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Abstract To understand the effects that the climate change has on the evolution of species as well as

the genetic consequences, we analyze an integrodifference equation (IDE) models for a reproducing and

dispersing population in a spatio-temporal heterogeneous environment described by a shifting climate

envelope. Our analysis on the IDE focuses on the persistence criterion, travelling wave solutions,

and the inside dynamics. First, the persistence criterion, characterizing the global dynamics of the

IDE, is established in terms of the basic reproduction number. In the case of persistence, a unique

travelling wave is found to govern the global dynamics. The effects of the size and the shifting speed

of the climate envelope on the basic reproduction number, and hence, on the persistence criterion, are

also investigated. In particular, the critical domain size and the critical shifting speed are found in

certain cases. Numerical simulations are performed to complement the theoretical results. In the case

of persistence, we separate the travelling wave and general solutions into spatially distinct neutral

fractions to study the inside dynamics. It is shown that each neutral genetic fraction rearranges itself
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spatially so as to asymptotically achieve the profile of the travelling wave. To measure the genetic

diversity of the population density we calculate the Shannon diversity index and related indicies and

use these to illustrate how diversity changes with underlying parameters.

Keywords Integrodifference equation · Persistence criterion · Travelling wave · Inside dynamics ·
Neutral genetic diversity · Diversity index
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1 Introduction

Climate change is a serious threat to not only the survival of species but it is also known to affect

the intraspecific genetic diversity [2]. The range of a species can be altered and shifted due to climate

change [23]. In particular, climate change can alter the distribution of genetic variants in space and

time [24]. Thus, it is important to understand how underlying biological processes linked with the

effect of climate change alter the genetic distribution of a species.

Mathematically, reaction-diffusion equations of the form

ut = uxx + f(x− ct, u), x ∈ R (1.1)

have been used to study the effect of climate change on the evolution of species as well as its genetic

consequences, where c > 0 is the shifting speed of the environment, and f is the growth rate function

taking the form

f(x, u) =

{
ru
(
1− u

K

)
, x ∈ (0, L),

−du, x ∈ R\(0, L)

for some L > 0 characterizing the size of the climate envelope [25,3]. In the model (1.1), the climate

envelope has size L and shifts to the right with speed c, and therefore, the growth rate function

f introduces a special type of spatio-temporal heterogeneity. A fundamental question is whether the

species can survive in the presence of climate change. In terms of (1.1), it is equivalent to ask about the

long time behaviour of (non-negative) solutions of (1.1). In [3], the authors established the persistence

criterion for (1.1) with more general growth rate functions of Fisher-KPP type. More precisely, they

showed that solutions vanish as time elapses when the net reproduction number, defined to be the

generalized principal eigenvalue of the operator u 7→ uxx + fu(x, 0)u, is non-positive. When the net

reproduction number crosses zero, there exists a unique travelling wave with speed c that attracts

solutions. In the latter case, it is of great significance to understand the genetic structure of the

travelling wave and general solutions of (1.1).

The genetic structure of solutions of (1.1), although generally very complex, can be understood

for a simplified case where the wave is decomposed into a number of neutral fractions that differ only

with respect to their initial spatial location within the wave front. The changes in the distribution

and abundance of these neutral fractions as the wave progresses gives insight as to the effect of the

nonlinear spatial dynamics on the genetic structure. The mathematical treatment of this problem,

concerning the inside dynamics (see e.g. [7,22,1]), namely, the dynamics of neutral fractions of the

travelling wave and general solutions, has been studied in [8].
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When reaction-diffusion equations of the form (1.1) are used, it is implicitly assumed that the

dispersal of the species follows the normal distribution with zero mean, which however is not the

case for most species (see e.g. [13]). An alternative discrete-time continuous-space model often used

in biological literature is the following integrodifference equation (IDE):

un+1(x) =

∫
R
K(x− y)g(y − cn)f(un(y))dy, x ∈ R, (1.2)

which prescribes the density un+1(x) in the (n + 1)-th generation given the density in the n-th

generation through two stages: a sedentary stage and a dispersal stage. An advantage of the IDE

(1.2) over the reaction-diffusion equation (1.1) lies in the fact that (1.2) can be used to model the

spatial spread of long-distance dispersers, while (1.1) is inappropriate in this situation.

In the IDE (1.2), the dispersal kernel K can be taken to be a Gaussian probability density function,

a Laplace function, or, indeed, any other probability density function. Biologically, the dispersal kernel

represents the probability that an individual moves from location y to location x. The function f is a

density-dependent growth function. A typical example of f is the classical Beverton-Holt function [4]

f(u) =
Ru

1 + (R−1)
K∗

u
, u ≥ 0 (1.3)

where R > 0 is the growth rate and K∗ > 0 is the carrying capacity. This growth function is commonly

used by biologists because it is a simple function that exhibits negative density dependence. The

function g is called the climate envelope or the climate envelope function. When g is the indicator

function over R, i.e., g ≡ 1 on R, (1.2) becomes the classical and well-studied IDE:

un+1(x) =

∫
R
K(x− y)f(un(y))dy, x ∈ R. (1.4)

Population spread and travelling waves solutions have been widely studied for this model. The reader

is referred to [31,15,16,17,18,11,9,19] and references therein for the investigation of spreading speeds

and travelling waves, and to [20] for the study of inside dynamics of (1.4). When g is the indicator

function over the interval
[
−L2 ,

L
2

]
, i.e., g(x) = 1[−L2 ,

L
2 ](x), we obtain a particular form of (1.2) that

has been previously studied in [33]. Their work focused on determining the critical speed for extinction

and the role that the dispersal and growth play in persistence.

To summarize, the purpose of this endeavour is to understand the effects that climate change has

on the dynamics of the IDE (1.2) with the focus on two fundamental aspects: persistence criterion and

inside dynamics. To perform the mathematical analysis of (1.2), we make the following assumptions

throughout the paper.

(H) We make the following assumptions.

(1) The dispersal kernel K : R→ (0,∞) is a continuous probability density function.

(2) The growth function f : [0,∞)→ [0,∞) is bounded, Lipschitz continuous and increasing, and

satisfies the following conditions:

f(0) = 0, f ′(0) > 1 and
f(u)

u
<
f(v)

v
for u > v > 0,

where f ′(0) denotes the right-derivative of f at 0.
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(3) The climate envelope g : R→ [0,∞) has an upper bound of 1 and is compactly supported. Let

I := supp(g) be a nonempty interval.

(4) The number c > 0 is the shifting speed of the environment or the climate envelope.

As K is a probability density function,
∫
RK(x) dx = 1 implies K(x) → 0 as |x| → ∞, but we

impose no condition on how fast K(x) decays as |x| → ∞. In particular, the so-called fat-tailed kernels

are allowed. A typical example satisfies the assumptions on the growth function f is the Beverton-Holt

function (1.3) with R > 1. Our assumptions on the growth function excludes any Allee effect.

For the purpose of stating main results and performing analysis in this paper we define the following

spaces for convenience. Recall that I is a compact interval.

C(I) = {u : I → R : u is continuous} ,
C+(I) = {u ∈ C(I) : u(x) ≥ 0, x ∈ I} ,

C++(I) = {u ∈ C(I) : u(x) > 0, x ∈ I} =

{
u ∈ C(I) : min

x∈I
u(x) > 0

}
.

The space C(I) is equipped with the max norm ‖ · ‖C(I). Clearly, C+(I) is the positive cone of C(I)

and C++(I) is the interior of C+(I). Also, we define

C(R) = {u : R→ R : u is continuous} ,
C+(R) = {u ∈ C(R) : u(x) ≥ 0, x ∈ R} .

Main results obtained in the present paper are roughly summarized in the following theorem. We

denote by {un}n∈Z0
an arbitrary solution of (1.2) with initial data u0 ∈ C+(R) being non-zero on I.

Theorem 1.1 The following statements hold.

(1) (Persistence criterion) Let R0 be the spectral radius of the operator F0 : C(I)→ C(I) defined by

F0[w](x) = f ′(0)

∫
I

K(x− y + c)g(y)w(y)dy, x ∈ I, w ∈ C(I).

Then,

– if R0 ≤ 1, un(x)→ 0 uniformly in x ∈ R as n→∞;

– if R0 > 1, then (1.2) admits a unique travelling wave {w∗(· − cn)}n∈Z such that un(x+ cn)→
w∗(x) uniformly in x ∈ R as n→∞.

(2) (Effects of the size of the climate envelope) Assume g(x) = 1[−L2 ,
L
2 ](x) for x ∈ R and L > 0,

and write R0 as R0(L). Then, the function L 7→ R0(L) is bounded, continuous and increasing on

(0,∞), and satisfies limL→0+ R0(L) = 0. Set

R0(∞) := lim
L→∞

R0(L).

Then,

– R0(∞) ≤ 1 implies that R0(L) < 1 for all L > 0;

– R0(∞) > 1 implies the existence some L∗ > 0 such that R0(L) < 1 for L ∈ (0, L∗) and

R0(L) > 1 for L > L∗.
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(3) (Effects of the shifting speed of the climate envelope) Assume K is a Gaussian probability density

function with mean µ ∈ R and variance σ2 > 0, and K0 is a Gaussian probability density function

with mean 0 and variance σ2. Then,

R0 = e−
(c−µ)2

2σ2 r(F00),

where r(F00) is the spectral radius of the operator F00 : C(I)→ C(I) defined by

F00[w](x) = f ′(0)

∫
I

K0(x− y + c)g(y)w(y)dy, x ∈ I, w ∈ C(I).

(4) (Inside dynamics) Suppose R0 > 1. Let v0 ∈ C+(R) be a portion of u0, that is, 0 � v0 ≤ u0.

Consider the solution {vn}n∈N0 of

vn+1(x) =

∫
R
K(x− y)g(y − cn)

f(un(y))

un(y)
vn(y)dy, x ∈ R

with initial condition v0. Then there exists a constant p := p(v0) ∈ [0, 1] such that

vn(x+ cn)→ pw∗(x) uniformly in x ∈ R as n→∞.

