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Abstract

This thesis investigates a problem of risk control for a financial corporation. Precisely,

the thesis considers the case of proportional reinsurance for an insurance company. The

objective is to find the optimal policy, that consists of risk control, which maximizes the

total expected discounted value of cash reserve up to the bankruptcy time.

The models for the cash reserve process, considered in this thesis, have stochastic

drifts per unit time (that we call stochastic cash reserve rate hereafter) and constant

volatility. These models extend the literature on proportional reinsurance, to the case of

stochastic cash reserve rate that is either fully or partially observed. Precisely, I address

three principal models. The first model deals with the case when the cash reserve rate is

time dependent but deterministic. The second model assumes that the cash reserve rate

process has an observable noise, while the third model assumes that the cash reserve rate

is stochastic and is not observable.

Thanks to the Bellman’s principle, for each of these three models, I derive the Hamilton-

Jacobi-Bellman equation that corresponds to the stochastic control problem. Then I solve

these equations as explicitly as possible. Afterwards, I describe the optimal policy for each

model in terms of the obtained optimal value function, and I state the verification theorem.

Finally, I consider the case where the insurance company pays liability at a constant rate

per unit time.
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Chapter 1

Introduction

Actuarial science originally became a formal mathematical discipline for long-term in-

surance coverage such as burial, life insurance and annuities in the end of 17th century.

These long term coverage required that money be reserved to pay future benefits, such as

annuity and death benefits many years into the future. Moreover, actuarial science is also

applied to property, casualty, liability and general insurance which are short-term forms

of insurance. Rigorous models for insurance in actuarial science were born in 1903, when

Filip Lundberg defended his Ph.D thesis and proposed the collective risk model for insur-

ance claim data. In his thesis, Lundberg introduced the compounded Poisson process and

developed some results on the central limit theorem. At this time, mathematical finance

was already established in the Ph.D thesis of Louis Bachelier in 1900. One of the first

attempts to describe the stock price fluctuation via a Brownian motion can be traced back

to Bachelier’s Ph.D. thesis. The limitations of the arithemetic Brownian motion, used by

this PhD thesis hindered further development of this model. Both Poisson processes and
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Brownian motion are the primary examples of the wider class of stochastic processes with

stationary and independent increments, called Levy processes in the probability literature.

However, the two areas began to fall apart during the first half of the last century, while

Cramer, Essher and many other mathematicians pushed actuarial science into a new level.

Fortunately, in the second half of the last century, there were significant advances in math-

ematical finance and modern finance due to the works of Paul Samuelson, Robert Merton,

Black, Scholes and Markowitz. During the recent decades, actuarial science has started to

embrace more sophisticated mathematical modelling of finance. In fact, there has been an

upsurge of interest in applying diffusion models to financial mathematics and in particular

in reinsurance modeling setting. For more details, we refer the reader to Asmussen and

Taksar (1997), Boyle, Elliott and Yang (1998), Højgaard and Taksar (1998) and Taksar

and Zhou (1998). In these models the liquid assets processes of the corporation are driven

by a Brownian motion with constant drift and diffusion coefficients. The drift term corre-

sponds to the expected profit per unit time, while the diffusion term is interpreted as risk.

The larger the diffusion coefficient the greater the business risk the company takes on.

If a company wants to increase the potential profit from its business activities, it should

also face an increase in risk. This shows that the controls, in an optimal stochastic control

model, affect not only the drift but also the diffusion part of the dynamic of the system.

Insurance is one of the natural areas where those models become widely applied. Risk

control in insurance takes on a natural form of reinsurance. Thus, the natural questions

that arise here are

(1) what the reinsurance means?

(2) when do we need reinsurance?
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1.1 Reinsurance

Reinsurance is the process of controlling revenues by diverting part of the premium

to another insurance company, thus reducing its own risk as well as profit.

In other words, reinsurance is purchased by an insurance company (called “cedent”)

from one or more other insurance companies (called the “reinsurer”) directly or through a

broker. The ceding company and the reinsurer enter into a reinsurance agreement which

details the conditions upon which the reinsurer would pay a share of the claims incurred

by the ceding company. The reinsurer is paid a “reinsurance premium” by the ceding

company, which issues insurance policies to its own policyholders.

Recently, this becomes one of the most popular and effective way such that insurance

companies could successfully increase their firms value at the cost of bearing reasonable

risk. Some of the reasons to employ reinsurance are summarized in the following.

• Hedging adverse fluctuations that may incur in the course of business.

• The appearance of excessively large claims such as catastrophic risks, or an unusually

large number of claims. The most dangerous risk comes from the large claims and

also a large number of claims can lead to a disastrous situation.

• Reinsurance can be considered to increase the capacity of the company by offering

more services to its clients.

• Financial distress due to unexpected changes in premium collection or profit.
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In conclusion, one of the most common reasons why an insurance companies would

employ reinsurance is to diminish the impact of large claims.

Reinsurance process can take various forms. Thus, reinsurance can be classified into

proportional reinsurance and non-proportional reinsurance. The most common example of

non-proportional reinsurance is the excess-of-loss reinsurance.

Proportional Reinsurance: the reinsurer is required to pay a certain fraction of each

claim, while in return the cedent (insurer) diverts the same or a larger fraction of all the

premium to the reinsurer. If the safety loading of the reinsurer and the cedent are the same,

that is, if the fraction of the premium diverted to the reinsurer is the same as the fraction

of each claim covered by the reinsurer, then the contract is called a cheap reinsurance. If

the safety loading of the reinsurer is higher than that of the cedent, then such a contract

is called a noncheap reinsurance.

Excess-of-loss Reinsurance: this reinsurance responds only if the loss suffered by the

insurer exceeds a certain amount, which is called the “retention” or “priority” level.

This thesis focuses only on the case of cheap proportional reinsurance. In this case,

the firm would need to pay a% of the claim and as well receive a% of the premium, and

reinsurance company would have the obligation for the rest of (1 − a)% claim size and

correspondingly receive (1− a)% premium.

In general, companies’s objective is to maximize profit. We should know that there is

always a trade-off between increasing firm’s value and bearing risk, i.e in order to increase

firm’s value, we have to bear more risk. Therefore, how could we make as much money
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by bearing certain level of risk becomes the ultimate optimization problem that we are

interested in.

1.2 Cramer-Lunderberg models

The first model for the cash reserve process of an insurance company was proposed by

Cramer-Lundberg and is denoted by

R(t) = R(0) + pt−
Nt∑
i=1

Ui

Here R(0) is the initial capital, p is the expect premium per unit time and Ui is a random

variable that describe the size of the ith claim (i ≥ 0). We are assuming claims arrive or

occur at a Poissonian rate. Nt is a random variable that follows a Poisson process and

represents the number of claims occurred up to time t.

This model shows the case when the insurance company takes the full risk. When the

insurance company considers reinsurance, it means that the company assume the risk with

sizes U
(a)
i where a is the retention level, while the company divert Ui − U

(a)
i to another

company. Therefore, the reserve process for the cedent becomes:

Ra,η(t) = μ+ pa,ηt−
Nt∑
i=1

U
(a)
i ,

where η represents the safety loading and the premium rate pa,η is given by pa,η = (1 +

η)E(U
(a)
i ). We can see from the above that the risk U

(a)
i is crucial in reinsurance model. As

a result, the two popular types of reinsurance (proportional and excess-of-loss reinsurance)
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can be obtained as follows.

(a) The proportional reinsurance can be obtained by putting

U
(a)
i = aUi, 0 ≤ a ≤ 1.

(b) The excess-of-loss reinsurance can be obtained by putting

U
(a)
i = min(a, Ui), a > 0.

1.3 Diffusion models for reinsurance

Some insurance companies may have big portfolios and hence the size of an individual

claim is too small compared to the size of total cash reserve. Thus, in this case, the Cramer-

lunderberg model is not suitable and becomes inadequate. This is one of the reason that

we need diffusion models to model the business activities of an insurance company. The

diffusion models for reinsurance are based on the Brownian motion which we introduce in

the next chapter. Specifically, as η goes to zero,
(
ηR

(a,η)

t/η2

)
t≥0

converges to BM(μ(a), σ2(a))

in the space of D[0,∞). For more details about this, we refer the reader to Asmussen and

Taksar (1997).

1.4 Summary of the thesis

This thesis contains six chapters including the current chapter. In the next chapter

(Chapter 2), we give some mathematical tools that will be used throughout the thesis.
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Chapter 3 addresses the case when the cash reserve rate is time independent but deter-

ministic. For this model, I derive the Hamilton-Jacobie-Bellman equation (HJB equation

for short hereafter), and I propose a solution to it as explicitly as possible. Then, I describe

the optimal policy and the optimal cash reserve process associated to this policy. The work

of this chapter extends the paper of Højgaard and Taksar (1998).

Chapter 4 deals with the case when the cash reserve rate is stochastic and its dynamics

follow an Ornstein-Uhlenbeck process with positive volatility. Herein, I assume that this

cash reserve rate is fully observed, and hence is adapted to the filtration (information)

used to find the optimal policy (risk control). For this model, I derive the corresponding

HJB equation. Then, I propose a solution to this equation as explicitly as possible, and

describe the optimal policy. In this chapter, I distinguish two cases depending on whether

there is a correlation or not between the noise of the cash reserve rate and the noise of the

cash reserve itself.

Chapter 5 considers the case when the cash reserve rate follows the Ornstein-Uhlenbeck

process but cannot be observed, and the selection of the policies is based on the observation

of the cash reserve process only. This leads to the problem of proportional reinsurance

under partial information. To solve this problem, I make appeal to the filtering techniques

to transfer the optimization problem under partial information to an optimization problem

with full information. Then, I derive the HJB equation for the latter control problem with

full information. Similarly as in the previous chapters, I suggest a solution to the HJB

equation and describe the optimal policy.

Finally, the last chapter (Chapter 6) studies the case when the insurance company pays

liability at a constant rate δ per unit time. Here, I derive the HJB equation and I connect
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it to an HJB equation of a model without liability.

8



Chapter 2

Mathematical Preliminaries

In this chapter, we introduce some mathematical and statistical tools that will be

used throughout the rest of the thesis. This chapter is divided into two sections. The

first section recalls stochastic calculus (including Ito’s formula and topics on Brownian

motion and martingales). The second section recalls the filtering techniques and namely

the Kalman-Bucy filter.

2.1 Stochastic basis

The financial modeling of our system starts with a given filtered probability space

(Ω,F , (Ft)t≥0, P ),

also called stochastic basis in the probabilistic literature. Here, P is a probability measure

and F is a σ-algebra that contains all negligible sets. The family: F := (Ft)t≥0 is called
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filtration, where Ft is a σ-fields and

F0 ⊆ Fs ⊆ Ft ⊆ F , 0 ≤ s ≤ t.

The set σ-field Ft represents the cumulative information about the market under consider-

ation up to time t. This explains the fact that the family of σ−fields, is a non-decreasing

family. In economics, one of the most important random time is the bankruptcy time,

which is a stopping time. Below, we recall the definition of this mathematical concept of

stopping time.

Definition 2.1.1. For a given filtered probability space (Ω,F , (Ft)t≥0, P ), a stopping time

is any nonnegative random variable τ satisfying

{τ ≤ t} ∈ Ft

for any t ≥ 0. In some literature, stopping time is also called Markovian time.

Since an insurer can make a policy decision based on the previous information up to

present time, then the policy factor should be measurable in some way with respect to the

filtration (Ft)t≥0. Below, we recall the definition of adapted process.

Definition 2.1.2. Consider a filtered probability space such as (Ω,F , (Ft)t≥0, P ), and a

stochastic process X = (Xt)t≥0. Then X is said to be adapted to (Ft)t≥0 if Xt is Ft-

measurable for any t ≥ 0.
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2.1.1 Martingales and Brownian motion

Definition 2.1.3. A real-valued stochastic processW = {Wt}t∈[0,∞) is called one-dimensional

Brownian motion if it has continuous sample paths (for all w ∈ Ω, t → Wt(w) is continu-

ous) and satisfies the following properties:

1) P {W0 = 0} = 1

2) For every 0 ≤ s < t:(Wt −Ws) /
√
t− s has a standard normal distribution.

3) For every 0 ≤ r ≤ u ≤ s ≤ t: Wt −Ws is independent of Wu −Wr

An n-dimentional Brownian motion is an Rn-valued stochastic process

W = (W1,W2, · · ·,Wn)

with components Wi being independent one-dimensional Brownian motions.

Definition 2.1.4. A filtration (Ft)t≥0 satisfies the usual conditions if it is right-continuous

and F0 contains all P-null sets of F .

In other words, if we have information up to time t, then nothing more can be learned

by peeking infinitesimally far into the future. Throughout this thesis, I shall assume that

the filtrations always satisfy the usual conditions.

In the following part, we introduce the martingale concept.

Definition 2.1.5. Consider a real-valued stochastic process X = (Xt)t≥0 and (Ft)t≥0

adapted process satisfying E |Xt| < ∞ for all t ≥ 0.
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1) X is a super-martingale if

E[Xt|Fs] ≤ Xs, 0 ≤ s ≤ t.

2) X is a sub-martingale if

E[Xt|Fs] ≥ Xs, 0 ≤ s ≤ t.

3) X is a martingale if

E[Xt|Fs] = Xs, 0 ≤ s ≤ t.

Corollary 2.1.1. A process X = (Xt)t≥0 is a martingale if and only if is a super-

martingale and a sub-martingale.

Theorem 2.1.1. A one-dimensional Brownian motion W = {Wt}t≥0 is a martingale.

Definition 2.1.6. The Brownian motion with drift μ ∈ (−∞,∞) and volatility σ ∈ (0,∞)

is the process X = (Xt)t≥0 given by

X(t) := μt+ σW (t), t ≥ 0.

Corollary 2.1.2. The Brownian motion with drift μ is a martingale if μ = 0, a super-

martingale if μ ≤ 0, and a sub-martingale if μ ≥ 0.

2.1.2 Stochastic integral and Itô’s formula

Before introducing the Itô’s formula, we need to define the stochastic integral. We

shall start with constructing it for so-called simple process Xt.
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Definition 2.1.7. A stochastic process X = (Xt)t≥0 is called a simple process if there exist

real number 0 = t0 < t1 < .... < tp < +∞, p ∈ N, and bounded random variables Φi: Ω → R

Φ0 F0 −measurable, Φi Fti−1
−measurable,

and

Xt(w) = X(t, w) = Φ0(w)I0(t) +

p∑
i=1

Φi(w)I(ti−1,ti
](t), w ∈ Ω, t ≥ 0

for each w ∈ Ω.

Definition 2.1.8. For a simple process X = (Xt)t≥0 the stochastic integral It(X) for

t ∈ (tk, tk+1] is defined according to

It(X) :=

∫ t

0

XsdWs :=
∑
1≤i≤k

Φi(Wti −Wti−1
) + Φk+1(Wt −Wtk)

or more generally for t ≥ 0:

It(X) :=

∫ t

0

XsdWs :=
∑
1≤i≤p

Φi(Wti∧t −Wti−1∧t).

In most of cases, simple process is a strict condition. So we need to define the stochas-

tic integral for a more general process. We have to take a closer look at measurability

assumptions for the stochastic process X to be able to define the stochastic integral for

more general integrands in a reasonable way.

Definition 2.1.9. Let (Xt,Ft)t≥0 be a stochastic process. This stochastic process will be

called measurable if the mapping

[0,∞)× Ω → Rn : (s, w) �→ Xs(w)

is B([0,∞])⊗F − B(Rn) measurable.
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Remark 2.1.1. Measurability of the process X in particular implies that for a fixed w ∈
Ω, X(·, w) is B([0,∞])−B(Rn)-measurable. Thus, for all t ≥ 0, the integral

∫ t

0
X2

t (s)ds is

defined.

Definition 2.1.10. Let X = (Xt)t≥0 be a stochastic process. This stochastic process will

be called progressively measurable if for all t ≥ 0 the mapping

[0, t)× Ω → R : (s, w) �→ Xs(w)

is B([0,∞])⊗F − B(Rn) measurable.

