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Abstrnact

This thesis is concerned with the development of analytical methods
for the simulation of the complete ballistocardiogram (BCG).

The first chapter of this thesis contains a derivation of the
basic equation of BCG, definition of components of BCG which can be treated
individually, and a critical note on BCC simulation as used by other authors.

The second chapter presents a new method of simulation of the
contribution of arterial circulation to the BCG. This method based on the
assumption of linearity and using the frequency domain, is formulated as a
digital computer program. Results obtained from this program can easily
and economically be used for BCG simulation. The method is accurate and can
be used for the investigation of various linear models of arterial circulation
or as a diagnostic tool for the design of analogs. Two of the results
obtained in this chapter are : Modeling of the system as having distributed
parameters, A new representation of small vessels for the purpose of BCG
simulation, more realistic than models used by analogs and easy to handle
by digital computers.

The third chapter contains an analysis of factors causing the motion
of the heart. It is morvre complete and realistic than known methods and it
is completely analytical (it requires knowledge of mechanical properties of
the tissue surrounding the heart and some hemodynanic variables).

Some

of the results obtained in this chapter agree well with reality, one factor,
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however, does not seem to be represented adequately. It is suggested
that better knowledge of some hemodynamic variables and a more accurate
geometrical model account for discrepancies between these results and
reality.

The conclusion of the research presented here is that the

description of components of the BCG is now complete and their simulation

possible.
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Inthoduction

Ballistocardiography is a recording technique based on the
fact that during.the heart cycle, the distribution of mass in the human
body is changing. At present it is generally accepted that the best way
in which to make use of this phenomenon is to measure the displacement
velocity or acceleration of a bed supporting the subject in such a way

that the subject is practically freely floating with the bed without much

restraining mechanical coupling to the support of the bed. This technique

is called ultralow frequency ballistocardiography.

Ballistocardiography (BCG) is an old noninvasive method., It
gives a quantitative picture of the pumping function of the heart and
the resulting circulation - as opposed to electrocardiography, (ECG),
which measures the electrical phenomena associated with the heart cycle.
This is a good reason why BCG should be a widely accepted clinical
method - to the same extent as ECG. In reality, however, relatively few
hospitals use BCG, while ECG is generally accepted. One of the main
reasons why this is so is that the BCG record (BCG) is not so well
understood as the ECG. This is partly because the shape of BCG is more
complex than ECG and its variability is larger, and partly because BCG
represents the integrated effect of heart function on the whole
circulatory system and individual peaks of the record are, therefore, not
immediately associable with definable single causes. This is the rcason

why a relatively large number of researchers have in the last ten ycarsa



been attempting BCG simulation by various methods. Their work has

already given many useful results but is far from being complete. The
best known results have been obtained by Dr. Noordergraaf and his

students from the Department of Biomedical Engineering at the University

of Pennsylvania. Their approach is simulation of the human circulation

by an electrical analog adapted to BCG simulation. It is described in (1,
2, 3). (In the rest of this chapter analog A always means this particular
analog). Analog A, however, cannot simulate all components of the BCG

and gives only what its designers agree is the essential part of BCG.

This fact has lead the author of this thesis to an investigation of an
important component of the BCG not simulated by A - the contribution of

the heart itself. This investigation is described in the third chapter

of this thesis., Before the study of this component was undertaken, the
basic equations of BCG simulation were reformulated and various components
of BCG defined. This forms the first chapter of this thesis. The second
chapter examines some of these components - those simulated by A. A new
method of simulation is suggested - using a digital rather than analog
computer. Since this approach is more accurate, it can also be used as
a tool for design and check of accuracy of analogs. It is used here to

examine the accuracy of A. It is also shown, as a by-product of this

analysis that
1) One of the assumptions upon which A is based is false,

2) The BCG contribution of one group of the signals available from A

has been ignored.

This chapter also includes a new, simple, and more realistic rodel of

groups of branching small vessels. The third part is, as mentioned above,

a study of the contribution of the heart to the BCG. This problen is



equivalent to an investigation of the motion of the heart during the

heart cycle. Two such attempts have already been made: one by Dr.
Noordergraaf et al (4), which is basically synthetic (and cannot, therefore,
be easily and reliably used for routine simulation) - it is based on
experimental data not available from A and on several simplifying
assumptions. The other, proposed by Hooks (5), is analytical but has two
serious drawbacks: it is oversimplified and completely omits two out of
four essential factors which cause the motion of the heart. In the
approach suggested here, physically more accurate assumptions are made and
all four factors are considered.

It is difficult to evaluate the accuracy of the approach proposed
in the third chapter. There are three possible‘ways of doing it. One is
comparison with results obtained in previous studies (mainly (4) since (5)
does not seem to be realistic). The correspondence is not complete;
reasons for discrepancies are discussed in the appropriate place. Another
is a comparison of a real and simulated BCG - this is of limited value only,
mainly because of the large variability of BCG's as mentioned earlier. It
would be more valuable in some physiologically abnormal cases - but in
these cases data necessary for calculations are not available. The third
way 1s an analysis of the physical factors behind the simulated phenomenon.
This too will be done later.

There are two encouraging results: the contribution of the heart
can be simulated under even more simplifying assumptions without affecting
results noticably and some parameters, which are not known to an accuracy
normally considered as sufficient, do not affect results substantially.

The CGS system of units will be used throughout this thesis



because it is the standard system used in this field.

To conclude this introduction let it be stressed here that this
thesis presents methods rather than results,

This work, although somewhat critical of previous research in
this field, would not have been possible without data and results
gathered and formulated by other people - mainly Dr. Noordergraaf and
his students,

It is the hope of this author that methods presented here will
eventually help in advancing the understanding of BCG and so lead to a

broader application of this potentially very valuable method.



CHAPTER 1

Basic equations and definitions

In this chapter basic equations of BCG simulation are derived
and used to divide the total BCG into several components which can be
calculated separately. Although these equations are very simple, it
seems that they have not been analyzed carefully enough by previous
authors. It will be shown that this has lead to a conclusion which
could possibly result in serious errors in simulation (see end of this
chapter).

To simplify notation only the head-foot (y) axis wiil be con~-
sidered. Similar equations hold in other directions. The reason why
this axis is discussed is that it is generally believed to be the most
important one, in that y BCG's seem to contain more information than
records taken in other directions. Also, it is easier, for technical

rcasons, to obtain reproducible records in this direction.

4

A

BCG Bed
Air Bearings

- |

BCG Frame

Fig. 1 BCG Bed and MNotation



Notation (see also Fig. 1):

m
8

m

£
m,

>

by

total mass of the subject.

total mass of the frame of subject's body.

mass of subject's blood.

a fixed point in the external frame.

a fixed point on the steady part of subject's frame.

position of an infinitesimal volume of subject's body at 'rest'
(corresponds to a fictitious state when the subject is not
breathing and his heart is not moving but gives an output corres-
ponding to the DC component of blood pressure) with respect to A.
position of an infinitesimal volume with respect to the resting
state at time t. (In general symbols without a prime have the same
meaning as symbols with a prime but the reference point is B).
position of the center of gravity (CG) of the frame at rest with
respect to A,

position of the CG of the total volume of blood at rest with respect
to A.

part of the body volume corresponding to m .

part of the body volume corresponding to LPE

Basic equations

Essentially, BCG records reflect changes of the position of the CG

of the subjccc's body due to breathing and circulatory events. In this

thesis, only changes due to circulatory events will be analyzed, although

BCG records are also influenced by mechanical coupling between the subject's

body and the BCG bed, properties of measuring devices ectc.

These ceffects



can be represented with sufficient accuracy by a linear block in series
with the source of BCG as described here.

