are deviations from the 

perfect flatness of FG-GRC laminated channel section struts. Given the boundary conditions and 

ensuring stress-free edge continuity at the junction, the formulation of the initial imperfection 

affecting the entire strut is detailed as follows [117]: 

�̅�∗ = 𝜂ℎ𝑠𝑒𝑐ℎ[𝛿1(𝑥1 − 𝜓1)]𝑐𝑜𝑠 [𝜇1𝜋(𝑥1 − 𝜓1)]𝑠𝑒𝑐ℎ[𝛿2(𝑥2 − 𝜓2)]𝑐𝑜𝑠 [𝜇2𝜋(𝑥2 − 𝜓2)]                            ( 5-1) 

     where 𝑥1 =
𝑥+(

𝐿

2
)

𝐿
 and 𝑥2 =

𝑦+(
𝑏

2
)

𝑏
, 𝜂 is the maximum dimensionless amplitude of the initially 

deflected geometry, 𝛿1 and 𝛿2 are the constants defining the localization degree of the imperfection 

that is symmetric about 𝜓1 and 𝜓2 and 𝜇1 and 𝜇2 are the half-wave numbers of the imperfection 

in 𝑋 and 𝑌-axes, respectively. This equation is designed to accommodate a broad spectrum of 

initial imperfection patterns.  
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     Table. (5.1) displays the specific geometrical imperfections implemented locally to the flange 

and web segments of FG-GRC laminated channel section struts. These imperfections are aligned 

with the first buckling mode of these thin-walled structures. Highlighting the importance of these 

imperfections, it is crucial to understand that they play a significant role in the accurate prediction 

of thermal instability response under various conditions. By simulating real-life scenarios where 

minor deviations from perfect geometry can have a profound impact on the structural integrity, 

this method enhances the reliability of structural analysis and design. 

5-1 schematic of local imperfections applied to flange and web of channel section struts 

Segment Parameters Imperfection mode (x-y plane) Imperfection mode (3D) 

Flange 

 

 

 

δ1 = δ2 = 0  

 μ1 = 1, μ2 = 0.5 

 η = 0.2  

ψ1 = 0.5, ψ2 = 1  
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Web 

 

 

 

 

     In analyzing the nonlinear thermal compressive behavior and the thermally induced pre- and 

post-buckling free vibration characteristics of FG-GRC laminated channel section struts, the 

approach is based on the principle of minimum total potential energy. The total potential energy of 

a structure is a comprehensive measure that encompasses several key components. It includes the 

potential energy due to external loads, reflecting the work exerted by external forces on the 

structure. Additionally, it accounts for the total strain energy, which represents the energy 

associated with internal stresses and deformations within the structure's material. Kinetic energy, 

which pertains to the motion of the structure, also forms a part of the total potential energy 

calculation (67). Regarding the fact that the channel section strut is uniformly subjected to thermal 

loading, it can be inferred that the potential energy associated with external forces is negligible. 

Consequently, in this context, the total potential energy of the structure primarily comprises the 

sum of its total strain energy and kinetic energy.  

     Given that the channel section strut's flanges and web are divided into several numerical layers 

as per layerwise theory, and each layer has specific displacement and rotational functions, the total 

δ1 = δ2 = 0  

 μ1 = 1, μ2 = 1 

 η = 0.2  

ψ1 = 0.5, ψ2 = 0.5  
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potential energy of the structure is obtained by summing the strain and kinetic energy of each layer 

as illustrated in the following equations: 

∏𝑇𝑜𝑡𝑎𝑙 =∑(𝑈𝑤
(𝑖) + 𝑇𝑤
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     To maintain brevity, the strain and kinetic energy of the first numerical layer positioned in the 

web (𝑈𝑤
(1)
 𝑎𝑛𝑑 𝑇𝑤

(1)
), illustrated in Fig. (4.3), are extended in Eqs. (5.3) and (5.4), respectively: 
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     The inertial terms are obtained through the integration of the density. 

{𝐼0
𝑖𝑗

𝐼1
𝑖𝑗

𝐼2
𝑖𝑗

𝐼3
𝑖𝑗

𝐼4
𝑖𝑗

𝐼5
𝑖𝑗} = ∫ 𝜌(𝑧){1 𝜃1(𝑧) 𝜃1

2(𝑧) 𝜃2(𝑧) 𝜃1(𝑧)𝜃2(𝑧) 𝜃2
2(𝑧)}

ℎ𝑖𝑗

2

− 
ℎ𝑖𝑗

2

𝑑𝑧                   ( 5-5) 



176 
 

     Following this stage, the total potential energy should be minimized by using the unknown 

displacement and rotation coefficients as shown in Eq. (3.19) in chapter 3. The solution procedure 

of the derived nonlinear system of equation was discussed in details in section 3.3.3. 

5.3.2. Modelling based on the finite element simulation 

     To validate the accuracy of the results derived from the LW-TSDT approach, this study employs 

a sophisticated 3D-FEM developed using the ABAQUS, which encompasses two critical phases. 

Initially, a comprehensive 3D model is constructed, integrating specific material characteristics, 

load conditions, and boundary parameters. Subsequently, a linear perturbation buckling analysis is 

conducted to identify the various buckling modes of the channel section struts. Following this, the 

analysis transitions to the static Riks method, replacing the linear buckling approach. This method 

considers nonlinear geometric factors, incorporating the first buckling mode shape identified 

earlier as an imperfection within the Riks method. It's imperative to highlight the significant impact 

of the imperfection amplitude on the convergence of the nonlinear post-buckling analysis. In the 

nonlinear simulation conducted using ABAQUS, the imperfection amplitude for the channel 

section struts is set to 0.001 times the magnitude of the initial buckling mode shape. 

