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Abstract

Gasoline is a key revenue generator for the petroleum refining industry. Typically,
blend recipes are determined such that property specifications (e.g. Octane Num-
ber, vapour pressure, efc.) are met while maximizing the profitability of the blend.
Lower level process controllers enforce these blend recipes, ensuring that the prop-
erty specifications are met and quality give-away is minimized, while compensating
for disturbances and plant/model mismatch.

None of the current blending Real-Time Optimization (RTO) approaches treat un-
certainty in the constraint parameters (feedstock qualities, etc.) directly. As shown
by Singh et al. [1996], varying constraint parameters can cause the calculation of
infeasible solutions, if the expected values of the parameters are used. In this work,
methods are proposed to explicitly include constraint parameter uncertainty in the
dynamic formulations of the Gasoline Blending Optimization problem. These new
formulations borrow from a branch of Stochastic Programming (SP) called Proba-
bilistic Programming (PP). The performance of the proposed SP based optimizers
is compared with that of conventional blending optimizers. This thesis thus pro-
vides a new approach to solving the Gasoline Blending Optimization problem, which
explicitly includes uncertainty information in the problem formulation.
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Chapter 1

Introduction

Optimization is an integral part of engineering and is used by engineers (both heuris-
tically and mathematically) to design new processes/equipment, “improve” existing
processes, and to optimize process operations {Edgar and Himmelblau, 1988]. Pro-
cess Operations Optimization is essential if a manufacturer wants to stay competitive
in the industry [White and Hall, 1992]. The objective of Process Operations Opti-
mization is to determine an operations policy that optimizes the economic benefit
of producing the final product. In most cases, the economically optimal policy is
calculated using steady-state optimization of the plant operations [Forbes, 1994].
Most steady-state optimization methods can be divided into: 1) direct search
based methods; 2) model-based methods [Garcia and Morari, 1981]. Direct search
methods use on-line plant experimentation to perturb the plant to different oper-
ating regions and measure the performance index (cost and/or profit for economic
optimization) in these regions. Thus, given enough experimentation, a profit surface
can be mapped over the different possible operating regions. Most direct methods
use an iterative policy (continuous experimentation) to refine this profit surface and
try always to move the plant to an operating region where the process performance
index improves. More recent developments to the direct search methods have been in
identifying dynamic models for the plant from process perturbation and using these
to determine economically optimal steady-state moves for the process (e.g., McFar-
lane and Bacon, 1989). However, there are some fundamental limitations to the use
of all direct search methods. The amount of plant experimentation involved can be
prohibitive for large scale plants with many degrees of freedom. Moreover, large time
constants in these complex interconnected units mean that it takes a long time for
the units to come to steady state after each experiment. Thus, the sheer number of
experiments that need to be performed, and the amount of time required by each
experiment, combine to make direct search based methods particularly difficult to



use for large scale optimization problems.

Model-based optimization methods represent the process with a steady-state or
dynamic mathematical model and use the model to predict optimal operation. Thus,
instead of working directly on the process, these methods use a mathematical approx-
imation of the process. Optimization algorithms are then used to optimize the model
and the solution is implemented on the plant (after applying certain checks).

Most large scale units in the chemical and petrochemical industry are time-varying
in nature. This means that the underlying processes are changing all the time. This
could be due to various reasons: heat exchanger fouling, reactor catalyst decay, feed-
stock compositions changes, and so forth. For a time-varying process, the economi-
cally optimal operation conditions are a trajectory in time that the plant must follow.
Process Optimization structures which track these changes in the process and solve
the optimization problem for the optimal operations policy are known as Real-Time
Optimization (RTO) systems or On-line Optimizers. For large-scale industrial im-
plementations, the size of the model and the resulting computational load currently
prohibits the use of dynamic process models to calculate the optimal trajectory in
real-time. As a result, most RTO systems are steady-state, model-based optimization
systems which solve the steady-state optimization problem for the process, recursively.
Thus, the model representing the process must be updated and optimized at a fre-
quency, which (ideally) keeps pace with the process changes. The process models
themselves are an approximation of the physical plant, and thus, have both struc-
tural as well as parametric uncertainty associated with them. This uncertainty in
model structure and parameters needs to be taken into account in the design of RTO
systems.

Gasoline is a key revenue generator for the petroleum refining industry [ DeWitt
et al., 1989]. Gasoline blending operations is one of the petroleum refining processes
where RTO systems are used fairly extensively [DeWitt et al., 1989; Sullivan, 1990;
Ramsey and Truesdale, 1990; Bain et al., 1993]. The motivation behind using an
RTO system for gasoline blending optimization, is to address the variation in feed-
stock qualities and market price fluctuations. Gasoline blending is one of the few
processes that are fairly simple to model (essentially no model dynamics) along with
being industrially relevant. Also, the blending optimization problem has a relatively
low number (typically < 100) of decision variables. This makes gasoline blending op-
timization a good candidate to do RTO studies on. Conventional gasoline blend opti-
mizers do not take uncertainty in the optimization problem parameters into account
while solving for the optimal blend recipes. In this thesis, the issue of uncertainty
in blending optimization parameters is considered and solutions are offered for the



uncertain feedstock qualities case.

1.1 Real-Time Optimization (RTO)

The structure for a typical steady-state closed loop Real-Time Optimization (CLRTO)
system is shown in Figure 1.1. The various RTO sub-systems or components: Mea-
surement, Data Validation, Model Updating, Optimization, Command Conditioning
(also called Results Analysis), and Control, are described below.

1.1.1 RTO Components

The Measurements block is the set of sensors used to monitor the process. Process
measurements are used in turn to update the process model in the optimizer, after
they have been checked for validity.

Command Plant and
Optimizer Conditioning Controllers

Measurements

Model

Parameter Data
Update Validation

Figure 1.1: RTO Components and Structure [Fraleigh, 1998]

The data from the measurement set is examined for several purposes in the Data
Validation sub-system. Within this sub-system, process measurements are first mon-
itored for the detection of steady-state in the process. The other sub-processes in the
Data Validation block include gross error detection, and data reconciliation. The
purpose of this sub-system is to ensure that “reliable” data is used in the subsequent
RTO sub-systems.

The validated, steady-state measurements from the process are used to update
the process model used for optimization. The model updating usually takes the
form of calculation of certain parameters (e.g., heat transfer coefficients, distillation
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tray efficiencies, etc.) in the optimization model. This sub-system is responsible for
keeping the model current so that process changes are tracked effectively.

The Optimizer block is where the steady-state optimization problem, using the
updated model, is solved to generate a feasible operating point that maximizes profit
(or minimizes cost of operation) at the current time.

The Optimizer generates setpoints defining the model-based optimal operating
point. These setpoint estimates, however, are uncertain due to error propagation
through the RTO loop. Results Analysis is the process of examining the optimizer
outputs to ensure that the new setpoint estimates actually represent a significant
change in the process before the setpoints are implemented.

The final sub-system in the RTO loop, the Control sub-system, takes the opti-
mizer output in the form of setpoints and implements them on the process to take it
to the newly calculated optimum.

1.1.2 Design Issues in RTO

As the RTO system is a closed loop system (Figure 1.1), each of the above mentioned
sub-systems affects the overall performance of a Real-Time Optimizer. Thus, each
component in the loop has to be carefully designed such that the overall process of
on-line optimization is successful. The Measurement sub-system is where the overall
CLRTO process begins. The selection of measurements to be used as inputs for the
RTO system is very important considering the process model updates (and subse-
quently the optimization step itself) are dependent upon current information about
the plant. Krishnan et al. [1992] propose measurement selection based on minimiz-
ing errors in estimation of model parameters (parameters in the process model which
are updated by the RTO system to reflect changes in plant conditions). This ap-
proach, however, only considers the effects of measurement selection on the Model
Updating sub-system. In another proposed measurement selection strategy, Fraleigh
[1998] bases the selection criteria on overall performance of the RTO system. In the
first stage of this approach, viable measurement sensor sets are identified subject to
observability criteria for the parameters to be updated. In the second stage, process
setpoint quality and expected profitability (derived using Design of Experiments the-
ory) are combined into a Sensor System Design Cost (SSDC) criterion, which can be
used to compare possible measurement sensor sets. The SSDC criterion is also useful
in determining the optimal placement of additional sensors in the process to increase
the RTO system’s performance.

The Data Validation block takes raw plant data and performs a series of statistical



tests on it. The first of these is usually verification that the plant/process being
optimized is at steady state. Steady-state detection [Cao and Rhinehart, 1995] is
necessary before the measurements can be used for updating the steady-state models.
If the plant is experiencing transients, the RTO system usually goes into a suspended
state until the transients die down. At least one commercial implementation of on-line
optimizers, MDC Technology’s RTO+ [Hyprotech Ltd., viewed 24 September, 2000]
does not employ steady state detection as part of the Data Validation block.

The other essential steps before the steady-state measurements can be used in
model updating are Gross Error Detection [Crowe, 1988; Tong and Crowe, 1997, Kelly,
1999], and Data Reconciliation [Tjoa and Biegler, 1990, Crowe, 1996]. Gross Error
Detection involves identifying and removing gross errors (e.g., readings from failed
sensors) while Data Reconciliation tries to ensure that the corrected measurements
satisfy the material and energy balances around and inside the process. Both the
above sub-processes depend heavily on redundancy in the input process measurements
to isolate faulty measurements and reconcile current plant information passed on to
the Model Updating sub-system.

Selection of appropriate models to represent the plant in model based on-line
optimization systems is one of the first RTO design decisions made. It was shown
by Biegler et al. [1985], that a model is adequate for optimization if gradients of
the model’s objective function with respect to the decision variables can be made
to match those of the plant. This requirement was relaxed by Forbes et al. [1994]
by showing that only the reduced gradients of the objective function [Fletcher, 1987)
need to be matched to those of the plant at the optimum. Model fidelity in the
context of an RTO system is dependent upon both the model structure as well as
the selection of parameters to be updated. Model adequacy requirements that take
these into consideration for a closed loop RTO system are discussed by Forbes [1994].
The problem of selecting suitable parameters to be updated in the model(s) used
has also been looked at by researchers. Updating parameters that have the most
effect on the profit function and/or change the active constraint set is suggested by
Krishnan et al. {1992]. An alternate, more direct approach [Forbes, 1994], is to use
Model Adequacy conditions to choose updated model parameters. That is, if a set of
parameters exists which can be manipulated such that the model optimum coincides
with the plant optimum, this set of parameters should be updated online. Another
important model parameter updating issue is the observability [Krishnan, 1990] and
the degree of observability [Singh, 1997] of the updated parameters from the selected
measurements set. The choice of the solution algorithm used in the actual parameter
estimation also plays a major role in RTO performance. A robust estimation scheme



is essential due to the nature of the data (a single set of data corrupted with sensor
errors) being operated upon. Fraleigh [1998] proposes the use of more robust least-
squares based solution algorithms instead of the conventional (less computationally
expensive) back-substitution algorithms.

The core sub-system in the RTO loop is the optimizer itself. Two important
factors influencing the choice of an algorithm in the optimizer sub-system are: a)
ability to incorporate the process model chosen for the plant into the formulation of
the optimization problem, b) computational tractability i.e., the ability to solve the
optimization problem posed in a reasonable amount of time. Optimization theory /
Operations Research is an important branch in mathematics that has been studied
extensively both by theoretical mathematicians and by engineers e.g., Edgar and
Himmelblau [1988]; Gill et al. [1981]; Avriel {1976]; Wright [1997).

Before the setpoints generated by solving the process optimization problem can be
implemented by the control system in the plant, the optimizer solution goes through
the Command Conditioning or Results Analysis sub-system. This post optimality
statistical analysis is done to check if the process moves dictated by the optimizer
solution are in fact worthwhile. The optimizer results are implemented if the sta-
tistical tests suggest that the difference in the optimum of the plant and the model
is significant and is not due to assorted errors propagated through the RTO loop
[Miletic and Marlin, 1998; Zhang et al., 2000].

Although each RTO sub-system is designed to meet specific requirements for itself
and sub-systems dependent upon it, selection of an RTO design to be implemented
should ultimately be dependent on expected performance of the RTO system. One
of the first design approaches using this philosophy was the Design Cost approach
by Forbes and Marlin {1993, 1996] to model-based optimization system design. The
Design Cost method evaluates the cost (profit lost with respect to perfect optimiza-
tion) of an RTO design by combining the costs of setpoint bias and variance when
implemented. This method was enhanced (Extended Design Cost or EDC) by Zhang
and Forbes [2000] to include the cost incurred while the process is in transition from
one process optimum to another. Another approach that considers the complete RTO
loop in making RTO design decisions is the method of average deviation from opti-
mum proposed by de Hennin [1994] and extended by Loeblein [1997]. This approach
consists of mapping the different error sources (measurement errors, modelling errors,
etc.) in an RTO loop through the parameter update and optimization sub-systems to
examine their effect on the performance of an RTO design. An analytical expression
is derived for the average deviation from the true optimum for an on-line optimizer
by integrating the deviation from true optimum over the various error sources. This
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average deviation from optimum is then computed and compared for the available
RTO designs to select the most profitable scheme.

In this section, on-line or real time optimization was introduced. In the next
section of this chapter, the process of primary focus in this study, gasoline blending,
is introduced.

1.2 Gasoline Blending

Gasoline is produced by blending different streams from various upstream processes.
Any grade of gasoline should be in the correct boiling range (100 to 400°F, [Gary
and Handwerk, 1994]). This requirement restricts the choice of streams (boiling
fraction cuts) that can be used as gasoline blend feedstocks (Figure 1.2). Despite this
restriction, some refineries can have up to 20 different gasoline blending feedstocks
[Givens, 1985]. The main feedstocks used are:

1. Light Straight Run naphtha or LSR, which is the gasoline boiling range cut
from the atmospheric distillation tower.

2. Catalytic cracker gasoline (i.e., the gasoline cut from the fluidized catalytic
cracking unit or FCCU).

3. Reformate, the gasoline from the catalytic reforming unit.
4. Alkylate, the gasoline cut from the liquid catalyzed alkylation unit.

5. n-Butane, normal butane from various processes including the crude atmo-
spheric tower, FCCU, etc.

6. ‘Hydrocrackate’, the gasoline fraction from the hydrocracker.

In this work only the first five will be considered as the feedstocks available.

Each grade of gasoline has to have certain properties in order to meet specifica-
tions. Some of the most important ones are described here.

Octane Number is an indicator of the fuel’s anti-knock properties. There are
two measures generally used: Research Octane Number (RON), and Motor Octane
Number (MON). The higher the octane number, the better the gasoline’s anti-knock
capability and the smoother the engine runs.

Reid Vapor Pressure (RVP) is a measure of the volatility of the fuel. The
gasoline has to be volatile enough to vaporize on injection into the combustion cham-
ber. At the same time it being excessively volatile could lead to vapor-lock in the fuel
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Figure 1.2: Flow Diagram for a typical Refinery (gasoline feedstocks in bold) [Singh,
1997

line. Environmental regulations also limit the maximum RVP to reduce emissions of
volatile organic compounds (VOC).

Gasoline is a mixture of hydrocarbons with a range of different boiling points.
To better characterize gasoline volatility, a standard laboratory batch distillation is
performed. During this batch distillation, amount distilled (percent volume basis) to
a given temperature is measured. Using several points along the temperature scale,
the ASTM Distillation curve, is generated. This test is known as the ASTM D-86.

Total Aromatics Content (benzene, toluene, etc.), and Sulphur Content in
motor gasoline is also regulated due to environmental concerns (vehicular emissions).

Although this thesis considers only the first three gasoline qualities mentioned
above (RON, MON and RVP), for illustrative purposes, the methods presented here

are general and can be easily extended to include all specifications on blended gaso-
lines.



Issues in gasoline blending and real-time optimization were considered separately
in the previous sections. In the next section, RTO techniques and formulations used
in on-line optimization of gasoline blending are described.

1.3 RTO in Gasoline Blending

The huge volume of gasoline production implies that a small saving in the cost of
production per unit can lead to a large increase in the total profit [Grosdidier, 1997].
Also, any benefits from improved control/optimization of processes upstream will be
useless if the final blending step is “sub-optimal”. These facts make on-line optimiza-
tion of gasoline blending a very attractive proposition.

Disturbances
Refinery:
FCCU, Crude
Unit, efc.
plant operating data/
property analyzers
Quality
Q . Blend
Predictor/ Optimizer |
Biasupdate| Frogeooy feedstock
qualities flowrates »
Blender
gQ.x)
blended
qualities v

Final Blended Qualities

Figure 1.3: Gasoline Blending RTO Structure

In this section, the various conventional gasoline blending RTO structures in cur-
rent use are described briefly. The distinguishing features and shortcomings of these
optimizers are discussed. Some of the commercially available blend controllers and
optimizers are also discussed briefly.

