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One thing I  have learned in a long life: that all our science, measured against 
reality, is prim itive and childlike and yet it is the m ost precious thing we have.

-  A lbert Einstein.
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Abstract

This dissertation presents new m ethods for the analysis, design and decoding of 

low-density parity-check (LDPC) codes. F irst, we propose an efficient m ethod for 

analyzing finite-length LDPC codes on symm etric channels. This m ethod is based 

on the threshold behavior of LDPC codes and studying the atypical behavior of the 

channel when observed during a finite block length. Different channel param eters 

can be used to  model the channel behavior and predict the  performance. We inves­

tigate and compare the results obtained by considering different channel param eters 

for predicting the performance. Second, we consider iterative decoding on uncor­

related fading channels where the channel fading gain and /o r the noise power is 

not known at the receiver. We propose a  linear LLR approxim ation m ethod which 

is optim um  in the sense of maximum achievable transm ission ra te  on the channel. 

This m ethod is also applicable to  other iteratively decoded codes.
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Chapter 1

Introduction

This work is concerned with design and analysis of a powerful class of error-correcting 

codes called low-density parity-check (LDPC) codes and iterative decoding in gen­

eral. It has been shown th a t LDPC codes can perform near the Shannon capacity in 

many channels and yet this great performance is achieved with a practical decoding 

complexity. Therefore, these codes are extremely efficient from a practical point of 

view.

In this chapter, we briefly introduce the field of study and review the historical 

backgrounds of th is research area. Also, we discuss the recent active topics and 

propose interesting problems to  be tackled in th is thesis.

1.1 Iterative Decoding and Codes Defined on Graphs

In a modern society, exchange of information in an efficient, reliable and secure m an­

ner is of fundam ental im portance. Any communication is, to some extent, affected 

by noise and interference. In order to detect or correct the errors th a t occur, using 

error-correcting codes, the information is coded to  include some redundancy. Physi­

cal solutions for error-reduction (such as improving the  communication channel) are 

far more expensive and less effective. Therefore, the quality of d a ta  communication 

systems to tally  depends on efficient error-correction coding.

In 1948, Claude E. Shannon published a remarkable paper on the lim its of re­

liable d a ta  transm ission over unreliable channels and he introduced the concept of 

information [1]. Shannon derived bounds on the maximum am ount of information 

th a t can be transm itted  over unreliable communication channels. He showed th a t 

there exists a  quantity, called the capacity of the channel, such th a t reliable d a ta

1
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transm ission is only possible for d a ta  rates below this capacity. Shannon proved th a t 

there exist codes of rates arbitrarily  close to  capacity such th a t as their block length 

goes to infinity the probability of error of their detection goes to  zero. Nevertheless, 

he did not propose a practical solution for finding such codes. In fact, for the proof 

of the channel capacity theorem, he used random  codes. The problem  with random  

codes is their im practical decoding complexity w ith grows exponentially with the 

block length.

In order to  m easure the power efficiency of a coding solution, its performance 

gap is m easured from the Shannon limit. The Shannon limit is defined as the 

minimum transm ission power required to  have reliable transm ission for a given da ta  

rate. This is an alternative way to  m easure how close the coding solution is to  the 

capacity. Since the introduction of capacity and the Shannon limit, there have been 

many attem pts to  design coding m ethods which can achieve the  capacity and can 

be encoded and decoded with practical complexity.

Until the  discovery of Turbo codes [2], no proposed coding scheme w ith a  practi­

cal encoding or decoding complexity could approach the Shannon limit with a  small 

gap. The near Shannon limit performance and practical decoding complexity of 

Turbo codes was made possible by introducing iterative message-passing decoding 

algorithms. This class of low-complexity decoding algorithms are applicable to  the 

codes defined on graphs. The performance achieved using these iterative message- 

passing algorithm s is very close to  the  optim al decoding algorithm. Turbo codes 

drew a lot of attention and a  great deal of research to  the field of iterative decoding 

and graphical codes.

Iterative decoding allows the use of long codewords with reasonable decoding 

complexity. This is due to  the fact th a t the complexity of iterative decoding algo­

rithm s grows linearly w ith the length of the code and thus complexity per infor­

m ation bit is independent of the code length. This property of iterative decoding 

and their near optim al performance allow us to  design codes th a t can approach 

the Shannon limit. Therefore, iterative decoding and graphical codes have received 

much atten tion  in the past decade due to  their exemplary performance and there 

have been many advances in this area. However, there are still many open problems 

in this field.

2
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1.2 A Brief Historical Review

The field of graphical codes started  from the graphical representation of linear codes, 

called Tanner graphs [3]. After the discovery th a t the tu rbo  decoder can be repre­

sented graphically [4], it was shown in [5] and [6] th a t the tu rbo  decoding algorithm  

based on the graphical representation of the code is a special case of belief propa­

gation on Bayesian networks [7].

The research on tu rbo  codes and graphical codes a ttrac ted  atten tion  to  a  class 

of codes, called LDPC codes which were first proposed by Gallager in 1963 [8] and 

were long neglected. W ith  the  advances in iterative message-passing algorithm s and 

graphical codes, it was shown th a t LDPC codes can have extremely good perfor­

mance [9,10].

LDPC codes have sparse parity-check matrices. Therefore, their graphical rep­

resentation is simple and they can be decoded by iterative message-passing decoders 

w ith low complexity. These properties of LDPC codes drew a  lot of a tten tion  and 

LDPC codes became one of the m ost active research topics in coding theory. In 

2001, Luby et al. showed a very im portant result th a t the LDPC codes performance 

can be extremely improved by using irregular graphs [11]. It was shown in [12] th a t 

carefully designed LDPC codes can perform a few thousandth  of a  dB away from 

the Shannon limit on the additive white Gaussian noise channel.

An asym ptotic analysis m ethod called density evolution was developed in [13] by 

Richardson and Urbanke, which enabled designing capacity approaching irregular 

LDPC codes for different symm etric channels. This m ethod tracks the probability 

density of the messages in each iteration.

Due to  the com putational complexity of density evolution, some approxim ations 

were proposed later. Chung et al. proposed the Gaussian approxim ation to  density 

evolution which assumes th a t all the messages are Gaussian random  variables [14]. 

Later, a more refined approxim ation was also proposed in [15].

Another m ethod to  analyze the behavior of iterative decoders is called extrinsic 

information transfer (EXIT) chart analysis which is first introduced by ten  Brink 

in [16]. EX IT  chart tracks the evolution of a  single param eter representing the 

density of the  messages passed in each iteration and is a  good m ethod to  visualize 

the convergence behavior of iterative decoders. EX IT chart analysis allows designing

3
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irregular codes w ith desired convergence behavior [17].

For highly optimized LDPC codes, which can perform extremely close to  the 

Shannon limit, the decoder may need to  perform  too many iterations. A lthough 

their decoding complexity is low for each iteration, the  overall decoding can be 

complex and slow. Therefore, using an EX IT chart analysis, complexity-optimized 

LDPC codes have been proposed [18].

Since LDPC codes were able to  approach the Shannon limit on m any channels, 

they have also been proposed for fading channels [19] and also for different m od­

ulation schemes such as orthogonal frequency division m ultiplexing (OFDM ) [20], 

multi-level coding and bit-interleaved coded m odulation (BICM) [21] and also for 

m ultiple-input m ultiple-output (MIMO) fading channels [22].

The analysis m ethods described here are all asym ptotic m ethods. In other words, 

it is assumed th a t the code length is infinite. In practice, however, finite-length 

LDPC codes are used and the asym ptotic analysis gives inaccurate results. There­

fore, a finite-length analysis m ethod is presented in [23] for the binary erasure chan­

nel. Also, it is shown in [24] th a t the performance of finite-length LD PC codes in 

the waterfall region follows a scaling law on the  binary erasure channel.

LDPC codes have also played an im portan t role in the discovery of many other 

graphical codes, e.g., Repeat-accum ulate (RA) codes [25], Luby transform  (LT) 

codes [26], and R aptor codes [27]. LDPC codes have been used in some communi­

cation standards such as digital video broadcasting (DVB) ETSI EN 302 307 [28] 

and in IEEE 802.16 WiMAX standard  [29].

A lthough there have been many research activities and advances in the area of 

graphical codes, there are still many open problems. The field of graphical codes 

and especially LDPC codes is still one of the  m ost active research areas in coding 

theory today.

1.3 Overview

As stated  before, there are still many open problems in the field of LDPC codes. In 

this thesis, we address some of these problems and we raise new questions.

In most of the LDPC code design and analysis m ethods, it is assumed th a t 

the code’s block length is infinite. However, in practice, finite-length codes axe 

used. The accuracy of these asym ptotic m ethods degrades as the  block length gets

4
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smaller. Therefore, there is a  vital need for a m ethod capable of analyzing and 

designing finite-length LDPC codes.

The performance degradation of finite-length LDPC codes is usually blamed 

on the cycles, stopping sets [23], trapping  sets [30], and other weaknesses in the 

graphical s tructu re  of the code. For the case of binary erasure channel (BEC) 

the effect of cycles and stopping sets can be identified and quantified based on a 

combinatorial analysis [23]. Therefore, the average performance of LDPC codes can 

be estim ated on the BEC. However, this combinatorial analysis is com putationally 

complex and even for practical block lengths only very simple LDPC ensembles can 

be analyzed.

In another work, it has been proved th a t the finite-length performance of LDPC 

codes follows a scaling law on the BEC in the waterfall region [24]. Unfortunately, 

this m ethod is also complex and it cannot be applied to  other channels.

There is still a need for an accurate and efficient m ethod to analyze the behavior 

of finite-length LDPC codes on different channels. An accurate finite-length analysis 

of LDPC codes may be used for designing powerful finite-length codes. In this 

thesis, we address these problems and we come up w ith a solution. In particular, we 

show th a t most of the performance degradation of finite-length LDPC codes can be 

described by the channel atypical behavior when observed over a finite block length. 

To this end, we analyze the behavior of the channel and two of its param eters as 

random  variables. We then  use them  in the analysis of the  finite-length LDPC codes. 

Moreover, we use this analysis to  provide design guidelines for finite-length LDPC 

codes.

One of the most im portan t applications of error-correcting codes is on wireless 

fading channels. In fact, carefully designed LDPC codes have very good performance 

on fading channels [19]. However, when the channel fading gain is not known at 

the receiver, the com putation of the channel log-likelihood ratio (LLR) is too com­

plicated. Furtherm ore, when the channel noise power is not known at the receiver, 

the decoder is not able to  calculate the LLR correctly and the  performance de­

grades. LLR calculation in fading channels when no information about the channel 

is available a t the receiver is complex and is a problem th a t needs to  be solved.

In this thesis, we propose a linear m ethod of LLR calculation for LDPC codes 

and in general iterative decoding on fading channels when the channel param eters

5
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are not known a t the receiver. This m ethod maximizes the achievable transm ission 

rate  on the  channel. The complexity of our m ethod is low and its performance 

is extremely close to  the optim um  achievable performance obtained by true  LLR 

calculation. This m ethod is applicable to  other codes decoded by iterative message- 

passing decoders such as tu rbo  codes.

1.4 Organization of the Thesis

In the next chapter we briefly review the necessary background m aterial on LDPC 

codes and iterative message-passing algorithms. In particular, we provide the  re­

quired background on graphical codes and LDPC codes’ structure, different decoding 

algorithms, different analysis m ethods such as density evolution and its approxim a­

tions and EX IT  charts.

In C hapter 3, an efficient m ethod for finite-length LDPC code analysis on binary- 

input memory less symm etric channels is proposed. This m ethod is based on study­

ing the variations of the channel quality around its expected value when observed 

during a  finite-length codeword. We propose modeling these variations w ith a single 

param eter. This param eter is then  viewed as a  random  variable and its probability 

density function is obtained. Assuming th a t a decoding failure is the  result of an 

observed channel worse th an  the code’s decoding threshold, the block error proba­

bility of finite-length LDPC codes is estim ated. Using an EX IT chart analysis, bit 

error probability is obtained from the block error probability. The effects of using 

different channel param eters for modeling these variations are also studied. This 

m ethod can closely predict the performance of LDPC codes of a few thousand bits 

or longer in the  waterfall region1.

In C hapter 4, we investigate uncorrelated fading channels w ith no channel sta te  

information at the receiver where calculating true  LLRs is difficult. Existing work 

assume th a t the power of the additive noise is known and use the expected value 

of the fading gain in a  linear function of the  channel ou tput to  find approxim ate 

LLRs. In this chapter, we first assume th a t the power of the  additive noise is known 

and we find the optim um  linear approxim ation of LLRs in the sense of maximum

lrThe results of this chapter have been accepted for publication in the Proceedings of IEEE 
International Conference on Communications (ICC), Glasgow, Scotland, 2007 [31] and have also 
been submitted for publication in IEEE Transactions on Communications [32],
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achievable transm ission ra te  on the channel. The maximum achievable ra te  under 

this linear LLR calculation is almost equal to  the maximum achievable rate  under 

true  LLR calculation. We also observe th a t this m ethod appears to  be the optim um  

in the sense of bit error rate  performance too. These results are then  extended to 

the case th a t the noise power is unknown at the receiver and a  performance almost 

identical to  the case th a t the noise power is perfectly known is obtained2.

Chapter 5 concludes the thesis. We provide a sum m ary of the  contributions of 

this thesis and suggest problems for further research.

2The results of this chapter have been accepted for publication in the Proceedings of IEEE 
International Symposium on Information Theory (ISIT), Nice, France, 2007 [33].
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Chapter 2

Preliminaries and Background

In this chapter, we briefly review some necessary background on channel coding, 

different communication channels, linear block codes and their graphical represen­

tation, LDPC codes and their structure  and different design and analysis methods.

In Fig. 2.1, the block diagram  of a  generic digital communication system  is 

depicted. A communication system generally consists of a transm itter, a channel, 

and a receiver. The transm itter mainly consists of an analog to  digital converter, 

source encoder, encryptor, channel encoder, and m odulator. Channel is the medium 

through which the information is transm itted . Examples of the channel could be 

simple copper wire pairs, coaxial cables, optical fibers, free air, a network link, etc. 

The receiver m ainly consists of a dem odulator, channel decoder, decryptor, source 

decoder, and digital to  analog converter. In this thesis, we are mainly concerned 

w ith the channel encoder and decoder and the channel itself.

2.1 Channel M odels and Channel Coding

A communication channel can be viewed as a system whose ou tpu t depends on its 

input probabilistically. In fact, the channel is fully characterized by the alphabet 

of X  and Y  and the set of conditional probability assignment between them  Py|x> 

where X  denotes the input random  variable and Y  denotes the  ou tpu t random  

variable.

In this thesis, we are concerned w ith channels whose input alphabet is the set of 

binary symbols and each channel ou tpu t depends only on the current input, giving 

rise to a binary-input memoryless channel. Moreover, we only consider channels 

th a t are output-sym m etric. The most famous channels in this class are the binary

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



R
eproduced 

with 
perm

ission 
of the 

copyright ow
ner. 

Further reproduction 
prohibited 

w
ithout perm

ission.

Analog Information 
Source

Received Analog 
Information

Channel
Decoder

Source
Encoder

Source
Decoder

ModulatorChannel
Encoder

DemodulatorDecryptor

Channel

Analog to 
Digital 

Converter
Encryptor

Digital to 
Analog 

Converter

Figure 2.1: The block diagram of a generic communication system.
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Figure 2.2: Two binary-input memoryless symmetric channels: (a) The BEC(e), and 
(b) BSC(e).

erasure channel (BEC) and the binary symmetric channel (BSC).

The binary erasure channel model is the simplest channel and is depicted in 

Fig. 2.2(a). The ou tpu t is either received correctly w ith the probability 1 — e or 

as an erasure w ith probability e. Hereafter, we denote th is channel by BEC(e). A 

real-world example of the BEC is the packet transm ission link between two nodes 

in a da ta  network where a  packet is either received correctly or it is lost.

In the BSC, on the  other hand, an input symbol is either received correctly or 

flipped (received as the other symbols). The BSC is illustrated in Fig. 2.2(b). The 

crossover probability is e in this channel. Hereafter, we call this channel BSC(e). 

The BSC model is a simplified model of a  noisy channel, where the inform ation is

affected by noise and is received with error. Many real-world digital communication

channels can be modeled w ith the BSC.

The output-sym m etry here (and also for the BEC) means th a t for these channels

P y |* (0 |0 )  =  P y |* ( l | l ) ,  (2 .1 )

or in other words, 0 and 1 are treated  equally with the channel.

Two other famous channel models th a t will be used in this work are the binary- 

input additive white Gaussian noise (BIAWGN) channel and binary-input uncorre­

lated fading channels.

In the BIAWGN channel and binary-input uncorrelated fading channels, the set 

of ou tpu t symbols take continuous values in the  range (—oo, oc). In the  BIAWGN(cr2) 

channel, the ou tpu t is given by

y  =  x  +  z, (2.2)

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



where x  € {—1,1} represents the input signal and 2  is the Gaussian noise w ith zero 

m ean and variance erf. The BIAWGN channel model is of great theoretical and 

practical im portance in communications.

In the binary-input uncorrelated fading channels, The ou tpu t of the channel is 

given by

y = r ■ x  +  z, (2.3)

where x  €  {—1,1} represents the input signal and z  is the Gaussian noise w ith zero 

mean and variance erf. Also r > 0 is the channel gain which has an arb itrary  prob­

ability density function (pdf) /# ( r )  and changes independently from one channel 

use to  another. This channel model is used in modeling wireless communication 

channels.

