
"/ think and think for months and years. Ninety-nine times, the conclusion is false. 
The hundredth time I am right." 

Albert Einstein. 
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Abstract 

Proteins, important macromolecules in living cells, are present in different loca­

tions within the cells, and a few are transported to the extracellular space. Each 

protein has a distinct function, and to fulfill that function they must be localized to 

the correct position in the cell. Therefore, discovering the localization of a protein 

helps analyze its role in the living cell. Extracellular proteins are of high importance 

due to their responsibility for vital functions such as nutrition acquisition, protec­

tion from pathogens, etc. Hence, characterizing these proteins and distinguishing 

them from intracellular proteins is of high interest to biologists. Nonetheless, this 

problem is very challenging because of the small number of available extracellular 

proteins1. 

This work focuses on extracellular and intracellular localizations. Using asso­

ciative classifier we acquire a set of accurate, small and interpretable localization 

rules that can be used for further biological analysis. To classify proteins, which are 

linear sequences of amino acids, one should represent these by a set of features. In 

this work, the most frequent discriminative subsequences as well as partition-based 

subsequences are studied, i.e.,subsequences frequent in some partitions along pro­

tein sequences. The achievement of high F-Measure for predicting extracellular 

proteins shows high discrimination ability of the selected features. 

Our dataset contains only 127 extracellular proteins 
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Chapter 1 

Introduction 

Proteins are one of the main structures of living cells that conduct different pro­

cesses and functions in the cell. Proteins, at the simplest representation, are lin­

ear sequences of amino acids, and so far twenty standard amino acids have been 

identified in proteins.1. These amino acids are coded by twenty alphabetic char­

acters as shown in Table 1.1. Therefore, proteins can be considered as character 

strings of different length varying from 41 amino acids or less, for a mitochondrial 

plant protein, to 3,705 or more, for an outer membrane plant protein. Biological 

experiments indicate that amino acid sequences encode information about protein 

structures, functions, localizations, etc . 

Through genome sequencing projects, many datasets of raw biological sequences 

are collected, and are publicly available for researchers. With the interest to study 

genome sequences and the rapid growth of collected biological data, which adds 

complexity to the study and analysis of the sequences, there is a tendency toward 

utilizing computational algorithms and tools. This research addresses some algo­

rithms to challenge one of the important problems about plant protein localizations. 

1.1 Background, Problem Definition and Approach 

One of the important problems in the biology community is the functional clas­

sification of proteins based on their structures, localizations, or other properties. 

In order for proteins to accomplish a specific function, they concentrate in differ-

1 Unlike other amino acids that are present in biological proteins, Selenocysteine, the 21st amino 
acid, is inserted at a UGA codon in the context of other sequences within the mRNA. 
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1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Name 
Alanine 
Cysteine 

Aspartic acid 
Glutamic acid 
Phenylalanine 

Glycine 
Histidine 
Isoleucine 

Lysine 
Leucine 

Methionine 
Asparagine 

Proline 
Glutamine 
Arginine 

Serine 
Threonine 

Valine 
Tryptophan 

Tyrosine 

Three-letter code 
Ala 
Cys 
Asp 
Glu 
Phe 
Gly 
His 
He 
Lys 
Leu 
Met 
Asn 
Pro 
Gin 
Arg 
Ser 
Thr 
Val 
Try 
Tyr 

One-letter code 
A 
C 
D 
E 
F 
G 
H 
I 
K 
L 
M 
N 
P 

Q 
R 
S 
T 
V 
W 
Y 

Table 1.1: Table of natural amino acids [6] 

ent locations inside the cell and sometimes they are transported to the extracellu­

lar space. The process through which proteins are routed to their subcellular lo­

calization sites is called protein sorting. The simplest sorting process happens in 

Gram-Positive prokaryotic cells. Prokaryotes are types of living organisms, mostly 

unicellular, that lack a cell nucleus or any other membrane-bound organelles [3]. 

In Gram-Positive prokaryotes, proteins are localized at only three intracellular sites 

and the extracellular space. Conversely, in eukaryotic cells, due to the presence of 

membrane-bound organelles, there are more localization sites, and consequently, 

protein sorting is more complex. Table 1.2 shows the different localization sites in 

different categories of cells. As this table shows, plant cells, with nine different lo­

calization sites inside the cells, are most complex in terms of protein localizations. 

These nine localization sites are generally referred to as intracellular (IC), while 

localization outside the cell is called extracellular (EC). 

Protein sub-cellular localization is the key characteristic to study the function of 
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Category 
Animal 
Plant 
Fungi 

Gram-Positive bacteria 
Gram-Negative bacteria 

Subcellular Localizations 
nuc, end, gol, mit, pex, lys, cyt, mem, ext 
nuc, end, gol, mit, pex, chl, vac, cyt, mem, ext 
nuc, end, gol, mit, pex, vac, cyt, mem, ext 
cyt, wal, mem, ext 
cyt, inn, per, wal, out, ext 

Table 1.2: Subcellular localizations in different cells. Abbreviations are as fol­
lows: nuc (nuclear), end (endoplasmic reticulum), gol (golgi), mit (mitochondria), 
pex (peroxisomal), lys (lysosomal), cyt (cytoplasmic), mem (membrane), inn (inner 
membrance), out (outer membrance), chl (chloroplast), vac (vacuole), per (periplas-
mic), wal (cell wall), ext (extracellular) [46] 

proteins. In plants, EC proteins are responsible for vital functions such as "nutrition 

acquisition, communication with other soil organisms, protection from pathogens, 

and resistance to disease and toxic metals" [48]. Therefore, they are of high impor­

tance for the cells and are a target of analysis in the biology community. Herein, 

we particularly focus on characterizing and predicting EC proteins by learning and 

classifying proteins to EC or IC locations. 

Localization of proteins has been a research interest for bio-informaticians and 

machine learners for some time, but it is still a challenging problem mainly due to 

the lack of training data, and when data exists, to severe imbalance in the training 

data. Another difficulty is the identification of appropriate features in the data to 

accurately localize proteins. Some have used simple distribution of amino acids 

(i.e.,protein composition), subsequences, special signatures or combinations. In 

this research we start with studying frequent subsequences of proteins. The process 

of localization utilizes small subsequences of the protein to direct the protein to dif­

ferent localizations. Therefore, frequent subsequences, identified by our approach, 

might be of direct mechanistic significance. Based on frequent subsequences, we 

gradually evolve our feature mining algorithm by resolving the experimentally ob­

served deficiencies of the older algorithms. Finally, we introduce the idea of taking 

advantage of partitioning sequences of amino acids and identifying the relevant 

partitions where some subsequences occur. These partitions appear to have dis­

criminative power with regard to localization of proteins. 

To do so, we transform the proteins that are originally represented as strings of 
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i f Primary protein structure 
u is sequence of a chain of amino acids 

Amino Acids 

Figure 1.1: Structure of Protein [1]. The locations that may interact due to their 
close distance are circled. 

amino acids into sets of frequent motifs extracted from these strings. Motifs are 

subsequences of amino acids that are frequently occurring in the collection. Then, 

protein sequences are partitioned in equal partitions2 and each motif is labelled by 

the partition in which the motif frequently occurs. If a motif appears frequently 

in the same partition of some proteins with identical localizations, it is a valuable 

feature for the proteins of that localization. This is more complex than it appears, 

since each protein has to be expressed by some identified motifs, and identifying 

all partitions where motifs occur, given different partitioning intervals, is a hard 

problem. These features (i.e.,motif and partition pairs) are frequent subsequences 

associated with their discriminative partitions along the protein sequence, which 

we call Partition-Based Subsequence (or PBS). They constitute our input for our 

classifier which yielded better results than the state-of-the-art. 

Our inspiration for introducing PBSs comes from the following observation. 

Proteins are of complicated shapes in 3-dimensional space. At this level, proteins 

of the same class may present higher similarity than at the simple level of amino 

acid sequences [36]. On the other hand, it is difficult to characterize the 3-D spec­

ifications of proteins. Discovering the special regions of protein structures where 

frequent subsequences appear most may encode significant information about the 

structure of proteins. For example, EC proteins may be folded such that some re­

gions may have biochemical effects on each other due to their close distance (as 

Figure 1.1 illustrates). Such effects may cause special patterns to be formed in 

these regions. This is what motivated us to discover subsequence patterns that are 

frequent in special regions of protein sequences. 

2The number of partitions is a user parameter. 
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Other than introducing PBS, a novel type of protein features, the prediction of 

EC proteins based these features is another contribution of this work. We use an 

associative classifier to predict EC proteins. The reason for our choice is that asso­

ciative classifiers construct an interpretable rule-based model that can be used for 

further biological analysis. Figure 1.2 shows some examples of the human readable 

rules that our algorithm discovered from the data. Due to the popularity of sup­

port vector machines (SVM) [27] in the biological data mining field, we compare 

our results with those of SVM. As further experiments, the result of decision tree 

classifiers are also compared with that of associative classifiers. 

If "GPPYCCS" appears in a protein sequence 
=> The protein is extracellular. 

If "SSSSSSS" appears in the first half of a protein sequence 
=> The protein is intracellular. 

Figure 1.2: Real examples of the human readable rules that our associative classifier 
discovered from the data. 

As we mentioned earlier, due to the severe imbalance between the number of 

EC and IC proteins, and further, the small number of available training samples, a 

few proteins are not represented by any frequent and discriminative features with re­

spect to different input parameters, and the prediction accuracy falls. Our approach 

tackles this problem to enhance the prediction by proposing a two-phase solution. 

First, a strong associative classifier with highly confident rules is constructed. In 

the second step, to classify those few proteins which cannot be classified by any 

of the associative rules, a nearest neighbor classifier based on edit distance [11] of 

protein sequences is utilized. Our experiments on a biologically verified dataset, 

show that the localization prediction based on associative classifier and PBS fea­

tures strongly outperforms state-of-the-art algorithms with an EC prediction accu­

racy (F-Measure) of 89.06%. The recall and precision are respectively 89.79% and 

88.31%. 
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1.2 Dissertation Organization 

The rest of the thesis is organized as follows: Chapter 2 is a review of the related 

work. In Chapter 3 the history and evolution of solutions devised in this research 

are explained as well as the algorithm of mining discriminative frequent partition-

based subsequences. In Chapter 4 the associative classifier for the special case 

of our problem is explained. Then a combined model of associative and nearest 

neighbor classifier is introduced. Experimental results are discussed in Chapter 5, 

and finally Chapter 6 concludes the thesis and present the future work. 

Henceforth, for convenience we refer to Intracellular, Extracellular and Partition-

Based Subsequence as IC, EC and PBS respectively. 
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Chapter 2 

Related Work 

This chapter studies the state-of-the-art in predicting protein localizations. Sec­

tion 2.1 reviews the challenges of this problem and the approaches that are in­

vestigated by researchers. Related to our approach, which is based on frequent 

subsequences of proteins, Section 2.2 presents different solutions for frequent sub­

sequence mining. 

2.1 Work Related to Protein Subcellular Localization 

Several approaches have been proposed to predict different protein localizations. 

These approaches differ in the features and the classification methods they have 

used. Generally these works can be grouped in five different categories. 

2.1.1 Prediction Based on N-Terminal Sorting Signals 

Sorting or targeting signals are the pieces of information, encoded in a chain of 

amino acid residues, that enable the cellular transport machinery to direct proteins 

to inside or outside the cell. In other words, sorting signals are "short subsequences 

of approximately 3 to 70 amino acids and can be identified by looking at the pri­

mary protein sequence" [46]. It has been claimed that for proteins targeting the 

secretory pathway, mitochondria, and chloroplasts, sorting depends on the signals 

that are found at the N-terrninal extension of protein sequences. N-terminal signals 

(presequences or peptides) are often cleaved off the mature protein upon arrival at 

the proper localization site. Following is the list of these signals: 
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• Signal Peptides (SPs): They signal proteins to traverse the membrane of the 

rough endoplasmic reticulum. They control the entry of proteins to the secre­

tory pathway and are cleaved off while the protein is transported through the 

membrane [16]. "The most well conserved motif of the SPs is the presence of 

a small and neutral amino acid at positions -1 and -3 relative to the cleavage 

site" [29]. 

• Mitochondrial Targetting Peptides (mTPs), which control the transportation 

to mitochondria. In mTPs, the amino acids "Arg, Ala and Ser are over-

represented while negatively charged amino acid residues (Asp and Glu) are 

rare. Only weak consensus sequences have been found, the most prominent 

being a conserved Arg in position -2 or -3 relative to the mitochondrial pro­

cessing peptidase (MPP) cleavage site" [29]. 

• Chloroplast Transit Peptides (cPTs), that direct most nuclearly encoded chloro-

plast proteins to the chloroplast area. cPTs of different proteins vary in length 

and sequence, however, they have a rich content of hydroxylated and low con­

tent of acidic residues [28]. 