Moreover, if, in addition, v0 6≡ 0 on I, then p > 0. Suppose, in addition, that u0 = w∗ and K is a

Gaussian probability density function with mean µ ∈ R and variance σ2 > 0, then

p =

∫
I
v0(x)g(x)f(w∗(x))e

2(c−µ)x
σ2 dx∫

I
w∗(x)g(x)f(w∗(x))e

2(c−µ)x
σ2 dx

.

In our work, we begin by studying the persistence criterion for (1.2). The main persistence results

are laid out in Section 2. The effects of the size and the shifting speed of the climate envelope on

persistence of the population are considered in Subsections 2.3 and 2.4, respectively. In Subsection

2.5, numerical simulations are provided to increase the clarity of theoretical results. We continue our

analysis of (1.2) by investigating the inside dynamics of (1.2). A formulation for the inside dynamics of

(1.2) is presented in Section 3. The analysis of the inside dynamics follows in Subsections 3.1 and 3.2.

Subsection 3.3 finishes with a few numerical simulations exemplifying the theoretical results proven

earlier in the section. This paper concludes with a discussion of the theoretical and numerical results

in Section 4.

2 Persistence criterion

The purpose of this section is to study the persistence criterion for (1.2), namely, the criterion classify-

ing the global dynamics of (1.2). In Subsection 2.1, we derive an equivalent problem and establish the

persistence criterion for the equivalent problem. In Subsection 2.2, we study the persistence criterion

for (1.2). In Subsections 2.3 and 2.4, we investigate the effects of the size of the climate envelope and

the shifting speed of the environment, respectively, on the persistence criterion. In Subsection 2.5, we

provide some numerical simulations to support our theoretical results.
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2.1 Equivalent formalism and analysis

A fundamental question concerning (1.2) is whether a species, whose dynamics are modelled by (1.2),

can survive or not in the long run. In the presence of the climate change, this question can be

rephrased as whether the species can keep up with the shift of the environment. This suggests to look

for travelling waves of (1.2) with speed c, the shifting speed of the climate envelope, and to study

their properties, especially, the stability.

Definition 2.1 An entire solution {un}n∈Z of (1.2) is called a travelling wave or a travelling wave

solution if there is a measurable function w : R→ [0,∞) with w 	 0 such that

un(x) = w(x− cn), x ∈ R, n ∈ Z,

where c is the same as in (1.2). The function w is called a profile or a profile function.

Suppose {w(· − cn)}n∈Z is a travelling wave of (1.2). Inserting it into (1.2) results in

w(x− c(n+ 1)) =

∫
R
K(x− y)g(y − cn)f(w(y − cn))dy

=

∫
R
K(x− cn− y)g(y)f(w(y))dy, x ∈ R, n ∈ Z.

The change of variable x→ x+ c(n+ 1) gives

w(x) =

∫
R
K(x− y + c)g(y)f(w(y))dy, x ∈ R, (2.1)

which is the stationary equation for the profile w. Since g is compactly supported, solving (2.1) for w

is equivalent to solving the following equation

w(x) =

∫
I

K(x− y + c)g(y)f(w(y))dy, x ∈ I,

for w defined on I. This suggests to consider the following equation:

wn+1(x) = F [wn](x), x ∈ I, (2.2)

where the map F is defined by

F [w](x) =

∫
I

K(x− y + c)g(y)f(w(y))dy, x ∈ I.

Then, finding travelling waves of (1.2) is equivalent to finding non-trivial stationary solutions of (2.2).

For clarity, we give the following definition.

Definition 2.2 A measurable function w : I → [0,∞) is called a stationary solution of (2.2) if it

satisfies w = F [w]. A stationary solution w of (2.2) is called positive if w 6≡ 0.
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To study the existence and non-existence of positive stationary solutions of (2.2), we consider the

linear operator F0 defined by

F0[w](x) = r0

∫
I

K(x− y + c)g(y)w(y)dy, x ∈ I,

where r0 = f ′(0). It is the linearization of F at w ≡ 0.

Clearly, F0 is a bounded linear operator on C(I), and it is strongly positive, namely, F0[C+(I)\{0}] ⊂
C++(I). Moreover, it is easy to check that F0 is compact. Therefore, we can apply the Krěın-Rutman

theorem (see e.g. [12,30]) to F0 to conclude that the spectral radius of F0, denoted by r(F0), is an

algebraically simple eigenvalue with an associated eigenfunction φ0 ∈ C++(I). Also, if λ ∈ σ(F0), the

spectrum of F0, then either λ = r(F0) or |λ| < r(F0). In addition, if λ is an eigenvalue of F0 with an

associated eigenfunction in C+(I)\{0}, then λ = r(F0). Set

R0 := r(F0).

Clearly, R0 > 0. The number R0 is often referred to as the basic reproduction number. By the

assumptions on K and g, there holds R0 ≤ ‖F0‖ ≤ r0.

The main result in this subsection is summarized in the following theorem.

Theorem 2.3 The following statements hold.

(1) If R0 ≤ 1, then 0 is the unique stationary solution of (2.2). If R0 > 1, there exists a unique positive

stationary solution w∗ of (2.2). Moreover, supI w∗ ≤ supu∈[0,∞) f(u).

(2) Let {wn}n be a solution of (2.2) with initial condition w0 ∈ C+(I)\{0}. Then the following state-

ments hold.

(i) If R0 ≤ 1, then wn → 0 in C(I) as n→∞.

(ii) If R0 > 1, then wn → w∗ in C(I) as n→∞.

We point out that the proof of Theorem 2.3 falls into the scope of abstract results established in

[32]. For self-completeness, we provide the elementary proof of Theorem 2.3 in Appendix A.

2.2 Travelling waves and global dynamics

So far, we have been focusing on the equivalent problem (2.2). Let us now go back to the IDE (1.2).

We are interested in travelling waves of (1.2) (see Definition 2.1). By the analysis at the beginning

of Subsection 2.1, the profile function w for a travelling wave of (1.2) satisfies (2.1), and therefore,

the restriction of w on I completely determines w. By Theorem 2.3, we obtain the following result

concerning the existence and non-existence of travelling waves, as well as the global dynamics of (1.2).

Recall that w∗ is the unique positive stationary solution of (2.2) in the case R0 > 1.

Theorem 2.4 The following statements hold.
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(1) If R0 ≤ 1, then (1.2) admits no travelling wave. If R0 > 1, then (1.2) admits a unique travelling

wave {w∗(· − cn)}n∈Z, where

w∗(x) =

∫
I

K(x− y + c)g(y)f(w∗(y))dy, x ∈ R. (2.3)

In particular, w∗ ∈ C+(R)\{0} and satisfies w∗(x)→ 0 as |x| → ∞.

(2) Let {un}n be a solution of (1.2) with initial condition u0 ∈ C+(R) being non-zero on I. Then the

following statements hold.

(i) If R0 ≤ 1, then un(x)→ 0 uniformly in x ∈ R as n→∞.

(ii) If R0 > 1, then un(x)→ w∗(x− cn) uniformly in x ∈ R as n→∞.

Proof (1) In the case of R0 ≤ 1, if there is a travelling wave of (1.2), then (2.2) admits a positive

stationary solution, which contradicts to Theorem 2.3.

If R0 > 1, then it is easy to see that w∗ is a profile for a travelling wave and satisfies required

properties. The uniqueness of travelling waves in this case follows readily as the existence of another

travelling wave gives a second positive stationary solution of (2.2), which contradicts Theorem 2.3.

(2) Note that the solution {un}n satisfies

un+1(x+ c(n+ 1)) =

∫
I

K(x− y + c)g(y)f(un(y + cn))dy, x ∈ R.

It follows from Theorem 2.3(2) that the sequence {un(· + cn)}n restricted to I converges in C(I) to

0 when R0 ≤ 1 and to w∗ when R0 > 1 as n→∞.

Now, if R0 ≤ 1, then

sup
x∈R

un+1(x+ c(n+ 1)) ≤ sup
x∈R

∫
I

K(x− y + c)g(y)f(un(y + cn))dy

≤
[
sup
x∈R

∫
I

K(x− y + c)g(y)dy

]
f ′(0)‖un(·+ cn)‖C(I)

→ 0 n→∞.

If R0 > 1, then

sup
x∈R
|un+1(x+ c(n+ 1))− w∗(x)| ≤ sup

x∈R

∫
I

K(x− y + c)g(y)|f(un(y + cn))− f(w∗(y))|dy

≤
[
sup
x∈R

∫
I

K(x− y + c)g(y)dy

]
Lip(f)‖un(·+ cn)− w∗‖C(I)

→ 0 n→∞,

where Lip(f) is the Lipschitz constant of f .

This completes the proof.

We end this subsection by making some remarks about Theorem 2.4.
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Remark 2.5 By (2.3) and the equation satisfied by w∗, we have w∗(x) = w∗(x) for x ∈ I. In Theorem

2.4 (2), the value of the initial data u0 on R\I is irrelevant as the climate envelope g is supported on

I. In particular, if u0 ≡ 0 on I, then un ≡ 0 for all n ≥ 1. Moreover, the conclusions of Theorem

2.4 (2) are valid for measurable initial data, since u1 is always continuous and can be treated as the

new initial data. This provides theoretical supports for our simulations done later, where initial data

is chosen to be discontinuous functions such as indicator functions over intervals.

A full version of Theorem 2.4 (2) reads as follows: Let {un}n be a solution of (1.2) with initial

condition u0 : R→ [0,∞) being measurable. If u0 = 0 a.e. on I, then un ≡ 0 for all n ≥ 1. Otherwise,

the following statements hold.

(i) If R0 ≤ 1, then un(x)→ 0 uniformly in x ∈ R as n→∞.

(ii) If R0 > 1, then un(x)→ w∗(x− cn) uniformly in x ∈ R as n→∞.

