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Abstract

Functional electrical stimulation (FES) has been used as a substitution for the missing neural
excitation of the paralyzed muscles after spinal cord injury. FES-assisted walking with preset
stimulation patterns is usually controlled by a therapist or the subject using manual controls
mounted on the bandgrips of # walking aid. Automation of the switching control can be done by
designing a rule-based control algorithm which will replace the decision making process the
person uses to control the stimulation manually. These rules are usually designed by intuitive
‘hand-crafting’ and by applying them on a set of sensory feedback signals. This process has to be
repeated for each subject due to highly specific disabilities resulting from physically similar

injuries.

In this thesis a method is proposed, developed, and applied for automatic generation of control
rules, which may provide a much faster evaluation of new subjects than the “hand-crafting”
method. The rules are extracted from a set of sensory feedback signals and stimulation control
signals recorded during FES-assisted walking controfled by a skilled therapist or the subject. The
rule-generation method is evaluated using two different machine learning techniques, Adaptive
Logic Networks (ALNs) and Inductive Learning (IL). Very fast training and high generalization of
both techniques justified the design of the integrated control system (ICS). The ICS, currently
based on ALNSs, provides an efficient tool to acquire sensory and control signals, to process these
signals, to train the ALNs in mapping the control function, to test the trained ALNs and to use them
for control signal generation in real-time control of the FES-assisted walking of subjects with
incomplete spinal cord injury. The IL technique was also evaiuated in rule-generation for control of
walking of subjects with complete spinal injury and its potential for cloning the subject’'s skill in
switching the stimulation was demonstrated. In addition, ALNs were evaluatzd for continuous
control of single joint flexion-extension, based on signals recorded from natural sources, such as
nerves and muscles of cat's hind limb. Through experimental work it has been demonstrated that
both techniques are able to generate control rules quickly and to generalize, riot only over daily
subsequent walking sessions but also over the sessions occurring several days after the training.

This provides a good basis for design of robust control systems for FES-assisted walking.



Preface

The format of this thesis may be unusual due to the need to keep track of several different phases
of the thesis project and at the same time to avoid repeating the introduction and the methods and
materials section. The thesis addresses the FES-control problem; it has only one hypothesis and
the appioach to the resolution of the problem stays corsistently the same. The only thing that
changes throughout the thesis is the level of completeness of the problem’s resolution. The thesis
project started as a nice idea for an afternoon’s test in late 1990, and graduaily grew up from the
size of small report at the local motor control meeting to the level of Student Research Award
Winner at the International Federation for Autormatic Control meeting in the beginning of 1994 and
two finalist awards in Student Paper Competitions at the 14th and 17th Annual International
Conferences of the IEEE Engineering in Medicitie and Biology Society. The feasibility test and the
evaluation of the whole approach to the FES-control problem were performed at the same time as
the development of the system componert!s. Therefore, different phases of project were
conducted with components at diffzoont Jieties of development. In particular, iiis applies to the
Adaptive Logic Networks (ALNs), whiZh were evaluated for the firs? %217 in their original Atree 2.0
and Atree 2.7 version. As a result of these tests the original Atrec 2 7 ‘was n.odified resulting in
superior performance. Then, close to finishing the integrated control system (ICS), a new ALN
iearning technology was introduced and released in the form of version Atree 3.0 beta 1.0. This in
turn successfully passed the test and was incorporated into the final version of the integrated
control system. For these reasons, the thesis is structured in a “Mixed Format”, i.e. a combination
of the Traditional and the Paper Format. The major difference between this format and the
Traditional format is that each of the experiments, presented as a section of the Resuits chapter in
the body of the thesis, has its own Methods and Materials section. Furthermore, each experiment

refers to the main Methods ana Materials chapter.
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reducticn of the error resulting from retraining. The graph has 4 parts: 1)
average training error for both ALN and IL techniques; 2) average test error
for both ALN and IL techniques; 33 ALN test error after retraining; 4)
performance error on the first part of the data file after retraining (compare
with ALN resuit shown in part 1).

Integrated control system {ICS) for conirol of FES-assisted locomotion: A)
Data acquisition, ALN training and Off-line test, B) Generalization of
trained ALNs in real-time Walking test and Walking control.

Electronic circuits interfacing stimulator, manual switch, sensors, signal
conditioning devices, and PC-based ALN controller.

ALN training evaluation: A) ALN training evaluation with no functional
errors; B) ALN training evaluation producing functional errors.

ALN training results applied on the training data set recorded in a control
subject (A.K.). The subject was asked to simulate the stimulation signal
required tc activate flexion in his left leg. The simulated stimulation control
signal (seventh trace) was produced by pressing on a manual switch. The
two bottom traces are resulits of the evaluation of trained ALNs before and
after restriction rules were applied. There are no functional errors (missing
or extra stimuli) in the obtained output contro! signal (bottom trace).
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Figure 3.6.5.

Figure 3.6.6.

Figure 3.6.7.

Figure 3.6.8.

Figure 3.6.9.

Off-line test results on a new sequence of data recorded in a control
subject (A.K.). There are no functional errors in the obtained output control
signal (bottom trace).

Walking test results obtained by real-time evaluation of the trained ALNs
during walking. A stimulation control signal predicted by the ALNs was
presented to the subject in the form of a tone signal which sounded
whenever the stimulator should be ON. As in previous steps, the subject
was asked to simulate the stimulation signal required to activate flexion in
his left leg.

ALN training results applied on the training data set recorded in an SCI
subject (L. W.). The subject controlled the stimulation by pressing on a
manual switch installed on a grip of her four-point wheeled walker. The
stimulation control signal (seventh trace) was used to activate a flexion
withdrawal reflex in her left leg. The two bottom traces are results of the
evaluation of trained ALNs before and after restriction rules were applied.

Off-line test results on a new sequence of data recorded in an SCI subject
(L.W.). Although there are some glitches at the end of several stimuli in the
second trace from the bottom, there are no functiona! errors in the obtained
output control signal (bottom trace) due to application of restriction rules.

Walking test results obtained by real-time evaluation of the trained ALNs
during walking. The stimulation control signal predicted by the ALNs was
presented to the subject in the form of a tone signal which sounded
whenever the stimulator was supposed to be ON. As in previous steps, the
subject was asked to manually produce the stimulation signal required to
activate flexion in her left leg.

Figure 3.6.10. Walking control test performed after three steps that the subject

controlled manually. Not being physicaiiy fit for walking. and having not
walked because of an acute iliness for several months, the subject was
very tense which was reflected in the quality and number of steps taken.
This was the reason behind having short walking sequences with long
resting periods. After the walking session the subject admitted that she
carried more than the usual part of her body weight on her upper
extremities, which resuited in continuous turning of her walker to the right.
That was another reason to stop after every few steps to correct the
direction of walking and the walker. There were no functional errors in this
walking session.

Figure 3.6.11. The second Walking control test demonstrates better subject's

confidence in the control system, longer walking sequences and shorter
resting intervals. Also, there was less load on the subject's arms, which
resulted in less turning of the walker and a straighter walking path. After the
sixth step (two manually and four ALN contr.iled), the subject accidentaily,
pressed on the manual switch. This caused instability and two extea stimuli
(see arrow). Although a situation such as this one is poientially gangerous.
we helped the subject to restore her balance and she continued watking.
An additional restriction rule remains to be added which wouid preverit
events such as this, but at the time of the experiment it did not exist.
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Figure 3.6.12. ALN training results on signals recorded during manually controlled

walking in one direction. No functional errors were generated by ALNs and
all stimuli were approximated successfully.

Figure 3.6.13. Off-line test of the trained ALNs on the second half of the same walking
round used for training. Although turning around was not part of the training
data set, ALNs generalized weli during turning around without stimulation
and during walking back to start position. No functional errors or obvious

dissimilarities between the original stimuli and ALN-produced ones are
_ present.

Figure 3.6.14. Walking test results obtained by real-time evaluation of the trained ALNs
during walking. The subject used stimulation not only for walking straight,
but also during turning around for taking steps backwards. ALNs
generalized well and without functional errors both during straight walking
and during turning around.Figure 3.6.15. Walking control test performed
after two steps controlled manually by the subject. This walking sequence
was also very short due to the subject's fatigue. There were no functional
errors in this walking session.

Figure 3.6.15. Walking control test performed after two steps controlied manually by
the subject. This walking sequence was also very short due to the subject's
fatigue. There were no functional errors in this walking session.

Figure 3.6.16. Walking test done using ALNSs trained during the Second session (tree
days before this experiment). This was the first walking test of the ALNs
trained before the current walking session. After initial insecurity (one early

and one extra stimulus during the first step), the rest of the stimulation was
predicted correctly.

Figure 3.6.17. The second Walking test done right after the first one. Obviously, the

subject demonstrated nice periodic walking during which all stimuli were
correctly predicted.

Figure 3.6.18. Walking control done using ALNs trained three days before this
experiment. Walking was very smooth and the subject demonstrated a full
understanding of the importance of the appropriate weight transfer, as a
way to voluntary inform the controller about her intentions.

Figure 3.6.19. The second Walking control round started with smali instability resulting
in one early and one extra stimulus (similar to the one shown in Figure
3.6.17). After the ALNs were put in charge of controlling the stimulation, the
walking became as nice and smooth as one in the previous walking round.

Figure 3.6.20. The third Walking control round suffered the same problem at the
beginning as the previous one, and it was much shorter due to

development of fatigue. Otherwise. the steps recorded were regular and
periodic.

Figure 3.7.1. The amplitudes (top) of compound action potentials were measured with
triphasic cuff electrodes on three different nerves: sciatic, tibial and
superficial peroneal in three legs (different symbols) of two chronic cats.
The potentials were elicited by stimulating the sciatic nerve and recording
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Figure 3.7.2.

Figure 3.7.3.

Figure 3.7.4.

Figure 3.7.5.

Figure 3.7.6.

Figure 3.7.7.

from the other two nerves which are branches of it and by stimulating the
branches while recording from the sciatic nerve. The four values relative to
the mean for each nerve over the entire recording period were averaged
and plotted. The amplitudes of EMG contamination on the other nerves
(bottom) were also averaged in the same way when the sciatic nerve was
stimulated maximally. The EMG contamination could easily be
distinguished because of its greater latency and slower time course.

(a) Power spectral density calculated from EMG recorded from medial
gastrocnemius (MG) muscle, while a chronic cat walked on a treadmill. (b)
Corresponding spectra are shown from a nerve cuff on the tibial nerve
without filtering. (c) After high-pass filtering with a cutoff at 1000 Hz. Note
that without filtering the peak spectral density of the EMG is approximately
100 times that of the neural signal (10 times the amplitude), but the ratio
can be reversed using a fourth order high-pass filter.

Recordings from superficial peroneal (SP) and tibial (Tib) nerves as well as
medial gastrocnemius (MG) and tibialis anterior (TA) muscles of a chronic
cat. This 20 s recordings were selected to indicaie the distinct rhythmic
activity in peripheral nerves and ankle muscles in various behaviors.

Threshold levels were set (dashed lines) to determine instants when
processed electroneurograms (ENG) recordings from tibial and superficial
peroneal nerves (upper two traces) crossed above these preset levels.
Threshold crossings activated transitions in a simple rule-base with four
states (third trace), as explained further in the text. Entering state 2 turned
on circuits for a fixed period of time (trace 5) that correspond on average to
the duration of suprathreshold activity of MG EMG (trace 4). Similarly,
entering state 4 turned on a circuit for a period (bottom trace)
corresponding to the suprathreshold period of the TA EMG (trace 6). Note
that the circuit operated reliably with no false positive or negatives.

When the rule-base was connected to a stimulator and stimuli were applied
(middle trace), artifacts were gens:rated on the processed tibial ENG (top
trace), even with filtering, but this could be greatly reduced (bottom trace)
by switching in a blanking circuit.

To match the activity pattern of an ankle muscle, based on the signals from
the tibial and SP nerves, we used an adaptive logic networks (ALN). Neural
signals (upper two traces in Figure 3.7.4) were presented to the ALN as the
input, together with an output which consisted of puises (second trace in
this figure) representing periods when MG EMG exceeded a threshold
value. The data on the left half of the figure were used in training the ALN
to reconstruct the binary representation of the EMG signal. The
reconstructed result is in the third trace, and the error is in the fourth trace.
The right half of the figure presents test data, where reconstruction was not
as successful as in training. Further details in the text.

Configuration setup for evaluation of ALNs for continuous control of FES.
A) Training of the ALNs to approximate and predict target EMG signals
from neurai inputs during walking on a treadmill. B) Test of the trained
ALNSs on neural signals not used during the training. The ALNs are here
predicting the muscular activity from indirectly related neural activity.
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Figure 3.7.8. A sample of neural and muscular activity presented in the form of ENG and
EMG signals recorded in the cat's hind limb during walking on the powered

treadmill. A degree of shape irregularity is much higher in the EMGs than in
ENGs.

Figure 3.7.9. Three-dimensional relationship between output MG EMG signal and
sensory inputs (Tl and SP ENGs) in approximately four gait cycles.

Figure 3.7.10. Three-dimensional relationship between output TA EMG signal and
sensory inputs (Tl and SP ENGs) in approximately four gait cycles.

Figure 3.7.11. Amplitude distribution for the MG EMG signal.

Figure 3.7.12. Amplitude distribution for the TA EMG signal.

Figure 3.7.13. Expert encoding compared to uniform unary encoding.
Figure 3.7.14. ALN ftraining error

Figure 3.7.15. ALN test error

Figure 3.7.16. ALN training time and test error relationships with the number of encoding
levels and the size of ALN trees.

Figure 3.7.17. An example of input and output signals used in ALN training and test. The
colored areas in the last two traces show the difference between original
and predicted EMGs during training and test.

Figure B.1. Structure of binary tree representing idealized classification function (from
Armstrong and Gecsei, 1979, permission obtained from W.W. Armstrong)

Figure B.2. Non-disjoint binary tree with inversions (from Armstrong and Gecsei, 1979,
with permission obtained from W.W. Armstrong)

Figure B.3. Disjoint balanced binary tree (from Armstrong and Gecsei, 1979, with
permission obtained from W.W. Armstrong)

Figure B.4. An example of two-level tree (from Armstrong and Gecsei, 1979, with
permission obtained from W.W. Armstrong)

Figure B.5. (A) Computer-controlled generation of assignments. Node functions g, are

stores in memory and communicated to the tree. (B) System of adaptive
elements. Each element receives two function values from its successors,

a heuristic responsibility signal s, from its predecessor and desired tree

output value h(&) (last two only during the training). Assignments g, are

generated in each node from the above signals. (from Armstrong and
Gecsei, 1979, with permission obtained from W.W. Armstrong)

Figure B.6. Tree for threshold function x 2 y . (from Armstrong and Gecsei, 1979, with
permission obtained from W.W. Armstrong)
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Figure B.7. Hierarchical decomposition of the input/output space into regions
Figure B.8. Linear Threshold Element
Figure B.9. A typical structure of logic gates and linear threshold elements

Figure B.10. Linear threshold element can classify data presented in a form of a set of
data samples or in form of a function.

Figure B.11. Classification of data samples distributed in a non-linear way.
Figure B.12. An ALN approximation of convex-type non-linear functions.
Figure B.13. An ALN approximation of a complex function.

Figure B.14. An ALN approximation of a complex function which does not have inverse
function.

Figure C.1. Opening screen of the program WALKON.

Figure C.2. Opening a new data file.

Figure C.3. Display single channe!.

Figure C.4. Stack all channeils.

Figure C.5. Set history points dialog box.

Figure C.6. History points display using Stack function.

Figure C.7. Truncate channels dialog box.

Figure C.8. Random Walk encoding.

Figure C.9. Unary (linear) encoding.

Figure C.10. Arbitrary position of quantization levels over the amplitude range.

Figure C.11. Dialog box for choosing a channel to shift. Similar dialog box is used for
choosing a channel to differentiate.

Figure C.12. Dialog window for specification of ALN training parameters.

Figure C.13. Dialog window Yor specification of ALN tree parameters.

Figure C.14. ALN training status window after the training was finished.

Figure C.15. Evaluation of the trained ALN trees results in new data file spreadsheet.

Figure C.16. Original stimulation control signal, the signal predicted by ALN and signal of
their difference are organized in a new data file.

Figure C.17. Assessing the performance of trained ALNSs.
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Glossary

adaptive Boolean logic element: A node; an element of the ALN tree which can be any of four
Boolean functions (AND, OR, LEFT, RIGHT).

adaptive logic networks: A type of artificial neural network for supervised learning which
produces a binary decision tree.

cadence: Number of steps per minute during uniform speed walking.

cerebrovascular accident: Brain damage due to blood clot or hemorrhage; also known as

‘stroke’.

class: Classification category; a value in the codomain.

codomain: The set of all possible values of output variables in supervised learning
techniques.

decision tree: Training result of machine learning technique. it can be described by a ‘rule-set’.

domain: The set of all possible values of input variables (attributes) to the machine
learning technique.

epoch: A single presentation of the whole training input and output data set to the
machine learning technique.

generalization: Performance of the learned function on new data unused during the training.

hemiplegia:  Complete paralysis affecting one side of the body, usually due to brain disease or
injury.

inductive learning: A supervised learning technique producing decision trees in the form of
IF(condition) THEN(a) ELSE(b) rules.

input vector: Binary array in ALN consisting of all bits of input variables and their complements.

lazy evaluation (‘parsimony’): One way of reducing the necessary evaluations to a small
fraction of the elements in the network. Parsimony uses the simple fact that if one
input of an AND gate is 0, then the output is also 0, and it is unnecessary to



evaluate the subtree producing the other input, nor indeed, even know its inputs.
The same holds true for an ORR gate and a 1 input, of course.

leaves: Nodes of the first layer of an ALN binary tree used to produce a binary input
vector to the tree.

myoelelectric signal: Total signal representing muscular activity, seen at an electrode or
differentially between electrodes; this signal is also called the electromyogram
(EMG).

orthosis: An external mechanical support for some part of the body; also known as a

‘brace’.
output vector: Binary array in an ALN consisting of output bits from all ALN trees.
paraplegia: Paralysis of the legs, usually due to disease or injury of the spinal cord.
paresis: Paralysis of muscles.
quadriplegia: Paralysis of both arms and both legs; also known as ‘tetraplegia’.

rule: Conditiona! /F(condition) THEN(a) ELSE(b) structure where a and b represent

classes (actions) or references to further rules of the same form.

rule-based controller: A controller in which the knowledge required to control the plant is as

rules.

spasticity: Increased muscle tone due to involuntary contractions of muscles. Resistance of
muscles to being stretched.

stroke: See ‘cerebrovascular accident’.

supervised learning: A type of machine learning in which the learning algorithm is trained on
sets of examples containing input and corresponding desired output signais.

test: Performance evaluation of the learned function on a test data set (new data not
used during the training).



test error:

tetraplegia:

training:

training error:

voter:

A measure of generalization of the learned function expressed as a percentage of

incorrectly predicted samples in the test data set or often as least-square error
between desired and actual performance.

See 'quadriplegia’.

Process of establishing an input-output mapping based on the set of inputs and
their corresponding outputs.

A measure of training performance expressed as a percentage of incorrectly
classified samples of the training data set, or as least-square error.

ALN V.2 has a feature to allow use of more than one tree for each bit in an output
vector. The actual output bit is decided by majority vote of all trees producing a
value for that particular bit.



Abbreviations

ABLE:

ADL:

ALN:

BTF:

DBTF:

DSP:

EMG:

FES:

FSR:

HAS:

ICS:

i:

LTE:

MG:

MLT:

ND:

RBC:

SCl:

SP:

TA:

TI:

VAF:

adaptive Boolean {ogic eiement
active daily living

adaptive logic network

binary tree function

disjunct binary tree function
digital signa! processing
electromyogram (see myoelectric signal)
functional electrical stimulation
force sensing resistor

hybrid assistive systems
integrated control system
inductive learning

linear threshold element
medial gastrocnemius muscile
machine learning technique
neuroprosthetic device
rule-based control

spinal cord injury or spinal cord injured
superficial peroneal nerve
tibialis anterior muscle

tibial nerve

variance accounted for (%)



1. INTRODUCTION

1.1 THE ROLE OF HUMAN WALKING

Walking as a natural way of overground transportation from one place to another is one of the
most complex and most important movements that humans do in their life. It is one of the most
difficult movement tasks that we learn, but once learnt, it becomes almost subconscious. Also. itis
obviously very difficult to approximate bipedal human-like walking by artificial walking machines,
otherwise such machines would be used as ground transportation vehicles. What makes human
walking advantageous over, for example, wheeled transportation systems is the fact that
progression is possible over uneven terrain (i.e. obstacles, gaps in the surface, narrow edges). in
practical terms. these advantages translate into easier access to buildings. confined spaces. etc.
The task of copying the mechanism of human walking is not only difficult due to the complexity of
the biomechanics of the musculoskeletal system, but also to the presence of the biological neural
control system that takes care of the musculoskeletal system as well as the rest of the body to
ensure reaching desired destination safely. Only when this complex neuro-musculo-skeletal
system is disturbed by traumatic injury, neurological damage. gradual degeneration. or fatigue do

we realize how limited is our understanding of the complex biomechanics and motor control

mechanisms.

Inspired by the importance and the complexity of walking. David A. Winter wrote a beautiful poem

in his book (Winter, 1991):

“...Walking is for enjoying from one day to another - to play hopscotch, to play jump the
rope, to play cops and robbers, to go cancing through the trees in the park, at parties for

weddings and birthdays. with the belovet! at nightfall, to meet the returning child. ~
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Jacquelin Perry, another prominent researcher in the field of gait analysis, wrote in her book
(Perry, 1992) about the importance of walking and the difference between normal and impaired

watking:

“Walking is the body’s natural means of moving from one location to another. It also is the
most convenient means of traveling short distances. Functional versatility allows the lower
limb to readily accommodate stairs, doorways, changing surfaces, and obstacles in the
path of progression. Efficiency in these endeavors depends on free joints mobility and
muscle activity that is selective in timing and intensity. Energy conservation is optimal in
the normal pattern of limb action. Because of the numerous advantages of walking,
patients strive to retain this capability even in the presence of severe impairment. As the
various types of pathology alter mobility and muscular effectiveness, the patients
substitute wherever possible, yield when they must, and accept compensatory reactions
of adjacent segments as they occur. The resulting walking pattern is a mixture of normal
and abnormal motions that differ in significance. Energy costs are increased and

functional versatility is compromised.”