According to these specific features of signals, different algorithms have been pro­

posed to identify the signals and their cleavage sites, and consequently predict the 

localization of proteins using their identified sorting signals. MitoProtll [14] has 

performed discriminant analysis to recognize mTPs. It has achieved a mitochon­

drial prediction with 80% recall and 47% precision. In an effort to increase the ac­

curacy of mitochondrial prediction, Bender et al. [2] has achieved the recall of 94% 

and precision of 68% based on a neural network approach. For the identification of 

SPs and cTPs, neural networks are utilized by SignalP [16] and ChloroP [28]. The 

highest reported accuracy of SignalP is 83.7% for correct identification of signal 

peptide cleavage sites on E.coli data 1. The accuracy of ChloroP for identifying 

sequences as cTP or non-cTP is 88%. 

The same group that devised SignalP and ChloroP has proposed TargetP [29] by 

integrating their previous approaches in order to predict four different localizations: 

!E. coli signal peptides are different from eukaryotic signal peptide 

8 



chloroplast, mitochondrial, extracellular and other localizations. TargetP has been 

able to correctly predict localizations with the overall accuracy of 85% for plant 

proteins and 90% for non-plant proteins. 

2.1.2 Prediction Based on Protein Annotations 

In SWISS-PROT sequence database, only a few proteins are labelled with their sub­

cellular localization, but there are functional annotations for many proteins. These 

textual annotations are generated automatically with limited human interaction [32]. 

The keywords of the textual annotations can be a good source based on which lo­

calization of the proteins can be inferred. The approaches in this category perform 

lexical analysis to extract keywords from the textual annotations of homologous 

proteins, and then apply classification algorithms on the keyword-based feature 

datasets. It is similar to what happens in text categorization problems where un­

known documents are assigned some predefined labels based on their lexical sim­

ilarity to the documents that are already labelled. Many learning methods have 

been used for text categorization including nearest neighbor and K-Nearest neigh­

bor classifier [44, 40], multivariate regression models [17], probabilistic Bayesian 

models [12], linear least square fit [45], etc . 

Based on a similarity-based approach, LOCkey [33] infers the localization of a 

protein by categorizing its textual annotation into a set of subcellular localizations. 

The approach of LOCkey is as follows: 

• A set of proteins with known localization are collected. Then, from the tex­

tual annotation of each protein (available in SWISS-PROT), keywords are 

extracted. 

• Keywords of homologous sequences are merged. A feature reduction is then 

applied to purify the keywords. 

• Using the complete set of keywords, proteins are represented as binary vec­

tors (presence or absence of keywords). This data set is called "trusted vector 

set". 
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• For a protein U with unknown localization, all its keywords (out of the infor­

mative keywords of the trusted vectors) are specified. U is then represented 

by a binary vector V(U) similar to the trusted vectors. 

• All sub-vectors of V(U) are generated, i.e.,all the possible combinations of 

the keywords of U. For example, if there are four keywords and V(U) =< 

0111 >, subvectors of V(U) are < 0001 >, < 0010 >,< 0100 >, < 0011 > 

,< 0101 >,< 0110 > and < 0111 >. The subvector that yielded the best 

matching with one of the trusted vectors takes the localization label of that 

trusted vector as the localization of U. Selecting the best matching is based 

on minimizing an entropy-based objective function. 

LOCkey considers ten different localizations for proteins and has achieved the 

accuracy of 87%. 

Proteome Analyst (PA-Sub) [46], one of the prominent state-of-the-art algo­

rithms, is also based on the lexical analysis. Unlike LOCkey, which uses entropy-

based techniques to infer the localizations, the authors of PA-Sub [13] have applied 

several machine learning techniques such as K-nearest neighbor, naive bayes, arti­

ficial neural network and support vector machine. PA-SUB has achieved the overall 

accuracy of about 93% on plant protein localization. However, for some classifi­

cation issues, it has excluded almost 2% of the data from evaluation. The average 

F-Measure of PA-Sub in predicting EC proteins on exactly the same proteins of our 

test dataset is 83.77% which is more than 5% below the F-Measure of our approach. 

2.1.3 Prediction Based on Amino Acid Composition 

To biologists, the distribution of amino acids in proteins can be a meaningful fea­

ture. In this context, a protein is represented by the relative frequency of the twenty 

amino acids in the sequence of that protein. This representation is called "Amino 

Acid Composition" of a protein and results in a 20-dimensional dataset. Figure 2.1 

illustrates such a representation for an EC protein. 

Nakashima et al. [15] have found discrimination between EC and IC proteins 

by amino acid compositions and residue-pair frequencies. Based on statistical anal-
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Figure 2.1: Histogram representation of the amino acid composition of an extracel­
lular protein. 

yses, they have succeeded in correctly classifying 84% of EC proteins and 88% 

of IC proteins. They did not report the F-Measure of their model. However, with 

a simple calculation and assuming that the number of EC proteins in their data is 

smaller than that of IC proteins, the F-Measure 2 of their model is at most 85.71 %. 

Prot-Lock proposed by Cedano et al. [18] uses the same representation of pro­

teins to learn five different localizations by means of Mahalanobis distance of pro­

teins. The statistical-based approach of Chou et al. [9], which applies a covariant 

discriminant algorithm, outperforms Prot-Lock with 79.9% overall accuracy. 

To predict three locations in prokaryotic proteins and four locations in eukary-

otic proteins (including EC) from amino acid compositions, neural networks [5], 

Markov chain models [47] and SVM [38] have been used by different researchers. 

Among them, the SVM-based method has attained the highest overall accuracy of 

91.4% on prokaryotic and 79.4% on eukaryotic organisms. 

2.1.4 Prediction Based on Frequent Subsequences 

Frequent subsequences within proteins are other features used for subcellular local­

ization. A frequent subsequence is a consecutive series of amino acids that appear 

2 A harmonic average of recall and precision 
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in more than a certain number of proteins of a specific class. In this context, pro­

teins are represented in terms of frequent subsequences they contain. Zai'ane et 

al. [48] used such features and applied SVM and boosting methods to predict EC 

localization. Their highest F-Measure is 80.4% when SVM is used. In another 

effort, they have used discriminative frequent sequential patterns as rules [48]. A 

frequent sequential pattern is of the form *X\ *X2* ... * Xn* where Xt is a frequent 

subsequence and * represents a variable-length-don't-care. The same method for 

localizing Outer Membrane (OM) proteins has been used by She et al. [36]. Their 

rule-based classifier "has very good performance in terms of OM class precision 

(well over 90%), however, the corresponding recall is low (around 40%)" [36]. 

2.1.5 Prediction Based on Integrative Approaches 

The last category of approaches is the combination of different methods. The previ­

ous work on predicting extracellular plant protein localization, by Zai'ane et al. [48], 

applies a boosting algorithm on proteins where each protein is represented by a 

combination of its frequent subsequences and its amino acid composition. Their 

approach has reached an F-Measure of 83.1%, which is outperformed by the 5% 

higher F-Measure of our method. With SVM as the learning algorithm, Li and 

Liu [42] predict protein locations by combining N-terminal signals and amino acid 

compositions. Their highest achievement is 91.9% overall accuracy on non-plant 

proteins. Hoglund et al. haive achieved the overall accuracy of more than 74% by 

combining N-terminal signals, amino acid compositions and sequence motifs [4]. 

PSORT [23], probably the most complete tool for predicting many different lo­

calization sites, integrates various statistical methods and classification algorithms. 

However, its overall accuracy is less than 66%. 

2.1.6 Challenges and Limitations of the State-of-the-Art 
Methods 

What motivates us to proceed with the research idea of this dissertation is the pres­

ence of some limitations in the algorithms mentioned above, specially when they 

are considered for the case of EC localization prediction. The deficiency of these 
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algorithms highlights the need for our research and the suitability of the algorithm 

proposed in this research. In the following, the limitations of the-state-of-the-art 

methods are listed: 

• Because of the important role of EC proteins in plants, it is valuable for bi­

ologists to access solutions for predicting such proteins. Therefore, our work 

particularly focuses on discriminating EC and IC proteins, while most of the 

existing algorithms are not well-devised and suitable for this purpose. 

• Some of the state-of-the-art algorithms suffer from either low precision or low 

recall. However, most time the overall classification accuracy of the models 

is reported which is often a higher measure. For example, in the case of 

our problem, a classifier that always classifies as IC will have a recall and F-

Measure of zero while the overall accuracy of such a classifier is 96% because 

EC proteins are only 4% of the entire plant protein dataset. Therefore, overall 

accuracy is not as informative as F-Measure. Our work tries to increase both 

recall and precision at the same time so that both a high F-measure and high 

overall accuray is achieved. 

• Our approach tackles a hard and challenging binary classification in which 

there is a high imbalance between the number of samples of the two classes 

(EC and IC). Handling such an imbalance is not a matter of attention in many 

of the approaches. 

• In most cases, the algorithms fail to present a justification of their prediction. 

A biologist may not rely on the results of a neural network or an SVM classi­

fier if they need some tangible and understandable biological facts extracted 

by the prediction models. Using the associative classifier in our research 

helps to acquire not a black-box classifier but a set of accurate, small and in-

terpretable localization rules that can be used for further biological analyses. 

Moreover, our secondary classifier, nearest neighbor classifier, is biologically 

justified when the distance of proteins is based on edit distance. The reason 

is that amino acid deletions, insertions, substitutions (mutations) along pro-

13 



tein sequences happen through biochemical processes, and these three are the 

permitted operations in the computation of edit distance. 

• Partition-Based Subsequence (PBS) is a novel type of protein features that has 

never been proposed before. By using PBSs, we probably indirectly exploit 

information about the folded structures of proteins in prediction, something 

that is not considered in the mentioned works. 

• Some algorithms are the solutions to specific problems and cannot be ex­

tended to a complete localization problem in which learning all the possible 

localizations is targetted. For example, TargetP cannot classify beyond ex­

tracellular, mitochondria and chloroplast, as all proteins that cannot fall in 

any of the three localization classes are classified as "other". The specific 

localizations in "other" proteins cannot be learnt by the approach of TargetP. 

In contrast, our approach, although not experimentally confirmed yet for the 

complete localization prediction, has the potential to tackle multi-class local­

ization problems (Refer to Future Work section). 

2.2 Work Related to Frequent Subsequence Mining 

There are different approaches to mine frequent subsequences of a given length and 

a minimum frequency or support (MinS up). A naive solution is shown in Figure 2.2 

that recursively builds subsequences and counts their support. This algorithm can 

handle only small datasets that can fit in main memory. It needs a large memory 

in the case of mining long subsequences when the recursive function goes too far 

deep. 

As another solution for subsequence mining, an APriori-based approach is pro­

posed. Frequent subsequences meet the apriori property, i.e.,if a subsequence S [l...n] 

of length n is frequent, subsequences S[l...n - 1] and S[2...n] are frequent too. 

Therefore, this algorithm first mines frequent subsequences of length 1. Induc­

tively, to mine frequent subsequences of length n + 1, subsequences S[l...n] and 

Q[\...ri\ of length n where S [2...n] = Q[l...n - 1] combine and create a candidate 

14 



minFreq: minimum frequency for a subsequence 
minLen: minimum length of a subsequence 
maxLen: maximum length of a subsequence 
protlDs: set of IDs of all proteins 

Main function call: 
MINE-FREQUENT-SUBSEQ({},protIDs) 

MINE-FREQUENT-SUBSEQ(5eg: Sequence, prots: Set of IDs of proteins containing seq) 
1 foreach x e {AminoAcids] 
2 newSeq <— append x to seq 
3 newProts «— a subset of prots containing newSeq 
4 if size(newProts) > minFreq A L,ength(newS eq) < maxLen 
5 ii minLen < Length(newS eq) 
6 print(«e wS eq, newProts) 
7 end 
8 MiNE-FREQUENT-sUBSEQ(«ewSe<7, newProts) 
9 end 
10 end 

Figure 2.2: A naive algorithm for mining frequent subsequences. 

subsequence C of length n + 1, where C = concatenation's, Q\n\). Algorithm 1 

shows the details and Figure 2.3 illustrates the candidate generation. 

The algorithms for sequential pattern mining can also be modified to mine fre­

quent subsequences. In the context of sequential pattern mining, a sequence is an 

ordered list of itemsets and is denoted by < S\...Sn > where S, is an itemset. For 

example, the chronological sequence of shopped items of a specific customer from 

a store can be such a sequence. In this context, a sequence < A\ ...An > is "contained 

in" another sequence < B\...Bm > if there exists n integers i\ < ii < ... < in such 

that A\ c Bit, ...,A„ c Bin [31]. Given a minimum support MinSup, if a sequence 

S is contained in more than a certain number (with regard to MinS up) of input se­

quences, then S is a sequential pattern. There has been significant work on mining 

sequential patterns such as GSP [37], SPADE [21], PrefixSpan [19], etc . In the 

case of our problem, if each amino acid is considered an itemset with size 1, i.e.,that 

amino acid is the only item in that itemset, then each protein can be considered as 

one of the so-called sequences. In the above definition of "containment", if this 

constraint is imposed that the n integers i\, i2,..., in are consecutive integers, then a 
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Algorithm 1: Mining frequent subsequences, an Apriori-based approach 
input : MinS up 

1 / / MinFreq : Minimum f r e q u e n c y f o r a s u b s e q u e n c e 
i l l Ck'. C a n d i d a t e s u b s e q u e n c e s of l e n g t h k 
3 / / Lk'. F r e q u e n t s u b s e q u e n c e s of l e n g t h k 

output: Set of Frequent Subsequences 

4 begin 
5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

L l *-- {frequent single characters) 
k*~ 1 
while Lk is not empty do 

Ck+i <— Candidates generated from Lk 

foreach Subsequence S in dataset do 
Increment the count of all candidates in Ck+i that are a 
subsequence of S 

end 
Lk+i <— Candidates in Ck+\ with frequency > MinFreq 

end 
rt Jtun nil*** 

is end 

sequential pattern is exactly a frequent subsequence. 