2.3 Effects of the size of the climate envelope

In this subsection, we assume

g(x) = gL(x) = 1[−L2 ,
L
2 ](x), x ∈ R, (2.4)

and study the influence of L on the basic reproduction number, and hence, on the persistence criterion.

To indicate the L-dependence, the operator F0 is written as F0,L:

F0,L[w](x) := r0

∫
IL

K(x− y + c)w(y)dy, x ∈ IL :=

[
−L

2
,
L

2

]
,

and the basic reproduction number R0 is written as R0(L). We prove the following result.

Theorem 2.6 Let g = gL be as in (2.4). Then the following statements hold.

(1) The function L 7→ R0(L) is continuous and increasing on (0,∞).

(2) There holds the limit

lim
L→0+

R0(L) = 0.

(3) Set

R0(∞) := lim
L→∞

R0(L).

Then,

(i) if R0(∞) ≤ 1, then R0(L) < 1 for all L > 0;

(ii) if R0(∞) > 1, then there exists L∗ > 0 such that R0(L) < 1 for L ∈ (0, L∗) and R0(L) > 1 for

L > L∗.

Proof (1) We first prove the monotonicity. Let 0 < L1 < L2. For i = 1, 2, let φLi ∈ C++(ILi) be an

eigenfunction of F0,Li associated to R0(Li). We may choose φL1
and φL2

so that

φL1
(x) ≤ φL2

(x), x ∈ IL1
(2.5)
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and

φL1
(x0) = φL2

(x0) for some x0 ∈ IL1
. (2.6)

It follows from (2.5) that

R0(L1)φL1
(x0) = F0,L1

[φL1
](x0)

= r0

∫
IL1

K(x0 − y + c)φL1
(y)dy

≤ r0
∫
IL1

K(x0 − y + c)φL2(y)dy

< r0

∫
IL2

K(x0 − y + c)φL2(y)dy

= F0,L2 [φL2 ](x0)

= R0(L2)φL2
(x0).

Applying (2.6), we conclude R0(L1) < R0(L2). This proves the monotonicity of the function L 7→
R0(L).

Next, we prove the continuity. Fix any L0 > 0 and 0 < ε0 � 1, and let {Ln}n ⊂ (L0−ε0, L0+ε0) be

such that Ln → L0 as n→∞. By the monotonicity proven above, {R0(Ln)}n ⊂ (R0(L0−ε0), R0(L0+

ε0)). For each n, let φn ∈ C++(ILn) be an eigenfunction of F0,Ln associated to R0(Ln) and satisfy the

normalization

φn(0) = 1, ∀n. (2.7)

We claim that

M := sup
n
‖φn‖C(ILn )

<∞. (2.8)

In fact, from the equation F0,Ln [φn] = R0(Ln)φn, we deduce

R0(Ln) = R0(Ln)φn(0) = r0

∫
ILn

K(−y + c)φn(y)dy ≥ r0
[

min
y∈ILn

K(−y + c)

] ∫
ILn

φn(y)dy.

Since clearly M̃ := infn miny∈ILn K(−y + c) > 0, we find

sup
n

∫
ILn

φn(y)dy ≤ sup
n

R0(Ln)

r0M̃
≤ R0(L0 + ε0)

r0M̃
. (2.9)

It then follows that

R0(Ln)‖φn‖C(ILn )
= r0 max

x∈ILn

∫
ILn

K(x− y + c)φn(y)dy

≤ r0
[

max
x∈ILn

max
y∈ILn

K(x− y + c)

] ∫
ILn

φn(y)dy.

Since

sup
n

max
x∈ILn

max
y∈ILn

K(x− y + c) <∞,
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we conclude (2.8) from R0(Ln) ≥ R0(L0 − ε0) for each n and (2.9).

We further claim that {φn}n are equi-continuous in the sense that

∀ε > 0, there exists δ = δ(ε) > 0 such that

|φn(x)− φn(y)| < ε whenever x, y ∈ ILn ,|x− y| < δ for all n.
(2.10)

Indeed, for x, y ∈ ILn , there holds

|φn(x)−φn(y)| ≤ r0
∫
ILn

|K(x−z+c)−K(y−z+c)|φn(z)dz ≤ r0M
∫
ILn

|K(x−z+c)−K(y−z+c)|dz,

which leads to (2.10).

Now, by (2.8), (2.10) and the Arzelà-Ascoli theorem, there exist a subsequence of {φn}n, denoted

by {φnk}k, and a function φ∞ ∈ C(IoL0
) (where IoL0

is the interior of IL0
) with φ∞ ≥ 0 such that

φnk(x) converges to φ∞(x) locally uniformly in x ∈ IoL0
as k →∞. Moreover, the normalization (2.7)

ensures that φ∞(0) = 1 and (2.8) implies that φ∞ is bounded on IoL0
. Also, the equations satisfied by

{φn}n give

R̃0(L0)φ∞(x) = r0

∫
IL0

K(x− y + c)φ∞(y)dy, x ∈ IoL0
, (2.11)

where R̃0(L0) := limk→∞R0(Lnk), which is well-defined by choosing a further subsequence if neces-

sary. Using (2.11), we can first extend φ∞ to be defined as a continuous function, still denoted by

φ∞, on IL0 so that (2.11) is true for all x ∈ IL0 . Then, it is easy to see that φ∞ ∈ C++(IL0), which

together with the Krěın-Rutman theorem yield R̃0(L0) = R0(L0). Hence, limk→∞R0(Lnk) = R0(L0).

So far, we have shown that for any sequence {Ln}n such that Ln → L0 as n → ∞, there is a

subsequence {Lnk}k ⊂ {Ln}n such that R0(Lnk) → R0(L0) as k → ∞. From this, we conclude the

continuity of the function L 7→ R0(L) at L = L0. Since L0 is arbitrary, the continuity of L 7→ R0(L)

follows.

(2) We see that

‖F0,L[w]‖C(IL) ≤ r0
[
max
x∈IL

∫
IL

K(x− y + c)dy

]
‖w‖C(IL),

which implies that

R0(L) ≤ ‖F0,L‖ ≤ r0
[
max
x∈IL

∫
IL

K(x− y + c)dy

]
≤ r0

∫ L+c

−L+c
K(y)dy → 0 as L→ 0+.

Hence, limL→0+ R0(L) = 0.

(3) It is a simple consequence of (1) and (2).

This completes the proof.

Next, we calculate R0(∞) in the case of K being a Gaussian probability density function, namely,

K(x) =
1√
2πσ

e−
(x−µ)2

2σ2 , x ∈ R (2.12)

for some σ > 0 and µ ∈ R. Let

K0(x) =
1√
2πσ

e−
x2

2σ2 , x ∈ R. (2.13)
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Theorem 2.7 Let g = gL be as in (2.4) and K be as in (2.12). Then

R0(∞) = e−
(c−µ)2

2σ2 r0.

Proof We need the following result (to be established in Theorem 2.8 below):

R0(L) = e−
(c−µ)2

2σ2 r0r(FL), (2.14)

where r(FL) is the spectral radius of the operator FL : C(I)→ C(I) defined by

FL[w](x) =

∫
IL

K0(x− y)w(y)dy, x ∈ IL.

Using (2.14), we only need to show that

lim
L→∞

r(FL) = 1. (2.15)

To prove (2.15), we first present the following classical variational formula for r(FL), that is,

r(FL) = sup
w∈L2(IL)\{0}

〈FL[w], w〉L2(IL)

‖w‖2L2(IL)

= sup
w∈L2(IL)\{0}

∫
IL

∫
IL
K0(x− y)w(y)w(x)dydx∫

IL
w(x)2dx

.

We refer the reader to [6] for the proof, which requires the self-adjointness of FL.

Next, we choose w ≡ 1 on IL as a test function to find

r(FL) ≥ 1

L

∫ L
2

−L2

∫ L
2

−L2
K0(x− y)dydx. (2.16)

We claim that for each ε > 0 there exists Lε > 0 such that∫ L
2

−L2

∫ L
2

−L2
K0(x− y)dydx ≥ (1− ε)(L− Lε), ∀L > Lε. (2.17)

In fact, for each ε > 0 there exists Lε > 0 such that
∫ Lε

2

−Lε2
K0(x)dx ≥ 1− ε. Now, for L > Lε, we have

for each x ∈
[
−L2 + Lε

2 ,
L
2 −

Lε
2

]
∫ L

2

−L2
K0(x− y)dy ≥

∫ Lε
2 +x

−Lε2 +x

K0(x− y)dy ≥ 1− ε.

It then follows that∫ L
2

−L2

∫ L
2

−L2
K0(x− y)dydx ≥

∫ L
2

−L2
(1− ε)1[−L2 +Lε

2 ,
L
2 −

Lε
2 ](x)dx = (1− ε)(L− Lε).

This proves (2.17).

Finally, by (2.16) and (2.17), we find that for each ε > 0, there exists Lε > 0 such that

r(FL) ≥ (1− ε)L− Lε
L

, L > Lε.
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Setting L→∞ in the above inequality, we find for each ε > 0,

lim inf
L→∞

r(FL) ≥ (1− ε).

Thus, lim infL→∞ r(FL) ≥ 1. As clearly r(FL) ≤ 1 for all L > 0, we arrive at (2.15) and hence

complete the proof.

2.4 Effects of the shifting speed

In this subsection, we investigate the influence of the shifting speed c of the environment on the basic

reproduction number, and hence, on the persistence criterion, in the case of K being a Gaussian

probability density function as in (2.12). We prove the following result.

Theorem 2.8 Let K be as in (2.12) and K0 be as in (2.13). Then

R0 = e−
(c−µ)2

2σ2 r(F00),

where r(F00) is the spectral radius of the operator F00 : C(I)→ C(I) defined by

F00[w](x) = r0

∫
I

K0(x− y)g(y)w(y)dy, x ∈ I.

In particular, the following statements hold.

(1) If r(F00) ≤ 1, then R0 ≤ 1 for all c > 0.

(2) If r(F00) > 1, µ ≤ 0 and e−
µ2

2σ2 r(F00) ≤ 1, then R0 ≤ 1 for all c > 0.

