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[1] The adiabatic drift-resonant interaction between relativistic, equatorially mirroring
electrons and narrowband, Pc 5 ultra low frequency (ULF) waves in the magnetosphere is
investigated using a time-dependent magnetohydrodynamic (MHD) wave model.
Attention is focused on the effect of a ULF wave packet with finite duration on the
equatorially mirroring, relativistic electron phase space density (PSD) profile. It is
demonstrated that a burst of narrow band ULF waves can give rise to the growth of strong
localized peaks in PSD with L-shell by nondiffusive radial transport. This contrasts
with the diffusive ‘‘external source acceleration mechanism’’ described by Green and
Kivelson (2004), a radial transport mechanism often attributed to ULF waves, which
cannot produce peaks in PSD that increase with time. On the basis of this paradigm,
observations of locally growing PSD peaks are usually attributed to very low frequency
(VLF) wave acceleration by resonant interactions with lower-band chorus (e.g., Horne et
al., 2005). However, we show that in situations where large amplitude, narrow bandwidth
ULF waves are also observed, these time-limited coherent ULF waves can also generate
growing PSD peaks and under such circumstances may offer an alternative explanation.
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1. Introduction

[2] In situ measurements of outer radiation belt relativis-
tic electron populations have on occasions during geomag-
netic storms shown the formation of peaks in phase space
density with L-shell (in particular, with the L-shell param-
eter L* defined by Roederer [1970]). This has been inter-
preted as evidence supporting the hypothesis that the
dominant source of these electrons is through local, or
internal acceleration by very low frequency (VLF) waves
[Green and Kivelson, 2004; Horne et al., 2005]. In this
mechanism, resonant wave-particle interactions breaking
the first adiabatic invariant, for example with lower-band
chorus outside the plasmapause, energize the local electron
population. The longstanding, alternative hypothesis is that
electrons are transported across L-shell by guiding-center
drifts due to electric and magnetic field perturbations in the
ultra low frequency (ULF) range [e.g., Falthammer, 1965].
The electrons gain energy through the work done in moving
into a region of higher magnetic fields, preserving the first
two adiabatic invariants and breaking the third. A statistical
correlation between ULF wave activity and electron flux
enhancements in the outer radiation belt has been estab-
lished in separate studies using ground-based ULF wave
power by Rostoker et al. [1998] and Mathie and Mann
[2000].

[3] The energization processes in response to either
broadband VLF or ULF wave power are generally consid-
ered to be diffusive by many authors dealing with this topic
[O’Brien et al., 2003; Ukhorskiy et al., 2005; Falthammer,
1965; Schulz and Lanzerotti, 1974; Elkington et al., 2003;
Brizard and Chan, 2001; Friedel et al., 2002] and modelled
accordingly. The general conditions for the applicability of a
diffusion model to broadband fluctuations are given by
Sagdeev and Galeev [1969, section 2.2]. Briefly, the basis
of a diffusive description is the following argument. Con-
sider a population of drifting electrons (with identical first
and second adiabatic invariants) interacting with a broad-
band ULF wave source, which may be described by the sum
of a number of Fourier components with varying ampli-
tudes. Associated with each wave component is the drift-
resonance location in L-shell (Elkington et al. [1999], where
the electron drift speed matches the wave phase speed,
causing violation of the third adiabatic invariant) and
trapping width (DL, associated with the wave amplitude,
which separates resonant from nonresonant electrons). The
overlap of trapping widths from neighboring spectral com-
ponents gives rise to Brownian motion in the electron
trajectories. This stochastic behavior of the electron popu-
lation can be described statistically as a quasi-linear diffu-
sive process, under the condition that the spread in
resonance locations associated with the Fourier components
of the broadband signal is much greater than the trapping
width associated with the (integrated) signal amplitude.
Similar arguments can be made in conjunction with gyro-
resonances and bounce resonances and broadband waves
with higher frequencies.
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[4] Under these conditions, [Schulz and Lanzerotti, 1974]
argue that an ‘‘essentially complete physical description of
the Earth’s radiation environment’’ is provided by averaging
the gyrophase, bounce phase, and drift phase of the elec-
trons in order to express PSD in terms of the adiabatic
invariants and time: f = f(M, J, L, t) (where M and J are the
first and second adiabatic invariants associated with gyro-
motion and bounce motion, and L represents the third
invariant and is generalized to the Roederer coordinate L*
in a nonaxisymmetric geomagnetic field). The average
effect of violations in the invariants can then be represented
by the diffusion of f with respect to M, J, and/or L. Green
and Kivelson [2004] apply this argument to interpret elec-
tron flux measurements from the Polar satellite and note that
the observed locally growing peaks in f with L (keeping M
and J constant) cannot be the result of diffusive transport
across L-shell. This is because the net effect of diffusive
transport is always to move electrons from regions of high
phase space density to lower phase space density, which
precludes the formation of growing localized peaks.
[5] There is a growing awareness of the shortcomings of