Remark 2.1.2. Every progressively measurable process is measurable.

According to the above discussion, we require integrands to be progressively measur-

able when we want to extend the stochastic integral for a larger class of integrands than

simple processes. Further to be able to define a norm for stochastic integrals, we consider

the following vector space:

L2[0, T ] := L2 ([0, T ],Ω,F, P )

:=(Xt)t≥0 real-valued progressively measurable process and E
(∫ T

0
X2

t dt
)
< ∞

Theorem 2.1.2. (Construction of the Ito integral for process in L2[0, T ]) There exist a

unique linear mapping J from L2[0, T ] into the space of continuous martingales on [0,T]

with respect to (F)t∈[0,T ] satisfying

(1) For any simple process, X = {Xt}t≥0,

Jt(X) = It(X), t ≥ 0.

(2) For any X ∈ L2[0, T ], we have

E
(
Jt(X)2

)
= E

(∫ t

0

X2
sds

)
.
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Definition 2.1.11. For X ∈ L2[0, T ] and J as in Theorem 2.1.2, we denote∫ t

0

XsdWs := Jt(X), t ≥ 0.

J(X) is called the stochastic integral or the Ito integral of X with respect to W.

Then, we introduce Itô’s formula for an n-dimensional Itô’s process having the form

of

Xi(t) = Xi(0) +

∫ t

0

Ki(s)ds+
m∑
j=1

∫ t

0

Hij(s)dWj(s), i = 1, 2, ...n.

where Ki, Hij are progressively measurable process such that∫ t

0

[|Ki(s)|+Hij(s)
2
]
ds < +∞ t ≥ 0.

Theorem 2.1.3. Let f be a continuous function that is continuously differentiable with

respect to the first variable, and twice continuously differentiable with respect to the last n

variables. Then, for every t ≥ 0, the following holds.

f(t,X1(t), ...Xn(t))

= f(0, X1(0), ...Xn(0))

+
∫ t

0
ft(s,X1(s), ...Xn(s)ds+

∑n
i=1

∫ t

0
fxi

(s,X1(s), ..., Xn(s)))dXi(s)

1
2

∑n
i=1

∑n
j=1

∫ t

0
fxixj

(s,X1(s), ..., Xn(s))d < Xi, Xj >s

Theorem 2.1.4. Let W = (Wt)t≥0 be an m-dimensional Brownian motion x ∈ R, and

A, a, Sj, σj be progressively measurable,real-valued stochastic process such that

P

{
∀t ≥ 0 :

∫ t

0

(|A(s)|+ |a(s)|)ds < ∞
}

= 1,

P

{
∀t ≥ 0 :

∫ t

0

(
∣∣S2

j (s)
∣∣+ ∣∣σ2

j (s)
∣∣)ds < ∞

}
= 1.
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Then the stochastic differential equation

dXt = [A(t)X(t) + a(t)] dt+
m∑
j=1

[Sj(t)X(t) + Σj(t)] dWj(t), (2.1.2.1)

X(0) = x,

has a unique solution given by

X(t) = Z(t)

(
x+

∫ t

0

1

Zu

[
a(u)−

m∑
j=1

Sj(u)Σj(u)

]
du+

m∑
j=1

∫ t

0

Σj(u)

Z(u)
dWj(u)

)
, t ≥ 0.

(2.1.2.2)

Here

Z(t) := exp

{∫ t

0

(A(u)− 1

2
‖S(u)‖2)du+

∫ t

0

S(u)dW (u)

}
, t ≥ 0.

For the proof of this theorem, we refer the reader to stanley (1997).

2.2 Filtering techniques

In chapter 3, we establish a model under full information. Actually, it is more realistic

to assume that companies have only partial information. The drifts and paths of Brownian

motions are just mathematical tools for model description and not observable.

Filtering problems consider estimating something about an unobserved stochastic process

Y, given observations of a related process Λ. It is an important tool to transform a partial

information problem into a complete information problem.

Given a probability space (Ω,F, P ) with a filtration F = (Ft)t∈[0,T ]. All processes are

assumed to be F-adapted. Note that F is not the observation filtration. We call F the
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background filtration. Let us consider two one-dimensional processes:

(1) a signal process Y := (Yt)t∈[0,T ] which is not directly observable;

(2) an observation process Λ = (Λt)t∈[0,T ] which is observable and somehow correlated with

Y, so that by observing Λ we can know something about the distribution of Y.

Let FΛ := (FΛ
t )t≥0 denote the observation filtration generated by Λ and is given by

FΛ
t := σ(Λs; 0 ≤ s ≤ t), t ≥ 0.

The filtering problem consists of calculating the conditional distribution of the signal Yt,

given observations up to that time represented by FΛ
t .

To proceed further, we need to specify some particular model for the observation process.

2.2.1 Observation process

Let W = (Wt)t∈[0,T ] be an F-Brownian motion, let G = (Gt)t∈[0,T ] be an F-adapted

process satisfying

E

∫ T

0

G2
tdt < ∞,

We assume that the observation process Λ has following the linear form

dΛt = G(t)Ytdt+ dWt, t ∈ [0, T ].
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2.2.2 Innovation process

We introduce the filter estimate process Ŷ , for any F-adapted process Y, as the optional

projection of Y onto the FΛ filtration, i.e.

Ŷt = E[Yt|FΛ
t ], t ∈ [0, T ]. (2.2.1)

Define the FΛ-adapted innovation process

Nt := Λt −
∫ t

0

̂(G(t)Yt)ds, t ∈ [0, T ]. (2.2.2)

Theorem 2.2.1. The innovation process N is an FΛ-Brownian motion.

The proof of this theorem can be found in [14] (Monoyios. (2009)).

2.2.3 The One-dimensional Kalman-Bucy filter

On a filtered probability space (Ω,F, P ), with background filtration F = (Ft)t∈[0,T ],

let Y = (Yt)t∈[o,T ] be an F-adapted signal process satisfying

dYt = A(t)Ytdt+ C(t)dBt.

and let Λ = (Λt)t∈[0,T ] be an F-adapted observation process satisfying

dΛt = G(t)Ytdt+ dWt.

Here W and B are F-Brownian motions with correlation coefficient ρ, and the coefficients

A(·), C(·) and G(·) are deterministic functions satisfying∫ T

0

(|A(t)|+ C2(t) +G2(t))dt < ∞.
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Define the observation filtration FΛ = (FΛ
t )t∈[0,T ] by

FΛ
t = σ(Λs : 0 ≤ s ≤ t).

Theorem 2.2.2. Suppose Y0 is an F0-measurable random variable, independent of W and

B and its distribution is Gaussian with mean μ0 and variance η0.

Then, the conditional expectation Ŷt := E[Yt|FΛ
t ], for t ∈ [0, T ] satisfies

dŶt = A(t)Ŷtdt+ [G(t)Vt + ρC(t)]dNt, Ŷt = η0.

Here N = (Nt)t∈[0,T ] is the innovations process, which is an FΛ-Brownian motion, given by

(2.2.2).

dNt = dΛt −G(t)Ŷtdt.

Furthermore, the conditional variance given by

Vt = V ar[Yt|FΛ
t ] = E[(Yt − Ŷt)

2|FΛ
t ], t ∈ [0, T ],

is independent of FΛ
t and satisfies the deterministic Riccati equation

dVt

dt
= (1− ρ2)C2(t) + 2[A(t)− ρC(t)G(t)]Vt −G2(t)V 2

t , V0 = θ0.

The proof of this theorem can be found in Monoyios.(2009).
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Chapter 3

Deterministic Cash Reserve Rate

In this chapter, we consider the optimization problem of finding the optimal propor-

tional reinsurance policy. For optimization of proportional reinsurance, we refer the reader

to Gerber (1970), Sundt (1993).

In this thesis, we consider diffusion models for proportional reinsurance. These models

shaped their ways into the proportional reinsurance problems via the works of Whittle

(1983) and Dayananda (1993) and Højgaard and Taksar (1997). For more applications

of control theory in insurance mathematics, we refer the reader to Højgaard and Taksar

(1997) and the references therein.

In this chapter, we extend the work of Højgaard and Taksar (1998) to the case when

the cash reserve rate of the insurance company is time independent but deterministic.

This chapter contains four sections. The first section discusses the model for the cash

reserve process and formulates mathematically the objective. This goal takes the form of

a stochastic control problem for which we need to find the optimal value function. The
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second section gives useful properties for this optimal value function, and describes it as

a solution of an HJB equation. The third section constructs, as explicitly as possible, a

solution to this resulting HJB equation. The last section (Section 4) describes the optimal

policy and solves finally the stochastic control problem via a verification theorem.

3.1 Mathematical and Economic model

Herein, we start our mathematical model by a given filtered probability space that we

denote by (Ω,F ,F := Ft)t≥0,P). The σ-field Ft represents the information available up

to time t and any decision is made based on this information. On this filtered probability

space, we consider a one-dimensional standard Brownian motion W = (Wt)t≥0. In this

chapter, we consider an insurance company whose cash reserve at time t is denoted by Rt,

for all t ≥ 0. This gives us a stochastic process R = (Rt)t≥0, which is also referred as

the risk process in the insurance literature. The dynamics for the cash reserve process are

given by

dRt = μdt+ σdWt, t ≥ 0, R0 = initial cash reserve,

where μ > 0, σ > 0.

The policy π is a proportional reinsurance policy that chooses a fraction aπ(t) of the

incoming claims that the company insures itself and the rest 1 − aπ(t) of the incoming

claims to reinsurance. Let Rπ = (Rπ
t )t≥0 be the risk process associated to the policy π.

Under the assumption that the reinsuring companies have the same safety loadings as the

21



insurance company, the dynamics for the cash reserve process Rπ = (Rπ
t )t≥0 are given by⎧⎨⎩dRπ

t = μta
π
t dt+ aπt σdWt, t ≥ 0

Rπ
0 = R.

(3.1.1)

The policy π is admissible if the process aπ = (aπ(t))t≥0 is adapted to the filtration (Ft)t≥0

and we refer the stochastic process aπ = (aπ(t))t≥0 as the control process.

The cash reserve rate process (μt)t≥0 satisfies the linear ordinary differential equation

dμt = −λ (μt − μ̄) dt, μ0 > 0, (3.1.2)

where μ̄ is a positive constant.

Lemma 3.1.1. The solution to (3.1.2) is given by

μt = μ̄+ (μ0 − μ̄)e−λt = e−λtμ0 + (1− e−λt)μ̄, t ≥ 0. (3.1.3)

Furthermore, the following properties holds:

(1) μt > 0 for all t ≥ 0.

(2) μt belongs to the segment [μ0 ∧ μ̄, μ0 ∨ μ̄] .

(3) μt is increasing if μ0 < μ̄; μt is decreasing if μ0 > μ̄, and is a constant if μ0 = μ̄.

Proof. Notice that the equation (3.1.2) is a particular case of (2.1.2.1). Indeed, by putting

m = 1, Σ1 = 0, S = 0, A = −λ, and a = λμ̄,

on (2.1.2.1), we obtain equation (3.1.2). Hence, we deduce

Z(t) = e−λt, t ≥ 0,
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and (3.1.3) follows immediately from (2.1.2.2). Now, we prove the remaining property of

μ. By differentiating (3.1.3), we get

(μt)
′
= −λ(μ0 − μ̄)e−λt.

Therefore, (μt)
′ > 0 if μ0 < μ̄ and hence μt is increasing in this case; (μt)

′ < 0 if μ0 > μ̄

and hence μt is decreasing. If μ0 = μ̄, we have μt = 0, and hence μt = μ0 = μ̄.

Since 1− e−λt ≥ 0, and both μ0 and μ̄ are positive, we conclude that μt is always positive.

This ends the proof of the lemma.

We end this subsection by formulating mathematically our objective. To this end, we

consider a discount factor, c > 0. Let π be an admissible policy and Rπ = (Rπ
t )t≥0 be the

corresponding cash reserve process given by the SDE (3.1.1). Then, bankruptcy time for

this cash reserve is defined by

τπ = inf {t ≥ 0 : Rπ
t = 0} .

Here, by convention we put inf(φ) = +∞. Thus, the return function associated to the

policy π is denoted by Jπ(R, η), and is given by

Jπ(R, η) := E

(∫ τπ

0

e−ctRπ
t dt|Rπ

0 = R, μ0 = η

)
.

Therefore, our objective lies in describing the optimal value function

V (R, η) := sup
π
Jπ(R, η), ∀R ≥ 0, η ≥ 0, (3.1.5)

and finding the optimal policy π∗ that satisfies

V (R, η) = Jπ∗(R, η), ∀R ≥ 0, η ≥ 0. (3.1.6)
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3.2 Properties of the optimal value function

Proposition 3.2.1. The optimal value function V , defined by (3.1.5), is concave and

satisfies

0 ≤ V (R, η) ≤ R

c
+

μ̄

c2
+

η − μ̄

c(c+ λ)
, ∀R ≥ 0, η ≥ 0. (3.2.1)

Proof. Let R1, R2 and λ be three positive numbers such that λ ∈ (0, 1). Consider three

admissible policies π1, π2 and π that corresponds to the initial reserve R1, R2 and R re-

spectively, where

R := λR1 + (1− λ)R2, and π = λπ1 + (1− λ)π2.

Then it is clear that

Rπ
t = λRπ1

t + (1− λ)Rπ2
t , and τπ = τπ1 ∨ τπ2 .

Since Rπ1
1 = 0 on [τπ1 , τπ] and Rπ2

2 = 0 on [τπ2 , τπ], we obtain

Jπ(R, η) = E

(∫ τπ

0

e−ctRπ
t dt|Rπ

0 = R, μ0 = η

)
= E

(∫ τπ1∨τπ2

0

e−ct [λRπ1
t + (1− λ)Rπ2

t ] dt|Rπ
0 = R, μ0 = η

)
= λJπ1(R1, η) + λJπ2(R2, η).

For any ε > 0 we can choose πi such that V (Ri, η)− ε < Jπ(Ri, η) ≤ V (Ri, η). Since π is

suboptimal, then we have

λV (R1, η) + (1− λ)V (R2, η)− ε < λJπ1(R1, η) + (1− λ)Jπ2(R2, η)

= Jπ(R, η) ≤ V (R, η).
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Then, by letting ε go to zero, we prove the concavity of V. Hence the rest of proof focuses

on proving (3.2.1). To this end, due to

Rπ
t∧τπ = Rπ

0 +

∫ τπ∧t

0

μsa
π
sds+

∫ τπ∧t

0

σaπsdWs,

we derive

E
(
Rπ

t∧τπ |Rπ
0 = R, μ0 = η

)
= R + E

(∫ t∧τπ

0

μsa
π
sds|Rπ

0 = R, μ0 = η

)
≤ R +

∫ t

0

[
μ̄+ (η − μ̄)e−λs

]
ds.

As a result, for any admissible policy π, we get

Jπ(R, η) ≤
∫ ∞

0

e−ct

[
R + μ̄t+

η − μ̄

λ
(1− e−λt)

]
dt

=
R

c
+

μ̄

c2
+

η − μ̄

c(c+ λ)
.

Then, (3.2.1) follows immediately from this inequality. This ends the proof of the propo-

sition.

In the following, we connect the optimal value function to an HJB equation under

conditions of smoothness.

Theorem 3.2.1. If the optimal value function V (R, η), defined by (3.1.5), is twice con-

tinuously differentiable on (0,∞), then V satisfies the Hamilton-Jacobi-Bellman equation⎧⎪⎨⎪⎩
R− cV − λ (η − μ̄)Vη + max

a∈[0,1]

[
aηVR + 1

2
a2σ2VRR

]
= 0,

V (0) = 0.