Let us examine the equation for the position of the CG of the
subject lying on a freely' floating BCG bed, assuming that at rest (as
defined above) the CG is not moving. Since there are no external forces

acting upon the body, the position of the CG w.r.t. A must be constant

at all times:

‘[ (y' + oy") (dm + dbm) + J, (y' + Ay') (dm + dAm) = Const (1-1)
Y Ve

here dm is an infinitesimal mass in the infinitesimal volume dV at rest,

dm + dam is the infinitesimal mass in this volume at time t.*

Introducing YaB ~ the position of A w.r.t. B gives (y' = y + Y

and Ay' = Ay)

(

yAB[ J (dm + dam) + J{ (dm + dAm)] + ] Ay.dm + f Ay.dAm

Vb Vf vb+Vf vb+vf

+ ] y.dAm + f y.dm = Const (1-2)

Vb+Vf Vb+Vf

* Since the method of calculation of the center of gravity represented
by equation (1-1) is not quite common a more detailed explanation is

given in an appendix to this chapter.



or
m.Yan +j Ay, (dm + dAm) +j Ay.(dm + dAm) +fy.dAm +£y.dbm
" Ve Vb £
+ m Yy + meye = Const (1-3)

YAB is the variable that we measure. By a proper choice of
points A and B all constant terms can be cancelled out (they are of no
importance anyway since it is the derivatives we usually measure). Let

us assume that A and B have been chosen in this way. Then

Ypp =~ [fy.dAm +fAy.(dAm + dm) +fy.dAm +lAy.(dm + dAm)]
s

b b Ve £ (1-4)

al»—‘

Let us define

I
Yblood ~ m, fy.dAm (1-5)
b
1
Yog = - . [f Ay.(dAm + dm) +j y.dam] (1-6)
Ve Ve
1
y =k Jf ay.(dm + dbm) (1-7)
8 <
b

then

YaB = Yblood + Yuf + Yab (1-8)



Yblood is due to changing volumes of blood in vessels and the heart
-~ assumed not to be moving.

Yob is the contribution due to the motion of some vessels (e.g. the
aorta) and their variable volume.

Vg is the contribution of the moving parts of the frame (e.g. the

moving heart filled with variable volume of biood etc).

It is not claimed here that these contributions are equaliy
important - this remains to be evaluated,

Let us now examine these rather obvious results from the point of
view of simulation. It is generally believed that Yblood constitutes
by far the most important component of the total BCG. This is the main
reason why attempts to simulate BCG by electrical analogs have been limited
to simulation of this term (andin fact only a part of it: that caused by
the arterial parts of systemic and pulmonary circulation). Another reason
is that this component can be simulated by linear passive elements without
difficulties. One of the assumptions designers of this analog have made
is that the choice of the reference point B is irrelevant., This is not
correct when the quantity to be simulated is defined as it has been defined
here (which seems to be the only recasonable way of doing it): assuming
that Yblood represents the total BCG accurately enough means that all
displacements are neglected. In particular the motion of the heart is
neglected too. The heart then is assumed to be a pump which is not moving.
But its volume is still changing. If this factor is not included in the
model this leaves us only one possible choice of point B, namely B must

be placed in the ceénter of gravity of the pump. 1In the next chapter a
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quantity representing the effect of a different choice of B is defined
and evaluated.

The Yblood and Yof components defined above will be analyzed in
detail in the following chapters of this thesis. Investigation of Yob
would require a more complicated model. It can, in fact, be analyzed once

an acceptable way of analyzing Vg has been found.

APPENDIX TO CH. 1

Calculation of the center of gravity

The center of gravity of a body is usually calculated from one

of the following equations:

Yeol® =% y(@pdV = & y(e)dn (1-9)
M M
or
() = & [ o0
YCG m J yp V, V, (1—10)
\Y)
where

m =.fdm = p (v)dv,
M

y is distance to a fixed point on the external frame and v denotes
volume.

In (1-9) y is a function of time and p constant, referring to

a fixed element of mass dm = pdv.
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In (1-10) y is a constant (it is the position of the fixed
infinitessimal valume dv) and p is a function of time.

A third approach, which is a combination of the two described
above, may be advantageous. It will be explained by an example, the
case of elastic tubing in motion.

Let us consider elastic tubing and a pulsating flow. Each
infinitessimal segment of the tubing contains in general a time
dependent volume of liquid and its distance to the reference point is

a function of time. We can take these segments as the fixed elements of

integration and write

ycc(t) = ;i; f y(t)dm(t) (1-11)
'

In equation (1-1) this approach is combined with the division of the

considered system into two complimentary sub-systems denoted V, and

b
Vf. In this case (1-11) becomes
1,/ r
Yoo == [ y(t)dm(t) + = y(t)dm(t)] (1-12)
CG m J
Vb Vf

This is the meaning of equation (1-1).
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CHAPTER 2

Contnibution of blood moving in the arterial part of the circubation.

As stated in the preceding chapter, the component Yblood is
believed to be the most important one. The venous part of the circulation
is bellieved to have small effect because the pressure changes there are
relatively small - and these changes are the decisive factor for BCG, as
will be shown later. This chapter contains an outline of a new method of
simulation of Yblood with two possible applications:

1) it can replace the analog A - i.e. it fulfills the samé functions but
more accurately and more economically.

2) it can be used as a tool for the design of new analogs or a check of
accuracy of existing ones. This last applicationiis shown in this
chapter and the accuracy of A is critically examined.

This chapter also contains a simple and relatively realistic
model of groups of small vessels, to be used in the method of BCG
simulation described here.

Only the y axis will be investigated for two reasons - no
information necessary for the evaluation of contributions in other
directions is available and the contribution of this part of the
circulation (almost completely symmetrical in the head-foot axis) is
believed to be negligible as far as the lateral (x) BCG (the only other

BCG practically mecasurcable) is concerned.
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In the rest of this chapter the symbol BCG will denote only

the contribution to be studied here.

Ceneral considerations

Several models, suitable for computer realization, will be
desceribed later in this chapter. All these programs are general in that
the user can prescribe his own description of the system to be analyzed.
All the models are based upon the assumption that the circulatory system
(or, rather, those parts of it which are to be analyzed) is linear and

that its distributed parameters are described by the following equations

dP(s,z)
4 = - Zi(s,z)F(s,z) (2-1)
dF(s,z) P(s,z)

dz =T Z;(s,z) (2-2)

in the s-domain (Laplace transform w.r.t. time, zero initial conditions).

Here P(s,z) is the Laplace transform of the pressure at distance z from

the source,

<«

P(s,z) = f e'Stp(t,z)dc (2-3)
' 0
F(s,z) is the Laplace transform of the flow at z.
Zi,Z; are the distributed longitudinal and transversal impedances
per unit length.
An infinitesimal segment of vessel (parallel to axis y) of length

dy gives the following contribution to the total BCG.
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d(Bcg(t))=—-%;jIy.dy. %5).dt (2-4)

(Integration with respect to t)

This means that the BCG is a linear function of £.

If we assume that the pressure (and, therefore, the flow) is

harmonic

plt,z) = P(w,z).ed®t (2-5)

E(t,z) = F(w,z).ed"t (2-6)

this means that the distributed” BCG (BCG') will have a similar

form
d(Beg(t)) = BCG' (w,2).ed"t . dy (2-7)

After substitution the following expression for the amplitude

of the distributed BCG is obtained.

P(w,z)
BCG' (w,z) = ﬁ— Y. 3—0"2-?- (2-8)
s t

Whatever the representation of this branching system the model has
to be segmented and therefore the following equation has to be used to

obtain the total BCG.
BCGT (w) = Z ABCG (2-9)
all segments
where 4BCG is a BCG contribution of one segment at frequency w.
This variable which {s a function of frequency will be called BCG

impedance, since it will be calculated from the assumption that the flow

from the source is
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F(w) = 1 (2-10)

If the actual flow is

N N
£(L) = E: F (nw) . ed¥t = 2.Real(§E;F(nm).ejnmt) + F(0) (2-11)
~N . n=

(The Fourier expansion into a sufficient number of terms)
the total BCG is

N
Begt(t) = Z.Real(i: BCGT(nw).F(nm).ejnwt) (2-12)
n=1 :

(The DC component is not considered since this constant is of no practical
interest).

The variable BCGT(w) thus gives all the information necessary to
obtain Bcgt for periodic input flows. This is quite sufficient since
transients are of no practical interest either. Also any complex of input
flows can be approximated by Fourier coefficients as closely as desired.

If p(t) is given instead of f(t) then

F(w) = ggz; (2-13)

and the impedance Z(w) is calculated by the program along with BCGT(w).
To evaluate the effect of the choice of position of the reference
point B upon the variable BCG'(w), let us shift B by a unit of length.