Using the binary phase-shift keying (BPSK) m odulation, i.e., the input letters 

are +1 (for binary 0) and —1 (for binary 1), the output-sym m etry of the  BIAWGN 

channel and uncorrelated fading channel states th a t

P y |x (y |l)  =  P y \x ( - y \  -  !)• (2.4)

We call the channels presented here binary-input memoryless sym m etric (BIMS) 

channels throughout this work.

One of the most im portant properties of a channel is its capacity. The capacity 

of a channel is defined as the maximum m utual information between the channel 

input and ou tpu t random  variables and is given by

C  = m ax I ( X- ,Y) ,  (2.5)
p ( X )  v '

where I ( X ] Y )  denotes the m utual information of X  and Y  and p ( X )  denotes the 

input probability distribution. For example, C = 1 — e for the BEC(e), and C  =  

1 — h(e) for the BSC(e) where

h(e) =  —elog2 e — (1 -  e)log2(l -  e) (2.6)

is called the binary entropy function [34].

The im portance of the channel capacity is m ainly due to  the noisy-channel coding 

theorem  and its converse. The noisy-channel theorem  states th a t  if the  channel 

capacity is C,  there exists an encoding and decoding rule under which it is possible

to have an arb itrary  small probability of error a t d a ta  transmission rates Rt  < C  [1].

11
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The converse to  the  noisy-channel coding theorem  states th a t if Rt > C,  regard­

less of the encoding and decoding rule used, the probability of error cannot be less 

th an  some positive num ber [1]. Thus, the noisy-channel coding theorem  shows th a t 

C  is a fundam ental lim it for reliable d a ta  transm ission on a channel.

2.2 Linear Block Codes

In this section, we introduce basic concepts of linear block codes, one of the  richest 

classes of codes. The codes we consider in this thesis are binary codes and we assume 

th a t the information source is a  sequence of binary symbols 0 and 1. Thus, when 

we refer to  linear block codes, we mean binary linear block codes.

In block coding, the information sequence is partitioned in blocks of fixed length 

k , called message blocks u , representing k  information bits. An (n, k) block code is 

a transform ation of message blocks of length k  according to  a  pre-defined rule into 

blocks of length n  (n > k),  called codewords c. There are 2k codewords correspond­

ing to 2k possible message blocks. A block code is linear if and only if the modulo-2 

sum of two codewords is also a codeword [35]. We call n  the code’s block length 

and k  the dimension of the code.

The generator matrix  G  of an (n, k ) linear block code is defined as the k  x n  

m atrix  whose rows are k linearly independent codewords g o ,g i, ■ • • , gfc-i of length 

n, which generate all the codewords. Thus, if u  =  ( ito ,tt i ,. . .  ,xtfc-i) then

c =  u  G  (2.7)

go

=  ( u o , u i ,  • • ■ , U k - i )  ■

gfc—l
=  uogo +  'UigiH +Ufc_igfc_i

Linear block codes are fully specified by the rows of their generator m atrix  G.

Another m atrix  associated w ith linear block codes which is useful in decoding, is 

their parity-check matrix. The parity-check m atrix  H of an (n, k ) linear block code 

is an (n — k) x  n  m atrix such th a t a vector c of length n  is a codeword if and only 

if c • Ht  =  0. The rows of H generate the null space of G, i.e., G • H T =  0. In fact, 

the parity-check m atrix  gives the parity-check equations on the message bits. Thus, 

if the rows of H are denoted by hj =  (hio, hii , . . . ,  for i =  0 ,1 , . . . ,  n  — k  — 1,

12
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the parity-check equations are given by

(2 .8)

These equations show th a t the codeword bits satisfy n  — k  even parity  constraints. 

Thus, if any of these equations are not satisfied for the received codeword in the 

decoder, error has occurred in the channel.

These concepts and definitions will be more clear w ith an example. Consider 

a (7,4) Hamming code which is a simple example of a linear block code [35]. The 

message sequence has four bits and the codewords have seven bits. The generator 

m atrix  G and the parity-check m atrix  H of this code are given by

G =

and

H =

1 1 0  1 0  0 0 
0 1 1 0  1 0  0 
1 1 1 0  0 1 0  
1 0 1 0 0 0 1

1 0  0 1 0  1 1  
0 1 0  1 1 1 0  
0 0 1 0  1 1

(2.9)

1
(2 .10)

Thus, using (2.7), we can obtain the codewords listed in Table 2.1. 

The parity-check equations are given by (2.8) as

Co +  c z  +  C5 +  Cq =  0

C l +  C3 T  C4 +  C5 =  0

C2 +  +  Ct, + Cq =  0,

(2 .11)

(2 .12)

(2.13)

where the addition is in fact the modulo-2 sum and we will denote it by ® hereafter. 

Therefore, three sets of codeword bits should satisfy even parity  constraints. These 

sets are {co,C3 ,C5 ,C6 }, {ci,C3 ,C4 ,C5 }, and {c2 ,C4 ,C5 ,C6 }. This concept has been 

depicted in Fig. 2.3.

2.3 LDPC Codes: Graphical Representation

An LDPC code is a linear block code which has a sparse parity-check m atrix. This 

means th a t the parity-check m atrix  H of an LDPC code, has a low density of l ’s. 

In fact, the  num ber of l ’s in H grows linearly w ith the block length n. As for other
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Messages Codewords
(0 0 0 0 ) (0 0 0 0 0 0 0 )
(0 0 0 1 ) (1 1 0 1 0 0 0 )
(0 0 1 0 ) (0 1 1 0 1 0 0 )
(0 0 1 1 ) (1 0 1 1 1 0 0 )
(0 1 0 0 ) (1 1 1 0 0 1 0 )
(0 1 0 1 ) (0 0 1 1 0 1 0 )
(0 1 1 0 ) (1 0 0 0 1 1 0 )
(0 1 1 1 ) (0 1 0 1 1 1 0 )
(1 0 0 0 ) (1 0 1 0 0 0 1 )
(1 0 0 1 ) (0 1 1 1 0 0 1 )
(1 0 1 0 ) (1 1 0 0 1 0 1 )
(1 0 1 1 ) (0 0 0 1 1 0 1 )
(1 1 0 0 ) (0 1 0 0 0 1 1 )
(1 1 0 1 ) (1 0 0 1 0 1 1 )
(1 1 1 0 ) (0 0 1 0 1 1 1 )
(1 1 1 1 ) (1 1 1 1 1 1 1 )

Table 2.1: The message sequences and their corresponding codewords for a (7,4) Ham­
ming code.

linear block codes, LDPC codes can be represented by their generator and parity- 

check matrices. However, for the purpose of analysis, LDPC codes axe almost always 

represented graphically which gives a be tter insight in analyzing iterative decoding 

algorithms. We explain how these codes can be graphically represented after giving 

some definitions.

A bipartite graph is a graph where the  nodes can be divided into two disjoint 

sets and the edges of the graph may only connect two nodes from different sets. The 

graphical representation of linear codes started  with the introduction of a  bipartite  

graph called Tanner graph in [3] for linear block codes. Another m ajor step in this 

field was the introduction of factor graphs [36]. A factor graph, is a graph visualizing 

the  factorization of a global m ultivariate function into simpler local functions. In 

fact, a factor graph is a b ipartite  graph whose nodes are classified as variable nodes 

(corresponding to  the function variables) and function (check) nodes (corresponding 

to  the functions).

To see how LDPC codes and in general linear codes can be represented by factor 

graphs, consider a graph Q w ith n  variable nodes and r  check nodes. The variable 

nodes, which are usually shown by circles, are binary variables ( 0  or 1 ) and represent

14
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Figure 2.3: The visualization of even parity constraints for a (7,4) hamming code. The 
code bits are shown by co, c i , . . . ,  C6 and circles. Even parity constraints are shown by 
squares. In other words, the modulo-2 sum of the bits connected to a square is 0.

the codeword bits. The check nodes, shown by squares, represent the even parity 

constraints on the variable nodes. In particular, a  check node q  shows an even 

parity constraint given by

©  vi  =  0 (2.14)

where Vj represents the j t h  variable node, n (q )  is the set of all variable nodes 

connected to  q  and ® shows the modulo-2 sum [37]. A sample graph having eight 

variable nodes and four check nodes is depicted in Fig. 2.4. There are four parity- 

check equations corresponding to  the four check nodes, which can be w ritten as

ci : v2 ® v 3 © v4 © V7 =  0 (2.15)

C2 : Vi ©  V4 © V 5 ®  V6 ®  v8 =  0 (2.16)

C3 : vi © v2 © v3 © v5 ® v6 =  0 (2-17)

C4 : V4 © v5 © V6 ffi V7 © v8 =  0 . (2-18)

If H  is defined as the adjacency m atrix  of Q, then  Q gives rise to  a  linear code of 

block length n, dimension k > n  — r, and an r x n  parity-check m atrix  H . In other 

words, Q represents a binary r x n  parity-check m atrix  in which the ( i , j )  entry is 1 

if and only if the check node q  is connected to  the variable node \/j . The dimension 

of the code is equal to  n  — r  if and only if all the parity  constraints are linearly 

independent and this is equivalent to  H  being full rank.

W hen representing an LDPC code by factor graphs, the  corresponding graph is
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V l V2 V3 V4 V5 V6 V7 V8

Cl

Figure 2.4: A bipartite graph representing an LDPC code. The graph has 8  variable 
nodes v i, V2 , . . .  ,vs and 4 check nodes c j , . . .  , 0 4 .

a sparse factor graph where the num ber of edges E  grows linearly w ith the number 

of variable nodes n. Any linear block code has a factor graph representation. If also 

the factor graph is sparse, we call the code corresponding to the graph an LDPC 

code. In this work, we are concerned w ith binary LDPC codes. Therefore, in the 

rem ainder of the thesis, when we refer to  LDPC codes, we mean binary LDPC codes.

LDPC codes are classified as regular or irregular based on their structure. A 

regular LDPC code has variable nodes of a fixed equal degree dv and check nodes 

of a fixed equal degree dc. For a regular code we have

E  = dsj ■ n  =  dc ■ r. (2.19)

If viewed from the H m atrix perspective, in a regular LDPC code, H is a m atrix  

having dc num ber of l ’s in each row and dv num ber of l ’s in each column. An 

ensemble of (dv , dc)-regular LDPC codes is defined as the ensemble of LDPC codes 

having variable nodes of degree dy and check nodes of degree dc. Now it is more 

clear th a t why the  num ber of l ’s in H or equivalently the num ber of edges in Q 

grows linearly w ith n. The reason is th a t the num ber of l ’s is fixed in each row or 

column and the num ber of rows or columns grow linearly with n.

Irregular LDPC codes were first considered in [11] and it was shown th a t the 

performance of LDPC codes can extremely improve by using irregular graphs. In an 

irregular LDPC code, not all the variable nodes or the  check nodes have the same 

fixed degree. Consequently, the variable and check.nodes are defined by two edge 

degree distributions {A2 , A3, . . . ,  A^v} and {p2 , P3,---,Pdc}- I*1 this notation A* is the 

fraction of edges connected to  degree-* variable nodes and pi is the fraction of edges
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connected to  degree-* check nodes. Here dv and dc refer to  the  maximum variable and 

check node degree respectively. Another widely used notation is the representation 

of the degree sequences by their polynomial generators X(x) = Y l % 2  and

P(x ) = Y liL 2 Pix%~ 1 [11]- Using this notation, the relations which contain the degree 

distributions can be w ritten more easily. In this thesis, we mainly use the  latter 

notation. For irregular codes defined by A(x) and p(x), we have

e Y ^ J  = e  J  A(s)dx, (2.20)n
i=2

and
dc .*1

r =  =  E  J  p(x) dx. (2-21)

In this thesis, we denote an ensemble of LDPC codes with block length n  and degree 

distributions X(x) and p{x) by Cn(X(x), p{x)).

As the concentration theorem s of [13] show, if the  length of the code is large 

enough, the behavior of all instances of the ensemble concentrates about an ex­

pected behavior which corresponds to the  infinite-length code w ith the same degree 

distribution. Thus, the average performance of an ensemble of LDPC codes is spec­

ified by its degree distributions. This explains why LDPC codes are almost always 

represented only by their degree distributions.

The ra te  of a  (dv>dc)-regular LDPC code is given by

„  k n  — r _ cL ,
R  — — > ---------=  1 -  - r  2.22n  n  dc

As sta ted  before, if the H  m atrix  is full rank or all the parity  constraints are linearly 

independent the equality holds in (2.22). However, it is common to ignore the linear 

dependencies and always consider th a t R  =  1 — dv/ d c. The linear dependencies 

cause the ra te  to  be higher.

Similarly, ignoring the  dependencies, the ra te  of an ensemble of irregular codes 

defined by X(x)  and p(x)  is given by

=  (2.23)
£ i = 2 - f  Jo A(x)dx

We conclude this section by an example. Consider an irregular LD PC code 

C1 0 0 0(A(a;),p(a:)) w ith variable node degree distribution X(x) = 0.4x2 +  0.4x5 -|-0.2a;8

and check node degree d istribution p(x)  — x8. Using (2.20) and (2.21), this code

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



has 4500 edges. From the degree distribution, it can be said th a t 40% of edges are 

connected to  variable nodes of degree three (600 nodes), another 40% to  variable 

nodes of degree 6  (300 nodes) and 20% to  variable nodes of degree 9 (100 nodes). 

Also, it can be understood th a t there are 500 check nodes all of degree 9. Finally 

the  rate  of this code is 0.5, which is given by (2.23).

2.4 LDPC Codes: Decoding

LDPC codes are usually decoded by a class of iterative decoding algorithm s called 

message-passing algorithms. In iterative message-passing decoding algorithms, there 

are two sources of information about the transm itted  codeword available a t each it­

eration. One is the information from the channel called the intrinsic  information, 

and the other is the information from the previous iteration called the extrinsic in­

formation. At each iteration, the decoder combines these two sources of information 

in an effective way to  gain better knowledge about the transm itted  codeword.

In these algorithms, the messages passed in each iteration are probabilities or 

beliefs. These probabilities are passed between the variable and check nodes along 

the edges connecting them . In fact, in each half iteration, each check node c passes its 

belief (as a probability) about the variable node v to  v based on the beliefs received 

in the previous iteration from the connecting variable nodes except v. Then, in the 

next half iteration, each variable node v passes its belief (as a probability) about 

itself to  a connecting check node c based on the beliefs received from the channel 

and from the connected check nodes except c. Fig. 2.5 shows an example of how 

the message from a variable node to  a check node is calculated in one iteration of 

the iterative message-passing decoding algorithm. The variable node V4 passes a 

message to  the check node ci. This message is calculated in one iteration based on 

the  following procedure. In the first half iteration, C2 calculates its outgoing message 

based on the messages it received from vi, V5 , V6 , and V8 and sends it to  V4 . Also, 

C4 calculates its outgoing message based on the messages it received from V5 , V6 , 

V7 , and vs and sends it to  V4 . In the next half iteration, V4 calculates its outgoing 

message based on the messages received from the channel and from C2 and C4 and 

sends it to  c i .

To further illustrate the idea of iterative message-passing decoding, consider a 

(dv, dc)-regular LDPC code. In each iteration, the message passed from a check
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channel messages

Vl

Cl c4

Figure 2.5: An example of how the message from a variable node to a check node is 
calculated in one iteration of iterative message-passing decoding.

node c to  a  variable node v is calculated based on the dc — 1 incoming variable 

node messages. Then, the  message passed from a  variable node v to  check node c 

is calculated based on the channel observation message and dv — 1 incoming check 

node messages. This one iteration process can be visualized as a decoding tree of 

depth  one. This decoding tree illustrates the process of message passing between the 

variable nodes and check nodes in one iteration. The variable nodes ou tpu t messages 

are then used in check nodes to  s ta rt the next iteration. If more iterations are 

considered, a decoding tree of depth  more th an  one can be obtained. For example, 

a decoding tree of depth  two, showing two message passing iterations is illustrated 

in Fig. 2.6 for a (3,4)-regular LDPC code.

W hen the variable nodes only have binary values of {0,1}, the probability mes­

sages passed along the  edges could be the probability of being 0  or the probability 

of being 1 , i.e., P(0) or P( l ) .  I t is usually more advantageous to  work w ith log- 

likelihood ratios (LLRs) instead of probabilities. For binary-valued random  vari-
p/Q\

ables, LLR is defined as log pWf. Using LLRs, the message update  rules become 

simple and also probabilities very close to  1 and 0  can be represented w ith higher 

precision in finite precision com puter implementations.

In th is section, we first explain the sum-product decoding algorithm  [36], which 

is the most powerful iterative message-passing decoding algorithm  and we give its 

message passing and updating  rules. After th a t, we describe the min-sum  decoding 

algorithm  which is an approxim ation to  the  sum -product algorithm . Then, we 

present how message-passing algorithms can be m ade simpler on the BEC and BSC
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Iteration

Channel message D-

Iteration I  — 1

Channel message

Iteration 1 — 2

Figure 2.6: The decoding tree of depth 2 of a (3,4)-regular LDPC code. The channel 
messages are represented by small squares.

using their binary versions.

2.4.1 The sum-product algorithm

We describe the sum -product algorithm  where the messages passed are real valued 

LLRs. At first, the channel messages mov which are called the intrinsic messages 

are calculated based on channel ou tpu t values corresponding to  each variable node 

v. In fact, for each channel ou tpu t y  and its corresponding variable node v, the LLR 

message is
, px|y(0|2/) ,nctA^

m  OSP i T ( % ) ’ ( 2 ' 2 4 )

where x  G  {0,1} is the channel input bit. The variable nodes are initialized by these 

messages. Then, each variable node v passes its message to  all neighboring check 

nodes c. This message is given by mi°Xc =  m o,.