(3.2.2)

Proof. By applying Ito’s formula, we derive

dV (Rπ
t , μt) = VRdR

π
t + Vηdμt +

1

2
VRRd〈Rπ, Rπ〉t + 1

2
Vηηd〈μ, μ〉t + VRηd〈Rπ, μ〉t
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= VR (μta
π
t dt+ σaπt dWt) + Vη [−λ (μt − μ̄) dt] +

1

2
VRRσ

2a2tdt. (3.2.3)

Put

Y π
t :=

∫ t

0

e−csRπ
s ds+ e−ctV (Rπ

t , μt), t ≥ 0.

Thanks to Bellman’s principle (dynamic programming principle), the optimal value func-

tion V (R, η), is such that (Y π
t )t≥0 is a supermartingale for any admissible policy π and is a

local martingale for the optimal and admissible policy π∗. Hence, in virtue of (3.2.3), Y π

is a supermartingale if

R− cV − λ (η − μ̄)Vη + max
0≤a≤1

[
aπηVR +

1

2
(aπ)2σ2VRR

]
≤ 0. (3.2.4)

and Y π∗
is a local martingale if

Rπ∗ − cV − λ (η − μ̄)Vη +

[
aπ

∗
ηVR +

1

2
(aπ

∗
)2σ2VRR

]
= 0.

Thus, by combining this equation with (3.2.4), we deduce that V is a solution to the HJB

equation (3.2.2). This ends the proof of the theorem.

Now, our goal is to construct a solution to the HJB equation (3.2.2). This is the aim

of the following subsection.

3.3 Construction of the solution to the HJB

Assume there exists an open set O ⊆ [0,∞) such that a(R, η) satisfies 0 < a(R, η) < 1

for all R ∈ O. Then for any R ∈ O and η > 0, the maximizer

a∗(R, η) := argmax
a

[
aηVR(R, η) +

1

2
a2σ2VRR(R, η)

]
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is given by

a∗(R, η) = − ηVR(R, η)

σ2VRR(R, η)
. (3.3.1)

By inserting (3.3.1) into (3.2.2), we get

R− cV − λ(η − μ̄)Vη − η2

2σ2

V 2
R

VRR

= 0. (3.3.2)

In order to solve this partial differential equation, we assume

VR

(
R(z, η), η

)
= exp

(
−z +m(η)

)
. (3.3.3)

This transformation is a slight modification of a transformation used frequently in the

finance literature, e.g. Karatzas et al.(1998) and Højggard and Taskar (1998).

Then, we calculate the following derivatives

VRR = −VR

Rz

, VRη = (m′ +
Rη

Rz

)VR.

By substituting these equations in (3.3.2) and using (3.3.3), we obtain

R(z, η)− cV (R(Z, η), η)− λ(η− μ̄)Vη(R(z, η), η) +
η2

2σ2
Rz(z, η)VR(R(z, η), η) = 0. (3.3.4)

By differentiating this equation with respect to z and using (3.3.3) again, we derive

Rz

{
1− cVR − η2

2σ2
VR

}
− λ(η − μ̄)(Rzm

′ +Rη)VR = − η2

2σ2
RzzVR.

This can be written as

Rzz

Rz

= (−2σ2

η2
ez−m +

2σ2c

η2
+ 1) +

2σ2

η2
λ(η − μ̄)(m′ +

Rη

Rz

). (3.3.5)

In order to simplify the problem, we put

Rz(z, η) = exp
[
z −m(η) + L(ez−m(η), η)

]
, (3.3.6)
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where L is a function to be described later on.

The solution to this equation is given by

R(z, η) =

∫ z

−∞
exp
[
x−m(η) + L(ex−m(η), η)

]
dx+ k(η).

By changing the variable, we get

R(z, η) =

∫ ez−m

0

exp
[
L(x, η)

]
dx+ k(η) = G(ez−m(η), η) + k(η). (3.3.7)

where G(x, η) is given by

G(x, η) =

∫ x

0

exp {L(y, η)} dy. (3.3.8)

By mimicking the proof of Højggard and Taskar (1998), we deduce that k(η) = 0. By

differentiating (3.3.8) with respect to the variable x, we get

Gx(x, η) = exp
[
L(x, η)

]
, ∀η > 0, x > 0. (3.3.9)

From (3.3.9), we deduce that Gx > 0 for all x > 0 and hence G(x, η) is strictly increasing

on (0,∞) and continuous. Therefore G(x, η) is invertible, and (3.3.7) leads to

exp
[
z −m(η)

]
= G−1(R, η).

Then by plugging this resulting equation in (3.3.3), we obtain

VR(R, η) =
1

G−1(R, η)
, ∀R > 0, η > 0. (3.3.10)

To determine completely the function V on a neighborhood of zero, we need to describe

the function L introduced in (3.3.6). This is the aim of the following.

Lemma 3.3.1. The function L, given by (3.3.6), satisfies the following PDE

x2
[
L2
x + Lxx

]
+ 2xLx =

2σ2c

η2
− 4σ2

η2
x+

2σ2

η2
(c− x)xLx +

2σ2λ

η2
(η − μ̄)Lη. (3.3.11)
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Proof. From (3.3.6), we calculate the following:

Rzz(z, η) = Rz + ez−mLxRz = Rz(1 + ez−mLx), (3.3.12)

Rzη(z, η) = (−m′ −m′ez−mLx + Lη)Rz.

By plugging (3.3.6) and (3.3.12) into (3.3.5), we get

Rz(1+ez−mLx) =

{
1− 2σ2

η2
ez−m +

2σ2c

η2
+

2σ2λ

η2
(η − μ̄)m′

}
Rz+

2σ2λ

η2
(η−μ̄)Rη. (3.3.13)

By differentiating this equation with respect to z again, we obtain

(1 + ez−mLx)
2 + ez−mLx + e2(z−m)Lxx = 1− 2σ2

η2
ez−m +

2σ2c

η2
+

2σ2λ

η2
(η − μ̄)m′

+ez−mLx

(
1− 2σ2

η2
ez−m +

2σ2c

η2

)
+

2σ2λ

η2
(η − μ̄)m′ez−mLx − 2σ2

η2
ez−m − 2σ2λ

η2
(η − μ̄)m′

−2σ2λ

η2
(η − μ̄)m′ez−mLx +

2σ2λ

η2
(η − μ̄)Lη.

After simplifying this equation, we get

(1+ez−mLx)
2+ez−mLx+e2(z−m)Lxx = 1−4σ2

η2
ez−m+

2σ2c

η2
+ez−m

(
1− 2σ2

η2
ez−m +

2σ2c

η2

)
Lx

+
2σ2λ

η2
(η − μ̄)Lη.

This can be written as

e2(z−m)
[
L2
x + Lxx

]
+2ez−mLx =

2σ2c

η2
− 4σ2

η2
ez−m+

2σ2

η2
(c− ez−m)ez−mLx+

2σ2λ

η2
(η− μ̄)Lη.

By changing the variable (i.e. x = ez−m), we obtain

x2
[
L2
x + Lxx

]
+ 2xLx =

2σ2c

η2
− 4σ2

η2
x+

2σ2

η2
(c− x)xLx +

2σ2λ

η2
(η − μ̄)Lη.

which is exactly the PDE (3.3.12). This ends the proof of the lemma.
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By differentiating (3.3.10) with respect to R, we deduce that (3.3.1) becomes

a∗(R, η) =
η

σ2

G−1(R, η)Gx(G
−1(R, η), η), R > 0, (3.3.14)

and a∗(0, η) = 0. Then, Put

y = G−1(R, η), and a1(y, η) =
η

σ2
yGx(y, η).

By differentiating a1(y, η) with respect to y, we get

∂

∂y
a1(y, η) =

η

σ2

[
1 + yLy

]
exp
[
L(y, η)

]
.

Assumption 3.3.1. Assume (3.3.11) has a solution L(y, η) such that the equation

yexp
[
L(y, η)

]
=

σ2

η
(3.3.15)

has a root y1(η) ∈ (0, c). Then, under this assumption, we have

R1(η) = G(y1(η), η). (3.3.16)

According to our assumptions a∗(R, η) = 1 for R > R1(η). By substituting a = 1 into

(3.3.1), we obtain the following equation:

R− cV + ηVR − λ(η − μ̄)Vη +
1

2
σ2VRR = 0. (3.3.17)

In order to solve this partial differential equation explicitly, we propose the following

V (R, η) = C1(η)e
d(η)R + C2(η) +

R

c
.

Then, we calculate the derivatives as follows

VR = C1de
dR +

1

c
, VRR = C1d

2edR, Vη = C
′
1e

dR + C1d
′edR + C

′
2.

30



By inserting these in (3.3.17), we get

edR[−cC1 + C1ηd− λ(η − μ̄)(C ′
1 + d′) +

1

2
σ2C1d

2] + [−cC2 +
η

c
− λ(η − μ̄)C

′
2] = 0.

Since the above equation holds for all values of R > R1(η), we must have:

−cC1 + C1ηd− λ (η − μ̄) (C ′
1 + d′) +

1

2
σ2C1d

2 = 0, (3.3.18)

and

−cC2 +
η

c
− λ(η − μ̄)C

′
2 = 0. (3.3.19)

It is clear that the general solution to this ODE is given by

C2(η) =
1

c(c+ λ)
|η − μ̄|+ μ̄

c2
+ C3 |η − μ̄|− c

λ .

where C3 is an arbitrary constant.

Therefore, for R > R1(η), the optimal return function takes the form of

V (R, η) = C1(η)e
d(η)R +

1

c(c+ λ)
|η − μ̄|+ μ̄

c2
+ C3 |η − μ̄|− c

λ +
R

c
. (3.3.20)

Thanks to Proposition 3.2.1, for R > R1(η), we get 0 ≤ lim
η→μ̄

supV (R, η) < ∞. By combining

this with (3.3.20), we deduce that C3 = 0. As a result, we get

V (R, η) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∫ R

0

1

G−1(x, η)
dx, if 0 ≤ R ≤ R1(η)

C1(η) exp [d(η)(R−R1)] +
c |η − μ̄|
c(c+ λ)

+
μ̄+ cR

c2
if R ≥ R1(η).

(3.3.21)

To ensure that V is twice continuously differentiable, it is necessary and sufficient that

its value, first and second derivative are continuous at the point R1. To this end, we put

V1(R, η) :=

∫ R

0

1

G−1(x, η)
dx, V2(R, η) := C1(η) exp [d(η)(R−R1)]+

c |η − μ̄|
c(c+ λ)

+
μ̄+ cR

c2
.
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We consider the first and second derivative of the return function V at the point R1.

V
′
1 (R1) =

1

y1
, V

′
2 (R1) =

1

c
+ C1d.

V
′′
1 (R1) = − η

σ2
1

V
′
1 (R1) = − η

σ2
1

1

y1
, V

′′
2 (R1) = C1d

2.

Then VR and VRR are continuous at R = R1(η) if and only if

1

y1
=

1

c
+ C1d, − η

σ2

1

y1
= C1d

2.

This implies that

d2 +
η

σ2
d+

η

cσ2C1

= 0. (3.3.22)

Since d < 0, the solution to this equation is

d(η) =
1

2

{
− η

σ2
−
√

η2

σ4
− 4η

cσ2C1(η)

}
. (3.3.23)

Then, we calculate the derivative

d′(η) =
1

2

⎧⎨⎩− 1

σ2
−

η
σ4 − 2

cσ2C1(η)
+

2ηC′
1(η)

cσ2C1(η)2√
η2

σ4 − 4η
cσ2C1(η)

⎫⎬⎭ . (3.3.24)

By plugging (3.3.23) and (3.3.24) into (3.3.17), we get

C ′
1(η) + d′(η) =

C1(η)
(
ηd(η)− c+ 1

2
σ2d2(η)

)
λ(η − μ̄)

,

and

C ′
1(η) =

⎧⎨⎩ 1

2σ2
+

η

σ
4 − 2

cσ2C1

2
√

η2

σ4 − 4η
cσ2C1

−
(

η2

4σ2
+

η

4

√
η2

σ4
− 4η

cσ2C1

+ c

)
C1

λ(η − μ̄)

⎫⎬⎭ 1

1− η
cσ2C1

√
η2

σ4 − 4η
cσ2C1

.

(3.3.25)

This proves the following theorem.
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Theorem 3.3.1. Suppose that Assumption 3.3.1 holds, then the solution to the HJB equa-

tion (3.2.1) is given by

V (R, η) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∫ R

0

1

G−1(R, η)
dx, if 0 ≤ R ≤ R1(η)

−σ2η exp [d(η)(R−R1(η))]

cσ2(σ2d2(η) + ηd(η))
+

|η − μ̄|
c(c+ λ)

+
μ̄+ cR

c2
, if R ≥ R1(η).

(3.3.26)

Here

R1(η) := G(y1(η), η), G(x, η) =

∫ x

0

exp {L(y, η)} dy, d(η) =
1

2

{
− η

σ2
−
√

η2

σ4
− 4η

cσ2C1(η)

}
,

where y1(η) is the root of (3.3.15), and C1(η) is the solution to ODE (3.3.25).

3.4 Optimal policy and the verification theorem

In this section we construct the optimal policy based on the solution to the HJB

equation obtained in the previous section. Recall that R1(η) = G−1(y1(η), η), where y1(η)

is root of (3.3.13). For R ≤ R1(η), we obtain

a∗(R, η) := argmax
a

[
aηVR(R, η) +

1

2
a2σ2VRR(R, η)

]
.

As evident from below the function a∗(R, η) represents the optimal feedback control func-

tion for the control component aπ =
(
aπ(t)

)
t≥0

. More precisely, the value a∗(R, η) is the

optimal risk that one should take when the value of the current reserve is R and the re-

serve rate is η. From the analysis of the previous section, it follows that a∗(R, η) can be

represented as

a∗(R, η) =

⎧⎨⎩
η

σ2
G−1(R, η)Gx(G

−1(R, η), η) if 0 ≤ R ≤ R1(η)

1, if R ≥ R1(η).
(3.4.1)
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For any 0 ≤ a ≤ 1, we define the differential operator La by

Laf(R, η) =
σ2a2

2
fRR(R, η) + aηfR − cf(R, η)− λ(η − μ)fη(R, η) (3.4.2)

For any f ∈ C2×1((0,∞)× (0,∞)). From the previous section, it is clear that

La∗(R,η)V (R, η) = −R. (3.4.3)

Let R∗
t = (R∗

t )t≥0 be a solution to the following Skorohod problem :

R∗
t = R +

∫ t

0

a(R∗
s, μs)μsds+

∫ t

0

σa(R∗
s, μs)dWs, (3.4.4)

R∗
t ≤ R1(μt).

Theorem 3.4.1. Let V be a concave, twice continuously differentiable solution of the HJB

equation (3.2.1) and (R∗
t )t≥0 be a solution to the Skorohod problem (3.4.4).

Then for π∗ :=
(
a∗(R∗

t , μt)
)
t≥0

,we have

Jπ∗(R, η) = V (R, η), ∀R ≥ 0, η ≥ 0.

Proof. Notice that R∗ = Rπ∗
. Let R0 = R and μ0 = η. Choose 0 < ε < R and let

τ ε∗ = inf {t : R∗
t = ε}, then Ito’s formula yields,

e−c(t∧τε∗ )V (R∗
t∧τε∗ , μt) = V (R, η)+

∫ t∧τε∗

0

e−csLaπ∗ (s)V (R∗
s, μs)ds+

∫ t∧τε∗

0

e−csσaπ∗(s)VR(R
∗
s, μs)dWs

= V (R, η)−
∫ t∧τε∗

0

e−csR∗
sds+

∫ t∧τε∗

0

e−csσaπ∗(s)VR(R
∗
s, μs)dWs (3.4.5)

Since VR(R
∗
s, μs) ≤ VR(ε, μs) < ∞ on [0, t ∧ τ ε∗ ], the last term on the r.h.s. is a zero-mean

martingale. Taking expectations in (3.4.5), we obtain

E
[
e−c(t∧τε∗ )V (R∗

t∧τε∗ , μt)
]
+ E

∫ t∧τε∗

0

e−csR∗
sds = V (R, η). (3.4.6)
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Since τ ε∗ → τπ∗ when ε → 0∫ t∧τε∗

0

e−csR∗
sds →

∫ t∧τπ∗

0

e−csR∗
sds.