(3) If r(F00) > 1, µ ≤ 0 and e−
µ2

2σ2 r(F00) > 1, then there exists c∗ > 0 such that R0 > 1 for c ∈ (0, c∗)

and R0 ≤ 1 for c ≥ c∗.
(4) If r(F00) > 1 and µ > 0, then there exist 0 ≤ c1∗ < c2∗ < ∞ such that R0 > 1 for c ∈ (c1∗, c

2
∗) and

R0 ≤ 1 for c ∈ (0, c1∗] ∪ [c2∗,∞).

Proof Let φ0 ∈ C++(I) be the eigenfunction of F0 associated to the eigenvalue R0. Then there holds

the identity

R0φ0(x) = r0

∫
I

K(x− y + c)g(y)φ0(y)dy

= r0

∫
I

1√
2πσ

e−
(x−y+c−µ)2

2σ2 g(y)φ0(y)dy

= r0e
− (c−µ)x

σ2 e−
(c−µ)2

2σ2

∫
I

K0(x− y)g(y)
[
e

(c−µ)y
σ2 φ0(y)

]
dy, x ∈ I.

Multiplying the above equation by e
(c−µ)x
σ2 e

(c−µ)2

2σ2 , we find

R0e
(c−µ)2

2σ2 e
(c−µ)x
σ2 φ0(x) = r0

∫
I

K0(x− y)g(y)
[
e

(c−µ)y
σ2 φ0(y)

]
dy, x ∈ I.
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In terms of the operator F00, the above equality reads

R0e
(c−µ)2

2σ2 e
(c−µ)x
σ2 φ0(x) = F00

[
e

(c−µ)·
σ2 φ0

]
(x), x ∈ I. (2.18)

Note that the function x 7→ e
(c−µ)x
σ2 φ0(x) belongs to C++(I). Since clearly F00 is strongly positive and

compact, we apply the Krěın-Rutman theorem to conclude that R0e
(c−µ)2

2σ2 = r(F00), which leads to

the result.

Consider the equation (1.2) with K being a Gaussian probability density function as in (2.12). In

the case µ = 0, this equation is more or less a time-discrete version of the reaction-diffusion equation

(1.1). In this case, either extinction occurs for all shifting speed, or there is a critical shifting speed

separating extinction and persistence.

In the case µ 6= 0, the equation can be used to study the extinction or persistence of a stream-

dwelling species under climate change. Theorem 2.8 (3) says that if the stream drives the species to

disperse to the left, then the species can only survive when the climate envelope shifts to the right

with a relatively slow speed. If the stream drives the species to disperse to the right as in Theorem

2.8 (4), then the species dies out when the climate envelope shifts too slow or too fast to the right. In

the former case, the species misses the climate envelope, while in the latter case, the species can not

keep up with the shifting climate envelope.

2.5 Persistence numerical simulations

In this subsection, we consider some numerical simulations of a simple example to complement the

analytical results proven earlier for the persistence criterion. To do so, we first decide on the functional

forms for the dispersal kernel, the growth function, and the climate envelope function that satisfy the

hypotheses laid out in (H) in Section 1. For the dispersal kernel, K, we consider the Gaussian dispersal

kernel

Kg(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 , x ∈ R,

where µ represents the mean dispersal distance and σ2 is the variance in the dispersal distance. Here

we use the subscript g to stand for Gaussian so as to distinguish it from other dispersal kernels used

later. For the growth function, f , we use the Beverton-Holt function,

f(u) =
Ru

1 + (R−1)
K∗

u
, u ≥ 0,

where R is the growth rate and K∗ is the carrying capacity. The climate envelope, g, is assumed to

be an indicator function on
[
−L2 ,

L
2

]
. That is,

g(x) = 1[−L2 ,
L
2 ](x), x ∈ R.



IDEs in the presence of climate change 15

Since g is identically one in the interval
[
−L2 ,

L
2

]
and zero elsewhere this means that the suitable habitat

for the population is simply the interval
[
−L2 ,

L
2

]
. Then, the IDE provided in (1.2) with a Gaussian

dispersal kernel, an indicator climate envelope function, and a Beverton-Holt growth function becomes

un+1(x) =

∫ L
2 +cn

−L2 +cn

1√
2πσ2

e−
(x−y−µ)2

2σ2
Run(y)

1 + (R−1)
K∗

un(y)
dy, x ∈ R. (2.19)
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Fig. 1 A numerical simulation for (2.19). In the two simulations we use the following parameter values: R = 1.5,

K∗ = 1, µ = 0, σ2 = 0.02, and L = 1. We vary the speed of the shifting habitat from (a) c = 0.125, to (b) c = 0.05.

All numerical simulations were performed using the fast Fourier transform technique [26]. This

method speeds up the process of quadrature from O(n2) to O(n log(n)) where n is the number of spatial

mesh points. This is done by using the convolution theorem after applying the Fourier transform. The

numerical simulations in Figure 1 provide two examples of typical behaviour for (2.19). Figure 1(b)

shows that for small values of c, the population persists and approaches a travelling wave. Figure 1(a)

shows that when c becomes too large, then the population is not able to keep pace with the shifting

climate envelope and the population becomes extinct. These simulations depict the persistence theorem

provided in Theorem 2.4. There is similar behaviour for the size of the shifting climate envelope. That

is, if the length of the shifting climate envelope is too small then the population cannot persist. We

provide a plot showing the region of persistence dependent on the speed (c) and length (L) of the

climate envelope. To do this, we numerically approximate the dominant eigenvalue of

λφ(x) = r0

∫
I

K(x− y + c)g(y)φ(y) dy, x ∈ I. (2.20)

If we again assume the same habitat shifting function as done in the previous example, then (2.20)

becomes

λφ(x) = r0

∫ L
2

−L2
K(x− y + c)φ(y) dy, x ∈

[
−L

2
,
L

2

]
. (2.21)
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To numerically approximate the spectral radius of (2.21), we use the Nyström method. That is, we

approximate the integral using the trapezoid rule. Then, our problem becomes

λφ(xi) = r0
L

2(N − 1)

N−1∑
j=1

[K(xi − yj + c)φ(yj) +K(xi − yj+1 + c)φ(yj+1)] . (2.22)

for i = 1, . . . , N . By letting

Ai1 = r0
L

2(N − 1)
K(xi − y1 + c), (2.23)

Aij = r0
L

N − 1
K(xi − yj + c), for 2 ≤ j ≤ N − 1, and (2.24)

AiN = r0
L

2(N − 1)
K(xi − yN + c), (2.25)

we obtain the following linear system

λφ = Aφ, (2.26)

where A = (Aij)1≤i,j≤N . From this point, we can now calculate the spectral radius by using standard

matrix techniques since we have reduced the problem from infinite to finite-dimensional.

For comparison in our simulations we also consider a Laplace dispersal kernel

Kl(x) =
1

2b
e−|x−µ|/b, x ∈ R,

where µ is the mean and 2b2 is the variance. Here, the subscript l stands for Laplace.

(a) (b)

Fig. 2 A contour plot for the spectral radius of (2.21). The solid and dashed curves are the level sets for R0(c, L) = 1

for the Gaussian and Laplace dispersal kernels respectively. In these simulations we use the following parameter values,

r0 = 1.5, σ2 = 0.02, b = 0.1 and (a) µ = 0 (b) µ = 0.2. These parameters were chosen so that both dispersal kernels

have the same mean and variance.
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In Figure 2, we find the dominant eigenvalue of (2.26) by varying the size and the shifting speed of

the climate envelope. The solid (resp. dashed) curve is the level set for R0(c, L) = 1 with a Gaussian

(resp. Laplace) dispersal kernel. From Figure 2(a) and 2(b), if we fix c, we can see that there is a

minimum length of the climate envelope to obtain persistence. This agrees with the result proven in

Theorem 2.6. there exists a critical value of L, L∗ > 0, such that R0(L) ≤ 1 for L ∈ (0, L∗] and

R0(L) > 1 for L > L∗. This critical value, L∗, is called the critical domain size. By fixing L, Figure

2(a) and 2(b) illustrate the results of Theorem 2.8. In particular, Figure 2(a) shows statement (3) of

Theorem 2.8 that there is a critical value of c, c∗, such that R0 > 1 if c ∈ (0, c∗) and R0 ≤ 1 for

c ≥ c∗. Figure 2(b) provides a numerical example for statement (4) of Theorem 2.8. That is, there

exist 0 ≤ c1∗ < c2∗ < ∞ such that R0 > 1 for c ∈ (c1∗, c
2
∗) and R0 ≤ 1 for c ∈ (0, c1∗] ∪ [c2∗,∞). The

plots in Figure 2 also suggest that the results proven in Theorem 2.8 should also hold for the Laplace

kernel.

3 Inside dynamics

We study the inside dynamics of (1.2) when R0 > 1. Let us consider an arbitrary solution {u∗n}n of

(1.2) with initial condition u∗0 ∈ C+(R) being non-zero on I. By Theorem 2.4(2), u∗n(x)→ w∗(x− cn)

uniformly in x ∈ R as n → ∞, where {w∗(· − cn)}n∈Z is the unique travelling wave of (1.2) given in

Theorem 2.4(1).

To study the inside dynamics of {u∗n}n, we separate it into different neutral fractions as follows:

let

u∗0 =

N∑
i=1

vi0,

where N ≥ 1 and vi0 ∈ C+(R)\{0} for each i = 1, . . . , N . For each i = 1, . . . , N , let us consider the

solution {vin}n of

vin+1(x) =

∫
R
K(x− y)g(y − cn)h(u∗n(y))vin(y)dy, x ∈ R,

with initial condition vi0, where

h(u) =

{
f ′(0), u = 0,
f(u)
u , u > 0.

By the uniqueness of solutions, it is easy to see that u∗n =
∑N
i=1 v

i
n for all n ∈ N0.