At the  next step, each check node c calculates its message, denoted by m |l lv for 

each connected variable node v and sends it to  v based on the messages received 

from the connected variable nodes except v. This completes the first half of iteration 

one. In the next half iteration, based on the incoming check node messages and the 

intrinsic messages, each variable node calculates its messages and sends them  to the 

connected check nodes. This process continues iteratively.

In more detail, this iterative process can be described by two iterative updating
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Vi v 2 v3

Figure 2.7: The process of updating messages in a check node of degree dc > 4. The 
variable node messages from the previous iteration are fed into the check node c and 
processed to be sent to the variable node Vj.

rules. The check node c sends its message to  the  variable node v based on the 

following updating rule [4,36]:

from the variable node Vj to  c in the previous iteration. This updating  process is 

shown in Fig. 2.7 for a check node w ith degree dc. Then, the  variable nodes update 

their messages by [4,36]

is shown in Fig. 2.8 for a check node w ith degree dc. Notice th a t a t the s ta rt of 

the decoding, i.e., the initialization, m ^ l v = 0. The messages passed between the 

nodes in the decoder are called the extrinsic messages.

A decision can be m ade on the  variable node v based on the following rule:

2  tanh (2.25)

( £ )

where m c-*v shows the message sent from c to  v in the £th iteration, n(c) is the set of 

neighboring variable nodes connected to  c, and c denotes the message passed

(2.26)
c,-en(v)-{c}

where n(v) is the set of neighboring check nodes connected to v. This updating rule

m 0v +  £ c , e n ( v )  >  0

™ 0V +  E c ,  e n(v) <  0
(2.27)
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Figure 2.8: The process of updating messages in a variable node of degree dv >  4. The 
variable node messages from the previous half iteration are fed into the variable node v 
along with the channel message and processed to be sent to the check node c*.

and if mo, +  X ^en(v) m cf-+v =  0 either V  =  1 or V  =  0 can be selected randomly. 

In fact, for each variable node the extrinsic messages of all neighboring check nodes 

and the intrinsic message are used to  calculate the decision making message mo, +  

£ Cj.e„(v) m c S i n c e  the messages are LLR messages, a positive LLR votes in 

favor of V  — 0 and a negative LLR votes in favor of V  =  1.

As seen in (2.25) and (2.26), the outgoing message is being processed based on the 

messages received from all the connected nodes except the node which is receiving 

the outgoing message. This is a key aspect of iterative decoding, since it is needed for 

the independency of the messages (to be discussed la te r). As the messages are passed 

between the nodes in each iteration, the reliability of the variable node messages 

increase since they receive multiple beliefs about their value a t each iteration. In 

contrast, the reliability of the check node messages decrease as they receive messages 

from the neighboring variable nodes about their own values. Since these messages are 

processed so th a t the neighboring variable nodes satisfy an even parity  constraint, 

the reliability of the outgoing check node message is even less th an  the  reliability of 

the least reliable incoming message [37], This process continues until all the errors 

are corrected by the decoder in a  successful decoding.
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One of the m ost im portant advantages of sum -product and in general belief 

propagation decoding is th a t its decoding complexity is low and hence practically 

implementable for large block lengths. This is due to  the fact th a t in the algorithm, 

the messages are passed along the edges of a  sparse graph (i.e., the  num ber of 

edges traversed is small). Also, the num ber of edges are linearly proportional to 

the block length n  and the num ber of operations are linear in n. Therefore, the 

decoding complexity of belief propagation decoding is linear in n  and thus constant 

per information bit.

It is worth m entioning th a t sum -product is in general not as powerful as maxi­

mum likelihood (ML) decoding which is the  optim um  decoding algorithm. In fact, 

when the code’s factor graph has cycles—which will be briefly discussed later— 

sum -product is sub-optimum . On the other hand if no cycle exists and the code’s 

factor graph is a  tree, sum -product is optim um  and thus equivalent to  ML decod­

ing [4,7,36]. For large enough block lengths, since the effect of cycles is negligible for 

large num ber of iterations (see Section 2.5), sum -product performance is very close 

to  the ML decoding. Since sum -product decoding is more practical than  ML de­

coding especially for large block lengths, it is usually used in the decoding of LDPC 

codes. For detailed analysis on the tradeoff between the decoding performance and 

complexity per inform ation bit refer to  [38-40].

2.4.2 The min-sum algorithm

The min-sum decoding algorithm  is a simplified version of the sum -product algo­

rithm  [4]. W hile it is not as effective and powerful as the sum -product algorithm , it 

is less complex and can be implemented easier.

In this algorithm, the  variable node update  rule is the same as sum -product and 

is given by (2.26). The check node update  rule is an approxim ation to  (2.25) and is 

given by [4,36]

W hen the m agnitude of the messages gets large, (2.28) better approxim ates (2.25). 

Thus, in later iterations, where the m agnitude of extrinsic messages have become 

large, the  min-sum algorithm  performs nearly the same as sum -product.

mm
V j G n ( c ) - { v }

(2.28)
VjGn(c)—{v}
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2.4.3 Gallager’s algorithm A and B

The sum -product and min-sum both  use soft decision decoding which means th a t 

real-valued messages are passed. The sum -product is the best algorithm  among the 

message-passing algorithms in term s of the performance. In digital implementations, 

discretized versions of the sum -product have to  be used. The results of [12] show th a t 

1 1 -bit im plem entation is generally enough and ex tra  bits will not result in noticeable 

performance improvement. However, this is complicated and in m any practical 

applications it may be difficult to  be implemented or may increase the decoding 

time. In high-throughput applications, very fast decoders are needed. Thus, to 

reduce the complexity and increase the speed, lower-level discretized versions of 

sum -product are considered (e.g. 3-bit decoding, T b it decoding, etc.). The lowest 

level of dicretization is l-b it decoding which is equivalent to  passing binary messages 

and is called hard decision decoding.

Gallager’s decoding algorithm  A and B, bo th  introduced by Gallager in [8 ], can 

be used for hard decoding on the  BSC. In bo th  of these algorithms the messages 

passed between the nodes are 0 or 1. In Gallager’s algorithm  A, the update  rule at 

the check node c  is

ViGn(c)—{v}

which is the modulo-two sum  of the incoming messages. In the variable nodes, the 

message updating is based on the following rule:

where m o is the intrinsic message and mo denotes the binary complement of rriQ. In 

other words, the variable nodes pass the intrinsic messages unless all the incoming 

extrinsic message disagree w ith the intrinsic message. In this case, the  extrinsic 

message, passed to  the neighboring check node, is equal to  the binary complement 

of the intrinsic message.

Gallager’s decoding algorithm  B is more powerful th an  algorithm  A bu t more 

complex. It is proved in [41] th a t the algorithm  B is in fact the  optim um  binary 

message passing algorithm  for regular LDPC codes. In this algorithm  the  check 

node update  rule is the same as (2.29) bu t the variable update  rule is different. 

Interested reader can refer to  [8,41] for the details.

(2.29)

3cj  E n(v)  -  { c}  : =  mo
otherwise

(2.30)
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There are also some modifications of sum -product and min-sum and other message- 

passing algorithm s which can be used in the decoding of LDPC codes [37,42,43]. 

Here, we have presented the most im portant ones.

2.4.4 Decoding on the BEC

On the BEC, the LLR message is + 0 0  or — 0 0  if the corresponding variable node is 

not erased and is 0 if erased. The check node sends ± 0 0  to  a  variable node if all its 

incoming messages except the message from the variable node it is sending to  are 

± 0 0  and otherwise it sends 0. The variable node sends 0 if it is erased and sends 

± 0 0  if and only if there exists a t least one ± 0 0  incoming check node message other 

th an  the one receiving the message. This procedure can be done much easier on 

the BEC using edge deleting m ethod. Interested reader may refer to  [44] for more 

details.

2.5 LDPC Codes: Analysis m ethods

2.5.1 Asymptotic analysis methods

As stated  in the previous section, in iterative decoding, there are two pieces of in­

formation about the transm itted  codeword available in the decoder: the intrinsic 

information which is the observed information from the channel and the extrinsic 

information which is the information from the previous iterations. The extrinsic 

information at each round is calculated based on the intrinsic inform ation and the 

extrinsic information from the previous round. In a successful decoding, the reliabil­

ity of extrinsic messages improves as the decoding continues iteration by iteration. 

Therefore, for the analysis of iterative decoding, the statistics of the extrinsic mes­

sages are studied in each iteration.

If a t every iteration, the incoming messages are independent then  the update  

rules given in the previous section correctly computes the  LLRs. This is equivalent 

to  the factor graph being a tree and having no cycles. If the factor graph has 

cycles w ith the smallest length—called girth—equal to  £, then the neighborhood of a 

variable node up to  depth  |_f J is a tree and the messages can be assumed independent 

only for [_|j iterations. Therefore, the messages will not be independent for large 

num ber of iterations and the existence of cycles makes the messages dependent.
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It is worth m entioning th a t in random ly constructed codes w ith large enough 

block lengths, the neighborhood of a fixed depth  I  of most of the variable nodes is a 

tree. Therefore, the decoding algorithm  calculates the correct LLRs for I  iterations 

in these variable nodes. The fraction of the other nodes having dependent messages 

is small. Thus, the effect of cycles in the decoding performance is small when the 

block length is large and their contribution to  the probability of error is small and 

disappears asymptotically. So, for the  asym ptotic analysis of LDPC codes we can 

assume th a t the factor graph is a tree and all the messages are independent.

If linear codes are used and the channel and the update  rules have sym m etry 

conditions, then  the convergence behavior of iterative decoding is independent of 

the transm itted  codeword. So, for simplicity, it can be assumed th a t the all-zero 

codeword is transm itted . The channel sym m etry condition is given in (2.4) and 

the  update rules sym m etry conditions are given in [13]. The update  rules given in 

Section 2.4 are all symmetric.

Based on the all-zero codeword and message independence assum ption, the  sta­

tistics of the extrinsic messages can be studied. In fact, under the channel sym m etry 

conditions, LLR messages give sufficient statistics for the analysis of the  decoding 

and they have some nice properties. Some of these properties can be found in Ap­

pendix A. The m ost exact analysis m ethod, called density evolution, tracks the pdf 

of the extrinsic messages in each iteration [13]. Throughout this thesis, we assume 

the all-zero codeword is transm itted  when density evolution is used.

Density evolution can be com putationally complex in most cases, therefore as 

an approxim ation, a  representative of the pdf is studied (e.g., extrinsic message 

error probability [15,17], m utual information between the transm itted  bits and the 

extrinsic messages [45], and the  m ean of the extrinsic messages [14], etc.). Moreover, 

the extrinsic messages’ pdf can be fully represented by a single param eter in some 

cases (e.g., on the BEC and BSC). In these cases, studying the evolution of this 

single param eter is exact.

A nalysis on th e BEC  and BSC

On the BEC and BSC, since the pdf of the binary messages can be represented by 

a single param eter, it is sufficient to  track the message error probability.

On the BEC(e), this message error rate  can be defined as the  probability p f 1

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



th a t a message passed from the variable nodes to  check nodes in iteration t  is 0 . 

The message sent by a check node of degree i is in error (or 0) when at least one of 

its i -  1 incoming messages is 0. Therefore, the degree-i check node message error 

probability qi}  (or the probability th a t the message is 0 ) a t iteration I  is given by

=  (2.31)

For an irregular LDPC code having check node degree distribution {p2 ,p$, ■ ■ • >Pdc}> 

the  to tal check node message error probability is then  given by

qie) = P2 ■ q §  +  P3 • q'S  +  • • • +  P<k ■ Qel (2-32)

or equivalently by

Qe] =  1 -  (P2 • (1 -  p f )  +  P3 ‘ (1 -  P ^ f  + ■ "  + Pdc ' (1 ~  P ^ ) ^ 1)  • (2.33)

Using the polynomial representation of the check node degree distribution p(x), the 

above equation can be shortly w ritten as

q® = l - p ( l - p P ) .  (2.34)

The message sent by a  variable node of degree i is in error when the variable 

node is erased and all the incoming check messages are 0. Therefore, the degree-? 

variable node message error probability is

P{i +l) = e - ( # r 1. (2.35)

For an irregular code having variable node degree distribution {A2 , A3 , . . . ,  A^}, the 

to ta l variable node message error probability is then given by

pI'+D =  e • ( a 2 ■ ( ,(« ) +  A3 • ( « f ) 2 +  ■ • • +  A* • ( q f f - 1)  . (2.36)

Again, using the polynomial representation of the  degree distribution A(x), the above 

equation can be shortly w ritten as

pie+1) = e - \ ( q W ) .  (2.37)

The recursive analysis can be w ritten  for an irregular LDPC code having degree 

distributions X(x) and p{x) using (2.34) and (2.37) as [44]

pie+V =  e - A ( l - p ( l - *#>) ) .  (2.38)
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(i)In a successful decoding, the probability of error pe ' should decrease iteration by 

iteration and get arbitrarily  close to  0. Thus, for a successful decoding we should 

have

e ■ X(1 — p(l  — x)) < x  Vx E (0, e). (2.39)

For the Gallager’s decoding algorithm  A and the BSC(e), since the  messages
( £ )are 0  and 1 , we track the probability pe ’ th a t the variable node messages sent to  

the check nodes in iteration I  is 1. Using a  similar procedure as for the BEC, and 

from [8,46], we get

„<«> =  (1 — e ) . A )  +  e . ^  _  A , (2.40)

and for successful decoding we should have 

( l - e ) - A f 1 ~ ' ,(l ~ 2 l ) ) + g. ( l - A ( 1 + p ( l ~ 2 l ) ) )  < x  Vxe ( 0 , e ) .  (2.41)

Gallager’s algorithm  B, could also be analyzed in a similar way. For details 

see [1 1 ].

D ensity  evolution for general BIM S channels

T he m ain idea of LDPC code analysis on the BEC and BSC can be extended to  other 

BIMS channels and other decoding algorithms. Density evolution, first proposed by 

Richardson and Urbanke in 2001 [13], is the general asym ptotic analysis m ethod for 

LDPC codes. It tracks the evolution of the pdf of the extrinsic messages iteration 

by iteration.

The exact form ulation of this m ethod is given in [13,47]. Density evolution is 

com putationally complex and its analytical formulation is not suitable for direct 

use. Thus numerical analysis is usually done by quantizing the message alphabets 

and using probability mass functions (pmfs) instead of pdfs. This technique is called 

discrete density evolution [12]. Here, we present some details of this technique for 

sum -product decoding.

At the first iteration, the decoder is initialized w ith the pm f of the  channel 

messages. These messages are sent as the variable node messages to  the check 

nodes. T hen the incoming pm f is processed a t the check nodes based on the check
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node update  rule. Consider the quantizing function Q{w) as given by

. II + 3J'a. » > i
Q H = {  r i - i l ' A ,  » < - f  . (2.42)

where A is the quantization interval. For a check nodes w ith two incoming pmfs pa 

and pt, the  ou tpu t pm f is given by

Pc[k] =  ^ 2  PMVblj], (2.43)
( i , j ) : k A = l Z ( i A , j A )

where

1Z(a, b) =  Q ^2 tan h - 1  ^ tan h  ^  tan h  ^ . (2.44)

These equations can be implemented using a  look-up table. We combine these 

equations and use the notation pc = CHfC(pa,pb) for a check node operating on two 

pm f inputs, pa and pb- Then, for a  check node of degree dc the ou tpu t rule can be 

w ritten as

C H K ( m i , m 2, . . .  , m dc_i )  =  C H K (m i,C H K (m 2, • • • , m dc_i)) ,  (2.45)

where CHK(-) is the check node update  rule given by (2.25). This implies th a t the 

check node operation can be done pairwise. Denoting the variable node message 

pm f by pv (which is the same for all messages) and the check node message pm f by 

pu, pu can be com puted using

pu = CHK(jpv ,CWC(jpv , . . .  ,CliJC(pv ,pv) , . . . ) ) .  (2.46)

At the next half iteration, the ou tpu t of the check nodes along w ith the channel 

pm f is fed into the variable nodes . For a  variable node w ith two incoming pmfs pa 

and pb, the  ou tpu t pm f is given by

Pc[k\ = Pa[k] * Pb{k], (2.47)

where * denotes the discrete convolution. This can be easily implemented using 

fast-Fourier transform  (FFT) techniques. We denote the  variable node operation by 

pc =  VA1Z(pa,pb). Again for a variable node of degree dv, the update  rule can be 

w ritten as

VAR(m0, m i , m 2, . . . ,  m du_ i) =  VAR(m0, VA R(m i, m 2, . . . ,  m ^ - i ) ) ,  (2.48)
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where VAR(-) is the variable node update  rule given by (2.26). Using similar rea­

soning, pv is given by

pv = V A K (p 0, VA 1l(pu, V A T Z ( p u,p u) , . . . ) ) ,  (2.49)

where po denotes the intrinsic messages pmf. This completes one iteration. This 

process can be repeated for many iterations and in each iteration the  pm f of the 

messages can be studied. If the all-zero codeword is assumed to  be sent and 0 is 

m apped to  +1 and 1 is m apped to  - 1  (as in BPSK m odulation), then  the negative 

tail of the pm f represents the message probability of error in each iteration. If this 

tail vanishes after some iterations, the decoding is successful.

In density evolution it is assumed th a t the factor graph is a tree which is not 

always true. Nevertheless, the  concentration theorems of [13] show th a t when the 

code length grows, the average behavior of individual instances of the code ensemble 

and the noise concentrates around its expected behavior. This expected behavior, in 

tu rn  converges to  the behavior of the cycle-free case. Density evolution is a  powerful 

tool for analyzing the  asym ptotic performance of iterative decoders (when the block 

length is large). It can also be applied to  some other codes defined on graphs which 

use iterative decoding [48-50].