The general blending optimization problem (Problem 1.1 below) consists of max-
imizing an economic measure (usually profit) while ensuring that all the property
specification, product demand and feedstock availability constraints are met.



max profit(c,x)
x
subject to:
blend properties(Q,x) > specifications (1.1)
product produced(x) > product demand
feedstock used(x) < feedstock availability

where: c is the vector containing price information for the feedstocks and the final
blends, x is the flow-rate vector of the blend feedstocks and Q is the matrix containing
property information for the feedstocks.

1.3.1 LP + Bias

The simplest RTO structure used in gasoline blending is a variation on the Linear
Programming (LP) approach. A Linear Program (Gill et al., 1981) is one of the sim-
plest mathematical optimization formulations where both the objective function and
the constraints are linear in the decision parameters (x in Problem 1.2). Known as
the LP + bias (Linear Programming with bias updating) form [Singh, 1997}, this for-
mulation reduces the gasoline blending optimization problem to the following Linear
Program, which is solved at each RTO interval:

max p1Tx — cTx
sszject to: (1.2)
Qx<(1x)s- 3
Hx<p
where: p is the selling price of the blended gasoline, c is the vector of cost prices of
feedstocks, x the flow-rate vector of feedstocks, Q the quality matrix containing the
feedstock quality blending indices, s is the vector containing blend quality specifica-
tions, B the vector of bias terms used to update the blending model to maintain its
accuracy, H is the matrix for demand and availability constraints, p the vector of
demands and availabilities, and 1 is a column vector of ones, [ 1 1 ... 1 ]T.

All the properties considered above (RON, MON, RVP) blend non-linearly (i.e.,
the final RON of the blend will not usually be the volumetric average of the RONs
of the feedstocks). There are many empirical and semi-empirical non-linear models
available in literature ([Healy et al., 1959] , [Stewart 1959a,b] , [Morris et al., 1994] ,
[Rusin et al., 1981] , [Vazques-Esparragoza et al. 1992], etc.) which describe property
blending, but they cannot be used if the problem is to be formulated as a linear
program. As a result, simpler, linear blending models are used in which the actual
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properties are transformed into blending indices whose volumetric average gives us
the blended properties. These transformed qualities: blending RON, blending MON,
and Reid Vapor Pressure Blending Indices are contained in the matrix 6 The bias
vector, @ is the difference between the actual qualities and the predicted qualities at
the previous RTO interval:

B = (measured blend qualities — predicted blend qualities) x (17x;_;)  (1.3)

The bias updating structure is one of the simplest model updating strategies used
in Model Predictive Control (MPC) structures [Garcia et al., 1989] and Real-Time
Optimization systems [Brosilow and Zhao, 1988]. The vector of adjustable param-
eters, B (the model update term), is expected to keep the blending model current
such that the model sufficiently represents the blending process with the changing
feedstock qualities. The purpose of model updating, as explained briefly in §1.1, is to
ensure that the optimization of the updated model gives the true process optimum.
It has been shown that the bias updating structure will not necessarily iterate to
the true optimum in the presence of disturbances in the constraint parameters (feed-
stock qualities), [Forbes and Marlin, 1994]. Thus, the LP + bias approach is not an
appropriate approach for gasoline blending optimization.

1.3.2 NLP + Bias

The LP + bias form has structural mismatch, because the linear constraints use
approximations of the nonlinear blending models. To remove the structural model
mismatch, while retaining the simplicity of the bias updating strategy, the Non-Linear
Programming with bias updating (NLP + bias) form is sometimes used. Non-Linear
Programming is a more general form of mathematical optimization where both the
objective function and the constraints can be non-linear functions of the decision
variables (Edgar and Himmelblau, 1988; Gill et al., 1981). In this formulation, more
accurate non-linear blending models are used (e.g., Ethyl RT-70 for octane blending
[Healy et al., 1959]), thus improving the reliability and performance of the blend
optimizer. Mathematically, the NLP + bias structure is formulated as:

max p1Tx —cTx
subject to: 1.4
8(Q.x) < [17x]s - 8 (4
Hx<p
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where: Q is the quality matrix containing the feedstock qualities, and g is the vector
of nonlinear functions in the property specification constraints.

In this blend optimization algorithm, the geometry of the true process is more
accurately represented than in the LP + bias case. However, the problem of time-
varying blend feedstock qualities is not tackled directly by the bias model updating
strategy. The algorithm above is based on the current/nominal operating conditions
and thus, only optimizes over the current RTO interval. Besides, by treating the
feedstock qualities as fixed parameters in the quality constraints, no attempt is made
to account for future trends in time-varying parameters. Neither does the NLP + bias
approach look at the qualities of the blended pool produced so far while calculating
the current feedstock flows.

1.3.3 Time-Horizon Optimizer

As seen above, the bias update model structure does not adequately address the issue
of stochastic disturbances in the feedstock qualities. This is due to the fact that the
feedstock qualities are treated as fixed parameters in the optimizer while they vary
in the actual blending process.

Gasoline is usually blended in batches over a specified length of time. If perfect
knowledge of the qualities is given over the length of the blend, an ideal optimizer can
be designed [Singh, 1997] that operates the blender in the most profitable manner
while ensuring that the blend quality specifications are met at the end of the blend.
Even though knowledge of future feed qualities is not possible, past values can be
used to predict these future qualities and the predictions can be used to calculate
feedstock flowrates required to meet quality specifications. In the Time-Horizon RTO
(THRTO) proposed by Singh [1997), future disturbances are predicted over the blend
length and future control moves calculated that also consider the properties and
amount of gasoline blended up until that point. The feedstock flowrates (control
moves) calculated for the current time interval are then implemented. This principle
of prediction and optimization to calculate the future moves with only the current
feedstock flows (recipe) being actually implemented, is known as receding horizon
control and is used extensively in Model Predictive Control [Garcia et al., 1989]. A
key difference between MPC and Time-Horizon Real-time Optimization (THRTO)
proposed by Singh [1997] is that unlike MPC, only the prediction horizon is user
tunable in the THRTO, while the control (optimization) horizon is fixed as the length
of time left to the completion of the blend.

The mathematical representation of the Time-Horizon blend optimizer is given as:
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max ‘Z‘:p (P17 — cTx)

x

subject to:
tp—At t

2 2(Qex,) + z!:g (Qg,x,) < [% 1Tx{l s (1.5)
t=to =t

t=to
g (Qtaxt) < [lTxt] 8
tho=>t! S P

where: x, is the feedstock flowrate vector at time ¢, Qt is the matrix of predicted
feedstock properties (uncertain) at time interval ¢, ¢, is the initial blend time (when
blending starts), ¢, is the present time (when the optimizer runs), At is the time
interval between consecutive RTO executions and ¢, is the final blend time (blending
done). In this formulation, it is assumed that the feed properties remain constant
over every RTO interval (e.g., t, to tpyy).

The objective function to be maximized in Problem 1.5 is the total profit over
the blend horizon. The first constraint represents the satisfaction of the quality
constraints at the end of the blend, while the second constraint states that the current
recipe must also be within specifications. In the event of blending being halted before
the scheduled end of blend, the second constraint reduces the possibility of the gasoline
blended so far being off-specification. The final constraint is the condition that the
demand and availability constraints are satisfied over the blend.

1.3.4 Commercial Packages

There are a number of software packages available commercially for gasoline blending
scheduling and control [Anonymous, 1997]. All of these packages attempt to integrate
blend scheduling and blend optimization. They do this by sequencing the blends and
then trying to enforce the scheduled recipes while minimizing giveaway. Many of
these packages claim to use non-linear programming (NLP) techniques in the Blend
Optimizer. However, for most of them the non-linear part is probably a quadratic
term in the objective function penalizing deviation from scheduled recipe, while the
property constraints are linear. As shown in Singh (1897}, using linear blending models
can lead to major losses in performance for the on-line optimizer. Also, in none of the
software packages is uncertainty in any of the parameters in the blending optimization
problem taken into account. There are some vendors who use more accurate non-
linear blending models and Near Infra-Red (NIR) analyzers [Anonymous, 1997] to

13



update the blended and/or feedstock qualities in the model, but none of them takes
the uncertainty in or reliability of the measurements into account.

1.3.5 Discussion of Available Methods

As seen in sections 1.3.1 and 1.3.2, problems such as plant/model structural mismatch
(for LP + bias) and disturbances in feedstock qualities (both LP + bias and NLP
+ bias assume constant feedstock qualities) are not handled by the gasoline blending
optimization approaches based on bias updating.

The constant feed qualities assumption is valid only if the blending is done out of
well mixed, standing feedstock tanks. These days many refineries are using running
tanks i.e., fresh feedstock is being pumped into the tank from the upstream process
even as feedstock is being withdrawn from the tank for blending. This is done in an
effort to reduce costs by minimizing inventories. As feedstock qualities are dependent
on the process conditions in the unit they are coming from, the qualities/properties
of these streams change with changing upstream process operations. Thus, feedstock
qualities are time-varying and stochastic in character and, change continuously with
upstream operation changes. To complicate matters further, all quality measurements
(for feedstocks as well as final blends) are subject to measurement noise. Using the
LP (or NLP) formulations with bias updating, while assuming the qualities to be
constant at given expected values, can give setpoints for the feedstock flow-rates
that may violate one or more of the specification constraints. Constraint violation
in actual industrial blenders is usually avoided by using constraint controllers below
the blending RTO system. The objective of these controllers is to minimize quality
giveaway and deviation from blend recipes (passed down from the RTO) while trying
to ensure that the quality constraints are not violated. Thus, when the blender
starts to produce off-specification blends, the constraint controller deviates from the
“optimal” recipe to make the blend on-specification. The recipe implemented might
not deviate from the “optimal” recipe in the most economic manner and makes the
final blend less profitable.

The costs of most of the gasoline feedstocks are not known with certainty. This
is true especially of those feedstocks that are not sold as such and are refinery in-
termediate products (e.g., FCCU Gasoline) which are used as feedstocks for final
products that are sold. These feedstock costs are decided based on some heuristics
by the refinery scheduling department. In some situations the demand for the blends
and/or availability of the feedstocks may change while the blending is under way.
This translates to uncertainty in these parameters. Therefore, a key problem refiner-
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ies face is formulating the blending optimization and control problem such that the
uncertainty in the all the above mentioned parameters has the least possible effect on
the optimality of the solution, and does not cause the optimizer to generate infeasible
solutions.

1.4 Thesis Objectives and Scope

This thesis is concerned with the design of the RTO layer in a Gasoline Blending Con-
trol system. As discussed in the previous sections, the RTO layer in current blend
controllers s unable to handle stochastic disturbances in the feedstock qualities satis-
factorily. To minimize blending of off-specification gasoline, most industrial blenders
accept some product quality give-away [Grosdidier, 1997]. Current practise is to blend
to targets which exceed specifications for the more critical qualities (e.g., octane, RVP,
etc.) by some arbitrarily decided amount [Treiber et al., 1998]. The main objective
of this thesis is to design an RTO based blend optimizer that directly incorporates
parametric uncertainty, and can effectively handle stochastic disturbances in blend
feedstock qualities. Such a blend optimizer would thus be a systematic method to
calculate the most economically effective manner to exceed specifications or provide
an acceptable probability of feasibility.

Stochastic Programming is the branch of Mathematical Programming concerned
with optimization problems that have uncertain parameters. A brief introduction
to Stochastic Programming is given at the beginning of Chapter 2. In the Gasoline
Blending Optimization Problem, all model parameters: economic, property data, de-
mand/availability, are uncertain to some degree. The scope of this thesis is limited
to developing strategies to deal with uncertainty in gasoline feedstock qualities (con-
straint parameters in blending optimization) only. To this end, various Stochastic
Programming methods that deal with uncertainty in constraint parameters in opti-
mization problems are reviewed. Solution techniques for solving these problem for-
mulations that incorporate uncertainty information directly are discussed. The suit-
ability of these different techniques for implementation in a Real-time Optimization
system is then examined. Based on the above-mentioned discussions, the Stochastic
Programming formulations used in this thesis for Gasoline Blending Optimization are
decided upon.

The discussion on the Gasoline Blending Optimization problem is continued in
Chapter 3. Blending models actually used in this work are described. Uncertainty
issues in gasoline blending, especially uncertainty in feedstock qualities, are examined
in more detail. This is followed by development of algorithms for gasoline blending
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optimization that directly incorporate parametric uncertainty in the blending model
constraints. Chapter 4 develops the case study used to demonstrate the effectiveness
of the proposed algorithms in dealing with stochastic disturbances in gasoline feed-
stock qualities. The results of the case study are then presented and the performance
of the different optimizers is compared. Chapter 5 makes some conclusions as to
the effectiveness of the strategies employed to deal with parametric uncertainty in
gasoline blending optimization. Some implications for the wider area of Real-Time
Optimization are discussed and possible future directions of research are considered.

The Stochastic Programming formulations used in this thesis are applicable to
any optimization problems, on-line or off-line, where some optimization parameters
are not known with complete certainty.
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Chapter 2

Stochastic Programming for
Uncertain Constraint Parameters

“Stochastic Programming handles mathematical programming problems where some of
the parameters are random variables ...” [Prekopa, 1995] is one of the simpler defini-
tions given for Stochastic Programming (SP). Stochastic Programming or Stochastic
Optimization came into being in the mid 1950s’ [Dantzig, 1955]. The field was born
when people first started to think about what to do in case some of the parameters
in a linear (or non-linear) optimization problem were uncertain. Thus, Stochastic
Programming consists of formulating optimization problems that directly incorpo-
rate uncertainty in the optimization parameters and investigating techniques to solve
such problems.

2.1 Introduction

Consider the general optimization problem (Problem 2.1 below).

mn  f(e,x)

subject to: (2.1)
h(x,£) > b

where: f is the objective function, c is the vector containing economic data, x is
the decision variables vector, h is the vector of inequality constraints, £ is the set of
constraint parameters, and b is the right hand side vector of the inequality constraints.
Equality constraints are not considered in the above formulation of Problem 2.1 as
it has been assumed that any equality constraints have already been used to reduce
the dimensionality of the optimization problem (i.e., the optimization problem is
considered in its reduced space).

17



Figure 2.1: Mlustration of uncertainty in objective function (cost data)

Stochastic Programming problems can be split into three categories based on the
location of uncertainty in the optimization problem:

1. uncertainty in economics or the objective function parameters (c).
2. uncertainty in the right hand side elements of the constraints (b).

3. uncertainty in the constraint function parameters (£).

To aid visualization, the above three SP categories are illustrated by showing the
effect of uncertainty on an LP problem in two dimensions. All the arguments pre-
sented below can be generalized to an n-dimensional non-linear programming (NLP)
problem.

Uncertainty in economic data translates to uncertainty in the gradient (slope and
direction) of the profit surface. As seen in Figure 2.1, this uncertainty in the slope
of the objective (profit) function can cause the apparent optimum! to shift to a sub-
optimal operating point?. If the angle of tilt of the profit surface changes by 6 (from
the nominal value), the calculated optimum (apparent optimum) shifts to a new ‘sub-
optimal’ point.

1Apparent optimum: the solution calculated using nominal values (vs actual values) for the
uncertain parameters.
2sub-optimal with respect to the actual plant or system
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Figure 2.2: Illustration of uncertainty in constraint parameters I: Uncertain RHS

The second category of Stochastic Programming problems is that of optimiza-
tion problems with uncertain parameters in the right hand vector (b) of inequality
constraints. Geometrically, uncertainty in the b vector leads to shifting or lateral
translation of the inequality constraints (Figure 2.2). An example of a physical pa-
rameter in the right hand side vector for the inequality constraints is the availability
of a feed-stream in a process. Thus, changes in feedstock availability can shrink or
expand the region of feasible solutions. This uncertainty in feasible region size implies
that solutions generated using the nominal values for the uncertain &; could lie out-
side the actual feasible region. As illustrated in Figure 2.2, lateral shifting (by & and
€) of the active constraints causes the apparent optimum to move into the infeasible
region. Thus, in this case, ignoring the uncertainty in the b vector would cause the
optimizer solution to be infeasible with respect to the actual physical process. Shifts
in the opposite direction to that shown in Figure 2.2 will result in the apparent opti-
mum moving into the feasible region. This would lead to a feasible, but sub-optimal,
solution.

In the third category of Stochastic Programming problems, lie problems where the
constraint function parameters are uncertain (£ in Problem 2.1). This uncertainty
translates to uncertainty in both or either of the slope and the shape (curvature) of
the constraints. For a linear model, only the slope of the (linear) constraints would
be uncertain. This results in uncertainty in the shape of the whole feasible region
(governed by uncertain ¢ and - in Figure 2.3) defined by the quality constraints.
This uncertainty in the shape and size of the feasible region again implies that op-
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Figure 2.3: Dlustration of uncertainty in constraint parameters II: Uncertain LHS
coefficients

timizer solutions generated using the nominal (expected) values for the parameters
§:, can either lie outside the actual feasible region®, or be sub-optimal by moving
into the feasible space, depending on the direction of deviation in £,. Examples of
constraint function parameters for the gasoline blending optimization problem are all
the feedstock qualities/properties.