1.2 WALKING AFTER SPINAL CORD INJURY

Spinal paralysis is one of the most devastating of all the ilinesses that can befall man (Guttmann,
1976; Jackson, 1981; Rieser et al., 1985) Not long ago, 80% of subjects with spinal cord injury or
disease died within three years due to subsequent medical complications (Jackson, 1981). Today,
with modern treatment methods at spinal injury centers, persons with spinal cord injury can expect
a normal life span. The incidence of persons with spinal cord injury requiring care is in the range
of 8,000-9,000 new cases per year in the United States (approximately ten times less in Canada).
With the increase of longevity post-injury, the prevalence of this problem is generally stimated to
be in the range of 200,000 persons (Ozer, 1988). A typical subject with the spinal cord injury is a

young male. under 30 years of age, injured in a motor vehicle accident (Oliver et al., 1988). The



second largest cause of the injury are amateur sporting activities, and diving is responsible for

more than a half of such injuries.

A basic knowledge of the functional anatomy of the spinal cord is a prerequisite and a practical
necessity for understanding spinal corc injury and for prescribing a proper clinical care. The spinal
cord is a cylindrical extension of the central nervous system. The total length of the cord is about
45 cm in men and from 41 to 43 cm in women, while the length of the vertebral column is about 70
cm (Cayaffa, 1981). The spinal cord occupies approximately the upper two thirds of the vertebral
canal. Thirty-one pairs of spinal nerves originate in the spinal cord. The spinal cord has been
classically divided into five segments: cervical, thoracic, lumbar, sacral and coccygeal. Spinal cord
segments, spinal nerves and vertebral body levels are traditionally marked using the first letter of
the level's name and the level itself, for example, C5 equals to the fifth cervical level. Injuries and
impairments can be classified according to either vertebral body levels or spinal cord segments.
The spinal cord and the spinal nerves are illustrated in Figure 1.2.1. The main functions

associated with spinal nerves are also marked.

The spinal cord has long been identified as an extremely trauma-sensitive organ. Seemingly
moderate traumatic injury or tumor pressure is clinically associated with total and permanent
paralysis (Osterholm, 1978). The spinal cord can be damaged either by injury to the spinal
column, or this may happen without any noticeable changes in the bones of the spine. Most
frequently, spinal cord injuries occur together with an injury to the spinal column. The spinal
column is usually injured by one of the following three mechanisms (Benes, 1965) hyperfiexion,
hyperextension, or a direct blow to the spinal column. Both hyperflexion and hyperextension may
combine torsion and lateral displacement. Figure 1.2.2 illustrates the distribution of injuries
according to affected vertebrae. It clearly confirms the well established fact that injuries at the

level of the fifth cervical and of the first lumbar vertebrae are the most frequent ones (Benes,

1965).
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Figure 1.2.1. The relationship of the spinal cord and the spinal nerves to the vertebral column. Injury at
the upper pointing hand affects mostly the spinal cord and a few spinal nerves, while injury at the lower

pointing hand can affect many spinal nerves in addition to the spinal canal (modified from Rieser et al.,
1985).
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Figure 1.2.2. Distribution of spinal cord injuries according to affected vertebrae. Injury above the
pointing hand produces quadriplegia while injury below the line produces paraplegia (modified from
Benes, 1965).
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In clarifying the interaction of the person and the injury, it is useful to use the well-established
distinction made between ‘impairment’ and ‘disability’ (Ozer, 1988). ‘Impairment’ describes the
loss of sensation or coordination of motor actions or loss of autonomic control of urination, bowel
evacuation, and sexual function that may occur with damage to the spinal cord or roots, while
‘disability’ refers to the functional consequences of such impairments: the activities in the life of
the person that have been affected. Fo: example, the impairment in motor coordination called
‘paraplegia’ generally leads to a disability in mobility. It is important to recognize that it is

frequently possible to effect change in these disabilities even if the impairments continue to exist.

Impairments resulting from injury are classified depending on which extremities are affected into:
‘quadriplegia’ representing partial or total loss of sensation and/or motor functions in upper and
lower extremities, and ‘paraplegia’ representing the loss only in lower extremities (see Table

1.2.1).

Spinal cord injuries are usually classified as ‘complete’, with a total loss of sensory or motor
function below the level of the lesion; or ‘incomplete’, with some preserved sensation or motor
function below the level of the lesion. More precise and generally accepted classification of the
injuries by the rehabilitation professionals is cne proposed by Frankel et al. (1969), which defines

five different grades of impairment as shown in Table 1.2.2.

The number of incomplete spinal cord injuries has been increased recently with the reduction in

number of complete cases (Kralj and Bajd, 1989). This has been attributed to:

e improvements in emergency procedures to protect the spinal cord from further damage;
e seat belt legislation, which resulted in a reduction in death rate from motor vehicle injuries;

e improved motor vehicle engineering. which decreased the number of disastrous traffic
accidents;

e preventive education of the people, before getting their drivers license, to avoid any rotary
movement at the cervicodorsal and lumbodorsal junction when giving first aid to subjects
with possible fractures of the vertebral column.



Table 1.2.1. Typical impairments and functional capacities after spinal cord injury (modified from
Cull and Hardy. 1977).

IMPAIRMENT FUNCTIONAL DESCRIPTION

C5 Quadriplegia - totaily dependent for many activities of daily living (ADL)
- wheelchair necessary

- reduced respiration function

- elbow flexion possible

- no finger movement

- low endurance

- lifetime attendant care necessary

C7 Quadriplegia - assistance needed for ADL

- wheelchair-bound

- need splints and aids for wrist and forearms
- has weak grasp

- able to transfer with assistance

C8, T1 Paraplegia - minimal assistance for ADL

- wheelchair needed

- may walk with ‘swing to' gait with bracing

- possible to drive adapted car

T7 Paraplegia - independent in wheelchair

- tight grasp

- ambulation usually not functional
- may drive a hand-controlled car
- public transportation difficuit

T12 Paraplegia - completely independent

- drives a hand-controlled car

- normal walking gait not possible

- uses hip-hiking with bracing

- can climb stairs

L4 Paraplegia - completely independent in self-care and ambulation
- uses wheelchair by choice or for convenience

- uses crutches for ‘normal-type’ walking

- drives a hand-controlled car

Although this section deals only with spinal cord injury, there are many more diseases that

produce similar effects to the spinal cord injury. Jacqueline Perry wrote on pathologies that affect

walking (1992):
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“When poliomyelitis and amputations in otherwise heaithy, young persons were the

primary causes of gait abnormalities, it was sufficient to memorize few key action

patterns. Now the clinical concerns relate to a far broader scope of pathology. Stroke,

spinal cord injury, brain trauma, cerebral paisy, myelodysplasia, muscular dystrophy,

geriatric amputation, degenerative joint disease, rheumatoid arthritis, multiple sclerosis,

and complex patterns of mixed trauma comprise a representative but not exhaustive list.”

It can be seen from Table 1.2.1 that serious injury at any of the levels in the spinal cord affects

walking and mobility of the subject. The wheelchair provides a convenient low energy means of

transportation in an environment specially designed or adapted for wheelchairs. However, the

wheelchair only partially resolves the transportation problem. There are many more issues that a

wheelchair-bound person has to deal with besides transportation: muscle atrophy, osteoporosis,

pressure sores, bladder and kidney infections, etc. Assisted standing and walking, even in the

form of physical exercise can significantly reduce these problems (Kralj and Bajd, 1289). Assisted

walking, even if it may not be faster and more energy-efficient than a wheelchair transportation,

can provide more independence at home or in places that are not specially adapted for people \n

wheelchairs. One way to provide such assisic ~e to disabled people and to improve the quality of

their lives is functional electrical stimulation (FES).

Table 1.2.2. Classification of impairment after spinal cord injury (from Frankel et al. 1969).

IMPAIRMENT

DESCRIPTION

Complete (A)

Complete motor and sensory lesion below marked segmental ievel.

Sensory only (B)

Motor paralysis is complete and some sensation is present below marked
segmental level.

Motor 'Jseless (C)

Some motor power is present below marked segmental level, but it is of no
practical use to the subject.

{| Motor Useful (D)

Useful motor power is present below marked segmental level. Subjects in
this group could move lower limbs, and many could walk, with or without
aids.

Recovery (E)

Subject is free of neurological symptoms, i.e. no weakness, no sensory loss,
no sphincter disturbance. Abnormal reflexes may have been present.
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1.3 A BRIEF HISTORY OF ELECTRICAL STIMULATION

Treating disease with electricity has intrigued man for centuries. Early civilizations prescribed
shocks naturally occuring from electric fish or rubbed amber, to cure ills ranging from headache to
hemorrhage. Although the terminology of electrical stimulation may be a bit confusing (Kahn
1994), today’s wide variety of stimulation apparatus all have in common one of two purposes: the
stimulation of tissues for therapeutic or diagnostic purposes. Belonging to the first group are:
stimulation of the muscles to contract or relax; stimulation of the nerves to produce analgesia or to
increase dormant motion; and stimulation of the bone to enhance growth. Improved blood
circulation is a common benefit from the stimulation of all these tissues. Stimulation for diagnostic
purposes is used in neurophysiological tests such as measuring the conduction velocity of

peripheral nerves, somatosensory evoked responses, etc.

Torpedo fish, capable of generating substantial electric shocks of 100-150 V, were recommended
as therapeuti~ agents as early as 400 B.C. (Benton, et al., 1981). Topically applied to the head,
these electric fish were reported to relieve headache. Placed under the feet, the torpedo cured
arthritis. A diet including boiled torpedo was prescribed for asthma. In 46 A.D. Scribonius Largus
employed the electrical discharges of the torpedo fish to treat gout and headaches, although it is

not clear whether the resuits depend on stimulation or intimidation.

Amber, a fossilized resin, was noted by the ancients to produce: shocks after being rubbed; and it
was given as pills to cure inflammation, hemorrhage and nausea. A derivative of electrica, from
the Latin word for amber, became used in 1600 to describe the force which tingled the senses and
moved the limbs. The first report on purposeful muscle contraction produced by static electricity
was made in 1745 by Kratzenstein, a 21-year-old German physics graduate. He has applied static

electricity to the paralyzed small finger of a woman which straightened out in 15 minutes.
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In 1745 the invention of the Leyden jar, forerunner of the electrical capacitor. extended the
applications of electricity by providing the ability to store energy and to conserve quantities of
charge for later use. Various disorders, such as kidney stones, sciatica, epilepsy, and angina
pectoris, as well as paralysis, were soon reported to be ‘successfully’ treated. A 1753 report by

the practitioner Samuel Quelmalz describes a representative cure of the electric shocks:

“A young man of 18 with hemiplegia of two years duration, was unable to stand or walk
and had lost his speech. His fingers were held in involuntary flexion so that he was unable
to put on his shoes by himself. His arm was motionless and his hand cold... | applied
some shocks to his hand in the morning and again in the afternoon. After a few days he
returned and was able to move the arm more freely and also to speak with greater ease.
Electric shocks were given once or twice a week. Soon he recovered so much function

that he no longer complained of inability to finger the violin as he had previously.”

In spite of convincing testimonials of the therapeutic value of ‘electric shocks’, it was not until late
1700s that published reports linked muscle contraction to electrical stimulation of nerve. The first
record of the use of electrical current to activate isolated muscles dates to 1791. Luigi Galvani
(1737-1798) accidentaily discovered that the leg of a frog twitched if it was touched with an
electrically charged scalpel. He used electricity to activate an isolated nerve-muscle preparation.
He also observed that application of dissimilar metals to the nerve of a frog muscle induced
muscular contraction. Galvani assumed that the ‘animal electricity’ was generated by the nervous
tissue and was stored in muscles, which he compared to Leyden jars, and that the metal only

provided a path to discharge the inherent energy.

Subsequently, ‘galvanism’ or ‘galvanization’ were the names applied to the application of electrical
current to the body. Galvani's nephew, Aldini demonstrated the use of direct-current stimulation
for twitching the muscles in the decapitated head of an executed criminal. This event linked

electricity and life and it was believed that electricity could restore life, a process called



‘reanimation’. Soon, all kinds of excitable tissues became the focus of attention and there arose

the need for controllable electrical stimuli to induce activity.

The first electrical stimulatér was the capacitor or static electric machine. The most successful of
these was the rotating-disk type due to Ramsden (c. 1768) which was used by Galvani in
experiments mentioned above. The combination of a static-electricity machine and the capacitor
(Leyden jar), which could store the charge produced by a static-electricity machine provided the

opportunity of delivering single stimuli of controlled intensity and duration which enabled discovery

of the strength - duration relationship of the stimulation.

Then the electromechanical cell connected to a switch to initiate and arrest current flow was
invented. Special switches, called rheciomes, were developed to control the repetition and
duration of current flow. However, it was the discovery of magnetic induction by Faraday in 1832

that paved the way for creation of the most controliabie stimulator for the time being, the

inductorium.

In 1795 Humboldt proved on his own muscles that their contraction resulted from direct
stimulatior:. He also indicated that the nerve must be intact to achieve such a response. In 1798
Volta inverited a dependable source of continuous electric current - ‘Volta's pile’. With his ‘pile’ he
nofed that & contraction takes place only at a first flow of electricity, and sometimes also at the
breaking of the circuit...” This finding was tested and confirmed by Ritter, who concluded that if the
exciting stimulus is not applied with briskness, the muscle would not contract. Combination of
electrical stimulation and ancient Japanese practice of acupuncture produced a hybrid technique -
electropuncture, proposed by Sarlandiere in 1825 and mastered by Duchenne de Boulogne. The
latter became so interested in the technique that he devoted much of the remainder of his long life
to electrical stimulation. He soon found that he could stimulate muscles electrically without
piercing the skin and devised cloth-covered electrodes for surface stimulation, the basic design of

which is still used. He was the first to use the alternating current for stimulation and he suggested
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the word ‘Faradic’ to describe that current. Although noticing presence of “certain spots along the
surface of the body and limbs that give peculiar responses to the electrode in producing ample
muscle contraction”, he did not offer any written explanation of this findings. it was left to Remak
to explain that these famous points of election on the muscles are the points of entry of the
muscular nerves. Mapping of the whole surface of the body by marking the motor points on the
skin of subjects with silver nitrate was done by Von Ziemssen in 1857. By dissection immediately
after death, he confirmed the correspondence of his clinical markings with the actual entrance of

nerves into muscles.

During the 19th century many other investigators explored electrical stimulation for diagnosis,
discovering that diseased muscles responded differently than normal muscles. The early 20th
century is remembered as a time when a number of electrical stimulating devices were developed

and produced commercially, mainly in Europe for electrodiagnosis and physical therapy.

The use of electrical stimulation as an aid in overcoming paralysis in human legs has intrigued
many investigators and inventors which resuited in patents such as one filed for in 1951 by Giamo
and entitled “Electrical Control of Partially Denervated Muscles”, which illustrated surface
electrodes for stimulation of leg muscles. In 1956 Browner filed for'an “Ambulatory Electrical
Muscle Stimulating Device", which incorporated the stimulator directly on a surface electrode

assembly.

Although Keegan Jr. filed in 1961 on a “Device for Producing Muscle Therapy” which used surface
electrodes over the pretibial muscles and a heel switch for control of the stimulator for footdrop,
the tribute for the first effort to apply electrical stimulation as an aid to recover function in a
disabled person is granted to Liberson (Liberson et al.,1961). In 1965 Offner and Liberson applied
for a patent entitled “Methods of Muscular Stimulation in Human Beings to Aid in Walking” to cover
the equipment they designed, which is very similar to Keegan's design. These early prototypes led

to the development of a commercial system called ‘Theratron' which was not very successful
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because of problems with electrodes and excessive pain associated with the stimulation. Around
1962 a group at Case Western Reserve University (Reswick, Vodovnik, Crochetiere, Long and
others) began to explore the use of electrical stimulation to obtain useful function in paralyzed
subjects. Successful work of this group resulted in dissemination of the idea of using electrical

stimulation to substitute for missing voluntary excitation and control of paralyzed muscles around

the world.

Regarding stimulation-assisted locomotion, the flexor withdrawal reflex was known for a long time
before it was suggested by Kabat (1954) to utilize it in facilitation of voluntary movements in
spastic paralysis. The first electrical induction of the flexor withdrawal reflex during the swing
phase in locomotion of hemiplegic subjects was tested by Lee and Johnston (1976). They have
tested different stimulation sites and stimulation parameters and determined the best site to apply
the electrical stimulus as well as the optimal combination of stimulus parameters to control the
magnitude of the reflex. It is interesting that they found the sole of the foot to be the site which

produced the longest duration of flexion response after stimulation.

More technical details about the development of the first stimulators can be found in an excellent
review by Geddes (1994) and more clinical information on the early use of electric stimulators is
provided in reviews by Reswick (1973), Benton et al. (1981) and Hambrecht (1992). Ever since
these first steps of electrical stimulation implementation for assistance in functional movement, the
field of functional electrical stimulation is constantly expanding and there are already many

commercially available devices which originated in those ones mentioned above.

1.4 PHYSIOLOGY OF ELECTRICALLY STIMULATED MUSCLE

The decision to perform voluntary movement originates in the brain. The command is then sent in
form of nerve impulses (action potentials) over the spinal cord, peripheral nerves, and

neuromuscular junction to a skeletal muscle. Cell bodies of peripheral nerves, or alpha motor
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neurons, are found in the various sections of the spinal cord. The impulses are conducted
between the brain. either directly to these alpha motor neurons or onto a second set of neurons
called interneurons. The spinal cord contains millions of interneurons. A theoretical description of
the propagated action potential was given by the model proposed by Hodgkin and Huxley (1945.
1952). From the neuromuscular junction the signal spreads in all directions throughout the muscle
cell membrane and through the transverse tubular system into the inside of muscle cells. Calcium
is then released. and cross-bridges between the actin and myosin filaments are formed. The final
task of the muscle is to generate force. According to current concepts of muscle physiology
(Rothwell, 1987), the amount of force developed within a muscle is determined by the number of
cross-bridges formed between the filaments as they slide past each other during a contraction.
The resulting force depends not only on the command at the neuromuscular junction, but also on
the muscle iength, the velocity of shortening and the state of activation of the muscle before

receiving the command.

The generation of force is also the aim when paralyzed skeletal muscles are stimulated
electrically In case of spinal cord injury the normal patrways in the spina! cord are damaged. One
way to activate paralyzed muscle is by bypassing the neural lesion electronically. The main
decision to make a movement is still made in the subject’'s brain, but the way the command is
given and the path of the command before it reaches the muscle is different. The command which
starts electrical stimulation can be given using hand or foot switches. Electrical stimuli are
generated in the stimulator and delivered to the peript..-al nerve through surface or implanted
electrodes. From here on, the command path is the same as described for voluntary contraction

of skeletal muscle, although not necessarily resulting in stimulation of the same musciles.

The human muscle is usually a combination of slow fibers capable of sustaining low levels of
contractile activity without fatigue for prolonged periods and fast fibers capable of developing large
foices. but fatiguing so rapidly that they can be used only in intermittent activities. Often in the

iterzture, slow-twitch or type i fibers are denoted as red, while fast-twitch or type Il fibers are
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called white fibers. Red fibers contain myoglobin, which gives them a characteristic color and
serves as a reserve of oxygen. The duration of the twitch contraction is prolonged in slow-twitch
fibers. They are also smaller in cross-sectional area, have a high capacity for oxidative
metabolism. and a low capacity for glycolytic metabolism. In contrast. fast-twitch glycolytic fibers
are large in cross-section, they have a low capacity for oxidative metabolism, and a high capacity
for glycolytic metabolism. Fast-twitch fibers exhibit a twitch contraction of short duration. Some

muscles are predominantly made up of white fibers, some predominantly of red, and some of a

given mixture of the two.

All muscle fibers innervated by the same motoneuron have been found to be of the same
histochemical type. Motoneurons innervating predominantly siow muscles discharge at a low
frequency (10 to 20 Hz), and those supplying fast muscles at a higher frequency (up to 60 Hz).
Motoneurons activating slow types of muscle are in general called tonic, while phasic types of

motoneurons act on fast muscles. Tonic motoneurons have axons of small diameter, while phasic

motoneurons have axons with 2 larger diameter.

In a voluntary contraction of normally innervated muscle, the slow-twiich fibers are recruited first,
and only if increased tension is required, the fast-twitch fibers are then recruited Slow muscle
fibers are, therefore, activated frequently, while fast fibers are employed only during a burst of
intense activity. When applying electrical stimutation, fibers with a greater diameter respond
earlier. These are phasic motoneurons innervating fast muscle fibers. When a motoneuron is

electrically stimulated, the normal order of recruitment is, therefore, inverted.

Also. it has been demonstrated that the concentration of collagen is higher for a slow than for a
fast skeletal muscle. Collagen is the major connective tissue protein, having the main
responsibility for mechanical strength of a muscle. More flexible connective tissue of a fast muscle

allows faster movements, while slow muscle can store more elastic energy in its collagenous

compartments.
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When describing the state of skeletal muscle following spinal cord injury. it is important to
distinguish between upper and lower motor neuron lesions. The loss of force in electrically
stimulated muscles paralyzed by an upper motor neuron lesion is due to disuse atrophy of the
involved fibers. The state of the muscle following upper motor neuron lesion is, therefore, to some
extent similar to the state occurring after immobilization. immobilization of heaithy human skeletal
muscle seems to involve preferentially type | fibers. It causes a remarkable reduction in oxidative
enzyme activity, whereas the glycolytic activity seems to be increased. Both immobilization and
lesion of the spinal cord result in a decrease in metabolic demand. it was shown through animal
experiments that all limb muscles are slow at birth, and that differentiation into the fast and slow
types occurs during the first few weeks after birth. The differentiation of fast muscles is virtually
unaffected by spinal cord transection, while the differentiation of slow muscles is greatly
depressed. A few weeks after spinal cord lesion, predominantly slow muscles become nearly as

fast as normal fast muscles.