Due to  the high complexity of the density evolution, some approxim ations to  it 

has also been proposed in the literature. The most im portant ones are the Gaussian 

approxim ation [14] and the semi-Gaussian approxim ation [15]. In the Gaussian 

approxim ation, all the extrinsic messages are considered to  have Gaussian distribu­

tion. In the semi-Gaussian approxim ation m ethod, only the variable node messages 

are considered to  be Gaussian. Although these m ethods are less accurate than  the 

density evolution, their complexity is much less.

Decoding threshold

The decoding threshold of an LDPC code is defined as the worst channel condi­

tion for which the message error ra te  approaches zero as the num ber of iterative 

decoding iterations approaches infinity. This fact is proved in [13] th a t for channel 

conditions better th an  the decoding threshold, density evolution converges to  arbi­

tra ry  small message error ra te  and for channel conditions worse th an  the decoding 

threshold, message error rate  remains larger th an  a constant no m atter how many
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iterations performed. The decoding threshold depends on the degree distributions, 

the decoding algorithm  used, and the channel type and is one of the  m ost im portant 

properties of an LDPC code.

As an example, in the BEC(e) and BSC(e) w ith Gallager’s decoding algorithm  A, 

the decoding threshold is given by the maximum e for which the inequalities in (2.39) 

and (2.41) hold, respectively. It is worth mentioning th a t since density evolution is 

not accurate for finite-length LDPC codes, there is a gap from performance to  the 

threshold in practice. Our goal in C hapter 3 is to  determ ine this gap and predict 

the performance of finite-length LDPC codes.

Analysis of the accuracy of discrete density evolution shows th a t if the messages 

are represented by 1 1  bits or more, the error in the decoding threshold is less than

0.001 dB [12].

E xtrinsic inform ation chart analysis

Extrinsic information transfer (EXIT) chart analysis is another m ethod of analyzing 

the asym ptotic behavior of iterative decoders. In EX IT charts, the  idea is to  track 

the evolution of a  representative of the extrinsic messages densities. In o ther words, 

the decoder’s behavior is analyzed based on evolution of a single param eter. Many 

param eters could be selected to  represent the densities (usually this is a m easure of 

the decoder’s success). The most famous param eter for this purpose is the m utual 

information between the received bits and the extrinsic messages in each iteration 

[16]. O ther param eters which have been considered in the literature are the signal- 

to-noise ratio  (SNR) of the extrinsic messages [51,52], the extrinsic messages error 

probability [15,17], etc. Notice th a t when the pdf of the extrinsic messages can be 

fully represented by a single param eter (e.g. in BEC and BSC), EX IT chart analysis 

is exact and is the same as density evolution. In this thesis, we will use EX IT charts 

based on the error probability. Thus, when the term  EX IT chart is used, we mean 

EX IT charts th a t track the message error probability unless otherwise stated.

In an EX IT chart, the error probability of the outgoing extrinsic messages of 

one iteration pout is expressed as a function of the  error probability of the incoming 

extrinsic messages p\n and the intrinsic messages po, i.e.,

Pout =  /(P in .P o )- (2 .50 )

Then the EX IT chart is the  plot of this function using p ourPin coordinates. The
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EX IT chart function /  also depends on the degree distributions. A sample EX IT 

chart is p lotted in Fig. 2.9. The inverse function / ~ 1 is also p lotted to  better 

visualize the behavior of the decoder in each iteration. The ou tpu t error probability 

pout of an iteration is transferred to  the next iteration as a new p-m and again a new 

Pout is given and this process continues until convergence. Using EX IT charts it is 

possible to  visualize and determ ine how many iterations is needed for convergence 

in the decoder. The more open the EX IT chart (i.e., the tunnel between /  and / - 1  

is wide) the less num ber of iterations is needed. If the EX IT chart gets closed (i.e., 

the tunnel between /  and f ~ 1 gets closed), the error probability cannot get smaller 

th an  a certain value and the decoder does not converge. This is equivalent to  the 

case th a t /  intersects the 45-degree line. Thus, we define an open EX IT chart the 

one which is always below the 45-degree line and a  closed EX IT chart the one which 

intersects the 45-degree line.

The decoding threshold can also be approxim ated by the EX IT chart analysis. 

It is defined as the worst channel condition p j  for which the EX IT chart is open,

i.e.,

p*0 =  a rg su p { /(p in,p 0) <  p in, Vpin : 0  <  p in <  po}. (2.51)
po

Since an EX IT chart can model the behavior of the decoder in a simple m anner, it 

can be used to  design good irregular LDPC codes w ith desired convergence behavior. 

In the literature, EX IT charts have been vastly used for LDPC code design (e.g., 

see [17,18]). We will briefly discuss how EX IT charts can be used to  design good 

LDPC codes in Section 2.6.

2.5.2 Finite-length analysis methods

Density evolution is an accurate m ethod for the asym ptotic analysis of LDPC codes 

and in general iterative decoding. In the asym ptotic analysis m ethods, the code’s 

block length is considered to  be very large or infinite. The accuracy of density 

evolution and other asym ptotic analysis m ethods degrades when finite-length codes 

are used. Even for block lengths several tens of thousands large, the performance 

prediction of density evolution is very poor. For example, on a  BIAWGN channel, 

density evolution calculates a threshold of 1.1015 dB for (3,6)-regular LDPC codes. 

However, the finite-length performance could be far from the threshold. Fig. 2.10 

compares the  performance of (3,6)-regular LDPC codes with different block lengths
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Figure 2.9: An EXIT chart based on message error probability. This EXIT chart corre­
sponds to a (3,6)-regular code on the BIAWGN channel decoded by sum-product. The 
functions f(p-m,Po) and its inverse are plotted. As seen, it is possible to visualize the 
decoding behavior and the number of required iterations.
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to  the threshold. It is seen th a t the performance gap to  the threshold can be 

significant. In practice, finite-length codes are used. Thus, there is a need for 

analysis m ethods capable of predicting accurate performance curves for finite-length 

LDPC codes.

One of the reasons for the inaccuracy of the asym ptotic m ethods is th a t for finite- 

length or small graphs, the tree assum ption is valid only for a few iterations. In most 

cases, these few num ber of iterations are not enough to  reduce the  error induced 

by the channel in the graph. Based on this concept, a  combinatorial analysis has 

been proposed for the finite-length LDPC codes on the BEC in [23]. This analysis 

is based on considering weaknesses in the code’s graph called stopping sets.

A stopping set S  is defined as a subset of variable nodes, such th a t all neighbors 

of S  are connected to  S  a t least twice. In o ther words, a stopping set, is a subset of 

variable nodes such th a t no neighboring check node has degree one in the subgraph 

induced by this subset. The size of S  is the num ber of its variable nodes. In Fig. 

2.11, stopping set sizes of 2, 4 are depicted. Also, it is shown in Fig. 2.12 th a t how 

a  stopping set may be connected to  other parts of the  graph.

A stopping set has the property th a t if all its variable nodes are erased, iterative 

decoding cannot recover any of these erasures. It can be proved th a t the set of 

erasure £  which remains when the iterative decoder stops is equal to  the maximal 

stopping set of £  [23]. A block error occurs when all the variable nodes in a stopping 

set are erased. Thus, to  find the block error probability, it is sufficient to  find the 

probability th a t a random  erasure subset of variable nodes of a random ly chosen 

element of the code ensemble, contains a nonem pty stopping set [23]. Since the 

variable nodes are erased by the channel randomly, we find the  probability th a t 

a  nonempty stopping set is h it by the random ly erased bits for a  random  code 

graph from the code ensemble Cn (A(x), p(x)). This can be done by a combinatorial 

analysis which is extremely complex for block lengths larger than  a  few hundred bits 

and even for short block lengths only simple ensembles can be analyzed [23]. This 

approach has been extended to  irregular ensembles in [53].

The performance curves of finite-length LDPC codes can usually be divided 

into two regions; the waterfall region and the error floor region. In the  waterfall 

region, the error rate  drops significantly with improving channel quality. This region 

corresponds to  low SNR regions. In the error floor region, however, the error rate
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Figure 2.10: Bit error rate of a (3,6)-regular LDPC code on the BIAWGN channel with 
different block lengths n  in the waterfall region. There gap to the threshold gets larger 
with decreasing n.
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Figure 2.11: Examples of stopping sets of size 2 (left and middle) and 4 (right).

Figure 2.12: The set S  =  {v2 ,V4 , V5 , vg} is a stopping set of size 4. The bold lines 
show the subgraph induced by S.

does not drop significantly with improving channel quality and the performance 

curve flattens out. This region corresponds to  high SNR regions. Please see Fig. 

2.13 as an example. In the error floor region, the performance degradation is due 

to  the weaknesses in the graph such as stopping sets, trapping sets, etc.

I t has been observed in [24] th a t the  average performance of finite-length LDPC 

codes follow a  scaling law in the waterfall region. This scaling law has been proved 

when the transm ission takes place on the BEC and is conjectured to  be true  on the 

BSC and BIAWGN channels too. In fact, the following refined scaling law has been 

proved for the BEC(e):

/  Vn ( e *  - 0 n ~ a  -  e) \
E [PB(G, e)] =  Q ----- -̂-----    L  +  0 ( n ~ a), (2.52)

where Pb is the block error probability, n  is the block length, Q is a random  element 

of the code ensemble, e* is the decoding threshold, and

1 t2
Q(x) = —=  /  e 2 dt. (2.53)

\/27r Jx
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Figure 2.13: Performance curve of a C1024(x2, x 5) on the BEC(e). The waterfall and 
error floor regions are shown in the figure.

The param eter a  is the variance coefficient and is com puted by a  procedure called
2

covariance evolution. Also, the  term  j3n~ s represents a shift of the threshold and 

can be com puted by the  m ethod described in [24].

The procedure of calculating a  and (3 could be complex especially for irregular 

ensembles. Also, it is only applicable to  the BEC. For the o ther channels, the 

param eters are fitted to  the data. Thus, there is still a need for a general m ethod 

capable of analyzing the finite-length behavior of LDPC codes on general BIMS 

channels. In C hapter 3, we tackle this problem and we propose a simplified version 

of the scaling law which applies to all BIMS channels.

2.6 LDPC Codes: Design M ethods

T he goal of designing good LDPC codes is to  find good and optim ized degree dis­

tributions which have a desired performance on a given channel subject to  some
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constraints and conditions. Different measures of performance and optim ality and 

various constraints and conditions could be considered. For example, the degree 

distributions can be optimized to  have the highest decoding threshold while having 

a minimum code ra te  [47], or to have the  highest ra te  for a fixed decoding thresh­

old [17], or to  have the  lowest decoding complexity for a fixed rate  and thresh­

old [17,54]. The LDPC code design process is usually done by numerical optim iza­

tion methods.

W hen designing LDPC codes, we also need an analysis m ethod capable of mea­

suring the  performance. We stated  th a t the EX IT chart m ethod is simple and also 

gives insight into the convergence behavior. Thus, the EX IT chart m ethod can also 

be used for the design process. The code design optim ization m ethods become sim­

pler if the EX IT chart is used. In fact, the code design based on maximizing the 

code rate  is transform ed to  a  linear program  using EX IT chart [17].

Now, we briefly explain the code design m ethods th a t we will use in this thesis. 

In our m ethods, we fix the check node degree d istribution and optimize the variable 

degree distribution. This is a reasonable assum ption according to  the results of 

[12,47],

One code design approach can be defined as maximizing the rate  of the code 

given a  minimum decoding threshold. This optim ization can be easily done by 

linear programming. We will briefly discuss the details here.

Using the sum  of probabilities rule, the average ou tpu t error probability of the 

variable nodes can be w ritten as

#  =  (2.54)
i=2

( t )where J is the message error probability a t the ou tpu t of degree i variable nodes 

a t the £th iteration. Based on (2.54), the EX IT chart can be w ritten  as

d„—1

f(Pm,Po) =  ' /*(Pin>P0), (2.55)
*=2

which shows th a t the EX IT chart of the code is in fact a linear combination of 

EX IT charts of codes with regular variable node d istribution called elementary  EX IT 

charts fi(p\n,Po)- This observation states th a t the optim ization process is equivalent 

to  finding a linear combination of the elem entary EX IT charts which maximizes the
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code rate and is below the 45-degree line given the channel conditions. Using (2.23) 

and (2.55), the process of maximizing the code ra te  can be expressed as a linear 

program  by

maximize E T <2'56)
subject to  Xi >  0

EA- = 1
i

^ ^ i f i i P m P o )  < Pin, VO <  pin <  p0
i

where po is the error probability of the intrinsic (channel) messages which depends 

on the channel condition. The elem entary EX IT charts can be found using the 

density evolution. Notice th a t since p(x) is fixed, the elem entary EX IT  charts only 

depend on A,;’s. Therefore, in each iteration of the optim ization routine, Â ’s should 

undergo a small change and new elem entary EX IT charts should be calculated for 

the next iteration.

Another code design approach is to  maximize the decoding threshold of the 

code given a minimum code ra te  Ro. This approach is complex in general and is 

usually done by search-based m ethods. The idea is to  search for degree distributions 

which satisfy the minimum code ra te  constraint and their corresponding code can 

be decoded in the worst channel condition. One of the best search m ethods to 

use is differential evolution [55] which is in part a  hill climbing algorithm  and in 

part a genetic algorithm. Differential evolution has previously been used in the 

literature for this purpose [19,47,56]. In C hapter 4, however, we use the code 

ra te  maximization procedure to  design threshold maximized codes. The details are 

presented in C hapter 4.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 3

An Efficient Analysis of 
Finite-length LDPC Codes

3.1 Introduction

We stated  in Chapter 2 th a t in most of the LDPC code design and analysis m ethods, 

it is assumed th a t the code’s block length is infinite. The performance of LDPC 

codes and the accuracy of these asym ptotic m ethods depend on the  block length 

and degrade as the block length gets smaller. In practice, where finite-length codes 

are used, the infinite-length analysis can be quite inaccurate.

It is fair to  say th a t the asym ptotic behavior of LDPC codes, when the block 

length tends to  infinity, is well understood by now. Unfortunately, conventional 

m ethods such as density evolution or EX IT chart analysis, which are used for as­

ym ptotic analysis, may not be accurate enough for finite-length codes. Thus, there 

has been a growing interest in the analysis of finite-length LDPC codes. Finite- 

length analysis of other graphical codes has also been a subject of interest. For 

example, in [57] a lower bound on the bit error rate  performance of finite-length 

tu rbo  codes is obtained.

For LDPC coding on the BEC, a com binatorial analysis has been presented 

in [23] for regular finite-length ensembles and they have been generalized in [53] for 

irregular LDPC code ensembles. Also, an upper bound on the error floor of finite- 

length LDPC codes is given in [58]. These m ethods give the average performance 

(block and bit erasure probability) based on the analysis of stopping sets using a 

combinatorial recursive m ethod. In particular, they calculate the  probability th a t 

a  random  subset of erased variable nodes of a random ly chosen element of the  code
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ensemble contains a nonem pty stopping set. Unfortunately, these combinatorial 

recursions are com putationally complex and even for practical block lengths only 

very simple ensembles can be analyzed.

In a recent work [24], through a detailed analysis, it is shown th a t the  perfor­

mance curves of LDPC codes in the waterfall region, follow a scaling law. This 

scaling law is m otivated by the existing results in statistical physics and is proved 

for iteratively decoded LDPC ensembles when transm ission takes place over the 

BEC. It is sta ted  th a t empirically such a  scaling seems to  be applicable to  other 

channels such as the BSC and BIAWGN channel, and th a t any function of the chan­

nel param eter can be used for stating  the scaling law. To hold consistency w ith the 

BEC, the capacity of the channel is suggested to  be used. The scaling law consists 

of two ex tra  param eters a  and 0  which depend on the code ensemble and should be 

calculated. The param eter a  represents the variance coefficient and is com putable 

by a  procedure called covariance evolution [24]. The param eter 0  represents the co­

efficient of the shift of the  threshold for finite lengths. Although using th is m ethod 

the performance can be predicted accurately, the procedure of calculating a  and 

0, which is only known for the  BEC, could be cumbersome especially for irregular 

codes [24]. Also, this procedure cannot be used for other channels such as the  BSC, 

BIAWGN or fading channels. For these cases, the param eters are simply fitted to 

the data.

Scaling law is a consequence of the threshold behavior of LDPC decoders for 

infinite block length. T h a t is, successful decoding is possible if and only if the 

channel quality is be tter than  a threshold. W hen the code length is finite, during 

the transm ission of a single codeword, the average channel behavior may not be 

observed. For example, in a BSC with crossover probability e, each transm itted  bit 

can be flipped by the channel w ith probability e, bu t after a  finite num ber of channel 

uses, say n, the actual num ber of flipped bits may be more than  or less than  en. The 

decoder is influenced by the actual num ber of flipped bits or the observed channel 

quality during the transm ission of a  codeword, not the average channel quality.

This view can be used to  form a simplified and efficient version of the scaling 

law which does not have the ex tra  param eters of a  and 0. To be more specific, 

since the realization of noise varies from one codeword to  another, one can find 

the probability th a t the channel—observed during one codeword— is worse than  the
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decoding threshold of the  code. This way, assuming th a t an observed channel worse 

than  the decoding threshold results in a decoding failure, an estim ate of the block 

error performance can be obtained.

This m ethod, however, is not directly applicable to all BIMS channel models. In 

the BSC (or BEC) the variation of the observed channel is represented by a single 

param eter. Thus, the observed channel can directly be compared w ith the decoding 

threshold of the code and prediction about convergence or failure of the decoder 

can be made. However, in a Gaussian channel, for example, the actual distribution 

of noise samples observed over a finite block length is not purely Gaussian. Thus, 

comparison w ith the decoding threshold of the code is not directly possible.