     In this research, as previously highlighted, the edge supports are modeled as either clamped or 

simply-supported boundary conditions. Additionally, it is crucial to consider that the in-plane 

displacement of the channel section struts in the X direction must be constrained, as illustrated in 

Fig. (5.1)(a). This constraint is particularly pertinent due to the thermal loading involved in the 

study. When the temperature uniformly increases, it induces expansion throughout the entire 

structure. The imposed restriction counteracts this expansion, thereby precipitating the buckling 

phenomenon. 
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     In the finite element simulation, the 3D, 8-node, linear isoperimetric element (C3D8) is utilized. 

The C3D8 element in ABAQUS represents a brick-shaped volume with eight nodes situated at 

specific coordinates in the 3D space, defining its geometry. It is capable of deformation and shape 

alteration when subjected to applied loads or constraints. With each node having three DOFs, 

translation displacement along the X, Y, and Z axes, the element possesses a total  of 24 DOFs (8 

nodes * 3 DOFs per node). 

  

Figure 5-1 Typical channel section strut modelled based on the finite element simulation (a) implementing clamped 

boundary conditions, (b) diagrammatic representation of the mesh for the channel section strut 

5.4. Results and discussion 

5.4.1. GRC laminated channel section strut with UD graphene pattern 

      One of the principal targets of this study is to undertake a comprehensive comparative 

evaluation of how varying graphene distribution patterns impact the nonlinear thermal instability 

responses and the thermally induced natural frequencies variations in composite laminated channel 

section struts, both in pre-buckling and post-buckling states. To achieve this objective, a thorough 

comparison is made between several graphene distribution patterns, with the UD pattern serving 

as the reference case. 

     The comparison methodology employed in this research comprises three distinct phases. 

initially, the comparative analysis begins with the presumption that each distinct segment of the 

(a) (b) 
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channel section strut, which includes two vertical walls (flanges) and one horizontal wall (web), 

is constructed from ten plies of graphene reinforced composite material, all adhering to the UD 

distribution pattern. Following this assumption, a detailed nonlinear thermal instability analysis is 

performed to acquire results pertinent to the reference case. In the second step of the comparative 

analysis, the graphene distribution patterns through the flanges thickness are altered to include 

various non-uniform distribution patterns such as FG-X, FGX-FGX, FG-O, FGO-FGO, FG-V, and 

FGV-FGV. This analysis endeavors to ascertain which specific types of non-uniform graphene 

distribution patterns, applied through the flanges, exert the most and least significant impact on 

the critical buckling temperature and fundamental natural frequencies of the channel section struts, 

while maintaining a constant UD graphene distribution pattern across the web's thickness in all 

case studies. 

     The final step involves selecting and maintaining the best non-uniform graphene distribution 

pattern for the flanges obtained from the second step. Simultaneously, the web is subjected to a 

variety of non-uniform graphene distribution patterns, replacing the initial UD pattern. 

Consequently, it becomes feasible to identify the optimal combination of graphene distribution 

patterns that can be applied across the thickness of the flanges and web, with the aim of improving 

the critical buckling temperature and fundamental natural frequencies. Furthermore, this process 

is conducted again, but this time employing the least effective non-uniform graphene distribution 

patterns for the flanges. The purpose of this stage is to conclusively recognize the least efficient 

combination of graphene distribution patterns when used on the entire channel section strut. 

     Two key points should be highlighted for clarity: First, in all the scenarios examined in this 

paper, the graphene distribution pattern is kept identical for both flanges to ensure symmetry. 
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Second, the total volume percentage of graphene used remains the same in all case studies; the 

primary difference lies in the distribution patterns of the graphene. 

     Prior to initiating the comparative analysis of various graphene distribution patterns using the 

aforementioned methodology, it's crucial to establish a baseline of verification results. This is 

demonstrated in Fig. (5.2), which showcases the thermal equilibrium paths for channel section 

struts with three different shape factors, 𝑅 =
𝑏𝑓
𝑏𝑤
⁄ , reinforced with a UD graphene distribution 

pattern and considering the clamped boundary conditions at both longitudinal ends of the structure.  

     This paper employs a specific notation to represent boundary conditions: 'CCC-CCC' for 

clamped and 'SSS-SSS' for simply-supported conditions. This format reflects the setup where, at 

each longitudinal end of the structure, there are three edges, two belonging to the flanges and one 

to the web’s edge. The notation confirms that at both ends, all edges are subjected to the same type 

of boundary condition. Moreover, the various types of graphene reinforcement combinations 

utilized for the web and flanges of the channel section struts, represented schematically in the A-

B format. In this notation, the first element (A) represents the graphene distribution pattern applied 

to the web, and the second element (B) corresponds to the specific type of graphene reinforcement 

pattern used for the flange. For example, in the UD-FGX case, UD refers to the graphene 

distribution for the web, and FGX indicates the graphene distribution pattern adopted for the 

flanges in the channel section struts. 