diffusive models in describing radiation belt electron dy-
namics. Riley and Wolf [1992] compare convective and
diffusive descriptions of electron dynamics with moderate
energies (up to 130 keVat L = 3) using a simple electrostatic
model for ULF fluctuations during a geomagnetic storm and
find that the diffusion model only agrees in an ensemble
average sense with the convective model (that is, the
average of many runs with identical power spectra for the
ULF fields but randomized initialized phases). Ukhorskiy et
al. [2006a] investigate the effect of fluctuations in solar
wind ram pressure on radiation belt dynamics and show that
even though the electron motion is stochastic, it cannot be
described by a diffusion equation. Similarly, Degeling et al.
[2006] demonstrate that the localization of narrowband ULF
waves in local time can lead to stochastic motion that
enhances radial transport; however, the associated phase
decorrelation timescale is longer than the typical duration of
ULF waves, which precludes a diffusive description.
Ukhorskiy et al. [2006b] demonstrate a convective electron
transport mechanism caused by variations in the ring current
and Dst during geomagnetic storms, which causes the
adiabatic capture and subsequent release of radiation belt
electrons, leading to the formation of a localized peak in
phase space density.
[6] The purpose of this article is to examine adiabatic

transport due to coherent, narrowband ULF compressional
waves, for which the condition of validity of a diffusive
description breaks down. We demonstrate that growing
localized peaks in phase space density can be produced
by the drift-resonant interaction between temporally limited
ULF wavetrains and MeV energy electrons. These PSD
peaks remain in place once the ULF wave activity has
decayed away, leaving features in the PSD profile with L-
shell that may easily be misdiagnosed as evidence of local
electron acceleration.
[7] The waves of interest in this study are narrow-band

ULF compressional waves with low azimuthal mode num-
ber m, which couple to discrete frequency field line reso-
nances (FLRs), and are routinely observed by ground-based
instruments (e.g., magnetometers and superDARN radar
[Rae et al., 2005; Fenrich et al., 1995]). FLRs are detections

of resonantly excited shear wave eigenmodes along a
specific set of field lines. In the case of low-m modes, the
observed eigenfrequency matches that of a compressional
(fast wave) driver propagating across field lines through the
magnetosphere. These compressional waves may be excited
either along the dayside or flanks of the magnetopause (for
example, by solar wind buffeting or Kelvin-Helmholtz
instability where the solar wind flow adjacent the magne-
topause is strongly sheared) and propagate within the
magnetosphere until they are reflected at the compressional
wave turning point [Allan and Poulter, 1992]. The FLR
location is typically earthward of the turning point, and
power is coupled to it via evanescent fields from the
reflecting waves. The latitudinal width of the FLR ampli-
tude peak places an upper bound on the bandwidth of the
compressional waves to which they are coupled, if the
Alfvén continuum is also known. In this case the Alfven
continuum provides a mapping from the FLR width in
latitude to frequency bandwidth. It represents an upper
bound in bandwidth because the FLR profile in latitude is
also broadened by finite ionospheric conductance.
[8] It is considered that on the dayside of the magneto-

sphere, compressional waves form a radial eigenmode, or
waveguide, structure between the magnetopause and turn-
ing point. This may explain the apparent preference of
particular observed FLR frequencies reported by Fenrich
et al. [1995]. The extensive radial structure of compression-
al waves from the magnetopause to the FLR location
enables the waves to interact with electrons via the drift
resonance across a wide range of L-shells.
[9] In this article, a compressional wave coupled to a FLR

excited from a time-dependent source at the magnetopause
is modeled in a dipole magnetic field geometry and is used
to perturb an initial distribution of equatorially mirroring
electrons with a monotonic radial density gradient. This
extends previous work of Degeling et al. [2006] in which
monochromatic ULF eigenmodes in a box model with a
time-independent amplitude were used to perturb MeV
electron dynamics. The drift-resonant interaction between
the wave and electrons with azimuthal drift speeds close to
the wave phase speed results in nondiffusive radial trans-
port, and the generation of a localized peak in phase space
density, which is retained after the wave has decayed away.
Section 2 provides an overview of the ULF wave model and
further details appear in Appendix A. Section 3 describes
the model for equatorially mirroring electron dynamics. The
results are presented in section 4, and section 5 discusses
the implications of these results on efforts to determine the
mechanism of electron acceleration from in situ measure-
ments of phase space density. The conclusions are given in
section 6.

2. ULF Wave Model

[10] In this section, we overview an ideal MHD model
for ULF waves in an inhomogeneous plasma representing
the magnetosphere. Details of the method by which the
model equations are solved are given in Appendix A. We
take this particular approach in order to base the electron
dynamics results that follow on electromagnetic fields
derived from a physics based model that takes into account
the state of the magnetospheric plasma. By treating the
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ULF waves in an internally consistent manner, we avoid
unphysical or unrealistic wave-particle interactions that can
give erroneous electron transport and energization, partic-
ularly in the case of narrowband waves where the transport
is nondiffusive. In this sense the use of our ULF wave model
represents an improvement over previous approaches,
which specify the wave fields a priori [e.g., Elkington et
al., 1999]. Additionally, the coupling of FLRs and com-
pressional waves included in this model enables the use of
ground-based observations of the amplitude, duration, and
latitudinal width of FLRs to constrain the ULF wave
amplitude and duration of compressional waves across a
large range of L-shells, by scaling the compressional wave
source parameters and ionospheric conductivity appropri-
ately. For example, in all model runs performed in this
paper, the peak radial electric field occurring at the FLR
location is set no higher than 5 mV/m. This corresponds
roughly with the peak Pc-5 ULF wave amplitude inferred by
ground-based observations during the extreme conditions of
the 2003 Halloween geomagnetic storm (peak Dst = -400 nT,
solar wind speeds exceeding 1500 km/s [Loto’aniu et al.,
2006]).
[11] For this wave model, we use a dipole orthogonal