Among all the different solutions for frequent subsequence mining, Generalized 

Suffix Tree (GST) is what we used in our research. It is one of the most efficient 

methods and its code is publicly available [20]. The suffix tree of a single string 

is a tree structure that stores all the suffixes of that string. GST is a more general 

structure to store all the suffixes of a set of strings. 

sl 

s2 

A B C 

B C 

D E 

D E F 

A3 O A B C D E F 

Figure 2.3: An example of candidate generation. Si and S2, two frequent subse­
quences of length 5, generate S 3, a candidate subsequence of length 6 
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Figure 2.4 shows the GST of three strings. As this figure shows, edges are 

labelled with character strings and leaf nodes (square nodes) hold an index. The 

concatenation of edge labels from the root to a leaf node with index i is a suffix 

of the zth string. Each internal node (circular node) stores the frequency of the 

substring which is constructed by concatenating the edge labels from the root to 

that node. For example, tracking "K" from the root ends at a circular node and 

two square leaf nodes. The value 3 in the circular node is the frequency of the 

subsequence "K", and the indexes 1 and 3 in the square nodes show that the 1st and 

3rd strings has "K" as a suffix. 

I I I I -! I I I 
I I I I I * I I I I 

mm mm mm m 
Figure 2.4: The GST of three strings: 1) JKLMK, 2) JKDL, 3) MEJK 

Constructing GST requires the concatenation of input strings with some sepa­

rator symbols between them and then making a suffix tree on this long string [11]. 

There are efficient algorithms for online construction of GST in linear time [11]. 

After the GST is constructed, frequent subsequences are mined through a single 

traversal of the tree [20]. Although constructing GST takes 0(n) time [20], the con­

catenation of all proteins results in an enormously long string. Tata et al. [39] have 

proposed practical solutions for GST construction. 
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Chapter 3 

Protein Feature Extraction 

A protein, in a simple 1-dimensional representation, is a sequence of amino acids. 

It needs to be represented by a set of features in order to be in a suitable format for 

learning algorithms. A feature dataset can be in a relational or transactional format. 

In transactional format, a protein is in the form of a set of specific features, e.g., 

frequent subsequences, extracted from that protein. These sets are not necessarily 

of the same size. In order to transform such data to a relational format, data is 

organized in a table structure where each column corresponds to a feature, and rows 

represent proteins. In this format, a protein is assigned a value of 1 at a column if 

the protein possesses the feature related to that column; otherwise, 0. 

If the original format of data is relational, e.g., the case where proteins are 

represented by their amino acid compositions, a transactional format can be simply 

obtained by discretizing all the continuous attributes, assiging unique codes to each 

attribute-value pair, and representing each protein by the set of the codes of their 

attribute-value pairs. 

Since in this research, an associative classifier is used for learning and predicting 

the protein localizations, and associative classifiers deal with data in transactional 

format, the feature datasets should be transactional. To find out whether a feature 

set is suitable for localization prediction, an associative classifier is applied on the 

feature dataset. If a high prediction accuracy is achieved, the extracted features are 

satisfactory; otherwise, other types of features should be studied. It is possible for a 

feature dataset not to be well learnt by associative classifiers while another classifier 

could learn the same dataset better. However, the accuracy of associative classifier 
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is our main criterion for the suitability of extracted features since our ultimate goal 

is building an interpretable and accurate model using strongly confident associative 

rules. 

In this work, we focus on two types of features: 

• Frequent subsequences or FS. 

• Frequent Partition-Based Subsequences or PBS, subsequences that are fre­
quent in some discovered partitions of protein sequences. 

The reason why our focus is on subsequence-based features is based on the 

following observations: 

• "Common subsequences among related proteins may perform similar func­
tions via related biochemical mechanisms" [36] and are of great interest to 
biologists. 

• "Frequent subsequences capture local similarity that may relate to important 
functional or structural information of extracellular proteins" [43]. 

Therefore, it is expected that frequent subsequences of proteins or "motifs" can 

better discriminate proteins of different localization. 

The following sections, elaborate on these features. Section 3.1 is a history of 

the algorithms we tried to represent proteins by their FS features. At each step, a 

deficiency of the algorithm is observed and the next algorithm aims at resolving it. 

The series of different approaches are evolved until the algorithm for mining PBSs 

is devised. The explanation about PBSs is brought in Section 3.2 

3.1 History of Frequent-Subsequence-Based Feature 
Mining Algorithms 

As discussed in Chapter 2, there are different approaches to mine frequent sub­

sequences. However, because of the availability and efficiency of the GST-based 

subsequence mining code [20], this algorithm is used. The important parameters of 

this algorithm are: 

• MinS up: The minimum support of a subsequence to be frequent. Support of 

a subsequence S is the fraction of protein sequences that contain S 

• MinLen: The required minimum length of a subsequence 
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• MaxLen: The required maximum length of a subsequence 

After mining frequent subsequences, each protein is represented by the frequent 

subsequences it contains, and a transactional feature dataset is built. Although 

building such a feature dataset seems straightforward, our experiments on the plant 

protein dataset showed many unexpected problems and difficulties. These problems 

can be summarized in three categories: 

1. The first and main problem is the imbalance between the size of EC and IC 

proteins (127 vs. 3,022). Because of the diversity in the larger group, it is 

very likely for the proteins in that group to contain the frequent subsequences 

of the smaller group. It causes the subsequences of EC proteins to be less 

distinctive, i.e., features from the rare EC group are not frequent enough to 

be captured. 

2. Another problem is that the resulted feature dataset may contain large trans­

actions of hundreds of items. It is a serious problem for an associative clas­

sifier to handle large transactions. In this case, the number of outputted rules 

is so huge that processing them is sometimes impossible with the available 

equipment. Long transactions are generated when mined subsequences are so 

much frequent that each protein contains a significant number of them. Thus, 

any subset of subsequences, which is potentially a rule, is probably frequent. 

Therefore, a control is required over the length of the resulted transactions 

during the whole process of frequent subsequence mining. 

3. The last problem is the existence of silent proteins in the feature datasets. 

Silent is referred to a protein that does not contain any of the frequent subse­

quences that were extracted, i.e.,all their subsequences have low frequency. 

On the other hand, lower frequencies lead to mining a huge number of subse­

quences, which is hard to process. 

Facing all these problems and attempting to resolve them, the algorithm of 

building a subsequence-based feature dataset gets gradually evolved by different 

modifications. The following sections explain different steps of the evolution of 

our algorithm. 
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3.1.1 Class-Specific Subsequence Mining 

In our dataset, 127 proteins are EC and 3,022 proteins are IC. It means that EC 

proteins represent almost only 4% of the dataset. Thus, in mining frequent subse­

quences, if MinSup is more than 4%, no subsequence specific to EC proteins is 

found. On the other hand, MinS up of less than 4% is very low for the IC class with 

abundant proteins, and thus a huge number of frequent subsequences are generated 

which makes the later processings complex. 

To solve this problem, subsequence mining is no longer done on the whole 

protein set. Instead, it is done separately on the proteins of each class. This is 

a fair modification because at a fixed input of MinS up, the frequency threshold 

is proportional to the size of each dataset. Thus, at different ranges of MinS up, 

frequent subsequences of each class have the chance to emerge. 

3.1.2 M-Most Frequent Subsequences 

Given a MinS up by which few or no silent proteins exist, such a large set of motifs 

are found that the average size of transactions in the feature dataset becomes very 

large \ which is hard for associative classifiers to process. Therefore, there should 

be a limit on the number of mined motifs. A parameter "M" that selects M most 

frequent subsequences can be a simple modification. A good selection of short 

motifs, i.e.,length 3 or 4, results in an accurate classifier, however, there are some 

drawbacks to this model. First, these short motifs are common in both classes. 

Thus, they are not class-distinguishing by their own, and it is the association of 

motifs that discriminates classes. Moreover, this model lacks flexibility in the length 

of the motifs. With motifs of higher length, many silent proteins appear because 

some proteins contain the M-most frequent subsequences even for large values of 

M such as 1000. Hence, in the feature dataset, this particular set of expressed 

proteins becomes long transactions of size around M, while the rest of the proteins 

are silent. 

'Experimentally (in the environment that is explained in the experimental study section), if the 
average size of transactions exceeds 30, the number of rules produced by associative classifier and 
the execution time fall in the scale of milions and days respectively. 
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Henceforth, we refer to motifs of length less than 5 as SHORT and higher length 

motifs as LONG. In the future algorithms we focus on mining long motifs. 

3.1.3 M-Most Frequent Maximal Subsequences 

Reviewing the feature set of M-Most frequent sequences reveals that if subsequence 

S is in the feature set, all the subsequences of S that satisfy MinLen requirement, are 

also in the set as they can have higher frequency than that of S. Further, if a protein 

includes S, there is no advantage in presenting the protein with subsequences of S. 

Those subsequences only occupy wasted space in M-Most frequent subsequence 

(FS) set while they carry no information, i.e.,are redundant. For example, consider 

the following features: 

Subsequence (in M-Most FS set) 
'ABCD' 
'ABC 
'AB' 

'MNOP' 

Proteins containing Subsequence 
P 1 . P 2 . P 3 . P 4 

•P1.-P2.-P3.-P4 

P 1 . P 2 . P 3 . P 4 

P 1 . P 2 . P 3 . P 4 

Table 3.1: An example of motifs carrying no additional information. 

In the feature dataset, each of the proteins P\,Pi, P3 and P4 is a transaction with 

items 'ABCD', 'ABC, 'AB', .... while selecting only 'ABCD' among these three 

suffices. This modification makes the feature dataset smaller and opens space in the 

M-most FS set for the silent proteins to introduce their motifs to the set. 

It can be even more generalized to totally different motifs that come from the 

same set of proteins, i.e.,if S and T are two different motifs both contained in 

the same set of proteins P, then S and T can be replaced by the new symbol U 

where U={S, T} represents proteins in P. For instance, in table 3.1, instead of fea­

tures 'ABCD' and 'MNOP', feature U={ 'ABCD', 'MNOP'} can represent proteins 

P\,P2, Pi and P4. Totally Table 3.1 can be reduced to only one feature U, and three 

spots are freed for more motifs (possibly from silent proteins). 

Unfortunately we could not take advantage of this modification because still M-

most motifs cannot re-express all the proteins, and many silent proteins, specially 

in IC class, are still observed. 
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3.1.4 N-Most Discriminative Motifs 

Instead of filtering motifs by selecting the M-most frequent ones, they can be fil­

tered by selecting the N-most discriminant motifs. Given a MinSup and MinLen, 

all motifs are mined separately from each class. If a motif is frequent in one class 

and also appears in another class, it is not considered discriminant. Based on this 

criterion, coincidence degree of a subsequence of a class is defined as an indicator 

of the appearance of that subsequence in the opposite class. In this algorithm, if 

a motif is discriminant, its coincidence degree is zero; otherwise, one. Of the dis­

criminant motifs, N most frequent ones are selected to make the feature dataset. If 

they are less than N, we have to select out of the non-discriminant motifs. 

This modification still suffers from silent proteins. Even if the value of N is set 

close to the whole number of mined motifs silent proteins will show up (even at low 

MinS up) 

3.1.5 N-Most Discriminative Motifs Based on IC Localizations 

Based on the fact that proteins of a same localization present higher similarity, it 

might be a good idea not to put all the intracellular proteins in only one group of 

IC. They can be grouped as the proteins of nucleus, mitochondria, etc . In this 

way, features of each type of intracellular proteins are independently captured, and 

it is expected that more proteins become expressed. In the previous algorithm, if 

a motif of a class does not appear in the other class, it is considered discriminant 

and receives a coincidence degree of 0, otherwise 1. Here in this algorithm, instead 

of mining motifs of EC and IC proteins, motifs of each of the 9 IC localizations 

(mentioned in Section 1.1) and the EC localization are mined separately and the 

coincidence degree of each motif, which is now an integer between 0 and 9, is com­

puted. Afterwards, all the motifs derived from proteins of classes other than EC 

are collected as the motif set of IC class. Then N-most discriminant motifs (having 

lowest coincidence degrees) are selected from the motif set of each class and the 

feature dataset is constructed based on the union of the two motif sets. The result 

of this algorithm is more frustrating because many of IC proteins appear silent. The 
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reason is that at some IC localizations, a few proteins exist whose frequent subse­

quences can not be well learnt. For example, peroxisomal contains only 29 proteins 

which is a very few number of training samples, and learning the pattern of per­

oxisomal proteins based on frequent subsequences can not be accurate. Moreover, 

proteins of the nine IC classes are very similar in terms of their structure and se­

quences. Therefore, the frequency of IC frequent motifs is accumulated over the 

nine different classes. Dividing IC proteins into 9 separate classes, breaks down the 

frequency of those motifs and they fail to reach the minimum frequency in this al­

gorithm. Based on this experience and the inferences, the next algorithms consider 

all proteins of the nine IC localizations as a whole. 