The candidates for FES-aided locomotion activities art; % bjects with upper motor neuron lesions.
Histochemical examination of spastic quadriceps muscle demonstrated type | fiber hypertrophy
and type |l fiber atrophy (decrease in single fiber area). On the contrary, a marked predominance
of type Il fibers was observed in subjects suffering from spinal cord lesion. Blood circulation also
plays an important role when describing muscle properties. It has a direct influence on muscle
fatigue. The nutritional blood flow in the paralyzed tibial muscle of paraplegic subjects was found

to be significantly lower than in normal biceps muscle of the same subject (Kralj and Bajd. 1989).

1.5 ELECTRICAL STIMULATION METHODOLOGY

1.5.1 Stimulation parameters

Electrical stimulation is usually applied as a series of rectangular monophasic or biphasic

(symmetrical or asymmetrical) electric pulses described by the fcliowing parameters:
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e amplitude or intensity of puises,

e frequency or pulse repetition rate,
e duration of single pulse,

e duration of a pulse train, and

o duty cycle.

The shape of the pulse train is an important parameter too. but it can be described using the basic
parameters listed above (see Figure 1.5.1). In most cases of surface electrical stimulation
applications, periodic monophasic or unidirectional pulses are used. Biphasic or bidirectional
pulses prevent a slow deterioration of the electrodes, while the chemical conditions on the skin

and in the neuromuscular tissue remain unchanged.
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Figure 1.5.1. Stimulation parameters for unidirectional current or voltage stimulation.

Stimulating pulses are produced in the stimulator's output circuit. which can be either a constant-
voltage or a constant-current generator. Constant-voltage stimulators provide a desired voltage,
irrespective of resistance changes in the stimulated tissue. Constant-current stimulators generate
pulses of constant current, also irrespective of resistance changes. An important difference
between the two types of stimulator becomes evident in the case of an improper contact between

the electrode and the skin. In the case of a constant-current stimulator, if the electrode-skin
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contact changes, resulting in reduction of the effective electrode surface, the current density will
increase, which may cause skin burns. In the same situation, using a constant-voltage stimulator,
after the resistance increases, due to an insufficient contact, the current will decrease and there
will not be any skin damage. Of course, the muscle response will decrease as well, which may be

dangerous in unbalanced applications such as walking.

The joint torque is not linearly dependent on the stimulation intensity (Kralj and Bajd, 1989). There
occurs at least two nonlinearities, i.e., threshold and saturation. The increase in joint torque due to
an increasing amplitude of electrical stimulation occurs as a result of activating new fibers in a
nerve bundle laying in an electric field between the electrodes. The main reason why all nerve
fibers do not react to the same stimulation amplitude is found in the differences in the stimulation
threshold and various distances from the stimulation electrodes. First, the fibers closest to the
electrodes are stimulated. In addition, the fibers with a greater diameter respond earlier. From a
certain stimulation intensity onward, the contraction force no longer increases. At such a
stimulation amplitude, all alpha motor nerve fibers are excited, and a further increasing of the
stimulus does not increase contraction. In surface stimulation of knee extensors . the values of the
stimulation threshold range between 20 and 60 V , while the saturation value is between 100 and

150 V.

A single stimulation pulse provokes merely a short-lived muscle twitch of no more than 0.2 s of
duration. If electrical stimuli are repeated every second, a twitch occurs every second, and, the
muscle relaxes in the meantime. If the frequency of stimulation pulses increases up to 10 pulses
per second (10 Hz), betwe: - . two twitches there is no time left for muscle relaxation. Variation in
force is comsiderably reduced at stimulation frequencies between 15 and 20 Hz. At higher
frequencies . the response is already smooth; this is known as tetanic contraction. The frequency
at which tetanic contraction occurs is called the fusion frequency. This frequency is not the same

for all muscles and depends on properties of the muscle fibers.
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Changes in stimulation frequency also affect the intensity of the response. The faster the
stimulation frequency, the higher the joint torque is for the same stimulation amplitude. This is
particularly expressed at lower frequencies, while changing the frequency between 40 and 100 Hz
causes small differences in the isometric torque measured at the joint. A low stimulation frequency
results in a less pronounced fatigue of the neuromuscular system. An electrically stimulated
muscle fatigues more quickly than in the case of voluntary contraction. By electrical stimulation,
the same nerve fibers are stimulated all the time, whereas with a healthy muscle the work is
divided among different motor units of the same muscle. Due to a high stimulation frequency, the

transmitter in the neuromuscular junctions is being exhausted, so the stimulated muscle soon

shows signs of fatigue.

In a similar way to the amplitude, pulse duration also has a direct effect on the intensity of
contraction. Here again, the response shows threshold and saturation features. The stimulation
pulses longer than 0.7 ms not only do not produce a larger response, but, when applied through
surface electrodes they produce an unpleasant sensation or even skin damage in subjects with
incomplete spinal cord injury. Longer pulses also produce faster muscle fatigue. Therefore, short

duration of stimulation pulses is preferred, while the force of a paralyzed muscle can be controlled

by increasing pulse amplitude.

A functional movement of a paralyzed limb can not be obtained by a single electric pulse, but
rather, by a series of stimuli of a certain duration, following one another at an appropriate
frequency. Such a series of stimuli is called a stimulation pulse train. The relation of a pulse train
duration and a pause between two pulse trains is often called the duty cycle, which, as another
parameter of the stimulation, aiso affects the stimulated muscle fatigue. As expected, muscle

fatigue is faster with larger duty cycles, particularly for higher stimulation frequency and shorter

pulse trains (pauses).
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1.5.2 Electrodes
The electrica! stimulation can be applied through three different types of electrodes:

Surface electrodes are the most often used electrodes, particularly while evaluating patients for
FES and the exercise phase of their rehabilitation. They are installed on the skin above the target
nerve trunks or motor points of target muscle(s) and are directly wired to the output stage of the
stimulator. Their advantages are as follows: installation is non-invasive and they are easy to install
and remove, even by the subject, unless she or he has severely impaired hand dexterity;
electrodes usually do not cause any skin problems; some types can stay attached to the skin for
longer periods of time (weeks); and they are inexpensive in short-term use. Their disadvantages
are: stimulation of cutaneous receptors causes triggering of unwanted reflexes; they have
relatively low selectivity and low positioning reproducibility; skin irritation is not unusual; and their

cosmesis may be inappropriate for some types of clothes.

Percutaneous electrodes are more and more in use as a transition from surface to fully
implanted stimulation. Depending on their physical characteristcs and the target site of
stimulation, they come in four basic forms: uninsulated wire-endings, nerve cuff-electrodes,
epimysial and epineural electrodes, and silicone-based electrode arrays. Independent of the form
used, their active endings are implanted as close as possible to the target nerves or motor point(s)
of the target muscle. The wires leading from the stimulating sites are usually collected in one or
more convenient places under the skin, where they are taken out of the body. There, the wires are
attached to a connector which enables the user to connect or disconnect the stimulator when
desirable. Advantages of this type of electrodes are very high selectivity and the fact that
electrodes can stay implanted for unlimited time. Disadvantages are: invasive technique of
implantation; wire leads tend to break after some time, especially if they are led across the joints;
they are difficult to service or to remove; the place where they emerge through the skin requires

special maintenance and is a potential place of infection.
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Implanted electrodes are most probably the future of long-term FES applications. They come in
the same forms as the percutaneous electrodes plus another form of electrodes built into
stimulating devices known as ‘microstimulators’ (Loeb et al.. 1891). Similarly to the percutaneous
electrodes, they are implanted as close as possible to the target nerves or motor point(s) of the
target muscle. Electrodes have to be wired to a receiver (transceiver) implanted under the skin,
which obtains commands and power from the control transmitter (transceiver) located outside the
body. The control transmitter and the receiver cornmunicate via coupled antennas.
Microstimulators are different in a sense that they communicate directly with the control
transmitter, since they contain all electronics required to receive and decode control commands
and to perform the stimulation. Furthermore, they are relatively simple to install using a
hypodermic needle Advantages of the implanted electrodes are the same as those listed for
percutaneous electrodes. However, there are fewer disadvantages, because no wires come

through the skin, which reduces the risk of infection.

Microstimulators resolve most of the problems existing with percutaneous electrodes, but they
introduce one new problem - the devices have to be enclosed in an electromagnetic field;
otherwise the communication and power supply link breaks. This can be resoived by wearing a
suit which has an antenna built in those parts which come above implanted microstimulators. The
weight and size of such an antenna may still be a limiting factors for use of such devices in the

lower extremities. However, applications in upper extremities are already achievable

1.6 APPLICATION AND CONTROL OF FES IN LOCOMOTION

The problem of designing a motor neural prostheses could be compared to repairing a biological
system which does not have accompanying ‘technical documentation’, as technical systems do. 1t
is complicated by our lack of detailed understanding of the original ‘equipment’, and by our

inability to use the same technologies. In most respects, the communication, stimulation, sensor
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signal processing, and controller hardware available to contemporary engineers is quite primitive
when compared to biological components. In addition, details of the methods of biclogical control
are only partially understood. The biomechanical subsystems to be controlled are inherently
nonlinear and possess time-varying input-output properties. For this reason, the use of nonlinear

control methods and adaptive control techniques is of interest (Chizeck H.J., 1992).

After a series of electrical stimulators proposed and patented by different authors in the 1950s
(Reswick, 1973), the first effort to apply electrical stimulation as ‘an aid to reccver functicn in a
disabled person were made by Keegan Jr. (Reswick, 1973) and Liberson et al. (1961} They used
electrical stimulation to help stroke subjects having a ‘foot-drop’ problem. Independently each
from other, they developed a simple controller which detected lift of the heel of a disabled leg and
delivered stimulation pulses to activate ankle flexion muscles producing ankle dorsiflexion during

the swing phase of walking.

Alyeyev L. and Bounimovich S.G. were the first to attempt to use multichannel stimulation in
achieving various functional movements in paralyzed people. The work, which is more interesting
for its original idea than for the results achieved, is described by Reswick (1973) in his review
article'. To date no contrclied study has been reported to confirm their assertions. Their work was
also the first attempt to try to record control signals from a ‘normal’ and apply them to a disabled
person. No wonder that there was no more recent control study to confirm these results, bearing

in mind all the morphological and structural changes of neuromuscular system that follow the

It was also at about the same time in 1965 that L. Alyeyev and S.G. Bounimovich reported some
interesting developments in electrical stimulation from the Institute of Cybernetics in Kiev. Alyeyev had
developed a multichannel stimulating machine which he had called Miotone. He claimed it operated on the
following principle: Myoelectric signals of muscles used in various functions previously recorded on
magnetic tape obtained from ‘donors’ were used to modulate up to six channels of an electrical stimulating
machine to produce stimulation signals which were controlled by the original EMG patterns. He claimed to
be able to produce functional movements in various types of paralysis in subjects. These functional
movements produced by electricity not only caused muscle hypertrophy and improvix} metabolic function
but also assisted in the reorganization of the central nervous system so that stroke subjects were able to
regain control of various paralyzed functions.”



spinal cord or brain injury resuiting in paralysis. Even if the changes in the neuromuscular system
were not that significant, the complexity of human gait makes the analysis of the gait also very

complex, as it is reported by Braune and Fisher (1 987)°.

Development of FES applications usually results in electronic devices which can be generalized in
the form of a so called NEUROPROSTHETIC DEVICE (ND). The general structure and the role of
the ND is illustrated in Figure 1.6.1. The ND has a modular structure built around its major
module, the STIMULATOR. which generates stimulating pulses and delivers them through the
ELECTRODES to the nerves innervating muscles that have to be stimulated. The USER - ND
INTERFACE module is used to communicate both the user's control commands to the ND and
the feedback information from the ND to the user. This module enables the user (subject or
therapist) to switch the ND ON or OFF, to set or riodify parameters of the ND, and to override the
decisions made by ND if required. It also informs the user about the status of the ND and about
the events that are going to take place in the near future. COMMANDS provided by the subject
allow for selection of desired motor tasks and scaling of effort (e.g., walking speed, height of step,
grasping force). These commands are converted into electrical stimulation (Kralj and Bajd, 1989),
or signals to active brace components as in Tomovic et al. (1972), and Durfee and Hausdorff
(1990). They usually require voluntary action (e.g., finger-mounted switches and joysticks

(Marsolais et al., 1985), or a shoulder-motion activated switch (Peckham and Keith, 1992)).

2To complete our investigations we undertook to ascertain, as accurately as nossible, the movements
involved in walking using photography and all other means at our disposal

Only after many tedious and sometimes disappointing preliminary experiments, in which Prof. Braune was
tireless as always when a new method of research had to be elaborated, did we believe we had found a
pattern in the experiments from which we could draw sufficiently accurate results. The experiments
themselves were very time-consuming and fatiguing. From ten to twelve hours of uninterrupted activity were
often necessary since preparing the experimental subject required the utmost care, as did the accurate
arranging and insulating the Geissler tubes. Decisive experiments had to be carried out at night because
there was no means of darkening the room in which we performed the studies.

The data resulting from the experiments permitted the transposition of the process of movement into a

system of tridimensional rectangular co-ordinates. The calculations involved were voluminous and required
continuous work for several months.”
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The interface modules and protocols should be designed to require as little conscious effort as
possible. and to permit rapid and reliable command transmission. Feedback information could be
presented to the subject in many forms. The simplest is to use audio/visual methods and present
the information on a display together with the auditory information. Information could be either
coded or explicit. More sophisticated and closer to natural sensory feedback is the use of
substitutional sensory cues which can provide the user of the neuroprosthetic system with the
information of the control state (e.g., ON/OFF, lock grasp type) or of the input or output state. Van
Doren and Riso (1991) recently provided a review of the state of sensory feedback. Among more
successful sensory substitutions is the implanted system used at Case Western Reserve
University and the VA Medical Center in Cleveland (Peckham and Keith, 1992). Their system
provides both state information and simple proportional information for grasp control by stimulating
skin afferents without exciting underlying muscles through an implanted epimysial electrode on

the shoulder or chest wall.

NEUROPROSTHETIC DEVICE (ND)
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Figure 1.6.1. Modular structure of the Neuroprosthetic Device (ND) and its interfuce with the user.
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An important tool for the improvement of the performance of functional electrical stimule*ion
technology is the use of sensor-derived signals to modulate the electrical stimulation of muscles.
Various recordings of either natural signals or biomechanical measurements are used as inputs to
the ND. The purpose of recording signals from the biomechanical system invoived in walking
could be either to monitor the performance of the subject while walking or to use them as sensory
feedback information in the control system for walking. Whatever the source of the signals, if
these signals are intended to interfere with the control decision making process, the ND must
have a SIGNAL PROCESSING module, which processes the signals, extracts the useful
information from them and presents it to the decision making module. Depending on the type of
signal, this module may be used for amplification, filtering, arithmetic modifications or delaying the
signal. The module might be realized in hardware only, which provides the fastest processing and
is now commercially available as digital signal processing (DSP) integrated electronic
components, or in hardware and software, which, with recent extremely fast developments in

high-speed, low-power microprocessor technology, became very competitive to the hardware-only

solution.

Ideally, signals originating in natural sensors (NATURAL SIGNALS) might be used by the ND,
just as they are used by the biological control mechanisms of intact muscles. Important steps in
the development of the technology to bring signals recorded from natural sources (sensory
nerves) closer to the reality are presented in Hoffer and Haugland (1992), Haugland and Hoffer
(1994a, 1994b), Haugland et al. (1994), Popovic and Raspopovic (1992). The evaluation and
implementation of neural signals for control purposes is reported by Sinkjaer et al. (1992) and
Popovic et al. (1993). Another source of natural signals are muscies. The use of EMG signals
from above-lesion muscles for control of FES-assisted walking in paraplegics was demonstrated
by Graupe (1975, 1983). Advanced technique which uses both, above-lesion EMG for timing
control of FES, and below-lesion response-EMG for FES level adjustment was reported by

Graupe (1988, 1989). At about the same time the potential of the myoelectric signal of electrically
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stimulated muscle during recruitment in a closed-loop scheme was reported by Solomonow et al.

(1988).

To date, in practical applications only traditional sensors are used as a sensory feedback signal
source (TRANDSUCER SIGNALS) for control purposes. Sensors that are most frequently used
with ND include transducers of contact forces, slippage, joint angles, acceleration, and proximity.
These sensors represent the reduced set of sensors and measurement equipment for kinematic
and kinetic measurements presented in the section 1.7. A review of traditional sensors required
for feedback control of neural prostheses appears in Crago et al. (1986), Payne (1988) and

Webster (1992}.

One of the most important parts of the ND is the CONTROLLER. It is the ‘brain’ of the system,
and it may be realized either in hardware or in a combination of computer hardware and software.
It integrates and coordinates the functions of the other components of the man-machine (subject-
ND) system. It takes inputs from the modules USER - ND INTERFACE and SIGNAL
PROCESSING, applies its algorithm(s), and produces control outputs which drive the
STIMULATOR. It also informs the user about its status of operation and about future actions

through the feedback information channel of the USER - ND INTERFACE.

The control algorithm(s) can be either fixed or adaptive. The development of improved FES
assistive devices requires designs that are either robust to modeling and parameter errors, or that
adapt to them. The use of fesdback control provides enhanced repeatability and predictability of
muscle responses, and endows a neural prosthesis with the ability to adjust to both external
disturbances (such as changing loads on limbs) and internal time variations (such as fatigue). The
nonlinear and time-varying nature of electrically stimulated muscle (and the associated
biomechanical system), as well as the discrete-event nature of many lower extremity functional

tasks, provide significant challenges to controtler design. A particular complicating factor is that
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accurate predictive mathematical models of stimulated muscle and biomechanical interactions are

unavailable for each individual impairment.

Basic research resuits ir neurophysiology suggest a hierarchical structure of natural motor control
in vertebrates (Prochazka 1993). This scheme can be crudely approximated to the control of FES-
assisted movements. The artificial control of FES should consist of at least two major parts: the
upper leve! controiler (coordination level), which should make decisions on which movements to
perform to fulfill a certain task, and the lower level controller (actuator level). which should initiate
the required actions to perform a particuiar movement. The controller module of the ND shown in
Figure 1.6.1 follows this basic structure. Of course, there is always a third level in movement
control hierarchy - a voluntary control. It is not shown explicitly because of the obvious task to
design a machine which will be supervised by the user and will serve its user. There are multiple
bidirectional interactions between the user and the machine. In the presented subject-ND system,
the subject's control of the unimpaired body parts via intact neural connections is assumed to be
functional. The EXTERNAL INFLUENCES present unpredictable inputs to the system and both

the user and the machine should be equipped to react safely.

To improve the effects of FES systems for locomotion, the combined use of a mechanical brace
(orthosis) and FES for gait restoration was suggested (Tomovic at al., 1972, Andrews and Bajd,
1984; Schwirtlich and Popovic, 1984; Andrews and Baxendale, 1986, McClelland et af., 1987,
Popovic et al., 1989; Solomonow et al., 1992). These systems are known as hybrid assistive
systems (HAS) and may be used to provide better functionality of the ND or to add new features
to it. There is a synergy between electrical stimulation, orthoses, and feedback control. One can
think of both orthoses and feedback control as reducing the amount of electrical stimulation that is
required to perform certain tasks. Feedback modulation of stimulation can accomplish this
reduction by using less stimulation when there is less need (i.e., when the system outputs are
close to target values). Insensitivity to external influences can be attained through adjustment of

stimulation levels, rather than by excessive preset stimulation. Orthoses can reduce the
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stimulation requirec by physically constraining certain motions. in order to provide biomechanical
stabiity and support (£+drews et al.. 1988; Popovic et al.. 1989). Alternately, electrical stimulation
can be thought of as providing motors for hybrid orthoses, with feedback-controlled stimulation
yielding more precise torque generation. In addition, bracing can provide stable mounting sites for
various sensors, allowing for improved measurements and thus enhanced feedback control

effectiveness.

1.6.1 Control methods for a neural prosthesis

Control methods for a neural prosthesis are reviewed in Hollerbach and Bennett (1992) and
Tashman and Zajac (1992). The configuration of the musculoskeletal system (plant) to control at
any instant of time comprises the plant states (e.g.. body segment positions and velocities). The
devices that power the system are called actuators (e.g., muscles). The signals driving the
actuators are the controfs (e.g., neural pulse trains in intact humans and electrical pulses in FES
systems). Controller is the processor which generates control signals (e.g.. the CNS in the intact
humar:. and the stimulus pulse train controller in the FES system). The time histories of the plant
states in response to the control signals is referred to as the system trajectory (e.g.. the joint-
angle time histories). Terms defined above refer to the types of control systems presented in

Figure 1.62.

Controllers can be designed to function without feedback sensory information and therefore
without knowledge of the actual plant trajectory (see Figure 1.6.2(A)). This type of control is
usually calied open-loop contr~l. Reference-based open-loop controliers precompute and store
(prior to task execution) muscle stimulation patterns that will, hopefully, execute the desired motor
task Muscie stimulation patterns are developed by combining clinical experience with trial-and-
error methods, and then stored in the controller. Finding muscle stimulation patterns by trial-and-
error which generate a smooth, energy efficient gait is difficult because of highly individual

characteristics of the dynamic interactions among the body segments.
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Muscle stimulation patterns can also be found by mathematically modeling the plant (ie..
musculoskeletal system) and the tasks to be executed. After the model is designed. computer
algorithms are used to find stimulation patterns which will generate trajectories believed to fulfill
the motor task requirements. One such algorithm uses inverse dynamics to calculate muscle
stimulation patterns from an inverse of the musculoskeletal system model that will produce the
torques needed for a set of trajectories to accomplish the desired motor task. Muscle stimulation

patterns may be determined by inverse dynamics prior to task execution and stored in a

reference-based open-loop controlier.

Regardiess of the design method and implementation, the performance of any open-loop control
system will probably be inadequate, since external influences will cause performance to deviate
significantly from that required for proper task execution. An external influence is any unexpected
condition or event encountered by the plant. Functional neuromuscular stimulation systems are
likely to encounter such influences; for example, from walking on uneven. inclined, or rough
surfaces; from forces due to voluntary arm movements or wind; and from unexpected actuator
performance, such as may arise from muscle fatigue. Even in the absence of these influences,

open-loop control will probably be inadequate, since musculoskeletal properties will never be fully

understood or perfectly modeled.