coordinate system, defined in terms of spherical polar
coordinates (r, q, f by

a ¼ sin2 q
r

� 1=LRE; b ¼ f; m ¼ cos q
r2

ð1Þ

and

ha ¼ r2

sin q 1þ 3 cos2 qð Þ1=2
; hb ¼ r sin q; hm ¼ hahb ð2Þ

[12] Starting from the cold plasma MHD equations, the
following wave equation for the field line displacement x
can be obtained [Allan and Poulter, 1992]:

@2

@t2
þ v2Ar? �r�

� �
x � Boð Þ ¼ 0 ð3Þ

where Bo is the unperturbed magnetic field and vA
2 = Bo

2/mor
is the square of the Alfvén speed (and r is the plasma mass
density). Note that jBoj = BeqRE

3/hm, where Beq is the
equatorial magnetic field strength at the surface of the Earth.
[13] The method by which this equation is solved is

described in Appendix A. Briefly, the equations resulting
from the components of equation (3) are simplified by
making the slowly varying approximation, where changes
in the wave amplitude take place on a timescale that is
longer than the wave period. By assuming that the Alfvén
speed is a separable function in a and m, and assuming
finite Pederson conductivity for the ionospheric boundary
conditions, the wave fields are described in terms of the
geomagnetic field-aligned fundamental eigenfunctions for
the toroidal and poloidal polarizations, leading to a set of
coupled first order equations in time that are relatively easy
to solve numerically. Wave-like disturbances of the form
exp(i(mf 
 w t)) (where m is the azimuthal mode number
and w is the wave frequency) occur in response to an imposed
time-dependent perturbation in x placed at the outer L-shell
boundary, for which the amplitude envelope is parameterized

by e
t/t2(1 
 e
t/t1). The constants t1 and t2 represent the
ULF wave source rise and decay times, respectively. Typi-
cally, t1 is set to one wave period, and t2 is set between three
and nine wave periods. For a typical wave frequency of
3.0 mHz, this range corresponds to ULF wavetrains with
durations between 1 and 3 hours, which covers the range of
commonly observed ULF signatures observed by ground-
based instruments.
[14] Once the time-dependent field line displacements

have been obtained, the electric field is given by Ohm’s
law: E = 
u � Bo, where u = @x/@t. The magnetic field is
given by B(t) = Bo + b(t), where the perturbed magnetic
field from Faraday’s law is given by: b =r � (x � Bo). The
assumption of fundamental eigenfunctions along field lines
implies that x has an antinode on the equatorial plane, and
therefore bk and E? also have equatorial antinodes, while
b? has a node on the equatorial plane. The equatorial value
of bk is given by: bk = 
r � (xBo).
[15] An example of the MHD wave model output for a

typical scenario is shown in Figure 1 (m = 3, w/2p = 3.0 mHz,
r = 800 amu/cm
3 at L = 4, with an L
4 scaling). Figures 1a
and 1b show the variation with time and L-shell of the
amplitude of Box, which is used to calculate the wave electric
and magnetic fields as described above. Radial profiles of the
amplitude and phase of the components of E and bk, taken at
a time five periods after the source commencement, are
shown in Figure 1c, and the temporal profile of the source
amplitude is shown in the inset. In this figure, the
disturbance at the outer boundary (L = 12) launches a
compressional wave that forms a broad standing wave
across L-shell and couples power to a field line resonance.
The compressional wave structure grows and decays with
the source, which has a rise-time t1 of 1 period and decays
with an e-folding time t2 of 5 wave periods. The FLR is
most visible in the top figure as a highly localized structure
centered at L = 4, which corresponds to the location where
the driver frequency matches the toroidal mode eigenfre-
quency. It grows and decays according to the balance of
power input from the compressional wave and power lost
by ohmic dissipation in the ionosphere (determined by the
Pedersen ionospheric conductance Sp). This causes the FLR
amplitude to peak approximately 4 wave periods after the
compressional wave peak and decay with a much longer
timescale than t2. Hence while the presence of the
compressional wave may be inferred by the measurement
on the ground of an FLR (with low m), the time evolution of
the Alfvénic FLR amplitude does not correspond closely
with that of compressional wave. This should be kept in
mind when inferring ULF wave amplitudes in the magneto-
sphere from ground based measurements.
[16] In this paper, we are primarily interested in the

effect on election phase space density of nondiffusive
radial transport arising from the drift resonance interaction
with the azimuthal component of the ULF electric field.
We therefore restrict our attention to the effect of the
compressional mode on electron dynamics at locations
well away from the field line resonance, where the
strongly peaked radial electric field introduces complexity
to the electron dynamics that is beyond the scope of the
current investigation. For example, in section 4 we exam-
ine the dynamics of drift-resonant electrons in the vicinity
of geostationary orbit using the ULF wave model param-