Thus letting ε → 0 in (3.4.6), we use dominated and monotone convergence theorems for

the first and the second terms in (3.4.6) respectively, we get

E

[
e−c(t∧τπ∗ )V (Rt∧τπ∗

π∗ ,μt)

]
+ E

∫ t∧τπ∗

0

e−csRπ∗
s ds = V (R, η). (3.4.7)

Since V (0, η) = 0, we have

E
[
e−c(t∧τπ∗ )V (Rπ∗

t∧τπ∗ , μt)
]
= e−ctE

[
V (Rπ∗

t , μt); t < τπ∗
]→ 0.

as t → ∞. Letting t → ∞ on (3.4.7), we have

E

∫ τπ∗

0

e−csR∗
sds = V (R, η).

Therefore, V (R, η) = Jπ∗(R, η).

This ends the proof of the theorem.
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Chapter 4

Stochastic Cash Reserve Rate: The

Case of Full Information

This chapter extends the analysis of Chapter 3 to the case when the dynamics of the

cash reserve rate μ = (μt)t≥0 has a noise that is observable. For this model of cash reserve

process, we address the same objective as in Chapter 3.

This chapter contains three sections. In the first section, we define our model for the

cash reserve process, and derive the corrsponding HJB equation. The second section deals

with solving this obtained HJB equation. The last section describes the optimal policy

and gives a verification theorem.
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4.1 The model and its HJB equation

This section is divided into three subsections. The first subsection describes the model

and the objective. The second subsection discusses some properties of the resulting optimal

value function, while the third subsection derives the HJB equation for this optimal value

function.

4.1.1 The model and the objective

For a given insurance company, we let Rπ = (Rπ
t )t≥0 be the risk process associated to

the policy π. Under the assumption that the reinsuring companies have the same safety

loadings as the insurance company, the dynamic for the cash reserve process Rπ = (Rπ
t )t≥0

is given by

dRπ
t = μtaπ(t)dt+ σ1aπ(t)dWt, t ≥ 0. (4.1.1.1)

Rπ
0 = R.

The policy π is admissible if the process aπ = (aπ(t))t≥0 is adapted to the filtration (Ft)t≥0.

The drift process (μt)t≥0 satisfies the Ornstein Uhlenbeck stochastic differential equation

dμt = −λ(μt − μ̄)dt+ σ2dBt, μ0 > 0. (4.1.1.2)

Here, (Wt)t≥0 and (Bt)t≥0 are two (Ft)t≥0-adapted Brownian motions with correlation coef-

ficient ρ ∈ [−1, 1]. The initial value of the drift process μ0 is assumed to be a F0-measurable

Gaussian random variable, which is independent of Brownian motions W and B. We also

assume that all coefficients σ1 > 0, λ > 0, μ̄ > 0, σ2 > 0 are constants.
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Lemma 4.1.1. The solution to (4.1.1.2) is given by

μt = μ0e
−λt + μ̄(1− e−λt) + σ2e

−λt

∫ t

0

eλsdBs. (4.1.1.3)

Proof. Notice that the equation (4.1.1.3) is a particular case of (2.1.2.1). Indeed, by putting

m = 1, W = B Σ1 = σ2, S = 0, A = −λ, and a = λμ̄,

in (2.1.2.1), we obtain equation (4.1.1.3). Hence, we deduce

Z(t) = exp
[ ∫ t

0

−λds
]
= e−λt, t ≥ 0,

and (4.1.1.3) follows immediately from (2.1.2.2). This ends the proof of the Lemma.

We end this subsection by formulating mathematically our objective. To this end, we

consider a discount factor c > 0. Let π be an admissible policy and Rπ = (Rπ
t )t≥0 be the

corresponding cash reserve process given by the SDE (4.1.1.1). Then, bankruptcy time for

this cash reserve is defined by

τπ = inf {t ≥ 0 : Rπ
t = 0} .

Here, by convention we put inf(φ) = +∞. Thus, the return function associated to π is

denoted by Jπ(R, η), and is given by

Jπ(R, η) := E

(∫ τπ

0

e−ctRπ
t dt|Rπ

0 = R, μ0 = η

)
.

Therefore, our objective lies in describing the optimal value function

V (R, η) := sup
π
Jπ(R, η), ∀R ≥ 0, η ≥ 0, (4.1.1.4)

and finding the optimal policy π∗ that satisfies

V (R, η) = Jπ∗(R, η), ∀R ≥ 0, η ≥ 0. (4.1.1.5)
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4.1.2 Properties of the Optimal Value Function

Proposition 4.1.1. The optimal value function V, defined by (4.1.1.4), is concave and

satisfies

0 ≤ V (R, η) ≤ R

c
+

μ̄
√
2λ+ σ2

c2
√
2λ

+
|η − μ̄|
c(c+ λ)

, ∀R ≥ 0, η ≥ 0. (4.1.2.1)

Proof. The proof of the concavity follows from the same arguments as in the proof of

Proposition 3.2.1. Thus, the rest of the proof focuses on proving (4.1.1.6). To this end,

due to

Rπ
t∧τπ = Rπ

0 +

∫ τπ∧t

0

μsa
π
sds+

∫ τπ∧t

0

σaπsdWs,

we obtain

E
(
Rπ

t∧τπ |Rπ
0 = R, μ0 = η

)
= R + E

(∫ t∧τπ

0

μsa
π
sds|Rπ

0 = R, μ0 = η

)
≤ R +

∫ t

0

[
μ̄+ |η − μ̄|e−λs

]
ds+ σ2

∫ t

0

e−λsE
(
|
∫ s

0

eλμdBs||Rπ
0 = R, μ0 = η

)
ds.

As a result, we get ∫ t

0

[
μ̄+ |η − μ̄|e−λs

]
ds = μ̄t+

|η − μ̄|
λ

(1− e−λt),

and

σ2E
[ ∫ t

0

e−λs|
∫ s

0

eλμdBs

∣∣|Rπ
0 = R, μ0 = η

]
ds = σ2

∫ t

0

e−λsE

(∣∣∣∣∫ s

0

eλμdBμ

∣∣∣∣2
) 1

2

ds

=
σ2√
2λ

∫ t

0

e−λs

(∫ s

0

e2λμdμ

) 1
2

ds

≤ σ2√
2λ

t.
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Therefore, for any admissible policy π, we get

Jπ(R, η) ≤
∫ ∞

0

e−ct

[
R + μ̄t+

|η − μ̄|
λ

(1− e−λt) +
σ2√
2λ

t

]
dt

=
R

c
+

μ̄
√
2λ+ σ2

c2
√
2λ

+
|η − μ̄|
c(c+ λ)

.

Then, (4.2.1.1) follows immediately from this inequality. This proves the proposition.

4.1.3 The HJB equation

The goal of this subsection is to derive an HJB equation that the optimal value function

shall satisfy under smoothness conditions.

Theorem 4.1.1. If the optimal value function V (R, η), defined by (4.1.1.4), is twice con-

tinuously differentiable on (0,∞), then V satisfies the Hamilton-Jacobi-Bellman equation

R− cV − λ(η − μ̄)Vη +
1

2
σ2
2Vηη + max

0≤a≤1

(
aηVR +

1

2
a2σ2

1VRR + aσ1σ2ρVRη

)
= 0, (4.1.3.1)

V (0) = 0.

Proof. By applying Ito’s formula (see chapter 2) to V (Rπ
t , μt), we derive

dV (Rπ
t , μt) = VRdR

π
t + Vηdμt +

1

2
VRRd〈Rπ, Rπ〉t + 1

2
Vηηd〈μt, μt〉+ VRηd〈Rπ

t , μt〉t

= VR(a
π
t ηdt+σ1a

π
t dWt)+Vη [−λ(η − μ̄)dt+ σ2dBt]+

1

2
VRR(a

π
t )

2σ2
1dt+

1

2
σ2
2Vηηdt+aπt σ1σ2ρVRηdt

(4.1.3.2)

Put

Y π
t :=

∫ t

0

e−csRsds+ e−ctV (Rt, μt).
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Thanks to Bellman’s principal (dynamics programming principal), the optimal value func-

tion V (R, η), is such that (Y π
t )t≥0 is a supermartingale for any admissible policy π and is a

local martingale for the optimal and admissible policy π∗. Hence, in virtue of (3.2.3), Y π

is a supermartingale if

R− cV − λ(η − μ̄)Vη +
1

2
σ2
2Vηη + max

0≤a≤1

(
aπ

∗
ηVR +

1

2
(aπ

∗
)2σ2

1VRR + aπ
∗
σ1σ2ρVRη

)
≤ 0.

(4.1.3.3)

and Y π∗
t is a local martingale if

Rπ∗
t − cV − λ(η − μ̄)Vη +

1

2
σ2
2Vηη +

(
aπ

∗
ηVR +

1

2
(aπ

∗
)2σ2

1VRR + aπ
∗
σ1σ2ρVRη

)
= 0

Thus, by combining this equation with (4.1.3.3), we deduce that V is a solution to the HJB

equation (4.1.3.1). This ends the proof of the theorem.

Now, our goal is to construct a solution to the HJB equation (4.1.3.1). This is the

aim of the following subsection.

4.2 Construction of the solution to HJB

The goal of this section is to construct as explicitly as possible, a solution to the HJB

equation. We divide this section into two subsections, where we consider the cases whether

the two noises B and W are correlated or not.
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4.2.1 The Case of Orthogonal Noise (i.e. ρ = 0)

Assume there exists an opent set O ⊆ [0,∞) such that a(R, η) satisfies 0 < a(R, η) < 1

for all R ∈ O. Then for any R ∈ O, and η > 0, the maximizer

a∗(R, η) := argmax
a

[
aηVR(R, η) +

1

2
a2σ2

1VRR(R, η)
]

is given by

a∗(R, η) = − ηVR(R, η)

σ2
1VRR(R, η)

. (4.2.1.1)

By inserting (4.2.1.1) into (4.1.1.7), we get

R− cV − λ(η − μ̄)Vη +
1

2
σ2
2Vηη − η2

2σ2
1

V 2
R

VRR

= 0 (4.2.1.2)

In order to solve this PDE, we assume

VR(R(z, η), η) = e−z. (4.2.1.3)

Then, we calculate the following derivatives

VRR = −VR

Rz

, VRη =
Rη

Rz

VR.

By substituting these in (4.2.1.2) and using (4.2.1.3), we obtain

R(z, η)− cV (R(z, η), η)−λ(η− μ̄)Vη(R(z, η), η)+
1

2
σ2
2Vηη +

η2

2σ2
1

Rz(z, η)VR(R(z, η), η) = 0.

(4.1.2.4)

By differentiating this equation with respect to z and using (4.2.1.3) again, we derive

Rz − cRzVR − λ(η − μ̄)RzVRη +
1

2
σ2
2RzVRηη +

η2

2σ2
1

RzzVR − η2

2σ2
1

RzVR = 0. (4.2.1.5)
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Since

VRη =
Rη

Rz

VR.

By differentiating this with respect to η, we get

VRηη =

(
Rηη

Rz

− 2
RηRzη

R2
z

+
R2

ηRzz

R3
z

+
R2

η

R2
z

)
VR. (4.2.1.6)

By plugging (4.2.1.6) into (4.2.1.5), we get

Rz − cRzVR − λ(η − μ̄)RηVR +
1

2
σ2
2Rz

[
Rηη

Rz

− 2
RηRzη

R2
z

+
R2

ηRzz

R3
z

+
R2

η

R2
z

]
VR

+
η2

2σ2
1

RzzVR − η2

2σ2
1

RzVR = 0.

This can be written as

Rzz

Rz

=

(
1 +

2σ2
1c

η2
− 2σ2

1

η2
ez
)
+

2σ2
1

η2
λ(η − μ̄)

Rη

Rz

− σ2
1σ

2
2

η2

[
Rηη

Rz

− 2
RηRzη

R2
z

+
R2

ηRzz

R3
z

+
R2

η

R2
z

]
(4.2.1.7)

In order to simplify the problem, we put

Rz(z, η) = exp
[
z + L(ez, η)

]
, (4.2.1.8)

where L is a function to be described later on.

The solution to this equation is given by

R(z, η) =

∫ z

−∞
exp
[
x+ L(ex, η)

]
dx+ k(η).

By changing the variable, we get

R(z, η) =

∫ ez

0

exp
[
x+ L(x, η)

]
dx+ k(η) = G(ez, η) + k(η). (4.2.1.9)

where G(x, η) is given by

G(x, η) =

∫ x

0

exp
[
L(y, η)

]
dy. (4.2.1.10)
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By mimicking the proof of Højggard and Taskar (1998), we deduce that k(η) = 0. By

differentiating (4.2.1.10) with respect to x, we get

Gx(x, η) = exp
[
L(x, η)

]
, ∀η > 0, x > 0. (4.2.1.11)

From (4.2.1.11), we deduce that Gx > 0 for all x > 0 and hence G(x, η) is strictly increasing

on [0,∞) and continuous. Therefore G(x, η) is invertible, and (4.2.1.9) leads to

ez = G−1(R, η).

Then by plugging this resulting equation in (4.2.1.3), we obtain

VR(R, η) =
1

G−1(R, η)
, ∀R > 0, η > 0. (4.2.1.12)

To determine completely the function V on a neighborhood of zero, we need to describe

the function L introduced in (4.2.18).

Lemma 4.2.1. The function L given by (4.2.1.8) satisfies the following equation.(
η2

2σ2
1

xLx + x− c

)
x2e2L+

1

2
σ2
2 (2 + xLx)

(∫ x

0

Lηe
Ldy

)2

+
[−λ(η − μ̄)− σ2

2Lη

]
xeL

∫ x

0

Lηe
Ldy

+
1

2
σ2xe

L

∫ x

0

(Lηηe
L + L2

η)dy = 0. (4.2.1.13)

Proof. By simplifying (4.2.1.7), we obtain(
σ2
2

2

R2
η

R2
z

+
η2

2σ2
1

)
Rzz

Rz

+ez−c−λ(η−μ̄)
Rη

Rz

+
σ2
2

2

Rηη

Rz

−σ2
2

RηRηz

R2
z

+
σ2
2

2

R2
η

R2
z

− η2

2σ2
1

= 0. (4.2.1.14)

Then, we calculate the derivatives

Rzz(z, η) = (1 + ezLx)Rz, Rzη = LηRz. (4.2.1.15)
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Rη =

∫ x

0

Lηe
Ldy, Rηη =

∫ x

0

(Lηηe
L + L2

ηe
L)dy. (4.2.1.16)

By multiplying R2
z and plugging (4.2.1.15) into (4.2.1.14), we get(

σ2
2

2

R2
η

R2
z

+
η2

2σ2
1

)
(1 + ezLx)R

2
z + ezR2

z −
(
c+

η2

2σ2
1

)
R2

z − λ(η − μ̄)RηRz

+
σ2
2

2
RηηRz − σ2

2LηRηRz +
σ2
2

2
R2

η = 0.

This can be written as(
η2

2σ2
1

ezLx + ez − c

)
R2

z +2σ2
2 (2 + ezLx)R

2
η +
[−λ(η − μ̄)− σ2

2Lη

]
RzRη +

1

2
σ2
2RzRηη = 0.

(4.2.1.17)

By plugging (4.2.1.16) in (4.2.1.17), we obtain(
η2

2σ2
1

ezLx + ez − c

)
e2(z+L) +

1

2
σ2
2 (2 + ezLx)

(∫ x

0

Lηe
Ldy

)2

+
[−λ(η − μ̄)− σ2

2Lη

]
ez+L

∫ x

0

Lηe
Ldy +

1

2
σ2e

z+L

∫ x

0

(Lηηe
L + L2

η)dy = 0.