To correct for external influences and musculoskeletal modeling errors, a feedback controller
with ongoing knowledge of the effects of the influence must be designed. Sensors (such as, joint-
angle or ground reaction force sensors) provide measurements from which the current state of the
system can be estimated. These estimates are fed back to the controller, resulting in a feedback,
or closed-loop control system (Figure 1.6.2(B)). Closed-loop controllers are sometimes referred
to as error-driven, since they respond to the trajectory error, determined by subtracting the
measured trajectory from the desired trajectory. Error-driven systems are particularly well suited

to tasks where the desired trajectories are constant or siewly changing, such as the maintenance
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of vertical posture in standing (Stanic and Trnkoczy, 1974; Petrofsky et al., 1984; Wilhere et al.,

1985; Jaeger, 1986; Mulder et al., 1987).

External
Influences A
Desired Muscle Actual
Trajectory | REFERENCE- | Stimulation PLANT Trajectory
......... > BASED |———»| Musculoskeletal ————»
CONTROLLER System
External
Influences B
Desired Error Muscle Actual
Trajectory Signal Stimulation PLANT Trajectory
FEEDBACK
p———— Musculoskeletal
+ N\ CONTROLLER System
Measured
Trajectory SENSORS |«
Trajectory REFERENCE- Influences
> BASED Muscle Actual
CONTROLLER Stimulation PLANT Trajectory
Musculoskeletal -
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Signal Measured
Trajectory
SENSORS [¢——m

Figure 1.6.2. Various types of control systems: (A) Open-Loop Control (Reference-based); (B) Closed-
Loop Control (Error-Driven); (C) Combined Reference-Based Closed-Loop Control (Error-Driven). The
desired trajectory may be required for the design of the reference-based controlier, but does not act as an
input during conitroller operation; this relationship is indicated by the dashed lines in (4) and (C)
(modified from Tashman and Zajac, 1992).
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“‘fo control tasks where trajectories must change rapidly but predictably (such as walking).
reference control is often employed in addition to error-driven feedback (Figure 1.6.2(C)). These
controllers utilize open-loop control to generate an approximate trajectory (Figure 1.6.2(A)). A
feedback controlier similar to that shown in Figure 1.6.2.(B) is employed in-parallel to correct for
trajectory errors resulting from external influences and modeling errors. If the body deviates too
far from the desired trajectory, however, the stored controls may actually interfere with the
recovery being provided by the feedback controller. This situation can arise because the
reference-based controller functions independently from the feedback controller and cannot adjust
its stored stimuiation patterns during the task. Recent findings in neurophysiology suggest that
animal motor systems may be organized in a very similar way, involving a preset motor program
(Prochazka, 1993). Although it may look too simple to expect the natural control systems to
operate without feedback, the equivalent of a motor control program is found to reside in the so-
called ‘central pattern generator’ in the spinal cord of many vertebrates. Coordinated burst of
activity may be recorded in rnuscle nerves even after the spinal cord has been isolated from

descending input from supraspinal areas and from all modulated sensory input (Grillner and

Zangger, 1975).

External
Influences
Desired Muscle Actual |
Trajectory MODEL- | Stimulation PLANT Trajectory |
————9» BASED »| Musculoskeletal By
CONTROLLER System
Meacsured |
Trajectory SENSORS |«

Figure 1.6.3. The model-based control system (modified from Tasiman and Zajac, 1992).



A more robust system for walking could be developed with model-based control (see Figure
1.6.3). Model-based controllers utilize sensors and a dynamic model of the system to continuously
recalculate the best trajectory to complete the desired task. During walking, if the body is following
the desired path, the model-based controller generates the same muscle stimulation pattern as a
reference-based controller designed with inverse dynamics. If the body deviates from the desired
path, the model-based controller generates a new muscle stimulation pattern which, according to
the dynamic model, should maintain or restore stable walking. Though this sounds attractive, the
complexity and computational requirements of model-based control continue to limit its application

to the laboratory environment or simple control systems.

Closed-loop control has many advantages for FES systems. A closed-loop control system can
automatically compensate for small disturbances and consequent trajectory errors. Closed-loop
control can also regulate system behavior more precisely than open-loop control, for example, by
#mnoothing the motion during walking and reducing the amount of stimulation (Marsolais and
Edwards, 1988). Feedback can also be used to detect potential falls, and either act to
compensate and correct the condition, or shift to a ‘safety’ mode to reduce the chance of injury. In
summary, closed-loop control lets the designer develop systems with a level of performance and

flexibility well beyond that possible with open-loop control.

However, closed-loop FES control systems require sensors and are more complex to design and
implement. Improper design can lead to instability, resuting in excessive stimulation and

unpredictabte {and poteatially dangerous) performance.

Complex systems (such as the human musculoskeletal system) generally require dynamic
models for control system design. A dynamic model is a set of equations that emulates the
behavior of the physical system. Unilike static models, a dynamic model specifies how the current
states of the system (e.g., body trajectories) depend on the past (e.g.. the prior body trajectories

and muscle forces). If the inputs to a dynamic model of a human motor task are the muscle
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stimulation patterns, then the outputs could be the computed body trajectories. In control systems,
dynamic model is used inverted (inverse dynamics), so that it determines the muscle stimulation
pattern that will produce a desired trajectory. Although the resuiting stimulation pattern could
theoretically drive the system along the desired trajectory in the absence of external influences.
some degree of modeling error is unavoidable, since dynamic models can never perfectly
represent physical system. This error can be overcome by using error-driven feedback controllers

in combination with reference-based or feed-forward controllers, such as one illustrated in Figure

1.6.2(C).

1.6.2 The importance of system modeling

In designing a neural prosthesis, the engineer attempts to develop a mathematical description -of
the system to predict its mechanical behavior under a variety of specified inputs and external
loading. This is an analysis problem whose success at prediction depends on the accuracy of the
mathematical model. The engineer will also use models during the process of contrsi systems
design and testing through simulation. A definition of what a model is and the purpase of modeling
is explained in an overview of muscle modeling by Zahalak (1992). A model is a reduced or
truncated representation of reality, and the two most important purposes of modeling are that a
model can promote an understanding of its object and, further, it can predict the behavior of that
vbject. A good model is one which is as simple as possible while simultaneously retaining the
@ssential characteristics of the thing it represents. In his attempt to bring more order to the
classification of muscle models, Zahalak distinguished between: whole-muscle, or macroscopic
Hill-type models, that are based on the original work of A.V. Hill. microscopic, or cross-bridge
models, following from the more detailed knowiedge in. structure from A.F. Huxley; fiber models,
recognizing that series sarcomeres in a chain may differ in their properties, and the distribution-

moment, or intermediate models that he himself worked on.
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The importance of modeling in neural prostheses and methods to identify the mode! in neural
prosthesis systems are reviewed by Durfee (1992). There are two types of models for predicting
the behavior of a given physical system:
e parametric - whose structure is fixed, while the parameters of the equations are free to
be adjusted to fit the particular system of interest, and

e non-parametric - where no assumptions are made about the structure of the system.
Instead, the system is viewed as a ‘black box’ described by one or more functions which
completely characterize the input-output behavior. Non-parametric models are also known
as ‘black-box’ models or ‘functional’ models.

To design a controller for a motor neural prosthesis, orie must develop an accurate model of the
musculoskeletal system, the ‘plant’ to be controlled. The plant to control consists of the skeletal
links, the joints, and the musculotendon actuators. A state of the art in musculoskeletal system
modeling appears in Winters and Woo (1990) with a survey of the human musculotendon actuator

parameters by Yamaguchi et al. (1990).

The control of walking is more difficult than the stabilization of a multisegment inverted pendulum.
The gait cycle consists of distinct stance and swing phases, which are inextricably linked.
Furthermore, the joints move through ranges of motion and positions that may prohibit
linearization. A feasibility study done by Yamaguchi and Zajac (1990) demonstrated the chailenge
of modeling walking and designing controllers for FES-assisted walking. One of the results
obtained was that some of the muscles (e.g., the plantarflexors) need to produce forces in excess
of 50% of normal strength, which exceeds the current force generation capacity of FES-

reconditioned paralyzed muscle (Kralj and Bajd, 1989).

1.6.3 Finite-state models and its derivatives

One way to design a non-parametric model of a controlled system is to analyze its inputs and

outputs and to tailor the rules of its behavior. In a paper, that is considered a very important
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milestone in the field of control, Tomovic and McGhee (1966) have introduced a finite-state
approach to the synthesis of control systems. Since the proposed design in this thesis is based
on the principles introduced in this article, that particular work will be presented here in more
detail. Tomovic and McGhee demonstrated the use of a mathematical theory of finite-state
automata in analysis and synthesis of simple control devices for bioengineering systems. in order
to provide a connection between automata theory, which is basically concerned with discrete
decisions, and control theory, which deals with the dynamics of continuous systems, the concept
of a cybernetic actuator was introduced. It represents a mechanical analogy with the natural
actuator in biological systems - muscle, and it provides any mechanical system, which attempts to
duplicate the functioning of a limb, with four basic actions (states) observed in natural limbs in
complex motions: rotation of the joint in either direction, locking the joint and unlocking the joint so
that it can swing freely. Two binary inputs are enough to define four output states of the cybernetic

actuator. When used as an element of a bioengineering system, it is to be expected that a

cybernetic actuator would normally rotate the joint between two fixed limits. if Z denotes the output

of the actuator and =, and z, denote the two limiting ve'ues for z, then the reachable set of

points S for the actuator is defined as a closed interval S =[-‘-",_.2,,]. it is of the greatest

importance to realize that while the input to a cybernetic ..~tuator may assume only four distinct
states, the output may be driven to any point in the continuum forming the reachable set and, if
desired, locked at that point. This property of a cybernetic actuator permits the link of control
theory and automata theory. In addition to this basic description of the cybernetic actuator, one

more variable is potentially available - the amount of energy stored in the actuator.

In order to permit full use of the capabilities of cybernetic actuators in bioengineering control
systems, it is important to recognize a possible requirement for feedback signals. In many
applications, such feedback may be provided by the sensory capabilities of the natural biological

elements of the system. For example, in the FES-assisted movement of the paralyzed leg. with no
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afferent information coming from the leg at the subject's conscious ievel, visual feedback can be
used to replace the proprioceptive and cutaneous feedback available i~ a normal leg. On the other
hand, it is often desirable to attempt to provide explicit feedback to decision networks in order to

grant a degree of autonomy to the behavior of certain parts of a control system.

Feedback requirements for a particular application could be characterized by associating a

second set of points with each actuator. This is called the decision set T, consisting of all those
points in S from which information is fed back to the controller responsible for the state of the
actuators. In conventional continuous control, the set T is equivalent to the set S. For finite-state

control, T must be a finite subset of S. The elements of T are called decision points. Each

decision point should use a sensor as a source of information for its input. The simplest general
type of sensor, which provides a binary output from a continuous input is the threshold gate, or
comparator. In its two-input form, a threshold gate is a combinational circuit element with two
continuous inputs and one binary output. One of the inputs is designated as a reference input, and
the other as the signal input. The action of the threshold element is such that the output assumes

the one state when the signal exceeds the reference; otherwise, it assumes the zero state.

The system which consists of cybernetic actuators as power elements and decision elements with

threshold feedback and binary memory was named an actuator network.

The question of how to measure the performance of the actuator networks was difficuit to answer.
It is well known that the optimization of conventional control systems is generally based upon
some integral or functional performance criterion. On the other hand, in automata theory,
optimization usually refers to the minimization of the number of states in a sequential machine or
minimization of the number of elements in a combinational network. Since actuator networks

involve both continuous motion and binary decisions, none of these criteria can be applied
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directly. In order to reach a satisfactory system design, some sort of ill-defined compromise must

be made. Optimal actuator network still remains undefined.

When an actuator network is to be integrated into a bioengineering system involving a human
being, yet another important consideration arises. While capacity of a human being to make
complex decisions is unmatched, and is basically responsible for the versatility of human systems,
the rate at which humans are able to make conscious decisions is very low. This fact motivates
the design of systems possessing the properties of maximal autonomy or minimal exchange of
information between the conscious level of human decision making and lower levels of the
system. Of course, every application has its own autonomy threshold. For example, if a person
with a complete lesion of the spinal cord, resulﬁng in a paraplegia (paralysis of both legs), was
provided with switches controlling eight channels of stimulation, it is doubtful that he would ever be
able to manipulate the switches rapidly and accurately enough to achieve a satisfactory walk. This
and similar problems are usually resolved by increasing the autonomy of the control system by
using feedback sensory signals or by inserting or using existing time-dependence between control
events (enabling a subject to control lists of events rather than particular events). The list of
control events can be either artificial (based on biomechanical analysis of human locomotion), or

natural, such as the sequence of movements resulting from activation of the flexor witadrawal

reflex.

The theory presented above has been successfully applied to a problem of synthesis of a control
system for an artificial leg. With two actuators at the knee and the ankle joints, eight threshold
gates, processing feedback sensory signals from five sensors (heel contact, hip, knee, ankle and
toe angles), were enough to define six different states. The design of this finite-state model was

based on the comprehensive photographic studies of the natural leg behavior during steady

walking.
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Trying to resolve problems in designing finite-state control methods, Tomovic (1984) proposed a
closed-loop, non-numerical, control method, called artificial reflex control. Artificial reflex control
refers to a skill-based expert system3 using rules that have an IF(...) THEN(...) ELSE(...) structure
(Andrews and Baxendale, 1986; Andrews et al., 1989; Popovic et al., 1991; Franken, 1994). This
method of control belongs to a group of so-called rule-based control (RBC) methods, in which
the cyclic locomotor activity is presented as a sequence of discrete events. A sensory pattern
occurring during particular motor activity is recognized with the use of traditional and/or natural
sensors. The specific discrete event is called the ‘state of the system’, by analogy to the state of a
finite-state automata. A recognized sensory pattern during a specific state of the system initiates a
corresponding functional movement. As a logical extension to this work, in 1987 adaptive reflex

control was proposed (Tomovic, 1987).

Rule-based control with hand-crafted rules was applied in intrinsic FES systems and in hybrid
assistive systems, comprising the FES and active or passive orthosis, but the problem of accurate

and reliable control has not been solved yet.

1.6.4 The derivation of control rules for RBC

Control rules can be written by the researcher based on his or her previous experience. This
method of rule definition is known as hand-crafting rules. The quality of the resulting gait may
then be assessed, adjustments performed and the process repeated in an iterative fashion until a
satisfacory gait is achieved (Kobetic, 1994). This ‘trial and error’ method does not guarantee a
formally optimal gait, and requires the subject's presence at every iterative cycle. Another
disadvantage of this method is that the performance of the resulting control system depends on

an expert's abilities to select and express his or her knowledge explicitly in rules.

*The term “skill" refers to sensory driven functional motions controlled at the execution level by reflexes and
automatic actions acquired by learning and training. Control activities of this kind represent, thus, a form of
knowledge which may be evoked without involvement of the voluntary level.
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The transfer of human knowledge to the computer knowledge base relies basically on
identification and representation of invariant features of functional motions. While the method
works satisfactorily in modeling the gait of non-impaired persons, its application to handicapped
persons is not as successful because each case of sensory-motor deficiency is in many ways
specific. This may be the reason that, although, expert systems based on the transfer of human
knowledge to the machine at the conscious level are in wide use today, machine control by skill-
based Al (Artificial Intelligence) systems is still in the stage-of early development. The most
serious problem on the way to faster development of skill-based control system is the description
of human skill activities in machine representable form. By definition, automatic features of motor
skills are expressed as spatio-temporal events (Tomovic, 1989). Consequently, the capturing of

such knowledge requires a new type of identification methods which rely to a large extent on

external manifestations of neuromotor control mechanisms.

A complex movement can be improved with training, thus the acquisition of skills can be
considered as an optimisation process taking place at a number of levels in the central nervous
system. A skilled subject or therapist manually controlling FES-assisted tacomotion can develop a
set of motor control rules that are near optimal. If these rules can be copied and stored, they can
be used to form a controller to reproduce the near optimal movements. This presents a basis for
another approach to control rule definition: transfer of the knowledge, stored in form of a skill, from

a skilled subject or therapist to a computer, using an automatic process that employs machine

learning algorithms (automatic rule generation).

1.6.5 Automatic generation of control rules for RBC

In the case of very complex system (such as the walking of a subject with incomplete SCI) the
feed-forward closed-loop control system with a machine-learned non-parametric model may be an
alternative way to design a controller (see Figure 1.6.3). Instead of tailoring the rules for every

subject, they may be generated much faster by machine learning programs (such as neural
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networks for supervised learning or an inductive learning algorithm) in the task of mapping the
skilled functional performance of the subject or therapist. To be able to generate the rules or
control decisions, the machine learning program has to be presented with input and output data
samples representing the behavior of the system to be controlled. If the control task is to
reproduce skilled switching of the FES during walking of a subject with incomplete SCI, the inputs
to the machine learning program can be signals recorded from natural and/or traditional sensors,
qualitative verbal information describing performed actions, or quantitative assessment of the
same actions. The output can be single or multiple channel switching function of the FES required

to perform these actions.

This was proposed for the upper level controller for FES-aided walking of subjects with incomplete
spinal cord injury by Kirkwood and Andrews (1988, 1989) and Andrews et al. (1989). Being
inspired by the “Boxes" algorithm implemented in the “pole balancing” paradigm by Michie and
Chambers (1968), Kirkwood and Andrews evaluated the use of inductive learning technique and
traditional transducers for automatic generation of control rules by transferring the skill of the
subject with SC! in manually controlling a simple two-channel-per-leg FES-system for paraplegic
walking, such as one described by Kralj and Bajd (1989). In a continuation of this work, Heller
(1992) evaluated the use of inductive learning technique in controlling the swing-through Walking
of paraplegic subjects. Their results demonstrated possibility to induce rules that describe human
movements by usiny inductive learning technique to find invariants in movement patterns.
However, the question of a generalization from machine learing technique training to a real-time

control application remained unanswered.

After preliminary results demonstrated possibility of using neural networks for designing control
rules for FES-assisted walking of subjects with incomplete SCI (Stein et al., 1992; Kostov et al.
1992), a similar approach was adopted as the basis for this thesis project. In this approach to

creating control rules for rule-based systems there are limitations which have to be considered,
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the most important one being the limited capacity of machine learning technique for supervised

learning to learn only those events which are presented to it during the training.

1.6.6 Related work

Related work is usually found in the field of robotics and automatic controi. A method for the
control of a class of nonlinear systems using feedback linearization, when the nonlinear models
are not well known is described in Chizeck (1992). It evolved from the basic idea (Loparo and
Teixeira, 1990), by which one neural network was used to learn the inverse dynamics of the
nonlinear system to be controlled and the second one to learn the feedback control laws that
make the system under control behave like a desired system. Veltink et al. (1990) have used a
backpropagation multi-layer perceptron network for reconstructing muscle activation patterns in
the walking cycle on the basis of signals recorded from external sensors (goniometers and foot-
switches). Beckmann et al. (1992) have integrated a backpropagation neural network into a
simulated control loop for a dynamic and nonlinear model of a paraplegic subject. Their computer
simulations demonstrated that the proposed feedback-loop with an integrated neural network was
capable of stable controlling the model system. Karsai (1891) reported on a series of experiments
for controlling a nonlinear systems, such as industrial plants, using various neural networks in
controller architectures. One of the proposals was to copy the function of ~n existing controller -

technique similar to the one proposed in this thesis.

Kelly et al. (1990) have applied two neural networks implementations to myoelectric signai (MES)
analysis tasks for development of more reliable methods of deriving controt for muiltidegree of
freedom arm prostheses. In the first implementation they have used a discrete Hopfield network to
calculate the time series parameters for a moving average MES model. The second
implementation involved using a two-layer perceptron for classifying a single site MES based on
two features, specifically the first time series parameter, and the signal power Using these

features, the perceptron is trained to distinguish between four separate arm functions.
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The preliminary results of an attempt to compare two approaches to the automatic generation of
~onirol rules (inductive learning and neural network approach) in the example of muscle activation
modeling from kinematic variables measured during normal human walking are presented in
Heller et al., (1993). The advantages of the rule-based inductive learning technique are: the rules
are explicit, comprehensible, easily encoded inio a knowledge base and may be exacuted quickly;
and the algorithm is variable selective, i.e. it is possible to identify the most important attributes
(derived from particutar sensors) in any rules that are produced. An advantage of the neural
netwark technique was that one network was able to model the output of more than one muscle.
Main conclusion was that there is an overall advantage of these techniques over explicit inverse

musculoskeletal models.

Considering flight control of an aircraft as one of the most challenging applications for neural
networks, Schiey et al. (1991) have integrated optimal rule-based contro! of nonlinear plants using
backpropagation neural networks. They demonstrated an approach for a control task consisting of
an aircraft flight path transition problem. Hruska et al. (1991) demonstrated the practicality of
designing and training a neural network for a specific application with limited utilization of a human
expert. They showed how learning algorithms developed for neural networks may be used to
enhance the effectiveness of rule-based expert systems. The previous two reports also showed
that there is no competitiveness between expert systems and neural networks, but by combining
the two a superior performance compared to either approach alone will be obtained. The key to
success is to use each system for what it does well; pattern recognition and rules generation by
the neural network, and apglication of control rules by the expert system. Such a configuration of

a control system is proposed in this thesis.
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1.7 INITIAL THESIS HYPOTHESIS AND OBJECTIVES

1.7.1 The initial hypothesis tested in this thesis

Machine learning techniques can provide a non-parametric model for controlling FES systems for
assisting walking in individuals with incomplete spinal cord injury, and when combined with hand-
crafted restriction rules can achieve better performance than a hand-crafted rule-based system
alone. In addition, machine learning techniques sucessfuly generalize the mode! derived from
manually controlled to automatically controlled FES-assisted walking not only during the same

walking session, but also to walking occurring several days after the training.

1.7.2 The proposed approach to modeling of the control system

In this thesis, the system to control is a walking subject with incomplete spinal cord injury The
voluntary control over the non-disabled functions is present and the goal is to design a better
control system in the sense of higher accuracy and reliability. The integrated control system (ICS)
for evaluation of walking of new subjects and design of control rules for FES-assisted walking is
proposed. The ICS is based on machine learning techniques for supervised learning, such as
Adaptive Logic Networks (ALN) (Armstrong et al., 1990, 1991), a type of artificial neural network.
ALNs are implemented in form of computer program designed to learn how to approximate or map
the functional relationship between its domain and codomain. If the set of natural feedback signals
or signals from traditional sensors is representing a domain of a mapping and the set of possible
output values that has to be mapped represents a codomain of the mapping, then the resulit of the
ALN training is apprcximation of an input/output transfer function. This function is either a boolean
expression that can be presented in the form of logic trees with boolean operators in its nodes or
a decision tree. In feasibility testing, which is part of this thesis, different preprocessing methods

for filtering information are evaluated and optimized for certain types of sensory and control
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signals. Based on ALN learning and performance results, a source of the signals representing

domain is selected for particular applications.