A02208 DEGELING ET AL.: PSD PEAK GENERATION BY ULF WAVES

3 of 10

A02208



eters chosen to give Figure 1, for which the usage of this
simplified wave model is justified. That is, this time-
dependent wave model represents the simplest internally
consistent model for MHD waves in a dipole magnetic
field available, which contains enough physics to give rise
to physically realistic electron dynamics for the chosen
scenario of interest.

3. Equatorially Mirroring Electron Dynamics

[17] The electron dynamics model used in the current
study has been described previously [Degeling et al.,
2006], so only a brief overview is given here. In a dipole
magnetic field, the equatorial plane corresponds to the
surface where the mirror force parallel to the magnetic

field passes through zero. Consequently, electrons with
zero parallel momentum residing on the equatorial plane
are confined to this plane for all time (in the absence of
any other external force parallel to B) and are said to be
equatorially mirroring. This reduction in the number of
degrees of freedom greatly simplifies modelling their
dynamics. The guiding-center drift equation derived by
Northrop [1963] is simplified for these electrons and is
given in component form (using polar coordinates (r, f) in
the equatorial plane) by

_r ¼ Ef

B

 M

qrgB
@B

@f
ð4Þ

_f ¼ 
 Er

rB
þ M

qrgB
@B

@r
: ð5Þ

In these equations, Er and Ef are the radial and azimuthal
components of the electric field, B is the magnetic field
strength (scalar), g is the relativistic correction factor, and
the magnetic moment (first adiabatic invariant) is given by
M = p?

2 /2meB, where p? is the component of electron
momentum perpendicular to the magnetic field. The first
and second terms in each of the above equations correspond
to the E � B and rB drifts, respectively. For reference, the
total relativistic energy of an electron is given by Etot = W +
mec

2 = gmec
2 = (p2c2 + me

2c4)1/2, where W is the kinetic
energy. Rearranging the above equation givesW = mec

2(g 

1). Hence the kinetic energy is a function of magnetic field
strength, given by W = mec

2 ((1 + 2MB/mec
2)1/2 
 1).

[18] Equations (4) and (5) are numerically integrated
using a fourth-order Runge Kutta scheme for electrons with
initial locations arranged on an (r, f) grid (typically with
200 grid points in each direction), with identical magnetic
moment M. Trajectories are calculated over a typical time-
span of 30 ULF wave periods, using the electromagnetic
fields on the equatorial plane provided by the ULF wave
model described in section 2. According to Liouville’s
theorem, the phase space density of electrons f(M, J, L, f,
t) remains constant along each trajectory in the absence of
collisions. This is used to compute the evolution of f in
space and time given an initial condition fi = f(M, J, L, f, ti),
by adopting an interpolation algorithm used as part of
Vlasov Hybrid Simulations [Nunn, 1993]. In this procedure,
evaluations of PSD (fm) are made each time step by the
interpolation of f from the trajectories onto the polar
coordinate grid using a phase space area conservative
algorithm. Note that any interpolation errors in fm do not
propagate because f (not fm advected from the previous time
step) is used in the interpolation. The initial condition for
PSD is given by

fi ¼
fo

L6

� �
exp 
W=kTeð Þ ð6Þ

where fo is a constant, the electron temperature kTe is set to
0.1 MeV. This gives a monotonically increasing initial PSD
profile with L-shell for L < 9.

4. PSD Peak Generation Through Coherent
Radial Transport

[19] The ULF waves shown in Figure 1 were used as
inputs in the electron dynamics model described above.

Figure 1. (a) and (b) Time evolution with L-shell of the
field line displacement (x) in the azimuthal (b) and radial
(a) directions, respectively, multiplied by Bo. The electric
and magnetic fields are obtained from these data by finite
differencing. (c) Also shown is the amplitude (solid) and
phase (dotted) of the equatorial Er, Ef, and bz after 5 wave
periods from the commencement of the source, the temporal
variation of which is shown in the inset.
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Electrons with a constant magnetic moment of M = 7.5
MeV/mT were considered, which corresponds to a drift
resonance location of Lo = 6.6 for the particular ULF
wave parameters used. Figure 2 shows a series of phase
space density (PSD) L-MLT profiles in the equatorial
plane, at intervals of 5 wave periods following the source
commencement. These images show the adiabatic trans-
port of electrons starting from the initial condition shown
in the first frame. The ULF wave considered in this case
has an azimuthal mode number m = 3, giving rise to three