      As shown, the deflection curve for the flange corresponds to the center of its longitudinal free 

edge, while the deflection of the web is associated with its central point. These paths are derived 

using the LW-TSDT and compared with outcomes from numerical simulations conducted using 

the ABAQUS commercial software. 
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      A preliminary analysis of Fig. (5.2) reveals a significant correlation between the findings 

acquired from the LW-TSDT and those computed using the FEM. Moreover, the results 

demonstrate that increasing the flange width dimension inversely affects the compressive strength 

of the channel section struts, leading to greater flange deflection in the post-buckling phase and a 

subsequent decrease in the critical buckling temperature. To clarify, with a flange-to-web width 

ratio 𝑅 = 0.2, the critical buckling temperature for UD channel section struts is approximately 

𝑇 = 400 𝐾. Increasing this ratio to 𝑅 = 0.8 results in a reduction of the critical buckling 

temperature to 𝑇 = 370 𝐾. Another interesting observation that can be drawn from the figure is 

the apparent lack of noticeable influence of varying flange widths on the post-buckling equilibrium 

path of the web. This is evidenced by the nearly identical web post-buckling deflection across three 

different shape factor types. 

 

 

     The LW-TSDT approach accounts for 6591 degrees of freedom (DOFs) in its buckling analysis 
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Figure 5-2 Comparison the nonlinear thermal equilibrium paths of flange and web in a channel section strut with UD 

graphene distribution pattern 
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for the UD laminated composite channel section strut, which is reflected in a stiffness matrix of 

the order 6591 by 6591. On the other hand, the finite element analysis utilizes 3D 8-node linear 

hexahedral elements (C3D8), resulting in a total of 17421 DOFs. This marked discrepancy in the 

DOFs between the semi-analytical LW-TSDT and the numerical finite element method 

underscores the enhanced computational efficiency of the LW-TSDT. Table. (5.2) offers a detailed 

summary of the analysis in terms of runtime and CPU usage. A cursory review of this table clearly 

shows that the implemented LW-TSDT method operates around 33% faster in terms of runtime 

compared to the numerical finite element simulation.  

 

Table 5-2. Comparison of computing time and CPU usage in performed simulations and computational performance 

of proposed methodology (UD, 
𝑏𝑓
𝑏𝑤
⁄ = 0.2, 

𝑡𝑓
𝑡𝑤
⁄ = 1, CCC-CCC) 

Solution method   

Present Method 

(LW-TSDT) 

DOF 

Running time (s) 

CPU usage (%) 

6591 

938 

25% 

Finite Element Method 

(ABAQUS) 

DOF 

Running time (s) 

CPU usage (%) 

17421 

1247 

37% 

Discrepancy performance time (%) 

(𝐴𝐵𝐴𝑄𝑈𝑆 − 𝐿𝑊𝑇𝑆𝐷𝑇)

𝐿𝑊𝑇𝑆𝐷𝑇
 × 100 

 33 % 

5.4.2. Influence of different graphene distribution patterns on the thermal post-

buckling equilibrium paths and vibration characteristics of channel 

section struts 

      By conducting a nonlinear thermal instability analysis of polymeric laminated channel section 

struts, reinforced with various graphene distribution patterns, and subjected to both clamped and 



182 
 

simply-supported boundary conditions, Fig. (5.3) compares the outcomes pertaining to their 

critical buckling temperatures and fundamental natural frequencies. Following the aforementioned 

explanations, the initial step of the comparison involves case studies, where UD graphene 

distribution pattern is consistently applied across the web, while variations in graphene dispersions 

are examined in the thickness direction of the flanges. The outcomes of these studies are presented 

in Figs. (5.3)(a) and (b), distinguished by a blue background for clarity. The results demonstrate 

that where the web is reinforced with UD graphene distribution, the configuration employing FGX 

graphene distribution for flanges reinforcement yield the highest critical buckling temperatures 

and fundamental natural frequencies. Conversely, configuration with FGO graphene distribution 

in the flanges are associated with the lowest values for both critical buckling temperature and 

fundamental natural frequency.  

     In the subsequent step of the comparative analysis, the FGX graphene distribution pattern, 

identified as the most effective, is consistently applied for reinforcing the flanges. Concurrently, 

various non-uniform graphene dispersions are explored through the thickness direction of the web. 

The results pertaining to this specific scenario are demonstrated within the yellow regions of Figs. 

(5.3)(a) and (b). The findings confirm that when the FGX graphene distribution pattern is 

employed for both the flanges and the web, the laminated channel section struts achieve their peak 

performance in terms of critical buckling temperature and fundamental natural frequency.  

     Furthermore, this scenario is replicated with the objective of identifying the least effective 

graphene distribution pattern. This is illustrated in the pink area of Fig. (5.3). Here, the FGO 

graphene distribution, acknowledged as the least effective, is selected for reinforcing the flanges 

of the channel section struts. simultaneously, a range of non-uniform graphene distributions are 
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explored through the thickness direction of the web. The results conclusively demonstrate that the 

lowest critical buckling temperature and fundamental natural frequency correspond to the case in 

which both the flanges and the web are reinforced with the FGO graphene distribution pattern. 
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Figure 5-3 Investigation the influence of various kinds of graphene distribution patterns and boundary conditions 

on the critical buckling temperatures and fundamental natural frequencies of laminated channel section struts 

Based on the findings presented in Fig. (5.3), the subsequent section of this paper will undertake 

a comparative analysis of four distinct graphene distribution patterns. These patterns will be 

evaluated from various analytical perspectives, including thermal post-buckling equilibrium paths, 

bending moment, and pre- and post-buckling thermally induced free vibration. It is important to 

note that the four graphene patterns under review include UD-UD, serving as the benchmark case, 

along with FGX-FGX and FGO-FGO, identified respectively as the most and least effective 

scenarios. Additionally, the analysis will also consider the FGV-FGO combination, where an 

asymmetric graphene distribution pattern (FGV) is utilized for reinforcing the web.  