In this chapter, we first study the variations of BIMS channels around their 

average behavior during the transm ission of a finite-length codeword. In particular, 

for BIMS channels whose variations cannot be expressed by a single param eter, we 

try  to model these variations w ith a single param eter. This way, a  direct comparison 

w ith decoding threshold and thus an efficient performance analysis of finite-length 

LDPC codes is m ade possible.

Using different measures for modeling the observed channel results in different 

predictions of the code’s performance. Thus, we focus on the study, comparison 

and analysis of different measures such as observed channel capacity or observed bit 

error rate. We model these channel measures as random  variables and find the pdf 

of these random  variables as a function of the block length. Using these pdfs, we 

effectively estim ate the block error rate  of the code.

Our approach can provide a  very good estim ate of the code’s block error rate  

performance (typically w ithin 0.1 dB) in the waterfall region when the code length 

is more than  a few thousand bits (typically more th an  2500 bits). A m ethod for 

finding an accurate estim ation of the  bit error rate  performance from the block error 

rate  estim ation is also provided.

Since in our analysis the effects of cycles and stopping sets are ignored, the results 

become more accurate as the code length gets larger. Moreover, since error floor 

behavior of LDPC codes is mainly due to  the  cycles and stopping sets [23,58], the 

error floor behavior is not predicted by this analysis. Our m ethod uses the decoding 

threshold of the code and the code length n  to  provide an accurate estim ate of the 

performance in the waterfall region and it is applicable to  both  regular and irregular
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codes under different decoding algorithms. Also, no fitting of param eters is required.

The rest of this chapter proceeds as follows. In Section 3.2, we study the  channel 

variations around its expected behavior for finite-length codes. The code’s perfor­

mance analysis m ethod is presented in Section 3.3. Simulation results for regular 

and irregular codes are presented in Section 3.4, where we discuss the  results and 

provide a guideline for designing irregular LDPC codes of finite length. Finally, the 

chapter is concluded in Section 3.4.

3.2 Channel Variations

3 .2 .1  O n e-d im en sio n a l ch an n els

In a BEC with erasure rate  e or a BSC with crossover probability of e (BEC(e) or 

BSC(e)), an observed b it erasure rate  or observed b it error probability P 0bs can be 

defined after the transm ission of any codeword. We have

Pobs =  (3 .1 )n

where n t is the num ber of erasures or errors in the codeword and n  is the codeword 

length. Only when n  —► oo, P 0 bs is a constant equal to  e. For finite n, however, P 0bs 

is no longer a fixed value and varies from one codeword transm ission to  another. 

Thus it can be thought as a  random  variable which has a scaled binomial distribution 

around e. This d istribution depends on n  and e and its probability mass function 

(pmf) is given by

/p ~ W = ( n " ) e” (1 (3'2)
which is defined wherever n x  is an integer and 0 <  n x  < n. If n  is large enough, we 

can approxim ate this pm f by a continuous Gaussian pd f A/"(/ipobs,Op ) w ith mean 

PRobs =  e an<l  variance &pobs =  e(l — e)/n . Notice th a t even for short block lengths 

(a few hundred bits), th is approxim ation is good and th a t this pd f has negligible 

values for x  outside [0,1]. W hen n  increases, the variations around the mean get 

smaller and for infinite length the d istribution is an impulse a t e. As an example, 

the histogram  of PQbs is plotted in Fig. 3.1 on the BEC(O.l) when n  — 2000. It is 

seen th a t this histogram  can be approxim ated by a Gaussian pdf.

It is reasonable to  assume th a t the decoder is mainly influenced by the observed 

erasure ra te  or error rate  of each codeword and not the e itself. Thus, we are inter­

ested to  model the channel w ith PDbs instead of the fixed value e. This time-varying
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Figure 3.1: Histogram of P0bs on the BEC(O.l) when n  =  2000 based on the simulation. 
The number of transmitted blocks is 105. This histogram is close to a Gaussian pdf 
with mean 0.1 and variance 4.5 x 10~5.

interpretation of the channel will be the basis of our block error ra te  performance 

analysis.

Notice th a t one can also define a  time-varying observed channel capacity. This 

means th a t we can assign a probability d istribution to  the observed channel capacity 

and trea t it as a  random  variable C0bs- For the BEC, we have Cobs =  1 — P0bs and 

for the BSC we have Cobs =  1 — h(Pobs) where h(-) is the binary entropy function 

given in (2 .6 ).

In the case of the BEC or BSC, a single param eter (P0bs or Cobs) uniquely defines 

the observed channel. We call such channels one-dimensional channels.

3 .2 .2  M u lti-d im en sio n a l ch an n els

W hen the  observed channel cannot be described w ith a single param eter, we say 

the channel is multi-dimensional. For example in a Gaussian channel, the noise has 

a continuous pdf. However, when the code length is finite, we have a finite num ber 

of samples of this continuous pdf a t the channel output. The decoder is influenced 

by these samples, whose pm f varies from one codeword to  another and cannot be
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described by a  single param eter.

In this section, we study the variations of multi-dimensional channels and we 

model these variations by a single param eter. This single param eter can be the 

observed channel capacity, observed bit error rate, observed noise power, etc. We 

mainly focus on the observed bit error ra te  and the observed channel capacity, 

bu t a  brief discussion on some other channel param eters has been included in Sec­

tion 3.4. We also limit our discussions to  the BIAWGN channel and uncorrelated 

Rayleigh fading (URF) channel, bu t a  similar approach can be taken for other m ulti­

dimensional channels.

T he BIAW G N  channel

For the BIAWGN(cr) channel, we have y — x  + z, where x  € {—1,1} is the input, 

z ~  Af(0, a 2) is the Gaussian noise, and y  is the ou tpu t of the channel.

Analysis of LDPC codes is usually based on the distribution of the channel log- 

likelihood ratio  (LLR) when the all-zero codeword (a; =  +1) is transm itted . The 

channel LLR L  is defined as

For the BIAW GN(u), LLRs have a  consistent Gaussian distribution [47] w ith 

mean ji — 2/ a 2 and variance 4/ a 2. For a proof of this property of LLRs on a 

Gaussian channel and other properties of LLR refer to  Appendix A. There is an 

error in detection when L  is negative. For finite n, in the transm ission of each 

codeword, instead of having a pure Gaussian LLR distribution, we have n  samples 

of this d istribution to  which we can assign jP0bs and Cobs- Clearly, P 0bs and Cobs are 

two random  variables. O ur goal is to  find the pdf of these random  variables.

To calculate the pdf of P 0bS) consider taking n  samples from the consistent 

Gaussian LLR distribution. Each sample or b it is in error when the  LLR is negative. 

So, the probability of error of each sample is

where Q(-) is the Q-function given by (2.53).

Therefore P 0bs> i.e., the num ber of all errors divided by n,  has the  following pm f

(3.4)

(3.5)
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which is defined on x  such th a t nx  is an integer and 0 <  n x  < n. Again, for large 

n, the pm f can be approxim ated by a Gaussian pdf J\f(po,po(l  — Po)/n) which has 

negligible values for x  outside [0 , 1 ].

Now, we analyze the observed capacity. The capacity of a BIMS channel C can 

be given via the pdf / l (x ) of the LLR by [49,59]

/OO
log2(l +  e~x ) f L(x)dx  =  1 -  E i[log2( l  +  e~L)\. (3.6)

-OO

For a proof of this equation refer to  Appendix A. For a BIAWGN(cr) channel (3.6) 

can be w ritten  as

a  r°o - ( * ~ ^ ) 2
C(BIAW GN(rr)) =  1 -  - =  /  log2(l +  e~x)e da:. (3.7)

v87t J -oo

As discussed before, for finite n  we have n  samples A] , X 2, . . . ,  X n of the channel 

LLR distribution. Thus, an observed channel capacity Gobs can be defined according 

to  (3.6) and using the sample average instead of the expected value, i.e.,

1 n
Cobs =  1 -----1°§2 (1 +  6  Xt)- (3-8)

U  i = 1

For the BIAWGN(cr) channel we have X.-L ~  ^ )  for i =  1 , 2 , . . .  ,n .  Now

define Yj =  log2 (1 +  e~Xi). It is easy to  verify th a t the distribution of Yi is

a  In 2  2y (-in(2V-i) - ^ ) 2

f c f e ) =  2^ 2 » - i e ^  f° r y > 0 ' (3’9)

All Yj are independent and identically distributed (i.i.d.) since all Xj are i.i.d. 

Therefore, from (3.8) and the  Central Limit theorem  we find th a t if n  is large enough 

(even for a  short LDPC code n  is large enough), Cobs has a  Gaussian distribution 

- N ’ ( f J' C o b s , < T c o b , ) -  To define this distribution, we need its mean and variance. The 

mean and variance of Cobs can be com puted using the m ean and variance of Yj by

Mcobs =  E[Cobs] =  1 — E[Yj], (3.10)

and

a C o b s  =  V ar[Cobs] =  Var[Yj]/n. (3.11)

So, the main task  is to  find the mean and variance of Yj which, using the distribution 

of Xi,  can be w ritten as

a r°°
E[Yj] =  -j== /  log2( l +  e x)e ^  da; (3.12)

V  07T J  — oo
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Figure 3.2: Histogram of C0bs on the BIAWGN(0.9) channel with n  = 2000 based on 
the simulation. The number of transmitted blocks is 105. This histogram is close to a 
Gaussian pdf with mean 0.556 and standard deviation 0.018.

a  f ° °  o
Var[Yj] =  —j== /  (log2( l  +  e x ) f e  8/°2 d x  -  (E[Fj])2. (3.13)

V87T J -oo

The above integrals cannot be solved analytically and we need to  com pute them  

numerically. For example, for a  — 0.9 and n  =  2000 we have tucobs — 0.556 and 

(7c obs — 0.018. The histogram  of C0bs for this case is plotted in Fig. 3.2 based on 

simulation. It can be seen th a t this histogram  can be approxim ated by a Gaussian 

pdf.

The mean of Cobs is equal to  the capacity of the channel when the block length is 

infinite. Notice th a t y c obs is only a function of the noise power and ctq is a function 

of both  the noise power and the  block length. As the block length increases, the 

variance decreases.

U ncorrelated R ayleigh fading channel

For the case of URF(cr) channel, the same approach can be applied with some 

modifications. In this case, we have y — r  ■ x  + z  where x  e  { —1 ,1 }, r  >  0 is 

the channel fading gain w ith a normalized Rayleigh distribution /^ ( r )  =  2re~r ,
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z  ~  N { 0, a 2) is the Gaussian noise, and y  is the ou tpu t of the channel. We assume 

th a t the receiver knows r a s a  perfect side information (SI). Here, the channel LLR 

is calculated as

P(x  =  —1| y ,r )
Then, the pdf of L,  assuming th a t the all-zero codeword (x =  +1) transm itted , is 

given by [19] as

= / “ exp
2 r

\  J
dr.

(3.15)

To calculate the pdfs of P0bs and C0bs> we consider taking n  samples from this 

LLR distribution. Following a similar approach to  the BIAWGN channel, the pdf 

of F0bs is given by (3.5) w ith

Po — f  / l ( z )  dx.  (3.16)
J —OO

Also, G0bs is given by (3.8) and it has a  Gaussian distribution. However, calculating 

p c oha and (?cohs is slightly different since the pdf of W  is not Gaussian and is given 

by (3.15). Thus we write

P C oha

and

/OO

log2( l  +  e~x ) f L(x)dx,  (3.17)
-OO

aCohs = ^  ( /  (log2( l  +  e~x ))2f L (x)dx  -  (1 -  p Cohs)2 ĵ ■ (3.18)

Now th a t we have interpreted the channel behavior and characterized two im­

portan t param eters of the channel, we will use them  to analyze the performance of 

finite-length LDPC codes.

3.3 Measuring Block and Bit Error Rate

3.3.1 Block error probability

In this section we present a m ethod to  predict the block error probability. We 

discuss the m ethod for multi-dimensional channels. The same m ethod applies to  

one-dimensional channels.

Following the discussion about the channel variations we model a BIMS chan­

nel £(<r) param eterized w ith cr by either the random  variable F0bs or Cobs with
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pdf /p obs(£(cr), n, x)  and / c ob5(£(<7), n, x)  respectively. Also, the cumulative density 

functions (cdf) are given by P (F 0bs <  x)  =  Fpobs(£(cr),n,x)  and P (C 0bs <  x)  =  

F cobs (£(<t), n, x).  Notice th a t the pdf and the cdf are param eterized by the  channel, 

its param eters and the block length of the code.

To calculate the average block error probability of an ensemble of LDPC codes we 

calculate the probability th a t the  observed channel behaves worse than  the code’s 

decoding threshold. We can use either P0^s or C0bs for this purpose. For one­

dimensional channels, it does not m atter w hat param eter is used to  model the 

channel variations. For multi-dimensional channels, since the variations cannot be 

fully modeled w ith a single param eter, the choice of param eter can affect the results.

Notice th a t this m ethod ignores the effect of cycles, stopping sets and other 

weaknesses in the factor graph of the code. In other words, it assumes th a t the 

factor graph of the code is a tree and the code is long enough for density evolution 

purposes. However, the  effect of atypical channel behavior is not ignored.

The procedure is as follows: F irst, calculate the probability of error (capacity) 

of a channel whose param eter is a t the decoding threshold of the code a* assuming 

n  —» oo, and call it p th (cth). Then, for each a  and finite n  compute f p obs(<t(a), n, x) 

( f c obs{€ (a) ,n ,x ) ) .  Using this distribution calculate the probability th a t P0bs >  Pth 

(Cobs <  Cth)- Therefore, we can write

where Pb  is the average block error probability of an ensemble of LDPC codes w ith 

length n  and degree distribution pair A and p (simplified notations for A(x) and 

p(x)  defined in Section 2.3). These give us two measures for the performance. The 

capacity m ethod is more fundam ental and seems to  be a more meaningful choice, 

bu t as we will see in the next section, in most cases P0bs gives more accurate results. 

For the BIAWGN and URF channels, from (3.5), we have

P B(£(cr),n ,A ,p) =  I -  Fpobs(<L(a),n,pth) = f  f Pobs(£ (a ) ,n , x )d x ,  (3.19)

and

g ôbs (3.21)
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where fipobs is given by (3.4) for the BIAWGN(cr) channel, and by (3.16) for the 

URF(cr) channel. For both  channels we have

Also, for Cobs we have

Z ,  =  (3 -^ )

b5)2
fC'jU, ( £ ( 0 ) , n , x )  ~  - =  e 2â obS , (3.23)

V  277(7(7 |
- 'o b s

_2where for the BIAWGN(cr) channel, fJ-cobs and &cobs are derived according to  (3.10) 

and (3.11) and by (3.17) and (3.18) for the  URF(<r) channel. In bo th  (3.21) and 

(3.23) we have 0 <  x  <  1. Therefore, we can write

P B(C(<r),n, A,p) =  q ( ^ ^ )  , (3 .2 4 )
V a c 0 b< J

and

P B(C(a) ,n ,A,p) =  Q . (3.25)V a Pobs J
In Fig. 3.3, the proposed block error probability prediction m ethod is visualized on 

the BIAWGN channel using the pdfs of P0bs and C0bs-

Extending the results to  one-dimensional channels is straightforward. In the 

BEC(e) and BSC(e) we only need to  consider P0bS since G0bs gives the  same results. 

Therefore, we change a  to  e and pth to  e* in (3.19). Here, e* is the decoding threshold 

of the code. We write

(x-"P0bs)2
/R>bs(BEC(e), n, x)  =  / Pobs(B SC (e),n ,x ) ~  - =  e ^  , (3.26)

V 27T£7pobj

where ppohs =  e and crpobs =  e(l — e)/ n  and 0 <  x  < 1.

This m ethod of predicting the block error probability is applicable to  different 

decoding algorithm s (e.g. sum -product, min-sum, Gallager A, etc.). In fact, the 

effect of the decoding algorithm  is only seen on the decoding threshold of the code. 

Each decoding algorithm s has a corresponding decoding threshold. Therefore, it 

is possible to  calculate pth and Cth for each algorithm. To predict the block error 

probability, the corresponding pth and Cth are used in our m ethod.
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Figure 3.3: The proposed block error probability prediction method using the pdfs of 
Pobs and Cobs and (3.24) and (3.25). A (3,6)-regular LDPC code of length 103 has been 
used on the BIAWGN(0.83) channel with a* =  0.8809, pth =  0.1281 , and Cth =  0.5708. 
The shaded area represents the estimated block error probability.
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Figure 3.4: Plot of an EXIT chart for a (3,6)-regular code showing the point that the 
EXIT chart gets closed (pst0p).

3 .3 .2  B it  error p ro b a b ility

We can use the block error probability to  derive bit error probability using an EX IT 

chart analysis. For the cases th a t the channel behaves worse th an  the threshold, 

the decoding process is done until it gets stuck and the error probability of the 

messages cannot get smaller than  a certain am ount pstop- This can be visualized as 

the point where the EX IT chart1 gets closed and intersects the line pout =  p m- This 

has been visualized in Fig. 3.4 for a  (3,6)-regular code a t its decoding threshold. If 

the EX IT chart closes a t only one point, we can assume th a t pstop does not change 

significantly for different channel param eters worse th an  the threshold. Although 

P s to p  can change for channel param eters much worse than  the threshold, these cases 

occur very rarely.