This results in a change of BCG' by

n.P(w)

QU (w) = ——— (2-14)
ms.j.w.?.c h

and the effect on the total BCG is described by



16

QT (w) =fQ'(w)dz (2-15)

b

If B is shifted by L(ecm) the new value of BCGT (BCGT) will be
BCGT(w) = BCGT(w) + L.QT(w) (2-16)

If the correct value BCG(w) is to be obtained L.QT(w) must be subtracted
from BCGT according to (2-16).

The variable Q is evaluated by the program along with Z(w)
and BCGT(w).

The physical meaning of this variable can be understood from
equations (2-14),(2-15). It corresponds to the surplus of blood
accumulated in the part of the system being considered at the given
frequency. When this variable is left out a change of position of the
refcrencehﬁoint B causes a change in the shape of the BCG frequency
characteristic. This, in turn, leads to a different shape of the BCG
calculated from the frequency characteristic. But the apparatus is always

measuring the same BCG. The variable QT(w)is, therefore, very important.

Development of the approach

The chronological development of various models will be described
here - it shows which modifications (there are 8 different versions al-
together) have been progressively introduced and why,

The first decision that had to be made was whether the time domain
or the frequency domain should be used., 1t is evident from the previous

section that it was decided to use the frequency domain. The reasons for
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this choice are the following:

1))

2)

3

4)

the frequency characteristic of the system can be calculated once

and for all and the desired studies can then be made via Fourier
coefficients. This saves a lot of computer time and even makes it
possible to stﬁdy BCG without a computer. On the other hand
transients caused by changes of parameters cannot be studied since the
source - the heart - is connected to the system by nonlinear elements.
This disadvantage is not important even when the method is compared
with the analog A - the analog works 1000 times faster than reality
and it 1s, therefore, hardly possible to study transient phenomena by
its use (the system being a distributed one). The analog, however,
has the advantage that, to some extent at least, it generates its own
input (flow).

the frequency response is a good and accepted characteristic of the
circulatory system. Several studies published so far make it possible
to compare models and real systems via frequency characteristics (as
far as the circulatory system itself is concerned).

since the circulatory system is represented by a branching system of
uniform tubes, each of which is an element with distributed parameters,
the frequency domain is the only approach which allows a fast and
general exact solution. It will be seen that this advantage over
analogs is an important one. This feature of the proposed method also
makes possible its use as a diagnostic tool.

as a consequence of 1 and 2 a computer program using the frequency
domaln offers an efficient method for comparison of various physical

models and their simplifications (provided they are linear) - also
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possibly in the first phase of design of analogs.

A. Original Model.

This model'is called C when complex value of E (modulus of
elasticity of vessel wall) is used, R when real E is used.

This first version is a complete analog of A in digital form
and frequency domain - i.e. the topology and parameters are identical.
Also, the system is divided into segments which are assumed to have
lumped parameters.

The system to be simulated is assumed to be descfibed by

distributed impedances

, ~ 1 3P
Zz(w) =~ F@) 3z (2-17)
Z":(w) = - P(m)/%% (2-18)

z is the distance along the vessel measured in the direction
from the source as mentioned above. In versions C and R, these impedances
are lumped and a segment of length L is presented by overall longitudinal

and transversal impedances (sce Figs. 2 and 15).

Zz = Z;.L (2-19)

ZE = Zé/L ' (2-20)
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L = Inductance
R = Resistance
C = Capacitance
Fig. 2 One segment of vessel as represented in (1),

Expressions for Zi and Zé are taken from (1) and are as

follows -
£ A"/ (al)?
7' = Hu 0

poomh e my )]
0

(2-21)
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3nr” (r + h)
vhere
rzw
here

r 1is the internal radius of the vessel when the internal pressure is
equal to the DC component of the actual pressure.

p is the density of blood.

w is the frequency w = 2n.f

h 1is the thickness of the wall of the vessel.

E 1is its modulus of elasticity.

Equation (22)contains a ratio of two infinite series (representing
Bessel functions). A fast converging continued fraction expansion is
given in (1). A few terms are then used to obtain a desired accuracy.
The whole segment is then represented (in the electrical analog of which
this version 15 a computer model) by the network in Fig. 2 of total

impedance Z, and Zt.

A

Although the accuracy of individual blocks is good, the large
number of segments (over 100) and tolerances of the values of individual
passive clements, as well as the effect of connections etc., limit the
overall accuracy of the analog. The number of passive elements in
individual segments was chosen such as to give 2% accuracy. 1In the
computer program this was replaced by 1%,

Physical limitations of analog A are to some extent replaced by

roundoff crrors. These were minimized by the use of double precision
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arithmetic for important variables. The accuracy of the computer program
has been checked by a simple branching system resembling the circulatory
system but having uniform parts. Exact solutions were then compared

with solutions obtained by subdividing this system into more and more
lumped segments. fhe convergence was excellent and thus it was concluded
that the program is accurate. Results obtained from this version of
computer program were compared with published frequency characteristics of
the analog A (see (1)) and the agrecement of hemodynamic variables has been
found good. This is shown in Fig. 6 and confirms the relative accuracy

of the analog, at least as far as hemodynamic variables are concerned,

No comparable characteristic of its BCG performance is available. The
original version of the analog A was assuming real values of E. This
assumption has then been replaced by complex F (physically elastic

modulus of viscoelastic material of vessel walls). Both these alternatives
were tested on the computer program and it was found that the second
version of the analog glves results closer to those obtained from the
digital computer.

B. Distributed version of Original Model.

This version is denoted by CD or RD for complex and real value of
E respectively.

Unlike the analog model or the time domain approach on digital
computers, the use of frequency domain makes it possible to obtain accurate
results even for quite general linear systems with distributed paramcters
(by 'general' is meant generality of cxpressions for distributed impedances).

It must be remembered, however, that even this solution will only be an
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- .’
approximation because the continuous and general way in which physical -
parameters are changing must be approximated.

then the basic equations

%Z_ - _ z;‘.F _ (2-24)
€. : (2-25)
t

are solved (e.g. (7)) (Zi,Z; are assumed to be constant throughout the

individual segments), we obtain

Y'Zout'zi + Ziz.tgh(y.L)

Zia ™ (2-26)

2 '
Y .Zout.tgh(Y.L) + Y°Zn

for s # 0 and

= ' -
Zin = Zour T L0y (2-27)
for s = 0
Hare
Zg
Y =V 77 (2-28)
t

Zl

P(%,s) = Pout' (cosh (y.L) + . sinh (y.2)) (2-29)

Y'Zoul:

Here

Zouc is the loading impedance at the end of the segment.

Zin is the loading impedance presented by the segment and its load.
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L is the length of the segment
P(%,s) 1is the Laplace transform of the pressure at distance % from the

end of the segment.

For the calculation of BCG the artery is assumed to have parameters

indicated in Fig. 3.

E

3 Meaning of symbols used in the text.

ig.
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In this figure B > 0 when ZA < ZB (measured from the source).
For s = jw
L L
ABCG (w) =j BCG' (w) d& = m———i?m—i,— .fP(Z,w)Y.dE (2-30)
0 * S.J * t 0 ¢
but y = Yo + B.2 so that
P Pout &i
ABCG(w) = ————— (cosh (y.2) + esinh (y.2))(y + B.&).df (2-31)
.Jw Z Zout o

Finally

p.P
. - out 2_ '
ABCG (w) = “‘s'j“’"'3"t'7‘ - [{Zout'(yo + BL)Y B.Zz].sinh (yL)

' - ' -
+ {(y, + BLYZ;-BZ_  }.cosh (yL) + Y. (82 . yozg)] (2-32)
and AQ ( substituting B = 0 and Y, = 1).

p'Pout

AQ = ms'j“'72-2é°zout .[yzout.sinh (vL) + Zi.{cosh (YL)—1}] (2-33)

At this point only was it realized that the choice of the reference
point is important and the variable Q was introduced. The analog was then
examined more closely and it was concluded that there are two other
questionable points. Both concern the part of analog A representing the
small vessels:

1) In the analog small vessels are represented by resistors, This is

adequate for hemodynamic variables (which was confirmed later when a
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new model was tried) but perhaps not for BCG simulation. The reason
is that resistors replace a system of elastic branching vessels by
one element with zero time delay and no elasticity. The contribution

of small vessels is (in the analog A) calculated from

W.{r.(c + h)}>

B (t) = y.Ap(t) Ap(t) = p(t) - p (2-34)
cg E.(2r + h)h> DC

with §= 3

and E = 16 x 10° (sce (4)).