Protein ID 

Px 

•Pi 998 

A 999 

•f*2000 

•^2331 

^ 2 3 3 2 

^ 2 3 3 3 

-P3149 

Symbolic Presentation of The Features 

# * * 1 
> Small number of motifs (short transaction-like proteins) 

* * I 

innniinniinir*** 
* * * * * * * * * * * * * * * * * * * * * 

Large number of motifs 
representing around 330 
IC(chloroplast) proteins (long 
transaction-like proteins) 

* 1 
• • • \ Small number of motifs (short transaction-like proteins) 

* * J 

Figure 3.1: The length of proteins in the feature dataset where MinSup is appropri­
ate enough for all proteins to be expressed by at least one motif 

3.1.6 Dynamic Support-Feature Minimization 

At this point, we found out that some proteins own very rare or unique subse­

quences. In other words, they have no shared subsequences with other proteins. 

In order to prevent them from silence, the minimum frequecy of 1 or 2 is required 

in which an exploding number of subsequences are retrieved. The investigation in 

the dataset revealed that almost 10% of IC proteins (330 chloroplast proteins) con­

tain almost all the motifs of 5% support. Therefore, if MinS up is set to a value that 
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Silent Extracellular Proteins vs. Minimum Support Extracellular Long Motifs vs. Minimum Support 

MinSup (%) MinSup (%) 

Silent Intracellular Proteins vs. Minimum Support Intracellular Long Motifs vs. Minimum Support 

MinSup (%) MinSup (%) 

Figure 3.2: The effect of minimum support on the number of mined long motifs 
and silent proteins in EC and IC classes 

prevents silent proteins, the feature dataset looks like Figure 3.1 where chloroplast 

proteins are very long transactions with a lot of motifs. These long transactions 

are a serious problem in associative rule mining for classification and generate too 

many rules. To overcome this problem, the two-phase Algorithm 2 seems a possible 

solution. 

This algorithm is expected to decrease the number of motifs as well as the length 

of transactions. However, there are some drawbacks to the algorithm. First, two 

different MinSup's for the two classes make unequal situations for the two classes. 

Second, even if we accept this unequal situation, decreasing MinS up at each step 

results in mining more motifs to the extent that finally a tremendous number of 

motifs are extracted just to prevent silent proteins. Figure 3.2 shows a comparison 

of silent proteins and the number of mined long motifs for different MinS up values. 

Based on the experiments, even at MinSup = 0.5%, there are still 99 silent IC 

proteins although more than 46,000 motifs are extracted. 
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Algorithm 2: Dynamic Support - Feature Minimization 

input : MinSupEc, MinSupic 
1 (Initial minimum support for motifs of EC and IC proteins) 

output: features 

2 begin 
//Phasel (Finding the best values of MinSup for 
each class): 
foreach Class c e {EC, IC) do 

while There are silent proteins of class c do 
Decrease MinS upc by some step 
Mine frequent motifs among proteins of class c 

end 
end 
// At this point, it is expected no silent 
protein remains 
// Phase2 (Filtering motifs for each class 
separately): 
foreach Class c e {EC, IC} do 

Sort the list of motifs of class c in the increasing order of their 
coincidence degrees (Dicriminative motifs first) 
// Selecting most dicriminative motifs: 
From the begining of the sorted list pick motifs until all the proteins 
of class c are expressend (no silent proteins) and remove the rest of 
motifs 
Create the feature dataset of proteins of class c based on the selected 
motifs 
AvgLen <— Average length of transactions 
foreach Transaction-like protein p do 

if length of p < AvgLen then 
| Label p as short 

end 
else 
| Label p as long 

end 
end 
Decreasingly Sort the list of motifs based on the times they appear in 
short proteins (Motifs contributing to short transactions first) 
// Minimizing the length of transaction-like 
proteins: 
From the begining of the sorted list pick motifs until all the proteins 
of class c are expressend (no silent proteins) and remove the rest of 
motifs 

end 
30 end 
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Based on Figure 3.2, the fewer silent proteins, the more motifs. Hence, a com­

pressing data structure should be used to store motifs and the Id of their proteins in 

order for further processing. A "Trie" may be the best candidate of such a struc­

ture. "Trie" is a tree structure where the internal nodes hold alphabetic characters 

and the nodes of each level are alphabetically sorted. Trie is mainly used to store 

a dictionary of words with a fast search possibility. A path from the root to a leaf 

constitutes a word. In our case, if 'X' is a motif of length n, it corresponds to a 

node at level n. This node maintains the set 5 of IDs of the proteins that contain the 

corresponding motif. If 'Xa' is also a motif where 'a' is just a single character (one 

amino acid), the corresponding node contains set T of IDs such that T c S. Thus, 

the members of T should be removed from S to avoid repetitive information. In this 

way, lots of memory is saved. 

All of these problems motivate for alternative solutions to be considered. 

3.1.7 Dynamic Support - Rare Motif Detection 

According to our previous experiments, it was found out that some proteins do not 

contain frequent motifs, i.e.,remain silent. All their motifs are unique to them or 

very rare. These rare motifs can be considered important as they identify proteins 

with uncommon or specific patterns, probably with special properties. As we ex­

plained in the previous section, setting MinSup to small values for mining rare 

motifs is not appropriate as it makes normal proteins expressed with their frequent 

as well as rare motifs. Therefore, extra information will be produced. Algorithm 2, 

mentioned in the previous secion, can be simply modified such that frequent mo­

tifs and useful rare motifs are extracted separately. In this modification, an initial 

MinS up (to be the criterion of "frequentness") is given to each class and frequent 

motifs are mined. Then for each class, the proteins are separated into two sets: 

those that are expressed by the frequent motifs, S i and those that are not, 52- Now 

algorithm 2 is applied to all proteins, but of the newly generated motifs, only those 

representing at least one protein of set S 2 are kept and the rest are ignored. There­

fore, if a protein is already expressed by some motif, it is not re-expressed by newly 

mined motifs (with lower supports) and many useless motifs are filtered. 
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Figure 3.2 helps to set initial MinS up of each class. In an experiment, the initial 

MinSup of 4% and 10% were selected for motifs of EC and IC class respectively. 

In mining rare motifs, it was proven that the minimum absolute frequency of 2 is 

needed for some proteins to be expressed; otherwise, they remain silent. In this 

case, although rare motifs only from set S2 are supposed to be extracted, more than 

50,000 motifs with absolute support of 2 or more appear. 

3.1.8 Dynamic Support - Most Discriminative Frequent Motif 

To filter more motifs, the previous algorithm can be modified as follows: 

Of the different motifs that express a protein P, P has to pick only the motif 

with the highest score. Score can be frequency, length, or a weighted sum of them, 

etc . When a new motif is mined, all the proteins containing that motif compare its 

score with the score of the motif they have already had. A protein replaces its older 

motif with the new one if a higher score is obtained. 

This algorithm does not guarantee that the length of each transaction in the 

feature dataset is 1. For example, a protein Pi may contain motifs Mi and M2 but 

only M\ is its best motif. On the other side, M2 may be the best motif of another 

protein P2. Although P\ and P2 each select one motif, but in the end, since both 

motifs are kept in the mined feature set, Pi has to be also represented by M2. Due 

to this fact, long transactions still persist. A bigger problem is that silent proteins 

are avoided in return for decreasing MinSup to very small values. It causes some 

proteins to be only expressed by very rare motifs. Later, an associative classifier 

generates no rule to classify such proteins because it finds frequent rules based on 

frequent motifs. In the next section (3.1.9) we explain and solve this problem. 

3.1.9 N-Best (Longest) Motifs 

Since this project develops a classification model, and a classifier represents a gen­

eral (frequent) pattern of data, we could state that only general (frequent) motifs 

are needed. Although decreasing MinSup lessens the number of silent proteins, 

rare motifs cannot contribute to classification rules, which are frequently observed 

relations between data and classes. Later on, test proteins expressed by rare motifs 
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cannot be classified. We should adopt the fact that there is no frequent and long 

motif for some proteins (silent proteins) and rare long motifs seem useless at the 

end. On the other hand, we are interested in long motifs although frequent short 

motifs can express all proteins, as mentioned previously in section 3.1.2. These two 

ambitions (high length and frequency) are considered in the following approach: 

Input an integer N and only one desirable MinS up value (the same MinS up 

for both EC and IC). Throughout the algorithm, MinS up is never changed, but the 

length of the motifs to be mined decreases until no silent protein remains. Each 

protein is supposed to be expressed with at most N best motifs. Selecting the best 

motifs is based on a score that is defined as a function of length, frequency, number 

of occurrences in the other class, etc . The simplest way is to assign higher scores 

to longer motifs and if motifs are equally long, to those that are more discriminant 

(fewer occurrences in the other class). The details are shown in Algorithm 3. 

In this algorithm, proteins start selecting their motifs from the longest ones. 

Length is a good selection criterion because longer motifs may contain more infor­

mation than short ones. Moreover, "with the alphabet of only 20 amino acids, it is 

likely that very short subsequences will occur in sequences of both classes and such 

subsequences are non-discriminative with regard to classification" [36]. 

Based on this algorithm, a protein is marked as NeedingMotif when it is not 

yet expressed by N motifs. To find a setting for N, if it is set to 1, then only the 

proteins that are completely silent are marked as NeedingMotif. Experimentally 

we observed that all the proteins can be expressed by frequent motifs not shorter 

than 3. 

As compared to the previous algorithms, this algorithm has a more reliable strat­

egy to find discriminative motifs. Previously, coincidence degree of only 0 or 1 was 

assigned to motifs to indicate if it is discriminant. Then, motifs were filtered based 

on this degree. It sounds unfair because if a motif is very frequent in its own class 

and appears only once in the other class, it is considered as non-discriminent and 

is filtered while it should not be. Therefore, instead of 0 and I, the frequency of 

the motif in the other class is taken into account. In Algorithm 3, for each motif 

two frequencies related to each class are available, namely fEc and fIc. US is a 

29 



Algorithm 3: Dynamic Support - Feature Minimization 
input : MinSup,N 
output: Frequent Discriminative Feature Subsequences 

1 begin 
Mark all proteins as NeedingMotif 
foreach Class c e {EC, IC] do 

Len <- 10 
Set-Of-Subseq <— All subsequences S where length(S) > Len and 
frequency(S) > MinSup 
foreach Subsequence S £ Set-Of-Subseq do 

foreach Protein p of class c which contains S do 
if S can be among N best motifs of p then 
| p adds S to its set of N-best motifs; 

end 
if p is expressed by N motifs then 
| Mark p as Expressed 

end 
else 
| Mark p as NeedingMotif 

end 
end 

end 
Len <— Len - 1 
while There are still NeedingMotif proteins A Len > 1 do 

Set-Of-Subseq <— All subsequences S where length(S) - Len and 
frequency(S) > MinSup 
go to line 6 

end 
end 

25 end 
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frequent subsequence of EC class, the confidence of S is defined as the fraction of 

proteins containing S that belong to EC class: 

T PC 

confidence(S) — — — (3.1) 
JEC + fie 

and similarly for the motifs of IC class. 

When finding motifs of a class, motifs with confidence less than a given thresh­

old can be simply removed. This threshold is called MinConf (minimum con­

fidence) and can be inputted as another parameter. If MinConf is set to 100%, 

frequent motifs appearing only in one class (absolutely discriminative) are discov­

ered. 

The only problem that still remains, is the problem of long transactions as we 

have already explained. However, the extensive efforts in this research demonstrates 

that it is not wise to put more effort on controlling the length of transactions. In­

stead, some solutions to increase the ability of the associative classifier for handling 

long transactions should be explored. These solutions and techniques are elaborated 

in chapter 4. 

3.2 Discriminative and Frequent Partition-Based Sub­
sequences 

Previous section concluded with an approach to discover the most discriminative 

features based on only frequent subsequences or motifs. However, we believe that 

the presence of a subsequence in special partitions of protein sequences might be 

more discriminative than the subsequence itself. For example, "ACDE" may be a 

frequent subsequence among both IC and EC proteins, thus is not distinguishing. 

Nonetheless, "ACDE" may appear in the first half of EC protein sequences while in 

IC proteins it may occur in the second half of the sequences. Here the association 

of "ACDE" and its respective location along proteins is a discriminative pattern. 