Using pstop as the variable-to-check message error probability, regardless of the

'EXIT charts can be defined based on different measures. Here we assume EXIT charts that 
track the evolution of message error probability.
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pdf of these messages, one can calculate the check-to-variable message error proba­

bility using

9,top =  1 - p (1 2~ 2P,t',',>. (3.27)

Assuming th a t these check-to-variable messages are used to  make a decision on 

the variable nodes, one can calculate the b it error probability a  from qstop. This 

implies th a t when the decoding is not successful, an a  fraction of bits are in error. 

Each block is in error w ith probability Pb(£(cr), n, A, p). Thus, the average bit error 

probability is a P B(£(cr), n, A, p), i.e.,

Pb(£(<r), n, A, p) = a P B(C(cr), n, A, p). (3.28)

Now the question is how to  calculate p st0p and a.  For the BEC and BSC under 

hard decoding, analytic relations of density evolution are simple and can be used 

for this purpose. For the sum -product algorithm  and the BIAWGN, we use the 

Gaussian approxim ation m ethod of [14]. For the URF channel and also min-sum 

decoding on BIAWGN channel, we use density evolution [13,19].

For the BEC(e), same as (2.38), we have

p m )  = e . X( l - p ( l - p W)),  (3.29)

and for the BSC(e) and Gallager’s decoding algorithm  A, same as (2.40), we write 

p ( « >  =  (1 e) - A +  « . ^  _  A )  . (3.30)

( £ )where pe denotes the message error probability in the £th iteration. To find the 

point th a t the EX IT chart gets closed and find p stop> we pu t pstop =  p i ^  =  p^P• 

To calculate a  we first define the node-perspective variable node degree distrib­

ution A(x) = Y a = 2  which is given by

A(x)  =  ^0T-    ■ 3.31)
Jo Mt)d t

In other words, A,  is defined as the fraction of variable nodes having degree i.

For the BEC(e), using (3.27), we calculate a  as

d\/
— e ‘ 9stopi (3.32)a

i=2
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and for the BSC(e) as

dy

a  =  J ]  A* ((1 -  e)<&op +  e ■ (1 -  (1 -  <&*))) . (3.33)
i = 2

For the BIAWGN channel and the sum -product algorithm, similar to  [14], we 

define

</>(*) =  (  1 "  7 k  /-°°ootan h  i e - ^ d U, x  >  0 (3 34)
( 1, x  =  0.

Using the above function and the degree d istribution pair (A(x) ,p(x))  and assuming

consistent Gaussian distribution for the messages in each iteration, the mean of the
(t)check-to-variable messages a t each iteration rrvu is given by

= 2 2  P i t  I 1 ”

dy
1 -  Ai<j) ( m U0 + ( i - \  (3-35)

i = 2

where m Mo =  2/cr2 is the mean of channel LLR messages and =  0. Using (3.35), 

we find such th a t -1 '). This is the point th a t the EX IT chart closes.

For a degree i node, we can define a decision-making variable, which is the sum 

of the channel LLR message and i independent check-to-variable LLR messages (see

Equation (2.27)). Therefore, the error rate  of a degree i node is Q

and the bit error probability is therefore

a  =  (3.36)

3.4 Examples and Discussion  

3 .4 .1  R eg u la r  co d es

E x a m p le  1 Consider Cn (x2, x 5) regular LDPC codes on the BSC(e) w ith Gallager’s 

decoding algorithm  A. The code is random ly constructed and all cycles of length 4 

are removed from the code’s factor graph. The decoding threshold of the code is 

e* =  0.03946. In Fig. 3.5, the  sim ulation results reported in [24] are compared to 

our prediction m ethod for n  =  1024 and n  =  4096. It is seen th a t the  prediction 

m ethod closely approxim ates the sim ulation results.
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Figure 3.5: Comparison between the block error probability of a Cn(x2, x 5) regular code 
on the BSC(e) channel under Gallager's decoding algorithm A using simulation (solid 
curve) and our best prediction method (dashed curve).
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Exam ple 2 Consider the same code as in Example 1 on a BIAW GN(a) channel. 

The decoding threshold of this code is a* = 0.8809 using the sum -product decoding 

algorithm. We use (3.24) and (3.25) to  predict the block error probability.

The sim ulation results for n  =  104 is depicted in Fig. 3.6. For th is code we have 

Pth =  0.1281 and Cth =  0.5708. Using (3.35) and (3.36) we get a  =  0.063 and then 

we can com pute the bit error probability using (3.28). At a bit error ra te  of 10-5  the 

gap between the actual result and the best prediction is about 0.032 dB while a t this 

b it error rate, the gap between the actual result and the infinite-length performance 

prediction is 0.46 dB. As seen in the figure, modeling the channel variations with 

F0bs results in a  be tte r performance prediction. In Fig. 3.7, the actual performance 

for different n  is compared w ith the best prediction m ethod which is based on using 

F0bs. As seen in the figure, the prediction error decreases as n  increases and vanishes 

for n  >  50,000 where there is still a 0.2 dB gap from the infinite length performance 

prediction. We also found th a t for n  > 2500, the estim ation error is less th an  0.1 dB 

at a bit error rate  of 10~5.

Next, we consider the min-sum decoding algorithm. The same C1q4 ( x 2 , x 5 ) reg­

ular code is decoded by the min-sum algorithm  on the BIAWGN(cr) channel. In 

this case, we have a* =  0.8223, pth =  0.1120, and ĉ h =  0.6182 and using density 

evolution we get a  =  0.049. The sim ulation result is depicted in Fig. 3.8. At a  bit 

error rate  of 10~5 the gap between the actual result and the best prediction is about 

0.026 dB.

Exam ple 3 Now, we use the same Cl°4(x2, x 5) code on the URF(cr) channel de­

coded under the sum -product algorithm. The threshold of the code on this channel 

assuming perfect SI a t the receiver is cr* =  0.7031. The sim ulation result is depicted 

in Fig. 3.9. For th is code we have pth =  0.1454 and Cth =  0.5684. Using density 

evolution we get a  — 0.059 and then we can com pute the  b it error probability using 

(3.28). It is seen th a t the prediction m ethod closely approxim ates the  simulation 

results (less than  0.036 dB at b it error rate  of 10-5 ).

3 .4 .2  Irregu lar co d es

Exam ple 4 Consider the BIAWGN(cr) channel and a rate-1/2  irregular LDPC code 

C10* ( \ ( x ) , p(x))  specified by the degree d istribution pair A(a;) =  0.4a;2+ 0.4a:5+ 0.2a;8 

and p(x) = x 8. The decoding threshold of this codes is a* =  0.8461 using the sum-
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Figure 3.6: Comparison between the block error probability and bit error probability of 
a C10 (x2,x° )  regular LDPC code on the BIAWGN channel using simulation and our 
prediction methods. The decoding algorithm is sum-product.
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Figure 3.7: Comparison between the bit error probability of a Cn(x2, x 5) regular LDPC 
code on the BIAWGN channel using simulation (solid curve) and our best prediction 
method (dashed curve) for different block lengths n.
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Figure 3.8: Comparison between the block error probability and bit error probability of 
a C10 (x2, x 5) regular LDPC code on the BIAWGN channel using simulation and our 
prediction methods. The decoding algorithm is min-sum.
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Figure 3.9: Comparison between the block error probability and bit error probability of a 
C1Q4 (x2, x 5) regular LDPC code on the URF channel using simulation and our prediction 
methods.
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product algorithm  and we have pth =  0.1186 and Cth =  0.5985 and a  =  0.083. The 

code is random ly constructed and any cycle of length 4 is removed.

Fig. 3.10 shows the performance curves and compares our results w ith the 

sim ulation results. As in the regular case, we see th a t our prediction m ethod closely 

approxim ates the actual performance. Again, P0t,s gives more accurate results. At 

a  b it error rate  of 10- 5 , the gap between the actual result and the best prediction 

is about 0.035dB.

It is worth m entioning th a t for codes whose EX IT charts near the threshold 

are very tight (i.e., their EX IT charts are very close to  the 45-degree line when 

the channel param eter is near the threshold) or close a t m ultiple points (i.e, their 

EX IT charts hit the 45-degree line a t multiple points when the channel param eter 

is near the threshold), a  cannot be calculated accurately. Hence, while the block 

error probability can still be predicted, the b it error probability cannot be found.

3 .4 .3  D iscu ss io n

As the results show, by considering the channel variations around its expected be­

havior, we are able to  describe the code’s performance in the waterfall region for 

different decoding algorithms, different code lengths and over different channel mod­

els. In other words, even by ignoring the presence of cycles in the code’s factor graph, 

it is possible to  predict the performance of LDPC codes of a few thousand bits or 

longer in the waterfall region quite accurately. Most practical scenarios are therefore 

covered by this simple analysis.

The concentration theorem s of [13] show th a t for large n, the average behavior 

of individual instances of the code converges to  the cycle-free case. As sta ted  in [13], 

the concentration theorems predict pessimistic values for n  and effects of the cycles 

are milder th an  predicted. As our results suggest and since our m ethod ignores 

the presence of cycles, for even medium length LDPC codes the effect of cycles is 

negligible in the waterfall region.

As seen in the examples, for multi-dimensional channels, PQt,s and (3.25) predict 

higher Pb values than  CQt>s and (3.24). This can be explained as follows. To analyze 

and compare the results of (3.24) and (3.25), we assume l Z)Cth & 1 whi ch is
f'th Qbs

an appropriate assum ption since we are not too far from the code’s threshold in 

the waterfall region. The accuracy of this assum ption is visualized in Fig. 3.11,
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Figure 3.10: Comparison between the block and bit error probability of an irregular 
code with n  — 1 0 4 using simulation and our prediction methods.
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where 1 — p c obs is plotted versus ppobs for a BIAWGN channel. Also, the upper 

and lower bounds of 1 — p c 0bs are depicted which correspond to  the BSC and BEC 

respectively [60,61].

In Fig. 3.12, 7  =  1 u^c°bs («  ^ 2t!l) and are depicted versus the SNR for a
obs r t n  *obs

BIAWGN channel. It is seen th a t 7  >  for different values of E s/ N q. Therefore,
^obs

- 3 — >  — and then 7 ^ t'l~Atp°b̂  >  lhh ,</>0DS. Thus, we getaCobs °P0 bs ^Pobs

( 1  ~  C t h )  ~  ( 1  ~  /^ C p b s )  _  M C obs ~  ° t h  >  P t h  ~  M P obs ^

CTG bs ^ C obs ^ P o b s

Since Q(-) is a strictly  decreasing function, we conclude th a t

Q  (  / 'g o b ;  - ^ t h \  <  g  /" P th  -  M Pobs A f (3 3 3 )
\  a C 0 bs /  \  O-Pobs /

which means th a t the block error probability predicted by C0bs and (3.24) is always

less than  w hat is predicted by P0t,s and (3.25) for a BIAWGN channel. The same

discussion also holds for the URF channel.

As shown through the examples, PQbs seems to  give more accurate results. One 

conclusion here is th a t the decoder is more sensitive to  the num ber of errors rather 

th an  the capacity. This can be argued in two ways. (1) In a check node, the 

ou tpu t probability of error in each iteration qe is given as a function of the  input 

probability of error pe by qe = 1~p(1~2pe), Thus, qe only depends on pe and the 

degree d istribution p(x ) and not the input LLR pdf. In other words, different input 

LLR pdfs w ith the  same pe give the same qe. As a result, the  num ber of errors play 

an im portant role in the decoder. (2) In all practical decoders, the maximum LLR 

value is finite. Therefore, a t high SNRs, the LLRs th a t have large absolute values 

cannot be represented accurately and their value is clipped to the  m aximum  LLR 

value. This clipping influences the observed channel capacity, b u t has no effect on 

the observed error rate. Notice th a t in all examples, a t high SNRs, P 0 bs gives a 

much be tte r estim ate of the performance.

O ther param eters of the channel could also be used in modeling the channel 

variations and predicting the finite-length LDPC codes’ performance. One such pa­

ram eter is the observed LLR mean, defined as X  =  ^  1 where W  denote the

received LLR samples. In [14], LLR mean together w ith a Gaussian approxim ation 

on the pdf of messages is used to  approxim ate density evolution. This measure, 

however, is not an appropriate param eter for modeling the  quality of a  channel. No­

tice th a t on the BEC(e), X  = 0 0 . In other words, channel variations in term s of e
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Figure 3.11: Plot of 1 — ficob% versus /ipobs for the BSC, BIAWGN, and BEC channels. 
The slopes of the lines connecting (fipobs, 1 — Mcobs) ar)d (Pth> 1 _  <Hh) to the origin, are 
approximately equal.
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are projected on an infinite change in variations in term s of X .  On other channels a 

similar problem exist. On a BIAWGN channel, for example, when capacity changes 

from 0 to  1, X  varies from 0 to  oo, thus a small change in capacity may translate 

to  a huge change in X .  The analysis based on X ,  however, allows for small varia­

tions in X  (due to  the averaging). Thus an accurate representation of true  channel 

variations is not captured by X .

Another channel param eter which can be used is the observed noise power 

n XX= l zi i  where Z{ denote the received noise samples. This m easure usually pro­

vides a  good approxim ation of the performance. At high SNRs, however, it can 

be argued th a t this m easure provides a  block error rate  estim ation much below 

the estim ated block error rate  using the observed probability of error or observed 

capacity.

Compared to  the scaling law [24], our m ethod gives slightly less accurate results. 

Prom any practical point of view, however, our m ethod gives accurate enough esti­

m ation of the performance for codes of a few thousand bits. In addition, our m ethod 

is simpler, does not have any additional param eters, and does not require any curve 

fitting.

We can also use this m ethod in the design of finite-length LDPC codes. One 

code design approach can be defined as maximizing the code ra te  given a target 

decoding threshold value. In our m ethod, using the block length and the  channel 

param eter, we select an appropriate decoding threshold which results in a desired 

block error rate. T h a t is, for channel £(o"o) and block length n, if a code w ith a 

block error ra te  be tter than  perror is needed, choose the decoding threshold according 

to

P th  F p obs( £ ( c r o ) , n ,  1 — P e r ro r)  ( 3 . 3 9 )

where FpJ^ is the inverse cdf of P0bs- In other words, we have chosen p th such th a t 

the probability th a t P0bs >  Pth is less than  perror. Then, we compute the  decoding 

threshold according to  a* — l / Q ~ 1{pth)- Now, we assume an infinite length code and 

maximize the ra te  for this threshold. This design approach holds for the BIAWGN 

channel. However, extending the results to  the BEC, BSC and URF channel is 

straightforw ard.
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3.5 Conclusion

A simple m ethod for finite-length LDPC codes analysis was introduced. F irst, we 

studied the channel behavior for the finite-length case and we modeled the channel 

as a varying channel from the codewords perspective. Using this interpretation, we 

studied two param eters of the observed channel (probability of error and capacity) 

and modeled them  as random  variables. After obtaining the d istribution of these 

random  variables analytically, we were able to  predict the  performance (block and 

bit error probability) of finite-length LDPC codes. O ur results suggest th a t when 

the block length is a few thousand bits, even by ignoring the effects of cycles, we 

are able to  predict the performance in the waterfall region closely.

We observed th a t in multi-dimensional channels, modeling the  channel variations 

w ith P0bs gives more accurate results rather th an  modeling w ith C0bs- Therefore, 

F0bs is suggested to  be used in modeling the channel variations and analysis of finite- 

length LDPC codes. Also, we showed th a t the block error probability given by F0bs 

is greater than  w hat is given by C^bs-

This simple m ethod is applicable to  bo th  regular and irregular codes. We also 

suggested a m ethod to  choose the decoding threshold of the code, based on its block 

length.
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Chapter 4

Optimum Linear LLR 
Calculation for Iterative 
Decoding on Fading Channels

4.1 Introduction

There have been m any advances in iterative decoding techniques and it has been 

shown th a t using graphical codes such as LDPC codes [8] and tu rbo  codes [2] asso­

ciated w ith iterative decoding, the Shannon limit on many channels (e.g., additive 

white Gaussian noise channel) can be approached [12]. Therefore, these codes have 

also been proposed for wireless fading channels [19].

Application of LDPC codes on Rayleigh fading channel is pioneered in [19], 

where a  detailed study of performance and code design is conducted. This work 

is later extended to  time-selective complex fading channels [62], to  Rician fading 

channels [63], and also to  Rayleigh block fading channels [64]. The application of 

tu rbo  codes on Rayleigh fading channels is also studied in [65].

For soft iterative decoding, LLRs at the ou tpu t of the channel are calculated. 

The process of com puting LLRs depends on whether or not a perfect knowledge of 

the  channel param eters exists a t the receiver. The capacity of the  fading channel is 

also affected w ith the availability of channel param eters a t the receiver [65].

In a recent work [66], based on a detailed study  on the effects of the channel 

mismatch, an efficient solution is proposed for uncorrelated Rayleigh block fading 

channels which does not need a knowledge of the channel noise power. The solution 

is to  consider the decoding threshold of the  code as an estim ate of the  channel noise 

power. This optim um  choice is a property of the code and not the  channel and it
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gives a very close performance to  th a t of a  system  which has a perfect knowledge of 

the channel noise power.

An uncorrelated fading channel can be modeled with a fading gain r  and an 

additive Gaussian noise z  ~  J\f(0, az ). W hen r is known at the receiver as a perfect 

side information (SI), LLRs are linear functions of the channel ou tpu t [19], and 

exact LLR com putation depends on a  perfect knowledge of az a t the  receiver.

In order to  have SI a t the receiver, channel estim ation techniques m ust be used. 

These techniques increase the complexity of the  system, can cause a  significant 

overhead, and are themselves subject to  imperfections. For high throughput wire­

less applications, the receiver may not be able to  handle the ex tra  complexity or 

overhead. This chapter provides an alternative solution which does not require chan­

nel estim ation, yet provides better performance compared to  the existing solutions 

th a t use fixed fading gain estim ates in the decoder.