Figure 7 presents a comparison of the thermal post-buckling equilibrium paths for laminated 

channel section struts, reinforced with various uniform and non-uniform graphene distribution 

patterns. As depicted, Fig. (5.4)(a) pertains to the struts under clamped (CCC-CCC) boundary 

conditions, whereas Fig. (5.4)(b) displays the outcomes for struts with simply-supported (SSS-
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SSS) boundary conditions. The results clearly demonstrate that, under both types of boundary 

conditions, laminated channel section struts reinforced with FGX graphene distribution pattern 

exhibit a higher critical buckling temperature compared to those with alternative graphene 

dispersions. Furthermore, during the post-buckling phase, the deflection observed at the flange 

(center of the free edge) and the web (central point) is comparatively lower in the FGX graphene 

reinforced cases than in other graphene distribution patterns. Conversely, independent of the 

boundary conditions applied, structures reinforced with FGO graphene distribution pattern 

experience a lower critical buckling temperature and a higher post-buckling deflection at the flange 

and web. For example, consider a scenario with a clamped boundary condition where the 

geometrical parameters of the channel section strut, and the total percentage of graphene utilized 

in reinforcing the laminated structure remain constant. Adjusting the graphene distribution pattern 

from FGO to FGX results in a relative increase of 12% in the critical buckling temperature. 

From Fig. (5.4), another significant observation emerges regarding the distinctive thermal 

equilibrium path of the FGV-FGO laminated channel section strut under simply-supported 

boundary conditions. This path markedly differs from those associated with other graphene 

distribution patterns that preserve symmetry or those found in channel section struts subjected to 

clamped boundary conditions. 

The results illustrate that in cases featuring symmetric graphene distribution patterns, the 

thermal equilibrium paths exhibit a primary-secondary characteristic. The stable primary thermal 

equilibrium path is defined by a direct correlation between the applied thermal load and the 

structural response. As illustrated in Fig. (5.4), up until the critical buckling temperature, identified 

as the point of instability or bifurcation, both flanges and the web retain a flat configuration with 

no out-of-plane displacement, signifying their alignment with the primary equilibrium path. At the 
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onset of the critical buckling temperature, however, there is a noticeable jump in the deflection of 

both the flanges and the web. Consequently, in the post-buckling state, the instability response of 

both the flanges and the web is characterized by their transition to the second set of equilibrium 

paths.  

Nonetheless, the thermal equilibrium path exhibited by simply-supported channel section struts 

reinforced with FGV-FGO graphene distribution patterns is distinct. Initially, as thermal loading 

commences, the structure undergoes out-of-plane displacement, transitioning into the first 

buckling mode shape. However, the magnitude of this initial deflection is minimal. Notably, the 

rate of deflection increases near specific temperatures, T=347 K. The observed phenomenon is due 

to the generation of non-zero thermal bending moments within the web reinforced with FGV 

graphene distribution pattern under thermal loading. This arises from stretching-bending coupling 

of asymmetric graphene distribution pattern, a process clearly illustrated in Fig. (5.5).  

Figure 8 demonstrates that under both clamped and simply-supported boundary conditions, the 

bending moment at the center of the web, reinforced with symmetric graphene distribution 

patterns, remains zero until the critical buckling temperature. At this point, a bending moment is 

induced, leading to deflection. In contrast, for the web reinforced with FGV, characterized as an 

asymmetric graphene distribution pattern, a bending moment is present at the center of the web 

from the initial stage of thermal loading. The rate of change in this bending moment intensifies 

around T=387 K for clamped boundary conditions and T=347 K for simply-supported conditions. 

It should be noted that the simply-supported edge lacks the capability to provide an additional 

moment necessary for maintaining the flatness of the channel section strut, in contrast to a clamped 

structure, where the supports are designed to exert an extra moment. 
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Figure 5-4 Investigation the boundary conditions and various graphene distribution patterns on the thermal 

equilibrium paths of laminated channel section struts subjected to uniform temperature rise (a) clamped (b) 

simply-supported 
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Figure 5-5 Influence of the boundary conditions and various graphene distribution patterns on the variation of 

bending moment at the center of the web (a) clamped (b) simply-supported 

Figure 9 illustrates the variation of thermally induced pre- and post-buckling vibration of FG-

GRC channel section struts. At the reference temperature, both the fundamental and second order 
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natural frequencies of FGX channel section struts are higher compared to those reinforced with 

other types of graphene distribution patterns.  

As indicated, independent of the variations in graphene distribution patterns and boundary 

conditions, a uniform increase in temperature leads to a continuous decrease in both the first and 

second-order natural frequencies during the pre-buckling phase. This decrease continues until 

reaching near the critical buckling temperature or instability point, primarily because of the 

reduction in stiffness caused by in-plane compressive thermal loading. It is essential to highlight 

that, across the majority of the cases examined, following the critical buckling temperature in the 

post-buckling phase, there is an observed increase in both first second natural frequencies. This 

perception emphasizes the predominance of the stiffening effect because of static buckling 

deformation over the softening impact induced by thermal stress. 