Such a pattern is called "Partition-Based Subsequence", or in short PBS. PBSs are 

the generalized form of simple subsequences. Simple subsequences are the PBSs 

whose partition is the whole protein. 
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Since proteins highly differ in length, the partition should be defined relative 

to the length (partition-based) i.e.,a protein sequence is divided into 2, 3 or more 

equal partitions. The presence of frequent subsequences in different partitions is 

investigated. If protein sequences are assumed to be divided into P partitions, the 

presence of a subsequence S in the f th partition of proteins, where 1 < i < P, 

is denoted by S ,•//>. The problem is to find subsequences S with their partitions, 

i.e.,values for i and P, such that £,•//> is frequent and discriminative with respect to 

MinSup and MinConf. Note that i/P in S,y/> is not a fraction. For example, S1/2 

and S 2/4 are different. The former indicates the presence of S in the first half of 

proteins while the latter indicates the presence in the second quarter. Figure 3.3 

illustrates the difference. 

CDE FGH 

1/2 
1/4 2/4 

KLM NPQ 

2/2 
3/4 4/4 

Figure 3.3: Dividing the virtual protein CDEFGHKLMNPQ into 2 and 4 parts 
and the address of each partition. Trivially location 1/2 and 2/4 are not the same; 
Neither are 2/2 and 4/4. 

In other words, our approach looks at a partition of 100%, then two partitions 

of 50%, then three partitions of 33% and so on. To explain the algorithm of mining 

PBSs, a Partition-Frequency Table of a subsequence S should be defined first. In 

this table, the P'th row is an array of length P. The value in row P and column i 

indicates frequency(S ,-//>). The first row of this table shows the frequency of subse­

quence S where each protein is considered as only one sequence (no partitioning). 

The last row of this table is related to partitioning proteins to a maximum number, 

namely MaxPart, which is given by the user. If MaxPart is chosen to be 3, for 

example, each frequent subsequence possesses a Partition-Frequency Table which 

is filled as Figure 3.4 illustrates. 

After this table is filled with frequencies, the partitions with enough frequency 

make a frequent PBS. Filling in any slot of this table for all frequent subsequences 

is a complex task. However, there is no need to fill in the whole table. Indeed, 

if processed top-down, some partitions can be ignored if their subsuming partition 
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frequency{S) 
frequency(S 1/2) 
frequency (S1/3) 
frequency(S\/4) 

frequency(S 2/2) 
frequency(S 2/3) 
frequency(S 2/4) 

frequency(S 3/3) 
frequency(S 3/4) frequency(S 4/4) 

Figure 3.4: Partition-Frequency table of a subsequence S where partitioning pro­
teins to 1, 2, and 3 is investigated (MaxPart = 3) 

0 1 

1 2 
! 1 * • • • 

Protein Sequence 

1 • * • • 

2 

Partition i 
t ^ ~ 

i-1 
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Partition j 

/P 
^ 
i 

1 

/Q 

"igure 3.5: Illustration of Equation 3.2 

Q 

already indicates infrequency. For example, partition 1/2 (first half) encompasses 

partition 2/4 (second quarter). Therefore, if a subsequence S is not frequent in 

the partition 1/2, it cannot be frequent in partition 2/4. Assuming that Syp is not 

frequent, S J/Q is also infrequent for all smaller partitions j/Q that: 

i — 1 / — 1 / i 
Q>P And < And — < -

P Q Q P 

(3.2) 

The partition j/Q is totally included in partition i/P and is called a sub-partition 

of i/P. Figure 3.5 illustrates Equation 3.2. 

During the filling of the table, after a frequent PBS Si/P of class C is found, its 

occurrence in the proteins of the other class is counted and then its confidence is 

computed similar to Equation 3.1. If the confidence is less than a MinConf, the 

PBS is considered non-discriminative and is removed. In case that St/p reaches 

the confidence of 100%, there is no need to fill in the sub-partitions of i/P in the 

Partition-Frequency table of S. Because if j/Q is a sub-partition of i/P, then 

the confidence of S J/Q is also 100% while its frequecy is less than or equal to 

frequency(Si/p). Therefore, the sub-partitions of i/P are less informative. This 
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way, partitions are dynamically determined, and MaxPart is only an upper bound 

for the partitions. 

Because of the large number of frequent discriminative PBSs, and to reduce the 

number of features, each protein is restricted to pick only N number of best PBSs 

that match with it. If a PBS is not selected by any protein, it is removed. For 

selecting its N best features, a protein ranks its PBSs based on different metrics. 

In our approach, confidence, length and frequency are respectively the primary, 

secondary and final ranking metric. For example, between two PBSs with equal 

confidence, the longer one has a higher rank. Other metrics and priorities can be set 

by the user depending on the importance of feature properties. 

Algorithm 4 is a summary of what was discussed. If MaxPart is set to 1, 

i.e.,proteins are considered as only one partition of 100%, the algorithm works 

similar to Algorithm 3, explained in the previous section and only frequent sub­

sequences regardless of partition are mined. However, there is a small difference 

in the selection of N-best motifs. In Algorithm 3, the longer a protein is, the more 

important it is to be selected by proteins. But in Algorithm 4, the priority is with 

the most confident motifs as explained above. Experimentally, Algorithm 4 finds 

better feature motifs in the case of maxPart - 1 than Algorithm 3. 

As an advantage to our previous algorithms, this algorithm considers that ex­

pressing test proteins is more important than expressing training proteins. If a test 

protein remains silent in the resulted feature space, no rule can classify that protein 

because rules are made up of features. We observed that some good features are 

mined that can express a test protein P, but they are not among the N-best features 

of the training proteins. Moreover, none of the N-best features of the training pro­

teins express P. In such frequent cases, P remains silent if the N-best features of 

only the training proteins build the feature space. Hence, each frequent and discrim­

inative PBS, which is mined only based on the training proteins, is also given to the 

test proteins matching with it. A test protein keeps that PBS if the PBS is among 

the N-best features of the protein. Line 20 of Algorithm 4 is where this happens. 

When proteins select their discriminative and frequent features, a union of PBSs 

of all the training (EC and IC class) and unlabelled test proteins is made, and then 
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Algorithm 4: Mining frequent and discriminative PBSs 
input : MinS up, MinConf, MaxPart, N 

1 // MaxPart is the desired maximum number of 
partitions 

2 // Each protein is to be expressed by at most N 
motifs 
output: Frequent Discriminative PBSs 

3 begin 
foreach Class c e {EC, IC} do 

Set-Of-Subseq <— All subsequences S in class c with 
frequency > MinS up 
foreach Subsequence S e Set-Of-Subseq do 

Create Partition-Frequency table of S; (partition proteins up to 
MaxPart partitions) 
/ / T h e f o r m u l a 3 . 2 i s u s e d t o d e t e c t 
n o n - f r e q u e n t p a r t i t i o n s b e f o r e h a n d 
foreach Frequent Partition i/P in Partition-Frequency table do 

Count frequency's t/p) in the other class; 
Compute confidence(S UP); / / U s e e q u a t i o n 3 . 1 
if confidence's UP) < MinConf then 

/ / I t i s n o t d i s c r i m i n a t i v e enough 
RemoveS,//-; 

end 
end 

end 
/ /A t t h i s p o i n t a l l f requent d i s c r i m i n a t i v e 
PBSs of c l a s s c a r e a v a i l a b l e 
foreach PBS Si/P (just mined) do 

foreach Protein p € {classc U testdata) which contains S in its 
i/P partition do 

if 5 i/p can be among N best motifs of p then 
| p adds S i/p to its set of N-best motifs 

end 
end 

end 
end 

27 end 
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proteins are represented by the PBSs from the union set with which they can match. 

The feature dataset will be in the form of a transactional dataset. Afterwards, test 

proteins that are still silent request for reconsideration. In the reconsideration pro­

cess, a silent protein gets expressed by the PBSs from the union set that it can par­

tially match. Test protein T is said to partially match with £,•//> if it cannot match 

with this PBS but there exists a subsequence S' such that T and S'j/p can match and 

EditDistance(S, S') = 1. Edit distance [11] is an appropriate metric for measuring 

the amount of difference between two strings. Edit distance of 1 implies that 5 ' is 

made by inserting a character to or deleting a character from S or by substituting a 

character in S with another character. For example, if S - ABCD, S' is ABFCD, 

ABD, AB1D or ... where '?' is a don't-care. More explanation about edit distance 

is given in Section 4.2. According to our experiments, reconsideration reduces the 

number of silent proteins by more then 10%. 

The reason we chose the edit distance of 1, and not more, is that frequent sub­

sequences are not very long. Roughly, their length varies from 3 to 10 in general. 

With the above notation, Billowing more edit distances may lead to subsequences 

S' that are no longer similar to the original subsequence S. More importanly, re­

consideration is an expensive task and becomes more complex if the higher edit 

distances are allowed. Our current approach for reconsideration includes creating 

all subsequences S', for all PBSs Syp, and then checking all silent proteins if they 

can match any S' in their i/P partition. As the length of S or the number of silent 

proteins increase, more comparisons should be made. 
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Chapter 4 

Associative Classification for Protein 
Localization 

As the previous sections explained, the output of the feature extraction phase is 

a transactional feature dataset. Different algorithms can be used to learn protein 

localizations and classify unseen proteins to EC or IC localizations. However, a 

classifier with interpretable output model is prefered. Moreover, if the accuracy of 

such a classifier is high, two worthwhile goals are achieved: First, an accurate clas­

sification model is found to predict the location of new unknown proteins. Second, 

it can be inferred that a good selection of discriminative and descriptive features 

of EC and IC proteins have been discovered. Although each transactional dataset 

can be converted into relational format, it is better for the classifier to work with 

transactional data since our feature datasets are originally transactional. If those 

feature datasets are transformed to relational format, all the attributes become bi­

nary (presence or absence of features). If such a dataset is n-dimensional, each 

protein becomes a corner of the n-dimensional unit hyper-cube in the feature space. 

Such data is very unlikely to be linearly or even easily separable and many classifi­

cation algorithms may fail. 

Among different learning methods, associative classification is a good algorithm 

that learns from transactional data. Beyond its ability to generate confident and 

interpretable rules, the associative classifier has another advantage. Unlike many 

classifiers such as artificial neural networks [24] or SVM [27], it does not need 

delicate or complicated parameter settings. It takes in a few tangible parameters 
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MinS up (minimum support of rules), MinConf (minimum confidence of rules) 

and optionaly, the length of rules (MinLen and MaxLen). 

An associative classifier [22, 26] integrates methods for association rule min­

ing and classification. The input is a transactional dataset and the output is a set of 

frequent and confident associative rules of the form X => C, where X is a frequent 

itemset (in our case, a set of motifs or PBSs) and C is a cell location. Thus, finding 

classification rules for a class C includes discovering frequent itemsets X with a 

support greater than a threshold (MinS up), and then pruning rules based on a con­

fidence threshold (MinConf) and some other criteria. Support of a rule X => C is 

the fraction of proteins from class C that can match X. The confidence of this rule 

is similar to Equation 3.1. 

Localization rules can be of different lengths. The length of a rule is reffered 

to the size of feature set X, i.e.predicate of the rule. Therefore, each subsequence-

based motif by its own is a rule of size 1. For example if "KLMN1/2" is a frequent 

PBS of EC proteins with 80% confidence (with the definition of confidence for 

motifs), it produces the rule "KLMN1/2" => EC, conf = 80%. However, the reason 

we use associative classifier on the feature dataset is to find more confident rules. 

The frequent associations of items can generate longer rules with higher confidence 

than that of each individual feature. 

4.1 Building Associative Rule Classifier (Training Phase) 

In association rule mining, discovering frequent itemsets is a preliminary task whose 

processing complexity depends on the length of transactions and the number of 

items. As transactions get longer while the number of items in that dataset is not 

large, items and possibly their different associations repeat in many transactions. 

Hence, many frequent itemsets of different lengths may be mined. In these cases, 

mining itemsets takes very long time and the itemsets may not be stored or managed 

in a limited memory. Therefore, the classification algorithm should take serious care 

of memory management in the case of long transactions. 

During our study, we obtained many feature datasets with long transactions. For 
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example, in one of the average size feature datasets of our experiments, the transac­

tions representing proteins averaged a length of 55. Almost 10% of the transactions 

had a length between 350 and 550 PBSs, which is remarkably long, and almost 88% 

are represented by transactions of length around 25. The histogram of transaction 

lengths of this feature dataset is shown in Figure 4.1. In such situations, so many 

frequent itemsets (potential rules) are mined that the classification algorithm has 

to consider effective means of selecting appropriate rules. Moreover, before rule 

pruning, excessive memory is required. 

Histogram of Length of Transactions 
in a Feature Dataset 

25 75 125 175 225 275 325 375 425 475 525 575 

Transaction Length 

Figure 4.1: The histogram of the length of transactions in our best feature dataset 
on which we coud make the most accurat classifier 

A discovered frequent itemset X from a class C directly corresponds to the rule 

X => C. As explained in the Algorithm 5, each frequent itemset is potentially 

abridged, then the rule confidence is used to prune those rules that are less confident 

than MinConf. Other pruning strategies can be applied too. Each of the mentioned 

steps in mining proper rules is explained in the following sections. 