identical spatial structures across 24 h of magnetic local
time (MLT). These structures, forming the three red
finger-like extensions in Figure 2b, propagate azimuthally
and are the result of electrons becoming trapped between
consecutive wavefronts. As described by Degeling et al.
[2006], the electrons forming these structures librate
around drift-resonance equilibrium points (in the anti-
clockwise direction in the figure) as these points travel
at the phase velocity of the wave (from left to right in the
figure). As the electrons move adiabatically into the
stronger magnetic field at lower L-shells, they gain kinetic
energy in their gyromotion, which in turn causes their
azimuthal drift speed to increase. Once the electrons have
been transported below Lo, their drift speed exceeds the
phase speed of the wave. Eventually, these electrons pass
the point in phase in the wave reference frame where the
wave field causing their inward radial transport changes
sign. Figure 2c shows that by 10 wave periods in the
example shown, the leading edge of the structures that
were being transported earthward have started to move
away from the Earth. These electrons are now losing
some of the energy they initially gained as they move
back into the weaker geomagnetic field. This also shows
that the maximum extent of radial transport by the drift
resonance mechanism due to a single ULF wave is
limited to a specific range in L-shell bracketing the drift
resonance location, known as the trapping width DLtr. It
can be shown [Degeling et al., 2006; Elkington et al.,
2003] that DLtr is proportional to the square root of the
wave amplitude. If the wave amplitude were constant in
time, the motion of all electrons would be completely
cyclic (albeit with differing periods, known as the trap-
ping period ttr), and there would be no net energy gain or
loss for each electron over a cycle. However, as shown in
Figure 1, the compressional wave amplitude used in this
example reaches a peak during the first five wave periods,

Figure 2. (a–f) Contour plots of phase space density as
functions of L-shell and MLT for the ULF wave shown in
Figure 1, taken at intervals of 5 periods.

Figure 3. (a) A contour plot showing the evolution in time
of the PSD as a function of L-shell, holding MLT = 0; (b)
contour plots of the average over f of PSD versus time and
L-shell.
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and subsequently decays. This has the effect of reducing,
and finally preventing, any further radial transport as time
progresses. In this way, regions of high phase space
density that are initially transported radially earthward
while the ULF wave amplitude is large are left in place
as the wave decays. The subsequent frames in the figure
show that differences in azimuthal drift velocity with L-
shell cause the azimuthal structures to become increas-
ingly sheared with time (this may be thought of as
temporal phase mixing).
[20] Figure 3a shows the time evolution of the PSD

profile for a constant MLT, which corresponds to sampling
data along a vertical slice (at MLT = 0) in each panel of
Figure 2. This figure shows that the perturbation to PSD
develops from an initial oscillation in L-shell to a spiral
pattern as trapped electrons execute an increasing fraction
of an orbit in the wave frame. This occurs over the first 5
to 10 wave periods while the ULF wave amplitude
remains significant. Further radial transport is prevented
as time continues and the wave amplitude decays, and the
existing PSD structure in L-shell appears to become
sheared in the time domain, due to the difference in
azimuthal drift velocity with L-shell. This figure, and also
the final two panels of Figure 2, show that this phase
mixing introduces increasingly fine structure in the L-shell
profile of f(M, J, L, f, t) with time.
[21] In order to reveal the net effect of radial transport on

the phase space density, an average over the drift phase was
taken: hf(M, J, L, t)i = 1/2p

R
f(M, J, L, f, t)df, and is

shown as a function of time and L-shell in Figure 3b. This
figure demonstrates the formation and growth of a localized
peak (at L � 6, between 5 and 10 ULF periods after the
source commencement) which cannot be explained by
diffusion across L-shell. The final L-shell profile of hfi,
taken 40 wave periods after the source commencement, is
shown in Figure 4. This figure also shows the average phase
space density for a selection of different magnetic moments
(from independent model executions using identical ULF

wave and initial PSD parameters), all of which have drift-
resonance locations on different L-shells. In each case a
peak and corresponding trough in hfi is formed by coherent
radial transport, centered at the location of the drift reso-
nance, with an amplitude and width determined by the
initial PSD variation with L-shell and the local wave
amplitude.
[22] The formation of a radial peak in PSD by the

mechanism described above depends on the duration of
the ULF wave compared with the timescale for electrons
to execute trapped orbits in the wave frame (i.e., the
trapping period ttr). As mentioned earlier, the trapping
period is not constant for all trapped electrons. In complete
analogy with the nonlinear pendulum, it depends on the
amplitude of the excursion from equilibrium of the trapped
orbits, and asymptotically approaches a constant value for
small amplitudes, in which case the electrons execute
simple harmonic motion. Following a similar approach
to that taken in the appendix of Degeling et al. [2006], and
making the small angle approximation for the phase of an
electron in the wave frame (y = mf 
 wt), the trapping
frequency wtr = 2p/ttr for these strongly trapped electrons
can be approximated by,

wtr �
wEo

2LoREB
1þ 3

g2

� �� �1=2

ð7Þ

where Eo, B, and g are respectively the azimuthal electric
field, magnetic field, and relativistic correction factor of
electrons at the drift resonance location Lo.
[23] In order to characterize the peak formation in the L-