By changing the variable (i.e.x = ez), we get(
η2

2σ2
1

xLx + x− c

)
x2e2L+

1

2
σ2
2 (2 + xLx)

(∫ x

0

Lηe
Ldy

)2

+
[−λ(η − μ̄)− σ2

2Lη

]
xeL

∫ x

0

Lηe
Ldy

+
1

2
σ2xe

L

∫ x

0

(Lηηe
L + L2

η)dy = 0. (4.2.1.18)

which is the exactly the PDE (4.2.1.13). This ends the proof of the lemma.

By differentiating (4.2.1.12) with respect to R, we deduce that (4.2.1.1) becomes

a∗(R, η) =
η

σ2

G−1(R, η)Gx(G
−1(R, η), η), R > 0 (4.2.1.19)
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and a∗(0, η) = 0. Put

y = G−1(R, η), and a1(y, η) =
η

σ2
yGx(y, η).

By differentiating a1(y, η) with respect to y, we get

∂

∂y
a1(y, η) =

η

σ2

[
1 + yLy

]
exp
[
L(y, η)

]
.

Assumption 4.2.1. Assume (4.2.1.13) has a solution L(y, η) such that the equation

yexp
[
L(y, η)

]
=

σ2
1

η
(4.2.1.20)

has a root y1(η) ∈ (0, c).

Then, under this assumption, we have

R1(η) = G(y1(η), η).

Then a1(R, η) is strictly increasing on [0, R1(η)]. As a result, we have the following solution

V (R, η) =

∫ R

0

1

G−1(y, η)
dy, 0 ≤ R ≤ R1(η). (4.2.1.21)

According to our assumptions a∗(R, η) = 1 for R > R1(η). By substituting a = 1 into

(4.2.1.1), we obtain the following equation

R− cV − λ(η − μ̄)Vη +
1

2
σ2
2Vηη + ηVR +

1

2
σ2
1VRR = 0 (4.2.1.22)

In order to solve this PDE explicitly, we propose the following function for V (R, η)

V (R, η) = C1(η)e
d(η)R + C2(η) +

R

c
,
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Then, we calculate the derivatives

VR = C1de
dR +

1

c
, VRR = C1d

2edR, Vη = C
′
1e

dR + C1d
′edR + C

′
2,

Vηη = C ′′
1de

dR + 2C ′
1d

′edR + C1d
′′edR + C1d

′2edR + C ′′
2 .

By inserting these in (4.2.1.22), we get

edR[−cC1 + C1ηd− λ(η − μ̄)(C ′
1 + C1d

′) +
1

2
σ2
2C

′′
1 + σ2

2C
′
1d

′ +
1

2
σ2
2C1d

′′ +
1

2
σ2
2C1d

′2

+
1

2
σ2
1C1d

2] + [−cC2 +
η

c
+

1

2
σ2
2C

′′
2 − λ(η − μ̄)C

′
2] = 0.

Since the above equation holds for all values of R > R1, we must have:

−cC1+C1ηd−λ(η− μ̄)(C ′
1+C1d

′)+
1

2
σ2
2C

′′
1 +σ2

2C
′
1d

′+
1

2
σ2
2C1d

′′+
1

2
σ2
2C1d

′2+
1

2
σ2
1C1d

2 = 0,

(4.2.1.23)

and

−cC2 +
η

c
+

1

2
σ2
2C

′′
2 − λ(η − μ̄)C ′

2 = 0. (4.2.1.24)

Lemma 4.2.2. The solution to the ODE (4.2.1.24), C2(η), is given by

C2(η) = exp

(∫ η

0

g(x)dx+
λ(η − μ̄)2

2σ2
2

)
+

η

c(c+ λ)
+

λμ̄

c2(c+ λ)
, (4.2.1.25)

where g(η) is the solution to the following Riccati equation

g′(η) + g2(η) =
2c− λ

σ2
2

+
λ2(η − μ)2

σ4
2

. (4.2.1.26)

Proof. To find a particular solution to (4.2.1.24), we assume that

p1(η) = aη + b. (4.2.1.27)
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Here, a and b are constants. By inserting (4.2.1.27) into (4.2.1.24), we get

a =
1

c(c+ λ)
, b =

λμ̄

c2(c+ λ)
.

Therefore, the particular solution to (4.1.2.24) is

p1(η) =
η

c(c+ λ)
+

λμ̄

c2(c+ λ)
.

Then, we need to find the general solution to

−cC2 +
1

2
σ2
2C

′′
2 − λ(η − μ̄)C

′
2 = 0. (4.2.1.28)

To solve this equation, we put

ln (C2(η)) = K(η) (4.2.1.29)

Then, we calculate the derivatives

K ′(η) =
C ′

1(η)

C1(η)
, K ′′(η) =

C ′′
1

C1

−
(
C ′

1

C1

)2

.

By plugging these into (4.2.1.28), we obtain

K ′′ +
(
K ′ − λ(η − μ)

σ2
2

)2

=
2c

σ2
2

+
λ2(η − μ)2

σ4
2

. (4.2.1.30)

Then, we put

g(η) = K ′(η)− λ(η − μ)

σ2
2

. (4.2.1.31)

By differentiating (4.2.1.31) with respect to η, we get

g′(η) = k′′(η)− λ

σ2
2

,

and hence (4.2.1.30) becomes

g′(η) + g2(η) =
2c− λ

σ2
2

+
λ2(η − μ)2

σ4
2

.

This ends the proof of the lemma.
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Therefore, for R > R1(η), the optimal return function takes the form of

V (R, η) = C1(η)e
d(η)R + exp

(∫ η

0

g(x)dx+
λ(η − μ̄)2

2σ2
2

)
+

η

c(c+ λ)
+

λμ̄

c2(c+ λ)
+

R

c
.

(4.2.1.31)

As a result, we obtain

V (R, η) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∫ R

0

1

G−1(x, η)
dx if 0 ≤ R ≤ R1(η)

C1(η)e
d(η)R + exp

(∫ η

0

g(x)dx+
λ(η − μ̄)2

2σ2
2

)
+

ηc+ λμ̄+ c(c+ λ)R

c(c+ λ)
if R ≥ R1(η).

(4.2.1.32)

To ensure that V is twice continuously differentiable, it is necessary and sufficient that

its value, first and second derivative are continuous at the point R1. To this end, we put

V1 :=

∫ R

0

1

G−1(x, η)
dx, V2 := C1(η)e

d(η)R+exp

(∫ η

0

g(x)dx+
λ(η − μ̄)2

2σ2
2

)
+
ηc+ λμ̄+ c(c+ λ)R

c(c+ λ)

Then, we calculate the first and second derivative of V1 and V2 at the point R1(η).

V
′
1 (R1) =

1

y1
, V

′
2 (R1) =

1

c
+ C1d.

V
′′
1 (R1) = − η

σ2
2

V
′
1 (R1) = − η

σ2
2

1

y1
, V

′′
2 (R1) = C1d

2.

Then, VR and VRR are continuous at R = R1(η) if and only if

1

y1
=

1

c
+ C1d and − η

σ2
1

1

y1
= C1d

2.

This implies

C1

(
d2 +

ηd

σ2
1

)
= − η

cσ2
1

,

which can be written as

d2 +
η

σ2
1

d+
η

cσ2
1C1

= 0.
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Since d < 0, the solution to this equation is

d(η) =
1

2

{
− η

σ2
1

−
√

η2

σ4
1

− 4η

cσ2
1C1(η)

}
. (4.2.1.34)

Then, we calculate the derivative

d′(η) =
1

2

⎧⎨⎩− 1

σ2
2

−
η
σ4
1
− 2

cσ2
1C1(η)

+
2ηC′

1(η)

cσ2
1C1(η)2√

η2

σ4
1
− 4η

cσ2
1C1(η)

⎫⎬⎭ . (4.2.1.35)

d′′(η) = −1

2

(
η2

σ4
1

− 4η

cσ2
1C1(η)

)− 1
2
(

1

σ4
1

+
4C ′

1(η)

cσ2
1C1(η)2

+
2ηC ′′

1 (η)

cσ2
1C1(η)2

− 4ηC ′
1(η)

2

cσ2
1C1(η)3

)

+
1

2

(
η

σ4
1

− 2

cσ2
1C1(η)

+
2ηC ′

1(η)

cσ1C1(η)2

)2(
η2

σ4
1

− 4η

cσ2
1C1(η)

)− 3
2

(4.2.1.36)

By plugging (4.2.1.34), (4.2.1.35) and (4.2.1.36) into (4.2.1.23), we get

0 =
1

2
σ2
2C

′′
1 (η) +

⎡⎣−λ(η − μ̄) +
1

2
σ2
1

⎛⎝− 1

σ2
1

−
η
σ4
1
− 2

cσ2
1C1(η)

+
2ηC′

1(η)

cσ2
1C1(η)2√

η2

σ4
1
− 4η

cσ2
1C1

⎞⎠⎤⎦C ′
1(η)

+

⎧⎨⎩−c+
1

2
η

(
− η

σ2
1

−
√

η2

σ4
1

− 4η

cσ2
1C1(η)

)
− 1

2
λ(η − μ̄)

⎛⎝− 1

σ2
1

−
η
σ4
1
− 2

cσ2
2C1(η)

+
2ηC′

1(η)

cσ2
1C1(η)2√

η2

σ4
1
− 4η

cσ2
1C1(η)

⎞⎠⎫⎬⎭C1(η)

+
1

4
σ2
2

⎛⎝− 1

σ2
1

−
η
σ4
1
− 2

cσ2
1C1(η)

+
2ηC′

1(η)

cσ2
1C1(η)2√

η2

σ4
1
− 4η

cσ2
1C1(η)

⎞⎠2

C1(η) +
1

4
σ2
1

(
− η

σ2
1

−
√

η2

σ4
1

− 4η

cσ2
1C1(η)

)2

C1(η)

+
1

4
σ2
2

{
−
(
η2

σ4
1

− 4η

cσ2
1C1(η)

)− 1
2
(

1

σ4
1

+
4C ′

1(η)

cσ2
1C1(η)2

+
2ηC ′′

1 (η)

cσ2
1C1(η)2

− 4ηC ′
1(η)

2

cσ2
1C1(η)3

)}
C1(η)

+
1

4
σ2
2

{(
η

σ4
1

− 2

cσ2
1C1(η)

+
2ηC ′

1(η)

cσ1C1(η)2

)2(
η2

σ4
1

− 4η

cσ2
1C1(η)

)− 3
2

}
C1(η). (4.2.1.37)

This proves the following theorem.
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Theorem 4.2.1. Suppose that Assumption 4.2.1 holds, then the solution to the HJB

(4.1.3.1) is given by

V (R, η) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ R

0

1

G−1(x, η)
dx if 0 ≤ R ≤ R1(η)

− η

cσ2
2(d

2 + ηd
σ2
2
)
ed(η)(R−R1(η)) + exp

(∫ η

0

g(x)dx+
λ(η − μ̄)2

2σ2
2

)

+
ηc+ λμ̄+ c(c+ λ)R

c(c+ λ)
, if R ≥ R1(η).

(4.2.1.38)

Here

R1(η) := G(y1(η), η), G(x, η) =

∫ x

0

exp
[
L(y, η)

]
dy, d(η) =

1

2

{
− η

σ2
−
√

η2

σ4
− 4η

cσ2C1(η)

}
,

where y1(η) is the root of (4.2.1.20) and C1(η) is the solution to PDE (4.2.1.37).

4.2.2 The Case of Correlated Noise (i.e. ρ �= 0)

Assume there exists an opent set O ⊆ [0,∞) such that a(R, η) satisfies 0 < a(R, η) < 1

for all R ∈ O. Then for any R ∈ O, and η > 0, the maximizer

a∗(R, η) := argmax
a

[
aηVR(R, η) +

1

2
a2σ2

1VRR(R, η) + aσ1σ2ρVRη(R, η)
]

is given by

a∗(R, η) = −ηVR(R, η) + σ1σ2ρVRη(R, η)

σ2
1VRR(R, η)

. (4.2.2.1)

By inserting (4.2.2.1) into (4.2.1.6), we obtain

R− cV − λ(η − μ̄)Vη +
1

2
σ2Vηη − 1

2

(ηVR + ρσ1σ2VRη)
2

σ2
1VRR

= 0 (4.2.2.2)
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In order to solve this PDE, we assume

VR(R(z, η), η) = e−z (4.2.2.3)

Then, we calculate the following derivatives

VRR = −VR

Rz

, VRη =
Rη

Rz

VR, VRηη =

(
Rηη

Rz

− 2
RηRzη

R2
z

+
R2

ηRzz

R3
z

+
R2

η

R2
z

)
VR.

By substituting these in (4.2.2.2) and using (4.2.2.3), we obtain

R(z, η)− cV (R(z, η), η)− λ(η − μ̄)Vη(R(z, η), η) +
1

2
σ2Vηη(R(z, η), η)+

Rz(z, η)VR(R(z, η), η)
[
η + σ1σ2ρ

Rη(z,η)

Rz(z,η)
)
]2

2σ2
1

= 0 (4.3.2.4)

By differentiating with respect to z and using (4.2.2.3) again lead to

Rz − cVRRz − λ(η − μ̄)RzVRη +
1

2
σ2RzVRηη +

1

2

[
η + Rη

Rz
σ1σ2ρ

]2
σ2
1

(RzzVR −RzVR)

+

[
η + Rη

Rz
σ1σ2ρ

]
(σ1σ2ρ

RzηRz−RηRzz

R2
z

)

σ2
1

RzVR = 0 (4.2.2.5)

That is equivalent to

ez−m − c− λ(η − μ̄)
Rη

Rz

+
1

2
σ2
2

[
Rηη

Rz

− 2RηRηz

R2
z

+
R2

ηRzz

R3
z

++
R2

η

R2
z

]

+
1

2σ2
1

[
η2 + σ2

1σ
2
2ρ

2
R2

η

R2
z

+ 2ησ1σ2ρ
Rη

Rz

]
Rzz

Rz

− 1

2σ2
1

[
η2 + σ2

1σ
2
2ρ

2
R2

η

R2
z

+ 2ησ1σ2ρ
Rη

Rz

]
+

1

σ2
1

[
ησ1σ2ρ

Rηz

Rz

− ησ1σ2ρ
RηRzz

R2
z

+ σ2
1σ

2
2ρ

2

(
RηRηz

R2
z

− R2
ηRzz

R3
z

)]
= 0 (4.2.2.6)

In order to simplify the problem, put

Rz(z, η) = exp
[
z + L(ez, η)

]
, (4.2.2.7)
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where L is a function to be described later on.

The solution to this equation is given by

R(z, η) =

∫ z

−∞
exp
[
x+ L(ex, η)

]
dx+ k(η).

By changing the variable, we get

R(z, η) =

∫ ez

0

exp
[
x+ L(x, η)

]
dx+ k(η) = G(ez, η) + k(η). (4.2.2.8)

where G(x, η) is given by

G(x, η) =

∫ x

0

exp
[
L(y, η)

]
dy. (4.2.2.9)

By mimicking the proof of Højggard and Taskar (1998), we deduce that k(η) = 0. By

differentiating (4.2.2.9) with respect to x, we get

Gx(x, η) = exp
[
L(x, η)

]
, ∀η > 0, x > 0. (4.2.2.10)

From (4.2.2.10), we deduce that Gx > 0 for all x > 0 and hence G(x, η) is strictly increasing

on (0,∞) and continuous. Therefore G(x, η) is invertible, and (4.2.2.8) leads to

ez = G−1(R, η).

Then by plugging this resulting equation in (4.2.2.3), we obtain

VR(R, η) =
1

G−1(R, η)
. ∀R > 0, η > 0. (4.2.2.11)

To describe completely the function V , we need to describe the function L introduced in

(4.2.2.7). This is the aim of the following.