4.1.1 Mining Frequent Itemsets 

To mine frequent itemsets, we first tried one of the fastest and most efficient imple­

mentations of association rule mining by Borgelt [7]. Nonetheless, since the Apriori 

algorithm [30] is based on a breadth-first search of the itemset lattice, it needs much 

memory. All nodes of search tree at a level n, which are length-n itemsets, need to 
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be stored in main memory to be expanded later in the next level to generate length 

n + 1 itemsets. As the length of itemsets increases, the amount of required memory 

increases almost exponentially until the itemsets cease to grow due to their large 

length and lack of frequency. In our case, the Apriori algorithm lacked memory1 

and failed in the middle of mining itemsets of length more than 5. 

An alternative to the Apriori algorithm is Eclat [25], efficiently implemented by 

Borgelt [7]. Eclat mines frequent itemsets by the depth-first search of the itemset 

lattice. The efficient Eclat code by Borgelt, which is used in our research, utilizes a 

bitmap vertical layout of the transactions, i.e.,a matrix in which each row is related 

to an item and each column is related to a transaction ID. Ones and zeros in each 

row and column intersection indicate whether or not the item of the row exists in 

transaction of the related columns. Figure 4.2 shows an example of this layout. In 

this layout, the frequency of each itemset is simply computed by "and"ing transac­

tion lists. For example, the output of "and" operation on the binary list of B (0110) 

and E (0011) is 0010 which expresses the absence of itemset {B, E} in transactions 

1, 2 and 4, and its presence in transaction 3. 

Item 

A 
B 
C 
D 
E 

Transaction IDs 
#1 

1 
0 
1 
1 
0 

#2 

1 
1 
0 
0 
0 

#3 

0 
1 
0 
1 
1 

#4 

1 
0 
0 
0 
1 

(b) Bitmap Vertical Layout 

Transaction ID 

#1 
#2 
#3 
#4 

Items 

A, C,D 
A,B 

B,D,E 
A, E 

Figure 4.2: Two layouts of storing transactions. The bitmap vertical layout is used 
in Eclat 

4.1.2 Abridging Itemsets 

Itemsets could be redundant and abridging some itemsets can be helpful. Abridging 

consists of eliminating from an itemset any item that is already represented and 

implied by another item in the itemset. In our context, items are features, i.e.,PBSs. 

'On a public local machine, in the Department of Computing Science, University of Alberta, 
with 8GB main memroy 
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Algorithm 5: Building of Associative Rule Classifier 
input : minS up, minConf, minLen, maxLen 
output: Set of localization rules 

begin 
DataS etgc <- All EiC proteins from feature dataset 
DataS et[c <— All IC proteins from feature dataset 
foreach class c e {EC, IC} do 

RuleSetc <— {} 
//Rules that imply class c will be stored in 
RuleS etc 

while Eclat finds next Frequent Itemset X with parameters minS up, 
minLen, maxLen do 

X <— Simplify the itemset X 
if (X => c) $. RuleSetc then 

Compute frequency0{X): frequency of X in the Other 
DataSet 

frequency C(X) 
r J v f frequencyc(X)+frequency0(X) 

if Conf(X => c) < minConf then 
I Prune the rule. 

end 
else 

Try other pruning techniques. 
\i Not pruned then 
| Add (X => c) with its confidence to RuleS etc 

end 
end 

end 
end 

end 
24 end 

41 



F\ is a subfeature of F2 (F2 is called super-feature) and is written F\ < F2 if and 

only if all the proteins that match Fi, also match F2. For example, iiJKLM"i/4 < 

"KL"\/2: a protein containing "JKLM" in its first quarter has trivially contained 

"KL" in the first half. 

The definition of sub-feature is as follows: 

Tj/Q < Si/p <=> S is a subsequence of T, arid partition i/P surrounds partition 

HQ, i.e.,(refer to Equation 3.2, previous chapter) 

i—\ /—l i i 
0>P And < - And —<-

P Q Q P 

Therefore, if the predicate of a rule contains two motifs M\ and M2 where M\ < 

M2, the rule is abridged by removing M2. For example 

"KL"U2, "JKLM"U4 => EC is simplified to "JKLM"U4 =̂> EC. 

Abridging should be done iteratively to the rule until no pair of motifs or PBSs 

in the rule is found with one the sub-feature of another. For example, the 4-itemset 

{"KL", "KLM", "EF", "CDEF"} should be abridged to the 2-itemset {"KLM", "CDEF"}. 

Line 8 of Algorithm 5 runs this process. Abridging decreases the number of rules 

dramaticly since there are many rules that can be simplified to a specific rule, and 

only one copy of that short rule is stored. 

Given two motifs TV and M, learning whether TV" is a sub-feature of M is linear 

in terms of the length of motifs. However, this linear comparison can be faster (in 

constant time) using hash functions. To do so, after all features are mined, each 

motif is mapped to the set of all its sub-features using a hash map. Moreover, to 

store the set of sub-features of a motif, a hash set is used. Therefore in the hash 

map, keys are motifs and values are the hash sets. To compare whether N < M, M 

is searched in the hash map and its hash set is accessed in constant time. Then the 

availability of N in the retrieved hash set is checked in 0(1). Therefore, this data 

structure helps to check the sub-feature comparison in constant time. This strategy 

speeds up the execution when hundreds of thousands of raw frequent itemsets are 

generated that need to be abridged and filtered. 
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4.1.3 Computing the Confidence of a Rule 

As we explained earlier, the confidence of X => C, where X is an itemset, depends 

on the frequency of X in both classes. The frequency in class C is available as soon 

as X is mined as a frequent itemset of class C. The important issue is counting its 

frequency in the other class. For fast and efficient computation of this frequency, 

the following approach is used: 

1. All the features, e.g.,frequent subsequences or PBSs, should be assigned 

numerical IDs. Then instead of representing a protein by its features, the 

protein is represented by the IDs of its features. In this way, the feature 

dataset looks like transactions of numerical items. 

2. Items (i.e.,feature IDs) in each transaction (i.e.,protein) are sorted in increas­

ing order. 

3. Transactions of each class are inserted into two Trie structures, namely Trie{EC} 

and TrietfC}. As we explained in Section 3.1.6, a "trie" is a tree structure in 

which the internal nodes of each level are sorted. The main property of trie is 

its fast search feasibility. In our case, the internal nodes of the trie store the 

items. The direct path from the root to a leaf node is equivalent to an itemset. 

For computational efficiency, the number of leaves of the sub-trie rooted at a 

node m is also stored in node m. 

4. Whenever an itemset X of class C is generated, we sort X in the increasing 

order of its items. 

5. Find all the nodes N of Trie{other class] that match the first item in X. 

Rooted at nodes N, traverse (Depth-First) the sub-tries to find the matches 

with X. Whenever X matches the trie at a node m, the algorithm counts the 

number of leaves of the sub-trie rooted at node m (which is stored in node 

rri) and stops traversing deeper down the node m, and tries matching X with 

other branches. For fast finding of Nodes N, which match the first item of X, 

we use a list, called header list, which contains all the items in the trie. By 
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following the pointers from an item / in the header list, we can find all the 

occurrences (matches) of item / in the trie. Making these pointers is simply 

done when the trie is being constructed. 

Localization 
IC 
IC 
IC 
IC 
IC 
IC 

Transaction 
1,2 
1,3 
3,4 

3,4,5,6 
3,4,5,7 

3,5 
(a) Feature dataset of IC proteins 
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r 

L
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t 

1 
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J 
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7 

(b) Trie(IC} 

Figure 4.3: The Trie representation of IC protein transactions 

Figure 4.3 shows how a trie represents IC transactions {Trie{IC}). Suppose 

X = {3,5} is a frequent itemset of EC proteins. To obtain the frequency of X among 

IC proteins, the two nodes of Trie{IC} containing the value 3 are identified first. 

Of those two nodes, the leftmost one cannot make a match, but the other node can 

make two matches at the nodes containing value 5. One of those two nodes with 

value of 5 has 2 leaves in its downward sub-trie and the other one has just 1 leaf. 

Therefore, the total occurrence of X in Trie{IC} is three, and now the confidence of 

{3,5} => EC can be easily computed. 

4.1.4 Pruning the Rules 

The minimum confidence requirement (minConf) prunes many rules and lets only 

confident rules remain. However, the number of confident rules is still large and 

some other pruning techniques are required, as line 16 of Algorithm 5 suggests. 

These techniques are as follows: 

1. If the confidence of a rule, X => c, reaches 100%, any expansion of its predi­

cate results in a rule with 100% confidence too, i.e.,IU Y => c, conf = 100%, 
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where X and Y are two disjoint itemsets and c is a class label. The reason is 

clear: all proteins matching the second rule, can also match the first rule, and 

the first rule 100% guarantees them to be in class c. In this case, keeping the 

first rule suffices, and any other expanded rule is not useful. This technique 

prunes many rules especially in Eclat with the depth-first search of the item-

set lattice, because expansion of a rule falls in the deeper levels of lattice, and 

Eclat can stop going deeper in the recursion path as soon as it finds a 100% 

confident rule. 

2. If R is a rule with confidence conf, all the sub-rules of R with confidence less 

than conf should be pruned. Ri is a sub-rule of R2 (R2 is called super-rule) 

and is written Rr c R2 if and only if any protein that matches R\ can also 

match R2 (i.e.,/?2 is more general), further, Ri and R2 should imply the same 

class. In other words if Ri is: 

n\,n2,... rii =» C with conf = a 

and R2 is: 

m\,m2,...nij => C with conf = /? 

Then Rx E R2 if and only if: 

(a) i > j , i.e.,the length of a sub-rule can not be less than that of its super-

rule. 

(b) For each item nib (I <b < j), there must be an item na (1 < a < i) such 

that na < nib. i.e.,at least one sub-feature of each nib must be found in 

the sub-rule. 

If a < /3 then R2 is much worth keeping as a more general rule than R\, and 

7?i should be removed. In this case, R\ is called the removable sub-rule of R2. 

For example suppose 7?i is: 

"JKLM"2/4,'TQRST"4/5 =$ EC with conf = 60% 

and R2 is: 

"KL"i,2 => EC with conf = 90% 
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Rx should be removed and R2 kept because "JKLM"2/4 < "KL"l/2. 

When a new rule is to be added in a rule set, this rule has to be compared to 

all the older rules. Any older rule that is a removable sub-rule of the new rule, is 

removed. If the new rule is a removable sub-rule of any older rule then it is not 

added to the set. The data structure used for this rule set is also a Trie similar to 

Figure 4.3. 

4.2 Evaluating Associative Rule Classifier (Testing Phase) 

Given an unknown protein P, a rule can match P when the antecedent of the rule 

applies for the features representing P. The rules that match P localize the protein 

as EC or IC. To decide between the two classes, there are different possibilities. One 

option is to find the rule with the highest confidence, and the predicted class of the 

test protein is the class of that rule. There is a drawback to this selection: the effect 

of other rules is ignored. For example consider Figure 4.4. Although the first rule 

indicates that 90% of proteins that contain feature 1 are IC, the association of 1 with 

2, 3, 4 or 5 is something that happens in EC proteins in more than 80% of the cases 

(based on the EC rules), which is exactly what is seen in the test protein. Hence, it is 

more reasonable to classify the protein as EC rather than IC. Nonetheless, with the 

most confident rule, a different classification is made. As an alternative, the average 

confidence of the matching rules of each class can be considered. The class with 

the highest average of confidences is assigned to P. There is an exceptional case 

for which confidence averaging is not used. Whenever a rule with 100% confidence 

matches the test protein P, the class label of that rule is assigned to P as long as there 

is no other 100% confident rule of the other class. The reason is that 100% confident 

rules exhibit unique facts (derived from the training samples) about proteins of a 

class that is never met in the proteins of the other class. 

In a few cases, a test protein cannot match any rule from any class. Moreover, 

there are cases that a test protein is equally classified as both EC and IC. The latter 

happens mainly when there are EC and IC rules with 100% confidence, and both 

can match and classify the test protein, or when the confidence averages are the 
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Test Protein: {1,2,3,4,5}, class =? 

Matching Rule 
1 =>/C 

2,3 => IC 
3,4=>/C 

1,2,3 =>EC 
1,2,4 => EC 
1,5=>£C 

Confidence 
90% 
71% 
68% 

85% 
88% 
86% 

Figure 4.4: An example of a test protein and the localization rules matching the 
protein 

same. It should be noticed that the confidence of 100% of a rule is obtained only 

based on the training data. Hence, it is possible that a test protein of the opposite 

class, which is not seen before, contradicts such a rule. We call such test proteins 

Undecided. In order to determine a label for undecided proteins, there are two 

strategies: 

1. Undecided proteins are de-facto classified as IC, the majority class. This is 

the simplest decision. 

2. Undecided proteins are classified by another classifier. This classifier is called 

secondary and associative classifier is called primary. 

In this work, we use Nearest Neighbor (NN) classifier as the secondary predictor 

for classifying only around 20% of the proteins that are undecided. NN is a simple 

algorithm with no input parameter, and is in accord with our goal to achieve an in-

terpretable model because its classification is nothing more than detecting proteins 

with similar sequences. 