shell profile of hfi, a number of cases were run in which the
peak ULF wave amplitude was scanned, and the duration of
the wave was varied. The ULF wave amplitude was
parameterized by the peak value of Er occurring at the field
line resonance, which was varied between 0 and 5 mV/m in
0.5 mV/m increments. The ULF wave duration was param-
eterized by the source decay constant t2, which was varied
between 3 and 9 wave periods in 3 period increments. The
magnetic moment of the electrons, the wave frequency, and
all other parameters were left unchanged from the values
used to produce Figure 2, such that the drift-resonance
location remained at Lo = 6.6 in all cases. The results from
these scans are summarized by the three contour plots
shown in Figure 5, which correspond to the three values
of t2 used. In each plot, the y-axis corresponds to the ULF
wave amplitude, and the colors correspond to the final hfi,
taken 40 wave periods after the source commencement in
each case.
[24] Scanning the ULF wave amplitude has the effect of

increasing both the trapping width DLtr and the trapping
frequency wtr. The former effect gives rise to the roughly
parabolic shape centered at L = Lo, marked out by the
contour where hfi equals the unperturbed value of hfi at
L = Lo in Figures 5a, 5b, and 5c. Given that the ULF wave
packet has a limited duration in time (approximated by t2),
it could be expected that the effect of the changing trapping
frequency with Er in this figure would be to modulate the
amplitude of the peak (and corresponding trough) in hfi as
Er is increased, such that the amplitude would attain a
maximum value when wtrt2 � 2p(N + 1/2) (where N = 0,

Figure 4. Radial profiles of the final phase space density
taken after 30 wave periods, for the same ULF wave
parameters used in the previous figures and averaged over
MLT. Each curve corresponds to a different magnetic
moment, for which the drift resonance locations are L = 4.6,
5.9, 7.3 and 8.6 (from dark to light grey levels). The initial
profiles are shown by dashed lines.
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1, 2, . . .), and a minimum value when wtrt2 � 2pN. Figure 5
qualitatively shows this expected behavior. For example
(concentrating on L-shells below Lo in the following), the
peak in h f i occurring at the lowest L-shell corresponds to
wtrt2 � p in Figures 5a, 5b, and 5c, the adjacent trough at
higher L-shell visible in Figures 5b and 5c corresponds to
wtrt2 � 2p, and the next adjacent peak visible only in
Figure 5c corresponds to wtrt2 � 3p/2. This figure illus-
trates that the trapping frequency is only approximated by
equation (7) close to the resonance, and decreases contin-

uously as jL 
 Loj increases, reaching zero when jL 
 Loj =
DLtr. For this reason, the peak (and associated trough) in hfi
corresponding to a given N occurs at a greater jL 
 Loj, and
asymptotically approaches DLtr as Er is increased.
[25] These figures show that multiple peaks in hfi with

L-shell may be produced by coherent radial transport due
to the drift resonance mechanism, depending on the
duration and amplitude of the ULF wave.

5. Discussion: Implications for the Interpretation
of in Situ Observations

[26] It is important to emphasize that the results of the
previous section, showing the formation of one or more
localized peaks in hfi with L-shell, are qualitatively different
from scenarios involving radial diffusion with a time depen-
dent external source of electrons. For example, Selesnick and
Blake [2000] demonstrate that a peak in f(M, J, L, t) develops
at lower L-shell with time using a simple radial diffusion
model if the high L-shell boundary condition for f provides a
transient pulse of electrons. As shown by Selesnick and Blake
[2000, Plate 7, bottom] (a color-coded plot of f versus L-shell
and time), a monotonic distribution with L-shell develops
initially while the source at the outer boundary exists, and a
local peak at lower L-shell develops only after the high
L-shell source is extinguished. This local peak strictly
decays in amplitude with time, as indicated in the figure
by the contours of constant f (represented by colors in the
figure), which are all open to the high L-shell upper
boundary. Similar results would also be obtained if L-
dependent losses that increase with L-shell are used. This
contrasts with contours of constant hfi in Figure 3b, which
are closed in the vicinity of the peak developing close to L =
6, indicating local growth of the peak with time.
[27] It is usually assumed that an internal source of phase

space density at constant invariants, such as arising from a
VLF wave acceleration process which violates the first
invariant, is responsible for growing peaks in PSD (for
example, a model similar to that shown by Selesnick and
Blake [2000, Plate 7, top]). As shown in our Figure 3b, a
peaked hfi distribution as a function of L can be generated
through radial transport generated by the interaction with
coherent ULF waves. This leads to the conclusion that
contrary to the standard interpretation, in situ measurements
by satellites of the gradient of f(M, J, L, t) with L, and even the
time evolution of this profile, may be insufficient to distin-
guish between internal and external electron acceleration
mechanisms, unless information on the (ULF or VLF) waves
presumably causing the acceleration is also obtained.
[28] It is important to consider in some detail what the

electron flux time series measured by a satellite would look
like, if this nondiffusive transport mechanism were in fact
taking place. For example, if we were to plot the evolution of
themeasured phase space density profile with time, would we
see an image more closely resembling Figure 3a or 3b?
According to Schulz and Lanzerotti [1974], the coarse
resolution provided by the finite width of energy bins and
acceptance angles of satellite particle detectors places a short
lifetime on gyrophase, bounce phase, and drift phase infor-
mation obtainable from electron flux time series, due to
phase-mixing. This means that variations in observed elec-
tron flux that occur on a timescale much longer than the phase