V is the volume of the considered system of small vessels,
The result of this approach is that the contribution of small
vessels far from the reference point is suspiciously large.
the analog does not take into account one important factor at all,
perhaps intentionally, but then the model lacks physical meaning. The
model is at all terminations grounded by resistors. Some current
(the electrical analog of flow), however, is flowing out or into the
system through these resistors. Since the amount of blood in the
system cannot change - the physical system being closed - the model
represents a system terminated by 'reservoirs'. This fact is not
considered at all. It was decided here to view the reservoirs as
localized at ends of resistors representing small vessels (see Fig. 4).
This is rather arbitrary, but it is simple and it at least considers
the neglected effect. If f(t) denotes the bloodflow from the
rescrvoir then its contribution to the BCG is

Jjuwt

ABcg(t) = ABCG(w).el™ = %—ff(t:)y.dt = %X[F(m).cjmt.dc = OyF(w) Juwt
8

s jw

(2-35)



Fig. 4

Completion of the system by 'reservoirs'.

26



27

ABCG (w) = QZ?—“(’@— (2-36)

If the total effect of this factor were negligible, its omission

would be justified, but this is not the case.

For these two reasons it was decided that the model had to be

modified. This is described in the next section.

C. Model with modified representation of small vessels.

This version is denoted by ClL and Rl for lumped version and CDl and
RD1 for distributed version.

This new description is partly based on greatly simplified
physiological data, partly on data used in the original model, and partly
on the formula for distributed longitudinal impedance given earlier.

Fig. 5 shows the geometric configuration assumed for branching small
vessels. It is evident that, compared to the nonsymmetrical vessel anatomy,
the model is very simplified. On the other hand the number of branches and
groups as well as the ratio of volumes of successive groups were kept as
close to reality as possible (for comparison see (6)).

The‘symmetry of the system and some further assumptions make it
casy to find parameters describing these systems of vessels.

Let us assume that

Ro=—% (2-37)

Here Rn is the resistance of one branch of the n-th group, N is

the number of branches. Since the number of branches of the n-th group
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is 1/N times the number of branches of the (n + l)-st group, this means

that the overall resistance of groups is constant from one group to

another,

Since

R =8¢ (2-38)
mr

(This can be obtained by substituting A = 0 into (2-21) section A).For

one vessel, (2-37) gives

L %
n 1 "n+l
TN (2-39)
n n+l
When we define
% r
_ _ntl _ _ntl
2 T T2 Cr T T (2-40)
n n
this means that
c, = Nc4 (2-41)
% r

1f R(n) is the loading resistance of a branch of the (n-1)-st

group (sce Fig. 5)

R(n) - (n+1))

1
§R *tR (2-42)

we have

- L 1 =1 1 1
N(Rl + N(R2+.....)) Rt ) R2 + ...+ _Q'RM (2-43)

(D
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since at the end R(H+l) =0

But according to (1)

1 1 1
SR, === R, = sees = == (2-44)
T T R NMRM
so that
1 _ M, _8ui M -
R ’NRl"“ra N (2-45)

For the first 5 sections (included to obtain a smoother transition from

large to small diameters) let

r
L (2-46)
r
n
with
r,=ar (2-47)

here r, is ideally equal to the radius of the vessel immediately preceding

the considered system of small vessels., Let

l.‘6 = crcrs ' (2_[‘8)

then

- 8Buf L1 1 M
Rtotal nrh ' [(Z"+ gt 020) x .15 + 20 4] (2-49)
o
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By a similar reasoning we obtain the following expression for the total
volume of the syﬁem:
1 - (N2c6 M

)]
2 2., 4 10 10 2 e )
Vtotal = nrol. [(a. +a + .. 4+ a )x.15 + Na c, —————???r——-J (2-50)

1 - N
r

The ratio of total areas of cross sections of consecutive groups

is
2
Nr
__ntl “nkl 2 _
cg =g = 3 = Ncr . (2-51)

n r

n

Expressions (2-41)-(2-50) and data about Ptotal and Rtotal

used in previous models are then used to obtain values for unknowns. There
are 3 equations and 7 unknowns (ro,l,a,cz,cr,M,N). It is therefore
necessary to choose some of them arbitrarily - but as close to physical

reality as possible (see (6)). 1t was decided to set

c. = 3 ¢y = .6875 cg = 2.75
M = 6

N = 11

A digital computer program was then used to find acceptable values
for r, by varying the value of a.

The result of this approach is that the total volume and, resistance
remain almost identical (the difference is due only to the roundoff error
introduced into the program) with those used in the analog and the above

mentioned versions.

The 'reservoir effect' is calculated from outflows from the last
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group according to (2-36) in the previous section.

The model presented here is believed to be more realistic
than those suggested by other authors. It satisfies the requiremeﬁts
for which it was designed as will be seen later in this chapter.

It should ge mentioned that a physical analog with these
characteristics is practically unrealizable because of the enormous
number of elements involved. The computer model, however, requires
little computer time because of its symmetry.

D. A simple model based on Poisseuille'sFlow,

This version is denoted LL for lumped and LD for distributed
parameters. Only complex E was used for calculations.

Welkovitz and Fich in (7) derived and used the following expressions

for distributed impedances:

Zi = _§% + ju. —35 =R+ ju L (2-52)
Tr T
hE 1

2 = L (2-53)
joang?  JuC

v in the first equation is apparently a printing error and should
be replaced by p. These equations were, with some modifications, used by

the authors to describe a part of the aorta. If these equations could be
used instead of those used in previous sections, the result would mean a
substantial saving of computer time or a significant reduction of the
number of elements in the analog. For this reason, it was decided to

compare results from other programs with two versions using these cquations

- one using lumped parameters, the other using distributed parameters.
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In addition to the change made in the first equation mentioned above it

was decided to replace C by

2 2
€= 32%8 : :)h) (2-54)
This is the formula used in previous sections taken from (1). Its use
makes it easier to compare results from various versions of the original
program. The last mentioned formula seems to be generally accepted as being
better justified than the one used in (7).
Only the modified model of small vessels described in the previous

section was used.

Results and Conclusions

Frequency characteristics obtained from different versions are
in Figs. 7, 8. It should be mentioned that 'force BCG' and its integrals
rather than the more common acceleration BCG (acceleration of the BCG bed)
and its integrals are used., This is because the author believes that
dividing the force BCG by the mass of the subject (which is the transformation
through which the acceleration BCG is obtained from the force BCG)
introduces a somewhat modifiable scaling factor and thus obscures results
of simulation. Only complex value of the modulus of elasticity E is
considered. Real value of E was originally investigated by the author
mainly for the purpose of checking the accuracy of the analog.
Examination of results leads to the following immediate conclusions:
1) the overall hemodynamic impedance calculated by the program is quite
close to that measured on the analog.

This is true both for lumped

(C) and distributed (CD) parameters versions. It means that from the
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point of view of circulation itself the number of segments into which
the simulated system is divided is sufficient.

BCG frequency characteristics C and CD differ significantly in amplitude
in the lower frequency range. This means that for BCG simulation the
number of segménts should be increased.

BCG frequency characteristics of the modified lumped (Cl) and
distributed (CD1) model differ from C and D mostly at high frequencies.
The modified version gives generally smoother results in agreement with
reality. This difference is probably smaller when Cl and CDl are
compared with the analog A because the analog works 1000 times faster
than reality and various unwanted effects can affect its frequency
characteristic at higher fréquencies.

The relative contribution of small vessels is much smaller in Cl and

¢Dl than in C and CD, This can be seen in Fig. 9. This confirms the
original impression that the contribution of small vessels is exaggerated
in A. Evidently the way in which these vessels are simulated plays an
important role.