The work in this thesis is restricted to problems that fall into the third cat-
egory (i.e., uncertain constraint coefficients), because as stated above, feedstock
qualities are constraint function parameters in the gasoline blending optimization
problem. In this chapter, Stochastic Programming formulations for treating uncer-
tainty/disturbances in constraint parameters (both b and £) are introduced and dis-
cussed.

2.2 Different formulations for Uncertain Constraints

Uncertain constraint parameters in an optimization problem can cause infeasible so-
lutions to be generated when the problem is solved using expected values of the un-
certain parameters (Figures 2.2 and 2.3). Implementation of infeasible solutions can
cause a number of process problems. Examples of such problems include safety and
environmental code violations, damage to processing equipment, production batches

3actual feasible region: the subspace defined by actual physical constraints where there is no
parameteric mismatch in &.
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that cannot be sold on the market (either discarded or need corrective measures before
they can be sold), and so forth.

Optimization problems with uncertain parameters in the constraints can be dealt
with in a number of ways. Discussions in this chapter will assume all inequality
constraints have stochastic parameters. If a specific problem also contains strictly
deterministic constraints, these deterministic constraints would remain as determin-
istic constraints in the Stochastic Programming formulation. Some of the possible
formulations developed to deal with uncertain constraint parameters are discussed
below. Each formulation has a different aim or objective, but all of them attempt
to minimize the effect, in some sense, of uncertainty in constraint parameters on the
“optimal” solutions generated.

2.2.1 Probability Maximization

In the probability maximization formulation [Prekopa, 1995], there is no explicit
economic objective function. This form is used in situations where a “safe” operating
region is required to ensure that the risk of any constraint violations is low. The
objective function to be maximized is the probability of the uncertain constraints
being satisfied:

max(Prob(h(x, £) 2 b)) (2.2)

where Prob stands for probability.

This formulation requires the solution to be such that the probability of the con-
straints being violated is the least out of all possible solutions. As seen in Problem
2.2, economics are not used explicitly, and the sole aim is to minimize the probability
of infeasibility. Implicitly though, an economically optimal solution is generated as
violation of the uncertain constraints has a cost associated with it. This formulation
would be appropriate in situations where the violation of constraints has a very high
cost associated with it and the “safest” operating point/region in the presence of
uncertain constraint parameters is required. However, there may be many operating
points with a high safety margin. Thus, a better objective would be to search for
a solution that takes the economics into account explicitly, while requiring a high
margin of safety.
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2.2.2 Penalty Function forms

Another method of posing the problem for uncertain constraints is the penalty func-
tion method (Problem 2.3). For this formulation, the uncertain constraints are in-
corporated into the objective function by penalizing their infeasibility. A function ¢
is defined which measures the violation of the stochastic constraints and is included
in the objective function with the economic objective to be minimized. One of the
main problems with this approach is that the quantification of cost of infeasibility is
not easy. Another is that the calculation of the expectation of the penalty function
is non-trivial.

min f(c,x) + Eg(b - h(x,))] (23)

where: g is a penalty function on constraint violation
As an example, if the penalty function is simply the magnitude of the violation,
the blending optimization problem with uncertain feedstock RVPs can be written as:

min f(c, x) +F [(RVPNM - RVP;MM) l (RVPMM > RVP;W,_,”C)] (2.4)

The above form minimizes the cost of producing the blend and the expected
violation of the uncertain constraint. Since penalty function approaches cannot ensure
feasible solutions for finite values of the penalty function, barrier functions [Fletcher,
1987; Gill et al., 1981}, which would ensure feasibility may be used in this formulation.

2.2.3 Programming under Probabilistic Constraints

Instead of directly minimizing the probability of an infeasible solution (§ 2.2.1), an-
other approach could be to set a reliability level for the uncertain constraints by
requiring that they be satisfied at a minimum (high) level of probability. In such a
formulation, the original economic objective function can be retained as such, while
the uncertain constraints are now framed as probabilistic constraints [Charnes and
Cooper, 1963], [Vajda, 1972]. A solution to this Probabilistic Programming problem
would minimize economic cost while ensuring that the probability of the constraints
being violated is very small (the allowed probability of violation is specified during
problem formulation). Thus, the strategy adopted is to optimize the economic advan-
tage, while keeping the risk of constraint violation due to uncertainty at acceptably
low levels.
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Probabilistic Programming can be further divided into two categories: 1) pro-
gramming under individual probabilistic constraints and 2) programming under joint
probabilistic constraints.

Individual Probabilistic Constrained Programming

In this formulation [Charnes and Cooper, 1963, each individual constraint (with
uncertain parameters) is converted into a probabilistic constraint with an associated
probability level of feasibility. The risk minimization takes the form of ensuring that
each uncertain constraint is satisfied with a probability of at least x, where 7 € (0, 1).
The individually constrained, probabilistic programming problem is:

mn  f(ex)

subject to: (2.5)
Prob{hi(x,§) 2 b} > m fori=1,..,n

where: h; is the i** inequality constraint function, and b; is the right hand side of the
i*h inequality constraint.

As an example of the formulation of individual chance constraints, consider the
maximum Reid Vapor Pressure constraint on blended Premium Gasoline. If the Reid
Vapor Pressures of the feedstocks are uncertain, and the specification on RVPpremium

states it cannot be more than 10.8 psi, the RVP remium chance constraint would be
formulated as:

Prob(RVP premium < 10.8) > 0.95 (2.6)

where the minimum probability of feasibility is taken as 95% for this example.

This is the formulation used in the remaining part of this work. Constraints of
this type, where each constraint has to be satisfied at least = x 100% of the time, are
called individual chance constraints {Charnes and Cooper, 1963], and the formulation
Chance Constrained Programming or CCP.

Joint Probabilistic Constraints

Only individual probabilistic constraints (CCP) were considered above. Such for-
mulations ensure that each constraint is violated no more than (1 — 7) x 100% of
the time. However, in actual practise it may be reasonable to specify that none of
the uncertain constraints are violated (1 — 7) x 100% (a small percentage) of the
time. Consider a set of constraints with uncertain parameters. If violation in any of
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these is unacceptable, it would be desirable to frame the problem as one in which the
probability of the whole set of constraints being satisfied is always greater than some
minimum risk threshold.

Probabilistic constraints of this type are known as Joint Probabilistic Constraints

[Miller and Wagner, 1965]. The new optimization formulation with Joint Probabilistic
Constraints (JPC) can be written as:

min  f(e,x
subject to: (2.7)
Prob{h(x,§) > b} >n

For a simple illustration of the idea, consider the set of quality constraints in
the general blending optimization problem (Problem 1.1). Instead of formulating
the RON, MON, and RVP constraints separately as individual chance constraints,
they are lumped into one probabilistic constraint which states that the whole set of
constraints with uncertain parameters must be satisfied at a probability level of «.
This would be formulated as:

RON blend 2 RON low.spec
Prob MONblend Z MON(WM Z 0.95 (2.8)
RVPpiena < RVPhigh_spec

As seen above, the JPC formulation is a more natural approach for handling the
uncertain constraint parameters problem. A joint probability criterion can be met
by using individual probabilistic constraints; however, the tuning of the probability
levels for the individual chance constraints to meet this JPC criterion is non-trivial
(refer to Appendix C for a more complete discussion).

Probabilistic constraints are normally used where the cost of infeasibility is very
high (and hard to ascertain), thus making the use of penalty function approaches (§
2.2.2) difficult. The assigning of values for 7, the minimum probability of feasibility,
is heuristic except for some situations where the acceptable risk threshold is defined
in the specifications for the product. An example of such a situation could be the
manufacture of simple high volume hardware products such as nuts and bolts. There
are specifications on the physical dimensions of these products. In most cases there
is also a small, specified, acceptable fraction of production volume which may be
defective. This fraction of acceptable defects can be used while selecting the opera-

tion sequence and the operating points of the machinery used to manufacture these
products.



Although Probabilistic Programming limits the probability (or frequency) of in-
feasible solutions, the degree or extent by which the uncertain constraints are violated
is not considered. This requirement of somehow limiting the degree of infeasibility
for the solutions that are infeasible can be met using different techniques, such as the
one outlined in the next section.

2.2.4 Constraints with Conditional Expectations

A formulation that can deal effectively with optimization problems where the extent
of violation of uncertain constraints is important, is the Conditional Expectations
form [Prekopa, 1973]. In the formulation of this problem, the constraints state that
if the i** uncertain constraint is violated, the expected violation is to be bounded in
magnitude by a specified positive number d;. The mathematical formulation of the
conditional constraints problem is given as:

mn  f(e,x)
subject to: (2.9)
E[b - h(xa f)lh(X, 5) < b] <d

where: d is the set of numbers (vector) that gives the upper bounds on the expected
constraint violations. d can also be called the vector of maximum expected violations.

In this form, there is no bound on the probability or frequency of constraint vi-
olation, but there is an explicit bound on the extent of violation. Even though the
solution to the conditional constraints problem may violate constraints at a high prob-
ability level (or a high frequency), the amount by which the constraints are violated
is small (specified). For example, consider again the maximum Reid Vapor Pres-
sure constraint for Premium Gasoline in the blend optimization problem (Problem
1.1). As in the previous subsection (§ 2.2.3), the premium gasoline RVP specification
bounds RVP premium to less than or equal to 10.8 psi. If a final blended RVP of 10.82
pst is considered to be within acceptable limits, a conditional constraint could be
formulated for this case as follows:

E[(RVPhyiended premium — 10.8) | (RVPpiended premiuvm > 10.8)] < 0.02 (2.10)

The above inequality states that if the RVP of the premium grade being blended
falls above 10.8 psi, the expected value of this off-specification blend should be be-
low 10.82 psi. Thus for this case, the maximum allowed average deviation from the
RVPpremium specification is 0.02 psi.
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Constraints of this type would be useful in problems where the “distance from
feasibility” or maximum extent of infeasibility of the solution is very important (e.g.,
situations where “small” constraint violations are acceptable).

2.2.5 Combinations of the above forms

The last three techniques for treating uncertain constraint parameter problems (§
2.2.2 — § 2.2.4) can also be combined to give formulations which specify multiple
objectives. Some of these combinations are given below and explained briefly.

A Probabilistic Programming problem with Conditional Expectation Constraints
can be represented as:

mn  f(ex)
subject to:
Prob{h(x,£) > b} > =
E[b - h(x,£)lh(x,§) <b] <d

In Problem 2.11, joint probabilistic constraints and constraints with conditional
expectations are applied to the same set of uncertain constraints simultaneously. The
first constraint in Problem 2.11 would ensure that the original uncertain constraints
(Problem 2.1) are satisfied at a probability level of at least 7. The second constraint
in Problem 2.11 above states that if those original uncertain constraints are in fact
violated, the average violations are limited in magnitude by the vector d. Thus, both
the frequency and the magnitude of constraint violations in the presence of parametric
uncertainty can be limited by a combined Probabilistic Programming and Conditional
Expectation Constraints formulation.

Different Stochastic Programming techniques that handle parametric uncertainty
in optimization problems have been discussed in this chapter. The solution to each
of these problems requires knowledge of the probability distribution of the uncer-
tain parameters. Some of the more commonly seen characterizations for parametric
uncertainty are continuous probability distributions e.g., Normal or Gaussian and
uniform or flat probability distributions. Other possibilities include discrete distribu-
tions where the uncertain parameters are only allowed to take values in fixed, finite
sets.

(2.11)

2.2.6 Permanently Feasible Linear Programs

In this approach [Friedman and Reklaitis, 1975], a solution strategy is derived for
LPs, where some or all of the constraint parameters are uncertain. It is assumed
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that the disturbances in the constraint parameters are uniformly and independently
distributed over some known range of variation +c. This method was proposed for
processes where no information is available about the nature of the statistical distribu-
tion of the constraint parameters in a linear program. The only description assumed
available is mean values of the parameters and the expected range of variation in
each parameter. In such a scenario the assumption of a uniform distribution for the
uncertain parameters may be appropriate. In this method, a worst case scenario de-
sign of the LP is done, where worst case values (the values which would drive the
nominal solution furthest into infeasibility) are assigned to all uncertain parameters.
This ensures that the modified LP solution is feasible for the worst case variations
in the uncertain parameters. The solution thus obtained is feasible over all possible
variations (within the range given) in the uncertain parameters. As an example, as-
sume that the Reid Vapour Pressure of the Reformate stream varies by as much as
+0.3 psi (from a nominal value of 3.8 psi). In this situation, the LP to be solved
for feedstock flowrates would use a value of 4.1 psi for the Reformate RVP in the
maximum RVP constraint. This would ensure that the solution (feedstock flows) will
not violate the maximum RVP constraint for all values of reformate RVP < 4.1 psi.
The LP so designed can thus be called the Permanently Feasible LP4 (PFLP).

If there is some known dependence between variations in the parameters (e.g., if
the RON and MON of any or all feedstocks vary together), this dependence can be
incorporated into the problem form and solved to yield a less conservative solution
(sometimes) than that for the independent variations case.

Consider the following LP:

min c’x
x
subject to: (2.12)
Ax<b
If  is the matrix of the maximum allowed variations i.e., aﬁg“ = @;j £ a; j, where
all o;; are positive and independent of each other, the PFLP formulation for the
above problem is given by:

mp O
subject to: (2.13)
(A+a)x<b

‘Permanently Feasible Linear Program is a non-standard term used here to represent LPs’ for-
mulated as given in §2.2.6. These LPs are refered to as Flexible Programs in Friedman and Reklaitis
[1975].
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If the disturbances in the parameters of the constraint matrix are known to be
column dependent (i.e., disturbances in some of the parameters in a column of the
constraint matrix are linearly dependent), there is a possibility of making the PFLP
solution less conservative. In this case, a vector u; can be defined for each column of
the & matrix which represents the dependencies of the elements of that column as:

“}‘aj =0 (2.14)

where j is the column (for our purposes the feedstock) index, and p; # 0 for all 5.

For the column dependent form, the modified LP is given by [Friedman and
Reklaitis, 1975]: '

min c’x
x
subject to: (2.15)
(A+x)x<b
. M B iCQk. .
min(a,j, ). _k‘fi—’ i gy #0
where x; ; = kk;l Y , where M is the number of con-
o, if ;=0

straints containing uncertain parameters, and o ; is the maximum perturbation al-
lowed in the j** element of the i** constraint. p,; is given by equation (2.14).

If the above approach (PFLP) is applied to a problem where the parameter varia-
tions are assumed to be independent and normally distributed, a can be specified as
some multiple, n, of the known or estimated standard deviations of the parameters:
O = NO disturbance- It should be noted that this does not imply that the resulting con-
straints now have a probability of feasibility given by F~!(n), where F is the normal
probability distribution function (although the above would be true in the case of
there being only one uncertain parameter in each constraint).

2.3 Discussion

Some important Stochastic Programming techniques to handle uncertain constraint
parameters have been described in the section above (§2.2). Solution methods to
solve these problem forms are discussed below and their suitability is examined for
application to RTO systems in general and Gasoline Blending Optimization in par-
ticular. The discussions of solution techniques are only valid for problems where the
original problem is an LP:
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mn
subject to: (2.16)
Ax>b

where: A and b can have stochastic elements.

2.3.1 Solution Methods

To solve the Probability Maximization and Joint Probabilistic Programming problems
(Problems 2.2 and 2.7), a variety of non-linear optimization algorithms can be used
[Prekopa, 1995] (e.g., generalized reduced gradient (GRG) methods [Gill et al., 1981],
Interior Point methods utilizing logarithmic barrier functions [Wright, 1997] , etc.).
However, the calculation of numerical values for both the objective function and its
gradient require application of multivariate numerical integration methods (discussed
in some detail in Prekopa {1995]). This in turn means that the solution techniques
for Probability Maximization and Joint Probabilistic Programming have to incorpo-
rate a large number of simulation runs, multi-dimensional numerical integration, and
non-linear programming making the solution to these problems computationally very
expensive. The usual approach [Terwiesch et al., 1998] is to discretize the probability
density functions of the uncertain parameters and numerically integrate to get an
approximate solution to the original problem where the distribution functions were
continuous (e.g., multivariate normal distribution).

The special case of the Probabilistic Programming problem with individual chance
constraints for a Linear Program can be expressed as:

min cTx
X
subject to: (2.17)
Prob(ax <b;)>mfori=1,..,n
where: ¢ is the vector containing economic data, x is the decision variables vector, a;
is the coefficient vector for the i** inequality constraint, and J; is the right hand side
of the i** inequality constraint.