1.7.3 The specific reasearch questions

1. Which methods are available for control of FES for locomotion of subjects with SCI?
2. What are the physical requirements for different types of control?

3. s manually controlled walking better or worse than a contro! system that automatically

recognizes a subject's intentions?
4. Whiz - 2x=urements from the subject's body are available for recording?

5 How . - . :hese measurements be transformed into signals useful for description of the
subject's state during walking?

6. Which machine learning methods are available, and which perform better in the task of
mapping the transfer function?

7. How can machine learning be incorporated in rule-based control systems operating in
real-time?

1.7.4 The major practical objectives
1. Identification and evaluation of locomotor problems experienced by subjects with
incomplete spinal cord injury that will be targeted by this project.
2 Review of previous FES implementations in walking of people with spinal cord injury.

3. Investigate methods for the design of controliers that will allow a subject with
incomplete SC! to walk using FES.

4. Experimental recording on subjects with incomplete SCI and experimental animals to
acquire potential feedback signals.

5. Development of a hand-crafted rule-based system for control of the stimuiation in both
animal and human model.

6. Development of the graphics interface program for input and output signals to and from
learning algorithms.
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7. The e.:=luation of ALNs for control of FES based on the signals recorded either from
natur 3t ¢ raditional sensors. ALNs will be tested as learning tools able to generalize from
a trairing set of prerecorded data to test signals not used in training.

8. Comparison of the performance of ALNs and inductive learning echniques in transfer
function mapping tasks.

9. Designing a safe FES control by optimization of ALN parameters and implementation of
restriction rules for supervision of ALN control.

10. Develspment of software and hardware implementations of the ALN learning
algoritnm in rule-hased systems for control of FES in walking.

11. Test expe:ments of the developed technique on subjects with incomplete SCl.



46

2. METHODS AND MATERIALS

2.1 SUBJECTS

2.1.1 Selection of candidates for FES-aided locomotion

In most of the clinical trials presented in this thesis we concentrated on selected individuals with
incomplete spinal cord injury (SCI) affecting their ability to walk. The only exceptions are the
results presented in the Section 3.4 which were obtained using signals recorded from a young
subject (A.M.) with complete spinal cord injury. All were able to stand and walk with stimulation for
a limited distance. In the feasibility and evaluation studies of different machine learning algorithms
the data from seven SCI subjects were recorded during routine gait analysis, and stored for off-
line processing. The information about their injuries, level of disability and current rehabilitation
status is summarized in Table 2.1.1. All subjects signed the consent form approved by a local

ethics commiittee.

Although the participation of all subjects deserves exactly the same appreciation, one subject was
the most active participant in the whole study from the early stages of the manual control of FES
for walking. up to the latest stage achieved in integrated control system development. Since most
of the results presented in this thesis were obtained with that subject, she is presented here in

more detail.
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Table 2.1.1. Information about the subjects participating in the study
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2.1.2 Subject L.W.: Case History

At age of 39, in October 1986, the subject suddenly experienced spontaneous severe left
temporal headache initially described as a pressure sensation accompanied by burning on the left
side of her face and neck. This was the worst headache of her life so she came to the Emergency
Department of the University Hospital. She had neck stiffness. Very soon she developed right arm
numbness and weakness and this progressed to involve the left leg as well. Her previous medical
history was unremarkable with the exception of a transient episode of numbness involving her
right face and shoulder lasting one day. Neurological examination showed decreased sensation to
pin prick more on the left than on the right. Position sense was normal on the right tut imipaired on
the left foot. Power was normal on the right but less than anti-gravity in the left arri @nd leg. Tone
was increased in both legs. Right arm tone was normal. The left arm was flaccid. There was

sustained clonus bilaterally at the ankles.

After very extensive study which lasted a few months, she was diagnosed with hematoma within
the cervical (C1/C2) segment of the spinal cord in association with a syrinx extending to the C5
level on one side. The Arnold-Chiari malformation was identified. Rehabilitation, which included
very aggressive physiotherapy started in January 1987. She was discharged in May 1987 with the

following diagnosis:

e cervical cord hematoma with syrinx leading to partial quadriparesis,
e Arnold-Chiari malformation,
e neurogenic bowel,

e neurogenic bladder.

She had been a very active person, working as a fitness instructer before the vascular incident.
The disease has put her in a wheelchair, but not for long. With a functional disability described as
follows she was in Aprii 1989 included in the rehabilitation program at the Division of

Neuroscience, University of Alberta:
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e right hand - normal
e left hand - poor fine hand function but has grasp
e right leg - can swing through and can weight bear on it if ! i= braced at the knee

e leftleg - can hold her weight if hyperextension is controlled with a Swedish knee cage but
can not actively swing through to step

e standing - can attain and maintain on her own with four point wheeled walker or in parallel
bars

e walking - since the subject has no voluntary hip and knee flexion in her left leg. walking
without external stimulation of the left leg was not possible.

e She had a considerable degree of spasticity (grade 3 on the modified Ashworth scale) in
both legs and occasional periods of clonus, particularly at her left ankle joint, despite
taking baclofen (Lioresal, 80 mg/d) and cyproheptadine hydrochloride (Periactin, 16

mag/d).

During preliminary experiments with surface stimulation, it was found that the subject may benefit
even from single-channel FES applied to the left common peroneal nerve, producing swing of her
left leg. Walking was very slow (see Figure 3.1.1 A), but could be improved by adding extra
channels of stimulation to the right quadriceps and the right gluteal muscles to stabilize the right
knee and hip joints while the left leg went through the swing phase (see Figure 3.1.1 B). The extra
channels of stimulation increased the speed of walking from 3.4 to 4.3 m/min., without changing
the stride length. The very long stance phase was shortened from 5.7 to 3.9 s and the swing

phase from 1.9 to 1.4 seconds (Stein et al. 1993). The steps also became more regular.

The subject's high motivation for walking and availability of appropriate technology resulted in
surgical instailation of single-channe! fully-implanted stimulator on her left common peroneal nerve
in popliteal fossa. The stimulator, a modified Mikrofes, designed and manufactured in Ljubljana,
Slovenia (at that time republic of SFR Yugoslavia), provided external excitation to her left common
peroneal nerve to elicit the flexor withdrawal reflex (Kandel et al., 1991) during swing phase of her

left leg. The stimulator was implanted in May 1990 and very soon after the surgery, the subject
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started using it for walking. At the same time, there was ongoing research to decide which type of
FES control should be used with the stimulator to suit her walking needs the best. The timulator
was initially controlled manually by the researcher and later the subject has learned how to do it
herself by pressing on the manual switch installed close to the right hand grip on the frame of her
wheeled walker. Other stimulation sites were tested using surface electrodes with the goal to
improve her posture and right knee extension. The switching control of muitiple channel
st ..ulation during walking was not an easy task. Thus, the practical system she continued to use

in her daily routine walking remained the single-channel implant.

In early 1991 the control of her single-channel stimulation system was expanded by adding foot-
switch control of stimulation timing, which automated the control by recognizing the weight bearing
on the right, less disabled leg, and starting the stimulation after a certain delay. The new,
automatic control not only resuited in improved range and faster walking, but it also provided her
with protection against triggering of the stimulation by the clonus on both legs, which occurred
regularly during almost every walking session. The operating principle of this controller is

presented in Section 3.2.

In late 1993 the subject was implanted with percutaneous wires for multichannel FES distributed

to stimulate the following sites:

e common peroneal nerve (induces ankie dorsiflexion and flexor withdrawal reflex),
s quadriceps muscle (knee extensor),
e psoas muscle (hip flexor),

e gluteus maximus muscle (hip extensor).

The goal was to install wire electrodes and prepare the stimulation sites for a fully implanted
multichanne! stimulator Pulsar (MiniMed, Sylmar, CA) which is still undergoing development for
human use. The four channel stimulation preserved previously used functions of activating the

flexor withdrawal reflex during the swing phase of the left leg, but also added control over left knee
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extensor muscles during stance phase and control over left hip flexion/extension in appropriate

phases of the gait cycle.

In parallel with participating in the development of better and more complete stimulation systems
for walking, the subject participated in the research and development of a better and more reliable
control system for FES-aided walking. She had gone through all phases of contro! system
development, from a manual control system, to automatic switching control with discrete logic, a

microprocessor-based finite-state control system, and eventually the integrated control system

based on artificial neural networks.

2.2 EXPERIMENTAL ANIMAL

Some techniques were not ready for use on the human subjects and therefore we did a limited
number of animal experiments which are presented in Sections 3.7.1 and 3.7.2. These
experiments were performed on adult cats of either sex that were trained to walk on a powered
treadmill in a range of walking speeds from 0.4 - 1.0 m/s. Triphasic cuff electrodes (Stein et al,,
1977) were implanted around several of the following nerves: sciatic, superficial peroneal (SP),

tibial (T1), common peroneal, and sural. Epimysial EMG electrodes were sewn to medial

gastrocnemius (MG) and tibialis anterior (TA) muscles.

Surgical Procedure: Under fully sterile conditions, a gas-sterilized set of electrodes was
implanted and a head and/or back connector was attached according to the following protocol
approved by a lc=al ethics committee. Prior to surgery the cat was injected intramuscularly with an
antibiotic (Ayercillin) to minimize the risk of infection. It was then anaesthetized with 50 yg/kg of
Somnito!l given intraperitoneally. Regulation of anaesthesia depth was accomplished by regular
monitoring of heart rate, respiration rate and the absence of reflexes to noxious stimuli (eye blink
and limb withdrawal to paw pinch). Ketamine and atropine were injected intramuscularly and the

cat was intubated to allow artificial ventilation, if necessary. During surgery blood pressure and
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body temperature were monitored, and temperature was maintained constant with a heating pad.
An intravenous catheter was inserted into the cephalic vein for infusing fluids when necessary.
The cat was shaved and scrubbed with Betadine in the region of the incision before being draped

with sterile sheets. These procedures were carried out by veterinary resource personnel.

After the surgery. the skin was closed with sutures and the tracheal tube and venous cannula
were removed. When a back connector was used, the leads were brought out through the skin
and attached to the connector after the surgery. After completing the procedures, the animals
were transported to the intensive care unit of the animal care facility. Postsurgical care included
one week of antibiotic therapy (Ayercillin), opoid-based analgesia (Buprenorphinej as required,
and close supervision by investigators and support stuff in the animal care facilities of the

University of Alberta.

Sensory signals were recorded from Tl and SP nerves using cuff electrodes and EMG activity was
recorded from MG and TA muscles using epimysial electrodes. These signals were used in

evaluation of biological feedback signals for binary and analog control of the ankle flexor and

extensor muscles.

2.3 SELECTION AND DESIGN OF SENSORS

The nonlinear response of the muscles to the electrical stimulation, muscle fatigue, pain, and
spastic hyperreflexia are some of the problems that set the demand for feedback control (Lan et
al. 1991, Chizeck, 1992). Feedback control is used in natural motor control systems, and in
principle, could be used to resolve these problems, but it has many practical difficulties, mainly
due to the inadequacy of available sensors (Prochazka, 1993). A review of sensors required for

feedback control of neural prostheses appears in Crago et al. (1986), Payne (1989) and Webster

(19982).
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Selection of the appropriate sensors for FES control system design which includes feedback
signals is one of the most difficult tasks in the beginning of a control system design. If the set of
available sensors is limited only to those which can be used without significantly disturbing the
subject's normal life, the number of useful variables that can be used as an information source for
feedback control systems is drastically reduced. Position measurements, which are usually
obtained by very complex video motion-analysis systems are obviously not suitable for any use
outside a laboratory. Exclusion of such systems reduces the possible sources of feedback signals
to those which are natural parts of the subject's body, such as nerves and muscles producing
neural and myoelectric signals respectively, and to the traditional transducers that can be installed

on the subject's body to measure body's trajectories or interaction forces between the subject's

body and the environment.

In order to chose traditional sensors for control system design presented in this thesis, an
extensive study was done on the topic and the sensors were selected based on the following

criteria - usability, availability, cost, durability, signal reproducibility.

2.3.1 Studying walking

The pattern of walking of each person in as unique to that person as his or her personality. While
each person is different, there are certain attributes of gait in healthy subjects that are quite
consistent or consistent within a ‘normal’ range. The same attributes can be analyzed in subjects
having difficulties in their walking due to disease or injury. Employment of engineering principles
and techniques has allowed for the measurement of human gait, permitting the assignment of
values to these attributes. The combination of the engineering and health science has opened a
relatively new field of science, biomechanics, or mechanics of living systems, which strives to

understand human musculoskeletal function, both in its normal and pathologic states.
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Studying walking is one of major prerequisites for researchers trying to produce walking in
completely paralyzed people or to improve walking in partially paralyzed people. Human walking
has been studied and described more than any other movement, and scores of laboratories are
dedicated to the assessment of walking, both normal and pathological. J. Perry wrote on the role

of gait analysis in assessment of the pathological gait (1992):

« _Identification of such patients' dysfunction requires an ability to recognize the subtle as
well as obvious events and the knowledge of how to interpret the observations. The most
convenient sensor is the trainc< eye of the practicing clinician. This permits assessment
of the problem at any time and in any environment. Assessmeant of more complex
situations, however, necessitates laboratory measurements. They add greater precision,
provide information that cannot be obtained by eye and facilitate correlation of multiple

factors..."

Under the general discipiine of biomechanics there are two approaches in studying walking:

kinematics and kinetics (Braune and Fisher, 1987; Chao and Cahalan, 1990).

Kinematics is the study of rigid body motion from a purely geometric point of view (e.g.,
displacement, velocity), without concern for the cause of the motion. Kinematics does not deal
with the masses and moments of inertia of the bodies in movement or with forces exerted. A rigid
body is a system of particles for which the mutual distances between all particles remain constant.

Regarding biomechanics, parts of the anatomy may be considered rigid bodies, such as the lower

leg, thigh, and pelvis.

Kinetics is the study of the relationship between rigid body motion and the forces and torques
causing the motion. Force is caused by muscle contraction, gravitational attraction, and other
physical and mechanical effects. Two basic types of forces and torques are described in the
biomechanics literature: extermal and internal. External forces result from direct contact of one

body to another (e.g., the foot striking the ground) and from gravitational forces. Internal forces



55

may be applied forces by the muscles and tendons or by constraint forces occurring on the joint

contact surface, in the ligamentous structure and within the bone or between bone and prosthetic

componentis

The most commonly measured output variables are simple temporal and length measures. A wide
variety of systems, reviewed by Winter (1991), have been developed to measure the simple stride
measures: displacement, velocity and acceleration. Everything from simple foot-switches to
instrumented walkways record temgoral events, such as heel contact, foot fiat, toe off, stance
time, double support, etc. (see Figure 2.3.1). Instrumented walkways also yield step and siiide
lengths. Imaging techniques (cinematography, television and cpto-electronics) not only yield the
desired kinematic measures but also give us most of the necessary temporal and stride
measures. Multiple exposure techniques, cinematography and special filtm digitizing systems have
evolved to allow body coordinates to be extracted for computer analysis. Similarly, television has
been used to advantage, not only as an instant playback, but also as input to special interface
electronics for conversion to computers (Ferrigno and Pedotti, 1985). Also, very specialized opio-

electronics and magnetic systems which require active optical or magnetic sources as markers

are now commercially available.

Angular measurements of segments are not very often calculated or reported. Joint angles are
relative and therefore tell us nothing about the absolute angle of each of the adjacent segments in
space. In spite of this, in normal walking, the trunk can be considered to be almost vertical
(actually it is biased slightly forward of vertical), thus the hip angle can be used to give good
approximation of the thigh in space, and the knee angle, in turn, could yield the leg angle and the
ankle angle could give a reasonable estimate of the foot angle in space. The definition of the three

major joint angles of the lower extremities is presented in Figure 2.3.2.
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Figure 2.3.1. Temporal events in a gait cycle (modified from Perry, 1992).
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Joint angles are measured with specially designed goniometers. The most ofter, used principles
employed in these devices are: rotation of the potentiometer. loading of the flexible strain gauge;
and change in resistance by elongation of an elastic tube filed with conductive material {(e.g..
mercury). A single goniometer can make measurements only in one axis of the joint, but two or
three may be mounted in different planes to make multi-axial measurements. Concern has been
expressed about the accuracy of measurement provided by these devices, since they are subject
to a number of possible types of error because the devices are fixed to soft tissue, not to the
bone. The output of the device gives a relative, rather than absolute angle. and it may be difficult
to decide what limb angle should be taken as ‘zero', particularly in the presence of a deformity. In
addition, the goriometric technique, although widely used, does not yield stride measures. in a
similar way, accelerometric techniques provide limited kinematic measurements, but also do not
yield stride measurements. Inclinometers are another similar devices which are used frequently to

measure a body segment’s angle refative to the ground force vector.

The force platform (or forceplate) is an instrument commonly used in gait analysis. It gives the
total force applied by the foot to the ground, although it does not show the distribution of this force
across the sole of the foot. Some force platforms give only one component of the force (usually
vertical), but most give a full three-dimensional description of the average ground reaction force
vector. The electrical output signals may be processed to produce three components of force
(vertical, lateral and fore-aft), the two coordinates of the center of pressure, and the moments
about the vertical axis. The center of pressure is the point on the ground through which a single
resultant force appears to act, although in reality the total force is made up of innumerable small
force vectors, spread over a finite area on the surface of the piatiorm (force field) Obviously,
although it gives very useful measures, a force platform is a piece of equipment which in its
present form will never leave the % boratcry environment. Another limitation in using the force

platforms for analysis of walking of paralyzed people is the use of hand supports, such as paraliel

bars. wheeled walkers and crutches.
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Metabolic energy consumption during walking would be a very important measurement in studying
walking if the available measuring methods were more pleasant for the subject and if the
measurement results were more explicit and easier to standardize. Measurements of oxygen
uptake is an indirect method of measuring the energy consumption (i.e. metabolic cost) of
different activities. It requires special equipment, the subject has to wear a face mask or special
mouthpiece with a clip which closes tha subject's nose and leaves only mouth to breath through
the mouthpiece. Another problem with this method is the lack of a suitable baseline for energy
consumption measurements in humans (Whittle, 1991). The energy requirements of walking can
be expressed in two ways: the energy used per unit of time, or the energy used per unit of
distance. The equipment required for these measurements is still too cumbersome to be used

outside of the laboratory.

Velocity is a simple measurement that can be done by timing a subject while he or she walks a
known distance. Other general gait paramctsrs that can be obtained by simple measurements are
the cadence and the stride length Soth car be vetermined either during the walking session or by

using the video recording of the subject walking between two landmarks whose positions are

kKnown.

if more precise time measurements are required, exact timing of the gait cycle can be obtained in
two different ways, using footswitches or instrumented walkways. Footswitches are more flexible
fr use inside and outside laboratory. Just two switches instailed under each foot, one beneath the
heel and one beneath the forefoot provide precise timing of heel contact, foot flat, hee! off and toe
off and the duration of the stance and swirsj phases. Data from two or more strides make it
possible to calculate cadence and swing phase duration. Single and double support times can
also be measured. Since the information provided by switches is very simple (ON/OFF), the signal
from switches can be transmitted to the recording system through an inexpensive radio
connection, which eliminates the limitations imposed by cables connecting the measuring device

to the recording equipment. Also, small portable devices which measure timing of the walking are
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already in commercial use. /nstrumented walkways are used to measure the timing of foot contact
and the position of the foot on the ground. Many different designs have been developed, usually
individually built for a single laboratory. In a typical design. the walkway is covered with an
electrically conductive substance such as sheet metal, metal mesh or conductive rubber. Suitably
positioned, electrical contacts on the subject's shoes complete the elestncal circuit. The
conductive walkway is thus a slightly different method of implementing footswitches, and provides

essentially the same information. Obviously, this measurement system is limited to laboratory use.

Pressure beneath the foot is a specialized form of gait analysis that may be of particular value in
abnormal conditions, such as diabetic neuropathy and rheumatoid arthritis, in which the pressure
may be excessive. Lord (1981) and Lord et al. (1986) provided a nice review of a number of
systems which have been devised in an attempt to identify high pressure areas. Most of the foot
pressure measurement systems are floor-mounted. It is more relevant, but also more difficult, to
measure the pressure beneath the foot inside the shoe. Lord et al. (1986) and Webster (1992)
pointed out that it is very important to distinguish between force and pressure. Some of the
measurement systems measure the force (or ‘load’) over a known area, from which the mean
pressure over that area can be calculated. However, this mean pressure may be very different
from the peak pressure within the area, if high pressure gradients are present, which are often
caused by subcutaneous bony prominences such as the metatarsal heads. In-shoe devices
represent an alternative to floor-mounted measurement systems. The main difficulties with this
type of measurement are the curvature of the surface, a lack of space for the transducers and the
need to run large number of wires from inside the shoe to the recording equipment. For these
reasons most systems of this type measure pressure only in seiected areas, in contrast to the
floor-mounted systems, which measure it over the whole area beneath the foot. This may not be
disadvantageous if the purpose of the measurement is the detection of events during gait cycle

In-shoe devices with reasonably small number of sensory cells could provide valuable information

for control purposes.
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Electromyography (EMG) is the measurement of the electrical activity of a contracting muscle.
Since it is a measure of electrical and not mechanica! activity, the EMG cannot be used to
distinguish between concentric. isometric and eccentric contractions, and the relationship between
EMG activity and the force of contraction is far from straightforward. However, EMG combined
with other kinematic and kinetic measurements could provide a valuable insight in muscle activity
during walking. Recording of EMG can be done outside a laboratory environment which makes it
a good candidate as a signal source for control purposes in walking of paralyzed people. EMG
measurements in normal walking (Perry, 1992) have been used as a basis for stimulation patterns

for FES-assisted walking (Kobetic and Marsolais, 1994, Handa et al. 1987).