Comparison of normal BCG records obtained in the way described above
(see Figs. 10, 11) and clinical records (e.g. (8)) shows that amplitudes
obtained from versions with distributed parameters are closer to real
values than those obtained for lumped parameters. The same observation
is valid for results obtained from A (see (3)). This supports the
earlier conclusion that for accurate BCG simulation the number of
segments should be increased if the system is to be simulated by an

analog.

the simplified versions LL and LD give essentially the same results as
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Cl and CD1 which means that a simpler representation of the hemodynamic
phenomena is acceptable when details of local physical phenomena are
not essential.
It should be noted that the results presented do not cover the
contribution of th; pulmonary cipcula;ion which can be obtained by the same

program with different data (available from 2)).

Summary 0§ Chapten 2

A new approach to BCG simulation is presented. The author feels
that it is more realistic, economical and easier to use than the existing
analog model simulating the same phenomenon (i.e. a part of the human BCG).
Results, once obtained, make it possible to simulate various BCG's even
without the use of computers. This approach makes easy comparison between
various linear physical models of the same physiological system and can be
used as a tool when an analog of the circulation is designed or critically
analyzed.

The approach described in this chapter is used to investigate the
accuracy of an analog built at the University of Pennsylvania and described
in (1,2,3). It is concluded that although this analog simulates the human
BCG quite well, it is not physically complete, simulation of small vessels
is not quite satisfactory and the number of segments into which the
circulatory system is divided is not large enough.

A conclusion that this

kind of simulation is not ideal is put forward. A new model of representation

of small vessels both physically more realistic than the one used in the

analog and easy to handle on a digital computer is proposed. Introduction
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of this modification leads to a smaller contribution of small vessels

and a smoother BCG in agreement with reality.

Appendix to Chapter 2

Ih the first place the organization of data giving information
about the system to be analyzed will be described. Then the block diagram
of the whole program will be presented and some blocks described in more
detail. The program was written to be used via terminal under the MTS

system implemented at the Computing Center at the University of Alberta.

A. Data Description

The system is assumed to be branching in the direction away from

the source only. The following rules and definitions are accepted for the

description of the system:

1) 'Distal’ nodes are nodes farther from the source. 'Proximal' nodes are
closer to the source.

2) All branches have both distal and proximal nodes (this is important for
the terminal nodes).

3) Every node and every branch has its number,

4) Every branch has the same number as its distal node.

5) MNumbering starts from an arbitrary terminal node and proceeds in the

way as one would proceed when calculating impedances of the system,

These rules are illustrated by an example presented in Fig. 12.
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Fig. 12 An Example Illustrating the Use of Some Rules from Section A.

Block of segments (group of segments) number I is described

by an integer vector B(1.J).

il

B(1,1) = O for terminal nodes, 1l otherwise.
B(I,2) = number of distal node of the I-th segment.

B(1,3)

il

number of subdivisions into which the segment is divided.

B(1,4) 1 for the aorta, zero otherwise. (The reason for this distinction

is that complex E is described by a different expression for the
aorta than for other vessels).
Parameters of the J-th subsegment of the I-th block are stored in
the vector S(I,J,K). Components of this vector are the inner radius, wall
thickness, modulus of elasticity, length and distance from the reference

point of the segment etc.

B. The Block Diagram of the Program and a Description of some of

Its Blocks.

The block diagram of the program is given in Figs. 13, 14.
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PART 1

[Calculate 2,Q,BCG of branch I|

\

(::Proximal node of branch I is':>

node number N=I+1

no

yes

1=1£§]

( All branches with proximal node number N )

have been calculated

yes

[ no

[Ehlculate loading impedance of node N]

( N=NN number of source node:)

yes

v

Part 2

Fig, 13 Part 1 of Block Diagram

no

o e e A N kit
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PART 2
Part 1
[Flow through source D=NN F=1]
P ! {
Take the first branch of which D is the
proximal node which has not been calculated
in part 2 - branch number I
Vi
Calculation of P,F through node number I
and BCG contribution of branch I
(pranch number I is a terminal I)ranczl{)._‘l D=1
No
ers &
Is there a branch with proximal node Dnpot
calculated in part 2
Yes

No

[D = number of proximal node of branch D |

No

Fig. 14 Part 2 of Block Diagram
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1) Impedances of the lumped model are calculated from the configuration

illustrated in Fig. 15. This leads to the following expressions:

Z + 272 .7 + 2
Zin . £ ti out out (2-55)
' 1+ Ztizout
with
1
Z,, =
ti Zt
U = U zl + Zout + Ztizout L (2-56)
in out Z
out
U is the electrical analog of P (voltage - pressure).
Zg
Zin Zout:
Z
Uin t U
out

Fig. 15 One segment of a vessel
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2) A note on the order of calculations performed by the program.
In each segment calculation proceeds in the.following order:
At the beginning of calculations it is assumed that the outflow from
the segment considered is F = 1, This means that in the case of
lumped parametérs Q and BCG are calculated from P and F at the distal
end of the segment. For this reason calculations of the contribution
of the terminal group in the modified model of small vessels (which is
very important because of the number of branches involved) have to be
perfo;med using the assumption that parameters in this group are not
lumped but distributed (unlike the rest of the system), since P = 9
at the distal end of this group.

3) In part 3 of the program actual values of variables are found from

assumed values (sce previous section) from the condition of linearity:

Pre1l Preal
Feal “F 7P = p (2-57)

Here Freal is the flow through the considered node when the flow

from the source is

Fo =1 ' (2-58)

It is calculated in part 2 of the program. F is the flow through
this node assumed in part 1. P is the pressure calculated in part 1.

A similar notation will be used for other variables throughout

this section.

Prcal = Fr:eal'zout (2-59)

(pressure in the considered node) and



48

BCGreal = Freal'BCG ) (2-60)

|

Qreal - Freal'Q (2-61)

4) Modified model of small vessels. Using the same expressions as in

section 3 and the fact that there are 11 branches and 6 groups

6 _ .,6 Preal

real = reall - P (2-62)

where Freal is the real outflow through one terminal node and Freal

the total reéal outflow from terminal nodes of the last group).

In the calculation of BCG and Q the number of branches in each

group is considered in part 2 of the program., For this reason

BCC oq1 = Freall'BCG . (2-63)

Qreal = Fceall'Q (2-64)
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CHAPTER 3

Contnibution of the Hearnt

This chapter examines the most significant contribution of the
component Yo ~ the contribution of the moving heart.

It is generally accepted that the contribution of the heart is the
second most important single component of the human BCG, Two attempts to
estimate the motion of the heart have been made so far. One of them (4)
has been made specifically for the purpose of BCG analysis,the other one
for other purposes,but its possible application for BCG analysis has been
expressed in (5). The first of these two studies is of a more synthetic
nature - it Ls based on experimental data which are used to obtain the
motion of the center of gravity of the heart via simplifying assumptions.
The other is analytical in that it starts from a physical description of the
system, makes some simplifying assumptions and arrives at the motion of the
CG of the heart. Results of these two studies are quite different. Both
these studies consider only the head-foot component of the BCG. The
character of the approach presented in this chapter is analytical. It
uses some simplifications suggested in (5). It is, however, physically
more complete.

It is assumed in (5) that the heart is a sphere with a single
outlet, the cross-section of which is equal to the total cross-section of
vessels leaving or entering the heart ('heart vessels' from now on)., It

{s oriented in the head-foot (y) direction as is the direction of the blood-
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flow. The bloodflow through this outlet is equal to the sum of bloodflows
leaving or entering the heart. This means that the directions in which
individual heart vessels are leaving or entering the heart are not
considered, which is a very drastic simplification. As for other
simplifications (tge shape of the heart and its mechanical coupling to the
chest cavity), these are made necessary by the lack of data and by physical
complications which can hardly be overcome at this moment. The heart is
assumed to be surrounded by a viscoelastic tissue which is, however,
represented by lumped mechanical coupling (see Fig. 16). The tissue
itself is cnclosed in a cylindrical cavity (sce Fig. 17). The only force
(except for the force due to coupling and acceleration of the heart)
considered is the force due to the flow through the only outlet. The

dynamic equation governing the motion of the center of gravity of the

heart is then

mHy + dy + cy = Ff (3-1)
with
dmy,
Fe=-Viel @t (3-2)
here
L i3 the mass of the heart.

c,d are viscoelastic constants (see Fig. 16). Their derivation in (5)

is described later.
FE is the force due to outflows.