Chance Constrained Programming (individual chance constraints) has been used
to obtain solutions robust to uncertainty in linear program constraint parameters in
areas as diverse as Optimal Polymer Design and Chicken-feed Formulation. The Poly-
mer Design problem consists of using Computer-Aided Product Design techniques
[Constantinou et al., 1996] to identify possible molecular structures that will have
some specified desired properties. Group contribution methods [van Krevelen, 1990]
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are used to predict properties of different molecular structures. However, as there
is always uncertainty in these predictions, an optimal polymer design problem using
these methods needs to incorporate this uncertainty into the optimal design problem
[Maranas, 1997]. Similarly, in Animal Feed Formulation, the nutrient concentrations
in various types of animal foods can vary. Therefore, the formulation of an optimal
animal feed recipe from these feedstocks takes the form of an optimization problem
(LP) where the constraints parameters are uncertain. The animal feed formulation
has also been solved using CCP and the benefits are outlined in Roush et al. [1994].
More recently, Chance Constrained Programming has also been applied in the area of
Model Predictive Control (MPC) [Schwarm and Nikolaou, 1999]. A typical MPC for-
mulation is an optimization problem that uses predicted process outputs over a time
horizon. These predictions are parameters in the linear inequality constraints of the
optimization problem formed. Thus, as illustrated in [ Schwarm and Nikolaou, 1999},
the incorporation of probabilistic process output constraints in an MPC formulation
leads to solutions that are much more robust with respect to the uncertainty in the
process model.

Problem 2.17 (with the assumption a;, b; have a multivariate normal distribu-
tion) can be converted to a deterministic, quadratically constrained problem [Vajda,
1972] as shown in §3.3.2 for the blending optimization problem. This deterministic
problem can be solved using any non-linear optimization routine. Recently, Boyd
and coworkers have used Second-order Cone Programming (SOCP) to solve CCP
problems. Second-order Cone Programming [Lobo et al., 1997] uses interior point
methods [Wright, 1997] to solve what they call Robust Linear Programming (LPs
with uncertainty in constraint parameters) problems.

An approximate solution to the Joint Probabilistic Programming problem can be
obtained by combining Individual Chance Constrained Programming with some prob-
ability bounding techniques. Probability bounding and approximation techniques
based on Boole’s inequality, which can be used to get bounds for the joint probability
of feasibility level, are given in Appendix C. However, the solutions obtained using
this combination cannot be guaranteed to be optimal because the joint probabilities
problem is addressed in an indirect manner. Thus, optimality is compromised in
return for low risk solutions. Also, the bounded solutions to the JPC problem thus
obtained are non-unique, as there are an infinite number of individual probability
levels that can be specified to get the same bounds on the joint probability level of
feasibility.

The Conditional Constraints and Penalty Function forms require calculation of
mathematical expectations of functions with random parameters. This again involves

30



integration over multivariate probability density functions, which can be highly com-
putationally intensive.
The last method presented in §2.2.5, Permanently Feasible Linear Programs, can

be solved using regular linear programming techniques as the formulation is that of
a standard LP.

2.3.2 RTO Implementation Issues

In closed loop Real-Time Optimization systems, optimizer solution times are a very
important issue because of the direct repercussions on RTO execution frequency.
Solving a problem with a large number of variables with a stochastic programming
formulation can be computationally very expensive. Of the SP formulations discussed
in this chapter, only the Individual Chance Constrained Programming and the Per-
manently Feasible LP algorithms are relatively cheap computationally.

For the Gasoline Blending RTO, computational times are a lesser issue because
the problem size is small (typically 10-30 optimization variables®). Even so, Indi-
vidual Chance Constrained Programming is particularly suited to this problem as:
1) assessing the cost of producing an infeasible batch is non-trivial thus making the
penalty function approach even more difficult, and 2) even though some leeway is
allowed in the quality constraints (RON, MON, RVP, etc.), specifying conditional
expectation constraints does not seem to justify the additional computation involved.

The PFLP algorithm [Friedman and Reklaitis, 1975] was designed for constraint
parameter uncertainty defined by uniform distributions. Although as mentioned in
§2.2.5, the algorithm can be applied (by using two o or three o limits) for disturbances
with normal distributions, this gross approximation of the underlying probability
distribution distorts the problem. For the above reasons, only the Individual Chance
Constrained Programming is used in this work to design gasoline blending optimizers
which incorporate parametric uncertainty explicitly.

SAlthough formulation of the discretized THRTO form (§1.3.3) will increase the number of opti-
mization variables to (number of feedstocks)x (number of RTO intervals to the end of the blend).
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Chapter 3

Gasoline Blending Optimization

In this chapter, strategies to incorporate uncertainty into the formulations of Real-
Time Optimization for gasoline blending are developed. The chapter begins with a
brief description of the sets of blending models, both linear and non-linear, used
in this work. This is followed by an account of the problems caused by uncer-
tainty/disturbances in blending model parameters. Next, the Stochastic Program-
ming techniques used in this work to counter some of the effects of these uncertainties
are elucidated upon. Finally, the extensions of the above techniques to the case of
gasoline blending RTO under uncertainty are described.

3.1 Blending Models

There are many properties that are key in characterizing gasoline (e.g., octane num-
ber, RVP, ASTM distillation points, olefins and aromatics content, flash point, vis-
cosity, etc. {Gary and Handwerk, 1994]). Some of the most important qualities, and
the only ones considered in this work are Research Octane Number (RON), Motor
Octane Number (MON) and Reid Vapour Pressure (RVP). In this work, blending
models are used for two purposes; 1) simulation of the blending process (the plant),
and 2) framing the constraints (the model) of the RTO based blend optimizer.

The main requirements for the blending models to be used in the optimizer are
accuracy, simplicity and parsimony of (model) structure. The models used for the
case studies in this work are described below. These models were originally used in
Singh [1997] and a more complete discussion of their characteristics can be found
there. A review of the different gasoline blending models (for RON, MON and RVP)
available in literature can also be found there.
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3.1.1 Linear Model

The linear models used here are the blending octane number method for octane
numbers and the blending index method for RVP blending.

In the blending octane number method, fictitious blending octane numbers (BON’s?)
are used instead of the true RON and MON of the feedstocks. These BONSs blend
linearly (on volumetric basis) to give the octane number of the blend [Gary and
Handwerk, 1994):

Rcomp
ONuena = Y _ w; x BON; (3.1)
i=1
where: w; is the volume fraction of component ¢, ONjeng is the octane number (RON
or MON) of the blend, and ncmp is the number of components in the blend.
In the blending index method for RVP blending, blended RVPs are predicted by
using Reid Vapour Pressure Blending Indices (RVPBI). RVPBISs blend linearly and
are calculated as [Gary and Handwerk, 1994]:

RVPBI; = (RVP)"®
RVPBlyena = 3w x RVPBI, (3-2)
i=1

3.1.2 Non-Linear Model

For the non-linear model, the Ethyl RT-70 method for blending octane numbers is
used along with the RVP blending indices method for RVP blending.

The Ethyl method is one of the more accurate and parsimonious models used to
calculate blended octane numbers [Singh, 1997]. In this method, the blended octane
numbers are explicit functions of the octane numbers (RON, MON), component
sensitivity (RON —MON), olefin content, and the aromatic content of the feedstocks
(Healy et al., 1959):

RONjyieng = T + a1 (78 — 73) + a(02 — 0°) + a3(A% — &)
y o 22)2 (3.3)

MONM=m+a4(’m—s-ﬁc§)+a5(57—52)+as( 100

where: r is RON, m is MON, s is sensitivity (RON—MON), O is olefin content
(volume %), A is aromatic content (% by volume), and a;, ay, a3, a4, as, ag are
correlation coefficients. All quantities with over-bars represent volumetric averages.
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3.2 Uncertainty in Gasoline Blending

Almost all model parameters in the Gasoline Blending RTO problem:

max p1Tx — cTx
subject to:

’ g8(Q,x) < [17x]s (34)

Hx<p

have some uncertainty associated with them. Starting with the objective function,
where global and local market forces can cause fluctuations in the selling price of gaso-
line (p). Also, the cost data for blend feedstocks (c) is imperfectly known because it is
difficult to assign economic values to streams which are not sold directly as products
by the refinery. Calculation of the cost incurred in producing these intermediates is
non-trivial. This uncertainty in the slope of the objective (profit) function can cause
the apparent (calculated) optimum to shift to a sub-optimal operating point. As seen
in Figure 2.1, the calculated operating point though not violating any constraints,
can result in the blender making a costlier final blend.

Parameters in the constraint functions in Problem 3.4 also have associated uncer-
tainty. As seen in Chapter 2, uncertainty in the constraints can occur either in the
constraint function parameters or, in the right hand side parameters. For the gasoline
blending optimization problem, this translates to uncertain feedstock qualities and
uncertain demands/availabilities respectively. The right hand side parameters in the
quality specification constraints are the specifications themselves and the function
parameters for the demand/availability constraints are integral coefficients. These
are defined up front in the formulation of the problem and thus, are certain.

In the gasoline blend quality specification constraints, the feedstock qualities can
be uncertain due to the following reasons:

1. The processes (FCCU, Reformer, Atmospheric Column, and so forth) the par-
ticular feedstock comes from are subject to continuous disturbances, which can
be operation changes by the operators of unit, and/or stochastic (unmeasured)
disturbances entering the process. In Figure 3.1, both the feedstock quality tra-
jectory and the blend quality trajectory are shown as deviations from nominal
feedstock and blend qualities. The stochastic disturbances affecting a feedstock
production process can be from many different sources such as: i) composition
changes in the crude oil being processed by the refinery, ) ambient tempera-
ture affecting the operation of the separation columns (e.g., main atmospheric
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column, columns in separation trains of the FCCU, Reformer, etc.), iii) other
process upsets in any of the upstream units. These disturbances become ex-
tremely important when running tanks are used for gasoline blending feedstocks
or when blending is done in-line. During in-line blending, the blend feedstocks
are fed straight into the blender manifold without being first routed through a
tank. If running feedstock tanks are used, any disturbance in the feed qualities
is filtered through the tank dynamics before it affects the blended gasoline qual-
ities. In both cases, disturbances in feedstock qualities are transmitted through
to the blended gasoline. Infrequent measurement of feedstock qualities (in some
cases, the feedstock qualities are measured as infrequently as once a week) make
the task of tracking these disturbances even more difficult.

2. Measurement errors from quality sensors.

Feedstock quality disturbances in the first category above can have the following
disturbance structures (or a combination) : i) random steps (e.g., crude switches
and operator intervention), #i) coloured noise and random walk type disturbances,
i) cyclic disturbances (e.g., day/night temperature cycling). In the second category
(i.e., measurement errors), the disturbances may be a combination of white noise and
instrument biases.

Uncertainty in feedstock qualities implies uncertain parameters in the Q matrix
(left hand side coefficients in the constraints) in Problem 3.4. As the shape of the
feasible region is uncertain, nominal values for the uncertain parameters in the RTO
problem can give solutions (blend recipes) which are infeasible (Figure 2.3) in the sense
that implementing the recipe will cause violation of one or more quality specifications.
In actual practise, when a blended batch is found to be off-specification it cannot
be sold as scheduled. The off-specification blend has to be reblended with other
feedstocks (usually the more expensive ones) or expensive additives to bring the
batch up to specifications. The following costs can be associated with reblending
[Grosdidier, 1997): i) demurrage cost from having to hold the batch in inventory
while the correction is done, #) inventory cost from not having the money in the
bank earning interest because the shipment is delayed, and #i#) utilities cost, which is
the cost of pump circulation required for mixing the batch after the correction is done.
Another cost that can be associated with reblending is the cost of the feedstock(s)
used for correction of the blend. However, these are relatively minor in magnitude
compared to the indirect cost incurred due to the loss in the scheduled production
rate.

In the demand and availability constraints, the demands and availabilities: p in
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Problem 3.4 (right hand sides in the constraints), can only be known with some degree
of uncertainty. Demand for any grade of gasoline is usually projected by the refinery’s
planning department from market data. Such forecasts always have some associated
uncertainty. The blend feedstock availabilities are based on target production values
set again by the planning department. There can be situations, however, where it
is considered necessary to deviate from those production values. One such scenario
could be that the price of a certain blend feedstock (or an intermediate) goes up in
the market and the refinery decides to divert some of the scheduled production of
this stream for direct selling on the market. Another situation with similar effects
could be an emergency shutdown of one or more of the upstream units from which
the blend feedstocks originate. Situations like the above cause uncertainty in blend
feedstock availabilities. This again, can cause the generation of solutions which when
implemented violate one or more of the demand/availability constraints and thus, are
infeasible (Figure 2.2).

While the first type of uncertainty (uncertain cost data) can cause generation
of sub-optimal solutions, where the solution makes less money than is possible, the
second and third types (uncertainty in the constraints) can actually cause implemen-
tation of blend recipes which are infeasible. These infeasibilities could be due to
violation of the quality specifications or the demand and availability constraints as
seen above. This work concentrates on how to minimize constraint violation in the
second category (i.e., uncertain feedstock qualities leading to critical specification
violations (see Figures 2.2 and 2.3)), while maximizing profit.

3.3 Blending Optimizers for Uncertain Feedstock
Qualities

In this section, different blending optimizer formulations are developed that explic-
itly include uncertainty in feedstock qualities in their formulations. The Stochastic
Programming techniques selected in Chapter 2 to be used in these RTO formulations
are further explained before applying them in the blend optimizers.

3.3.1 GBO using Probabilistic Programming

The objective in gasoline blending is to produce the most economic blend while ensur-
ing that the specification/demand/availability constraints are satisfied. As mentioned
earlier, this is not always possible in the presence of uncertain gasoline feedstock qual-
ities. Thus, Probabilistic Programming is a good candidate technique for use in the
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blending control problem as the risk of making an infeasible blend can be specified in
the problem formulation (Problems 2.5 and 2.7).

Using Chance Constrained Programming (CCP), a minimum probability of feasi-
bility can be specified for each uncertain constraint. In the blending problem, where
the quality specification constraints (minimum RON and MON and maximum RVP)
have uncertainty associated, individual chance constraints can be used with a high
probability level to get “desirable” or low risk blend recipes. In other words, CCP can
be used to ensure that most blends obtained are on-specification (quality constraints
not violated, and thus no reblending required).

The chance constrained problem for gasoline blending is:

min efx
x
subject to: (3.5)
Prob[(§i—s:17)x < 0] > m; for i = 1,2, ..., Rguar
Hx<p

where: e = p1T — ¢7, is the vector of economic data, §; is the vector of uncertain
feedstock quality indices for the i** quality, s; is the specification for the it* quality
in the final blend, ngy, is the number of uncertain quality constraints and, =; is the
minimum probability level at with which the i** quality constraint must be satisfied.
It turns out that there are two ways of converting the above problem to its certainty
equivalent i.e., an optimization problem with no uncertain parameters.

The chance constrained approach [Vajda, 1972] replaces the probabilistic con-
straints with non-linear constraints and is the classical chance constrained program-
ming approach. For the case where the j** feedstock quality’s disturbance is modeled
as a N(0,03) process, the chance constrained optimization problem becomes:

mn o
subject to:
(17 - Q)x 2 -7 [3o2a? (3.6)
j
Hx<p
where T; is defined by:
1]
2
— [eT2dz=1—m; (3.7)
Var )
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i = V2 erfl(1 - 2m) (3.8)

where erf is the error function. The right hand side of the first constraint can be
interpreted as —; x standard deviation of i** constraint (Appendix B).

A second method for solving the chance constrained LP [De Hennin, 1994], uses
the estimated variance of the active constraints directly in calculating the back-offs
from active constraints. The chance constrained LP with the set of active constraints
known is converted to:

= ox |
subject to: (3.9)
Ax+d=b,

where A, and b, are the expected values of active constraint parameters and the
constraint right hand sides respectively. & [deHennin, 1994] is the vector of back-
offs from the active constraints required to satisfy the probabilistic constraints in the
chance constrained program and is given as:

bi=\/Vg;:V2 erf~1(2m; — 1) (3.10)

where ¥, ;; is the variance of the i** active constraint function.

Unlike the Chance Constrained approach described in the previous subsection, the
modified constraints (with back-offs) are linear. Thus, the nature of the original op-
timization problem is preserved and LP solvers can be used to solve the Probabilistic
Programming problem. For the blending problem:

min ex
subject to:
a; — 3;17)x < 0 if i inactive quality constraint
(q, — 8;1T)x+/¥,;:v2erf~1(2m; — 1) = 0 if  active constraint

(3.11)
where ¥, ;; = 3 o3z? with o; as defined in the previous subsection.

J
A major assumption above was that the feedstock flows, solutions of the chance
constrained LP, are already known. This is impossible in practise but, if the flows
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from the original solution of the LP with deterministic constraints (the expected
values for the constraint parameters used to get the solution) are used as a first
approximation and then iterated through the back-off problem, the flows (solution)
for the chance constrained problem can be obtained. The computational cost of this
iteration process needs to be taken into account while evaluating this approach. The
other assumptions include that the active set (assumed known) is not altered by
changes in feedstock qualities.