Figure 5. (a–c) Contour plots showing the final h f i
profile after 40 wave periods, as the ULF wave amplitude is
increased. The y-axis scale corresponds to the peak radial
electric field at the FLR location. The duration of the ULF
wave is scanned from Figure 5a to 5c by increasing the
decay timescale of the source from 3 to 9 wave periods.
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mixing timescale may be interpreted as variations in the
average phase space density hf(M, J, L, t)i. This is the
interpretation taken by Green and Kivelson [2004] and
Selesnick and Blake [2000] when obtaining f(M, J, L, t) from
Polar satellite observations. However, such an interpretation
may not always be applicable in the presence of narrow band
ULF waves, where perturbations to electron PSD over a
range inM, J, and L can remain coherent while the ULFwave
amplitude is significant. In this case the electrons in drift-
resonance with the wave, especially the strongly trapped
electrons undergoing simple harmonic motion, remain phase-
correlated, such that ULF modulations in electron flux may
be visible. Such an event would be distinguished from a drift
echo by the observation of an approximately constant mod-
ulation frequency over a range of energy bins (corresponding
to the drift-resonance trapping width), and phase correlation
with an independently observed ULF wave. Examples of
such signatures in LANL electron flux and GOES magne-
tometer data have been reported for ULF oscillations below
1 mHz [Lessard et al., 2003]. Of course, on timescales longer
than the ULF wavetrain the loss of phase information in fwill
develop over the phase mixing timescale and the interpreta-
tion of Schulz and Lanzerotti [1974] becomes applicable.
[29] Last, the impact of some of the assumptions made in

the electron dynamics and ULF wave model should be
discussed, in particular the effect of neglecting the convection
electric field and assuming a dipole magnetic field. The
relaxation of these assumptions would break the azimuthal
symmetry in the zeroth-order drift paths of the electrons and
lead to the introduction of additional drift resonances, as
found by Elkington et al. [1999]. If the asymmetry is suffi-
ciently large then overlap between these resonances may lead
to globally stochastic dynamics; however, it is not at all clear
whether this would lead to diffusive behavior, and preclude
the formation and growth of localized phase space density
peaks. As discussed by Degeling et al. [2006], this requires
that the timescale for phase decorrelation is significantly
shorter than the ULF wave duration. A further effect of
azimuthal asymmetry in the geomagnetic field is the alteration
to the shear wave eigenfunctions with MLT, as discussed by
Kabin et al. [2007], which may strongly affect electron
dynamics close to a field line resonance. Another particularly
interesting question is how the introduction of fluctuations in
the ULF amplitude, and a broadband noise floor affect the
electron dynamics. As discussed in the introduction, accord-
ing to Sagdeev and Galeev [1969] the dynamics should
remain nondiffusive as long as the spread in drift resonance
locations associated with the fourier components of the ULF
fluctuations is less than the combined trapping width. These
questions will be addressed in future work.

6. Conclusion

[30] The drift-resonance interaction between relativistic,
equatorially mirroring electrons and a ULF wave packet in
the Pc-5 frequency range is investigated. Using a dipole
wave model with a time-dependent wave amplitude, it is
demonstrated that bursts of narrow-band ULF waves can
produce one or more localized peaks in electron phase space
density f by coherent radial transport via the drift resonance
mechanism. During the early time evolution, where the
wave amplitude is large, these peaks have azimuthal struc-

ture (with a periodicity given by the azimuthal mode
number of the ULF wave) in addition to the L-shell
structure. Averaging over the azimuthal drift phase reveals
that the effect of the drift resonance on the average phase
space density hfi expressed as a function of the invariants
M, J, L, and time is to give rise to a growing peak in L,
which is qualitatively similar to that expected from an
internal source acceleration mechanism breaking the first
invariant. During the interval of ULF wave activity, the
electrons comprising the peaks in f remain phase-correlated
with the wave and will give rise to measurable temporal
modulations in electron flux similar to drift echoes. Fol-
lowing the decay of the wave fields, these modulations will
be attenuated due to the phase mixing effect inherent in
particle detectors with finite energy resolution, such that f
inferred from the measured electron flux evolves towards
the average phase space density hfi. We therefore conclude
that in situ measurements of average phase space density
gradients by satellite are insufficient by themselves to
determine the electron acceleration mechanism. However,
additional information from corroborating wave field meas-
urements may be able to remove this ambiguity.