Lemma 4.2.3. L is given by (4.2.2.7) satisfies the following equation.(
η2

2σ2
1

xLx + x− c+
ησ2ρ

σ1

Lη

)
x2e2L +

1

2
σ2
2

(
2 + ρ2 + xLx

)(∫ x

0

Lηe
Ldy

)2
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+

[
σ2
2(ρ

2 − 1)Lη − λ(η − μ̄)− ησ2ρ

σ1

]
xeL

∫ x

0

Lηe
Ldy +

1

2
σ2xe

L

∫ x

0

(Lηηe
L + L2

η)dy = 0.

(4.2.2.12)

Proof. By simplifying (4.1.2.6), we obtain(
σ2
2

2

R2
η

R2
z

+
η2

2σ2
1

)
Rzz

Rz

+ ez − c− λ(η − μ̄)
Rη

Rz

+
σ2
2

2

Rηη

Rz

− σ2
2

RηRηz

R2
z

+
σ2
2

2

R2
η

R2
z

− η2

2σ2
1

−σ2
2ρ

2

2

R2
η

R2
z

− ησ2ρ

σ1

Rη

Rz

+
ησ2ρ

σ1

Rzη

Rz

+ σ2
2ρ

2RηRηz

R2
z

= 0. (4.2.2.13)

Then, we calculate the derivatives

Rzz(z, η) = (1 + ezLx)Rz, Rzη = LηRz. (4.2.2.14)

Rη =

∫ x

0

Lηe
Ldy, Rηη =

∫ x

0

(Lηηe
L + L2

ηe
L)dy. (4.2.2.15)

By multiplying R2
z and plugging (4.2.2.14) into (4.2.2.13), we get(

σ2
2

2

R2
η

R2
z

+
η2

2σ2
1

)
(1 + ezLx)R

2
z + ezR2

z −
(
c+

η2

2σ2
1

)
R2

z − λ(η − μ̄)RηRz +
σ2
2

2
RηηRz

−σ2
2LηRηRz +

σ2
2

2
R2

η −
σ2
2ρ

2

2
R2

η −
ησ2ρ

σ1

RzRη +
ησ2ρ

σ1

LηRηRz + σ2
2ρ

2RηRηz = 0.

This can be written as(
η2

2σ2
1

ezLx + ez − c

)
R2

z+2σ2
2

(
2 + ρ2 + ezLx

)
R2

η+

[
−λ(η − μ̄)− σ2

2Lη − ησ2ρ

σ1

+ σ2
2ρ

2Lη

]
RzRη

+
1

2
σ2
2RzRηη +

ησ2ρ

σ1

LηR
2
z = 0. (4.2.2.16)

By plugging (4.2.2.15) in (4.2.2.16), we obtain(
η2

2σ2
1

ezLx + ez − c+
ησ2ρ

σ1

Lη

)
e2(z+L) +

1

2
σ2
2

(
2 + ρ2 + ezLx

)(∫ x

0

Lηe
Ldy

)2
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+

[
σ2
2ρ

2Lη − λ(η − μ̄)− σ2
2Lη − ησ2ρ

σ1

]
ez+L

∫ x

0

Lηe
Ldy +

1

2
σ2e

z+L

∫ x

0

(Lηηe
L + L2

η)dy = 0.

By changing the variable (i.e.x = ez), we get(
η2

2σ2
1

xLx + x− c+
ησ2ρ

σ1

Lη

)
x2e2L +

1

2
σ2
2

(
2 + ρ2 + xLx

)(∫ x

0

Lηe
Ldy

)2

+

[
σ2
2ρ

2Lη − λ(η − μ̄)− σ2
2Lη − ησ2ρ

σ1

]
xeL

∫ x

0

Lηe
Ldy +

1

2
σ2xe

L

∫ x

0

(Lηηe
L + L2

η)dy = 0.

(4.2.2.17)

which is exactly the PDE (4.2.2.12). This ends the proof of the lemma.

By differentiating (4.2.2.11) with respect to R, we deduce that (4.2.2.1) becomes

a∗(R, η) =
η

σ2
1

G−1(R, η)Gx(G
−1(R, η), η)−σ2ρ

σ1

Gx(G
−1(R, η), η)Gη(G

−1(R, η), η), R > 0.

and a∗(0, η) = 0. Then put

y = G−1 (R, η) , and a1(R, η) =
η

σ2
1

yGx(y, η)− σ2ρ

σ1

Gx(y, η)Gη(y, η).

Assumption 4.2.2. Assume (4.2.2.12) has a solution L(y, η) such that the equation

exp {L(y, η)}
(

η

σ2
1

y − σ2ρ
∫ y

0
Lηe

L(x,η)dx

σ1

)
= 1 (4.2.2.18)

has a root y1(η) ∈ (0, c).

Then, we have

R1(η) = G(y1(η), η) (4.2.2.19).

As a result, we have the following solution

V (R, η) =

∫ R

0

1

G−1(R, η)
dy, 0 ≤ R ≤ R1(η).
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According to our assumptions a∗(R, η) = 1 for R > R1(η). By substituting a = 1 into

(4.2.1.6), we obtain the following equation:

R− cV − λ(η − μ̄)Vη +
1

2
σ2
2Vηη + ηVR +

1

2
σ2
1VRR + σ1σ2ρVRη = 0. (4.2.2.15)

In order to solve this PDE explicitly, we propose the following function for V (R, η)

V (R, η) = C1(η)e
d(η)R + C2(η) +

R

c
,

and calculate the following derivatives:

VR = C1de
dR +

1

c
, VRR = C1d

2edR, Vη = C
′
1e

dR + C1d
′edR + C

′
2,

Vηη = C ′′
1de

dR + 2C ′
1d

′edR + C ′
1dd

′edR + C1d
′′edR + C1d

′2edR + C ′′
2 .

By inserting them in (4.2.2.15), we get

edR[−cC1 − λ(η − μ̄)(C ′
1 + C1d

′) +
1

2
σ2
2(C

′′
1 + 2C ′

1d
′ + C1d

′′ + C1d
′2) + ηC1d+

1

2
σ2
1C1d

2

+σ1σ2ρ(C
′
1d+ C1d

′ + C1dd
′)] + [−cC2 +

η

c
+

1

2
σ2
2C

′′
2 − λ(η − μ̄)C

′
2] = 0.

Since the above equation holds for all values of R > R1, we must have:

−cC1 − λ(η − μ̄)(C ′
1 + C1d

′) +
1

2
σ2
2(C

′′
1 + 2C ′

1d
′ + C1d

′′ + C1d
′2) + ηC1d+

1

2
σ2
1C1d

2

+σ1σ2ρ(C
′
1d+ C1d

′ + C1dd
′)] = 0, (4.2.2.16)

and

−cC2 +
η

c
+

1

2
σ2
2C

′′
2 − λ(η − μ̄)C

′
2 = 0. (4.2.2.17)

It is clear that (4.2.2.17) is the same as (4.2.1.28), we have already solved it.

Therefore, for R > R1(η), the optimal return function takes the form of

V (R, η) = C1(η)e
d(η)R + exp

(∫ η

0

g(x)dx+
λ(η − μ̄)2

2σ2
2

)
+

η

c(c+ λ)
+

λμ̄

c2(c+ λ)
+

R

c
.

(4.2.2.18)
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As a result, we obtain

V (R, η) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∫ R

0

1

G−1(x, η)
dx if 0 ≤ R ≤ R1(η)

C1(η)e
d(η)R + exp

(∫ η

0

g(x)dx+
λ(η − μ̄)2

2σ2
2

)
+

ηc+ λμ̄+ c(c+ λ)R

c(c+ λ)
if R ≥ R1(η).

(4.2.2.19)

To ensure that V is twice continuously differentiable, it is necessary and sufficient that its

value, first and second derivative are continuous at the point R1. To this end, we put

V1 :=

∫ R

0

1

G−1(x, η)
dx, V2 := C1(η)e

d(η)R+exp

(∫ η

0

g(x)dx+
λ(η − μ̄)2

2σ2
2

)
+
ηc+ λμ̄+ c(c+ λ)R

c(c+ λ)
.

Then, we calculate the first and second derivative of V1 and V2 at the point R1(η).

V
′
1 (R1) =

1

y1
, V

′
2 (R1) =

1

c
+ C1d.

V
′′
1 (R1) = − η

σ2
2

V
′
1 (R1) = − η

σ2
2

1

y1
− σ2ρ

σ1

Gη(y1, η)

Gx(y1, η)
, V

′′
2 (R1) = C1d

2.

Then, VR and VRR are continuous at R = R1(η) if and only if

1

y1
=

1

c
+ C1d.

− η

σ2
2

1

y1
− σ2ρ

σ1

Gη(y1, η)

Gx(y1, η)
= C1d

2.

This implies

d(η) =
cη

σ1(y1 − c)
+

cy1
c− y1

ρσ2

σ1

Gη(y1, η)

Gx(y1, η)
(4.2.2.20)

This proves the following theorem.
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Theorem 4.2.2. The solution to the HJB (4.2.2.12) is given by

V (R, η) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ R

0

1

G−1(x, η)
dx if 0 ≤ R ≤ R1(η)

C1(η)e
d(η)(R−R1(η)) + exp

(∫ η

0

g(x)dx+
λ(η − μ̄)2

2σ2
2

)
+
ηc+ λμ̄+ c(c+ λ)R

c(c+ λ)
if R ≥ R1(η)

(4.2.2.21)

Here

R1(η) := G(y1(η), η), G(x, η) =

∫ x

0

exp
[
L(y, η)

]
dy, d(η) =

cη

σ1(y1 − c)
+

cy1
c− y1

ρσ2

σ1

Gη(y1, η)

Gx(y1, η)
.

where y1(η) is the root of (4.2.2.18) and C1(η) is the solution to PDE (4.2.2.16).

4.3 Optimal policy and the verification theorem

In this section we construct the optimal policy based on the solution to the HJB

equation obtained in the previous section. Recall that R1(η) = G−1(y1(η), η), where y1(η)

is root of (4.2.2.18). For R ≤ R1(η), we obtain

a∗(R, η) := argmax
a

[
aηVR(R, η) +

1

2
a2σ2VRR(R, η) + aσ1σ2ρVRη(R, η)

]
.

As evident from below the function a∗(R, η) represents the optimal feedback control func-

tion for the control component aπ =
(
aπ(t)

)
t≥0

. More precisely, the value a∗(R, η) is the

optimal risk that one should take when the value of the current reserve is R and the re-

serve rate is η. From the analysis of the previous section, it follows that a∗(R, η) takes the
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following form

a∗(R, η) =

⎧⎪⎨⎪⎩
η

σ2
1

G−1(R, η)Gx(G
−1(R, η), η)− σ2ρ

σ1

Gx(G
−1(R, η), η)Gη(G

−1(R, η), η) if 0 ≤ R ≤ R1(η)

1, if R ≥ R1(η).

(4.3.1)

For any 0 ≤ a ≤ 1, we define a differential operator La by

Laf(R, η) =
σ2a2

2
fRR(R, η) + aηfR + aσ1σ2ρfRη − cf(R, η)− λ(η − μ)fη(R, η) (4.4.2)

For any f ∈ C2×1((0,∞)× (0,∞)). Thus, thanks to the previous section, we have

La∗(R,η)V (R, η) = −R. (4.4.3)

Let R∗
t = (R∗

t )t≥0 be a solution to the following Skorohod problem :

R∗
t = R∗

0 +

∫ t

0

a(R∗
s, μs)μsds+

∫ t

0

σ1a(R
∗
s, μs)dWs, (4.4.4)

R∗
t ≤ R1(μt).

Theorem 4.3.1. Let V be a concave, twice continuously differentiable solution of the HJB

equation (4.1.3.1) and (R∗
t )t≥0 be a solution to the Skorohod problem (4.4.4).

Then for π∗ :=
(
a(R∗

t , μt)
)
t≥0

,we have

Jπ∗(R, η) = V (R, η), ∀R ≥ 0, η ≥ 0.

Proof. Notice that Rπ∗
t = R∗

t . Let R0 = R and μ0 = η. Choose 0 < ε < R and let

τ επ = inf {t : R∗
t = ε}, then Ito’s formula yields,

e−c(t∧τεπ)V (Rπ
t∧τε∗ , μt) = V (R, η)+

∫ t∧τε∗

0

e−csLaπ∗ (s)V (R∗
s, μs)ds+

∫ t∧τε∗

0

e−csσ1aπ∗(s)VR(R
∗
s, μs)dWs
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= V (R, η)−
∫ t∧τε∗

0

e−csR∗
sds+

∫ t∧τε∗

0

e−csσ1aπ∗(s)VR(R
∗
s, μs)dWs (4.4.5)

Since VR(R
∗
s, μs) ≤ VR(ε, μs) < ∞ on [0, t ∧ τ ε∗ ], the last term on the r.h.s. is a zero-mean

martingale. Taking expectations in (4.4.5), we obtain

E
[
e−c(t∧τε∗ )]V (Rπ

t∧τε∗ , μt) + E

∫ t∧τεπ

0

e−csRπ
s ds = V (R, η). (4.4.6)

Since τ ε∗ → τπ∗ when ε → 0∫ t∧τε∗

0

e−csR∗
sds →

∫ t∧τπ∗

0

e−csR∗
sds.

Thus letting ε → 0 in (4.4.6), we use dominated and monotone convergence theorems for

the first and the second terms in (4.4.5) respectively, we get

E
[
e−c(t∧τπ∗ )V (R∗

t∧τπ∗ , μt)
]
+ E

∫ t∧τ∗

0

e−csR∗
sds = V (R, η). (4.4.7)

Since V (0, η) = 0, we have

E
[
e−c(t∧τ∗)V (R∗

t∧τ∗ , μt)
]
= e−ctE [V (R∗

t , μt); t < τπ∗ ] → 0.

as t → ∞. Letting t → ∞ on (4.4.7), we have

E

∫ τπ∗

0

e−csRπ∗
s ds = V (R, η).

Therefore, V (R, η) = Jπ∗(R, η). This ends the proof of the theorem.
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Chapter 5

Stochastic Cash Reserve Rate: The

Case of Partial Information

This chapter investigates the proportional reinsurance problem under partial infor-

mation. Precisely, we suppose that the cash reserve rate is not observable and follows an

Ornstein-Uhlenbeck process with positive volatility. The policy selection for the reinsured

proportion 1 − aπ is based on the observations of the cash reserve process itself, while its

noise and its cash reserve rate are not observable.

This chapter has five sections. The first section outlines the model for the cash reserve

process. The second section applies the filtering techniques to the model and defines the

objective. The third section derives the HJB equation associated to this objective, while

Section 4 gives a solution to this HJB equation. The last section describes the optimal

policy and gives a verification theorem.

61



5.1 Mathematical and economic model

We start our mathematical model with a given filtered probability space (Ω,F ,F := (Ft)t≥0,P).

On this filtered probability space, we assume given two one-dimensional F-adapted Brow-

nian motions W = (Wt)t≥0 and B = (Bt)t≥0 that are correlated with the correlation

coefficient ρ ∈ [−1, 1].

In this chapter, we assume that the dynamics of the cash reserve process R = (Rt)t≥0 (cash

reserve process with no-reinsurance) are given by

dRt = μtaπ(t)dt+ σ1aπ(t)dWt, R0 = initial cash reserve.

where the cash reserve rate process, μ = (μt)t≥0, is given by

dμt = −λ(μt − μ̄)dt+ σ2dBt, μ0 is given, (5.1.00)

and σ1 > 0, λ > 0, μ̄ ≥ 0, σ2 > 0 are constants.

In this chapter, we assume that the policy maker (the insurance company) observes

the cash reserve process R = (Rt)t≥0 only, and does not observe the processes μ,W, and

B.

A policy π is a rule which for each t ≥ 0 associates a random variable 0 ≤ aπ(t) ≤ 1

(1 − aπ(t) is the reinsured proportion of the claims). The policy π is admissible if the

process aπ =
(
aπ(t)

)
t≥0

is adapted to the information generated by the process R. In

other words, aπ is adapted to the filtration

(FR
t )t≥0, FR

t := σ (Rs, 0 ≤ s ≤ t) .
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Hereafter, we denote by A the set of all admissible policies. Then, the objective of the

insurance company is the same as in the previous chapters. However the policy selection

is made under restricted information. Thus, our main first task lies in transforming the

maximization problem under partial information into a maximization problem with full

information using the filtering techniques. This is the aim of the following section.