In NN classifier, the distance of an unknown test protein P to all of the labelled 

proteins of the training data is computed. The class label of the closest protein is 

assigned to P. Edit or Levenshtein distance [11] is the distance measure used by our 

NN classifier. Edit distance for measuring the difference of two strings has appli­

cations in structural or functional studies of biological sequences, textual database 

retrieval, spelling correction algorithms, etc . This distance is defined as the min­

imum number of edit operations required to transform one string to the other. The 
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permitted operations are insertion, deletion, or substitution of a single character. 

Edit distance for the difference of two protein sequences is a more realistic metric 

as the mentioned operations are equivalent to mutations that happen through bio­

chemical processes. Figure 4.5 partially shows two extracellular protein sequences 

found in radish. They are very similar and seem to be originated from a same se­

quence but with a few mutations in their composition: 

MAKF A SIf VAl LLF A ALV V FAAFEAPT V VEA r^ KLCERSSGTWSGVCGNNN. 

M AKF ^VJS I^JTJ LLF^vjALVl^ FAAFEAPT \M) VEA[ojKLCERSSGTWSGVCGNNN .. 

Figure 4.5: Two similar extracellular proteins that are mutated from a same se­
quence. 

In Chapter 5, it is demonstrated that the second strategy (i.e.,NN) works better 

than the first one (i.e.,majority class). 

One might ask why not using NN classifier overally instead of having it as 

the secondary classifier? The answer is that computation of edit distance is an 

expensive task with the time complexity of 0(mn) where m and n are the length of 

input sequences [11]. When sequences are proteins, m and n are very large and edit 

distance computation takes much time. To depict this cost, the construction of edit 

distance matrix for the 3149 proteins of our dataset took more than 2 days on a very 

strong machine with the following specifications: 

• dual CPUs - Quad core (for 8 processors) 

• 32 GB of memory 

Our experiments show that the primary classifier, i.e.,associative classifier on 

the PBS-based feature dataset, classifies 79% of the test data in a short time. There­

fore, the need for using the secondary classifier remains for only 21% of the data 

and the total classification is done in a reasonable time. 

Even if we consider no limit in computation time, using NN as the overall clas­

sifier is not a good alternative. Experiments demonstrate that the combination of 

the primary and secondary classifiers results in a more accurate model with almost 

6% rise in the F-Measure than using NN alone. 
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Chapter 5 

Experimental Results 

In this chapter, we evaluate our models for predicting subcellular localization and 

demonstrate the discriminative power of partition-based subsequences. The main 

classification algorithm that has been the focus of this work is the associative clas­

sifier. However, because of the growing interest in SVM and its strong ability to 

classify high dimensional data, we compare our results with those of SVM. Deci­

sion tree classifiers, generating a human readable and interpretable model, are also 

studied. 

5.1 Dataset and Evaluation Methodology 

We performed our method on a plant protein dataset from the Proteome Analyst 

Project [46] at the University of Alberta. The dataset is constructed from SWISS-

PROT. After cleaning the data, i.e.,removing repetitive or defective proteins which 

contain nonexistent amino acids, 3,149 proteins remained. The portion of EC pro­

teins is only 4% of the data which shows the severe imbalance in the data. 

To evaluate the performance of classifiers, Overall Accuracy is often used. 

However, this is usually inappropriate particularly with imbalanced data. In our 

case with 96% of proteins being IC, a classifier that always classifies as IC achieves 

the overall accuracy of 96% while no EC proteins are correctly classified. Instead, 

we chose precision, recall and F-measure with respect to EC (i.e.,the target class). 

These three measures are commonly used in this field of research. Using them in 

our work allows easier comparison with the related approaches. We did not choose 
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graphical measures such as cost curves [10] because they are more complex and 

dependent on the misclassification costs. 

Based on the confusion matrix shown in table 5.1, Precision(P), Recall(R) and 

F-Measure (a harmonic average of precision and recall) of EC prediction are defined 

as: 

P = 
TP 

TP + FP' 
R = 

TP 
TP + FN' 

F Measure = 
2PR 

P + R 

Predicted as EC 
Predicted as IC 

Actually EC 
TP 
FN 

Actually IC 
FP 
TN 

Table 5.1: Confusion Matrix 

To have a more reliable evaluation, all the feature extraction and classification 

experiments are based on a 3-fold cross validation. The dataset is initially shuffled 

and divided into three equal parts (folds) such that the distribution of EC and IC 

proteins in the three folds agree. Each run takes two folds for training and the other 

fold for testing. After the features are extracted from the training proteins, both 

test and training proteins are represented by the set of mined features. Then, by 

training a classifier on the training data, the prediction model is evaluated on the 

test data. In the end, the F-Measures from each of the three runs are averaged as the 

EC prediction accuracy. To have a fair comparison, exactly the same folds are used 

in all the experiments, also with SVM and decision trees. 

5.2 Mining Frequent Partition-Based Subsequences 

Mining frequent PBSs depends on the parameters N, MinConf, MinS up, MaxPart 

and MinLen. A proper setting for these parameters should prevent silent proteins, 

i.e.,proteins not expressed by any of the mined features. Test proteins are more 

important not to be silent than training proteins. If a test protein is silent, it can 

never be classified by any rule, and becomes the zero vector 0 in the n-dimensional 

feature space. 
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The following shows the setting of the parameters: 

• TV = 1: Each protein selects its top best PBS. Larger values of N result in a 

longer transaction in the feature dataset and make classification harder. 

• MinConf = 50%: If the confidence of a PBS is less than 50%, it is useless 

because instead of being a frequent pattern in its own class, it is more frequent 

in the other class. 

• MaxPart = 10: MaxPart is initially set to 10, which means considering a 

protein as a partition of 100%, 2 halves, 3 thirds,... and 10 partitions of 10%. 

Further experiments are done in Section 5.4 to show the effect of partitioning 

on the prediction. 

The setting of MinLen and MinS up is more difficult because they are the most 

sensitive parameters. The longer a motif, the more discriminant but less frequent. 

For example, assume si -= ACD and s2 = ACDEFGHJK are frequent subse­

quences of a class C. A random protein sequence is more probable to contain s\ 

than s2, thus ^i is expected to be more occurring in the other class than s2. Similarly, 

the frequency of s\ in class C is likely to be higher than that of s2. Hence, longer 

motifs are generally more confident. They also convey more information and are 

preferred. On the other hand, silent proteins cannot be completely avoided unless 

MinLen is set to 4 (Figure 5.1). 

About MinS up, the larger it is, the more frequent and meaningful patterns are 

discovered but more silent proteins are observed in that not all proteins have fre­

quent features. In short, a proper setting for MinS up and MinLen should result in 

longer motifs and less number of silent proteins. 

We considered the values 0.2%, 0.5%, 1 to 5% for MinS up, and values 4 to 8 for 

MinLen. As we explain in this section, a combination of these settings to generate 

high quality PBSs is investigated. Note that the length of motifs is forced to be less 

than 100 and the minimum frequency of a motif is not less than 2, i.e.,if motifs of a 

class C with N proteins is to be mined, then MinFrequency = Max(2, MinS up*N). 

For a certain MinLen, with lower minimum supports, more features are gener­

ated and less silent proteins are seen. Moreover, longer motifs find the chance to 
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show up since their frequency (support) is generally less. Figure 5.1 and Figure 5.2 

show the influence of MinSup on the number of silent proteins and the length of 

mined motifs. The MinS up of 0.2% seems the best at which less silent proteins and 

longer motifs are observed. 

2 3 

MinSup (%) 

Figure 5.1: The influence of MinS up on the number of silent proteins of test data 

5> 22 

Figure 5.2: Average length of subsequences for different MinSup values where 
MinLen = 3 

The support of 0.2% is considered low and if MinLen is going to be small too, 

then the features will not be discriminative enough. The reason is that although the 

PBSs are around 100% confident, the confidences are measured only based on the 

training data, and for shorter subsequences it is likely to occur in some previously-
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unseen test protein of the opposite class, while it is not the case for long motifs. 

Thus, at MinSup of 0.2%, higher MinLen should be chosen. 

Table 5.2 demonstrates that increasing MinLen has an influence on decreasing 

potentially undecided test proteins. A test protein is called potentially undecided if 

it is represented by at least two features, one from EC and one from IC class. Later 

in the classification, such a protein is possible to be classified as both EC and IC, 

and becomes undecided. With the hidden labels of test proteins, this measure is a 

good indicator of how discriminative the features are when they come to the scope 

of test data. According to Table 5.2, a minimum length of 7 and 8 prevents from 

potentially undecided proteins. Between these two lengths, MinLen = 7 is selected, 

for which less silent proteins are observed (refer to Figure 5.1). 

MinSup = 0.2% 

Potentially Undecided Proteins 
of Test Data 

MinLen 
4 

6.35 % 
5 

1.08% 
6 

0.51 % 
7 

0.06 % 
8 

0.00 % 

Table 5.2: The decrease of potentially undecided test proteins when MinLen in­
creases 

This selection of parameter values is feasible without the need to know the labels 

of test proteins. Later in the next section, when the class labels of test proteins are 

uncovered, we experimentally prove that no other setting than MinSup = 0.2% 

and MinLen - 7 can lead to a higher accuracy (F-Measure). With these parameter 

values, on average, 864 PBSs are mined only 39 of which are for EC class. 

5.3 Classification Algorithms and the Prediction Model 
Evaluation 

A combined model of associative classifier and first nearest neighbor (INN) clas­

sifier creates our main model. To have an understanding of how well our proposed 

algorithm works, the results of the following classifiers on the same data are com­

pared with our model: 

• Associative classifier, where undecided proteins are classified as IC, 

• INN classifier, 
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• SVM classifier, 

• Decision Tree, 

• Combination of SVM and INN, 

• Combination of decision tree and INN. 

5.3.1 INN Classifier 

INN is known as lazy classifier which needs no training. With edit distance as the 

distance measure, each test protein finds the closest protein sequence of training 

data. The localization label of that protein is chosen to localize the test protein. The 

result of this parameterless classifier is as follows: 

Average Recall (%) 
88.22 

Average Precision (%) 
87.58 

Average F-Measure (%) 
87.83 

Table 5.3: Evaluation of INN classifier. 

As discussed in Section 4.2, this classifier solely is computationally expensive. 

The run time of this classifier, i.e.,the computation of the edit distance matrix of the 

proteins, took almost 50 hours. 

5.3.2 Associative Classifier 

Associative classifier should first mine frequent itemsets from the transactional fea­

ture dataset. For this mining, an efficient, publicly available implementations of 

Eclat algorithm [7] is used. Eclat uses a depth-first traversal of the itemset lattice. 

After rules are generated and classification begins, undecided proteins are classified 

as IC, which is the major class. 

Generally, the accuracy of the associative classifier depends on parameters MinS up* 

and MinConf*. The star over the name of these parameters is to distinguish them 

from the MinS up and MinConf used for feature selection. In our case where PBSs 

are highly confident (around 100%), very confident rules (around 100%) are gen­

erated from the PBSs. Thus MinConf* seems not affecting the prediction accu­

racy. In our experiments, the different MinConf* settings of 50%, 70% and 90% 
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50% < MinConf < 90% 
MinSup* (%) 

Undecided (Classified as IC) (%) 
F-Measure (%) 

0.2 
21.76 
80.04 

1 
72.35 
80.28 

2 
81.33 
80.28 

3 
84.09 
80.28 

4 
87.33 
79.24 

5 
89.08 
66.68 

Table 5.4: F-Measure and the rate of undecided proteins in single associative clas­
sifier. 

have been tried but the same results have been obtained. Table 5.4 compares the 

F-Measures at different supports. 

Based on Table 5.4, the best F-Measure, 80.04%, is achieved when MinSup* = 

0.2%, i.e.,the same minimum support that is already used for feature extraction. 

With this support, relatively the least portion of proteins, 21.76%, become unde­

cided. Table 5.5 summarizes the best result in which recall is not satisfactory be­

cause all the undecided EC test proteins are de facto classified as IC. 

Average Recall (%) 
70.04 

Average Precision (%) 
93.72 

Average F-Measure (%) 
80.04 

Table 5.5: Summary of the best result from associative classifier. 

5.3.3 SVM Classifier 

With data represented as vectors in the multi-dimensional feature space, SVM [27] 

finds the hyperplane that best separates instances of two classes. The hyperplane 

divides the feature space into two sub-spaces each for one class. Unknown data is 

simply classified based on the sub-space it is located in. For the datasets that are 

not linearly separable, SVM makes use of kernel functions or soft margin separation 

hyperplanes. 

To use SVM, our feature dataset, which obtained the best result with our ap­

proach, is transformed from transactional to a relational dataset with a fixed dimen­

sionality. This is simply done by creating a matrix in which each column represents 

a PBS, and each row represents a protein as a binary vector. Trivially silent proteins 

are all represented as the zero vector 0 in this space. The dimensionality of the 

feature dataset, is equal to the total number of PBSs, which is 864. Such a dataset is 

considered very high dimensional. However, SVM can handle high dimensionality 
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well. 