W ith no SI available a t the receiver, LLRs are complicated functions of the 

channel ou tpu t [67] and depend on the pdf of r . An approxim ate LLR, however, 

can be com puted as a linear function of the channel ou tpu t [67]. The coefficient of 

this linear function depends on a fixed estim ate r of the  channel fading gain and 

a  knowledge of az . Previous work assume th a t az is known and use the  expected 

value of r  for f  [19,65]. W hile the expected value of the fading gain is the minimum 

m ean square error estim ation of r, it is not guaranteed th a t this choice provides the 

optim um  performance in the decoder.

In a general setup (which includes famous fading channel models such as un­

correlated Rayleigh and Rician fading channels), we propose the following question: 

Assume th a t the pdf of r  is known at the receiver, bu t the channel instantaneous 

fading gain is not. Also assume th a t LLRs are to  be com puted as linear functions 

of the channel ou tput. W hat linear approxim ation provides the optim um  decoding 

performance?

This question is studied in this chapter and the following contributions are made: 

(1) W hen az is known, we find a linear LLR approxim ation which allows for the 

maximum achievable code rate  on the channel. We prove th a t the optim um  linear 

approxim ation is unique and we observe th a t, on a Rayleigh fading channel, it closely 

approaches the capacity under true  LLR calculation. This solution can significantly 

outperform  LLR calculation based on the  expected value of r . We also design
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irregular LDPC codes which approach this maximum achievable rate. (2) W hen 

neither r  nor az is known at the receiver, we propose a  linear LLR calculation 

technique which guarantees the convergence of the decoder over the widest possible 

range of a z . The performance of this solution is almost identical to  the case th a t a z 

is perfectly known. We design appropriate irregular LDPC codes for this case too.

This chapter is organized as follows. Section 4.2 reviews some preliminaries and 

studies the proposed approaches. Section 4.3 studies the problem when az is known 

to  the receiver. Section 4.4 extends our results to  the case th a t a z is unknown. 

Section 4.5 concludes the chapter.

4.2 Preliminaries and Approaches

4 .2 .1  S y s te m  m o d el

Consider the following channel model. The ou tpu t of the channel is given by

where { -1 ,1 }  represents the input signal and z  is the  Gaussian noise w ith zero

fa ir )  and changes independently from one channel use to  another. Uncorrelated 

fading channels fall into this system model where r  represents the channel fading 

gain.

4 .2 .2  L L R  d efin itio n  an d  d is tr ib u tio n s

For soft decoding, LLRs are usually computed and used. As we said in Section 2.5, 

analysis of some iterative decoders is based on the pd f of LLRs under the assum ption 

th a t the all-zero codeword (x  =  +1) is transm itted  [47].

For the model in (4.1), the conditional pdf of y  is given by

(4.1)

mean and variance a \.  Also r >  0 is the channel gain which has an a rb itrary  pdf

■\/27r<j;
1

(4.2)

which represents a Gaussian distribution w ith mean x  ■ r  and variance a \. We are 

interested to  com pute the channel LLRs and their pdf.
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Ideal SI

W hen we have ideal SI, the channel fading gain r is known for each received bit. 

Also, the receiver knows the noise power. Therefore, the LLR is given by [19]

P (x  =  + l |y , r )  _  J2 
P (x  =  - l | y , r )  a \

7 1 V / /yf n\
1 =  lo§  Ti 1 =  ~2 y ' r ’ (4-3)u ' 'v’ ---- 1 1/1 ' '*” * T*

which is a linear function of y. The pdf of I is given by (3.15).

No SI

W hen no side information is available a t the receiver, the channel LLR is

(4.4)
P (x  =  - l |y )

which can be a complicated function of y in general. For instance, on a normalized 

Rayleigh channel (i.e., fa ir )  = 2re~r ) we have

, = |n? (4.5) 
®(~y/V2^1(1 + 201))

where $ (z )  =  1 +  \ /n z e z2evfc(~z) and erfc(-) represents the complementary error 

function [67]. This LLR is a complicated function of y and hard  to  be calculated 

in the decoder. Also, calculating the LLR pdf is difficult. To simplify the LLR 

calculation, m otivated by (4.3), we write I as

2
I = -r^V -r  = ay, (4.6)

where a \  represents the receiver’s estim ate of the Gaussian noise variance <j2z and 

f  represents a fixed receiver’s estim ate of the  fading gain r . Here, a  = 2 ^ .  This 

linear representation of LLR is consistent w ith the results in [67] which states th a t 

the LLR can be approxim ated by a linear function of y (also see Fig. 4.3). This 

approach is also consistent w ith existing work which assumes th a t az is known and 

uses expected value of r (E[r]) as r  [19].

The conditional pdf of I is

j. s d* (  (I — 2 r r /a l ) 2\
/ t l * (,|r) =  W S 6XP ~  8 fV f / * 4  • (4'7)
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To get the unconditional pdf of /, (4.7) should be averaged over the  density of r. 

For example, for the  normalized Rayleigh fading channel we have

2 a 2cdj

where A =  y  2c r|+ r This pdf is param eterized by a z and a. If a z =  az and r = E[r]

i.e., a  — 2 ^ - ,  (4.8) reduces to  the distribution in [19, Eq. 161.°Z

4 .2 .3  C a p a c ity

The capacity of a BIMS channel can be given via the pdf / l (0  of the LLR by [49,59]

T he above relation is only valid for BIMS channels where the LLR pdf is consistent 

(i.e., / l ( —I) =  For the proof of (4.9) and the properties of LLR refer to

Appendix A.

The channel capacity C  can be com puted in two cases: with ideal SI or no 

SI. In each case, their corresponding LLR distribution should be used in (4.9). In 

the absence of SI a t the  receiver, the quantity  calculated by pu tting  f i ( l )  in (4.9) 

called C, is not the channel capacity since I is a linear approxim ation and not the 

true  LLR. Also, since f ^ { l ) is not consistent, C  does not represent the  maximum 

achievable transm ission rate  under linear LLR calculation of (4.6). It is proved 

in [68] th a t C  achieves its maximum when true  LLRs are used. This hints th a t 

maximizing C  under some approxim ate LLR calculation m ethod would provide a 

good approxim ation of the true  LLRs. Moreover, we observe th a t by maximizing 

C  w ith respect to  a, f i ( l )  becomes a nearly consistent distribution. Thus, by 

maximizing C, a  very good estim ate of the maximum achievable transm ission rate 

under a  linear LLR calculation is obtained. Moreover, through examples we show 

th a t the maximized C  is extremely close to  C (in the absence of SI) which further 

justifies our approach (see Fig. 4.2).

4 .2 .4  L D P C  co d es  d eco d in g  an d  a n a lysis

Some of the  results of this chapter are shown through analysis and design of LDPC 

codes. As sta ted  in C hapter 2, many different message-passing algorithm s can be

/OO
log2 (l +  e - z)/L (0 d /. (4.9)

-OO
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used for the  decoding of LDPC codes. In this chapter, our focus will be on the 

sum -product algorithm  [36].

For the channel model of (4.1), the  decoding threshold cr* of an ensemble of 

LDPC codes is defined as the maximum noise standard  deviation a z for which the 

bit error probability of the message-passing decoder gets arbitrarily  small when the 

code length is growing [13,47] if and only if a z < a*. This o* depends on whether 

SI is available a t the receiver or not.

4 .2 .5  C o d e  d esig n

In this chapter, two code design processes associated w ith two measures of perfor­

mance are used. One can be defined as maximizing the threshold of the code over 

its degree distributions given a target code ra te  and another one, can be defined as 

maximizing the code ra te  over its degree distributions given the channel LLR pdf. 

This pdf generally depends on the channel type and its param eters. In our case, it 

depends on the noise power, the pdf of r , and the availability of SI. W hen no SI is 

available and (4.6) is used, the channel LLR pdf also depends on a  in (4.6). We 

will use both  of these definitions in this chapter and will clarify which one we use. 

We will refer to  the first definition as the threshold m aximization design and to  the 

second one as the rate  maximization design.

4.3 Optimum Linear LLR Calculation

W hen no SI is available a t the receiver, one can calculate the LLRs linearly via 

(4.6) as an approxim ation to  (4.4). The objective is to find the optim al linear 

approxim ation. Different measures of optim ality can be considered. Existing work 

assumes th a t a z is known and chooses f  =  E[r]. This choice of r  is optim um  

in the sense of m inimum mean square error E [|r — r |2]. Here, we find the  linear 

approxim ation which maximizes C. We call this linear approxim ation maximum- 

capacity linear-approxim ation (MCLA).

Maximizing C  requires a knowledge of az and pdf of r. These are needed for 

finding the pdf of I and thus optim izing its corresponding capacity. So, we first 

assume th a t these pieces of information are available. Later we generalize our results 

to  the case th a t az is unknown. W hen a z is known, w ithout loss of generality we 

set az =  oz in (4.6) and we find the optim um  choice of r . Notice th a t w ith f  one
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can adjust a  and thus the pdf of I as needed.

MCLA maximizes C. Interestingly, we observe th a t the maximized C  is ex­

tremely close to  C  based on true  LLR calculation. To show th a t this optim ization is 

meaningful in practice, we design irregular LDPC codes th a t approach the maximum 

achievable transm ission rate  C. Thus, by maximizing C  via linear LLR approxim a­

tion we are providing a simple solution for close to  capacity performance.

MCLA is also expected to  result in improved performance in iterative decoders. 

T h a t is, for a fixed code, com puting LLRs according to  MCLA should improve bit 

error ra te  (BER) performance. O ur simulation results will support this claim, but 

the following two argum ents can also be provided to  justify this choice.

1. MCLA provides the maximum C  and thus the maximum gap between the  code 

rate  R  and the capacity C  ~  C. Thus one expects improved BER performance.

2. Since I is not the true  LLR, under any linear LLR calculation, C  < C. Under 

a good linear approxim ation, pdf of I is close to  th a t of true  LLRs and thus C  

is close to  C. Hence, a minimized C — C  (through maximizing C) indicates a 

good LLR approxim ation and hence an improved performance.

As mentioned, our simulation results show th a t MCLA indeed improves the 

performance compared to  existing work based on choosing f  = E[r]. Moreover, 

though not rigorously proved, MCLA appears to  be the optim um  choice in term s of 

BER performance too. Thus, our proposed m ethod is based on maximizing C  over 

r  for fixed az and a z , and we define

r  opt =  a rg m ax C . (4-10)f

The following theorem  suggests th a t finding f opt can be done very efficiently.

T h e o re m  1 For a fixed a z and a z , there exists a unique f  which maximizes C  =  

1 — E;-[log2 (1 +  e~l)\.

Proof:

C  =  1 -  E,-[log2 (1 +  e - 1)} =  1 -  E y[log2 (1 +  e~% v)}
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Figure 4.1: C  for different a z and r  on a normalized Rayleigh fading channel. The 
curves are concave and the maximizing point is unique. Moreover, the maximizing point 
is not much sensitive to a z .

d2C
dr2

— — E„

=  E„

d?_
d f2

— 2̂
log2 ( l  +  e *%V)

( l  + e ^ y ĵ In 2
<  0

The above expression is negative since the term  inside the expected value is 

always negative. Therefore, C  is a concave function of f  and there exists a unique 

maximum in f  =  f opt. This theorem  is valid for any distribution of r > 0. ■

Maximizing C, therefore, is a straightforw ard task  because it is a one-variable 

convex-optimization problem  and can be solved very efficiently by simple numerical 

techniques. Different C  curves are depicted in Fig. 4.1 for some f  and the  case 

&z — &z- Notice th a t r opt is not very sensitive to  a z .
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Channel capacity in the absence of SI 

C  under MCLA, f  =  f opt
0.8

% 0.7£
13
da3

;S 0.6
CO 

2

0.3

0.2
-4

Figure 4.2: Comparison between the highest achievable transmission rate in the case 
of true LLR calculation and C  on a normalized Rayleigh fading channel. It is assumed 
that dz =  az .

Fig. 4.2 shows th a t we can get very close to  the  channel capacity under MCLA. 

Simulations show th a t r  =  E[r] can result in significant performance loss especially 

in high SNR regions where the capacity is high and high-rate codes are used.

The following two examples support our above m entioned results. In Exam ple 1, 

we design an irregular LDPC code which approaches the capacity th a t is maximized 

by MCLA. Exam ple 2 shows improved BER performance under MCLA.

E x a m p le  1: Consider an uncorrelated normalized Rayleigh fading channel with 

a z =  0.7436. The channel capacity is 0.5 bits/channel use in the absence of SI and 

C  =  0.4999 can be achieved using ropt — 0.6594 (compare with E[r] =  0.8862). In 

Fig. 4.3, the exact LLR values obtained form (4.5) are compared to  the optim um  

linear approxim ation under MCLA and linear approxim ation w ith E[r].

We design a code based on rate  m aximization under MCLA. We assume a fixed 

p(x) =  x8 and a maximum variable node degree dv of 30. Under MCLA and 11-bit

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



 Exact LLR
. - .  - .  linear LLR approx. under MCLA, f  — ropt 

 linear LLR approx. with r = E[r]

-20

-40

-8 -6
y

Figure 4.3: Comparison of exact LLRs and linear approximations for a normalized 
Rayleigh fading channel with a z =  0.7436 and no SI available at the receiver. Un­
der MCLA we have f opt =  0.6594. It is seen that MCLA gives a nearly perfect linear 
approximation when \y\ is small.

decoding, and allowing a  maximum of 300 iterations, the optimized code is given in 

Table 4.1 (C odel). The optim ization can be done easily using linear program ming 

and the m ethod described in Section 2.6. The ra te  of the designed code is 0.4889. 

The designed code has almost approached C  and also the capacity C  of the channel 

w ith no SI.

E x a m p le  2: To show th a t MCLA also improves the BER of the code, a C1C|4 (x2, x 5) 

LDPC code is sim ulated on an uncorrelated normalized Rayleigh fading channel. 

Fig. 4.4 shows the BER of the code with and w ithout SI at the receiver. W hen 

SI is not available and a z is known, two cases have been plotted. One is when 

crz = <7z and r =  E[r] and the other is under MCLA (i.e., az — az and f  =  f opt)- 

The decoding threshold of the code is 4.06 dB with f  =  E[r] and no SI, 3.82 dB 

under MCLA, and 3.06 dB w ith perfect SI. The figure shows considerable BER
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improvement under MCLA. This improvement is about 0.3 dB at BER of 10- 5 . 

The gap between the thresholds w ith SI and w ith no SI under MCLA is 0.76 dB. At 

this code rate, existence of SI results in about 0.74 dB improvement [19,65]. Thus, 

MCLA shows a m inor ex tra  gap (0.02 dB) compared to  true  LLR calculation.

We have chosen a (3,6)-regular LDPC code since most of its results exist in the 

literature. More significant performance improvement can be seen for other codes. 

For example, the decoding threshold of a (4,16)-regular code, which is a code of rate  

3 /4  is 7.69 dB w ith r =  E[r] and no SI, and 6.94 dB under MCLA on a  normalized 

Rayleigh fading channel. The BER performance of this code is p lotted in Fig. 4.5 

when no SI is available under f  — E[r] and under MCLA. At the BER of 10“ 5 the 

performance improvement is about 0.75 dB.

From Fig. 4.1, it is seen th a t f opt decreases when a z decreases. This implies 

th a t the distance between r opt and E[r] increases. Therefore, the performance im­

provement is usually more significant for low values of az where high ra te  codes are 

used.

4.4 Noise Power Unknown at the Receiver

Under MCLA, the pdf of I is a linear transform ation of the pd f of y. In fact, 

a opt =  2 ^  would give the  linear transform ation whose associated capacity (given 

by (4.9)) is maximum. W hen az is unknown, the  distribution of y  is not known 

a t the receiver. Therefore, finding the optim um  linear transform ation is somewhat 

meaningless. However, for any az one can find a opt. Thus, a opt is a function of az . 

It is also obvious from Theorem  1, th a t a 0pt is unique for each a z . Thus, a 0pt will 

be denoted as a opt(az ) afterwards.

Since a z is unknown, a opt(az) is also unknown. However, one can find a  such 

th a t a given code has the widest range of convergence over changes of az . This way, 

we ensure th a t the code is robust to  the changes in the noise power (e.g., when the 

code is used on different channels w ith different noise powers). This is equivalent to 

finding a  such th a t the decoding threshold is maximum. Now, we explain how such 

a  could be found.

The basic idea for finding such a  is to  maximize the  achievable transm ission rate 

a t the highest noise standard  deviation th a t the code can tolerate under MCLA. To 

do this, for a given code, we m ust find the largest az , referred to  as a*, such th a t
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Figure 4.4: Comparison of BER for a C 1q4 ( x 2 , x 5 ) LDPC code in different cases on 
a normalized Rayleigh fading channel. The performance of MCLA remains almost the 
same regardless of whether u z is known or not.
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MCLA, a z  known 

a z =  a z , r  =  E[r]
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Figure 4.5: BER performance of a Clo4(a;3, a;15) LDPC code on a normalized Rayleigh 
fading channel when no SI is available at the receiver. There is about 0.75 dB perfor­
mance improvement at BER of 10~ 5 under MCLA.
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the code still converges to  zero error rate  when LLRs are obtained using (4.6) with 

a  = ceopt(a*). Finding a* can be done efficiently through a binary search as follows:

1. S ta rt by a  small az\ and a  large a Z2 and calculate a opt(az\) and a 0pt{<7z2) so 

th a t the density evolution converges using (4.8) w ith a  = a opt{az\) and does 

not converge using (4.8) with a  =  a 0 pt(crz2 )-

2. If a z 2 — az\ < §, pu t cr* =  a z\ and a  = a 0pt(<^zi) and stop. Here, 6 represents 

the binary search accuracy.