Comparing the above form with the Chance Constrained Program form (Problem
3.6), it can be seen that in the CCP form, implicit back-off terms are defined for
all uncertain chance constraints. In the current approach, however, only the active
constraints have the back-off term in them. Thus, if the active constraints are known
beforehand, the back-off from active constraints method can be used. On the other
hand, if the set of active constraints at the solution is not known, back-offs could be
generated from all the uncertain constraints giving an over-conservative solution.

The joint probabilistic constraint programming problem for gasoline blending can
be written as:

T

min e'x

subject to: _ 312
Prob[(Q-s1T)x < 0] >« (3.12)
Hx<p

where: 7 is now the probability level at which the whole set of uncertain constraints
must be satisfied.

The above formulation implies that 7 x 100% or more of the solutions of Problem
3.12 should be feasible (no constraint violated with respect to the model used). Al-
though this problem form is more desirable than individual probabilistic constraints
(§2.2.3), solutions to this problem are much more computationally intensive. A con-
servative, approximate solution to Problem 3.12 can however, be obtained by using
the probability bounding techniques outlined in Appendix C.

3.3.2 Probabilistic Programming for Non-Linear Blending
Model

Probabilistic Programming has been discussed thus far only for linear models and
constraint sets. As discussed in Chapter 1, it is generally accepted that non-linear
blending models for Octane Number and Reid Vapour Pressure blending are more a-
ccurate and give more reproducible results. Unfortunately, there is no general method
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for solving non-linear chance constrained programs [Prekopa, 1995]. One possibility
is to locally linearize the non-linear constraints and iteratively solve the CCP formu-
lation for the linearized constraint set. This approach however, offers no convergence
guarantees for the solution.

The non-linear quality constraints for the blending control problem can be ob-
tained from the nonlinear RT-70 model, Equations 3.3 and 3.2. These constraints
can be written in vector form as:

gron(r,m,0,b,x) = r’x + a,[r  diag(r — m)x — 17x)"'cTx(r — m)Tx] + ...
asfolx ~ (1Tx) "loTxoTx] +..
ag|blx — (lTx)'lebex] > RON ,pe(17x) (3.13)

gmon(r,m,0,b,x) = mTx + a,[m diag(r — m)x - 17x)'mTx(r — m)Tx] + ...
as[olx — (1Tx)? o xo Tx] + ..
as(17x) 7 bIx - (17x )-‘bTbex 2> MON ,(17x) (3.14)

vix < RVPBI,,,,C(I x) (3.15)

where: r and m are the vectors of RONs and MONs respectively for each feedstock,
a1, Gz, a3, Gy, G5, and dg are the coefficients of the octane model (@g = 10000)’ o and
b are the vectors of feedstock olefin and aromatic content respectively, o,, and b,, are
vectors of squares of feedstock olefin and aromatic content, v is the vector of blending
indices of the feedstock RVPs and x is the vector of feedstock flowrates. After taking
a first order Taylor series approximation of the above nonlinear constraint functions,
the system of linearized octane number constraints obtained is:

8o +|Vx8l, (x — o) + ...
RON ypec
+ 1928l (=5 + Vgl (m—me) > [ F00ee | 17) (216
where: r,, m,, X, are the nominal RONs, MONs and feedstock flowrates, and

Vg, V:g and Vg are the first partial derivatives of the non-linear functions in
the Ethyl model as defined in Equations 3.13 and 3.14.
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The above set of linearized RON and MON constraints (3.16) along with the
maximum RVP constraint gives the set of specification constraints and can be written
as:

[Q.—-s17]x < ¢ (3.17)

where: Q, is the augmented quality matrix (Equation 3.18) and £ (Equation 3.19)
contains all the other terms from the linearization that are either constants (nominal
operating point values) or have uncertain feedstock RON and MON values.

Q- [ =1V, ] | (3.18)

v

/e [ 8o — |Vl, %o + Vg, ('o ~ o) +|Vingl, (m — m,) ] (3.19)

Using these linearized constraints, the static Gasoline Blending Control problem using
CCP becomes:

min eTx
X
subject to: (3.20)
Prob(qai—s:17)x < &] > m; for i = 1,2, ..., Ny
Hx<p

where: q,; is the i** row of the augmented quality matrix (Equation 3.18) and ¢; is
the i** element of the £ vector (Equation 3.19).

The only uncertain quantities in Problem 3.20 are in the elements ¢; as the vectors
Qq,; are comprised of the nominal quality vectors r, and m,. The above problem
formulation is static in nature in the sense that it does not take into account the time
variation of the feedstock qualities. It is based on the current nominal values for the
feedstock qualities and only guarantees that the current section of the blend shall
satisfy the constraints at a high probability level. It does not project into the future
or look back at what has been blended so far. As discussed in § 1.3.3, the Time-
Horizon formulation for the blend optimizer proposed in [Singh, 1997] is designed to
overcome this shortcoming. In the next section, methods to incorporate uncertainty
information into variations of the Time-Horizon optimizer are described.



3.3.3 Probabilistic Programming for Dynamic Blending

As described in Singh [1997], Time-Horizon RTO based blend optimization consists
of predicting the blend feedstock qualities over the future and minimizing blending
cost over the period of the blending. Both the quality specification as well as demand
constraints are framed such that they are satisfied at the end of the blend. A variation
of the above approach would be to have the flexibility to tune the feasibility horizon.
In the flexible feasibility horizon approach (referred to as the Feasibility Horizon RTO
method in the rest of this document), the optimization problem is formulated such
that the blend quality constraints are required to meet blend quality specifications
at the end of the number of intervals given by the feasibility horizon. As in the full
THRTO method, the past blended gasoline qualities and quantities (starting from
the beginning of the blend) are considered in the optimization. Unlike the THRTO
method however, feedstock flowrates are only calculated for the number of future
RTO intervals specified by the feasibility horizon. With the assumption that some
information is given about the measurement noise and the feedstock qualities’ predic-
tion uncertainties, Probabilistic Programming can be used to solve Dynamic Blending
problems. In this section, the Probabilistic Programming approach is extended to the
cases of gasoline blend optimization over a time horizon.

THRTO (feasibility over the blend)

As seen in §1.3.3, the THRTO algorithm proposed by Singh [1997], predicts feedstock
qualities over the next few optimization intervals and uses these predictions to opti-
mize over the remaining portion of the blend. The future feedstock quality predictions
enter the problem as constraint parameters and thus, probabilistic constraints can be
used to incorporate the uncertainty in these parameters into the blend optimization
problem. Also, the current measured feedstock qualities will always have some un-
certainty associated which can also be handled using probabilistic constraints. The
resulting formulations for Dynamic Blend Optimization using Probabilistic Program-
ming are given below.
For the linear blending model:



n
min YoeTx,
t=k

subject to:
k=1 ~ no= n T (3.21)
Prob |y Qix: + Y Qx:<s) (17x)| > =
. =1 =k t=1
EthS P

t=1

where: e is the vector of economic data, x; is the vector of feedstock flowrates during
the t** optimization interval, Q; is the matrix of feedstock quality indices during past
intervals and, Q, is the matrix of feedstock quality indices during the #* optimization
interval in the future. Also, k is the present RTO interval and n is the last RTO
interval (end of blend).

It has been assumed that the feedstock qualities remain constant between RTO
intervals (slow enough dynamics). The summation terms over the unknown opti-
mization variables (current and future feedstock flowrates) can be removed from the
constraints in Problem 3.21 to get:

min e{znxkg,,
Xk2n
subject to:
> k-1
Prob [(Qkh - S]‘ZQ‘R) xmns -
k-1
HionXi2n< — ) Hx.+p

t=1

(Qg—SIT) xt] > (3.22)

t=1

where: ef,, = [ €T eT .. eT ], is the economic vector e” appended row-wise, once
for each RTO interval (from & to n), Qs = [Qk Qi1 . Q,,] is the matrix of
predicted present and future feed quality indices, Hion = [Hy Hi41 ... H,)is the
matrix for demand and availability constraints, Xion = [ xf xf,; .. xT ]T is the
vector of present and future feed flows, and 1,2y, is a vector (size: (n — k + 1) xnumber
of feedstocks x number of grades) whose elements are ones.

In Problem 3.22, the terms containing the unknown optimization variables are on
the left hand side in the inequality constraints. The structure of this formulation is
that of the simple Chance Constrained Program, Problem 2.17, and given uncertainty
information for the predicted feedstock qualities (Q;,,), the deterministic equivalent
of this formulation can be obtained. In Time-Horizon Blend Optimization, the size
of the optimization problem changes at each RTO interval k, and the number of
optimization variables (feedstock flows to be calculated) is given by the product of
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the number of feedstocks available, the number of different gasoline grades being
blended, and the number of RTO intervals left:

Nopt.variables = Needstocks X Ngrades X (n — k + 1) (3.23)

For all the development in this chapter it is assumed that only one grade of gasoline
is being blended. The formulations for more than one grade follow easily from this
development and are described in Chapter 4 with the case-study description.

Instead of using linear octane blending models with blend indices, the non-linear
model (Equations 3.3) can be linearized around the current operating point (Appendix
D) and used in the formulation of the Time-Horizon Blend Optimization problem.
This formulation can be written as:

n
min YoeTx;
x t=k
subject to:

Prob [kz-:lqug + iaa.xéki {s(1™x) + &} + f: {s (1Tx,) + Z}] >
i=1 i=k =1 i=k

n
tEIthS p
(3.24)
or
min Y eTx;
x t=k

subject to:
n

Prob [Z (Qa‘ - slT) x:< —’CZ-IIQ.,.x: + kf:l {s(1T™x) + &} + f;?}] >
t=1 t=1 t=k

t=k
k

n -1
ZH)Q < —Z:IHXQ +p
t=

t=k

(3.25)

where: Q,,(Q,,) and £(Z,) are described by Equations 3.18 and 3.19 respectively for
the ¢** RTO interval. The carats denote predicted quantities.

Problem 3.25 is slightly different from the Chance Constrained Programs discussed
up until this point because it has uncertain parameters in the right hand side vector
of the quality specification inequality constraints. The uncertainty in these terms can
easily be incorporated when the deterministic equivalent of this CCP formulation is

45



developed (using the methods described in Chapter 2). If all the uncertain parameters
in a Chance Constrained Program are in right hand side vector, the deterministic
equivalent of that CCP is a Linear Program (LP). Thus, even with explicit inclusion
of uncertainty into linear constraints with uncertain right hand sides, those constraints
remain linear in the decision parameters, x [Charnes and Cooper, 1963).

Feasibility Horizon RTO

The Feasibility Horizon RTO (FHRTO) approach defines the time horizon over which
the optimization is done, to be from the present RTO interval to the feasibility horizon
or the end of the blend batch (whichever is closer). The feasibility horizon can vary
from zero (feasible over current interval) to the number of intervals in a blend batch
(feasible over blend). This formulation of the Feasibility Horizon RTO problem is
given by:

m
min YoeTx,
x t=k
subject to:

k=1 _ m o m (3.26)
> Quxe + 3 Qx, < s (17x)
t=1 t=k t=1
Hx:<p

where: m is the lesser of the feasibility horizon and the last RTO interval (end of
blend). In Model Predictive Control terms, the prediction horizon is the lesser of the
feasibility horizon and the end of the blend batch. The feedstock qualities are pre-
dicted for the feasibility horizon and these predictions as well as the past blended
gasoline qualities are used to calculate optimal feedstock flowrates over the feasibility
horizon. Also, the demand and availability constraints have to be framed differently
than for the original THRTO approach. This is because, although the actual product
demands are over the length of the blend, the formulation below can only manipu-
late feedstock flowrates over the feasibility horizon. One possible solution is to split
the product demand over the length of the blend and specify limits for each sub-
batch (RTO interval). While the resulting demand constraints are simple enough to
formulate, they do not allow the optimizer the greater flexibility given by demand
constraints over the blend, to maneuver allocated blend amount in each RTO interval.
This is how the demand constraints are formed for the Feasibility Horizon RTO based
algorithms in Chapter 4.

The Chance Constrained form of the Feasibility Horizon RTO problem (Problem
3.27) is framed such that the current RTO solution ensures that the blend produced
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by mixing the calculated quantities of feedstocks with the blend produced so far,
satisfies each quality specification at a minimum probability level of 7.

m
min Y eTx,
x =k
subject to:

k-1 _ m o~ m (3.27)
Prob [Zngg + Y Qx:< s (lTx)] >n
=1 t=k t=1
Hx:<p

The problem size, or number of optimization variables in Problems 3.26 and 3.27,
is given by the following:

Napg_uaﬁauu = (m —-k+ 1) X me, X Ngrades (3.28)

One of the advantages of using the FHRTO Interval formulation is smaller op-
timization problem size, and thus, faster execution time. On the other hand, the
solutions obtained are more conservative as the formulation requires that the quality
specifications be satisfied earlier in the blend (instead of just at the end of the blend).

3.4 Summary

Different formulations designed to handle uncertainty in Gasoline Blending quality
constraints have been developed in this chapter. Variations on the Time-Horizon RTO
formulation [Singh, 1997] are extended to explicitly include parameter uncertainty in
the quality specification constraints. In the next chapter, these forms are compared
against conventional Gasoline Blending Optimizers by using a simple case study.
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Chapter 4

Blending Optimization Case Study

The techniques developed in Chapter 3 to counter the ill-effects of uncertainty in
gasoline blending optimization quality constraints need to be benchmarked against
conventional blending optimization formulations. The linear blending models de-
scribed in §3.1.1, the blending octane number model for RON and MON, and the
blending indices model for RVP, are used in this case study. This combination of
blending models is used for both simulating the blending process, as well as for fram-
ing the quality constraints in all the blending optimization formulations. The non-
linear Ethyl RT-70 models described in §3.1.2 are not used because the models are
non-associative (Appendix E). One of the consequences of this non-associativity of
the Ethyl models is that the blended qualities are different for each different sequence
of blending a fixed set of feedstocks (the quantities and qualities of the feedstocks are
fixed). As the same models are used in the optimization as in the simulation, there
is no structural mismatch between the actual process and the model of the process
used for optimization.

To get a better understanding of the performance of the different RTO schemes,
a benchmark that represents the best possible blender performance is needed. In
this work, the best possible blender performance is taken to be that obtained when,
the blending optimization is done with all blend parameters known exactly over the
period of the blend [Singh, 1997]. For the case of linear blending models, this reduces
to the solution of :

; T
xI‘EiI‘l! et°=$t !xto=>‘ !
subject to: (4.1)
Qtoot; X, < 8 (17X, )
thoat]s P

where: e;,., is the vector of economic data. Xty = [ Xp Xiiar - x?, ]T is the
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vector of all feedstock flows over the blend, where x, is the vector of feedstock flowrates
during the optimization interval (t = t+At). Qr,r, = [ Q.. Quia - Q, ] where
Q. is the matrix of feedstock quality indices during the above interval (Q, assumed
known for all ¢, present and future). £, is the start time of the blend while ¢, is the
end time of the blend. H is the coefficient matzix for the demand and availability
constraints, and p is the vector of blend demands and feedstock availabilities.

The negative of the objective function value at the solution of Problem 4.1 gives
the maximum achievable profit for a blend. The profit obtained from using different
RTO schemes, when compared to this upper limit gives a useful measure of the ability
of the RTO scheme to reduce the effect of parametric disturbances on optimality.

4.1 Case Study Description

The benchmark problem is based on the case studies in [Singh, 1997] in which, both
regular and premium gasolines are to be blended simultaneously. The number of
feedstocks is limited to five and the number of blends to two (Figure 4.1). The
feedstocks to the blender are :

1. Gasoline fraction from the Catalytic Reformer or Reformate.

2. Gasoline fraction from the Fluidized Catalytic Cracking Unit (FCCU Gas).
3. Light Straight Run Naphtha from the Atmospheric Tower (LSR Naphtha).
4. Pure n-Butane from various units.