We used LIBSVM, an available implementation of SVM [8]. In SVM, there 

are two important parameters to be set: the kernel function and the parameter C 

(Cost) [36]. Table 5.6 summerizes the F-Measures of SVM classifiers obtained 

from different kernel functions and costs1. The parameter gamma (y) for the Radial 

Basis Function, and the scale factor of Sigmoid Kernel is suggested by LIBSVM to 

be 1/k, where k is the dimensionality of data. Note that polynomial kernel function 

(degrees 2 to 5) was also tried but the resulted SVM model never learnt EC proteins 

(F-Measure = 0). 

As Table 5.6 shows, different costs have slight effects on F-Measure when linear 

kernel function is used. Linear kernel beats the other kernel functions with an F-

Measure of 72.93% when cost is set to 100. The result of this model is shown in 

Table 5.7 

C = l 
C = 1 0 

C=100 
C = 1000 

C = 10000 

F-Measure 
Linear Kernel 

72.62 
72.76 
72.93 
72.93 
72.93 

Sigmoid Kernel 

0 
0 

15.71 
72.76 
72.76 

Radial Basis 
Function kernel 

0 
0 

34.06 
71.56 
71.56 

Table 5.6: SVM Classification using different Kernels 

Average Recall (%) 
59.87 

Average Precision (%) 
93.65 

Average F-Measure (%) 
72.93 

Table 5.7: Summary of the best result from SVM 

5.3.4 Decision Tree 

Decision tree as a classifier is a flow-chart-like tree structure in which each internal 

node denotes a test on an attribute, a branch is an outcome of the test, and the leaf 

'Because of the similarity of our problem to what She et al. [36] has done, we used the Cost 
values they have selected in their experiments 
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nodes are class labels (classification decision) or class distributions. To classify 

a data sample, internal nodes, starting from the root, make tests on the data and 

pass the decision along the branches until a leaf is reached with a decision on the 

class label. ID3, proposed by Quinlan [34] in 1986, is a basic algorithm to generate 

decision tree. C4.5 is an extension Of ID3 by the same author [35]. Handling 

continuous attributes, handling missing values, and pruning trees after creation are 

some of the improvements C4.5 has made. 

The reason why decision tree is selected to be studied is that the high discrim­

inative power of PBSs, with confidences around 100%, makes them good internal 

node tests for clear decisions. However, experiments show that the associative clas­

sifier is not outperformed by decision tree approaches. Weka [41], an open source 

data mining package, has implemented ID3 and C4.5. Table 5.8 shows the result of 

classification using these two algorithms. ID3, with the 72.78% F-Measure, works 

better than C4.5 in this case. 

Algorithm 
ID3 
C4.5 

Recall (%) 
59.07 
53.57 

Precision (%) 
94.87 
97.33 

F-Measure (%) 
72.79 
68.99 

Table 5.8: The result of ID3 and C4.5, two decision-tree-based classifiers. 

5.3.5 Combination of Associative and INN Classifiers 

To construct this combined classifier, an associative classifier is applied to a protein 

with unknown localization. If the protein is undecided2, INN classifier decides on 

the class label. Figure 5.3 shows the F-Measure of this classifier at different mini­

mum supports. As we mentioned earlier, in our experiments F-Measure varies only 

by MinS up*. For a constant MinS up*, F-Measure of the model with MinConf* set 

to 50%, 70% and 90% does not vary. 

Generally when MinS up* increases, the rules composed of low support PBSs 

cannot be discovered, and the proteins expressed by those PBSs cannot match the 

frequent rules and become undecided. According to Table 5.4, with the minimum 

supports other than 0.2% more than 72% of the proteins become undecided and 

2refer to Section 4.2 for the definition of undecided protein 
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MinSup*(%) 
MinSup* (%) 

(a) (b) 

Figure 5.3: 5.3(a) The F-Measure of the combined model of associative and INN 
classifiers, and 5.3(b) The portion of undecided proteins that are localized by INN 
classifier. 

should be predicted by INN classifier, while INN is expected to be a helper for as­

sociative classifier not a classifier to predict most of the test data. When MinS up* is 

set to 0.2%, only 21% of the data is classified by the secondary classifier. Moreover, 

the highest F-Measure (89.06%) is achieved when MinSup* = 0.2%. 

This algorithm is much faster than the INN classifier alone. Approximately, the 

associative classifier localizes 79% of the test data in 30 minutes, and the secondary 

classifier (i.e.,INN) takes 8 hours to predict the rest, while INN classifier, overally 

applied on the whole test data, takes 2 days . 

Average Recall (%) 
89.79% 

Average Precision (%) 
88.31% 

Average F-Measure (%) 
89.06 

Table 5.9: Summary of the best result from associative-INN classifier 

It is an interesting observation from Figure 5.3(a) that the F-Measure is constant 

for 1% < MinSup* < 4%. After a short study, it was discovered that changing 

MinS up* within that interval causes a change in only true positive (TP) and true 

negative (TN) measures of the two classifiers such that the sum of TP and TN in the 

combined model is constant. Table 5.10 is a real example showing that none of the 

measures change in total for supports of 1% and 4%. 

As compared to the results of single associative classifier, F-Measure is im­

proved by 9% when it is combined with INN classifier. 
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Associative Classifier 
INN Classifier 

Total 

MinSup* = 1% 
TP 
30 
8 

38 

TN 
258 
743 
1001 

FP 
2 
4 
6 

FN 
0 
4 
4 

=> 

MinSup* = 4% 
TP 
29 
9 

38 

TN 
101 
900 
1001 

FP 
2 
4 
6 

FN 
0 
4 
4 

Table 5.10: The change in true positive and true negative of individual classifiers 
for MinSup* = 1% and 4%. Totally, measures are constant. 

5.3.6 Combination of SVM and INN Classifiers 

Unlike associative classifier, SVM predicts a class label for any input vector. To 

exploit the secondary classifier, only silent proteins (expressed by a zero vector) 

are excluded from the test data of SVM, and are put aside for the INN classifier. 

Silent proteins are, on average, 21.71% of the test data, that is very close to the 

percentage of undecided proteins in the case of using associative classifier, which 

is 21.76%. It means that almost the same proteins are classified by INN regardless 

of whether SVM or associative classifier is the primary predictor. It makes the 

combination of SVM and INN fairly comparable to the combination previously 

introduced. Table 5.11 summerizes the result of combining INN with different 

SVM classifiers. 

C = l 
C = 1 0 
C=100 

C = 1000 
C = 10000 

F-Measure 
Linear Kernel 

82.12 
82.48 
82.34 
82.34 
82.34 

Sigmoid Kernel 

29.48 
29.48 
40.25 
40.25 
82.48 

Radial Basis 
Function kernel 

29.48 
29.48 
52.59 
81.37 
81.37 

Table 5.11: The result of SVM-1NN classifier. SVM is the primary and INN is the 
secondary classifier 

With linear kernel function where the cost is set to 10, the highest F-Measure is 

achieved which is shown in Table 5.12. 
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Average Recall (%) 
77.98 

Average Precision (%) 
87.61 

Average F-Measure (%) 
82.48 

Table 5.12: Summary of the best result from SVM-1NN classifier 

5.3.7 Combination of Decision Tree and INN Classifiers 

In a way similar to that for SVM-1NN classifier, only silent proteins are classified 

by INN and the rest by a decision-tree-based classifier, i.e.,ID3 and C4.5. The result 

of this combination is presented in Table 5.13. According this table, ID3 achieves a 

higher F-Measure. Like other combinations, adding INN classifier to the decision-

tree-based classifiers causes an increase of around 9% in the F-Measure. 

Algorithm 
ID3 
C4.5 

Recall (%) 
78.02 
72.54 

Precision (%) 
87.56 
88.85 

F-Measure (%) 
82.36 
79.41 

Table 5.13: The result of ID3 and C4.5 in combination with INN classifier 

5.3.8 Comparison of Different Classifiers 

According to the experiments discussed aboved, the use of INN as a secondary 

classifier improves the F-Measure of each individual classifier by an approximate 

increase of 9%. However, other than associative classifier, the algorithms could 

not outperform single INN classifier when they are combined with it. Associa­

tive classifier combined with INN is the winner algorithm with an F-Measure of 

89.06%, approximately 1.23% higher than the F-Measure of single INN classi­

fier. Although it is not a big difference, there are still advantages for the combined 

model. It is much faster than single INN classifier. To compare the run time, creat­

ing the distance matrix of proteins for the INN classifier takes around 52 hours on 

the machine described in Section 4.2 while creating the PBS-based feature dataset, 

building an associative classifier and predicting the localization of the test proteins 

all take at most half an hour. The time for INN classification of only 21% of the 

test data that are undecided should also be considered, which is not analogous to 

INN classification of 100% of the test data. Figure 5.4 compares all the experi­

mented classifiers in terms of F-Measure, the prediction ability. The figure shows 
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that single associative classifier outperforms single SVM and single decision tree 

classifiers with a difference of at least 7%. 
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Figure 5.4: The comparison of different models in terms of their prediction accu­
racy. 

5.4 The Reliability of the Parameter Setting Approach 
For Feature Mining 

Earlier in Section 5.2, we speculated that the setting of MinSup = 0.2% and 

MinLen = 7 for PBSs should later result in the most accurate prediction. Now 

that associative-INN classifier is known as the most accurate for this problem, we 

create other feature datasets, by fixing one of the parameters and varying the other 

one, and study how the prediction of this winner classifier changes. Figure 5.5 

and Figure 5.6 show that the F-Measure of the associative-INN classifier cannot 

be higher on other feature spaces, obtained from other feature mining parameter 

settings. 

MaxPart is also an important parameter for feature mining. As we mentioned 

earlier, we believe that PBSs can better discriminate proteins than frequent sim­

ple subsequences. In other words, MaxPart = 1, which means no partitioning, 

should result in the least accurate prediction. Moreover, the prediction is expected 
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Figure 5.5: With MinSup fixed to 0.2%, initial value 7 for MinLen has been the 
best setting. 
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Figure 5.6: With MinLen fixed to 7, initial value 0.2% for MinSup has been the 
best setting. 
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to improve by increasing MaxPart because it generates more specific PBSs. Exper­

iments show that when long subsequences are mined, e.g.,MinLen = 7, exploiting 

the partitions does not make a remarkable improvement in prediction. It is because 

of the high length of subsequences that makes them specific enough to their own 

class. Nonetheless, short subsequences, e.g.,MinLen = 4, are more likely to ap­

pear in both classes of proteins. The information of where these short subsequences 

appear in the protein sequence adds specificity to them. Figure 5.7 and Figure 5.8 

show how the F-Measure of the associative classifier and the associative-INN clas­

sifier increase when more partitions are considered. The prediction improvement is 

more sensed when MinLen is 4 rather than 7. It should be highlighted that in these 

figures, there is a big jump after MaxPart = 1, where partitiong begins. 
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Figure 5.7: The increase of F-Measure in associative classifier by partitioning pro­
teins. 
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Figure 5.8: The increase of F-Measure in associative-INN classifier by partitioning 
proteins. 
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Chapter 6 

Conclusion And Future Work 

In this research, we proposed a new discriminative feature for predicting extracel­

lular proteins. Partition-Based Subsequences have a strong ability, higher than sim­

ple subsequences, to discriminate between the proteins of different localizations. 

Moreover, they seem to encode more information about the structure of proteins by 

showing the regions along the protein sequences where special subsequences ap­

pear most. We applied an associative classifier on the feature datasets. With some 

simple, interpretable and highly confident rules most of proteins are well classified. 

In a few cases where an associative classifier is not certain about the localization of 

a protein, a nearest neighbor classifier based on edit distance is utilized. The com­

bination of the associative and the nearest neighbor classifiers is a strong model to 

predict extracellular proteins with an F-Measure of 89.06%, which is significantly 

above the state-of-the-art, almost 5% above the F-Measure of Proteome Analyst and 

the previous work, which is specifically on EC prediction using the same dataset. 

The presicion of this model is 88.31%, and its recall is 89.79%. Our associative 

classifier also outperforms SVM and decision tree classifiers such as ID3 and C4.5 

on the same feature space with a large difference of at least 7% in the F-Measure. 

As one future work, this binary classifier can be extended to a complete local­

ization problem. This can be done hierarchically. In the first step, a decision is 

made whether a protein is extracellular or intracellular. If it is intracellular, next 

steps similarly investigate which intracellular location the protein resides in. In 

each step, one location is specifically learnt while the remainder is called "other" 

until all the locations are learnt in the end. 
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Another interesting work is to use another alphabet for representing proteins and 

extract frequent subsequence-based features in this new representation. There are 

biochemical similarities among some of the amino acids []. In this context, two or 

more similar amino acids (with similar properties) can be grouped and represented 

by a single alphabetic code. It reduces the number of characters in the string rep-

resention of proteins, and may generate smaller but more valuable set of features. 

Therefore, instead of chains of amino acids alone, chains of amino acid groups will 

be found which might be more meaningful to biologists. 
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