5.2 Filtering

We apply the filtering techniques in chapter 2. We define the innovation process Ŵ

associate to W as follows

dŴt
�
=

1

σ1

[(μt − μ̂t)dt+ σ1dWt] =
1

σ1

(
dRt

a(t)
− μ̂tdt

)
, t ≥ 0.

Here μ̂t := E
[
μt|FR

t

]
.

Thanks to Proposition 2.2.1, Ŵ := (Ŵt)t∈[0,T ] is a Brownian motion under FR, and due to

Kalman-Bucy filter, the process μ̂t satisfies

dμ̂t = −λ (μ̂t − μ̄) dt+

(
Ω̂t + σ1σ2ρ

σ1

)
dŴt, t ≥ 0. (5.2.1)

with μ̂0 = E[μ0|FR
0 ] = η0.

Moreover, the conditional variance Ω̂t = E[(μt − μ̂t)
2 |FR

t ] satisfied the deterministic Ric-

cati ordinary differential equation (ODE):

dΩ̂t = [− 1

σ2
1

Ω̂2
t +

(
−2σ2ρ

σ1

− 2λ

)
Ω̂t +

(
1− ρ2

)
σ2
2]dt, t ≥ 0.

with Ω̂ (0) = E[(μ0 − η)2 |FR
0 ] = θ0, which has an explicit solution

Ω̂t = Ω̂(t; θ0) =
√
kσ1

k1exp(2(
√
k

σ1
)t) + k2

k1exp(2(
√
k

σ1
)t)− k2

− (λ+
σ2ρ

σ1

)σ2
1.

63



and

k = λ2σ2
1 + 2σ1σ2λρ+ σ2

2

k1 =
√
kσ1 +

(
λσ2

1 + σ1σ2ρ
)
+ θ0

k2 = −
√
kσ1 +

(
λσ2

1 + σ1σ2ρ
)
+ θ0

Under the observation filtration
(FR

t

)
t≥0

, the cash reserve dynamics

dRπ
t = μ̂taπ(t)dt+ σ1aπ(t)dŴt, t ≥ 0. (5.2.2)

We end this subsection by formulating mathematically our objectives. To this end, we

consider a discount factor. Let π be an admissible policy and R = (Rπ
t )t≥0 corresponding

to cash reserve process given by the SDE (5.2.2). For a given control policy π, the time of

bankruptcy for the cash reserve, is defined by

τπ = inf {t ≥ 0 : Rπ
t = 0} .

Thus, the return function associated to the policy π deduces Jπ(R, η, θ), and is given by

Jπ(R, η, θ) := E

(∫ τπ

0

e−ctRπ
t dt|R0 = R, μ̂0 = η, Ω̂(0) = θ

)
.

Our objective lies in the describing the optimal value function under the partial observa-

tions filtration

V (R, η, θ) := sup
π∈A

Jπ(R, η, θ), ∀R ≥ 0, η ≥ 0, θ ≥ 0. (5.2.3)

and finding the optimal policy π∗ ∈ A that satisfies

V (R, η, θ) = Jπ∗(R, η, θ), ∀R ≥ 0, η ≥ 0, θ ≥ 0. (5.2.4)
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5.3 The Hamilton-Jacobi-Bellman equation

In this section, we derive the HJB equation for the optimal return function.

Theorem 5.3.1. The optimal value function V (R, η, θ), defined by (5.2.3), is twice con-

tinuously differentiable on (0,∞), then V satisfies the Hamilton-Jacobi-Bellman equation

R− cV − λ (η − μ̄)Vη +

[
− 1

σ2
1

θ2 + (−2σ2ρ

σ1

− 2λ)θ + (1− ρ2)σ2
2

]
Vθ +

1

2

(
θ + σ1σ2ρ

σ1

)2

Vηη

+max
a∈[0,1]

[
aηVR +

1

2
a2σ2

1VRR + a(θ + σ1σ2ρ)VRη

]
= 0, (5.3.1)

V (0) = 0.

Proof. By applying Itô’s formula ,we derive V (R, η, θ),

dV
(
Rπ

t , μ̂t, Ω̂t,
)
= VRdR

π
t +Vηdμ̂t+VθdΩ̂t+

1

2
VRRd〈Rπ, Rπ〉t+ 1

2
Vηηd〈μ̂, μ̂〉t+VRηd〈Rπ

t , μ̂t〉

= VR

[
(aπt η − δ)dt+ aπt σ1dŴt

]
+ Vη

[
− λ(η − μ̄)dt+ (

θ + σ1σ2ρ

σ1

)dŴt

]
= Vθ

[
− 1

σ2
1

θ2 + (−2σ2ρ

σ1

− 2λ)θ + (1− ρ2)σ2
2

]
dt+

1

2
VRR(a

π
t )

2σ2
1dt

+
1

2
Vηη(

θ + σ1σ2ρ

σ1

)2dt+ VRηa
π
t (θ + σ1σ2ρ)dt (5.3.2)

Put

Y π
t :=

∫ t

0

e−csRsds+ e−ctV (Rt, μ̂t, Ω̂t),

Thanks to Bellman’s principal (dynamics programming principal), the optimal value func-

tion, V (R, η, θ) is such that (Y π
t )t≥0 is a supermartingale for any admissible policy π and

is a local martingale for the optimal admissible policy π∗. Hence, in virtue of (5.3.2), Y π
t

is a supermartingale if

R− cV − λ (η − μ̄)Vη +

[
− 1

σ2
1

θ2 + (−2σ2ρ

σ1

− 2λ)θ + (1− ρ2)σ2
2

]
Vθ
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+
1

2

(
θ + σ1σ2ρ

σ1

)2

Vηη + max
a∈[0,1]

[
aηVR +

1

2
a2σ2

1VRR + a(θ + σ1σ2ρ)VRηdt

]
≤ 0, (5.3.3)

and Y π∗
is a local martingale if∫ t

0

e−csRπ∗
s ds+ e−ctV (Rπ∗

t , μ̂t, Ω̂t),

is a local martingale if and only if V satisfies

Rπ∗
t − cV − λ (η − μ̄)Vη +

[
− 1

σ2
1

θ2 + (−2σ2ρ

σ1

− 2λ)θ + (1− ρ2)σ2
2

]
Vθ

+
1

2

(
θ + σ1σ2ρ

σ1

)2

Vηη +

[
aπ

∗
t ηVR +

1

2
(aπ

∗
t )2σ2

1VRR + aπ
∗

t (θ + σ1σ2ρ)VRη

]
= 0.

Thus, by combining this equation and (5.3.3), we deduce that V is a solution to the HJB

equation (5.3.1). This ends the proof of the theorem.

Now, our goal is to construct a solution to HJB equation (5.3.1). This is the aim of

the following subsection.

5.4 Construction of the solution to HJB

Assume there exists an open setO ⊆ [0,∞) such that a(R, η, θ) satisfies 0 < a(R, η, θ) <

1 for all R ∈ O. Then for any R ∈ O, η > 0 and θ > 0, the maximizer

a∗(R, η, θ) := argmax
a

[
aηVR(R, η, θ) +

1

2
a2σ2

1VRR(R, η, θ) + aσ1σ2ρVRη(R, η, θ)
]

is given by

a∗(R, η, θ) = −ηVR(R, η, θ) + σ1σ2ρVRη(R, η, θ)

σ2
1VRR(R, η, θ)

. (5.4.1)
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By inserting (5.4.1) into (5.3.1), we get

R− cV − λ(η − μ̄)Vη +

[
− 1

σ2
1

θ2 +

(
−2σ2ρ

σ1

− 2λ

)
θ +

(
1− ρ2

)
σ2
2

]
Vθ

+
1

2

(
θ + σ1σ2ρ

σ1

)2

Vηη − 1

2

[ηVR + (σ1σ2ρ+ θ)VRη]
2

σ2
1VRR

= 0 (5.4.2)

In order to solve this PDE, we assume

VR(R(z, η, θ), η, θ) = e−z (5.4.3)

Then, we calculate the following derivatives

VRR = −VR

Rz

, VRη =
Rη

Rz

VR, VRθ =
Rθ

Rz

VR.

VRηη = [
Rηη

Rz

− 2
RηRηz

R2
z

+
R2

ηRzz

R3
z

+
R2

η

R2
z

]VR

By substituting R = R(z, η, θ) in (5.4.2) and using (5.4.3), we obtain

R− cV − λ(η − μ̄)Vη +

[
− 1

σ2
1

θ2 +

(
−2σ2ρ

σ1

− 2λ

)
θ +

(
1− ρ2

)
σ2
2

]
Vθ

+
1

2

(
θ + σ1σ2ρ

σ1

)2

Vηη +

[
η + (σ1σ2ρ+ θ)(mη +

Rη

Rz
)
]2

2σ2
1

RzVR = 0 (5.4.4)

By differentiating with respect to z leads to,

Rz − cVRRz − λ(η − μ̄)RzVRη +RzVθR

[
− 1

σ2
1

θ2 +

(
−2σ2ρ

σ1

− 2λ

)
θ +

(
1− ρ2

)
σ2
2

]

+
1

2

(
θ + σ1σ2ρ

σ1

)2

RzVRηη +
1

2

[
η + (σ1σ2ρ+ θ)Rη

Rz

]2
σ2
1

(RzzVR −RzVR)

+

[
η + Rη

Rz
(σ1σ2ρ+ θ)

]
((σ1σ2ρ+ θ)RzηRz−RηRzz

R2
z

)

σ2
1

RzVR = 0 (5.4.5)
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That is equivalent to

ez−m − c− λ(η − μ̄)
Rη

Rz

+
Rθ

Rz

[
− 1

σ2
1

θ2 +

(
−2σ2ρ

σ1

− 2λ

)
θ +

(
1− ρ2

)
σ2
2

]

+
1

2

(
θ + σ1σ2ρ

σ1

)2 [
Rηη

Rz

− 2RηRηz

R2
z

+
R2

ηRzz

R3
z

++
R2

η

R2
z

]
− 1

2σ2
1

[
η2 + (σ1σ2ρ+ θ)2

R2
η

R2
z

+ 2η(σ1σ2ρ+ θ)
Rη

Rz

]
+

1

2σ2
1

[
η2 + (σ1σ2ρ+ θ)2

R2
η

R2
z

+ 2η(σ1σ2ρ+ θ)
Rη

Rz

]
Rzz

Rz

+
1

σ2
1

[
η(σ1σ2ρ+ θ)

Rηz

Rz

− η(σ1σ2ρ+ θ)
RηRzz

R2
z

+ (σ1σ2ρ+ θ)2
(
RηRηz

R2
z

− R2
ηRzz

R3
z

)]
= 0

(5.4.6)

In order to simplify the problem, we put

Rz(z, η, θ) = exp
[
z + L(ez, η, θ)

]
, (5.4.7)

where L is a function to be described later on.

The solution to this equation is given by

R(z, η, θ) =

∫ z

−∞
exexp

[
L(ex, η, θ)

]
dx+ k(η, θ).

By changing the variable (i.e. x = ez), we get

R(z, η, θ) =

∫ ez

0

exp {L(x, η, θ)} dx+ k = G(ez, η, θ) + k(η, θ). (5.4.8)

where G(x, η, θ) is given by

G(x, η, θ) =

∫ x

0

exp
[
L(y, η, θ)

]
dy, x > 0, η > 0, θ > 0. (5.4.9)
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By mimicking the proof of Højggard and Taskar (1998), we deduce that k(η, θ)=0. By

differentiating (5.4.9) with respect to x, we get

Gx(x, η, θ) = exp
[
L(x, η, θ)

]
. (5.4.10)

From (5.4.10), we get Gx > 0 for all x > 0, η > 0 and θ > 0. G(x, η, θ) is increasing on

(0,∞) and continuous, therefore G(x, η, θ) is invertible. As a result, we get

ez = G−1(R, η, θ).

Then by plugging this resulting equation in (5.4.3), we obtain

VR(R, η, θ) =
1

G−1(R, η, θ)
. R > 0, η > 0, θ > 0. (5.4.11)

To describe completely the function V, we need to describe the function L introduced in

(5.4.7). This is the aim of the following.

Lemma 5.4.1. The function L given by (5.4.7) satisfies the following PDE.(
η2

σ2
1

+ x− c

)
xLx +

η2

2σ2
1

x2Lxx +
η2

2σ2
1

x2L2
x + 2x− c− λ(η − μ̄)Lη + fLθ

+
1

2
β2
(
Lηη + L2

η

)
+

ηβ

σ1

x (Lxη + LxLη) = 0 (5.4.12)

Here,

f(θ) = − 1

σ2
1

θ2 + (−2σ2ρ

σ1

− 2λ)θ + (1− ρ2)σ2
2,

β(θ) =
σ1σ2ρ+ θ

σ1

,

Proof. By simplifying (5.4.7), we obtain

η2

2σ2
1

Rzz+ezRz−(c+
η2

2σ2
1

)Rz−
[
λ(η − μ̄) +

ηβ

σ1

]
Rη+fRθ+

1

2
β2Rηη+

ηβ

σ1

Rzη = 0 (5.4.13)
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Then, we calculate the derivatives

Rzz = (1 + ezLz)Rz, Rzη = LηRz, Rzηη =
(
Lηη + L2

η

)
Rz.

By plugging these into (5.4.13), we obtain

η2

2σ2
1

(1+ ez)Rz + ezRz − (c+
η2

2σ2
1

)Rz −
[
λ(η − μ̄) +

ηβ

σ1

]
Rη + fRθ +

1

2
β2Rηη +

ηβ

σ1

LηRz = 0

(5.4.14)

By differentiating (5.4.14) with respect to z, we get

η2

2σ2
1

Rzz +
η2

2σ2
1

ezLxRz +
η2

2σ2
1

e2zLxxRz +
η2

2σ2
1

ezLxRzz + ezRz + ezRzz − (c+
η2

2σ2
1

)Rzzz

−
[
λ(η − μ̄) +

ηβ

σ1

]
Rzη + fRzθ +

1

2
β2Rzηη +

ηβ

σ1

(ezLxηRz + LηRzz) = 0

This can be written as

η2

σ2
1

ezLx +
η2

2σ2
1

e2zLxx +
η2

2σ2
1

e2zL2
x + 2ez + e2zLx − c− cezLx − λ(η − μ̄)Lη + fLθ

+
1

2
β2(Lηη + L2

η) +
ηβ

σ1

ezLxη +
ηβ

σ1

ezLxLη = 0

By changing the varible, we derive(
η2

σ2
1

+ x− c

)
xLx +

η2

2σ2
1

x2Lxx +
η2

2σ2
1

x2L2
x + 2x− c− λ(η − μ̄)Lη

+
1

2
β2
(
Lηη + L2

η

)
+

ηβ

σ1

x (Lxη + LxLη) = 0.

which is the exactly the PDE (5.4.12). This ends the proof of the Lemma.
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By differentiating with (5.4.11) respect to R and we deduce that (5.4.1) becomes

a∗(R, η, θ) =

{
η

σ2
1

G−1(R, η, θ) +
(θ + σ1σ2ρ)

σ2
1

(
1

G−1(R, η, θ)

)
η

}
Gx

(
G−1(R, η, θ), η, θ

)
.

(5.4.15)

for R ≥ 0 and a(0, η, θ) = 0.

Let y = G−1(R, η, θ) , then we have

a1(R, η) =
η

σ2
1

yGx(y, η)− σ2ρ

σ1

Gx(y, η)Gη(y, η).

Assumption 5.4.1. Assume (5.4.12) has a solution L(y, η, θ) such that the equation

exp {L(y, η, θ)}
(

η

σ2
1

y − σ2ρ
∫ y

0
Lηe

L(x,η,θ)dx

σ1

)
= 1 (5.4.16)

has a root y1(η, θ) ∈ (0, c).