5. Gasoline fraction from the Alkylation Unit (Alkylate).

For the simulation, there are two blenders working in parallel, one for regular
grade gasoline and the other for premium grade gasoline. Both blenders produce
batches over a twenty four (24) hour period. The blended batches have minimum and
maximum demand constraints (Table 4.1). Each feedstock has associated maximum
availability constraints (Table 4.2). It is assumed that all the feedstocks are coming
to the blender through running (§1.3.5 and §3.2), constant volume, feedstock tanks.
The demand and availability constraints are applied on each individual RTO interval
instead of over the complete 24 hour batch. The benchmark case study consists
of blending one hundred (100) batches of both grades of gasoline to compare the
performance of conventional blending optimizers to that of the proposed optimizers.
Each 24 hour batch has twelve (12) RTO intervals.
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Figure 4.1: Gasoline Blending Flow Diagram

Premium | Regular
Maximum demand, bbl/day 11000 9000
Minimum demand, bbl/day 11000 9000
Minimum RON 91.5 88.5
Minimum MON 80.0 77.0
Maximum RVP 10.8 10.8
Value, $/bbl 37.50 33.00

Table 4.1: Blended Gasoline Requirements

Feedstock Cost (8/bbl) | Availability (bbl/day)
Reformate 34.00 8000
LSR Naphtha 26.00 6500
n — Butane 10.30 4000
FCC Gas 31.30 6000
Alkylate 37.00 5000

Table 4.2: Feedstock Costs and Availabilities
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Feedstock RON | MON | RVP
Reformate 94.1 80.5 3.8
LSR Naphtha | 70.7 68.7| 12.0
n — Butane 93.8 90.0| 51.5
FCC Gas 929 80.8 5.3
Alkylate 95.0 91.7 6.6

Table 4.3: Feedstock Qualities

Quality | Gaisturbance | 0 measurement.noise
RON 0.3 0.3
MON 0.3 0.3
RVP 0.15 0.15

Table 4.4: Standard deviations of the uncertain feedstock qualities and associated
measurement noise with the feedstock quality sensors

The given feedstock qualities (Table 4.3) will be taken as the mean or expected
feedstock qualities in all the cases studied. The actual feedstock properties are mod-
eled as non-stationary disturbances superimposed on the nominal (constant) values.
In all the RTO structures considered, the RTO is executed every 2 hours, and al-
though optimal feedstock flow-rates are generated for the remaining blend, they are
only executed for the current RTO interval. It is also assumed that the execution
time of the optimizer is negligible. The structure of the noise at the input to the
running tanks is that of a random walk sequence or integrated white noise [Box and
Jenkins, 1976]. The transfer function representation for integrated white noise is:

1
1-2-1
where u is zero mean, white noise (standard deviations for each quality given in
Table 4.4) , and z; is the deviation (at the entrance to the running tank) of the
actual feedstock quality from the nominal value at the k** RTO interval.

T = Uk (4.2)

The tanks themselves are assumed to be well mixed and to hold a constant level
at all times. The transfer function representation for all feedstock tanks is:

_ 0.392! i
T 1-061z-1F

where y, is the deviation (at the entrance to the blender) of the actual feedstock
quality from the nominal value at the k** RTO interval. The transfer function for all

Yk (4.3)
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the feedstock tanks (Equation 4.3) is a first order filter with a time constant of four
(4) hours. y; is applied as the disturbance to the feedstock quality at RTO interval
k. Thus, the quality disturbance at each feedstock inlet to the blender is white noise
coming through an integrator and a well mixed, constant level tank.

In addition to the above mentioned disturbances, all quality sensors (of all feed-
stocks) have associated measurement noise. The measurement noise is assumed to
have a zero mean, white noise structure. The disturbance term is assumed to remain
constant during each RTO interval (two hours). The overall transfer functions for
the actual and measured feedstock qualities are thus given by:

0.392"!

Uk = Uk
1-0.612"1)(1 — 2!
&= et = =) (4.4)

N I Y Ry bl

~

where ;. is the deviation of the measured feedstock quality from the nominal value
and wy is the measurement noise term with standard deviations given in the second
column of Table 4.4.

The two octane numbers are related measures of the same property for gasoline
viz., the ability to resist pre-ignition combustion [Palmer and Smith, 1985]. This
translates to a strong correlation between the RON and MON for any gasoline feed-
stock or blend. Therefore, the quality disturbances (y;) are designed such that the
RON and MON of each feedstock are correlated with a correlation coefficient of
approximately 0.9. The RVP of a gasoline is a property that may be unrelated to the
octane numbers. Thus, the correlation between the RVP of a feedstock and RON or
MON of the same feedstock is statistically insignificant in this case-study.

As the nature of the disturbances is stochastic, a long enough simulation is needed
so that “good” results are obtained, in a statistical sense. For the above reason, all
the optimizers are run on a set of one hundred (100), twenty four (24) hour blend sim-
ulations. Thus, the benchmarking case study consists of one hundred, day long blends
produced using the various blending optimization algorithms. The RTO frequency
(as mentioned above) is fixed at 12 day™'. This makes all the individual quality
disturbance vectors 1200 elements long. The same disturbance vectors (different for
each feedstock and quality) are used in all the case-studies.

Optimizer performance is measured by the profit generated by the particular op-
timizer over one hundred, one day simulations. In the case where the optimizer
generates blends which are feasible (in the sense that they meet all the specifica-
tions), profit calculation is easy as the cost data is known. If the blend at the end
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Blend Regular | Premium
Average daily production (bbl/day) | 10,618.15 | 11, 000.00

Average daily profit ($/day) 29,858.10 | 73,874.86
Table 4.5: Results for the THRTO (Ideal case) algorithm

of the day is off-specification, profit calculations become more difficult because the
off-specification blend has to be reblended before it can be sold. For the above cal-
culation, reblending costs are needed which as discussed in § 3.2 are not easy to
determine. The procedure adopted here is that the profit is reduced by 10% for the
days where the final blend is infeasible. If the measured actual qualities at the end
of a day do not meet product specifications, that day’s profit is calculated as:

Profitingeasibie sena = 0.9 X (price of blend produced — cost of feedstocks used)

While calculating the number of infeasible blends and thus the profit for batches
penalized with reblending costs, an allowance is made for the maximum violation
permitted before the batch is marked as infeasible. A violation of blended RON and
MON by 0.03 octane number and 0.005 psi for the blended RVP is deemed acceptable.

All numerical computation for the case study, including the blending simulation
and optimization was done using Matlab 5.3 [ The Mathworks, 19994 and the
Optimization Toolbox 2.0 [The Mathworks, 19995]. The hardware platform was
an Intel™ Celeron™ 366 M Hz machine with 96 M B RAM.

4.2 Results

The RTO algorithms from Chapters 1 and 3 were implemented on the data-set de-
scribed above (Section § 4.1). In this section, the results generated using the various
RTO algorithms are compared against those given by Problem 4.1.

4.2.1 Time Horizon RTO - Ideal case

Solving 4.1 for the feedstock flowrates with the blend demands and feed availabilities
given in Tables 4.1 and 4.2 generates the results given in Table 4.5.

The average daily profit obtained by applying the THRTO algorithm with all
feedstock qualities known exactly is, $ 103,732.96 per day. As mentioned earlier,
this numeric serves as a common benchmark which is used to compare the different
algorithms. The blended qualities and the amount of gasoline blended at the end of
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each day’s batch is plotted for both grades blended (Figures 4.2 and 4.3). As specified
in Problem 4.1, these results are obtained by solving one optimization problem for
each day’s blend (instead of solving twelve optimization problems, one every two
hours), with all feedstock qualities assumed known exactly. It can be seen in Figures
4.2 and 4.3 that both RON and RV P for regular grade as well as premium follow the
specifications exactly. On the other hand, the blend MON is well above the minimum
MON constraint for both grades. Studying the Lagrange multipliers for the blend
quality specification constraints (Appendix G) verifies that the minimum RON and
maximum RVP constraints are active for all 100 batches while the MON constraint
is never pushed.

Actual qualities vs specifications - Regular

S0
Day / Blend #

Figure 4.2: Results for benchmark algorithm (all qualities known): regular

The demand constraints used throughout the case study were modified from mini-
mum and maximum “blend batch” demand constraints (applied over the whole day’s
batch) to demand constraints over each individual “sub-batch” (RTO interval). This
is because, in the LP + bias and Feasibility Horizon RTO formulations, the blend
period being considered might not include the full blend batch, whereas all feedstock
flows to the end of the blend are needed to form “blend batch” constraints.
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Figure 4.3: Results for benchmark (all qualities known) case: premium

4.2.2 Linear Programming & Bias Updating

The simplest formulation of RTO, Linear Programming with bias updates was used to
generate blend recipes for the case study described in § 4.1. In the optimization step,
only the current feed flowrates are calculated and as described in § 1.3, the LP + bias
algorithm ignores what has been blended so far, as well as any predicted parameters
when calculating feedstock flowrates for the current RTO interval. As the LP + bias
approach optimizes over the current RTO interval only, the size of the optimization
problem is given by:

Noptvariables = Nieedstocks X Ngrades- (4.5)

Within the LP + bias framework there are two possible approaches that can be
used for the model update phase. If there are no measurements available for the
uncertain parameters in the blending model, nominal or expected values for these
parameters (feedstock qualities in our case study) are used and the bias update step is
expected to keep the model current. If, however, measurements for these parameters
are available, these can be used to update the Q matrix in Problem 1.2 in addition
to the bias updating (bias model updating is retained as the measurements used are
noisy).
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Blend Regular | Premium
Average daily production (bbl/day) | 11,000.00 | 11,000.00
Average daily profit ($/day) 30,212.00 | 67,588.79
Infeasible blends (days) 70 67
Table 4.6: Results for the LP + bias updating (nominal feed qualities) algorithm
Blend Regular | Premium
Average daily production (bbl/day) | 10,513.33 | 11,000.00
Average daily profit ($/day) 29,214.82 | 70,105.99
Infeasible blends (days) 38 36

Table 4.7: Results for the LP + bias updating measured feed qualities) algorithm

Both these variations to the LP + bias updating algorithm were implemented on
the case study and the results are given in the sections that follow.

LP + bias updating using nominal feed qualities

In the first approach, only blended qualities are measured (after the fact). Nomi-
nal values are used for the feedstock qualities as it is assumed that they are not
measured/measurable. The measured blended qualities from the previous RTO pe-
riod/interval are used to calculate the bias (equation 1.3) which is updated. The
results obtained by implementing this approach on the case study are given in Table
4.6.

The blended qualities and the amount of gasoline blended at the end of each day’s
batch is plotted for both grades blended (Figures 4.4 and 4.5). The blended RON
and RVP are off-specification for more than half the (regular and premium) batches
produced whereas the MON is within specifications for all one hundred days /batches.
Thus, even though all batches for both blends are produced at the maximum allowed
production rate (11000 bbl/day), there is a significant penalty imposed by reblending
costs.

LP + bias updating using measured feed qualities

In this approach, measured feedstock qualities are used to update the blending model
and the measured blended qualities are used in bias updating. The results in Table
4.7 were obtained by using this scheme of model updating.

Using this modified LP + bias updating approach, significantly better results
are obtained with an increase of more than $ 1500/day in the average daily profit
compared to the nominal LP + bias updating approach. This increased profitability
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Figure 4.4: Results for LP + bias updating with nominal feedstock qualities: regular

Figure 4.5: Results for LP + bias updating with nominal feedstock qualities: premium
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Figure 4.6: LP + bias updating using measured feed qualities: regular grade

Blend Regular | Premium
Average daily production (bbl/day) | 10,297.94 | 10,796.17
Average daily profit ($/day) 29,608.54 | 69,557.99
Infeasible blends (days) 24 26

Table 4.8: Results for the THRTO (deterministic constraints) algorithm

is due to the decrease in the production of off-specification blends and inspite of the
somewhat decreased regular blend production. The plots of the blended qualities
(Figures 4.6 and 4.7) also show a tighter control on RON and RVP.

4.2.3 Time-Horizon RTO - Deterministic constraints

The Time-Horizon RTO approach (§ 1.3) uses current measured feed qualities, pre-
dicted future feed qualities and measured qualities for the blend produced thus far
to calculate blend recipes over the remaining portion of the current batch. This for-
mulation looks at the whole batch at each RTO execution to generate an optimal
trajectory for the feedstock flowrates. Even though feedstock flowrates are calculated
for all future intervals at each step, only the recipe for the current interval is imple-
mented. This process is repeated until the end of the batch is reached. The results

obtained by applying the THRTO formulation on the case-study are presented in
Table 4.8.
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Figure 4.7: LP + bias updating with measured feedstock qualities: premium grade

From the blended quality and quantity plots in Figures 4.8 and 4.9, some features
are observed which were not present in the blend quality plots studied thus far.
Although there are less infeasible blends produced with this approach than using
either of the LP with bias updating formulations, the infeasible blends produced
using the blend over horizon form have relatively larger specification violations (for
both RON and RVP). Examination of the optimization results for the sub-batches
(results of each RTO step) for the batches/days with the infeasible blends, reveals that
most of the infeasible blends result from optimization problems that have no feasible
solution. Thus, in these cases, at some RTO interval before the blend is complete,
the optimization problem to be solved to obtain blend recipes becomes infeasible.
As a result of the above, most batches with blend quality specification violations
also violate the minimum required production/demand constraints (Figures 4.8 and
4.9). This reduction in production resulted in the lower total profit seen for this
formulation.

4.2.4 Time-Horizon RTO - Chance constraints

The chance constrained time horizon RTO formulation is derived from the time hori-
zon RTO form by using probabilistic constraints in place of the deterministic quality
specification constraints (§ 3.3.3). The probabilistic or chance constraints formed use
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Figure 4.8: Results from Time-Horizon RTO algorithm: regular

Blend Regular | Premium
Average daily production (bbl/day) | 10,375.57 | 10,916.99
Average daily profit ($/day) 29,153.70 | 72,448.41
Infeasible blends (days) 8 7

Table 4.9: Results for the THRTO (chance constraints) algorithm

the quality disturbance structure information and try to ensure that the probability
of the quality constraints being satisfied at the end of the blend is high. For the cur-
rent case-study, the chance constraints use the statistics of both the future feedstock
quality predictions as well as the measurement noise associated with the feed qual-
ity sensors. Individual chance constraints are used with the minimum probability of
constraint satisfaction set at 95%. Thus, in Problem 3.22, = = [ 0.95 0.95 0.95].
The results obtained by using this formulation are given below along with the plots
of blended qualities and quantities (Figures 4.10 and 4.11) for both gasoline grades.
Results for the chance constrained THRTO approach exhibit behaviour similar
to the THRTO results described above in § 4.2.3. However, the number of infeasible
blends produced is reduced to less than a third for a total of 15 infeasible blends. This

along with increased production rates give an average daily profit that is $ 2, 130.84
less than the maximum achievable average daily profit.

60



Figure 4.9: Results from THRTO algorithm: premium

4.2.5 Feasibility Horizon RTO - Deterministic constraints

The Feasibility Horizon RTO (FHRTO) formulation is a dynamic blending optimiza-
tion formulation derived from the THRTO form (§ 3.3.3). The optimization problem
at each interval is done over a flexible, receding horizon instead of over the complete
blend. Although results were generated for m € [k,k + 1,k + 2,k + 3] in Problem
3.26, only the zero-step ahead (m = k) Feasibility Horizon RTO or the Feasible over
Current Interval results are presented here. Results for the one, two, and three step
ahead FHRTO forms applied to the case study are summarized in Appendix H.

Feasible over Current Interval

In the zero-step ahead Feasibility Horizon RTO or Feasible over Current Interval
approach, qualities of the blend produced up to the current RTO interval are used
along with measurements of current feedstock qualities to calculate the blending recipe
for the current RTO interval. As feedstock flow-rates are calculated only for the
current RTO interval, the quality constraints specify that the blend be feasible at the
end of the current RTO execution instead of the end of the batch/day. The results
obtained using the feasible over current interval RTO scheme are given in Table 4.10.

The feasible over current interval approach applied to the case study results in a
relatively high total profit partly due to the low number of infeasible batches produced.
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Figure 4.10: Results from chance constrained THRTO algorithm: regular

Actual qualities vs specifications - Premium

Figure 4.11: Results from chance constrained THRTO algorithm: premium
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Blend Regular | Premium
Average daily production (bbl/day) | 10,513.33 | 11,000.00
Average daily profit ($/day) 29,622.23 | 71,623.98
Infeasible blends (days) 17 19

Table 4.10: Results for the FNRTO (deterministic constraints) algorithm

88.55 Actual qualities vs specifications - Regular

50 60
Day / Blend #

Figure 4.12: Feasible over Current Interval RTO algorithm: regular

This is also apparent from the quality and productions plots in Figures 4.12 and 4.13
which show the tight spread of the blended RON and RVP variation. The premium
blend production rate plot indicates that it stayed at the demand maximum constraint
throughout the 100 day long batches.

4.2.6 Feasibility Horizon RTO - Chance constraints

The chance constrained Feasibility Horizon RTO formulation extends the Feasibility
Horizon RTO scheme to include chance or probabilistic constraints for quality speci-
fication constraints that use measured current feedstock qualities as well as predicted
future feed qualities. Although results were generated for the zero-step ahead up to
three-step ahead forms of Problem 3.27, only the zero-step ahead Feasibility Horizon
RTO or the Feasible over Current Interval results are presented here. Results for the
one, two, and three step ahead Chance Constrained FHRTO forms applied to the
case study are summarized in Appendix H.
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Figure 4.13: Feasible over Current Interval RTO algorithm: premium

Blend Regular | Premium
Average daily production (bbl/day) | 10,367.19 | 11,000.00
Average daily profit ($/day) 29,999.16 | 72,751.01
Infeasible blends (days) 1 2

Table 4.11: Results for 0-step ahead FHRTO (chance constraints)

Feasible over Current Interval

In the O-step ahead Feasibility Horizon RTO form (m = k in Problem 3.27) only
the current intervals feedstock flowrates are variables in the optimization problem.
Thus, the only uncertainty in the formulation of the quality constraints comes from
measurement noise associated with the measured current feedstock qualities.