3. Calculate a z 3 =  — y — and aopti^za)- Run the density evolution using (4.8) 

with a  =  CK0 pt (crZ3 ). If it converges, let <jz\ = a z3 . Otherwise, let a z 2 =  a Z3 -

4. Go to  step 2.

This choice of a  gives the widest convergence range over a z , because it is the 

optim um  a  in the worst channel condition. W hen the channel condition improves, 

this choice of a  is no longer optim um, bu t we expect th a t even with a  sub-optim al a, 

convergence to  be achieved due to  improvement in the channel condition [6 6 ]. The 

fact th a t channel improvement outweighs sub-optim ality of a  can also be justified 

recalling th a t r 0pt (and hence a opt) is not very sensitive to  a z . Our sim ulation results 

on LDPC codes will confirm th a t this choice of a  provides the widest convergence 

range.

In order to  m easure the performance we do as follows. For various u z and differ­

ent values of a  (including a opt(az )), we find the required num ber of density evolution 

iterations to  achieve a target message error-rate (MER) pt for a given LDPC code. 

We use the required num ber of iterations l*(pt) as a comparison m easure and to 

identify the range of convergence. Using density evolution, letting T>!fl>c(-) rep­

resent the pdf of the variable-to-check messages in iteration i ,  and denoting the 

required num ber of iterations by £*(pt), we have

t ( p t )  =  min e  Z* : J  P ^ c(C) • dC <  Pt j  , (4.11)

where Z* represents the set of non-negative integers.

In Fig. 4.6, different values of a  are used and £*(pt) is plotted for different values 

of o z for C°°(x2, x 5). It is seen th a t by using a  =  a opX(u*z =  0.6442) =  2.9634, the 

code has the widest convergence range. Interestingly, while this choice of a  is not
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optim um  for all values of az , the resulted £*(pt) is always very close to  the  curve 

based on known a z under MCLA. This observation can also be m ade from Fig. 4.4 

where unknown o z under MCLA results almost the same BER as MCLA w ith known 

crz .

4 .4 .1  C o d e  d es ig n  u n der M C L A

We proposed a m ethod which gives the  widest convergence region under MCLA for a 

given code even when the noise power is not known at the receiver. We also observed 

th a t the performance is extremely close to  the case when the receiver knows the noise 

power. Now, the question is how one can design and optimize an LDPC code of a 

fixed rate which provides the widest convergence region under MCLA when a z is 

unknown at the receiver. This design procedure is a threshold maximizing design.

In conventional threshold maximizing design procedures [12,19,47,56], the opti­

m ization sta rts  w ith a  certain noise standard  deviation a z and a set of initial degree 

distributions. In each round of the optim ization, az is increased slightly and the 

degree distributions are updated  according to  the rate  constraint and the best de­

gree distribution (giving the smallest error ra te  in density evolution) is found. This 

procedure stops when no degree d istribution is found whose error ra te  converges to 

zero after so many density evolution iterations.

Our design procedure can be done in a similar way. The difference is th a t in 

each round of the optim ization, for each cr2, ctopt(az ) should be calculated and the 

LLR distribution is calculated using a  — a opt(<72) in (4.8). Since when p is fixed, 

maximizing the code rate  can be easily solved by linear programming, we apply the 

code rate  m aximization m ethod to  this problem.

Suppose th a t we want to  design an LDPC code of rate  Ro which has the  widest 

convergence region under MCLA. The procedure is outlined as follows:

1. S tart w ith an initial degree distribution pair (Ao(x), po(x)) and a  large az and 

let a  = a opt (cr2) such th a t the code’s rate  R  given by (2.23) is lower th an  the 

target ra te  R q and the code is decoded successfully using density evolution 

and (4.8) as the initial channel LLR distribution.

2. Optimize the code’s degree distributions by maximizing the  code rate  for the 

noise standard  deviation oz and the LLR distribution in (4.8). The final rate  

is denoted by R.
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Figure 4.6: Comparison between the performances of C°°(a;2,a;5) on a normalized 
Rayleigh fading channel with or without SI using different a.
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C odel Code2
A2 0.1916 0.1943
A3 0.2244 0.2341
a4 0.0057 0.0064
A5 0.0109 0.0113
A6 0.0427 0.0340
A7 0.1187 0.0994
As 0.0297 0.0474
A9 0.0121 0.0205
A10 0.0147 0.0119
An 0.0171
A15 0.0157 0.0228
A20 0.0314 0.0627
A29 0.0382 0.0680
A30 0.2649 0.1715
P9 1 .0 0 0 0 1 .0 0 0 0

R ate 0.4889 0.5000
0.7436 0.7274

E b/N 0* (dB) 2.57 2.76

Table 4.1: Good LDPC codes designed under MCLA. Codel is a rate maximized and 
Code2 is a threshold maximized code.

3. If R  > R q then  uz := az + 5 (d is a small positive constant) and a  =  a opt (cr2) 

and go to  step 2. If R  < R q then  az az — 6 and a  — a opt(crz ) and go to 

step 2.

4. If R  =  then  a*z =  az and stop.

This procedure gives the degree distributions of an ensemble of LDPC codes with 

rate  R q which has the largest decoding threshold a *  or the  widest convergence region 

under MCLA. To decode this code, the decoder should use (4.6) w ith a  — a opt(cr*).

Using the procedure outlined above, one designed code is reported in Table

4.1 (Code2). Again, 11-bit decoding under MCLA is used, the m aximum  num ber of 

iterations allowed is 300 and dv — 30. The threshold of the designed code is 2.76 dB. 

This code has the largest decoding threshold among all the codes w ith the ra te  0.5 

when the  fading gain and the noise power are not known at the receiver.
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4.5 Conclusion

We proposed a new m ethod for linear LLR calculation on fading channels when 

channel fading gain is not known at the receiver. Our m ethod is optim um  in the 

sense of maximum achievable rate  on the channel. We showed th a t  on a Rayleigh 

channel, the maximum achievable ra te  using this m ethod is extremely close to  the 

channel capacity. Com pared to  existing work, which uses the expected value of the 

fading gain for LLR calculation, we reported considerable performance improvement 

a t no ex tra  decoding cost.

We then extended our approach to  the cases th a t the additive noise power of the 

fading channel is also unknown at the receiver. W ith  a  careful choice of linear LLR 

calculation, we were able to  obtain a performance almost identical to  the previous 

case, where the additive noise power was known.

For applications th a t channel estim ation results in significant overheads or suffers 

from severe imperfections, our proposed solution can be of interest.

W hile we verified some of our results through study and design of LD PC codes on 

Rayleigh channel, our approach for maximizing the achievable transm ission rate  and 

convergence range of the decoder is general. The only reason for using LDPC codes 

is tha t, they can approach theoretical limits and thus verify some of our asym ptotic 

results.
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Chapter 5

Conclusion

In this chapter we summarize the results and the contributions of this thesis. We 

also present some new questions and discuss possible future research.

5.1 Contributions

This thesis has two main contributions in the field of LDPC codes and in general 

iterative decoding.

In the first contribution, we proposed a simple m ethod for finite-length LDPC 

codes’ analysis on sym m etric channels. Using a time-varying in terpretation of the 

channel for finite-length codes, we analyzed the channel behavior by modeling two 

im portant param eters of the observed channel as random  variables. These two pa­

ram eters were the error rate  and capacity of the observed channel. Next, we derived 

the d istribution of these random  variables analytically. Using these distributions 

and assuming th a t the  decoding failure is the result of an observed channel worse 

than  the  decoding threshold of the code, we were able to  obtain the  block error 

probability of finite-length LDPC codes.

Two different channel classes were studied. In the first class, i.e., one-dimensional 

channels, the channel variations can be fully modeled by a single param eter. In 

the second class, i.e., multi-dimensional channels, the channel variations cannot be 

modeled by a single param eter. We studied the effects of modeling multi-dimensional 

channels w ith one param eter and we analyzed the results. We concluded th a t the 

iterative decoder is more sensitive to  the num ber of errors than  the capacity and 

the error rate  m ethod predicts more accurate results.

O ur results suggest th a t when the block length is a few thousand bits, even by
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ignoring the effects of cycles, we are able to  predict the performance in the waterfall 

region closely.

We also proposed guidelines for choosing the decoding threshold of the code 

based on its block length which can be used in the design process of finite-length 

LDPC codes.

In the second contribution, we considered iterative decoding on fading channels 

when the channel fading gain is not known at the receiver. We proposed an opti­

mum and efficient linear approxim ation m ethod to  approxim ate the channel LLRs. 

This m ethod is optim um  in the sense of maximum achievable ra te  on the channel, 

which was shown to be extremely close to  the channel capacity on a  Rayleigh fad­

ing channel. We designed LDPC codes for this purpose and showed th a t they can 

approach this rate.

We extended this m ethod to  the case when the channel fading gain and also the 

additive noise power are not known at the receiver. We showed th a t a  performance 

almost identical to  previous case, where the additive noise power was known, can 

be achieved. This is an interesting result for applications th a t channel estim ation 

results in significant overheads or suffers from severe imperfections.

This m ethod is applicable to  iterative decoding in general and not only to  LDPC 

codes. We used LDPC codes due to  the fact th a t they can approach theoretical limits 

and thus verify some of our asym ptotic results. We verified our results for Rayleigh 

fading channel. B ut our m ethod is applicable to  other uncorrelated fading chan­

nels such as uncorrelated Rician fading channel, uncorrelated Nakagami-m fading 

channel, etc.

5.2 Possible Future Research

In this section we present some new problems and briefly suggest possible future 

research direction.

Our analysis of the channel variations for finite-length codes in C hapter 3 can be 

used to analyze the behavior of other codes which show a threshold behavior. For 

example, the m ethod can be extended to  predict the performance of finite-length 

tu rbo  codes and fountain codes [26]. Also, the channel analysis m ethod can be used 

w ith some modifications in analyzing the non-asym ptotic capacity of finite-length 

codes.
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Our m ethod of optim um  linear LLR calculation is probably the  first step in a 

promising research direction. We proposed the m ethod of maximum-capacity linear 

LLR approxim ation for binary phase shift keying m odulation on uncorrelated fading 

channels. Possible future work can be done on extending this m ethod to  higher order 

modulations.

The channels considered in our m ethod were uncorrelated or flat fading chan­

nels. Another new problem is to  propose this idea for frequency-selective or corre­

lated fading channels. O ther research directions can include extending this work to 

multi-level coding, bit-interleaved coded m odulation (BICM) [69], orthogonal fre­

quency division multiplexing (OFDM) systems, and m ultiple-input m ultiple-output 

(MIMO) channels.

One useful application of the general idea presented in C hapter 4 could be to 

develop new m ethods of detection and decoding when no channel param eter esti­

m ation (or lim ited estim ation) is performed at the receiver. The approach could be 

based on a new definition of capacity, i.e., detection capacity. A capacity (a limit 

on d a ta  transm ission rate) can be assigned to  different detection strategies th a t are 

based on various assum ptions on the channel param eters. Thus, we have a com par­

ison measure which can be used for adjusting the detection param eters and finding 

the best strategy. Moreover, the concept of detection capacity can be extended 

to  decoding too. This way, decoding can be optimized according to  existence or 

absence of channel knowledge a t the receiver. These solutions can be extremely im­

portan t in time-varying channels where channel estim ations techniques are subject 

to  imperfections, cause a significant overhead and increase the receiver’s complexity.
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A ppendix A

Properties of LLR in 
Binary-input M emoryless 
Sym m etric Channels

In this appendix, we briefly review the properties of LLR in binary-input memoryless 

symm etric (BIMS) channels. We sta te  the relationship between the channel capacity 

and the probability density function (pdf) of the channel LLRs and present some 

theorems with their proofs. Most of the results of this appendix can be found 

in [47,59].

The input binary symbols are {0,1}, however, it is usually convenient to  m ap 

the symbols to  {—1,+1} as in the binary phase-shift keying (BPSK) m odulation. 

Thus, 0 <— ► +1 and 1 <-—> —1.

D e fin itio n  1: On a BIMS channel with transition  probabilities ^ x \y {x \v ) i the 

associated channel LLR function l (y) is given by

u  A , p x | r ( + l | y )  /A 1A
< A ' 1 )

This is the function which m aps the ou tpu t y  to  the channel LLR. Since the  channel 

ou tpu t is a random  variable Y ,  its associated LLR l (Y)  is also a  random  variable 

which has a pdf. It is worth m entioning th a t l (y) is a sufficient statistics for decoding 

on BIMS channels. In the belief propagation decoding, the channel LLR messages 

which correspond to  the intrinsic messages are calculated using (A .l).

Assuming th a t the  all-zero codeword is transm itted  over the channel, the  pdf of 

l(;y) denoted by /l(Z ) can be com puted for different BIMS channels. It is not hard  to 

see th a t for the BEC(e), f l ip )  =  e8(l) +  (1 — e)S(l — oo) and for the BSC ( e ) , / Jr , ( Z )  =
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ed(l -  j +  (1 — e)S(l — ^ r ) ,  where <$(•) is the Dirac delta function. For the

BIAWGN(ct) channel l(y) = ^  ■ y, which has a Gaussian distribution w ith m ean ^

and variance For the URF channel, depending on the availability of SI a t the 

decoder, l(y)  is defined in (4.3) and (4.6) and its pdf is given by (3.15) and (4.8), 

respectively. These distributions can be used in density evolution as the  intrinsic 

messages pdf to  analyze the  behavior of LDPC codes.

D e f in itio n  2 A pdf /  is called consistent or symm etric if f { —x) — e~xf ( x )  for all 

i e R  [47].

T h e o re m  1 In BIMS channels, under the all-zero codeword assum ption, the LLR 

pdf / l (0  is consistent [47].

P ro o f: From the  channel sym m etry condition we have

P*|y(l|i/)l (y ) =  log 

=  log 

=  log

P * |y (-% ) 
P r p r M l )  

Py\x(y \  ~  1) 
P y \ x ( - y \ ~  1) 

Pypr(-y|l)
,  P x \ y ( - M - v )  u  ,

=  log r , | y ( i | - i )  = - , ( - y ) ■

Thus,

f U ~ u )  = P y |x ( y  e  r ^ - u J l l )

=  ^ Y \ x ( - y  s  _̂1(u ) |i)

— ^ Y \ x { y  £  _̂1(u )l -  i)

=  e~uV Y \x (y e l ~ l {u)\l)

= e~uf L(u).

It should be noted th a t the  LLR pdf of the BEC, BSC, BIAWGN, and uncorrelated 

fading channels are all consistent. Another interesting fact is th a t the consistency 

of the densities is conserved under density evolution. In other words, the pdf of the 

extrinsic messages is consistent in each iteration of density evolution.

For a Gaussian pdf Af ( y , a 2), the consistency condition can be simplified and 

is equivalent to a 2 = 2y.  As we stated , in the BIAWGN(cr) channel l(y) = ■ y,

which has a Gaussian distribution w ith m ean \  and variance -4. Therefore, the& a* ’
consistency condition holds.
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Two BIMS channels are equivalent if their LLR pdfs are equal to  each other [47]. 

Based on this definition we have the following lemma.

L e m m a  Channel Equivalence Lemma: If / i ( y )  is a consistent pdf and if for a  BIMS 

channel P y |x (y |l)  =  f i i y ) ,  then  the channel LLR pdf is equal to  f i i y ) -  

P ro o f:

P y |x (y |l )  , p v |x (y |l)
1°§  TT  / j 7T =  lQg -----------------P r i x ( y l - l )  P y | x ( - y | l )

My )
=  log

M~ y )
i My )
lo§ - v  f  -  y-e yfL{y)

D e fin itio n  3 The error probability associated w ith the LLR pdf f M )  is given by

Perror =  [  (A ‘2 )
J  — OO

This is a useful property since it enables us to  calculate the  error probability in each 

iteration of density evolution using the pdf of the extrinsic messages.

Now, we prove th a t the capacity of a BIMS channel, which has a consistent LLR 

pdf, can be calculated from the LLR pdf under the all-zero codeword assum ption. 

T h e o re m  2 The capacity of a BIMS channel is given via its LLR pdf ) by [49,59]

p o o

C  = 1 -  /  log2 (1 +  e - l) f L(l)dl = 1 -  E|[log2 (1 +  e - ') ] . (A.3)
J  OO

P ro o f: Due to  the sym m etry of the channel, an equiprobable d istribution on X  

maximizes the m utual information. Thus,

C  =  I ( X ; Y )  = H ( Y )  ~ H ( Y \ X )

= J  ^-Py(y)l°g2Py(y) + \  py|x(yk)log2pv|x(yk)  ̂dp

/OO ^  ^

O v Y\x{y\x)  lo g a j-
-OO ^  L1 9

P y |x (y k )
dy

-oo " a!=±1 2 (P y |^ f(y |l')  4" P y |x ( y |  !■))

r  P  M U I P y |x (y |i)
l o o  r |x  1 } ° g 2 |( P y |x ( y | i )  +  P y |x ( y | - i ) )  y ’

where we have used the fact th a t P y |x ( —y| — x) = PY\x(y\x)- Now, by the  channel 

equivalence lemma we have P y |x (y | — 1) =  M ~ y )  = e~yf M )  and thus,

c =  f  My)  l°g2 1 , f = [  / i ( y )  (1 -  log2( l  + e_3/)) dy.
J -oo 5 / i ( y ) ( l  +  e ») J-oo
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Notice th a t Theorem  2 enables us to  calculate the capacity of an arb itrary  BIMS 

channel based on its LLR pdf. For an arb itrary  consistent LLR pdf, say (A.3) 

calculates the true  capacity of a  BIMS channel implied by
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