 In the analysis of fundamental natural frequencies, it is observed that, in instances where 

symmetric graphene distribution patterns (FGX, FGO, UD) reinforce the laminated channel 

section strut, these fundamental frequencies diminish to zero at the critical buckling temperature, 

before transitioning into the post-buckling phase. Conversely, Employing an asymmetric graphene 

distribution pattern (FGV) results in an elevation of the fundamental frequency close to the critical 

buckling temperature. This approach prevents the frequency from decreasing to zero. The 

underlying mechanism involves the generation of thermal bending moment through the web at the 

beginning stage of thermal loading, as discussed in Fig. (5.5). This bending moment induces static 

buckling deflection, which, as noted, leads to an increase in stiffness. 

As mentioned, FGX channel section struts exhibit enhanced thermal compressive strength 

relative to alternative configurations, causing them to transition into the post-buckling phase at a 

later stage compared to other cases. Consequently, the fundamental natural frequencies during the 
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post-buckling phase are lower for FGX struts than for structures reinforced with other types of 

graphene distribution patterns. 

An additional insight derived from Fig. (5.6) pertains to the variance in the fundamental and 

second-order natural frequencies under different boundary conditions. Specifically, in the pre-

buckling stage, the fundamental frequencies of channel section struts with clamped boundary 

conditions are substantially higher than those with simply-supported boundary conditions. 

Conversely, this pattern reverses in certain segments of the post-buckling phase, indicating a 

notable shift in frequencies behavior dependent on the boundary condition applied. For example, 

at the reference temperature of T=300 K, the fundamental frequency of FGX channel section struts 

under clamped boundary conditions is approximately 1.67 times greater than that of struts with 

simply-supported boundary conditions. However, at the maximum temperature of T=600 K in the 

post-buckling phase, this ratio decreases to 0.9.  
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Figure 5-6 Influence of different graphene distribution patterns on variations of thermally induced pre- and post-

buckling vibration of laminated channel section struts (a) fundamental frequency with clamped boundary 

condition (b) fundamental frequency with simply-supported boundary condition (c) second mode frequency with 

clamped boundary condition (d) second order with simply-supported boundary condition 

Investigation the influence of the shape factor of channel section struts (
𝑏𝑓
𝑏𝑤
⁄ ), which is the 

ratio of the flange width to the web width, on their fundamental natural frequencies at the reference 

temperature (T=300 K) is conducted in Fig. (5.7). As with the earlier results, this analysis is 

undertaken for both clamped and simply-supported boundary conditions. A key inference drawn 

from these findings is that, irrespective of the boundary condition type, an increase in the shape 

factor, assuming a constant web width while the flange width increases, leads to a decrease in the 

fundamental natural frequencies. This suggests a significant reduction in the compressive stiffness 

of the structure. This phenomenon can be logically attributed to the increased leverage effect of 

the wider flanges, which amplifies bending and reduces the overall stiffness, thereby impacting 

the fundamental frequency characteristics.  
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Furthermore, the optimal shape factor for laminated channel section struts, as suggested by the 

data, is approximately 
𝑏𝑓
𝑏𝑤
⁄ = 0.2, where the structure exhibits the highest fundamental 

frequencies. Specifically, in the case of clamped FGX channel section struts, it is observed that 

increasing the flange width from 0.2 to 0.9 leads to an approximate 30% decrease in the 

fundamental frequency. This highlights the critical role of shape factors in determining the 

vibrational characteristics of these structures.  
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Figure 5-7 Influence of various graphene distribution patterns and geometrical parameters on the fundamental 

frequencies of FG-GRC channel section struts (a) clamped boundary condition (b) simply-supported boundary 

condition 

5.4.3. Imperfection sensitivity of post-buckling equilibrium paths and free 

vibration of FGX channel section struts 

      To determine the impact of geometrical imperfections on the post-buckling behavior and free 

vibration characteristics of channel section struts, just the FGX graphene distribution pattern is 
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local geometrical imperfections applied exclusively to the flanges. This induced imperfection 
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the flanges and the web of the channel section struts. It is crucial to emphasize that throughout the 

process of introducing geometrical imperfections to both the flanges and the web, the preservation 

of straightness at the junction is maintained as an assumption to meet the stress free edge criteria.  

Figure (5.8) clearly shows that under any boundary condition, the perfect FGX laminated 

channel section strut demonstrates a bifurcation-type instability across both the web and flange. 

This behavior indicates that these components stay undeformed and flat until reaching the critical 

temperature threshold. Conversely, the presence of geometrical imperfections initiates lateral 

deflections in both the flange and web right from the onset of thermal loading. An additional 

noteworthy observation is that the instability response of channel section struts, where 

imperfection is solely applied to the web, more closely resembles the scenario in which 

imperfections are introduced simultaneously to all segments. 

A comparative analysis highlighting the effects of geometrical imperfections on the local 

deflection of the web and flange at the buckle crest (half length) of the channel section struts is 

presented in Fig. (5.9). Owing to the symmetry along the Z local axis of the web, as shown in Fig. 