We are interested in asymptotic behaviours of vin as n→∞ for each i. Here, we consider two cases

about the solution {u∗n}n or the initial condition u∗0.

– Special case: u∗0 = w∗ so that u∗n = w∗(· − cn) for n ∈ N0;

– General case: a general initial condition u∗0 ∈ C+(R) being non-zero on I.

These two cases are investigated in Subsection 3.1 and Subsection 3.2, respectively. In Subsection 3.3,

we provide numerical evidence.
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3.1 Inside dynamics of the travelling wave

We first investigate the case of u∗n = w∗(· − cn) for n ∈ N0. We prove the following theorem.

Theorem 3.1 Suppose R0 > 1. Let v0 ∈ C+(R) be a portion of w∗, that is, 0 � v0 ≤ w∗. Consider

the solution {vn}n of

vn+1(x) =

∫
R
K(x− y)g(y − cn)h(w∗(y − cn))vn(y)dy, x ∈ R (3.1)

with initial condition v0. Then there exists a constant p := p(v0) ∈ [0, 1] such that

vn(x+ cn)→ pw∗(x) uniformly in x ∈ R as n→∞.

Moreover, if, in addition, v0 6≡ 0 on I, then p > 0.

We remark that the constant p = p(v0) in the statement of Theorem 3.1 can be determined in an

implicit way (see (3.5) below).

Proof (Proof of Theorem 3.1) We assume v0 6≡ 0 on I, otherwise vn ≡ 0 for all n ≥ 1. In the moving

frame, (3.1) can be written as

vn+1(x+ c(n+ 1)) =

∫
R
K(x− y + c)g(y)h(w∗(y))vn(y + cn)dy, x ∈ R.

Therefore, wn := vn(·+ cn) satisfies

wn+1(x) =

∫
R
K(x− y + c)g(y)h(w∗(y))wn(y)dy, x ∈ R.

In particular,

wn+1(x) =

∫
I

K(x− y + c)g(y)h(w∗(y))wn(y)dy, x ∈ I.

Clearly, to finish the proof, it is equivalent to prove

wn → pw∗ in C(I) as n→∞. (3.2)

From now on, we consider w0 = v0, wn and w∗ as functions defined on I.

For convenience, let us define the map G : C(I)→ C(I) by setting

G[u](x) =

∫
I

K(x− y + c)g(y)h(w∗(y))u(y)dy, x ∈ I, (3.3)

Using G, (3.2) can be restated as

Gn[w0]→ pw∗ in C(I) as n→∞. (3.4)

It remains to prove (3.4). It is easy to check that G is strongly positive and compact. Therefore, we

can apply Krěın-Rutman theorem to G. As G[w∗] = w∗ and w∗ ∈ C++(I), we conclude that r(G) = 1 is

an algebraically simple and isolated eigenvalue, and for any λ ∈ σ(G) with λ 6= 1, there holds |λ| < 1.
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Moreover, as the eigenvalues of a compact operator can only accumulate at 0, there exist r0 ∈ (0, 1)

such that σ(G)\{1} ⊂ Br0 , where Br0 is the open disk in C centred at 0 with radius r0.

Now, let us consider the Riesz projection P : C(I)→ C(I) defined by

P [u] =
1

2πi

∫
γ

(ξIC(I) − G)−1udξ, u ∈ C(I),

where γ is the Jordan contour that encloses only 1 from σ(G) and IC(I) is the identity operator on

C(I). It is known that P is a projection on C(I), i.e., P 2 = P , with range ran(P ) = {αw∗ : α ∈ R}
the eigenspace associated to 1, which exhausts all fixed points of G. Let Q = idC(I) − P . We know

that both ran(P ) and ran(Q) = ker(P ) are invariant subspaces of G.

It then follows that

G[w0] = G[P [w0]] + G[Q[w0]] = P [w0] + G[Q[w0]],

where we used the fact that P [w0] is a fixed point of G. Applying G to the above equality, we find

G2[w0] = G[P [w0]] + G2[Q[w0]] = P [w0] + G2[Q[w0]].

By iteration, we find

Gn[w0] = P [w0] + Gn[Q[w0]], n ≥ 1.

Denote by GQ the part of G in ran(Q). Then, Gn[Q[w0]] = GnQ[Q[w0]] as ran(Q) is an invariant subspace

of G. Since σ(GQ) = σ(G)\{1} ⊂ Br0 , we conclude that Gn[Q[w0]]→ 0 in C(I) as n→∞, and hence,

Gn[w0]→ P [w0] in C(I) as n→∞, which leads to (3.4) with

p =
P [w0]

w∗
=
P [v0]

w∗
. (3.5)

Note that P is the projection onto the one-dimensional space spanned by w∗. As a result, P [v0] is

simply the function w∗ multiplied by some positive constant, and hence, p is a positive constant. This

completes the proof.

Next, we calculate the constant p(v0) in the statement of Theorem 3.1 in the case of K being a

Gaussian probability density function as in (2.12).

Theorem 3.2 Let the assumptions in Theorem 3.1 be satisfied. In addition, let K be the Gaussian

function given in (2.12). Then,

p(v0) =

∫
I
v0(x)g(x)f(w∗(x))e

2(c−µ)x
σ2 dx∫

I
w∗(x)g(x)f(w∗(x))e

2(c−µ)x
σ2 dx

.
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Proof Recall that the operator G is defined in (3.3) and K0 is defined in (2.13). We calculate

G[u](x) =

∫
I

1√
2πσ

e−
(x−y+c−µ)2

2σ2 g(y)h(w∗(y))u(y)dy

=

∫
I

1√
2πσ

e−
(x−y)2+2(c−µ)(x−y)+(c−µ)2

2σ2 g(y)h(w∗(y))u(y)dy

= e−
(c−µ)x
σ2 e−

(c−µ)2

2σ2

∫
I

1√
2πσ

e−
(x−y)2

2σ2 e
(c−µ)y
σ2 g(y)h(w∗(y))u(y)dy

= e−
(c−µ)x
σ2

∫
I

K0(x− y)e−
(c−µ)2

2σ2 g(y)h(w∗(y))e
(c−µ)y
σ2 u(y)dy

= e−
(c−µ)x
σ2

∫
I

K0(x− y)ρ(y)e
(c−µ)y
σ2 u(y)dy, x ∈ I,

where ρ(x) = e−
(c−µ)2

2σ2 g(x)h(w∗(x)) for x ∈ I. Multiplying the above equalities by
√
ρ yields√

ρ(x)e
(c−µ)x
σ2 G[u](x) =

∫
I

√
ρ(x)K0(x− y)

√
ρ(y)

[√
ρ(y)e

(c−µ)y
σ2 u(y)

]
dy, x ∈ I.

Defining the operator G̃:

G̃[u](x) =

∫
I

√
ρ(x)K0(x− y)

√
ρ(y)u(y)dy, x ∈ I,

and the multiplication operator M:

M[u](x) =
√
ρ(x)e

(c−µ)x
σ2 u(x), x ∈ I,

we find

MG = G̃M. (3.6)

As opposed to the original operator G, the operator G̃ is symmetric if we consider it as an operator

on L2(I). Since ∫
I

∫
I

√
ρ(x)K0(x− y)

√
ρ(y)dxdy <∞,

the operator G̃ is a Hilbert-Schmidt operator, in particular, it is a compact operator. Moreover, the

eigenspaces of G̃ span L2(I). Recall 1 is an algebraically simple and isolated eigenvalue of G and

its eigenspace is spanned by w∗, which is considered as a function on I. By (3.6), we see that 1

is also an eigenvalue of G̃ with M[w∗] as an eigenfunction. Since M[w∗] ∈ C++(I) and the kernel

(x, y) 7→
∫
I

√
ρ(x)K0(x−y)

√
ρ(y) is positive a.e. on I×I, we can apply an infinite-dimensional version

of the Perron-Frobenius theorem (see [27,21] or [10, Proposition 4.4]) that 1 is an algebraically simple

and isolated eigenvalue of G̃. Therefore, the eigenspace of G̃ associated to 1 is spanned by M[w∗].

Moreover, there is r̃0 ∈ (0, 1) such that σ(G̃)\{1} ⊂ Br̃0 , where Br̃0 is the open disk in C centred at 0

with radius r̃0. Let P̃ be the orthogonal projection of L2(I) onto the eigenspace of G̃ associated to 1,

that is, the one spanned by M[w∗], and let Q̃ = IL2(I) − P̃ , where IL2(I) is the identity operator on

L2(I).
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By (3.6), we see MG2 = G̃MG = G̃2M, and hence, by iteration, MGn = G̃nM for all n ∈ N. It

then follows that

p(v0)M[w∗] =M[p(v0)w∗] = lim
n→∞

M [Gn[v0]] = lim
n→∞

G̃n[M[v0]].

Since G̃n[M[v0]] = G̃n[P̃ [M[v0]]] + G̃n[Q̃[M[v0]]]→ P̃ [M[v0]] as n→∞, we find

p(v0)M[w∗] = P̃ [M[v0]] =
〈M[v0],M[w∗]〉L2(I)

‖M[w∗]‖2L2(I)

M[w∗],

which leads to the result.

3.2 Inside dynamics of general solutions

Now, we consider the general case. Recall that {u∗n}n is a solution of (1.2) with u∗0 ∈ C+(R) being

non-zero on I. We prove the following result.

Theorem 3.3 Suppose R0 > 1. Let v0 ∈ C+(R) be a portion of u∗0, that is, 0 � v0 ≤ u∗0. Consider

the solution {vn}n of

vn+1(x) =

∫
R
K(x− y)g(y − cn)h(u∗n(y))vn(y)dy, x ∈ R

with initial condition v0. Then there exists a constant p := p(v0) ∈ [0, 1] such that

vn(x+ cn)→ pw∗(x) uniformly in x ∈ R as n→∞.

Moreover, if, in addition, v0 6≡ 0 on I, then p > 0.

