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ABSTRACT

Microwave rotational spectra of seven different van der Waals complexes
consisting of one, two, or three rare gas (Rg) atoms bound to one NH, molecule were
measured using a pulsed molecular beam Fourier transform microwave spectrometer. The
rotational spectrum of each complex is complicated by the internal rotation and inversion
motions of the NH; subunit. Due to the large amplitudes of these motions, the NH,
moiety can essentially be regarded as a sphere during the rotational analysis of each
species.

The rotational transitions of the Rg-NH; (Rg = Ne, Ar, Kr) dimers follow the
pattern of a diatomic molecule. The Ne,-NH; (**Ne,-. *Ne,-) and Ar,-NH;, trimers are
asymmetric tops and their spectra consist of a-type and b-type transitions, respectively.
The *Ne™Ne-NH; isotopomer is also an asymmetric top but both a- and b-type
transitions are allowed due to the reduced symmetry of the complex. The Ar,-NH; and
Ne;-NH; (*Ne;-. *Ne;-) tetramers are oblate and prolate symmetric tops. respectively.
The mixed isotopomers. *’Ne,”’Ne-NH; and *Ne~*Ne,-NH,. are asymmetric tops and their
spectra contain a- and b-type and a- and c-type transitions. respectively. The rotational
constants obtained from fitting the spectra of the various Rg,-NH, (n = 1, 2, 3) complexes
were used to estimate the Rg-Rg and Rg-NH; bond lengths in each species. The N
nuclear quadrupole hyperfine structures of the rotational transitions were resolved for
each complex and analyzed in terms of the orientation and dynamics of the NH; moiety

within the clusters. Additional splittings due to the inversion of ammonia were resolved
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for each deuterated isotopomer and compared as general indicators of the relative energy
differences between the two inversion states of each cluster.

The experimental results were complemented by the construction of ab initio
potential energy surfaces for the Ne,-NH; (n = 1, 2, 3) complexes using fourth order
Moller-Plessett (MP4) perturbation theory and coupled cluster [CCSD(T)] theory. Three
surfaces were constructed for each cluster based on different umbrella angles of the NH,
monomer to simulate the inversion motion. The topologies of the potential energy
surfaces were compared for the three Ne containing complexes and were related to

experimentally derived parameters for each system.
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CHAPTER 1

Introduction

The notion of forces between molecules dates back to the late 19" century with
the pioneering work of Johannes Diderik van der Waals.' Van der Waals won the Nobel
Prize in Physics in 1910, in part. for his development of the theory of corresponding
states which established an equation of state for the relationship between the pressures,
volumes. and temperatures of gases and liquids. The early contributions of van der Waals
have had a lasting impact in chemistry as demonstrated by the common reference in
textbooks that all attractive forces between molecules are "van der Waals’ interactions.>**
His work. in essence. laid the foundation for realizing the fundamental connection
between the properties of bulk matter and intermolecular forces.

Since the time of van der Waals. our understanding of intermolecular interactions
has continued to evolve. Crucial advances’*’ were made at the beginning of the 20"
century and after the work of London® in the 1930s, it was established that the interaction
energy between molecules was composed of four distinct components, termed the
electrostatic. induction. dispersion. and exchange energies. The origins of the first three
components are rooted in the physical properties of the individual substituents. that is, the
permanent multipole moments and polarizabilities of the molecules involved in the
interaction. For neutral species, the electrostatic, induction, and dispersion energies can
be thought of as arising from multipole-multipole, multipole-induced multipole, and

induced multipole-induced multipole interactions, respectively. The fourth component is
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quantum mechanical in origin and is a result of the Pauli exclusion principle which
forbids two electrons with the same spin from penetrating the same region of space.
These four components form the core of the classical theory of intermolecular interactions
and when combined in a pairwise additive manner, can often. but not always, provide a
qualitative explanation of bulk phase properties. A well-cited exception is the inadequacy
of the pairwise additive approach for the prediction of the crystal structures of rare gases
(Rg). Under the assumption of pairwise additivity. a hexagonal close-packed structure is
expected for all Rg atom solids except helium, while X-ray diffraction experiments prove
that the actual structures are face-centered cubic.” Furthermore, the experimentally
determined crystal binding energies deviate from the theoretical values by about 10%.