Viel is the relative velocity with which the blood leaves the heart.

Comparison of results from (4) and (5) (Figs. 28,29) shows that they are

completely different.
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The first approach used by this author considered all six degrees
of freedom (i.e. not only the displacement but also the rotation of the heart
were simulated). It will be described here although it has been abandoned
later for reasons that will be explained at an appropriate place in the
text. '

Results obtained from this first model were used as a justification
for simplifications introduced into models investigated later.

The following description of the first model could, perhaps, be
used as a starting point of another study.

a) the heart is a spherical cavity the volume of which is given by the
{nstantaneous volume of blood it contains and the volume of the heart
muscle. It is realized that this assumption is rather arbitrary
since the heart will be considered as a solid body coupled to the
external frame by mechanical springs and dashpots which neglects the
motion of the vibrating tissue surround{ng the heart.

b) for simplicity it is assumed that the density of the heart muscle and
of the blood 1is 1.

c¢) the heart vessels considered are the same as the real ones. Their
positioning on the surface of the sphere and directions in which blood
flowing through them is leaving or entering the heart are chosen in
such a way as to approximate the reality in an acceptable way.

d) flows through various heart vessels are taken from (8) - presumably
typical normal flows.

e) the coupling of the heart to the walls of the thoracic cavity (which
is assumed to be at rest - since the frequency of breathing is normally

much lower than that of the heart, this scems to be an assumption which
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should not affect results significantly) is viscoelastic. (In (5)
only forces are considered).
(£) coupling parameters are calculated from assumed viscoelastic parameters

of the tissue in the same way as in (5) for forces and from simple

assumptions for moments.

It is obvious that these assumptions simplify the reality
significantly. The main reasons why they were accepted are, again, the
complexity and poor documentation of the real system. Without drastic

simplifications simulation of this problem would not be possible at all.

a) Parameters

The mechanical coupling of the heart to the chest wall is assumed

to be as in Fig. 16.

d
iy Z
- Z
y
m ::: Chest Wall
c L~
Heart /\/\/\[ ?

Fig. 16 Mechanical coupling Heart - Chest Wall

Index 1 = F is used for force coupling, M is used for rotational coupling.
The geometry assumed in (5) is accepted as the basis for the cal-
culation of constants c and d (Fig. 17). Constants for force coupling

wore derived from measurcments published in (9)and the assumption that the
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Fig. 17 Geometry assumed in (5)
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heart is supported by a cylinder of a homogeneous tissue, the cross-section
of which is equal to the cross-section of the heart. On the basis of these
assumptions two sets of constants are calculated in (5) - one for head-foot
and one for lateral coupling. These assumptions and constants were
accepted here with'the only change that constants were assumed to be the
same in all directions. The reason for this simplification is that the
geometry is so simplified that making the distinction between the two
directions is hardly justified and also because the way in which coupling
constants are calculated for momentum makes a similar assumption,

For

these reasons instead of

5 ] 4
Cpy = 6.346 x 10 dFH = 1.929 x 10

5 4
oL 17.6278 x 10 dFL = 1.929 x 10

i

(head-foot and lateral)

0
1}

_ 5
FL = CF © 6.346 x 10

FH ~ F

[=9
[~9
n

i = 95 clF =1.93x 10

was assumed.

To derive Cy dM the geometry illustrated in Fig. 18 was accepted,
It is assumed that the heart is a cylinder coupled to a fixzed
outer ring by a viscoelastic material. (In the dynamic equation of the
heart the mass of the surrounding tissue will again be neglected). Let
us assume that under small deformation planes perpendicular to the axzis of

rotation remain planar and perpendicular to the axis of rotation and that
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_ Chest Wal

Fig, 18 Derivation of constants ¢, dM'

radial lines in these plancs remain radial under the considered deformation.

Then (see Fig. 18)

M

7.27RL = M(R) = M > T = STRL (3-3)
d¢ = -é- with G = -——E—-l—— (3-4)
2(1 + -l;)
R R
¢=(2d¢= 2 M dR=H lniz— (3-5)
J 27RLG 212G R,
R R
here
G is the modulus of rigidity of the tissue.
% 1s Polisson's ratio which for incompressible material is .5 (this is a

rather arbitrary assumption but the effect of change of parameters

proved to be small)
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T is shearing stress,

At the same time we have (see Fig. 16 for coupling)

or
M
cy = s (3-7)
so that
M 2 LE
M- R, 3 - R (3-8)
Mo, 2 gn 22
212G R Ry
1
here Rl is the radius of the heart, R2 the radius of the chest cavity.
5 6
For E =107, & = 10, Rl =5, RZ = 12 we obtain oy = 1.17 x 10".
From
ZﬂRiV
d, = (3-9)
Fp _Liy
2 21
(here R, is the radius of the chest cavity).

2

(This equation follows from the assumption that the heart with a
total cross-section nRi is supported by a cylinder of tissue (viscosity v)

, 1
of effective length RZ -3 Rl).

and

4
dF = 1.26 x 10

(calculated in (5) from data published in 9)).
we get

v = 800
and

v
dH = CyE" 9.35 x 10 (3-10)
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As stated before the same constants are assumed in all directions.

Summary of parameters:

cp = 6,346 x 10°
¢y = 1.17 x 108
dg = 1.93 x 10*
d = 9.35 x 103

b) Dynamic Equations

The heart is assumed to have 6 degrees of freedom. The motion of
the heart will be fully described by three equations for the displacement
of the center of gravity of the heart,and three equations for rotation.
These have to contaiq or be accompahied by equations for forces and moments.
Let us start with equations governing the motion of the center of gravity

of a body with changing mass. It is well known that the following equation

dm
i =
My + outlets vreli de Fext (3-11)

describes the displacement of the CG of such a body.
T is the displacement of the center of gravity of the body.

my is the time dependent mass of the body.

vreli {s the relative velocity with which the mass is leaving the body
through the I-th outlet with the rate of mass flow.
ﬁcxt is the vector sum of external forces acting upon the body.

A similar equation can be derived for rotation:

Let L denote the angular momentum of the body:
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L = volume r xvdm = volume rxwxrdm (3-12)

In our case of spherical body the situation is simple since we

have

L=J6. with J = %g-ﬂrs (3-13)

@ is the angular velocity of the body.

The equation for the change of angular momentum during an
infinitesimal time interval dt under the action of external moment ﬁext

is

L,(c + de) + Lp(e + de) - L,(t) = M -dt (3-14)
(subscript H for the heart, B for the blood that left the heart in the
interval dt) or in our case

- - - - dm - =
(J+ dJ) (v + dw) + T out Xuar - Jw = Mext (3-15)

here ;out is the position vector of an outlet with respect to the center
of the sphere, U the velocity of blood leaving the heart. We will assumé

only one outlet for simplicity. This leads to

dJ - do , = - dm _
t ¥ +J e troue XY T Mext: (3-16)
or
A -dJ, - - dm _
Ju + w0 ge troee ¥V dc Hext: (3-17)
when we replace u by
U= U= Veelr + Vrel (3-18)

this becomes
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out X vrel dtc = Mext (3-19)

External Forces

We have two kinds of external forces - one is due to the mechanical
coupling, the other is due to the fact that the heart is connected to
heart vessels which pull at the heart because of the forces generated in
them by the changing direction of blood flowing in them. This concerns
mainly the aorta and the pulmonary artery.

Forces due to coupling are described by

F =cr+dr (3-20)

A similar equation is used for moments.

The last component of the external force to be considered here is
the force developed by the changing direction of flow in the heart vessels
which is transmitted to the heart through the walls of these vessels.

Only the force developed in the aorta and in the pulmonary artery will be

used, the others being considered negligible.

A. The Aorta

It will be assumed that the shape of the aorta is circular right
from the aortic root. Since a part of the blood flowing through the aorta
is leaving it approximately at the highest point of the aortic arch (sece

Fig. 19) an outlet will be assumed at this point and the amount leaving

here will be taken as

fout(t) = ¢ f(t) (3-21)
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Fig. 19 The Aortic Arch

here fout is the bloodflow at point 2.