Proof Suppose v0 6≡ 0 on I, otherwise vn ≡ 0 for n ≥ 1. Clearly, wn := vn(· + cn) satisfies w0 = v0
and

wn+1(x) =

∫
R
K(x− y + c)g(y)h(u∗n(y + cn))wn(y)dy

=

∫
I

K(x− y + c)g(y)h(u∗n(y + cn))wn(y)dy, x ∈ R.

Note that it is equivalent to consider the equation on I. Therefore, we consider wn and u∗n(·+ cn) as

functions on I from now on, and hence,

wn+1(x) =

∫
I

K(x− y + c)g(y)h(u∗n(y + cn))wn(y)dy, x ∈ I.

As obviously {u∗n(·+ cn)}n satisfies

u∗n+1(x+ c(n+ 1)) =

∫
I

K(x− y + c)g(y)h(u∗n(y + cn))u∗n(y + cn)dy, x ∈ I,
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the multiplication of the above equality by constants implies that for each α ∈ R,

wαn := αu∗n(·+ cn), n ∈ N0

satisfies

wαn+1(x) =

∫
I

K(x− y + c)g(y)h(u∗n(y + cn))wαn(y)dy, x ∈ I.

Now, we are ready to start an iterative procedure. Note that minx∈I wn(x) > 0 and minx∈I w
α
n > 0

for all n ≥ 1 and α > 0. For convenience, let us also define the map Gn : C+(I)→ C+(I) by setting

Gn[u](x) =

∫
I

K(x− y + c)g(y)h(u∗n(y + cn))u(y)dy, x ∈ I

for n ≥ 1. Then,

wn+1 = Gn[wn] and wαn+1 = Gn[wαn ].

Let α1 > 0 be the largest number and β1 > 0 be the smallest number such that{
wα1

1 ≤ w1 ≤ wβ1

1 on I,

∃ x1, y1 ∈ I s.t. wα1
1 (x1) = w1(x1) and w1(y1) = wβ1

1 (y1).

Assuming none of the above two inequalities is actually an equality (otherwise, we are done) and

applying G1 to obtain

wα1
2 < w2 < wβ1

2 on I,

where we used the strong positivity of G1. Then, let α2 > α1 be the largest number and β2 < β1 be

the smallest number such that{
wα2

2 ≤ w2 ≤ wβ2

2 on I,

∃ x2, y2 ∈ I s.t. wα2
2 (x2) = w2(x2) and w2(y2) = wβ2

2 (y2).

Assuming none of the above two inequalities is actually an equality (otherwise, we are done) and

applying G2 to obtain

wα2
3 < w3 < wβ2

3 on I.

Then, let α3 > α2 be the largest number and β3 < β2 be the smallest number such that{
wα3

3 ≤ w3 ≤ wβ3

3 on I,

∃ x3, y3 ∈ I s.t. wα3
3 (x3) = w3(x3) and w3(y3) = wβ3

3 (y3).

Clearly, we can repeat the above process to obtain the following:

– an increasing sequence {αn}n ⊂ (0,∞) and a decreasing sequence {βn}n ⊂ (0,∞);

– for each n, there holds

wαnn ≤ wn ≤ wβnn on I (3.7)

with the assumption that none of the above two inequalities is actually an equality (otherwise we

are done);
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– for each n, there are xn, yn ∈ I such that

wαnn (xn) = wn(xn) and wn(yn) = wβnn (yn). (3.8)

Set

α∞ = lim
n→∞

αn and β∞ = lim
n→∞

βn.

Trivially, α∞ ≤ β∞. If α∞ = β∞, we find

‖wαnn − wβnn ‖C(I) ≤ |αn − βn|‖u∗(·+ cn)‖C(I) → 0 as n→∞,

where the boundedness of {‖u∗n(·+ cn)‖C(I)}n follows from the fact that u∗n(·+ cn)→ w∗ in C(I) as

n→∞. The result of the theorem then follows readily from (3.7). Therefore, it remains to show that

α∞ = β∞.

For contradiction, let us assume α∞ < β∞. We are going to find some n0 � 1 and some 0 < δ0 � 1

such that

wn0
+ δ0 ≤ β∞w∗ and ‖wβn0

n0 − β∞w∗‖C(I) ≤
δ0
2
, (3.9)

which says particularly that wn0
and w

βn0
n0 can not touch, and therefore, contradicts the second equality

in (3.8).

To do so, we write for each n

wn = wn1[wn>β∞w∗] + wn1[wn≤β∞w∗].

Applying Gn to the above equation, we find

wn+1(x)− β∞w∗(x) =

∫
[wn>β∞w∗]

K(x− y + c)g(y)h(u∗n(y + cn))wn(y)dy

+

∫
[wn≤β∞w∗]

K(x− y + c)g(y)h(u∗n(y + cn))wn(y)dy − β∞w∗(x)

=

∫
[wn>β∞w∗]

K(x− y + c)g(y)h(u∗n(y + cn))wn(y)dy

+

∫
[wn≤β∞w∗]

K(x− y + c)g(y)h(u∗n(y + cn))β∞w
∗(y)dy − β∞w∗(x)

+

∫
[wn≤β∞w∗]

K(x− y + c)g(y)h(u∗n(y + cn))[wn(y)− β∞w∗(y)]dy

= An+1(x) +Bn+1(x),

where

An+1(x) =

∫
[wn>β∞w∗]

K(x− y + c)g(y)h(u∗n(y + cn))wn(y)dy

+

∫
[wn≤β∞w∗]

K(x− y + c)g(y)h(u∗n(y + cn))β∞w
∗(y)dy − β∞w∗(x),

Bn+1(x) =

∫
[wn≤β∞w∗]

K(x− y + c)g(y)h(u∗n(y + cn))[wn(y)− β∞w∗(y)]dy.
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For An+1, we can rewrite it as

An+1(x) = A1
n+1(x)−A2

n+1(x) +A3
n+1(x),

where

A1
n+1(x) =

∫
[wn>β∞w∗]

K(x− y + c)g(y)h(u∗n(y + cn))wn(y)dy,

A2
n+1(x) =

∫
[wn>β∞w∗]

K(x− y + c)g(y)h(u∗n(y + cn))β∞w
∗(y)dy,

A3
n+1(x) =

∫
I

K(x− y + c)g(y)h(u∗n(y + cn))β∞w
∗(y)dy − β∞w∗(x).

Since wn ≤ wβnn → β∞w
∗, the Lebesgue measure of [wn > β∞w

∗] converges to 0 as n→∞. As

sup
n

sup
x,y∈I

[K(x− y + c)g(y)h(u∗n(y + cn))wn(y)] <∞,

we conclude that A1
n+1 → 0 in C(I) as n → ∞. The same reasoning ensures that A2

n+1 → 0 in C(I)

as n→∞. Since u∗n(·+ cn)→ w∗ in C(I) as n→∞, and∫
I

K(x− y + c)g(y)h(w∗(y))β∞w
∗(y)dy = β∞w

∗(x), x ∈ I,

we find that A3
n+1 → 0 in C(I) as n→∞. Hence, there holds

An+1 → 0 in C(I) as n→∞. (3.10)

It remains to treat Bn+1. We see that

|wn(x)− wn(z)| ≤
∫
I

|K(x− y + c)−K(z − y + c)|g(y)h(u∗n(y + cn))wn−1(y)dy

≤ C1

∫
I

|K(x− y + c)−K(z − y + c)|dy.

for some C1 > 0. That is, {wn}n are equi-continuous and have a uniform modulus of continuity. This

together with the first equality in (3.8) and the assumption α∞ < β∞ ensure the existence of intervals

In ⊂ I, n� 1 satisfying the following conditions:

– xn is one of the end points of In;

– In, n� 1 are of equal length, namely, there is ` > 0 such that |In| = ` for all n� 1;

– there exists δ > 0 such that for each n� 1, there holds

wn(x) + δ ≤ β∞w∗(x), ∀x ∈ In.
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As In ⊂ [wn ≤ β∞w∗], we deduce

Bn+1(x) ≤
∫
In

K(x− y + c)g(y)h(u∗n(y + cn))[wn(y)− β∞w∗(y)]dy

≤ −δ
∫
In

K(x− y + c)g(y)h(u∗n(y + cn))dy, x ∈ I

As u∗n(·+ cn)→ w∗ in C(I) as n→∞, it is easy to see that

δ1 := lim inf
n→∞

inf
x∈I

∫
In

K(x− y + c)g(y)h(u∗n(y + cn))dy > 0.

Therefore,

max
x∈I

Bn+1(x) ≤ −δδ1
2
, n� 1. (3.11)

Choosing δ0 = δδ1
3 , we conclude from (3.10) and (3.11) that

wn+1(x)− β∞w∗(x) ≤ −δ0, x ∈ I

for all n � 1. Picking a large enough n0 gives the first condition in (3.9). The second condition in

(3.9) follows readily by choosing n0 larger if necessary as wβnn → β∞w
∗ in C(I) as n→∞.

Hence, α∞ = β∞. It then follows from the construction that wn → pw∗ in C(I) as n→∞, where

p = α∞ = β∞. Equivalently, wn(x)→ pw∗(x) uniformly in x ∈ R as n→∞.

The following result follows readily from Theorem 3.3.

Corollary 3.4 Suppose R0 > 1. Let {u∗n}n be an arbitrary solution of (1.2) with u∗0 ∈ C+(R) being

non-zero on I. Let

u∗0 =

N∑
i=1

vi0,

where N ≥ 1 and vi0 ∈ C+(R) for each i = 1, . . . , N . For each i = 1, . . . , N , let {vin}n be the solution

of

vin+1(x) =

∫
R
K(x− y)g(y − cn)h(u∗n(y))vin(y)dy, x ∈ R

with initial condition vi0. Then, for each i = 1, . . . , N , there exists pi ∈ [0, 1] such that

vin(x+ cn)→ piw∗(x) uniformly in x ∈ R as n→∞.