Since intermolecular interactions are not strictly additive. a rigorous, quantitative
description of condensed phases requires knowledge of the contributions made by many
body forces. Thus, to achieve molecular level understanding of condensed phases, it is
necessary to accurately characterize the nature of both the additive and the nonadditive
contributions to intermolecular interaction energies. The primary goal is therefore to
construct potential energy surfaces that capture each component of the interaction energy
between molecules and to relate these to intrinsic. physical properties of the substituents
involved. Typically. interaction potentials are derived using one of two methods: a) by
fitting experimental data to mathematical expressions or b) via direct ab initio quantum
mechanical calculations.' In general. the nonadditive contributions to potential energy
surfaces are not well understood. The key to achieving an accurate picture of

intermolecular interactions on the microscopic level thus lies in the parallel pursuit of
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experimental methods that identify nonadditive effects and the derivation of functional
forms that describe them.

Historically, experimental attempts to elucidate the role of nonadditive
contributions to intermolecular interaction energies were made via measurements of gas
imperfections'' and molecular beam scattering techniques.'>"* The successes of these
experiments were limited by their sensitivity and accuracy. A more recent approach
which overcomes these problems involves the measurement of high resolution spectra of
weakly bound complexes that are formed in molecular beam expansions. These
complexes are held together mainly by dispersion interactions and are commonly called
van der Waals molecules. During the formation of these species in a molecular beam. low
vibrational and rotational temperatures are achieved and as a result, only the lowest
energy levels are populated. This reduces the spectral congestion. Furthermore. since van
der Waals complexes are studied in a collision-free environment. the experimental data
are not obscured by structural disorder or spatial and temporal inhomogeneities which
plague bulk phase measurements.'* This allows the determination of spectroscopic
constants with great precision and these parameters are. in turn, intrinsically sensitive to
the fine details of the potential energy surface that describes the weak interaction.
Evidence of three body and higher order effects is obtained through comparison of the
spectra of van der Waals dimers with the spectra of larger van der Waals clusters. If the
appropriate binary potentials are accurately known. the nonadditive contributions to the
interaction energy can. in principle. be isolated for van der Waals complexes composed of

three or more substituents. Once the nonadditive effects are identified, various models of
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the nonadditivity can be tested for their ability to reproduce the spectral deviation from
pairwise additive predictions.

Van der Waals molecules are particularly attractive candidates for studying
nonadditive effects because the size of the weakly bound cluster can be increased in a
stepwise fashion. In general. Rg -molecule systems are prototypes for investigating
solvation on the molecular level.'* Rare gas atoms are the ideal choice of solvent since
they serve as structureless probes of the weak interaction with the molecule of interest.
These complexes are readily produced in a molecular beam expansion and several Rg-Rg
and Rg-molecule potentials are well-determined. This allows accurate identification of
nonadditive contributions to the interaction energies of the larger clusters. In principle.
higher order nonadditive effects can be isolated as Rg atoms are added to the cluster in a
stepwise fashion provided that the lower order terms are well-characterized from the
analysis of the smaller clusters. Since van der Waals complexes are held together by weak
forces. they often exhibit large amplitude bending and stretching modes with frequencies
on the order of tens or hundreds of GHz."’ These motions depend directly and sensitively
on the intermolecular potential energy surface. The experimental information extracted
from the measurement of van der Waals vibrations and excited vibrational states may be
used to build and test theoretical models that describe how to couple the intermolecular
and intramolecular modes in weakly bound complexes. The ability to produce a range of
different sizes of Rg, -molecule complexes via molecular beam techniques thus affords
the opportunity to observe. on the microscopic scale, how both the structural and

dynamical properties of weakly bound systems evolve as successive Rg atoms are added.
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Furthermore, the molecule of interest can be spectroscopically probed in cryogenic Rg
matrices which provides a definition of the bulk limit that the Rg_-molecule clusters
approach.'® In this respect, van der Waals clusters have the potential to bridge the gap
between isolated molecules and condensed phases.

The current work describes a series of experimental and ab initio computational
investigations of van der Waals complexes containing one, two, and three Rg atoms
paired with NH;. The desire to understand the physical and chemical properties of NH; on
the microscopic level arises from its critical role in a variety of processes. Since the
reactivity of NH; depends on interactions between NH; and other molecules, a precise
knowledge of weak interactions with NH; is integral to the understanding of these
processes on the molecular level. The primary use of NH; is agricultural. It is commonly
used as a fertilizer. either by direct application or in the form of ammonium salts (nitrates,
sulfates, and phosphates).'” Industrial uses of NH, include: petroleum refining.
metallurgical processes. semiconductor manufacturing, rubber processing, welding, and
as a solvent for scrubbing fossil fuel combustion streams. Ammonia is used commercially
as a refrigerant and as a reagent for making explosives. sulfuric acid, nitric acid,
acetaminophen. resins, dyes, insecticides. household cleaning agents, and synthetic fibres
such as rayon and nylon. In the laboratory, NH; is known for its ability to solvate
electrons. Alkali metals dissolve in NH; to form a blue solution which conducts
electricity and is a good reducing agent. In this capacity, NH; is a necessary solvent for
certain synthetic routes such as the Birch reduction in which aromatic rings are reduced to

nonconjugated dienes. Ammonia has been of interest to astronomers and astrophysicists
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for over 30 vears. In fact, NH; was the first polyatomic molecule'® detected in space and
has since been found to be abundant in the interstellar medium, stars, comets, meteorites,
as well as in the atmospheres of Jupiter, Saturn, Uranus, and Neptune through
radioastronomical methods. Recent astrophysical observations have attempted to link the
abundance of deuterated forms of NH; with the level of surface chemistry activity in
various interstellar regions.'**