(4.1), deflection variations are illustrated for only one half of the cross-section. It is essential to 

emphasize that the presented results are for temperatures T=450 K and T=380 K, which are very 

close to the critical buckling temperatures of the FGX channel section struts, under clamped and 

simply-supported boundary conditions, respectively. As illustrated, the deflection observed in the 

perfect channel section strut at temperatures marginally exceeding the critical buckling 

temperature is virtually insignificant when compared to scenarios incorporating geometrical 

imperfections. In particular, the maximum out-of-plane displacement seen in the clamped FGX 

channel section strut, when it undergoes imperfections with an amplitude of 𝑤
∗

ℎ⁄ = 0.2  affecting 

both flanges and web, is approximately 2 times higher than in instance without any imperfections. 
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It should be highlighted that the out-of-plane displacement of the flange and web is equal to zero 

at the junction to satisfy the in-plane stress-free edge condition.  
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Figure 5-8 Influence of geometrical imperfection on the thermal post-buckling equilibrium paths of the FGX 

channel section struts (a) clamped boundary condition (b) simply-supported boundary condition 
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Figure 5-9 Influence of geometrical imperfection on the local deflection at the buckle crest of FGX channel 

section struts (a) clamped boundary condition (b) simply-supported boundary condition 

Fig. (5.10) illustrates the comparison between the pre- and post-buckling free vibrations of both 

perfect and imperfect channel section struts. This analysis is crucial for understanding the potential 

effects that deviations from ideal geometrical configurations can have on the natural frequencies 

of FGX channel section struts with clamped and simply-supported boundary conditions. 

A pivotal observation from the analysis reveals that geometrical imperfections, characterized 

by an amplitude of 𝑤
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post-buckling phases, particularly with the clamped boundary condition, the presence of 

geometrical imperfections leads to a decrease in the fundamental natural frequencies. Furthermore, 

as clearly demonstrated in Figs. (5.10)(c) and (5.10)(d), the geometrical imperfections 

substantially diminish the second-order natural frequencies across both pre- and post-buckling 

states. It is important to highlight that there is no occurrence of order exchange phenomena 

between the first two modes of natural frequencies. 

  

 

300 325 350 375 400 425 450 475 500 525 550 575 600

300 325 350 375 400 425 450 475 500 525 550 575 600

0

100

200

300

400

500

600

700

800

900

1000

0

100

200

300

400

500

600

700

800

900

1000

 W*
f  / h =0 , W*

w / h =0            W*
f  / h =0.2 , W*

w / h =0

 W*
f  / h =0 , W*

w / h =0.2          W*
f  / h =0.2 , W*

w / h =0.2

w
 (

H
z)

T (K)

309 Hz400 Hz414 Hz

FGX, CCC - CCC tw = tf  ,  bf / bw=0.2

(a) 



200 
 

 

 

300 325 350 375 400 425 450 475 500 525 550 575 600

300 325 350 375 400 425 450 475 500 525 550 575 600

0

100

200

300

400

500

600

700

800

900

1000

0

100

200

300

400

500

600

700

800

900

1000

 W*
f  / h =0 , W*

w / h =0        W*
f  / h =0.2 , W*

w / h =0

 W*
f  / h =0 , W*

w / h =0.2      W*
f  / h =0.2 , W*

w / h =0.2

w
 (

H
z)

T (K)

183 Hz 326 Hz 339 Hz

FGX, SSS - SSS tw = tf  ,  bf / bw=0.2

300 325 350 375 400 425 450 475 500 525 550 575 600

300 325 350 375 400 425 450 475 500 525 550 575 600

1000

1100

1200

1300

1400

1500

1600

1700

1000

1100

1200

1300

1400

1500

1600

1700

 W*
f  / h =0 , W*

w / h =0            W*
f  / h =0.2 , W*

w / h =0

 W*
f  / h =0 , W*

w / h =0.2          W*
f  / h =0.2 , W*

w / h =0.2

w
 (

H
z)

T (K)

FGX, CCC - CCC tw = tf  ,  bf / bw=0.2

(b) 

(c) 



201 
 

 

Figure 5-10 Influence of geometrical imperfections on variations of thermally induced pre- and post-buckling 

vibration of FGX laminated channel section struts (a) fundamental frequency with clamped boundary condition 

(b) fundamental frequency with simply-supported boundary condition (c) second order frequency with clamped 

boundary condition (d) second order with simply-supported boundary condition 

5.5. Concluding remarks 

     This research addresses the issue of laminated composite open section struts, which are 

commonly used in engineering, being prone to local buckling when exposed to compressive 

thermal loads. The investigation seeks to discover effective solutions to this problem by employing 

graphene sheet reinforcements. The primary objective of this study is to assess how different 

distributions of graphene sheet reinforcements, through the thickness of the flange and web plates 

of channel section struts, affect their thermal compressive instability and their pre- and post-

buckling free vibration. Attention has been given to discerning the distribution patterns of graphene 

that most significantly enhance the critical buckling temperature and natural frequencies. 

Furthermore, the effect of geometrical imperfections on the nonlinear thermal compression 

behavior of the FG-GRC laminated channel section struts has been assessed to obtain results that 
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more accurately reflect real-world conditions. A framework is constructed on the foundations of 

LW-TSDT and the von-Karman strain-displacement equation. To solve the governing equations, 

the minimum total potential energy principle and the Ritz method are applied in tandem with the 

Newton-Raphson iterative process; the obtained results are finally compared with those evaluated 

using the 3D finite element simulation. This study significantly enhances our comprehension of 

the relationship between material distribution and structural characteristics, offering pertinent 

insights for the development of more robust and effective engineering structures. In particular: 

• Utilizing the FG-X graphene distribution pattern within the thickness of the web and 

flanges of channel section struts results in an estimated 12% increase in the critical 

buckling temperature for clamped channel section struts, when compared with those 

utilizing the FGO graphene distribution pattern. In scenarios with simply-supported 

boundary conditions, this increment is observed to be about 9%. 