Moreover, there holds
∑N
i=1 p

i = 1.
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(a) (b)

(c) (d)

Fig. 3 A numerical simulation for (2.19). In all four simulations we use the following parameter values: R = 1.5,

K∗ = 1, µ = 0, σ2 = 0.02 and L = 1. We only vary the speed of the shifting habitat from (a) c = 0.15, (b) c = 0.1, (c)

c = 0.05, and (d) c = 0.025.

3.3 Inside dynamics numerical simulations

For the inside dynamics simulations, we use a Beverton-Holt growth function, a Gaussian dispersal

kernel, and an indicator climate envelope from −L2 to L
2 . Then, the model that we simulate is given

by

vin+1(x) =

∫ L
2 +cn

−L2 +cn

1√
2πσ2

e−
(x−y−µ)2

2σ2
R

1 + (R−1)
K∗

un(y)
vin(y) dy, x ∈ R. (3.12)

Four different numerical simulations for (3.12) are provided in Figure 3 by altering the speed of the

shifting climate envelope. Since the parameter values chosen in Figures 3(a) & 3(c) are the same as

those in Figures 1(a) & 1(b) we observe the same overall population level dynamics with the addition

that we can track the individual neutral fractions. The initial condition was a top hat distribution,

occupying the climate envelope of length L and comprised of eight disjoint neutral fractions, identical

in shape. In particular, we observe the same change of persistence to extinction if c becomes too large
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due to the fact that the spread of solutions cannot keep up with the shifting of the habitat. However,

by tracking the neutral fractions, we are able to understand the effect that the shifting habitat speed

has on the genetic composition of the population. By comparing Figures 3(b), 3(c), & 3(d) it appears

that a decrease in the speed of the shifting habitat causes an increase in the genetic composition of

individuals from the rear of the population.

However, when we alter the parameters we can also observe different qualitative behaviour. Figure

4 displays three simulations showing how a decrease in the shifting habitat speed does not always

increase genetic heterogeneity.

(a) (b)

(c)

Fig. 4 A numerical simulation for (2.19). In all three simulations we use the following parameter values: R = 1.5,

K∗ = 1, µ = 0.2, σ2 = 0.02 and L = 1. We only vary the speed of the shifting habitat from (a) c = 0.3, (b) c = 0.2, and

(c) c = 0.1.

In Figure 4(a), the speed of the shifting climate envelope is c = 0.3 which is faster than the mean

dispersal distance µ = 0.2. In this scenario, the neutral fractions at the leading edge have an advantage

because it is difficult for the neutral fractions at the rear to keep up with such a fast shifting habitat.
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Thus, we can see in Figure 4(a) that the majority of the genetic composition is primarily composed

of the three neutral fractions at the leading edge.

In Figure 4(b), the speed of the shifting climate envelope is the mean of the dispersal distance

(c = µ = 0.2). The shifting habitat at an intermediate speed increases species evenness. That is, if

the climate envelope is not moving too fast or slow relative to the mean dispersal distance of the

population, we see a much more even distribution of neutral fractions in the population.

In Figure 4(c), the speed of the shifting climate envelope is c = 0.1 and is half the speed of the

mean dispersal distance. Here, we see that neutral fractions at the leading edge are at a disadvantage

because they will outspread the suitable climate envelope. This is evident in Figure 4(c), by the genetic

composition of the population being dominated by the neutral fractions at the trailing edge of the

population.

In order to understand how changing parameters affects the genetic diversity of the population we

use a diversity index. A diversity index is a statistic used to measure the diversity of a population. One

common diversity index is called the Shannon diversity index [29]. Given that pi(v0) is the asymptotic

proportion of individuals in neutral fraction i, then the index can be computed in the following way

H = −
N∑
i=1

pi(v0) log(pi(v0)) (3.13)

where N is the total number of neutral fractions. Another common diversity index we use is the Div2

index [14]. Given that pi(v0) is the asymptotic proportion of individuals in neutral fraction i, then the

index can be computed in the following way

Div2 =

(
N∑
i=1

(pi(v0))2

)−1
(3.14)

where N is the total number of neutral fractions. The Div2 index is the inverse of the Simpson index,

which describes the probability that two individuals sampled randomly at the same time and location

belong to the same neutral fraction [28].

To calculate the proportions, we numerically simulate (3.12) using the fast Fourier transform, see

Section 2.5 for details. We run the simulations sufficiently long until the solution is at equilibrium.

Then, we calculate the proportions at the central spatial location of the suitable domain, cn, where

c is the speed of the shifting climate envelope and n is the number of iterations. We perform this for

varied values of L and c to obtain Figure 5.

Figure 5 provides two plots similar to that of Figure 2 except we now compute the Shannon

diversity index for varying parameters L and c. This allows us to understand the effect of altering

the speed and length of the shifting climate envelope. Initial data were the same as for Figure 3. For

a fixed value of L, we see that in Figure 5(a) the diversity index decreases as c increases while in

Figure 5(b) we see that the diversity index increases and then decreases showing that c = µ = 0.2

is the optimal value to maximize the Shannon diversity index. It should be noted that this pattern

is observed because Shannon diversity index increases as the evenness and richness of the population

increases. However, for other diversity indices, the maximum value may not occur when c = µ = 0.2.
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(a) (b)

Fig. 5 A heat map for the Shannon diversity index of (3.12). In these simulations we use the following parameter

values, R = 1.5, K∗ = 1, σ2 = 0.02 and (a) µ = 0 (b) µ = 0.2.

To see these differences, a comparison of Figure 5 using other diversity indices is provided in Appendix

B.

For completeness, we also calculate the Div2 diversity index in Figure 6 by varying L and σ2

to compare to the previous work [8], where c∗ is the rightward asymptotic spreading speed of the

following IDE:

un+1(x) =

∫
R

1√
2πσ2

e−
(x−y)2

2σ2
Run(y)

1 + (R−1)
K∗

un(y)
dy, x ∈ R. (3.15)

Moreover, there holds the formula c∗ =
√

2σ2 logR (see e.g. [11]). Notice that the pattern here shows

that for positive c and a fixed value of L, we see that if the population is persistent there is an increase

in the diversity index as c∗ increases. This is due to the fact that the dispersal variance, σ2, is varied

while the growth rate, R, is kept constant for c∗.

4 Discussion

Section 1 provides some background material and a brief overview of previous deterministic models

for climate envelopes. The model we study for the effect of climate change on IDEs was introduced in

(1.2). In Section 1, assumptions made on the dispersal kernel, growth function, climate envelope, and

shifting speed of the environment are laid out.

Our results begin in Section 2, where we outline the global dynamics of (1.2). Theorem 2.3 outlines

the persistence criterion for stationary solutions in terms of the basic reproduction number R0. This

result is not new, but for completeness, we include the proof in Appendix A. Theorem 2.4, provides

the persistence criterion for travelling wave solutions again in terms of the basic reproduction number.

A numerical simulation is provided in Figure 1 showing the two dynamics of extinction (Figure 1(a))

and persistence (Figure 1(b)).
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(a) (b)

(c) (d)

Fig. 6 A heat map for the Div2 diversity index of (3.12). In these simulations we use the following parameter values,

R = 5, K∗ = 1, µ = 0, σ2 = (c∗)2/2 log(R) and (a) c = 0, (b) c = 2, (c) c = 5. In particular, we keep R fixed and

vary σ2. A typical initial condition in the form of the traveling wave solution is given in (d) using the parameter values

R = 5, K∗ = 1, µ = 0, σ2 = 100, c = 2, and L = 30.

We go further and analyze the effect that the size of the climate envelope has in the calculation

of R0. This effect is presented in Theorem 2.6. Here, we assume that the suitable habitat function is

an indicator function on the interval
[
−L2 ,

L
2

]
and show that for persistence there is a critical value

L∗ such that R0(L) ≤ 1 for L ∈ (0, L∗] and R0(L) > 1 for L > L∗. A numerical calculation of R0 is

provided in Figure 2. In Figures 2(a) and 2(b) we see that for a fixed value of c there is a minimum

value of L required for the population to persist.

We also extend the persistence results by analyzing the effect of the shifting speed of the envi-

ronment. The result is given in Theorem 2.8. In this theorem, we must assume that the dispersal

kernel is Gaussian allowing us to show two interesting results for the persistence of the population
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with respect to changing the shifting speed c of the environment. The first persistence result says that

there is a critical speed c∗ such that for c ∈ (0, c∗) there is persistence and for c ≥ c∗ the population

goes extinct. This result holds true for µ ≤ 0 and e−
µ2

2σ2 r(F00) > 1. By fixing L in Figure 2(a), we

see this result. The case with µ = 0 corresponds to the reaction-diffusion equation (1.1), where a

unique critical shifting speed separating extinction and persistence is known to exist. However, when

µ > 0, we see that there exist 0 ≤ c1∗ < c2∗ < ∞ such that R0 > 1 for c ∈ (c1∗, c
2
∗) and R0 ≤ 1 for

c ∈ (0, c1∗] ∪ [c2∗,∞). That is, there is an intermediate range of speeds that allow for persistence. This

is evident in Figure 2(b) by looking at a fixed value of L. For a stream-dwelling species, µ > 0 means

that the stream drives the species to disperse to the right, and therefore, the species misses the slowly

shifting climate envelope and can not catch up with the fast shifting climate envelope.

Moving on from the persistence criterion, the results switch gears into understanding the inside

dynamics of (1.2) in Section 3. The first results focus on the inside dynamics of the travelling wave

solution. In Theorem 3.1, we show that if the population is persistent, then each neutral fraction

converges to a proportion of the travelling wave solution. If we assume that the dispersal kernel is

Gaussian, then we can derive an analytic formula for the proportion of each neutral fraction. This

formula is given in Theorem 3.2 and is dependent on the initial condition, profile of the travelling wave,

shifting speed of the environment, climate envelope function, and dispersal parameters. Next, the result

of Theorem 3.1 is extended to general solutions. In Theorem 3.3 we show that if the population is

persistent, then each neutral fraction converges to a proportion of the travelling wave solution.