Then, we have

R1(η, θ) = G(y1(η, θ), η, θ) (5.4.17)

As a result, we have the following solution

V (R, η, θ) =

∫ R

0

1

G−1(y, η, θ)
dy, 0 < R < R1(η, θ) (5.4.18)

According to our assumptions a∗(R, η, θ) = 1 for R > R1(η, θ). By substituting a = 1 into

(5.4.1), we obtain the following equation:

R−cV−λ(η−μ̄)Vη+Vθf(θ)+
1

2

(
θ + σ1σ2ρ

σ1

)2

Vηη+

[
ηVR +

1

2
σ2
1VRR + (θ + σ1σ2ρ)VRη

]
= 0.

(5.4.19)

where, f(θ) = − 1
σ2
1
θ2 + (−2σ2ρ

σ1
− 2λ)θ + (1− ρ2)σ2

2.

In order to solve this PDE explicitly, we propose the following function for V (R, η, θ)

V (R, η, θ) = M(η, θ)ed(η,θ)R +N(η, θ) +
R

c
.
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We calculate the following derivatives:

VR = MdedR +
1

c
, VRR = Md2edR,

Vη = Mηe
dR +Mdηe

dR +Nη, Vηη = Mηηe
dR + 2mηdηe

dR +Mdηηe
dR +Md2η +Nηη,

Vθ = Mθe
dR +Mdθe

dR +Nθ, VRη = Mηde
dR +Mdηe

dR +Mddηe
dR.

By inserting them in (5.4.18), we get[
−cM − λ(η − μ̄)Mη − λ(η − μ̄)Mdη + fMθ +Mdθf

]
edR

+

[
1

2

(
θ + σ1σ2ρ

σ1

)2

Mηη

(
θ + σ1σ2ρ

σ1

)2

Mηdη

]
edR

+

[(
θ + σ1σ2ρ

σ1

)2

Mdηη + ηMd+

(
θ + σ1σ2ρ

σ1

)2

Md2η +
1

2
σ2
1Md2

]
edR

+ [(θ + σ1σ2ρ)(Mηd+Mdη +Mddη)] e
dR

+

[
−N − λ(η − μ̄)Nη + fNθ +

1

2

(
θ + σ1σ2ρ

σ1

)2

Nηη +
η

c

]
= 0

Since the above equation holds for all values of R > R1(η, θ), we must have:

−cM − λ(η − μ̄)Mη − λ(η − μ̄)Mdη + fMθ +Mdθf +
1

2

(
θ + σ1σ2ρ

σ1

)2

Mηη

+

(
θ + σ1σ2ρ

σ1

)2

Mηdη +

(
θ + σ1σ2ρ

σ1

)2

Mdηη + ηMd+

(
θ + σ1σ2ρ

σ1

)2

Md2η

+
1

2
σ2
1Md2 + (θ + σ1σ2ρ)(Mηd+Mdη +Mddη) = 0 (5.4.20)
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and

1

2

(
θ + σ1σ2ρ

σ1

)2

Nηη − λ(η − μ̄)Nη + βNθ − cN +
η

c
= 0 (5.4.21)

As a result, we get the optimal return function

V (R, η, θ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫ R

0

1

G−1(x, η, θ)
if 0 ≤ R ≤ R1(η, θ)

M(η, θ)ed(η,θ)(R−R1) +N(η, θ) + R
c

if R ≥ R1(η, θ)

(5.4.22)

To ensure that V is twice continuously differentiable, it is necessary and sufficient that

its value, first and second derivative are continuous at the point R1(η, θ). To this end, we

put

V1(R, η, θ) :=

∫ R

0

1

G−1(x, η, θ)
, V2(R, η, θ) := M(η, θ)ed(η,θ)(R−R1) +N(η, θ) +

R

c
.

Then, we consider the first and second derivative of V1 and V2 at the point R1(η, θ).

V
′
1 (R1) =

1

y1
, V

′
2 (R1) =

1

c
+Md.

V
′′
1 (R1) = − η

σ2
2

V
′
1 (R1) = − η

σ2
2

1

y1
− σ2ρ

σ1

, V
′′
2 (R1) = Md2.

Then, VR and VRR are continuous at R(η, θ) = R1(η, θ) if only

1

y1
=

1

c
+Md.

− η

σ2
2

1

y1
− σ2ρ

σ1

Gx(y, η, θ)Gη(y, η, θ) = Md2.

This implies

d(η) =
cη

σ1(y1 − c)
+

cy1
c− y1

ρσ2

σ1

Gη(y1, η, θ)

Gx(y1, η, θ)
(5.4.24)

This proves the following theorem.
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Theorem 5.4.1. Suppose that Assumption 5.4.1, then the solution to the HJB (5.3.1) is

given by

V (R, η, θ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫ R

0

1

G−1(R, η, θ)
dx if 0 ≤ R ≤ R1(η, θ)

M(η, θ)ed(η,θ)(R−R1(η,θ)) +N(η)ed(η,θ)R + R
c

if R ≥ R1(η, θ)

(5.4.25)

Here

R1(η, θ) = G(y1(η), η, θ), G(x, η, θ) =

∫ x

0

exp
[
L(y, η, θ)

]
dy,

d(η) =
cη

σ1(y1 − c)
+

cy1
c− y1

ρσ2

σ1

Gη(y1, η, θ)

Gx(y1, η, θ)
,

where y1(η, θ) is the root of (5.4.16) and M(η, θ) is the solution to PDE (5.4.20).

5.5 Optimal policy and the verification theorem

In this section we construct the optimal policy based on the solution to the HJB

equation obtained in the previous sections. Recall that R1(η, θ) = G(y1(η, θ), η, θ), where

y1(η, θ) is root of (5.4.16). For R ≤ R1(η, θ), we obtain

a∗(R, η, θ) := argmax
0≤a≤1

[
aηVR(R, η, θ) +

1

2
a2σ2VRR(R, η, θ) + aσ1σ2ρVRη(R, η, θ)

]
.

As evident from below the function a∗(R, η, θ) represents the optimal feedback control

function for the control component aπ =
(
aπ(t)

)
t≥0

. From the analysis in previous section,

it follows that a∗(R, η, θ) can be represented as

a∗(R, η, θ) =
[ η
σ2
1

G−1(R, η)Gx(G
−1(R, η, θ), η, θ)

−σ2ρ

σ1

Gx(G
−1(R, η, θ), η, θ)Gη(G

−1(R, η, θ), η, θ)
]
I{0≤R≤R1(η,θ)} + I{R≥R1(η,θ)}.(5.5.1)
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For any 0 ≤ a ≤ 1, we define the differential operator La by

Lag(R, η, θ) =
σ2a2

2
gRR(R, η) + aηgR + aσ1σ2ρgRη − cg(R, η)

− λ(η − μ)gη(R, η) + f(θ)gη +
1

2
β2gηη (5.5.2)

For any g ∈ C2×1((0,∞)× (0,∞)). As a result, due to the previous section, we get

La∗(R,η,θ)V (R, η, θ) = −R. (5.5.3)

Let R∗
t = (R∗

t )t≥0 be a solution to the following Skorohod problem :

R∗
t = R +

∫ t

0

a(R∗
s, μ̂s, Ω̂s)μ̂sds+

∫ t

0

σ1a(R
∗
s, μ̂s, Ω̂s)dŴs, (5.5.4)

R∗
t ≤ R1(μ̂t, Ω̂s).

Theorem 5.5.1. Let V be a concave, twice continuously differentiable solution of the HJB

equation (5.3.1) and (R∗
t )t≥0 be a solution to the Skorohod problem (5.5.4).

Then for π∗ :=
(
a∗(R∗

t , μ̂t, Ω̂t)
)
t≥0

, we have

Jπ∗(R, η, θ) = V (R, η, θ), ∀R ≥ 0, η ≥ 0, θ ≥ 0.

Proof. Notice that Rπ∗
t = R∗

t . Let R0 = R, μ̂0 = η and Ω̂0 = θ. Choose 0 < ε < R and let

τ επ = inf {t : R∗
t = ε}, then Ito’s formula yields,

e−c(t∧τε∗ )V (R∗
t∧τε∗ , μ̂s, Ω̂s) = V (R, η, θ) +

∫ t∧τε∗

0

e−csLaπ∗ (s)V (R∗
s, μ̂s, Ω̂s)ds

+

∫ t∧τε∗

0

e−csσ1aπ∗(s)VR(R
∗
s, μ̂s, Ω̂s)dŴs

= V (R, η, θ)−
∫ t∧τε∗

0

e−csR∗
sds+

∫ t∧τε∗

0

e−csσ1aπ∗(s)VR(R
∗
s, μ̂s, Ω̂s)dŴs (5.5.5)
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Since VR(R
∗
s, μ̂s, Ω̂s) ≤ VR(ε, μ̂s, Ω̂s) < ∞ on [0, t ∧ τ ε∗ ], the last term on the r.h.s. is a

zero-mean martingale. Taking expectations in (5.5.5), we obtain

E

[
e−c(t∧τε∗ )V (R∗

t∧τε∗ , μ̂s, Ω̂s)
]
+ E

∫ t∧τε∗

0

e−csR∗
sds = V (R, η, θ). (5.5.6)

Since τ ε∗ → τπ∗ when ε → 0∫ t∧τε∗

0

e−csR∗
sds →

∫ t∧τπ∗

0

e−csR∗
sds.

Thus letting ε → 0 in (5.5.6), we use dominated and monotone convergence theorems for

the first and the second terms in (5.5.5) respectively, we get

E
[
e−c(t∧τπ∗ )]V (R∗

t∧τπ∗ , μ̂s, Ω̂s) + E

∫ t∧τπ∗

0

e−csR∗
sds = V (R, η, θ). (5.5.7)

Since V (0, η, θ) = 0, we have

E

[
e−c(t∧τπ∗ )V (Rπ

t∧τπ∗ , μ̂s, Ω̂s)
]
= e−ctE

[
V (Rπ∗

t , μ̂s, Ω̂s); t < τπ∗
]
→ 0.

as t → ∞. Letting t → ∞ on (5.5.7), we have

E

∫ τπ∗

0

e−csR∗
sds = V (R, η, θ).

Therefore, V (R, η, θ) = Jπ∗(R, η, θ). This ends the proof of the theorem.
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Chapter 6

The Case of Nonzero Liability

This chapter considers the case when the insurance company pays liability at a con-

stant rate per unit time. Here, we consider the cash reserve model of Chapter 3.

6.1 Mathematical and economic model

We start with a filtered probability space (Ω,F = (Ft)t≥0,P), and one-dimensional

standard Brownian motion Wt adapted to (Ft)t≥0. We denote by Rπ
t the cash reserve of

the company at time t under a control policy π. The dynamics of the cash reserve process

Rπ
t is described by

dRπ
t = (aπt μt − δ)dt+ aπt σdWt, R0 = initial cash reserve,

where the process μt satisfies the linear ODE

dμt = −λ (μt − μ̄) dt.
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and the initial value of the drift process μ0 is given.

We define the value function Jδ
π(R, η) under a given admissible policy π by

Jδ
π(R, η) := E

(∫ τπ

0

e−ctRπ
t dt|R0 = R, μ0 = η

)
.

Our goal is to to find the optimal value function

V δ(R, η) := sup
π
Jδ
π(R, η), ∀R ≥ 0, η ≥ 0. (6.1.1)

and find the optimal policy π∗ that satisfies

V δ(R, η) = Jδ
π∗(R, η), ∀R ≥ 0, η ≥ 0. (6.1.2)

6.2 The Hamilton-Jacobi-Bellman equation

In this subsection, we derive the HJB equation for the optimal value function.

Theorem 6.2.1. The optimal value function V δ(R, η) defined by (6.1.1) is twice continu-

ously differentiable on (0,∞). Then V δ satisfies the Hamilton-Jacobi-Bellman equation⎧⎪⎨⎪⎩
R− cV δ − λ (η − μ̄) (V δ)η + max

a∈[0,1]

[
(aη − δ)(V δ)R + 1

2
a2σ2

1(V
δ)RR

]
= 0.

V (0) = 0

(6.2.1)

Proof. By applying the Ito’s formula, we derive

dV δ (R, μ) = (V δ)RdR+(V δ)ηdμ+
1

2
(V δ)RRd〈Rπ, Rπ〉t+ 1

2
(V δ)ηηd〈μ, μ〉t+(V δ)Rηd〈Rπ, μ〉t

= (V δ)R ((ηaπt − δ)dt+ σ1a
π
t dWt) + (V δ)η (−λ (η − μ̄) dt) +

1

2
(V δ)RRσ

2
1(a

π
t )

2dt (6.2.2)
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Put

Y π
t =:

∫ t

0

e−csRπ
s ds+ e−ctV δ(Rπ

t , μt), t ≥ 0.

Thanks to Bellman’s principal, the optimal value function, V δ(R, η), is such that (Y π
t )t≥0

is a supermartingale for any admissible policy π and is a local martingale for the optimal

admissible policy π∗. Hence, in virtue of (6.2.2), Y π is a supermartingale if

R− cV δ − λ (η − μ̄) (V δ)η +max
a

[
(aη − δ)(V δ)R +

1

2
a2σ2

1(V
δ)RR

]
≤ 0. (6.2.3)

and Y π is a local martingale if

Rπ∗
t − cV δ − λ (η − μ̄) (V δ)η +

[
(aπt η − δ)(V δ)R +

1

2
(aπt )

2σ2
1(V

δ)RR

]
= 0.

Thus, by combining this equation and (6.2.3), we deduce that V is a solution to the HJB

equation (5.3.1). This ends the proof of the theorem.

6.3 Construction of the solution to HJB equation

Proposition 6.3.1. Let V δ be the solution to (6.2.1) for δ ≥ 0, then the following hold:

(1) V 0 is a solution to (3.2.1)

(2) For any R ≥ 0, η ≥ 0,

V δ(R, η) = V 0(R +
δ

λ
ln |η − μ̄| , η).

Proof. (1) V 0 represents the value function with δ = 0.

Then, by inserting δ = 0 into (6.2.1), we get

R− cV 0 − λ(η − μ̄)(V 0)η + max
0≤a≤1

[
aη(V0)R +

1

2
a2σ2

1(V
0)RR

]
= 0.
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which is exactly the same as (3.2.1). Thus, we can conclude that V0 is a solution to (3.2.1).

Now we prove (2) in the following.

We know that Vδ is the solution to (6.2.1).

Let

V δ(R, η) = M(R− δ

λ
ln |η − μ̄| , η).

Then, by differentiating this equation, we get

(V δ)R = MR, (V δ)RR = MRR, (M δ)η =
δ

λ(η − μ̄)
VR + Vη.

By inserting these derivatives into (6.2.1), we get

R− cM − λ(η − μ̄)Mη + max
0≤a≤1

[
aηMR +

1

2
a2σ2

1MRR

]
= 0.

which is the same as (3.2.1), it means M is the solution to this equation. Since we already

proved V0 is the solution to (3.2.1), we can conclude that M(R, η) = V 0(R, η), while

M(R− δ
λ
ln |η − μ̄| , η) = V δ(R, η). Therefore, V 0(R− δ

λ
ln |η − μ̄| , η) = Vδ(R, η).

This ends to the proof of the proposition.

Proposition 6.3.2. The following holds:

(1) Suppose that |η − μ̄| < 1,then V δ will increase when δ increases and V δ will decrease

when δ decreases.

(2) Suppose that |η − μ̄| > 1, then V δ will decrease when δ increases and V δ will increase

when δ decreases.

Proof. From (3.1.3), we know that

μt = μ̄+ (μ0 − μ̄)e−λt, t ≥ 0.
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if μ0 ≤ μ̄, it means η ≤ μ̄, then when δ increases, R− δ
λ
ln |η − μ̄| is increasing. Therefore,

V δ will increase.

if μ0 > μ̄, η > μ̄, then when δ increases, R − δ
λ
ln |η − μ̄| is decreasing. Therefore, V δ will

decrease.
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