• This study reveals that within the shape factor, 
𝑏𝑓
𝑏𝑤
⁄ = 0.2, analyzed, altering the 

graphene distribution patterns through the thickness of the flanges, while maintaining a 

constant graphene distribution in the web, does not significantly impact the critical 

buckling temperature of channel section struts. Conversely, modifying the graphene 

distribution patterns in the web, while reinforcing the flanges with a consistent type of 

graphene sheet, can change the critical buckling temperature by up to 12%. This indicates 

that, for the specific shape factor considered, the buckling behavior of the web plays a 

dominant role in the overall instability response of channel section struts. 

• The analysis of thermally induced pre- and post-buckling free vibration in channel section 

struts, which are reinforced with differing graphene distribution patterns, demonstrates 
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that, through the pre-buckling situation, struts featuring the FGX channel section 

configurations achieve the highest natural frequencies. However, this pattern alters in the 

post-buckling stage. 

• The enhancement of natural frequencies in FG-GRC laminated channel section struts 

through the post-buckling states, as a result of uniform temperature increase, can be 

attributed to the dominance of the stiffening effect, which is a consequence of static 

buckling deflection, over the softening effect caused by thermal stress. 

• The equilibrium path of perfect FG-GRC channel section struts typically follows a 

primary-secondary trajectory, wherein the out-of-plane displacement remains unchanged 

with increasing temperature up to the instability point, at which the structure deflects. 

However, the introduction of geometrical imperfections initiates deformation from the 

onset of thermal loading, thereby leading to an unique equilibrium path. 

• Incorporating an asymmetric graphene distribution pattern (FGV) or introducing 

geometrical imperfections that induce a bending moment throughout the structure from the 

initial stages of thermal loading effectively prevents the fundamental natural frequencies 

of FG-GRC channel section struts from reaching zero in proximity to the critical buckling 

temperature. 
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6. Conclusions and future perspectives 

6.1. Conclusions 

     This Ph.D. thesis is meticulously organized into two principal sections. The first section, 

included in chapters 2 and 3, is dedicated to a comprehensive analysis of the impact of different 

graphene distribution patterns and varieties of interlaminar flaws, whether embedded or through-

the-width, on the nonlinear thermomechanical instability and vibration characteristics of FG-GRC 

laminated plates. This investigation aims to elucidate the complex interactions between material 

composition, probability of damage propagation, and mechanical behavior, offering insights into 

optimizing the structural integrity and performance of advanced composite materials under various 

thermal and mechanical loading conditions. The research employs sophisticated analytical and 

numerical modeling techniques to capture the nuanced effects of graphene reinforcement on the 

performance of laminated, graphene composite plates. 

     The second section of the thesis, included in chapters 4 and 5, culminates with a comprehensive 

synthesis of findings derived from section 1 into the effects of graphene sheet reinforcements 

within laminated composite open section struts, with a particular emphasis on their vulnerability 

to local buckling under both compressive and thermal loading conditions. This rigorous analysis 

meticulously examines various graphene distribution patterns throughout the thickness of the 

flange and web plates in channel section struts. Through this detailed examination, the research 

provides an essential foundation for understanding the ways in which structural stability, buckling 

behavior, and vibrational properties can be enhanced through strategic design of graphene 

distribution. This section contributes significantly to the advancement of composite material 

science, offering innovative strategies for optimizing the mechanical performance and durability 

of graphene composite structures in engineering applications. 
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     The study leverages sophisticated computational techniques, incorporating the LW-TSDT 

alongside the von-Karman nonlinear strain-displacement relations. These theoretical frameworks 

allows for building the solution through the application of the minimum total potential energy 

principle, utilizing the Ritz method. This approach is further augmented by the implementation of 

the Newton-Raphson iterative procedure, which enhances the accuracy and convergence of the 

solutions. The comprehensive, computational methodology enables a detailed and precise 

examination of the mechanical behaviors in the analysis.  

     To verify the accuracy and computational efficiency of the outcomes obtained from the LW-

TSDT, a comprehensive three-dimensional (3D) finite element model has been developed using 

ABAQUS software for the purpose of comparative assessment. 

     It should be noted that the thermo-mechanical properties of both the matrix and graphene 

reinforcements, assumed to be temperature-dependent, were determined using the extended 

Halpin-Tsai micromechanical model. 

     Some of the key conclusions drawn from the present research include: 

• The equilibrium path of FG-GRC laminated plates exhibits bifurcation or unique, stable 

equilibrium paths depending on the boundary conditions and graphene distribution 

patterns. Plates with clamped edges and asymmetric graphene distributions tend to show 

bifurcation-type paths, while those with simply-supported boundaries display unique 

equilibrium paths, attributed to the latter's inability to counteract thermally induced 

bending moments. 

• The shape, and position of delamination significantly affect the nonlinear postbuckling 

response of the FG-GRC laminated plates. Specifically, circular and elliptical embedded 
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delaminations induce mixed-mode and global buckling modes, respectively, highlighting 

the importance of considering delamination characteristics in design and analysis. 

• The presence of delamination alters the pre- and post-buckling vibration responses of FG-

GRC plates compared to perfect plates. In some cases, delamination can enhance post-

buckling, thermally induced fundamental frequencies, indicating complex interactions 

between delamination, graphene distribution, and vibrational behavior. 

• The implementation of the FG-X graphene distribution pattern across the thickness of the 

web and flanges in channel section struts results in a 30% improvement in the critical 

buckling-induced end-shortening of the structures, in comparison to channel section struts 

of identical geometric configurations that are reinforced with a uniform dispersion (UD) of 

graphene.  