2.3.2 Force sensors

If the sensors were to substitute for cutaneous receptors, then they should measure pressure and
not force, because that is exactly what cutaneous receptors measure (Webster, 1992). Force
sensors used under relatively large areas under the foot are sometimes refered to as pressure
sensors. This is nol correct in the case of large force gradients, such as those under metatarsal

areas, because measurement of pressure may be imprecise.

After testing some of the commercially available force sensors, the choice was made to continue
design with Interlink Electronics force sensing resistors (FSRs) which satisfied most of the criteria
listed in previous section and presented only resolvable problems (Interlink Electronics, 1990a).
The FSR is an easy-to-use, readily available, relatively inexpensive, highly durable sensor with
highly reproducible measurements. It converts contact force into an electronically readable format.
When actuated with increasing force, the FSR responds with a drop in resistance. Actually, the
FSR lies somewhere between a force and pressure transducer. A typical FSR will show a
resistance that varies roughly as the reciprocal of the square root of the area of the applied force,
which is characteristic of a pressure sensor. This holds true under the condition where the force

footprint is smaller than active area of the FSR. They can be used as a pressure sensor when the
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area of the applied force is large compared to the active area ¢! the FSR. The same sensor can
be used as a force sensor in different mechanical arrangement, where the force footprint can be
held constant in area and position. Since none of the conditions is satisfied exactly in measuring

the contact between the foot and the shoe, the FSR must be used only as a qualitative sensor.

The construction of a typical FSR is shown in Figure 2.3.2. The force sensing part of the sensor 1s
based on two polymer sheets. A conductive pattern is deposited on one polymer in the form of a
set of interdigiting electrodes. The electrode pattern is typically on the order of 0.4 mm finger width
and spacing. On the other polymer sheet semiconductive polymer is deposited. The two sheets
are faced together so that the conductive fingers are shunted by the conductive polymer. When no
force is applied to the sandwich, the resistance between the interdigiting electrodes is quite high,

usually 1MQ or more. With increasing force, the resistance drops, following an approximate power

law over a limited range.

PIEZORESISTIVE POLYMER

SOLDERING PADS

CONDUCTIVE PATTERN

Figure 2.3.2. The construction of force sensing resistor (FSR).



62

The site of the major problem recognized with that sensor wac the packaging, which originally did
not provide enough protection and mechanical support for the sensor and the contacts. The
failures most often seen were at the connection where the wires were soldered to solder pads

which are crimped through the conductive silver strips (see Figure 2.3.2).

3.

1. Force Seansing Resistor (FSR), Interlink Inc.
2. Reinforced stainles steel wires, Cooner 632
3. Three-pin Connector, Molex

AT W WEY ST 2

Figure 2.3.3. Force sensor and its connections.

Inadequate wire (too thick or too rigid) which transferred the stress to the contact pad would
usually los7: the connection between the pad and the silver strip, and the sensor will fail. One
way to resolye the problem was to choose very flexible ard durable wire, to eliminate the solder
pads and to protect the wires from stress. Cooner AS 632 is a stainless steel wire known for its
durability in design of intramuscular and nerve electrodes for chronic animal recordings and

stimulation. Instead of soldering the wires to the contact pads, they were connected to the silver
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strips using a two component conductive epoxy 2400 made by Circuit Works. To provide strain
relief for the wires a surgical thread was attached close to the soldering pads and to the cunnector
at the end of a 30 cm cable. The thread was 1.5 cm shorter than the wires, which provided good
stress protection %or the wires. To protect the wires even more, they were placed together with the
surgical thread into a 1.5 mm heat-shrinkable tubing. The resulting sensor. as presented in Figure
2.3.3, was attached on the bottom of a shoe insole, usually in sets of four: one of each under the
heel, big toe, medial metatarsal and lateral metatarsal joint. The use of these shoe insoles in a
portapble recording system for assessment of FES-assisted locomotion is reported in Tepavac et
al. (1992) in which the part related to the shoe insoles instrumented with force sensors and a

corresponding signal conditioning was contributed by the author of the present thesis.

The sensosr usually operated without failures in a subjects’ shoes for several weeks up to several
months. The problem with this design was related to the conductive epoxy which, after being
exposed to the very unfriendly environment over time, changed its characteristics The connection
between the flexible wire and the silver strip loosened and the sensor failed. The repair was
usually impossible because it was difficult to remove the old conductive epoxy without damaging
the silver strips. Wite hreakage was recorded only once in more than 20 sensors manufactured

which indicated that the wire and the thread reinforcement worked better than the wires used in

previous designs.

One more problem was continuously present: the connector at the end of the 30 cm cable coming
from the sensor did not provide a relia.i» :onnection. This connector was used because the long
wire from the ankle of the instrumented foot would be too expensive if Coonner €32 was used for
the purpose of connecting the sensors and the signa! conditioning device. In addition, it wouid
require as many long wires as there are sensors if the connector was not used. The solution of
this problem was found with ‘Tinsel' wire (1.azorthes 1985). a lead made of seven wire:.. eatr
them being two stainiess steel ribbons wrapped around a polyester arbor which increases

mechanical resistance, and therefore ensures a longer lifetime. Basically, the surgical thread used



outside the wires in the previous design was replaced with the polyester arbor inside the wires in
this design and simplified the design. In addition, since Tinsel wire is cheaper than Cooner AS
632. the connector between the wire coming from the sensor and the cable leading to the signal

conditioning device was eliminated.

The next step in the design was to reduce bending on the soldering pads by providing better
mechanical support. A decision was made to produce customized shoe insoles in different sizes
and with a different number of FSRs. The use of similar insoles instrumented with the same
sensors for laboratory testing was reported by Andrews et al. (1987, 1988), Zhu et al. (1990),
Wertsch J.J. et al. {1992). Tepavac et al. (1992), and Ferencz et al. (1993). Two materials were
considered: TEPP2 and RHENOFLEX .provided by a local orthopedic company. Both materials
are thermo-plastic and are used in various orthopedic designs. TEPP2 is a more flexible material,
having iabric on one side and thermo-sensitive rosin exposed on the other. The side covered with
fabric is very suitable for the upper side of the shoe insole. The base of the insole was produced
using the same TEPP2 material with the fabric side at the bottom, or using RHENOFLEX, which is

a more rigid material and has both sides covered with fabric (see Figure 2.3.4).

Figure 2.3.4. Shoe insole instrumented with force sensing resistors.
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Both designs worked well under laboratory conditions. The remaining question was: how long will
this insole operate in an unfriendly environment of a shoe. One two-sensor insole with both sides
made of TEPP2 has been in everyday use by the subject for more than 16 months (6 hours/day
on average) without failure. Two insoles made in the same way with three sensors each have
been used in the laboratory for more than 15 months (5 hours/week on average) without failure. It
is expected that insoles with the more rigid RHENOFLEX material in the bottom would last even
longer than those made only of TEPP2 material due to better mechanical support. Two insoles
produced with the RHENOFLEX material in the bottom have been in laboratory use for more than
a year (2 hours/week on average) without failure. To restrain forces on the wires due to the
bending of the foot during walking, an extended tongue of the TEPP2 material and the shrinkable

tubing protects the exiting wires up to a level above the shoe.

The new insole design exceeded all expectations. It showed that packaging is the major problem

with FSRs and, if it is resolved properly, they can be a reliable source of sensory feedback for

control purposes.

To enter the competition and replace the FSRs as the most often used force sensors, new force
sensors have to beat FSRs in availabitity and price. A better quality of response with smaller

hysteresis and more linear characteristics is already achievable (Beebe 1994).

2.3.3 Goniometers

Goniometers measuring the joint angles were used In several experiments together with foot
switches or force sensors. The flexible strain gauge goniometer M180 (see Figure 2.3.5),
manufactured by Penny and Giles Biometrics Ltd. (Penny and Giles, 1994), was used to measure
hip abduction-adduction, hip flexion-extension, knee flexion-extension, ankle inversion-eversion
arid ankle dorsal-plantar flexion of the disabled leg (Figure 2.3.6.). The wor«ing mechanism of this

goniometer is as follows: Between the two endblocks inside the protective spring, there is a
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composite wire which has a series of strain gauges mounted around the circumference. As the
angle between the two ends changes, the change in strain along the length of the wire is
measured and this is equated to angle. The design is such that only angular displacements are
measured. If the two ends move linearly relative to each other, within the limits of the telescopic
endblock, without changing the relative angles between them, then the outputs remain constant,
i.e. they need not be positioned over axis of rotation. To measure motion in more than one axis,
which was required for hip and ankle joints, both outputs from the two-axis goniometer were used.
Goniometers weri: attached to the subject's skin by adhesive tape, which held them in place
during the experiment. They are considered only as being part of the laboratory setup because of

their high sensitivity to mechanical stress and high price.

Telescopic Endblock ~

Measuring Element

and Protective Spring ~~, 1 M {
inear Movemen

AlongZ-Z

\ Fixed Endblock

Figure 2.3.5. Twin axis goniometer M180. This goniometer measures the relative position of the two end
blocks in the X and Y planes.
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HIP
Adduction-Abduction KNEE

Flexion-Extension Flexion-Extension
ANKLE

Flexion-Extension
Inversion-Eversion

Figure 2.3.6. Twin axis goniometer M180 installed across: A) hip joimt to measure its abduction-
adduction and flexion-extension angles; B) knee joint to measure its flexion-exteusion angle; and C)
ankle 1o measure its flexion-extension and inversion-eversion angle variations.

2.3.4 Inclinometers

Inclinometer is a device measuring a relative angle between a body segment and the ground force
vector. In the experiment pres > * in Section 3.4 we used four inclinometers (Midorn UV-1B)
installed on subject's braces to _.e inclination of her hips in two orthogonal planes, ie. hip

flexion-extension and adduction-abduction.

2.4 SIGNAL CONDITIONING HARDWARE

Force sensors are highly nonlinear devices, whose resistance vs. force partiaily follows a power
law. and as such are much more suitable for small force measurement than for the range

expected inside the shoes, under the subject's feet.
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A method of virtually reducing the sensitivity of the FSRs in the low-force range, proposed by
interlink (1990b) was used in designing signal conditioning electronics. That eliminated the

saturation of the output signals at low forces and expanded the measurable range of force.

Signal conditioning electronics for eight force sensors was designed in the form of printed circuit
board with two layers. The voltage regulator provides a constant voitage supply to the sensors. A
one stage low-noise amplifier (JFET, TLO72) is used for both offset and gain regulation. In the
current device the gain is fixed and the offset is regulated by potentiometers P1 - P8 for channels

1 through 8 respectively. The schematics of the eiectronic circuit is presented in Figure 2.4 1.

Goniometers: Signal conditioning electronics for gonioirweiers consists ci two ulages.
Preamplifiers for six joint angle measurements already existev - tne laboratoiy and their design
followed the manufacturer's specifications (Penny and Gilex fametrics Limited, 1994). General

purpose laboratory instrumentation amplifiers were used ift the second stag= of amplification.

2.5 DATA ACQUISITION AND I/O SYSTEM

Two different data acquisition systems were used, AXOTAPE, made by Axon Instruments, Inc.,
for off-line evaluation of learning algorithms and AT-MIO 16DH, made by National Instruments,

Inc., for real-time input/output application of the control algorithm based on machine learning. Both

systems are described in detail in Appendix A.

2.6 DIGITAL SIGNAL PROCESSING

Digital filtering was used to reject high frequency noise. A low-pass, phase cancelled, fourth-
order Butterworth digital filter (Barr and Chan, 1986) was designed in the form of a computer
program HEX_FILT.EXE, written in the C programming language and used to filter data acquired

and stored in the Axotape FETCHEX 5.2 data file format. More details about the program can be
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found in Appendix C and the program is included in the computer disk which is part of this thesis
Decision on the cut-off frequency was made following the work by Winter et al. (1974) and Winter
(1991) who suggested setting the cut-off frequency at the 6th harmonic of the stride frequency

The exact cut-off frequency can be decided after a residual analysis as detaited in Winter (1990)

The cut-off frequency was decided using the fastest stride frequency for the group of subjects who
participated in this swdy. The fastest strides recorded and used in this study are presented in the
Table 2.6.1. Based on these values, 2.5 Hz was decided for the cut-off frequency. This frequency
satisfied Winter's critericn for most of the signals used and also provided a chance to reduce the
sampling rate further in order to reduce the training sets for machine learning techniques. Small
training sets were important in the beginning of this study due to relatively slow computers that
were used for machine learning (IBM PC compatible 386 SX/25 MHz). In more recent phases of
this study, a faster computer was used (IBM PC compatible 486 DX/50 MHz), which allowed fora
much larger size of the training set and eased the restrictions on the sampling and low-pass

filtering frequency. The exact filtering and sampling frequencies are given with each of the

experiments.

Table 2.6.1. The fastest strides measured in data recorded from subjects participating in this study

and the corresponding cut-off frequencies.

Subject c.C CH. N.D. LS. M.W. L.w. “
shortest stride (s) 1.8 1.76 2.92 1.88 316 378 “
low-pass cutoff 3.33 3.41 2.05 3.19 190 1.59 u

Calculation of derivatives (velocities) from the low-pass filtered data was achieved through a
finite difference. The only necessary precaution was that the calculation must be done over two
sample intervals in order that the velocity can be defined at each sample time. For example, the

velocity at the 7 th interval of time, ¥, =(X,, - X,,)/27, where X, , and X, are the
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coordinates at the (i +1)th and (i —1)th interval respectively. and 7 is the sampling interval.

Simularly, accelerations can be calculated as 4, = (I, —F,_,)/2T.

2.7 MACHINE LEARNING TECHNIQUES

implementation of machine learning techniques (MLTs) to problems in control of biomedical
systems can be rivided into several steps, as illustrated in Figure 2.7.1. In general, there is a
sequence of events which occur before the actual MLT involvement, and also, there is another
sequence of MLT-related events. Before signals are presented to the MLT learning algorithm, they
have to be acquired, preprocessed, quantized and encoded (if required). Data acquisition and
storage can be done using commercially available software (e.g.. Axotape, Axon Instruments,
Inc.), or by custom programs from within integrated control system, such as the program
FESCONT described in the Section 2.8.3. After signals are stored, various signal processing
techniques are used to enhance signal-to-noise ratio, modify and increase the amount of signal-
based information. Data prepared in this way are then quantized and encoded. if required by a

particular MLT, which makes them re:ady for use with ML.Ts.

implementation of MLT-based control involves the following stages. The first phase is an MLT
TRAINING. Data prepared according to the procedure described above are presented to the MLT
learning algorithm (see Appendix B). MLT maps the set of input data (representing a domain of
the mapping) into the set of outputs (representing a codomain of the mapping). The actual training
is monitored and it continues until the performance of current MLT trees reaches training criteria.
Training criteria are usually preset in form of an allowed percentage of wrongly mapped bits in
sighal samples (data examplesj in the training data set. The difference between actual and
synthesized output is expressed as a percentage of wrongly restored samples in the training set
and it is called training error. The next phase is an MLT TEST during which trained MLT decision

trees are presented with a new set of input data and expected to produce (predict) the appropriate
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output. This test can be done either off-line (Off-line TEST) or during new walking round
(Walking TEST). The predicted output is then compared with known data. The difference
between actual and predicted outputs is expressed as a percentage of wrong predictions (in the
test set) and it is called test error. If the test error satisfies preset criteria. the trained decision
trees are ready to be tested in a real-time control application (Walking CONTROL). Depending on
the functional task, performance of the whole MLT-based control system is assessed by
measuring appropriate functional error. If the functional error is too high, new decision trees can
be trained using the same training data set or new data can be prepared from the same signals by
varying signal preprocessing parameters. The success of this process is based on the

researcher's intuition and experience. Some attempts to formalize the path toward a good

functional resuits are presented in this thesis.

DATA ACQUISITION
AND STORAGE

v

SIGNAL
PREPROCESSING

v

QUANTIZATION
AND ENCODING

TRAINING TEST CONTROL

Off-line Off-line Walking Walking

Figure 2.7.1. Data preparation for use with MLTs, and the sequence of MLT implementation phases in
control applications.
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Two machine learning techniques were evaluated for automatic design of a rule-based control of
FES-assisted locomotion of spinal cord injured humans. The task was to le&rn the invariant
characteristics of the relationship between sensory information and the FES-control signal(s) by
using off-line supervised training. Sensory signals were recorded either from various traditional
sensors including force sensors, goniometers, and inclinometers, or from natural biological
sources such as mixed nerves in the cat's hind limb. Force sensors were installed in insoles of
subject's shoes, goniometers were attached across the joints of the affected leg, in the case of
subjects with incomplete spinal cord injury, or acsoss the joints of both legs, in the case of the
subject with complete spinal cord injury. Inclinometers were installed on subject's braces to
measure inclination of her hips in two orthogonal planes, i.e. hip flexion-extension and adduction-
abduction The FES-contro! signal(s) consisted of pulses corresponding to time intervals when the
subject pressed on the manual push-button(s) to deliver the stimulation during FES-assisted

ambulation. When biological sensory feedback signalz were used, the FES-control signals were:

e binary pulses representing time intervals when muscles should be coriracted, or

+ adigitized analog signa! approximating the corresponding EMG signals.

The machine learning techniques evaluated were adaptive logic networks (ALNs) and inductive

learning aigorithm (IL).

2.7.1 Adaptive logic networks

The adaptive logic network (ALN) is g type of artificial neural network for supervised learning. It
can be considered a special type of the feedforward multilayer perceptron in which the signals in
the network are restricted to be boolean (binary) after a iayer of processing units that act on
whatever other types of signals are present (reals, integers, etc.) to produce boolean values. The
result of machine learning process, is one or more ALN binary trees with a basic structure
illustrated in Figure 2.7.2, where the units that convert signals to booleans are not shown. At the

level of connections of the tree to those units, there may be several connections to the same
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boclean signal, so the term ‘tree’ is only appropriate for the upper portion of the structure. above

the level of inputs.

Boolean operators:
AND, OR,

LEFT, or RIGHT

Input
vector

X, X, Xy X X, X

Figure 2.7.2 Seven node ALN witls three input variables. To enable synthesis off monotonic decreasing
Sunctions, complements of the input bits are also present in the input vector (primed).

Two versions of ALN were used during the course of this thesis project: the one that incorporated
Atree versions 2.7 and earlier will be denoted in further text as ALN V.2° and the one that
incorporated Atree version 3.0 will be denoted as ALN V.3. ALN V.3 has adaptive linear threshold

units (LTUs) that can act on reals, integers, etc,, while ALN V.2 has fixed operators such as

4 ALN V.2 Simulation Package which contains the program Atree version 2.7 is available from Department
of Computing Science, University of Alberta, Edmonton, Attn. Dr. W.W. Armstrong or it can be accessed by
ftp from: ftp.cs.ualberta.ca [129.128.4.241], file: /pub/atree/atre27 .exe in binary mode.
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threshold units to encode reals into booleans. In both cases, the adaptive parts of the struciure

form a tree.

A learning algorithm for the adaptive boolean logic element was introduced and patented by
Armstrong (Armstrong (1971, 1976), Armstrong et al (1972, 1990, 1991), Armstrong and Godbout
(1974), Armstrong and Gecsei (1979)). A description of the class of learning algorithms and their
hardware realization can be found in Appendix B, but the concepts are briefly introduced here.
The nodes of the ALN tree are of two types: 1. adaptive elements, and 2. leaves. Each adantive

element is a two-input logic gate, which can be any one of the following four boolean functions:

AND, OR, LEFT, or RIGHT, depending on its state. The last two functions, defined as

LEFT(a,b)=a and RIGHT(a,b)=b, were introduced to cut out poorly performing subtrees. The

state of an adaptive element is determined by two counters which change only during training.
Leaves are the nodes of the first layer of an ALN tree used to connect binary inputs from the

encoder to the tree.

Teve following characteristics qualify ALNs to be used for pattern recognition and synthesis (or

mapping) of functions in real-time control processes:

supervised learning algorithm (it learns from examples),
e low output sensitivity to input noise (Bochmann and Armstrong, 1974);

* lazy evaluation of logic functions (Armstrong et al., 1990), which resuits in an exponential
speed-up of a simulated ALN (the larger the tree, the smaller the fraction of the tree that is
likely to need evaluation for a given input vector),

e very fast execution of the learned function;

e easy hardware implementation (since all digital circuits are based on logic gates).

ALN V.2 deals with continuous quantities by encoding real numbers into bit strings. The boolean .
functions AND, OR, LEFT and RIGHT acting on booleans are monotonic increasing. A boolean 1

is considered greater than a boolean 0. A monotonic increasing boolean function never decreases



76

s output when an input is increased. Atree of AND, OR. LEFT and RIGHT gates is appropriate
for approximation of monotonic increasing functions. To be able to approximate monotonic
decreasing functions or functions which are non-monotonic, the input vector is doubled in length
to include complements of encoded values. After the input vector is formed, all bits are randomly
connected to the first layer of the binary tree (leaves). The output of each tree is just one bit of the
output vector, meaning that there must be as many binary trees as there are bits in the output
vector. After the training is finished, ALN binary trees are used in predicting output events from the
input information supplied. To obtain real results with ALN V.2, the output vector has to be
cacoded, which is the inverse process of the encoding. In ALN V.3 the network learns a

realationship among variables, and a separate decision tree is used to compute the function

derived from the relation.

The critical characteristic of an adaptive logic algorithm is that training time may become very long
if the encoding and training parameters are not properly chosen. A long training time may result
from large input and output vectors, large neural network trees, or an inability of the chosen
structure to complete a particular learning task. Training was optimized with regard to the
accessible features that can influence the critical characteristic of a particular algorithm (Kostov et
al., 1992). The performance of the learning algorithm was tested by counting the number of

incorrectly restored samples in a training set (training error) and incorrectly predicted samples ina

test set (test error).