The O-step ahead FHRTO + CCP formulation results (Table 4.11) are the best
in the case-study so far. The infeasible batches produced in the 100 day simulation
are very few, and the overall daily profit high, as the reblending penalty for infeasible
batches is avoided. Thus, even though the average production rate is lower than that
for the Feasible over Current Interval case (without chance constraints), the average
daily profit is higher by more than 1, 500 $/day.
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Figure 4.14: Results using chance constrained 0-step ahead FHRTO algorithm: reg-
ular

4.3 Discussions

In this chapter, different Real-Time Optimization algorithms were implemented on a
simple gasoline blending case study to observe how these algorithms handle constraint
parameter uncertainty. This uncertainty was simulated in the case study by using
noisy measurements of disturbances in feedstock qualities being routed to the blender
through running feedstock tanks. The three categories of RTO algorithms tested
on the case study were: 1) conventional, static LP + bias optimization algorithms;
2) dynamic Time-Horizon RTO algorithms with deterministic constraints, and; 3)
dynamic Time-Horizon RTO algorithms with probabilistic constraints.

The LP + bias algorithms only consider the current interval and do not consider
the blend produced thus far or that to be produced over the blend horizon. As
seen in Table 4.12, these factors contribute to the low average daily profit seen for
the LP + bias forms. The results for the LP + bias algorithm that uses measured
feedstock qualities (in addition to bias updating) are markedly better than those
where the nominal feedstock qualities are used.

The Time-Horizon RTO algorithm is a special case of the Flexible Time-Horizon
RTO scheme discussed in § 3.3.3 (m = n in Problem 3.26). Results for this full
Time-Horizon RTO algorithm also show a low average daily profit; comparable to
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Figure 4.15: Results using chance constrained O-step ahead FHRTO algorithm: pre-
mium

that obtained by using the LP + bias algorithm using measured feed qualities, even
though the number of infeasible blends produced is reduced by a third. The full
Time-Horizon RTO approach allows the optimizer some flexibility to sacrifice short
term feasibility for overall economic gain. In some cases, this strategy can lead to a
situation from which there are no feasible solutions. It is these situations that lead to
the incomplete blends seen in § 4.2.3 where the optimizer itself fails to find a feasible
solution at an RTO interval before the end of the blend. By introducing the feasibility
horizon as a tunable parameter, the Feasibility Horizon RTO formulation offers an
opportunity to trade-off between aiming for higher profitability and of avoiding the
infeasibility problems in the full THRTO approach. Using a shorter feasibility horizon
forces the optimizer to follow & more conservative solution trajectory. This is because
there is less flexibility to trade-off short term feasibility for economic gain over the
blend horizon.

Results for the zero-step ahead Feasibility Horizon RTO (or Feasible over Current
Interval) approach reflect the above trade-off where short term feasibility is chosen
over (possible) long term profitability. As the optimizer is required to generate solu-
tions that satisfy quality constraints over the current RTO interval itself, the results
for this approach show a significant improvement over the full Time-Horizon RTO
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Algorithm Profit (§/day) :%%—"’—‘hﬂ Infeasible blends
LP + bias (nominal) $97, 801 94.28% 137
LP + bias (measured) $99, 321 95.75% 74
THRTO $99, 167 95.60% 50
THRTO + CCP $101, 602 97.95% 15
0 — step FHRTO $101,246 97.60% 36
1 — step FHRTO $101, 309 97.66% 35
2 —step FHRTO $99, 933 96.34% 48
3 — step FHRTO $98, 957 95.40% 55
0 — step FHRTO + CCP $102, 750 99.05% 3
1 —step FHRTO + CCP $102, 565 98.87% 6
2 — step FHRTO + CCP $102,378 98.69% 8
3 — step FHRTO 4+ CCP $102,116 98.44% 10

Table 4.12: Results for all RTO formulations in the gasoline blending case study

approach with less infeasible blends. Results for the one, two, and three step FHRTO
forms, presented in Appendix H, seem to follow a trend where as the feasibility hori-
zon grows from the current interval to three intervals ahead of the current interval,
the profitability decreases. This trend may be a consequence of how the case study
problem (the profitability measure in particular) is formulated and needs further in-
vestigation.

Results for the chance constrained form of the full THRTO (Problem 3.22) ap-
proach show an increase in average daily profit over the THRTO formulation with
deterministic constraints. This improvement is expected as the probabilistic con-
straints for the blend quality specifications in the Time-Horizon RTO forms allow the
Chance Constrained THRTO formulations to compensate for feedstock quality un-
certainty directly. Significant improvements, especially in reduction of the number of
total infeasible blends produced, were noted for each of the chance constrained forms
of the Feasibility Horizon RTO formulations. The results for the chance constrained
one, two, and three step ahead Feasibility Horizon RTO forms also exhibit a trend
similar to that seen for their deterministic constraint forms with a decrease in aver-
age daily profit (and increase in number of infeasible blends) as the feasibility horizon
grows from the current interval to three intervals ahead of the current interval.

The best performance was observed for the chance constrained form of the Fea-
sible over Current Interval with only three infeasible blends. Examination of the
blended quality profiles of the deterministic constrained and chance constrained zero-
step ahead THRTO formulations (Figures 4.12, 4.13, 4.14, and 4.15) shows how the
probabilistic constraints force the optimizer to back off from all the constraints that
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have uncertain parameters. On comparing the blended regular grade quality profiles
for the above formulations in Figures 4.12 and 4.14, it can be observed that all the
quality profiles are very similar between the two figures and both the octane number
profiles in Figure 4.14 appear shifted upwards with respect to Figure 4.12. Similarly,
the blended RVP profile is shifted downwards in Figure 4.14 with respect to Figure
4.12.

The results for the Time-Horizon RTO (both with and without chance constraints)
presented in this chapter were generated using minimum and maximum demand con-
straints over each RTO interval. Allowing demand over the full blend constraints
gives the optimizer additional flexibility/maneuverability to aim for higher economic
benefit. Additional results were generated by using demand over blend constraints
(along with relaxed individual interval demand constraints) for the deterministic as
well as chance constrained THRTO forms. These results, along with a modified
benchmark given by the ideal case Time-Horizon formulation, are presented in Ap-
pendix I. On comparing these results to those presented in this chapter, it can be
seen that although the new benchmark shows an increased average daily profit (by
~ $218/day), the THRTO results using the demand over blend constraints are in fact
worse than the results obtained using only demand over interval constraints. This
behaviour seems to be another instance where additional flexibility to trade-off near
term feasibility for increased profit over the blend leads to the optimizer getting into
an unrecoverable situation.

The concept of quality give-away where blended qualities exceed specifications is
given a lot of importance in current petroleum refining practice [Rigby and Warren,
1995; Honeywell Hi-Spec Solutions, viewed 24 September, 2000; Grosdidier, 1997]. A
number of conventional gasoline blending optimizers formulate the optimization prob-
lem such that any quality give-away is minimized [Anonymous, 1997]. The primary
reason behind this practice is that give-away is considered expensive because most of
the feedstocks with desirable properties are more expensive. For example, Reformate,
which in the case study has high Octane Numbers and an exceptionally low RVP,
is one of the most expensive feedstocks. Minimizing quality give-away explicitly in
the optimization formulation however, can be counter-productive, as it alters the ob-
jective function by reducing the importance of purely economic factors. The above
statement is supported by the fact that all the blended quality profiles, for all the
optimization algorithms used (including the benchmarks), show that blended MON
exceeds blend grade specifications by a fair margin.

The economic performance of the different RTO approaches used in this case
study is compared graphically in Figures 4.16, 4.17, and 4.18. These plots present
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Figure 4.16: Performance (profit/blend) comparison between LP + bias updating
algorithms and the benchmark algorithm

daily profit profiles for each of the Real-Time Optimizers along with the daily profit
profile for the benchmark (all feedstock qualities known) THRTO ideal case. The daily
profit profile for the benchmark (the upper line in all plots, with dots to represent
daily profit) represents the maximum achievable profit on each of the 100 days in
the case study. Thus, the area between these profit profiles represents lost profit.
The ability of Probabilistic Programming formulations to reject the negative effects
of uncertainty in constraint parameters is apparent on comparing the two plots in
Figures 4.17, and 4.18.

4.3.1 Computational Issues

Worst case computation times for a single RTO interval are presented in Table 4.13
for all RTO algorithms used. As all deterministic constraints are linear in this case
study, both of the LP + bias updating algorithms, and both of the Time Horizon
RTO schemes translate to LP formulations. The Optimization Toolbox [Coleman et
al., 1999] uses an interior point method based on the predictor-corrector algorithm
presented in Mehrotra, 1992 to solve the LP problems posed by the first four algo-
rithms in Table 4.13. The RTO formulations with chance constraints (algorithms five
and six in Table 4.13) result in optimization problems with non-linear constraints
(§3.3.1). These NLP problems are solved using a sequential quadratic programming
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Figure 4.18: Profit profiles for Feasible over Current Interval algorithms
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Algorithm Worst case computation times
LP + bias (nominal) 0.8 seconds
LP + bias (measured) 0.8 seconds
THRTO 1.2 seconds
0 — step FHRTO 0.7 seconds
THRTO + CCP 11 minutes, 56.3 seconds
0 — step FHRTO + CCP 2.0 seconds

Table 4.13: Worst case computation times for the RTO formulations used

(SQP) algorithm by the Optimization Toolbax.

All RTO formulations used in the case study except for the two Time Horizon RTO
(deterministic and chance constrained) require the solution of a fixed size optimization
problem for all RT'O intervals. This is because, both of the LP + bias, as well as the
two Feasibility Horizon RTO forms only optimize for the current interval’s feedstock
flowrates, resulting in an optimization problem of size 10 (Nyeedstocks = 5, Nyrades = 2
in Equations 4.5 and 3.28). In the two Time Horizon RTO forms, the size of the
optimization problem solved at each RTO interval in a blend batch varies from 120
t0 10 (Nfeedstocks = 5, Nyrades = 2, while Npro varies from 12 to 1 in Equation 3.23)
over the period of the blend.

The worst case single RTO computation times are very close for both LP + bias
algorithms and the Feasibility Horizon RTO (deterministic constraints) algorithm be-
cause, for these three algorithms, each RTO computation involves the solution of a
10 optimization variable LP. The chance constrained Feasibility Horizon RTO formu-
lation requires solution of a 10 optimization variable NLP problem, which accounts
for the increase in computation time. For the Time Horizon RTO formulations, the
largest computation times were required for the earlier RTO intervals when the num-
ber of optimization variables is higher. As seen in Table 4.13, the Chance Constrained
THRTO (NLP) formulation required significantly more computation than the deter-
ministic constrained THRTO (LP).
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Chapter 5

Conclusions and Future Work

One of the guiding principles behind modern industry has always been achieving
maximum possible profitability. In recent times, other principles, such as safety and
environmental impact, have gained equal importance, especially in the chemical and
petrochemical industries. All of these ideas lead very naturally to the discipline (and
practice) of Closed Loop Real-Time Optimization.

CLRTO involves using large volumes of information from the process being op-
timized, as well as economic and environmental data affecting the operation of the
process, to calculate optimum operating points for the process. All of this data used
has associated uncertainty, be it the fluctuation in crude oil prices or the unpre-
dictability of weather systems in the area. This uncertainty can cause the CLRTO
system to generate solutions that are sub-optimal or infeasible with respect to the
physical process being optimized. Conventional RTO systems either ignore this un-
certainty altogether, or try to compensate for it in an indirect manner.

Stochastic Programming involves using information about the process model’s
uncertainty in formulating the optimization problem, such that the solution minimizes
(in some sense) the undesirable effects of this uncertainty. In this thesis, ideas from
a branch of Stochastic Programming, Probabilistic Programming, were tested on the
gasoline blending optimization problem. The general gasoline blending optimization
problem involves maximizing the profit obtained by selling the blend, subject to blend
quality specifications, feedstock availabilities and product (blend) demands. All of
the economic factors and constraint parameters that are used in the formulation of
this optimization problem are uncertain to some degree. The focus of this work was
using Probabilistic Programming techniques to address the parametric uncertainty
associated with the blend quality specification constraints.

A Feasibility Horizon RTO formulation, derived from the THRTO approach pre-
sented by Singh [1997], was developed in this work. This formulation offers flexibility
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to specify a feasibility horizon for the optimization problem, instead of using the fixed
horizon (given by the end of the blend) used in the earlier work. Feasibility Horizon
RTO, with different feasibility horizons, was applied on a case study problem in two
forms; 1) FHRTO with deterministic blend quality constraints, and 2) FHRTO with
probabilistic constraints. The results from these two forms of the FHRTO formulation
were then compared to the results obtained by applying the full THRTO approach,
as well as conventional blending optimization algorithms.

Results from the gasoline blending case study confirm that conventional LP + bias
algorithms do not handle uncertainty in the constraints very well. The formulations
with chance constraints perform significantly better in the case study than those with
deterministic constraints (expected values used for uncertain parameters). Also, the
FHRTO formulations (both deterministic as well as probabilistic) with longer feasibil-
ity horizons have a tendency to drive the blend being produced, into situations from
where the optimizer cannot recover. A longer feasibility horizon requires predictions
further into the future (which leads to higher uncertainty). Thus, although a longer
optimization horizon allows the optimizer more flexibility (more variables) to aim for
higher profit, the greater uncertainty in the constraints can lead to these infeasible
blend situations. For the case study used, the best performance was obtained by using
the zero-step Feasibility Horizon RTO formulation with chance constraints (Chance
Constrained Feasible over Current Interval RTO).

All probabilistic constraints used in this work were individual probabilistic con-
straints i.e., each constraint was given a minimum probability of feasibility. Although
a joint probabilistic constraint where the entire set of inequality constraints is given
a minimum probability of feasibility is a more natural formulation, further work is
needed to develop solution techniques needed to solve that problem. Further research
is also needed to explore the role and effectiveness of the other Stochastic Program-
ming techniques (besides Probabilistic Programming) in dealing with the uncertain
constraints problem.

Two of the assumptions used while designing the gasoline blending optimization
case study, were that, 1) the structure of the (Octane Number and RVP) blending
models is known exactly, and 2) the time series disturbance model is known exactly.
As discussed in Singh {1997], it can be very difficult to determine the true structure
of most gasoline property blending models (especially Octane Number models). In
practice, the disturbance models would be obtained by using Time Series Analysis
[Box and Jenkins, 1976] and thus would also be uncertain to some extent. The effects
of these uncertainties on the overall optimization problem were not addressed in this
work, and need to be examined.
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Another outstanding issue that needs further research is uncertainty in the opti-
mization objective function. Objective function uncertainty, as opposed to constraint
function uncertainty, does not (by itself) lead the optimizer to infeasible solutions.

It can, however, lead the optimizer to solutions that are sub-optimal with respect to
the actual process.
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Appendix A

List of Symbols

aj,...,a¢ Ethyl RT-70 Octane Number model correlation coefficients

HamE Wm0 aookn

33
£ 3

Y
S

ng<:wwn‘o~°'do

in Equations 3.3

aromatic content (% by volume) in Equations 3.3
coefficient matrix for linear inequality constraints

right hand side vector for linear inequality constraints
objective function cost parameters

vector of maximum expected violations in Problem 2.9
vector of economic data for the blending optimization problem
objective function

normal probability distribution function

vector of nonlinear functions in the blend quality
specification constraints

vector of inequality constraints

coefficient matrix for the demand and availability constraints
current RTO interval

vector of feedstock MON

number of components or feedstock

number of quality or property constraints

vector of feedstock olefin content (% by volume)

selling price of a blended gasoline grade

probability of an event

matrix of feedstock qualities

vector of feedstock RON

blend quality specifications vector

RTO time interval

white noise time series (source for quality disturbances)
vecor of feedstock RVP blending indices

measurement noise time series

decision variables; vector of feedstock flowrates
feedstock quality disturbance time series
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N

XIAIADAME O

> E

backward shift operator

matrix of maximum variation in inequality constraint parameters

in Problem 2.13

bias vector in LP + bias updating and NLP + bias updating problems
vector of back-offs from active constraints in Problem 3.9

vector orthogonal to c; (Equation 2.14)

vector of constraint parameters in Problem 2.1

minimum probability of feasibility for a probabilistic constraint, j
vector of blend demands and feedstock availabilities

standard deviation

normal distribution constant defined by Equation 3.8

matrix a, modified for constraints with column-wise linear dependence
(see Problem 2.15)

volume fraction of component (feedstock), i

right hand side vector for linearized quality constraints (Equation 3.19)
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Appendix B

Interpretation of CCP

The i** blend quality constraint in Problem 3.6 can be expanded to give:

(Ei.reformate - Si)zre!ormate + (Ei.LSR - si)zLSR + (a;'.catgaa - si)zmtgaa + ...
+ (i butane — 8i)Toutane + (Tiatky — 8:)Zatry <0 (B.1)

(in the form g;(x) < 0)
the variance of which is:

E(gz(x)) = E[(Eiy"efm-mate - si)zzseformate] + E[(E,LSR - si)zz%SR] + .. (B.Z)

for known x :
E(g*(x)) = ) o%a? (B.3)
J

where j is the feedstock index and o; is the standard deviation of the i** quality index
of the j*# feedstock (given).
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Appendix C

Bounding joint probabilities

For n events, A;, Boole’s inequality states that:

P(A UAUA3U..A,) < En:P(A,-) (C.1)

=1

taking the complement of both sides and using the identity:

if P(A) < P(B), then P(A) > P(B), we get:

1-P(AjUAUA3U..A) > 1- zn:P(A.-) (C.2)
=1
or
P(AiINA;NA3N..4,)>1- zn:P(A.-) (C.3)

i=1

Inverting the above:

P(AiNANA3N.A)>1- iP(A) (C4)
=1
Let the 3 probabilistic constraints be:
P(4) = P(filg,x)<0) 2 (C.5)
P(A;) = P(fa(gx)<0) 2 oy (C.6)
P(43) = P(fs(gs,x)<0) 2> a3 (C.n)

i.e., A; is the event that the i** constraint is satisfied.
Therefore, for 3 chance constraints with a 95% probability of feasibility each, the
lower limit on the joint probability level is given by:

P(A1 N A2 N ‘%) Z 1-3x005= 0.85 = 85% (C8)
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Figure C.1: Bounding joint probabilities

The above inequality gives us the lower bound on infeasibility of the joint probabilistic
constraints. Intuitively, it means that there is a chance that all the constraints could
be violated 5% of the time and that all violations could be independent (only one
constraint violated in any one event).