Appendix A: Details of the ULF Wave Model

[31] From equation (3) the a and b components of the
wave displacement are governed by
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and are equivalent to the wave equations of Radoski [1967].
[32] Taking a spectral approach, the general solutions to

the above equations can be written in the form of a sum over
locally evaluated poloidal and toroidal eigenfunctions fan
and fbn multiplied by time-dependent and a-dependent
amplitudes Aan and Abn.

xa
ha

¼
X1
n¼1

Aan a; tð Þfan a;mð Þei mb
wtð Þ: ðA3Þ

xb
hb

¼
X1
n¼1

Abn a; tð Þfbn a;mð Þei mb
wtð Þ ðA4Þ

[33] The eigenfunctions and their corresponding eigenfre-
quencies wan(a) and wbn(a) are given by
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fbn ¼ 0 ðA6Þ

[34] These are the poloidal and toroidal eigenmode equa-
tions treated analytically for certain vA profiles by Allan and
Knox [1979] and Ozeke and Mann [2004] (see also Radoski
[1967]). Ionospheric boundary conditions with finite height-
integrated Pedersen conductivity Sp are assumed, such that

iw mo Sp hmfa,b = @/@m(fa,b) at the boundaries. These
eigenfunctions are normalized according to the following
conditions:

a2

Zmm


mm

h2a
u2A

fak fandm ¼ dkn ðA7Þ

Zmm


mm

h2b

u2A
fbk fbndm ¼ dkn ðA8Þ

[35] We assume the local eigenfunctions only weakly
depend on a. This is true as long as the ionosphere is
highly conductive, such that Sp � Sp

crit, where Sp
crit =

1/movAI (where vAI is the Alfvén speed evaluated at the
ionosphere [Ozeke and Mann, 2004]). Therefore for the
purposes of this article we use Sp = 10Sp

crit in all cases.
[36] Following the methods of Rankin and Tikhonchuk

[2001] and Walker [1980], we make the expedient assump-
tion that the solutions are dominated by the local funda-
mental eigenfunctions, and hence the index n takes the
value of one in the following and will be dropped for
brevity. The limitations of this assumption will be discussed
at the end of this section. The fundamental eigenfunctions
fa,b are numerically computed for various a, making the
approximation that vA(a, m) = uA (m) wA(a), where uA and
wA are specified, based on the dipole magnetic field and an
assumed plasma mass density profile. The remaining task is
to solve for the amplitudes Aa and Ab in response to a time-
dependent driver at the outer L-shell boundary (representing
the magnetopause).
[37] We take the slowly varying envelope approximation

for the time-dependence [Rankin and Tikhonchuk, 2001]
and assume that Aa and Ab vary much more rapidly with a
than fa and fb [Walker, 1980]. Multiplying the resulting
wave equations by fa and fb, respectively, and integrating
along field lines gives

2iw _Aa þ w2 
 w2
a

� 	
Aa ¼ 
w2

Aa
4 WaaA

00
a þ imWabA

0
b
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ðA9Þ

2iw _Ab þ w2 
 w2
b
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Ab ¼ w2

Aa
2 
imWbaA

0
a þ m2WbbAb

� 	
ðA10Þ

where the dots and dashes represent time and a-derivatives,
respectively, and

Wj;k ¼
Z zm


zm

1þ 3z2

1
 z2ð Þ3

 !
fj fkdz ðA11Þ

(where the subscript labels j and k are either a or b). Here,
integrals along field lines are written in terms of z = cos(q),
such that m = a2z/(1 
 z2)2, and the ionospheric boundary is
assumed to be at r = 1RE, such that zm = (1 
 aRE)

1/2. For
the purposes of this model, the plasma mass density profile
along field lines is assumed to vary as r
6, in which case,
uA = 1 + 3z2 and the toroidal mode eigenfunction fb
becomes analytic [Allan and Knox, 1979]. The equatorial
Alfvén speed variation across L-shell is assumed to have
the form wA = wAoa

P, where P = 1 represents a typical
mass density variation with L-shell outside the plasma-
pause of a4, and wAo is a constant.
[38] Equations (A9) and (A10) subject to appropriate

boundary conditions are solved using a fully implicit finite
differencing scheme, which involves the inversion of a
pentadiagonal matrix equation at each time step using a
generalization of the Thomas algorithm, given by Engeln-
Muellges and Uhlig [1996]. The inner and outer a boundary
conditions are as follows: Evanescent solutions are expected
at the boundary close to the Earth (maximum a, placed
earthward of the compressional wave turning point), hence
the condition A0

a + nAa = 0 is used (and similarly for Ab).
An incident plane wave source is included at the outer L-
shell boundary (minimum a) by expressing Aa and Ab as
the superposition of incident and reflected waves, such that
A0

a + ikAa = 2ikAas (and similarly for Ab), where Aas(t) (and
Abs(t)) represent the time-dependent source amplitude. The
constants k and n are obtained by applying the WKB
approximation at boundary locations. Both Aas(t) and
Abs(t) are specified to have the form e
t/t2(1 
 e
t/t1),
where t1 and t2 are the source rise and decay times,
respectively.
[39] The limitations of the assumption that the fundamen-

tal eigenfunctions fa and fb are not coupled to higher
harmonics is apparent from the plot of bk shown in
Figure 1c, which shows a significant peak at the location of
the FLR. The solution should be Alfvénic at the FLR, such
that the right-hand side of equation (A2) (which amounts to
the a-derivative of bk) should be very close to zero at this
location [Walker, 1980]. The differences in fa and fb along
the magnetic field prevent the required cancellation of terms
in this model.
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