To complement the theoretical results, we provide some numerical simulations for the inside dy-

namics. Figure 3 is composed of four different simulations by only varying the speed of the shifting

climate envelope. In Figure 3(a), the speed of the shifting climate envelope is too fast and we see that

the population does not persist. In the Figures 3(b), 3(c), and 3(d), we progressively slow down the

speed of the shifting climate envelope. The distribution of the neutral fraction composition changes

in each simulation showing that for these parameter values slowing down the speed of the shifting

climate envelope increases the evenness of the neutral fraction distribution. In Figure 4, we simply

change µ to be nonzero and see a different kind of pattern. Again, in Figures 4(a), 4(b), and 4(c),

we progressively slow down the speed of the shifting climate envelope. However, at the faster (resp.

slower) speeds, the evenness is biased to the leading (resp. rear) neutral fractions, see Figures 4(a)

and 4(c). However, in Figure 4(b), the distribution of neutral fractions is very even among all types.

This suggests that there is a critical speed of the shifting climate envelope at which the evenness is

maximized.

To further explore the assertions from Figures 3 and 4, we employ the use of the Shannon diversity

index. The diversity measure is calculated for varying values of the length and the speed of the shifting

climate envelope. The heat maps in Figures 5(a) and 5(b) uphold the conjectures drawn from Figures

3 and 4 about the distribution of neutral fractions. For comparison to previous work, we provide

more heat maps for the Shannon diversity index in Figure 6 by altering the variance in the dispersal

distance of (3.15) and the length of the shifting climate envelope.

The limitations of the model are contingent on the hypotheses made in Section 1. The growth

function is assumed to be monotone increasing and does not allow possibility for an Allee effect. As

shown in previous work, the Allee effect is known to have a strong influence on the genetic patterns
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formed by expansion [7,20]. It is interesting to note that since the climate envelope is compactly

supported that the model allows for fat-tailed dispersal kernels.

Our persistence and travelling wave results provide an extension of those in [33]. The neutral

genetic diversity results are new to the study of integrodifference equations with a climate envelope.

In many ways they are similar to those found by [8] for reaction-diffusion models. However, there are

subtle differences. For example the diversity index structure of the wave shown in Figure 6 is different

than that shown in Figure 4 of [8]. We believe that this arises due to a fundamental difference in

the integrodifference and reaction-diffusion formulations. The integrodifference formulation truncates

all populations that disperse outside the climate envelope within a single time step, whereas the

reaction-diffusion formulation allows for gradual decline of populations that fall outside the climate

envelope. This means that, although the methods for setting up the initial data were identical for

the two formulations, the resulting dynamics have different effects on the gene fractions that fall

outside the climate envelope: the reaction-diffusion formulation allows them to linger whereas the

integrodifference formulation truncates them immediately. This has a concommitant impact on the

diversity index, particularly near the lower (small L) boundary in Figure 6.

One area for future research is to understand the effects of stochasticity and environmental uncer-

tainty on results of the sort given in this paper. Some initial work in this direction is given in [5], but

much remains to be done.

A Proof of Theorem 2.3

This section is devoted to the proof of Theorem 2.3. We first present some preparatory results.

The following lemma is an immediate consequence of the stationary solution equation.

Lemma A.1 Let w be a stationary solution of (2.2). Then w ∈ C+(I). If, in addition, w 6≡ 0, then w ∈ C++(I).

The next result gives the nonlinear comparison principle.

Lemma A.2 Let w,w ∈ C+(I) satisfy w ≥ F [w] and w ≤ F [w], respectively. If w 6≡ 0, then w ≥ w.

Proof Clearly, the conditions on w imply that w ∈ C++(I). We assume that w 6≡ 0, otherwise there is nothing to prove.

Define

α∗ := inf {α > 0 : αw ≥ w} .

By the continuity of w and w, α∗w ≥ w. Moreover, there exists x0 ∈ I such that α∗w(x0) = w(x0).

We show α∗ ≤ 1 which leads to the result of the lemma. Suppose α∗ > 1 for contradiction. Clearly,

0 ≥
∫
I
K(x0 − y + c)g(y) [α∗f(w(y))− f(w(y))] dy.

As there holds

α∗f(w(y)) = α∗w(y)
f(w(y))

w(y)
> α∗w(y)

f(α∗w(y))

α∗w(y)
= f(α∗w(y)) > f(w(y)), ∀y ∈ I,

where we used (H)-(2), we find ∫
I
K(x0 − y + c)g(y) [α∗f(w(y))− f(w(y))] dy > 0,

which leads to a contradiction.
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The above lemma leads immediately to the uniqueness of non-zero stationary solution of (2.2).

Corollary A.3 There exists at most one non-zero stationary solution of (2.2).

The following comparison principle for sub- and super-solutions of (2.2) is trivial.

Lemma A.4 Let {wn}n ⊂ C+(I) and {wn}n ⊂ C+(I) satisfy wn+1 ≥ F [wn] and wn+1 ≤ F [wn], respectively. If

w0 ≥ w0, then wn ≥ wn for all n.

Now, we are ready to prove Theorem 2.3. We first prove Theorem 2.3(1).

Proof (Proof of Theorem 2.3(1)) Suppose R0 ≤ 1 first. Clearly, 0 is a stationary solution of (2.2). It remains to show

that positive stationary solutions do not exist in this case. For contradiction, let us suppose the existence of a positive

stationary solution w of (2.2). By Lemma A.1, minI w > 0. By (H)-(2),

f(w(y)) = w(y)
f(w(y))

w(y)
< r0w(y), y ∈ I,

which implies that w(x) < F0[w](x) for all x ∈ I. Therefore, we can find some δ ∈ (0, 1) such that w ≤ (1 − δ)F0[w].

We then iterate to obtain

w ≤ (1− δ)nFn0 [w], ∀n ∈ N.
Recall that φ0 ∈ C++(I) is the eigenfunction associated to R0. We may assume, without loss of generality, that w ≤ φ0.

It then follows that Fn0 [w] ≤ Fn0 [φ0] = Rn0φ0 ≤ φ0, which leads to

w ≤ (1− δ)nφ0, ∀n ∈ N.

This yields w ≡ 0. It is a contradiction.

Now, suppose R0 > 1. By Lemma A.1 and Corollary A.3, it suffices to find one positive stationary solution of (2.2).

To do so, let us consider for ε > 0 the sequence {wεn}n defined by

wε0 = εφ0 and wεn+1 = F [wεn], n ∈ N0.

Let δ0 > 0 be such that R0
1+δ0

> 1. It is clear that R0 = r(F0) ≤ ‖F0‖ ≤ r0 = f ′(0). Since the limit limε→0+
f(εφ0(x))
εφ0(x)

=

f ′(0) is uniform in x ∈ I, we can find some ε0 > 0 such that
f(ε0φ0)
ε0φ0

≥ R0
1+δ0

. It then follows the assumption on f that
f(εφ0)
εφ0

≥ R0
1+δ0

for all ε ∈ (0, ε0]. We see that

wε1 =

∫
I
K(· − y + c)g(y)εφ0

f(εφ0)

εφ0
dy ≥

R0

1 + δ0
F0[εφ0] =

R0

1 + δ0
εφ0 > εφ0

for all ε ∈ (0, ε0]. It then follows from Lemma A.4 that wεn+1 ≥ wεn for all ε ∈ (0, ε0].

Let us fix any ε ∈ (0, ε0]. By the boundedness of f , it is clear that {wεn} is uniformly bounded, and hence, the limit

function w∗ := limn→∞ wεn is well-defined. It is easy to see that w∗ is a positive stationary solution of (2.2). The upper

bound on w∗ as in the statement is trivial. This completes the proof.

We denote by w∗ the unique positive stationary solution of (2.2) when R0 > 1. In the proof of Theorem 2.3(1), we

have proven the following result.

Corollary A.5 There exists ε0 > 0 such that for any ε ∈ (0, ε0], the sequence {Fn[εφ0]}n is increasing and converges

in C(I) to w∗ as n→∞.

Proof We only need to point out that the convergence in C(I) comes from Dini’s theorem.

Finally, we prove Theorem 2.3(2).

Proof (Proof of Theorem 2.3(2)) For M ≥ supu∈[0,∞) f(u), we have F [M ] < M . It follows that {Fn[M ]}n is a

decreasing sequence. By Theorem 2.3 and Dini’s theorem,

Fn[M ]→
{

0, if R0 ≤ 1,

w∗ if R0 > 1
in C(I) as n→∞.

This together with Lemma A.4 yield the result in the case R0 ≤ 1. In the case of R0 > 1, we can find some ε0 > 0 and

M0 > 0 such that ε0φ0 ≤ w1 ≤M0. We then conclude the result from Lemma A.4 and Corollary A.5.
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B Comparison of Figure 5 with other diversity indices

To make a complete analysis of the patterns seen in Figure 5 we provide similar plots for different diversity measures.

We consider the diversity index

Divq =

(
N∑
i=1

(pi)q

) 1
1−q

. (B.1)

for 0 < q < 1 and 1 < q <∞. In the limit as q → 1, it can be shown that

Div1 = exp

(
−

N∑
i=1

pi ln(pi)

)
, (B.2)

yielding that Div1 is the exponential of the Shannon diversity index. When q = 0 the diversity index becomes the

species richness and when q =∞ the diversity index becomes a measure of species evenness, given by the maximum pi

value. In Figures 7 and 8 we provide plots constructed in the same manner as Figure 5.

(a) (b)

(c) (d)

Fig. 7 A heat map for the Divq diversity index of (3.12) where (a) q = 0.2, (b) q = 1, (c) q = 2, and (d) q = ∞. In

these simulations we use the following parameter values, R = 1.5, K∗ = 1, σ2 = 0.02 and µ = 0.
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(a) (b)

(c) (d)

Fig. 8 A heat map for the Divq diversity index of (3.12) where (a) q = 0.2, (b) q = 1, (c) q = 2, and (d) q = ∞. In

these simulations we use the following parameter values, R = 1.5, K∗ = 1, σ2 = 0.02 and µ = 0.2.
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