• Conversely, the adoption of the FG-O pattern is associated with a considerable decrement 

of the critical buckling-induced end-shortening by approximately 26%. This analysis 

underscores the profound impact of strategic graphene distribution on the mechanical 

performance of composite structures, highlighting the potential for material optimization 

in enhancing structural resilience against buckling phenomena. 

• Irrespective of the particular graphene distribution patterns employed, the location of 

maximum membrane stress is consistently observed at the interface between the flange and 

web, accurately located at the buckle crest within the channel section struts. This finding 

emphasizes the critical nature of this junction in terms of stress concentration. 

• Integrating an asymmetric graphene distribution pattern, referred to as FGV, or the 

introduction of geometric imperfections that generate a bending moment across the 

structure from the onset of thermal loading, serves to effectively prevent the fundamental 
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natural frequencies of FG-GRC channel section struts from diminishing to zero near the 

critical buckling temperature. 

• The enhancement of natural frequencies in FG-GRC laminated channel section struts 

through the post-buckling states, as a result of uniform temperature increase, can be 

attributed to the dominance of the stiffening effect, which is a consequence of static 

buckling deflection, over the softening effect caused by thermal expansion. 

6.2. Recommendations for future work 

     This research has undertaken a thorough analysis on the effects of graphene reinforcement on 

the nonlinear thermomechanical instability and pre- and post-buckled vibration responses of 

laminated composite plates. Additionally, it has explored how graphene distribution patterns 

influence the instability behaviors of channel section struts, employing the LW-TSDT as the semi-

analytical framework. Despite the comprehensive scope of this investigation, it identifies several 

opportunities for further scholarly exploration within this field. Some of them are suggested as 

following: 

• Since their discovery in 2012, Perovskite Solar Cells (PSCs) have quickly become a 

leading third-generation photovoltaic technology, thanks to their flexibility, lightweight, 

high-power output, and low production costs. A PSC typically consists of a thin laminated 

structure with five layers: Indium Tin Oxide (ITO), PEDOT:PSS, perovskite, PCBM, and 

gold (Au), enabling efficient sunlight to electricity conversion. Yet, PSCs' effectiveness 

and durability are greatly affected by environmental factors like moisture, heat, and UV 

light, which can degrade the cells over time. This susceptibility underscores the imperative 

for conducting instability analysis of PSCs. Given their laminated structures, such analysis 

can be effectively performed using the LW-TSDT methodology proposed in this study. 
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• PSCs are envisioned for use in environments where they may be subject to various 

mechanical stresses, including vibrations from wind, transportation, or machinery. 

Vibration analysis helps ensure that these cells can withstand such conditions without 

structural failure. Another practical and vital recommendation for the photovoltaic sector 

is to apply the methodology proposed in this thesis, which pertains to the analysis of 

delaminated structures, to assess how such delaminations affect the dynamic instability 

behavior of the PSCs. 

• Owing to their superior electrical properties, graphene and its derivatives are highly 

promising in the development of advanced smart composite materials. This thesis proposes 

utilizing these distinct characteristics along with the methodology to perform nonlinear 

vibration analysis and capture the vibration responses in FG-GRC plates with various 

delamination zones, which can be altered by adjusting the electrical field attributes for a 

broader scope of applications of graphene composites. 

• It is recommended to integrate the proposed methodologies that assess the instability 

responses of delaminated FG-GRC plates and FG-GRC channel section struts to examine 

how various interlaminar defects, which may arise between the layers of the flanges and 

the web in channel section struts, affect their static and dynamic behaviors. 

• The utilization of the proposed methodology in this thesis for the analysis of FG-GRC 

channel section struts is suggested, aiming at the optimization of both graphene distribution 

patterns and topological geometries, simultaneously, which can to be considered for the 

cross-sections of either open or closed thin-walled structures to enhance their postbuckling 

strength. 
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• Future research could benefit from manufacturing both open and closed section struts 

through 3D printing technology, employing two distinct filament types: one consisting of 

pure polymer and the other being polymer filaments enhanced with a specific weight 

percentage of graphene. Subsequent compressive testing could then be conducted to 

compare the results with those obtained from the semi-analytical and numerical analyses 

presented in this thesis. 
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Appendix A 

According to the TSDT, the normal and transverse shear strain tensors of the FG-GRC laminated 

plate can be written as [61]: 
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Appendix B 

Displacement and rotational functions of FG-GRC plate with elliptical embedded delamination 

(SSSS) 
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Rotational functions 
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Displacement and rotational functions of FG-GRC plate with elliptical embedded delamination 

(CCCC) 
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Appendix D 

 

Figure D.1 Influence of clamped and simply-supported boundary conditions on the thermal equilibrium paths of FG-

A laminated plates with embedded elliptical delamination, AD/A=0.25, 
ℎ𝑠

ℎ
= 0.2. 
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Figure D.2 Comparison of deflection through the sublaminate and baselaminate of FG-X plate with embedded 

elliptical delamination at three different temperatures AD/A=0.25, SSSS. (a) Sublaminate (b) Baselaminate 
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Figure D.3 Comparison of normal Stress (𝜎11) through the sublaminate and baselaminate of FG-X plate with 

embedded elliptical delamination at three different temperatures AD/A=0.25, SSSS. (a) Sublaminate (b) 

Baselaminate 
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