£ 1is the bloodflow at point 1 immediately before the outlet.

¢ 1is taken to be equal to A

It is realized that this is a simplification.

An infinitessimal mass dm moving along an arch of radius R with

velocity v causes a force

2
v..dm (3-22)

dF = R

which is pulling radially from the center of the arch.

Let us assume that the velocity of flow at time t and point (R,$)

(polar coordinates) (sce Fig. 20) is (assuming an aorta with uniform

parameters)

5—(-%—’5‘1 ,0) = v(t - Mi}‘l) for & < m (3-23)
P p

V(t,¢) = V(C -

and
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v(t,d) = v(t - 51%1929.(1,- ) for ¢ > (3-24)

where cpis the velocity of transmission of a pressure pulse.

Let us
take cp= 500 cm/sec.
Aortic Arch
Heart
Fig. 20 The Aortic Arch
We have
2 2
.d d 2
aF = Y20 Y RRRAD L Bop gy (3-25)

where A is the area of the cross-section of the vessel, assumed to be

constant.

For the two components of the total force in the plane of the

aortic arch we have (assuming p = 1)

8
r 2
F“ a dFH = —Ja v (£,8)\ sind d4 (3-26)

"
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B B

[ T2
F = dF = - v°(t,$)A cosd d¢ (3-27)
vy Ja Y a

Expressions (23,24) are substituted into (26) and (27) and the
resulting integrals evaluated numerically. The force FH is then
decomposed into ité components Fx, Fz according to Fig, 21, (Z is the
vertical axis, X horizontal oriented to the right hand side of the

subject).

60°

Aortic
Arch

v
(S

Heart Fig, 21  Decomposition of F.

The next step is to obtain the force acting upon the heart. To
do this it is assumed that the physical situation can be simplified to

that illustrated in Fig. 22 (zero moment)

Fig. 22 Decomposition of F .
y
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The component FY is then obtained from
a
Fy = F = (3~28)
Fx, FZ are assumed to act directly upon the heart,

B. The Pulmonary Artery

With the notation of Fig. 23 we can derive the force due to the
change of direction of flow in the following way:
yp

dm.vy + F__.dt = dm.vy(t + dt) =0 (3-29)

dt is the time in which the velocity of dm changes from vy to zero, i.e.

changes direction by 90 degrees. This gives

pr = - Vy.'(-l't':' (3-30)

This force acts upon the heart directly and is parallel to the

y axis.

We assume again

%
v(t,2) = v(t - Z’O) (3-31)
P
and similarly
im _ dn
d dt 2
e,2 - 2,0 (3-32)
P

t is the length of the main pulmonary artery.
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////j//ﬁdm at t + dt
‘.

dm at time t

Pulmonary Artery

Heart

Fig. 23 Flow in the Pulmonary Artery.

This concludes the description of forces acting upon the heart.

Let us note that because of the effect of smallness of distances with

respect to c the effect of forces due to outflow and forces due to the
change of direction of the flowing blood in the y direction practically

cancel one another except for the first part of ejection - see Fig. 24,

C. Physiological and Anatomical Data

It was not easy to gather the necessary data and some new assump-
tions had to be made. Flows in various heart vessels (see Fig. 25) are

*
from (8,13) and represent a normal heart. Data about the mean volume of

atria and ventricles as well as the mass of the heart muscle were taken

The following table (Table 1) summarizes cross-sections

from (15).
which are deduced from

and positions of outlets and directions of flows,

* Flows measured in dogs are extrapolated to man
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illustrations in various anatomy textbooks. Positions of outlets are
given as positions of points on a sphere, the diameter of which is the
mean diameter of the heart corresponding to its mean volume. Directions
of flows are given by end points of vectors of unit length (this is

convenient for calculations).

(axis z is perpendicular to the sagital plane, y is head-food).

Table 1. Some anatomical déta.

vena cava aorta pulmonary pulmonary
artery " velns
superior dinferior
Position of | x -3.9 -3.9 0 -1 1 -1
outlets y 3.9 -3.9 5.4 5.5 | 4.5 4.5
z -1.6 -1.6 -1.5 -1 -3.3 -3.3
Direction X 0 0 0 .22 .67 | -.63
of flow y | -1 .99 .93 72 | a7 | o
0 -.17 -.37 -.65 -.72 -.77
Cross-
section 3.02 3.83 6.8 7.1 4.64
(cm2)

To solve the described system of equations a computer program
using the HPCG subroutine from the scicentific subroutine package of IBM (14)
was written, In order to include the effect of rotation of the heart,
the motion of three points (at time t = 0 unit vectors in the x, y and z
directions) connected to the moving heart is calculated. We thus obtain
a sct of 21 simultancous differential equations: 6 for the position and

velocity of the CG of the heart, 6 for angular position and velocity



68

describing the rotation of the heart and 9 for the position of three
reference points. The last three vectors were continuously normalized
in order to prevent the eféect of numerical error from distorting the
mutual positions of these orthonormal vectors. The details of this
program will not bé described,

When this set of equations was solved it was clear that the
resulting rotation (as described by the three reference vectors) is
relatively so small (the largest component - originally of length 1,
has never been changed by more than .08) that in view of other
simplifications it seems admissible to consider only the motion of the CG
of the heart instead of the whole rotating sphere. This is very important
since the number of equations to be solved simultaneously is reduced
from 21 to 6. Since these equations are decoupled (the effect of variables
from one component of the three vector components does not influence
equations for the two remaining components) we can solve just 2 or 4 of
these equations if we are not interested in all components (which is
usually the case).

Only displacement (in the y axis) was investigated from this point
on. As it was decided to simulate the effect of several factors (to be
discussed later) separately it would have been expensive to do it on the
complete model and the simplified model neglecting rotation was simulated.
For this reason only results obtained from this simplified model will be
shown and discussed here.

Another change introduced at this point concerns the value of

mechanical constants. The way in which constants, c,d, were obtained in
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(5) is not very reliable because of the uncertainty of the value of the
complex modulus of elasticity. (10) contains values of the natural
frequency and damping of the heart inside the thoracic cavity (fr = 8 cps,

§ = .25). 1If it is accepted that the system can be described by

m.y + dy + cy = Fext (3-33)
then free oscillations are given by
at
y(t) = a e cos(ut + ¢) (3-34)
with
d
a = - 55; (3-35)
and
w = == Zr_n—:j? = 2n f (3-36)
hﬁ:v H r
Since '
y
§ = l-—z (3-37)
1

(y1 and y, are amplitudes of two waves separated by time E?

m Er’ § can be used to calculate ¢ and d. The values obtained

and used from here on are

c =6 x 10S d = 2,12 x 104

When assumptions described above (except for rotation) were used
to simulate the y BCG, results in Fig. 27 were obtained. It was then

decided to try to incorporate the effect of the changing distribution of
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blood in the heart and the shape of the heart itself during the heart
cycle. It seemed possible to do this by changing equations for the
coupling forces since the tissue is touching the surface of the heart,
assumed to be spherical, the force generated by the mechanical coupling
is related to the éosition and velocity of the center of the sphere.
This is a good opportunity to incorporate the changing distribution of
mass inside the heart.

Let us accept the following model of the heart:

The spherical heart is hollow and divided into compartments - let
us consider only two compartments for simplicity (one has a volume equal
to the combined volume of both atria, the other has volume equal to the
combined volume of the two ventricles). Let us assume that these volumes
are constant (equal to the mean volumes) but that the mass contained in
them is changing according to real volumes of the respective chambers.,
From this model the instantaneous position of the heart's CG with respect
to the center of the sphere can be easily calculated. If % denotes the
position of the CG of the heart along its longitudinal axis w.r.t. the
center of the heart, El’ % the fixed distances of CG's of the two

2

compartments to the center and m , m, masses of blood in these compartments;

mHBthe total mass of blood inside the heart, we have

m..L=mo, +mL (3-38)

Since the two compartments have nearly equal mean volumes (their

centers of gravity are assumed to lie on the axis of the heart) we have

xS %, = 1, (3-39)
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so that

mi = (ml - mz)lo (3-40)

The force due to mechanical coupling is then calculated from the

position of the center of the sphere as
Fo=c@ -1 +dE - 1) (3-41)

To recapitulate: the equation of motion contains coordinates of
the center of gravity of the heart, which is not identical with the
geometric center of the spherical heart. The force due to coupling is
calculated from the position of the center of the sphere, which is obtained
from the position of the CG calculated from the equation of motion and from
the calculated position of the CG w.r.t. the center of the heart.