2.7.1.1 Encoding real numbers into binary vectors in ALN V.2

To process continuous ouantities, such as analog signals, ALN V.2 requires that those numbers
be quantized and converted into binary numbers. Before quantization and conversion, the
amplitude range of each signal is decided, or calculated automatically by subtracting the minimum
of the signal from its maximum. If the range is decided intuitively, it should cover all expected

amplitude values throughout all phases of ALN V.2 implementation (e.g., training and test phase).
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Amplitude quantization reduces an analog signal to one of a number of distinct levels so that
the actual measurement can be digitally stored and processed in thé minimal number of digits
(bits) and still preserve physical characteristics of the measurement. This should not be confused
with quantization occurring during signal acquisition process. Both data acquisition systems used

during the course of this thesis project are designed to output 12-bit quantized digital

measurements from analog signals. This number of bits accounts for 2'* = 4096 discrete levels
spread over the 10 V of the input range. The precision provided by such a high number of bits is
usually too high for low frequency, low noise signals such as those recorded during gait analysis.
Tor this reason, the number of quantization levels is one of the parameters adjusted during the
preparation of the analog signals before they are presented to the learning algorithm of ALN V.2.
Two approaches to the quantization were explcred: linear quantization with quantization levels
equidistantly distributed over the wt%in srutiinude range, and, so called, ‘expert guantization',
where the researcher distributes the quantizistion levels intuitivel}: tz”: 7 Sx\wantage of being able
to group more encoding levels in those parts of the amplitude range where significant details in
signal appear and spreading quantization levels apart, where the signal does not have many

important details.

A digital representation of analog measurements is stored in the computer's memory in binary
form. Since the ALN V.2 algorithm requires binary inputs and outputs, it could be concluded that
these original binary numbers satisfy the requirements and that further encoding is not necessary.
However, there ié a serious problem with using a binary representation of integer r}umbers in non-
perfect communications. The significance of all bits in a binary word is not the same (see Figure
2.7.3). The rightmost bit clwinges its value at every consecutive quantization level and it is known
as the LSB (the least significant bit). On the other hand, the leftmost bit is known as MSB (the
most significant bit) and it is equal to O for the first half of the quantization range, and equal to 1 for
the second half. The other bits are located between LSB and MSB and their significance is greater '

than that for L58 but smaller than that for MSB.Obviously, the importance of the information
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carried by different bits in binary word is not the same and the error in LSB will not be equivalent

to the error in MSB.

Quantized
input X

W
w-1
W-2

Binary representation
MSB ‘ LSB

k+1

Rt

k-1

O-2NW

[

legend: L1 =0 E]=1

Figure 2.7.3. Binary representation of quantization levels.

After the amplitude: range of each signal and appropriate number of quantization levels are
decided, the next step in data preparation for adaptive training of ALN V.2 is encoding. The only
reason to use encoding is to put about equal weight on each bit of the representation. One

technique, named random walk encoding, has been described by Smith and Stanford (1990)

and is illustrated in Figure 2.7.4. Given a sequence of W quantization levels of a real variable, w

points in a Hamming space {O,l}" are generated as follows. A randomly produced binary vector

is chosen to represent the first quantization level. For each subsequent integer, a specified
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number of bits p, picked at random, are changed to create the next vector. This is repeated w-1
times until all w quantization levels are encoded into a unique binary vector. If the step p>1, the
number of bits is usually larger than the minimal number required for a given number of
quantization levels. The larger the step p is, the more balanced will be the significance of the bits

in the binary vector. To decode the output binary vector, the search through the random walk is
performed for the closest bit vector. This is taken as the true result. This technique was
successfully used with adaptive logic networks during evaluation and feasibility studies for

applications inh the control field (Armstrong et al., 1990; Kostov et al., 1992).

Quantized  Binary representation
input X by 'random walk' encoding

w-2

step
p = 3 (bits)

random
binary number

legend: =0 [1=1

Figure 2.7.4. Random walk encoding technique.
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Although the results with the random walk encoding technique were encouraging, the
reproducibility of the results was not very satisfacory. Randomized encoding usually produced
unpredictable results. Searching for a more linear encoding, the ‘thermometer' or unary
encoding was tested resulting in more ‘controllable’ error (Kostov et al., 1993). Introduction of
unary encoding was not an improvement of the ALN learning technique, but it provided a better
way for the ALN V.2 to demonstrate its powerful adaptation and generalization features. Unary
encoding is illustrated in Figure 2.7.5. This encoding technique is not optimized with regard to the

number of bits used to represent particular number of quantization levels. In its initial form it used

w-1 bits to represent W quantization levels. Practically, to encode the kth quantization level, all
leftmost K bits in the binary word are set to 7 and the rest to 0. To decode the binary vector
produced by ALN V.2 trees, all bits reading 7 are grouped to the left-hand side of the binary
vector, leaving bits reading O at the right-hand side. This is equivalent to decoding by counting

number of trees producing one. Unary encoding reduced the test error of ALN V.2 at least to half

compared to the best results obtained by random walk encoding.

Although the large number of encoding bits used in unary encoding may appear as a significant
burden on the computer's processor, practical implementation of this type of encoding is much
simpler. Instead of dealing with isolated bits reading one to the left from the particular quantization
level (threshold), and zero to the right, the position of the one-to-zero transition can be used as
the only information carried by this binary vector. Using thresholds instead of elementary bits as

input information to the adaptive logic networks greatly simplifies the input of the data.

Table 2.7.1. Basic characteristics of different types of binary encoding.

ENCODING TECHNIQUE Number of bits in binary vector Error due to decoding
binary representation n= log, w large
random walk n>log, w small but uncontrollable

unary n=w-1 small and controllable
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Quantized  Binary representation
input X by 'thermometer' encoding
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Figure 2.7.5. ‘Thermometer’ or unary encoding.

2.7.2 Inductive learning

Since the inductive learning algorithm has already been evaluated in problems similar to one
addressed by this thesis (Kirkwood and Andrews, 1989), it was interesting to do a feasibility study
using this technique and adaptive logic networks in parallel with the same data and to cempare
the results. Inductive learning is a symbolic machine learning technique which uses a supervised
learning method as well and results in generating classification (decision) trees that are based on
the input data. The algorithm is based on the hierarchical mutual information classifier of Sethi and
Sarvarayudu (1982). The algorithm was implemented by Andrews et al. (1989) and Kirkwood

(1989) in a program entitled DISCIPLE, which was later modified by Heller (1992). Heller's main
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terminal node contains members of only one class. Since the number of output classes is equal to
the number of quantization levels in the output signal. it is not desirable to have too many levels or
the tree may become large®. Training may result in large trees also if the task is & e tre
training set perfectly. In such a case. the learning algorithm, after extracting all invar:.
character'stics from the training set. continues to train on the noise. This algorithm uses real

numbers. s+, that encoding is not used. which simplifies the program.

The characteristics that make this learning algorithm attractive are:

e relatively small decision trees,
e« fastlearning, and

e the rules are explicit and comprehensible.

The critical characteristic of an inductive learning technigue is the size of the decision tree. As the
tree grows, all the positive features listed above become invalid because the learning algorithm
tries to learn noise and the speed of the learning process decreases while the decision trees
become incomprehensible despite the fact that they are still explicit. The training for {L is usually

very fast (within 10 seconds on an IBM PC 486DX/50MHz machine for 1000 sampies).

® The ALN V.3 uses a DTREE which is similar decision tree to IL, but instead of producing a constant value
at the leaves. it produces a simple expression involving linear functions and maximum and minimum
operations. This expression must be evaluated to get the output value.
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2.8 SOFTWARE SUPPORT

2.8.1 Evaluation of ALN V.2 - program ‘WALKON’®

Implementation of adaptive logic networks in control requires all of the data preparation and MLT-
related phases illustrated in Figure 2.7.1. However, to evaluate adaptive logic networks learning
module Atree versions 2.x (denoted in further text as ALN V.2) for application in control of
biomedical systems, a program entitled ‘WALKON' was developed. The development of the
program started as a transfer of an existing C-based program code from the UNIX-platform, to the
IBM PC environment. A relatively small amount of operating RAM (Random Access Memory) and
the lack of virtual memory in IBM PC computers operating under MS DOS was the main reason
for deciding to base the further development on Microsoft Windows. Initial work on the program
was started when newest release of MS Windows was version 3.0, and the latest version of the
program was produced for MS Windows V.3.1. Two major versions of the program were
produced, WALKON V.1 and WALKON V.2. A commercially available program Axotape was used
for data acquisition and storage, which significantly shortened the time required to obtain the first
encouraging results. The program WALKON is described in detail in Appendix C. Briefly, the

concept of the program is presented here.

The program contains all functions that are not shown in gray in Figure 2.8.1. It can retrieve and
save ASCII files in a specific format, which will be called for simplicity ‘Walkon' format. This format
is also described in Appendix C. The program can also import data from ASCII files prepared in

matrix form, where the signal channels are organized in columns separated by Tab character, and

samples in rows.

¢ The author's coniribution in production of program WALKON is as follows: setting the program’s concept,
specifying the program's functionality, defining preprocessing functions, testing the program throughout the
whole programming process, and providing active consultations to Mr. A. Dwelly (WALKON V.1) and e
M. Thomas (WALKON V.1 and V.2), who did most of the programming work.
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SIGNAL
PREPROCESSING
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QUANTIZATION
AND ENCODING

TRAINING TEST
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Figure 2.8.1. Data preparation and MLT functions built into program WALKON, which is developed for
evaluation of ALN V.2 functions.

Program controls and commands can be accessed in two different ways: all of the functions can
be accessed through standard and customized MS Windows menus and some of the most often
used functions can be activated by selecting an appropriate icon on the customized toolbar. The

WALKON program has an extensive context-sensitive on-fine help.

After the data are retrieved, the functions and parameters of the signal preprocessing,
quantization and encoding become available in the form of a customized spreadsheet. Signals are
called channels and they are organized in rows of the spreadsheet. The characteristics of a single
channel and the functions that can be performed on the #%me channel are organized in rows.

Those functions that can be performed on multiple channels are grouped under menu title
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‘Channel’. Signals can be diagramatically displayed in separate windows or stacked together in a

single window.

Standard MS Windows functions grouped under the menu ‘Edit’ apply to channels. They enable

the user of the prcgram to Cut, Copy and Paste channels, one at a time.

To define the input daia set, each channel should be characterized either as Domain, Codomain
or Not Included. Previous samples in a single channel can be defined using the function Set
Hpoints located in the corresponding row of the spreadsheet. Previous sampies in all channels
can be defined using the menu function File History Points. Parts of the data set can be cut out
using the function Truncate Channels. Truncation i; reflected to all channels due to the restriction

that all data samples contain data from the same channels.

A type of encoding and related parameters can be specified using the function Encode. Two types
of encoding are available: Random Walk and Unary (called Linear in the program). After the type
of encoding is chosen, various encoding parameters can be applied to different channels or all
channels can be encoded the same way using the File Encode function. In addition to uniform

distribution of the quantization levels, Linear encoding allows for arbitrary positioning of

quantization levels.

To produce various delays between Domain attributes and the Codomain, which is useful for
prediction of future events, there is a function Shift. Another function, called Differentiate replaces
the original signal in the selected channel with its time derivative. To produce a differentiated

channel and to keep the original one is possible by reproducing (Copy and Paste) the original

channel before one of the copies is differentiated.

After the data set is prepared for training, a New ALN can be selected from the '‘ALN’ menu.
Training parameters are available in two dialog windows. In the first one the number of

presentations of the data set to the learning algorithm, called ‘# Epoch’ and the allowed training



87

error. called '% Correct, are selected. The second dialog window gives access to the
Function/Tree Parameters. Here, the user specifies ‘# Leaves’ which defines the size of each
binary ALN tree, and # Voters’, which defines the number of parallel trees that will be trained to
produce the same Codomain bit. Both windows list all Domain and Codomain channels and still
allow for change of channel status (Domain, Codomain, Not Included). After all training
parameters are decided, training can be started. During the training, a message window reports
on the current training Epoch and the training success. As soon as the number of correctly
learned bits reaches the preset training error, the training is stopped and the training time is

displayed in the window.

In addition to training new ALNSs, the program can be used to retrain existing ALNs with the same

or a new data set.

To assess the performance of the trained ALNs on the training set, they can be evaluated using
the function Evaluate. This function produces a new data set and a new spreacdsheet which
consists of only one channel automatically named ‘Result: actual_channel_name’. A signal
representing an approximation to the desired output, produced by the ALNs is placed in that
channel. To compare the original Codomain signal énd the one produced by the ALN, there is a
function Compare. This function can operate only on one: data set, i.e., on the active spreadsheet.
Since Resuit signal and the original Codomain signal do not belong to the same data set, either
ore should be copied from its data set (spreadsheet) to another one. The function Compare
produces a new channel with a signal representing the difference between the original Codomain
and the Result. The error can be measured using the function Threshold under the Channel
menu. This function operates on a single channel and counts all samples whose amplitude is
higher than a high threshoid and lower than a low threshold. High and low thresholds can be set

arbitrarily.
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To test the performance of the trained ALNs on new data, a test set can be loaded and the ALNs

evaluated in the same way.

2.8.2 ALN V.2 and ALN V.3 implementation in the real-time control:

program ‘FESCONT"’

To choose a computer platform for integration of machine learning techniques into the control

system, as illustrated in Figure 2.7.1, the following criteria were followed:

e the computer platform must run Windows, because ALN learning modules for Windows
already existed;

« hardware and software components should be 100 % compatible;

e programming in the new environment should be simple and flexible.

An IBM PC equipped with an AT-MIO-16DH data acquisition and 1/O board was chosen for the
hardware platform and LabVIEW (LV) for Windows (National Instruments, 1993) was chosen as
the programming environment which will be used to integrate the whole control system. LabVIEW
offers a graphical programming environment for ccnstructing application software for the PC. It

has an extremely short learning curve compared to classical programming environments.

The program FESCONT was designed which contains all the modules illustrated in Figure 2.7.1.
The structure of the program follows the concept of ‘virtual instruments’, i.e., the computer
simulates a highly customized self-standing instrument. The program is still in its development

phase (functional prototype) and will not be presented in detail. The main functions of the program

are listed in Table 2.8.1.

" The concept of this program was developed completely by the author. All of the program modules
programmed in LabVIEW for Windows have been produced, tested and integrated by the author. The ALN
learning module and interface module for communication between Windows and LabVIEW were provicad
by Dendronic Decisions, Ltd. of Edmonton, with particularly valuable assistance by Mr. Monroe Thomas.
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Table 2.8.1. Main functions of the program FESCONT and their description.

CREATE CHANNELS Used to define data sets which will be used in the experiment

DATA DISPLAY Displays signals without recording (computer simulates
oscilloscope)

DATA ACQUISITION Records signals in binary format to a computer disk

ALN TRAINING & TEST | Used for ALN training and ALN test on stored signals

ALN CONTROL Applies stored ALNSs to the real-time control problem

As previously mentioned, during the course of this thesis project, Dendronic Decisions, Ltd. made
a significant improvement to the ALN learning algorithm, which resulted in switching from ALN V.2
to ALN V.3 just before the control system was integrated. The program exists in two versions, one
which uses ALN V.2 iearning and interface modules and the other one which uses ALN V.3. The
difference in the program is just in function calls which are slightly different for the two versions.
Since the most recent results in this thesis are done with the ALN V.3, ALN function calls for that

version are listed in Appendix C.

The program is modular, which means that the learning module can be easily replaced with
another one. This provides a frame for standardized evaluation and comparison of different

machine learning techniques for supervised learning.

Only two modules were not developed in the LabVIEW environment, but in the Microsoft Visual
C++ environment: ALN and LV-ALN interface module. These modules were developed in the form
of Windows DLLs (dynamic-link fibraries) by Dendronic Decisions Ltd. LabVIEW for Windows is a
32-5it integrated programming environment and Windows 3.x is a 16-bit operating system. This
discrepancy caused incompatibility between LabVIEW programs and custom Windows DLLs. To
resolve this incompatibility, a third-party program Downshift (Viewpoint Software Solutions, 1993)
was used !0 bridge between the two enviionments. Future versions of MS Windows (MS Windows
95) will be based on a 32-bit environment, which will Ye a more elegant solution of this small

problem.
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2.8.3 Program ‘EMPIRIC’
To evaluate the inductive learning technique, program EMPIRIC was provided by its author Ben

Heller. The program is designed to operate under Microsoft DOS on data prepared in specific

format described in Heller (1992).
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3. RESULTS

3.1 MANUAL CONTROL OF FES FOR LOCOMOTION

FES-aided walking was introduced in the rehabilitation of selected spinal cord injured subjects

gradually. This process can be considered as having three distinct phases:

1) In the first phase the subject has to increase the physical strength of the whole body, which can
be significantly affected by reduced mobility during hospitalization. Muscles under voluntary
control are exercised through an appropriately structured work-out program, and paralyzed
muscles are stimulated. The subject becomes familiar with basic FES principles and the use of

the FES-system.

2) Using the appropriate mechanical aid (parallel bars, harness, frame, four-point walker), the
subject practices standing. The subject is also introduced to FES. After the subject has
accomplished independent safe standing for three to five minutes, the periodic movements
needed for walking are introduced and exercised. The subject learns how to operate the

switch(es) to start arid stop stimulation.

3) The subject’s gait training starts by extending the walking distance from several steps between
parallel bars to as many steps as he or she is comfortable with using the mobile mechanical
walking aid. In the beginning, switching of the stimulator is usually done by the therapist. However,
the subject is encouraged to learn the appropriate switching for walking as soon as possible,
which finally provides the subject with more independent functional walking. The switches are
usually installed on the mechanical walking aid handle or on the fingers of the more functional
hand. Such a position enables the subject to operate the switches with minimal movements of the

rest of the body.
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The goal of functional walking is not only to walk long distances and provide a greater blood
supply to the paralyzed extremities, but also to be mobile and independent in narrow and tight

spaces, such as in a kitchen or bathroom.

Before the first gait trial. the subject should be reevaluated to reduce (or eliminate) the risk of
sudden pathological changes. The most important criteria appear to be limited range of motion,

osteoporosis or skeletal system instability. Any of these factors may exclude the subject from gait

training.

Subject L.W., who is presented in detail in the 'Subjects’ section of Methods and Materials, started
FES-assisted walking before the begining of this thesis project. She was selected as a good
candidate who could benefit from automation of stimulation control. In addition, she was very
interested in the opportunities that automatic coniroi offered to her, which motivated her to
dedicate a significant amount of time aix] effurt to this project. At the beginning of this project, the
subject used a single channel Mikrofes stimulator with surface electrodes placed on the skin
above the peroneal nerve in popliteal fossa region. Stimulation has been used to activate the
flexor withdrawal reflex on the left leg through the afferent part of the common peroneal nerve.
The other (right) leg has limited flexion, and stimulation was not needed, so that leg will be
denoted below as ‘normal’. After the walking program started, another speciaily designed single
channel device was received, which was able to supply enough energy for a fully implanted

stimulator already placed on the common peroneal nerve in the same region.

Technically, the simplest control system for FES-assisted locomotion is manual switching of the
stimulator by the subject. Since the subject is not able to walk at all without stimulation, the
manually controlled gait could not be compared to no-stimulation gait. Techniques developed later
as a part of this thesis are compared to manually controlled gait. The most complex FES system
should be able to control stimulation timing and intensity for multichannel stimulation using

multiple sensory inputs (natural and artificial).
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Using manual control of FES, the subject makes the decision to start stimutation. A manual switch

is used by the subject to begin stimulation and is placed on the right handle of the wheeled walker.

Taking a step, which is an automatic proces for people having normal voluntary control over their
extremities, is a very complex proces for someone whose extremities are paralyzed. In this
particular example, to take a step, our subject had to perform at least ten different actions to
assure that her posture and the position of the walker provided safe movement at every instant of
time during walking. The walking session usually starts with extensive stretching of both legs and
arms, for which the subject gets help from another person. The stretching usually reduces the
spasm in her extremities, which produces unwelcome clonus during walking. After the preparation
ie completed, electrodes (or &ransmission antenna) are installed and the stimulation is tested, the
subject is ready for walking. She stands up from the v;/heelchair without stimulation, turns ON the
stimulator and starts walking with her normal (right) leg first. The actions needed to walk one full
gait cycle can be distinguished as follows:

e make sure that the disabled (left) leg is fully extended and can support the whole body

weight together with hands supported on the walker;

+ shift body weight onto the disabled (left) leg;

» advance the walker;

e take a step with the normal (right) leg;

e fully extend the normal (right) leg and make sure that it can support the whole body
weight together with hands supported on the walker;

+ shift body weight onto the normal (right) leg;
¢ advance the walker;
+ press and hold the switch to stimuiate the disabled (left) leg;

e take step with stimulated (left) leg, visually follow its trajectory to prewvesit it from hitting the
other leg or the leg of the walker and from landing in an inappropriat& pasition®;

%This usually happens if the stimulation duration is too long or the stimulation intensity is too strong.
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e at the end of swing phase, release the switch to stop stimulation and let the left leg fand
on the ground;

e fully extend the disabled (left) leg and assure the left leg can bear weight;
e shift the weight to the disabled (left) Iég. either completely (to continue walking) or partially,
(to stop walking and continue standing).

The two most important and hazardous phases of this procedure are weight shifting to and from
the disabled leg, and they usually take most of the subject's attention during walking, independent
of the way the walking is controlled. These are the moments when it is not very clear which leg is
in charge of being the main body weight supporter. It is obvious that the number of unusual tasks
to perform during each gait cycle is too large to expect a fast and easy training procedure. Not a
single operation from the above list was simple to learn. Every acton required the full
concentration of the subject and much effort and energy to perform. The walking Was very slow. It

provided the subject with all the positive effects of the use of FES, but it was quite far from fully

functional walking.

The maximal distance per trial was 15-50 m, which was equivalent to 30-100 steps. There was a
wide range of maximal distances per trial because many factors affected mental and physical
fatigue. The subject's very fast fatigue is the main reason for very short maximal walking distance
per trial, which also depended very much on the type of floor surface, time spent stretching and
exercizing before walking sessions, etc. Although the manual switch is located at a very
convenient place on the walker so that operating it didn't require any movement of the hand, the
switching task is an additional burden on the right hand, which was also the major support of the

body weight on the walker. This was very tiring, particularly in the learning phase, before pressing

on a switch became a part of a routine waik.

The stimulation intensity required to take a step with the disabled (left) leg was not constant for all
walking sessions and during any particular walking session. Very often, if the intensity was close

to eliciting the flexor withdrawal reflex response, but still too low, prolongation of the stimulation
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duration was a way to activate the reflex. If longer stimulation didn't help, adjustment of thé
stimulation amplitude was needed. However, the limiting factor with the first stimulator the subject
used (with surface electrodes) was the pain the subject experienced if stimulation intensity was
too high. A fully implanted stimulator eliminated this discomfort because pain receptors in the skin
were not being stimulated. In addition, its stimulation was less amplitude-sensitive and stimulating

conditions were more constant.