The spectroscopy of NH; is complicated by the presence of a soft inversion
coordinate. The nitrogen atom can move from its position at the apex of the pyramidally
shaped molecule through the plane of the three hydrogen atoms to the other side of the
plane. This is characterized by a double well potential and quantum mechanical
tunnelling through the barrier between the two potential minima leads to a splitting of the
vibrational energy levels into two tunnelling states. The transition between the two
inversion tunnelling components of the ground vibrational state of NH, falls in the
microwave region (~1.25 cm™') of the electromagnetic spectrum.”' The inversion spectrum
of NH; was measured by Cleeton and Williams in 1934 and was, in fact, the first
microwave spectrum ever reported.” Townes and co-workers successfully devised a way
to invert the population of the two states which ultimately led to the development of the
maser.” The fact that the inversion splitting of NH; falls in the microwave region was
elementary to the discovery of the maser since spontaneous emission is proportional to
the cube of the transition frequency and is therefore very weak in this region. Masers, and
the lasers that followed. have had a large impact in communications, navigation,

medicine. and a host of other fields.
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Since NH; is integral to many processes and has a rich spectroscopic history, it is
not surprising that NH; containing van der Waals dimers have been the subject of a
number of spectroscopic studies over the past 20 years. Some examples are: (NH,),,**
NH;-H,0.%**7 NH,-CO,.”** NH,-CO,” NH,-0CS.*” NH;-N,0.”*° NH,-S0,,”'** NH;-
H,S.”** NH,-CF,H.** NH;-CH,CH.** NH,-C,H.OH.* NH;-HCN,” NH,-HCCH,***” NH,-
HCN,’® and NH;-HNO,.” In gas phase binary complexes, NH, acts solely as a hydrogen
acceptor or Lewis base in contrast to H,O which exhibits amphoteric behaviour. High
resolution spectra provide the necessary information for the construction of accurate
potentials to characterize these weak interactions and explain such anomalous behaviour.
In addition to the large volume of work on NH;-molecule complexes. spectroscopic
studies of the Ar-NH, dimer have been reported in the microwave, !
submillimeter.*' ** and infrared*’******” regions. These investigations have shown that the
NH; subunit undergoes large amplitude internal rotation and inversion motions while
bound to the Ar atom. This leads to the observation of multiple internal rotor and
inversion tunnelling states in the spectrum of the Ar-NH, dimer. The desire to understand
these complicated internal dynamics on the molecular level has led to numerous
theoretical studies of Ar-NH; in recent years.**#*%°*!5253 Of the previously reported NH,
containing van der Waals dimers. Ar-NH; is the simplest starting point for investigating
the dynamics of weak interactions with NH;. This arises from the fact that the
dimensionality of the required model is reduced when the binding partner is a spherical
Rg atom instead of a molecule. In general. the Ar-NH; dimer is viewed as a model system

for studying the coupling of intermolecnlar and intramolecular modes in weakly bound
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complexes. Furthermore, Ar-NH; is a prototype for modelling a ‘symmetric top and ball’
interaction potential in the same way that the Ar-HCI complex was adopted as a ‘rod and
ba"' model.ﬁ.55.56.57

Despite extensive studies of Ar-NH;, there have been no previous spectroscopic
investigations of other Rg-NH, dimers. High resolution spectra of the other dimers in this
series promise to reveal how the size and polarizability of the Rg binding partner
influences the internal rotation and inversion dynamics of NH;. Information about the
internal rotétion of NH; can be extracted from the spectra of excited internal rotor
tunnelling states as well as through analysis of the nuclear quadrupole hyperfine structure
arising from the presence of the quadrupolar "*N nucleus. The observation of inversion
tunnelling splittings in the spectra of the deuterated isotopomers can provide information
about the inversion of ammonia in the ground state of the van der Waals dimers. This
information is not available from the spectra of the NH; containing isotopomers since one
inversion tunnelling component of the ground internal rotor state is missing due to the
requirements of nuclear spin statistics. The spectroscopic studies 