No experimental values have been found for the time-dependence of
the flow between the atria and the ventricles. For this reason a calculated
shape of the time dependence of the volume of the ventricles has been
taken from (11) and the volume of the atria calculated from this and flows
through the heart vessels (Fig. 26).

Results obtained from this modified model are shown in Fig. 27,
which also includes the acceleration due to flows and the combination of
these two factors.

The following modification was then considered: as stated above,
the heart does not really behave as an isolated single mass but rather as

a mass surrounded by a continuum moving with it. It would not be
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practically possible to investigate this situation in this form., It

seems, however, that the model could be made more realistic by lumping

the continuum in a way illustrated in Fig. 31.

Y

d d

= -

|a

Fig. 31 A Symmetrical Model of the Surrounding Tissue.

Physically this mecans that the thoracic cavity (or that part of it
which is assumed to be affected by the motion of the heart) is divided
into sections, which are coupled to one another by springs and dashpots.
The coupling was chosen as symmetrical and constants such that the

overall spring and dashpot constants remained unchanged (Fig. 32).

Fig. 32  Equivalent Springs.
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=c. (3-42)
d, =4d (3-43)

Results obtained from this model are in Figs. 27,30.
It was decided to try several sections to see the effect of
lumping. For this purpose the situation illustrated in Fig. 33 was

simulated.

Fig. 33  Lumped Continuum,

In this case

= g
cl = 3 c (3_44)
d, = 2 d 1/
]. 3 (3"‘5)

The last modification was that the force due to the changing
dircction of bloodflow was taken as acting upon the section immediately
above the heart (Fig. 34) and not the heart itself. Results are in

Fig. 27 which also tncludes the contribution of the heart due to outflow
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only.

Fig. 34 Lumped Continuum.

Discussion of Results

Before results obtained from the described models are compared
and discussed, some general notes must be made:

Probably the only part of the BCG contribution of the heart that
can be compared with experimental results is the H wave. This is because
the H wave occurs around the beginning of the ventricular systole (12)
before any significant effect of the remaining part of the circulation
can be observed and also because the contribution of the normal heart
in other parts of the BCG is relatively small. When the result published
in (4) (Fig. 29) is examined from this point of view and compared with
normal BCG's (11), it must be concluded that the amplitude of the H wave
obtained in (4) is about twice the normal one (taking into account the

variability of the H wave in normal BCG's).



80

Let us now compare results obtained from the model, considering
forces due to outflow and reactions but not the effect of the CG of the
heart, with results from (4). It can be seen from Fig. 28 that the
timing oé the H wave and its orientation agree. The resélof the two
results do not ag;ee quite so closely but, as already mentioned, it is
difficult to decide about the contribution of the heart except for the
H wave. The amplitude of the H wave as calculated here is smaller than
that obtained in (4) and also smaller than amplitudes normally obser;ed
(between 30,000 and 50,000 dynes). Reasons for the last discrepancy
could be in the shape of flows used for calculations (the rate of change
of flow plays an important role as can be judged from Fig. 24), in the
accepted geometry of the aortic arch (larger distances lead to longer
delays between the two forces in Fig. 24) (this seems to be in agreement
with the fact that people with otherwise similar BCG records may have
quite different amplitudes of the H wave), in the assumed dependence of
flow velocity upon the distance from the heart, the way in which th;
reaction from the aorta and the pulmonary aorta are transmitted to the heart
and the way in which the continuum was represented by segments in our model.
Also the effect of the changing shape has not been included yet. It
should be noted here that the contribution of the heart calculated in (4)
has been redrawn for this thesis from a small picture with a different
time scale so that some differences can have origin in inaccuracies
resulting from this approximation.

Results obtained from assumptions'made about the effect of the
changing blood distribution inside the heart cavity are not acceptable

when the criterion of comparison with the H wave is used.
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This may have two reasons:

1)

2)

assumptions used for the calculation of the CG of the heart are not
realistic (for example the real distribution of the heart muscle

is not considered at all),

knowledge of éime courses of ventricular and atrial volumes used for

the calculation of the CG of the heart is not good (this is an important
factor because we are differentiating these variables twice and thus
local details are significant).

The assumption of 'lumped continuum' not only seems to be realistic

but also improves results of calculations.

Results from (5) are summarized in Fig. 28. They will not be

discussed here since the author thinks that they were obtained from an

overly simplified description of the system, (see page 50).

Swmmany of Chapten 3

This chapter contains the first complete enumeration and discussion

of factors associated with the motion of the heart - forces causing it and

reactions. It is suggested that a model considering only displacements

and neglecting the rotation of the heart is sufficient for the simulation

of the BCG contribution of the heart since the effect of rotation is

small.

1)

2)

Factors affecting the motion of the heart are:
forces due to the blood leaving the heart and entering it.

forces due to mechanical coupling: heart - surrounding tissue - chest

wall,
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3) forces due to the changing directions of flow through the aoftic
arch and the pulmonary artery.
4) forces due to the changing shape (and position of the CG) of the
heart.
5) forces due to'the mechanical coupling with the tissue surrounding
the heart and moving with it as a continuum,
Eqdations descyibing factors 1 to 5 are derived and used for the
simulation of the motion of the heart. For the simulation of factor 4,
a simple model making use of the coupling of the surface of the heart
with the surrounding tissue is suggested. Factor 5 is simulated by a
lumped representation of the motion of the continuum,
Individunl factors and their effect on the motion of the heart are
examined separately (factors 1 and 3 are considered together) because
the differential equations representing the motion of the heart are linear.
This makes it possible to estimate the validity of description of
individual factors.
It is concluded from results obtained from this simplified approach
that all factors, except for factor 4, are described adequately and that
a reformulation of their representation will not be necessary in future
research. Factor 4, on the’other hand, is not described adequately and
more research will be needed to simulate its effect. This author believes,
however, that the method of representation of this factor as proposed here
is valid and that only a more sophisticatéd geometrical description and
a better knowledge of the hemodynamic variables affecting its influence
on the motion of the heart will be needed to obtain realistic results,

This will require a complete model of the circulation. For this purpose
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analogs seem to be better suitéd than digital computers. The amount

of experimentation involved in simulation could be too expensive if a
digital computer were used. In fact, once a linearized description

of the problem at hand is accepted it is no longer justifiable to use a

digital computer for its simulation,
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Summary

In the first part of this thesis a new method for the
calculation of the largest part of the human BCG (due to the arterial
part of the circulation) is proposed. It is easy and economical to use.
It can also be used as a diagnostic tool for the design of analogs or
for checking the accuracy of existing analogs. It is used for this
purpose here and an analog of the human circulation is evaluated from
the point of view of BCG simulation. A new way of representation of small
vessels for BCG simulation is suggested.

In the second part (chapter 3) the contribution of the heart to
the total BCG is simulated. Two methods for the solution of this problem
have been published - (4,5), one of them (4) cannot be used for direct
simulation (by an analog or digital computer). The other is over-
simplified and incomplete. The approach suggested here is complete in
that it considers all physical factors causing the motion of the heart.
More research will be needed to describe more accurately those of the
considered factors which are not described adequately. It has been
concluded that a relatively simple approach can be used to simulate the
contribution of the heart motion.by neglecting the rotation of the heart.
This is very important since nonlinear simulation is difficult by analogs
and a detailed study of various factors (e.g. the calculation and effect
of changing ventricular and atrial volumes) impossible unless a model of
the complete circulation is used - and this would be very expensive on
digital computers.

It is the impression of the author that all components of the
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human BCG have now been adequately described and that the simulation
of the complete BCG is now possible. This is very important since

detailed analysis of BCG records is the first condition for its

complete understanding.
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