Thus if we want at least a 95% level on the joint probability level, the individual
chance constraints should be at the level given by:

095 = 1-3%x(1-0q) (C.9)
a = 09833= 98%% (C.10)

The example above is illustrated in Figure C.1, where the regions of feasibility of each
constraint are separated into seven regions: z,,z»,...,z7. The problem of bounding
the joint probability that all constraints are satisfied can now be formulated.

C.1 Lower bound

The lower bound on the probability that all three constraints are satisfied is given by
the solution to the following problem.

min z4 (C.11)
s.t.

1+ T2+ 23+ 24 2095

Ty + T4+ s+ 26 2 0.95

T3+ T4 + 26 + 7 2 0.95

T+t T3+ s+ +ze+z7< 1

OS.'B,' s 1

The solution to the lower bound problem is, z; = 0.85. Thus, if there are three

individual probabilistic constraints with a 95% probability of feasibility, the lowest
joint probability of feasibility is 85%.
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C.2 Upper bound
The highest joint probability of feasibility is given by the solution to:

max z, (C.12)
s.t.

)+ T+ 23+ 24 2 0.95

T2+ T4+ s+ 2 2 0.95

T3+ 24 + 26+ 27 2 0.95

Zy+zo+ T3+ 24+ 25+ +27< 1

Osz,- < 1

The solution to the upper bound problem is, z4 = 1.

The theorem for n simultaneous, independent events cannot be used here be-
cause, the theorem assumes the individual constraints to be of the form: P(4;) = o;
Sﬁclluality constraints). Probabilistic constraints are inequalities given by P(A;) > a;.

e theorem for n independent events occurring simultaneously states that the prob-
ability that at least one constraint will be violated is given by:

P(Al U .‘12 U 13) = P(A-l) + P(Az) + P(As) - P(Al U :‘iz) -
P(Ag U Aa) - P(fia U fi1) + 2P(A1 n A.g N fia) (C.13)

for independent events A,, A,, A3.
for P(Al) = P(Ag) = P(Ag) =0.95:

P(A,U A2 U A3) = 3 x 0.05 — 3 x 0.05% +2 x 0.05% = 0.142625 = 14.26% (C.14)

or

P(A; N A; N A3) =1 —0.1426 = 85.74% (C.15)

using the reverse argument (again for equality probabilities), for P(4,N A, NA3) =
0.95, P(A;) = (0.95)'/3 = 0.98305 = 98.305%



Appendix D

Linearization of the Ethyl model

D.1 The RON constraint

Vigron =r7 + a;{r" diag(r — m) — 17x) ' Tx(r — m)T + (r — m)Txr?]...
et (17%) (0 = m)TxxTx17} + ag{ofq—2(lrx)'loTxoT + (17x) "20TxoTx1T}...

.+ a3{bT,~2(1"x) b xbT + (17x)"*b xb"x17} (D.1)
V:gron = x" + a{x" diag(2r — m) — (1Tx)"'xT(2r - m)x”} (D.2)

Vmgron = a;{-x"diag(r) + (17x)"'xT rxT} (D.3)
D.2 The MON constraint

Vxguon = m” + a,{m"diag(r — m) — (17x) " [mTx(r — m)” + (r - m)"xm7)...
o+ (17%)72(r — m)TxmTx17} + as{o%,—2(17x) 0" xo” + (17x) %0 x0"x17}...
~ (1T -1 T \-1 T \-1.T T \-23.T
~+285(1"x) " bl x ~ (17x) b xb”x]x{bl -2(17x) b xb”+(17x)~%b xbTx17}...
- —8g(17x)?[blx — (17x) 'bTxb x]*17 (D.4)

V:guon = ai{x" diag(m) - (17x) " 'xTmxT} (D.5)

Vmgron =X + ai{x" diag(r — 2m) — (17x) " xT(r — 2m)x”} (D.6)
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Appendix E

Non-associativity of Ethyl RT-70
models

For the Ethyl RT-70 models, blending of a set of feedstocks is not associative. For
an illustration, consider a scenario where three feedstocks, say a, b and, ¢ are to be
blended. The quantities of these three feedstocks are given by z,, zs, and z., while the

octane number vectors are given by g, , ¢, and g., where ¢; = [ RON; MON; ]T .
If the blending function B(n,m,0) = gnm,0) represents the qualities of the blend

obtained by mixing feedstocks n, m, and o, the Ethyl RT-70 blending rules do not
obey the following associative blending rule:

B(a,b,c) # B(d,c) (E.1)

where q; = B(a, b) i.e., d is the blend obtained by mixing feedstocks a and b.

This non-associative blending behaviour means that time horizon based blending
optimization approaches will not work for the Ethyl RT-70 octane number models.
Time horizon based blending optimization depends on predicting future feedstock
qualities and optimizing the feedstock flows for current and future RTO intervals. The
non-associative behaviour of the Ethyl models implies that, even if the predictions
for current and future feed qualities were exact, the qualities predicted for the end of
the blend can be different from the actual qualities obtained at the end of the batch.

86



Appendix F

Feedstock quality prediction error
variance

T&e overall transfer function for the measured feedstock qualities as given by Equation
4.4:

e =Y +wWe = 039277 U +w (F.1)
Ye = Uk T U= T 0612 1) (1 — 2-1) kT Wk ‘
-1
GYy=Y-__ % (F.2)

U l—czl4az?

where e = 0.61, b = (1 — 0.61) = 0.39, and ¢ = (1 + 0.61) = 1.61.
From the overall transfer function:

Ye = CYr-1— QYk-2 + bus_y (F.3)
Yk-1 = CYr—2 — QYk—3 + bug_o (F.4)
Yk-2 = CYr-3 — QYk—a + bus_3 (F.5)

The variance of the measured feedstock qualities for the current interval is given
by:
E [(5k — )] = E [(yx + wr — )*] = E[wi] =%,

The variance for the one-step ahead prediction error of the measured feedstock
qualities is given by:
E [k — wek-1)?] = E[(cye—1 — a¥r—2 + bui—y + wi — ey + ayk—2)?]
= E[(bux1 +wi)?] = b0l + o},
Similarly, the two-step ahead through eleven-step prediction errors are given by

the following expressions:
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E [(% — yr/x-2)?]

E [(@ — Yr/e=3)?]

E [(cyk-1 — k-2 + bup_y + Wi — cYp_1/x—2 + aYr-2)?]
El(c{tk-1 — Yr-1/k-2} + bug_1 +wi)?]

E{(cbuk_s + bug_y + wy)?

b*(1+F)o? + 02

E [(cyk-1 — aye—2 + buk_1 + we — cY—1/k-3 + aYr—2/k-3)°]
El(c{yk-1 — Ye-1/k-3} — a{tk—2 — Yk-2/k—3} + bux—y + wi)?]
E[(62 bug—3 — abux—3 + chug_o + bug_, + wk)z]

b1+ + (2 —a)Yo? + 02

E [ — yi/k-4)?] = B*[1 + S + (¢ — a)? + *(? — 2a)?0?2 + 02

E [(Bk — ye/x-5)®] =b*[1+ 2 + (& — a)? + c*(c? — 2a)% + (c* — 3ac? + a®)]o? + 02,

E [(Fk — yx/x-6)?]

E (@ - wr/x-1)?]

E [(ﬁk - yk/k—s)z]

E [(ffk - yk/k-9)2]

E [(Tk — Yr/e-10)7]

b1+ + (¢ — a)? + (- 2a)% + (c* — 3ac® + a?)?...
+c*(c* — dac + 3a?)%o2 + 02,

B[+ + (¢ — a)? + (S - 2a)* + (c* — 3ac® + a?)?...
+c?(c* — dac + 3a?)? + (c® — 5ac* + 6a%c® — a®)?|o? + o2,

Bl + ¢ + (% — a)? + (c? — 2a)? + (c* — 3ac? + a2)?...
+¢?(c* — dac+ 30°)? + (¢° — 5ac* + 6a°c? — a%)*...
+c%(c® — 6ac* + 10a%c? - 4a®)?|o2 + o2,

b1+ + (2 —a)? + (e — 2a)% + (c* - 3ac? + a?)2...
+c2(c* — dac + 3a%)? + (c® — 5act + 6a%c? — a®)>...
+c2(c® - 6act + 10a%c? — 4a%)2...

+(c® — 7ac® + 15a%c* — 10a%c? + a%)?]o? + 02,

b1+ + (S — a)® + A(? — 2a)% + (c* - 3ac® + a?)?...
+c*(c* — dac + 3a%)? + (c® — Sact + 6a%c? — a®)>...
+¢*(c® — Bac* + 100’ — 4a®)? + ...

+(c® — 7ac® + 15a%c* - 10a3c? + a%)? + ...

+c*(c® — 8ac® + 21a%c* — 20a%¢? + 5a%)%o2 + 02
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E [@: - yk/k-u)z] = Pll++ (P —a)’+3(P - 2a)? + (c* - 3ac® + a?)?...
+c3(c* — dac + 36%)* + (c° — Sac* + 6a®c? — *)>...
+c?(c® — 6ac* + 10a%c? — 4a%)>...
+(c® — Tac® + 15a%c* — 1023 + a%)2...
+c?(c® — 8ac® + 21a%c* — 20a%c? + 5a%)2...
+(c'® — 9ac® + 28a%c® — 35a3¢* + 15a*c? — a%)?o? + 02
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Appendix G

Lagrange multipliers for THRTO -
Ideal case

Blend guality constraint lagrange mumpliarss x 10" 25

Regular

1
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Figure G.1: Time Horizon RTO - Ideal case; Lagrange multipliers for blend quality
constraints
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Figure G.2: Time Horizon RTO - Ideal case; Lagrange multipliers for blend demand
constraints
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Appendix H

Additional results for Feasibility
Horizon RTO forms

Blend Regular | Premium
Average daily production (bbl/day) | 10,507.88 | 10,990.78
Average daily profit ($/day) 29,882.23 | 71,426.52
Infeasible blends (days) 18 17

Table H.1: Results for 1-step ahead Feasibility Horizon RTO (deterministic con-

straints)
Blend Regular | Premium
Average daily production (bbl/day) | 10,412.94 | 10, 898.76
Average daily profit ($/day) 29,883.68 | 70,049.38
Infeasible blends (days) 24 24

Table H.2: Results for 2-step ahead Feasibility Horizon RTO (deterministic con-

straints)
Blend Regular | Premium
Average daily production (bbl/day) | 10,318.10 | 10,796.64
Average daily profit ($/day) 29,776.68 | 69,179.88
Infeasible blends (days) 26 29

Table H.3: Results for 3-step ahead Feasibility Horizon RTO (deterministic con-

straints)
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Blend Regular | Premium
Average daily production (bbl/day) | 10,402.62 | 10, 990.31
Average daily profit (3/day) 29,732.18 | 72,833.23
Infeasible blends (days) 3 3

Table H.4: Results for 1-step ahead FHRTO (chance constraints)

Blend Regular | Premium
Average daily production (bbl/day) | 10,411.76 | 10, 981.36
Average daily profit ($/day) 29,592.90 | 72,784.70
Infeasible blends (days) 5 3

Table H.5: Results for 2-step ahead FHRTO (chance constraints)

Blend Regular | Premium
Average daily production (bbl/day) | 10,409.47 | 10,953.13
Average daily profit (3/day) 29,529.59 | 72,586.63
Infeasible blends (days) 6 4

Table H.6: Results for 3-step ahead FHRTO (chance constraints)

Actual qualities vs specifications - Regular

Figure H.1: Quality and amount blended profiles for 1-step ahead Feasibility Horizon

RTO; regular

a3




Figure H.2: Quality and amount blended profiles for 1-step ahead Feasibility Horizon
RTO; premium

Actual qualities vs specifications - Regular

Figure H.3: Quality and amount blended profiles for 2-step ahead Feasibility Horizon
RTO; regular



Figure H.4: Quality and amount blended profiles for 2-step ahead Feasibility Horizon
RTO; premium

Figure H.5: Quality and amount blended profiles for 3-step ahead Feasibility Horizon
RTO; regular
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Figure H.6: Quality and amount blended profiles for 3-step ahead Feasibility Horizon
RTO; premium

50 60
Day/Blend #

Figure H.7: Quality and amount blended profiles for 1-step ahead flexible Chance
Constrained THRTO; regular
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Figure H.8: Quality and amount blended profiles for 1-step ahead flexible Chance
Constrained THRTO; premium

Actual qualities vs specifications - Regular

80 90 100

S0 60
Day/Blend #

Figure H9: Quality and amount blended profiles for 2-step ahead flexible Chance
Constrained THRTO; regular



Actual qualities vs specifications - Premium

Figure H.10: Quality and amount blended profiles for 2-step ahead flexible Chance
Constrained THRTO; premium

Actual qualities vs specifications - Regular

Blended

Figure H.11: Quality and amount blended profiles for 3-step ahead flexible Chance
Constrained THRTO; regular
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Actual qualities vs specifications - Premium

Figure H.12: Quality and amount blended profiles for 3-step ahead flexible Chance
Constrained THRTO; premium
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Appendix I

Demand over Blend Time-Horizon
RTO Results

"The results presented are those generated by using both demand over batch (day) as

well as demand over sub-batch (each RTO interval) constraints. The demand over
batch or day constraints are:

Premium | Regular
Maximum demand, bbl/day 11000 9000
Minimum demand, bbl/day 11000 9000
Table 1.1: Blend demand over day
The demand over sub-batch or RTO interval are:
Premium Regular

Maximum demand, bbl/interval
Minimum demand, bbl/interval

22000/12 = 1833.33
22000/12 = 1833.33

Table 1.2: Blend demand over each interval

4500/12 = 375
4500/12 = 375

Thus, the maximum sub-batch demand limits are twice the maximum limits used
in § 4.2 while the minimum sub-batch demand limits are half of those used in the
case study in Chapter 4.

I.1 Ideal Case (all feedstock qualities known)

Blend Regular | Premium
Average daily production (bbl/day) | 10,664.97 | 11,000.00
Average daily profit (8/day) 30,719.52 | 73,231.50

Table 1.3: Results for the THRTO (Ideal case) algorithm

The average daily profit obtained by applying the THRTO algorithm with all

feedstock qualities known exactly is, $ 103,951 per day.
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I.2 Deterministic Constraints

The a.veraiie overall daily profit obtained by using the Time-Horizon RTO formulation
demand over batch (day) as well as demand over sub-batch (each RTO

where bo
interval) are considered is $97, 688.

Blend Regular | Premium
Average daily production (bbl/day) | 10,126.30 | 10,627.70
Average daily profit (3/day) 29,061.97 | 68,626.39
Infeasible blends (days) 34 35

Table 1.4: Results for the THRTO (deterministic constraints) algorithm

1.3 Probabilistic Constraints

The averﬁ%e overall daily profit obtained by
Horizon

over sub-batch (each RTO interval) are considered is $99, 571.

using the Chance Constrained Time-
O formulation where both demand over batch (day) as well as demand

Blend Regular | Premium
Average daily production (bbl/day) | 10,211.15 | 10,720.36
Average daily profit ($/day) 28,993.46 | 70,577.21
Infeasible blends (days) 21 20

Table 1.5: Results for the THRTO (chance constraints) algorithm
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