Surface stimulation intensity also depended on the changes in electrode-skin contact impedance,
as well as on the active electrode position. The advantage of this system was that, once
electrodes are put in the right position, they can stay there for two to three weeks. Fully implanted
stimulation intensity depends on the position of the transmitter's antenna because of very limited
operating range (1 to 2 cm). However, the adjustment of the antenna’s position is easy because it

is held in place by an elastic strap.

Gait cycle stimulation duration was estimated by the subject visualily following the trajectory of the
stimulated leg during the swing phase. If stimulation intensity was not high enough, longer
stimulation was needed and sometimes this longer stimulation would elicit a reflex response.
Otherwise, the stimuiation amplitude was increased one ‘notch’. This was required quite often

during long distance walking trials with surface stimulation.

Manual control by a skilled subject or therapist is the most reliable type of control of FES-assisted
locomotion available. There is no need to translate, or transduce signals from the subject to the
stimulator to detect when and for how long she wants to be stimulated. The subject does it all and
explicitly informs other parts of the system about her intentions. There is no missing stimuli when
the subject wants to be stimulated, and extra stimuli are very rare - they occurred only in long
walking sessions when the subject’s concentration decreased and the muscles driving the thumb,
which switches the stimulation ON and OFF, became fatigued. Misfirings were extremely rare with

manual control of the stimulation.
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swing phase (B). Tne extra channels of stimulation increased the speed of walking. without
changing the stride length (Stein et al., 1993). The very long stance phase was shortened from
57 to 3.9 s and the swing phase from 1.9 to 1.4 s. The steps also became more regular (compare

the standard error bars for the hip and knee early in the stance phase of Figures A and B.

A Surface, 1 channel B Surface, 3 channels C Implanted, 1 channel

130}

Hip

180
125

180:
70

Angles (degrees)
Knee

Ankle

0 770 530 54
Gait Cycle (s)

Figure 3.1.1. Gait analysis of a subject L.W. walking with (4) a single channel of stimulation applied to,
the skin over the common peroneal nerve, (B) two additional channels applied over the quadriceps and
gluteal muscles and (C) a single channel stimulator surgically implanted over the common peroneal
nerve. Averages (solid lines) and standard errors (dotted lines) have been computed for the hip, knee,
and ankle joint angles for 5.5, and 9 gait cycles in (4), (B), and (C) respectively. Each gait cycle began at
the time of foot contact. For all angles, flexion is displaved upward with respect to the straight (180°) or
right angle position (90°). (modified from Stein et. al, 1993)

it was already mentioned that the subject touched the ground at the end of her swing with her
forefoot. This fact made it interesting to record ground reaction force under the front of her
healthier foot, which could be used for control of the other, more disabled leg. This measurement
was achieved by a force sensing resistor (FSR) installed under the ball of her right foot. Averaged
signals recorded from oné FSR and the manual switch used to control timing of the stimulation

during walking are presented in Figure 3.1.2. From these recordings it became obvious that the
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stimulation usually starts some time after the right foot finishes its swing and touches the ground.
This was aiso expected, because the subject never started stimulation before she was sure that

the right foot was on the ground and in full extension, providing safe body weight support during

the swing of the stimulated leg.

=
Q
=

Manual control of
the stimulation by
the subject

/T

Ground reaction
force

low
number of steps = 21, < ON T\
gait cycle = 5.51+1.06 s, = \
stimulation ON =2.11+£0.28s, | 2
stimulation OFF = 3.40x0.94 s| &5
OFF
o 100 (%)

Figure 3.1.2. Ground reaction force measured under the ball of subject’s right foor presented together
with the switching signal recorded from the manual switch used to control FES during walking. The
FSR used for measuring ground reaction force is highly nonlinear, so only a qualitative scale is shown.

In addition to these kinematic and kinetic measurements, timing of the events in the gait cycle was
studied using foot-switches under the heel and ball of the feet of both legs. Figure 3.1.3 shows
two combined signals recorded from foot-switches installed under heel and ball of the foot of each
leg with corresponding signal representing manual stimulation control. Switching of the heel
switches is represented by smaller increments and switching of the switches in the front of the foot

are represented by larger increments. Signals representing two foot-switches from each leg are

combined into one signal. These signals confirmed findings from video records and ground force
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measurements about the sequence of events during the gait cycle: the subject touched the

ground with her toes first in both legs.

Gait cycle event detection using foot-switches
-}—toe & heel ON
RIGHT LEG @—1oe ON
SWITCHES
<§ioe & heel OFF
0 5 10 Time (s)
LEFT LEG o nftw & heel ON
SWITCHES Jn____‘-[_r\_ﬂ__.\ ioe ON
4 toe & heel OFF
< ON
STIMULATION | <OFF

Figure 3.1.3. Detection of the events during FES-assisted gait. The first two traces are combined signals
recorded from switches installed under the heel and under the ball of the foot of right and left leg
respectively. The third signal represents manual stimulation: control.
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3.2 HAND-CRAFTED RULE-BASED CONTROL OF FES’

After the subject had reached the rehabilitation phase in which she was able to ambulate with
manual contro! of the stimulation, the next phase of the development was to automate the FES-
control and decrease the cognitive burden resulting from unnatural starting of the swing phase of
her more disabled leg. Automation of the control should not introduce more problems than
benefits for the subject. The implementation of this strategy resulted in the use of a rule-based
system to mimic the manual switching controt of the stimulation operated by the subject herself or
by a skilled physiotherapist. Extensive gait analysis was done to uncover the rules which may
best explain the way a skilled person decides to start and stop the stimulation bursts before and

during the swing phase of the disabled leg. To detect the current state of motion of the subject,

potential feedback signals were recorded from:

e foot-switches, explained in the previous section (Figure 3.2.1);

insole force sensors, installed in the subject's shoes measured changes in the force

distribution under the front (metatarsal area) and back (heel) of both feet during
ambulation (four sensors) (Figure 3.2.2); and

flexible goniometers attached across hip (flexion-extension and abduction-adduction),
knee (flexion-extension) and ankle (flexion-extension and inversion-eversion) of a

disabled leg measured changes in joint angles (three transducers with five sensory
outputs).

In addition, a binary signal was recorded indicating the time intervals when the person operating

the control pressed on the manual switch. The subject was also video-taped during walking.

S A version of this cheg¥@: has been presented at the IFAC Symposium on Modeling and Control in
Biomedical Systems, in form of paper “Improved Methods for Control of FES™ by Kostov et al., 1994. The
paper won a Student Researc’” Award at the meeting and it was published in the conference proceedings.
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After the examination of the recorded data, we noticed that the initial trigger starting the
stimulation of the disabled leg for its swing phase may come from a single sensor on the other leg.
i.e. taking a step with a ‘normai’ leg may be interpreted as the signal of intention to take a step
with the disabled leg too. Basic statistical values related to this strategy have been calculated over
several walking trials. This analysis resulted in the foliowing values of parameters (mean + SD)
iflustrated in Figure 3.2.1:

e T1 - a delay from the time when the ‘normal’ leg touches the ground to the start of the

stimulation (0.22 + 0.09 s).

e T2- atime interval during which the subject holds the switch down, i.e. the duration of the
stimulation (1.51 £ 0.18 s),

e T3 - a part of the stimulation duration during which the disabled (stimulated) leg is in
swing phase (0.75 s £ 0.17),

e Tc - a gait cycle duration (5.51 s + 1.06)
e Tv - a recruitment phase during which the stimulation has begun but the muscles are still
not enough recruited to lift the foot off the floor and produce the swing of the leg.

Even very basic statistics (see Table 3.2.1) uncovered regularities which could be used to define
timing for ‘automatic’ FES-control, simulating manual switching control. Since the subject didn't
have voluntary control over hip flexion of the disabled leg, a signal to start new step stimulation
couldn't come from that leg. The normal leg was found to be able to signal a new gate cycie with
the time of its contact with the ground. The intention to take a step with the disabled leg could be
detected by detecting the fast positive transition in force measured from the front of the normal
foot. The stimulation could be started T1 s after the normal foot touches the ground and finished
either after a preset duration T2 or after the delay T3 after the ipsilateral foot leaves the ground
(stimulated leg swing phase - ipsilateral ‘toe OFF’). Since the subject touches the ground with the
forefoot rather than with the heel, one switch under the ipsilateral toe was enough to define the

stimulation ON time.
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Gait cycle event and timing detection using foot-switches
«—toe & heel ON
RIGHT LEG <—toe ON
SWITCHES
«¢toe & heel OFF
0 10 Time (s)
-+ : -»
LEFT LEG Tc. [| &8 & hes! ON
SWITCHES — L—r'W r' U \—"] <-oe ON
W < toe & heel OFF
Tv=T2-T3~E;k; :
nm
| 12, |
STIMULATION | PR <oFF

Figure 3.2.1. Gait cycle event and timing detection using foot-switches. The first two traces are combined
signals recorded from switches installed under the heel and under the ball of the foot of the right and left
leg respectively. The third signal represents manual stimulation duration control. Signal levels for ‘toe
ON’, ‘toe & heel ON’ and ‘toe & heel OFF’ are marked as well as time intervals which are used fo
d=fine relationships between the start and duration of the stimulation and the position of the feet.

Table 3.2.1. Statistical values of the timing of major events in a gait cycle related to the switching

control of walking (number of steps N=17).

T1 T2 T3 T2-T3
mean (s) 0.22 1.51 0.75 0.76
st.dev. (s) 0.09 0.18 0.17 0.07
st.error 0.02 0.04 0.04 0.02
max (s) 0.42 1.90 1.10 0.92
min (s) 0.10 1.24 0.52 0.66

Values obtained by statistical analysis of the gait parameters and two different possibilities to stop
the stimulation provided the basis for the development of two hand-crafted control modes called

Control Mode 1 (CM1) and Control Mode 2 (CM2). CM1 has a fixed duration of the stimulation,
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while in CM2 the duration of the stimulation is divided into two parts: a variable duration phase
(Tv) during which the stimulation begins and produces the start of the swing phase; and a fixed
duration phase (T3) which begins with the stimulated leg leaving the ground and which should be
long enough to enable the swing of the stimulated leg for a range of walking speeds. To detect the
lift of the stimulated leg, a switch was needed under the stimulated leg. Because of the ‘flat-foot’
pattern of walking, rather then heel-contact, the switch was located under the ball of the foot

instead of under the heel.
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Figure 3.2.2. Gait cycle eveni and timing detection using only two force sensing resistors installed under

the front of the foor in both legs. The first two traces are samples of the signals recorded from force
sensors positioned under the central metatarsal areas of both feet. Force increases upwards. The signal
in the third trace indicates the time intervals when the subject pressed on the manual switch to deliver
stimulation to her left leg.
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The patterns detected by the foot-switches in manually controlled walking were the starting point
for experimentation with other types of transducing devices. Much more reliable results were

obtained using force sensing resistors (see Figure 3.2.2). The signal they produce is continuous,

so the events are determined using fixed thresholds.

The walking pattern of the subject was the determining factor in deciding to use only force sensing
transducers positioned under the central metatarsal joints of both feet. Although the goniometers
give better information of the dynamics of the disabled leg, they were not considered for
permanent use outside the laboratory because of their high sensitivity to mechanical stress, very

high price and because the process of putting them on and taking them off requires manual

dexterity not present in the subject.

3.2.1 Control Mode 1

This control mode uses only one force sensor instaifed under the central metatarsal area of the
right foot, which is considered ‘normal’. The state diagrai~: of this mode includes all states

presented in Figure 3.2.3, except those that are shaded and its vistes are defined as follows:

o STATE 1 is entered when force on the ‘normal’ (right) foot exceeds a higher threshold
(stable body weight bearing on the fully extended right leg). If the force drops under the
lower threshold during the T7 interval, it is considered that clonus in the ‘normal’ leg has
started and the whole process is reset by returning to STATE 0.

¢ STATE 2 (STIMULATION ONSET) begins when force on the ‘normal’ foot is maintained
above a lower threshold for T7 seconds.

e STATE 3 (STIMULATION CONTINUES) is passed through after the stimulation duration
exceeds a fixed interval T2.

e STATE 4 (STIMULATION OFF).

« Return to STATE 0 when T4 exceeded (no clonus) and force is less than the lower threshold
(swing phase of ‘normal’ leg).
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Figure 3.2.3. State diagram and transitional conditions for Control Mode 1 (CM1) and Control Mode 2
(CM2). CM1 includes all states and transitions except these in the shaded boxes. CM2 includes all the
states and conditions presented. RFS and LFS stand for Right and Left Front Sensor and ht and It stand
for the higher and lower thresholds respectively.

3.2.2 Control Mode 2

The second control mode empioys two force sensors: one senscr installed under the central
metatarsal area of the right foot and another one installed under the central metatarsal area of the
disabled leg. The state diagram for this mode includes all states presented in Figure 3.2.3 and its

states are defined as follows:

» STATES 0, 1, and 2 are defined in the same way as in CM1.

e STATE 3 (STIMULATION CONTINUES) begins when force under the disabled (left) foot
drops under the lower threshold (swing phase begins) or the stimulation duration exceeds
T2

e STATE 4 (STIMULATION OFF) occurs when the time in STATE 3 exceeds T3 or the force
under the disabled foot exceeds the upper threshold (standing or stumble).
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The only differences between these two control modes are in STATES 3 and 4. STATE 3 of CM2
monitors the effect of the stimulation which starts during STATE 2. If it is successful, it is expected
that after the stimulated foot touches the ground the stimulation is not required and shouid be
stopped. In the case when the stimulation parameters are not optimal and the’ stimulation is not
very efficient or if the shifting of the weight from the disabled to ‘normal’ leg is not finished, this

feature prolongs the stimulation giving the subject more time to maneuver and to finish the step

3.2.3 Practical implementation of Control Modes 1 and 2

Control Modes 1 and 2 were implemented in both hardware using discrete electronics and
software using a microprocessor controller (Motorola MC68HC11). The block-diagram of the
discrete electronics hardware implementation is presented in Figure 3.2.4. The electronic device
was designed and assembled to operate as a replacement for the manual switch, i.e., it used the
same control input to the stimulator. The reason for such an approach was to preserve the basic

or reference control mode of the stimulation, and not to leave the subject without the stimulator

during development of the electronics.

Device shown in Figure 3.2.4. has three control inputs:
1) ‘RIGHT FSR’ for contralateral force sensor (used in both control modes);
2) 'LEFT FSR' for ipsilateral force sensor (used only in CM2); and

3) ‘MANUAL SW!TCH’ (used as an override control function to start stimulation in case of

missing stimulus.
In addition to control inputs, the device also has precise controi of four time intervals:

1) T1 - delay of the start of stimulation which is initiated by the 'RIGHT FSR’ signal

exceeding its higher threshold;
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2) T2 - duration of the stimuiation (CM1) or maximal duration of the Tv part of the
stimulation as a preparation for swing phase (CM2). If the transition from high to low on
the ‘LEFT FSR’ is not detected during this interval (most often due to low intensity of the

stimulation) stimulation is cancelled.

3) T3 - duration of the stimulation during the swing phase of the stimulated leg (CM2).

4) T4 - clonus avoidance time interval after the stimulation is finished and swing phase is
completed. During this interval stimulation is denied even if other conditions to start

another step are fulfilled.
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Figure 3.2.4. The block-diagram of the implementation of CMI1 and CM2 in discrete electronics.
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At any time, the subject is able to activate stimulation of the disabled leg by pressing on the

'MANUAL SWITCH'.

Subject has clonus on botﬁ sides. Thus, the clonus avoidance protection had to be provided in all
phases of the gait cycle. Avoidance of clonus was included in both control modes. Since clonus

usually occurs after the movement of the leg, this protects the subject after the swing phase in

both legs. The following safety features are included in the design:

e The first safety feature is activated after the swing phase of ‘'normal’ leg. It is active in
STATE 1 and protects the subject from being stimulated when the ‘normal’ leg, which
should take the whole body weight during stimulation of the disabled leg, develops clonus
and becomes unstable. If the subject had clonus on the contralateral leg before the start
of stimulation, and if it did not stay stable on the ground at least for T1 s, the stimulation
was denied and the system returns to STATE 0. In that case it was presumed that the
normal leg is not stable enough to support body weight. (CM1 & CM2)

e The second safety feature takes care of clonus on the contralateral leg which may start
during the first phase of stimulation, and prevent the stimulated leg from leaving the
ground and starting the swing phase during interval T2 (transition high to low on LEFT

FSR is not detected). In such a case the swing phase stimulation for an additional T3
duration will be cancelled. (CM2)

o After the stimulation is finished, instability caused by weight shifting from the stimulated to
the non-stimulated leg or by clonus on the stimulated leg may satisfy conditions to start
stimulation for a new gait cycle before the subject is ready for it. In this case the subject is
protected by denying the stimulation for the interval T4 s, selected to provide the subject
with enough time to stabilize and to continue walking by taking next step. (CM1 & CM2)

The frequent adjustments of thresholds were an inconveniece during walking. Thus, in the next
design the control modes were implemented in software, rather than in hardware. Therefore, the
control logic was implemented as a state machine running on a Motorola MC68HC11
microprocessor controller developed by Mr. Michel Gauthier (hardware and software) and Mr.
Robert Rolf (hardware) in the Division of Neuroscience, University of Alberta. This approach

provided new functionality in experimenting with different control strategies:
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. A micro-controller connected to a remote PC enabled us to record signals from the
sensors and to experiment by varying control parameters during simulation of walking;

e A calibration routine was implemented enabling the subject to set up the threshold levels
during walking. It was implemented to exclude frequent screwdriver-type adjustments of
the amplitude and offset of the sensor signals as a result of using imperfect sensors;

e Digital control of stimulus intensity (pulse width) and duration was implemented which
enabled the subject to regulate these two parameters more precisely and to see the
actual value (either first or second) on the digital display.

The new design was smaller, more flexible and functional than the previous one. However, some
of the earlier problems remained the same and some new ones were added. The sensor signal
was still dependent on the physical conditions. The calibration routine was based on
measurement of the ‘standing force' during a very short time interval and the adjustment of the
threshold levels relative to these measurements. Since the subject did not have very good control
over her posture, ‘standing force’ measurements were quite irreproducible, and calibrations vere
mostly unsuccesful. Despite existance of the calibration routine, screwdriver adjustments of the
amplitude and the offset of the sensor signal were still needed. Improper operation of the

controller was experienced as missing stimuli and misfiring of the stimulator.

3.2.4 Gait analysis for automatic control of the stimulation

Since the first experiments with CM1 and CM2, several subjects have successfully started using
the same or a modified type of controller based on CM1. Due to the success of CM1, and the
inconvenience that CM2 brings by adding another cable coming from the other leg, there are not

enough measurements to prove its superiority (or inferiority) compared to CM1.

By using CM1 the subject was able to start walking, to stop, and to maintain one speed very well
for swinging the disabled leg through. Although the stimulation has fixed parameters, the subject

is able to walk at different speeds in a narrow range just by varying the swing duration of the

‘normal’ leg.
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3.2.5 Conclusion

Two directions were seen as most promising for further development:

1) The use of natural or artificial sensors which can reliably and reproducibly measure the
kinematic and kinetic variables of walking. if the previous, present and the intended state of the
locomotion are better described by signals recorded from the sensory system, it wouid be easier
to define the actions required to acomplish the interded movement. This is specially important for
protection against misfiring, i.e. having a stimulus defivered when it is not needed, because it is

much easier to specify conditions for when to stimuiate than those for when not to stimulate.

2) The use of artificial and/or computational intelligence systems (such as, expert systems,

artificial neural networks, inductive learning aigorithms, etc.) as tools to:

e overcome the sensors’' imperfections;
e increase the information/noise ratio in recorded signals;

e extract control rules for stimulation control of the disabled muscles from the purified
signal;
e apply a ‘pattern recognition’ technique on the signals recorded from the activators and

nerves to monitor achieved locomotion and

e modify parameters of the stimulation or control ogic (e.g. ‘adaptive thresholds’) if required
in order to obtain a more ‘normal’ walking.
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3.3 AUTOMATIC GENERATION OF CONTROL RULES BY
MACHINE LEARNING TECHNIQUES: EVALUATION OF
ADAPTIVE LOGIC NETWORKS (ALNs) FOR SWITCHING

CONTROL OF FES'°

If the system to be controlled is too complex and does not have a good mathematical model, as in
control of locomotion of subjects with a spinal cord or brain injury, artificial and computational
intelligence techniques may be used to generate the rules in the rule-based control system or to
generate parameters for a control program that go beyond the format of rule-based control. Such
a system, if designed with a significant amount of redundancy. can even overcome problems
considered unresolvable, such as variability of the sensory signals, changes in walking habits, etc.

One of the main advantages of this approach is its speed in generating th~ - sles from examples.

A major task in automating the control of walking for stroke or incompiete SCI subjects iIs to
recognize the subject's intention to take a step with a disabled leg and to provide the required
control signals to the stimulator. The simpiest method of control is through hand switches, but this
is not appropriate for incomplete quadriplegics and stroke subjects who may not have adequate
hand function. In addition, operating a hand switch requires repetitive voluntary intervention and
can introduce delays and variability. Liberson et al. (1961) used a heel switch which activated a
single channel of stimulation to assist in the swing phase whenever the heel came off the ground
This system does not work reliably in subjects where contractures or spasticity prevent a good

hee! contact with sufficient weight bearing or in subjects who suffer from clonus, which can cause

@ A version of this section has been presented at the 14th Annual International IEEE - EMBS Conference in
form of short paper entitled “Evaluation of Adaptive Logic Networks for Control of Walking in Paralyzed

Patients” by Kostov et al., 1992. The paper won a finalist prize for IEEE Region 7 (Canada) in the Student
Paper Competition.
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the heel to iift and touch the ground several times during the stance phase. A rule-based system
based on threshold logic applied to the signal from a force sensor installed under the toe . the
normal leg has been proposed as an alternative method to detect the subject's intention to take a
step {Stein et al, 1992). The duration of the stimulation was either preset or it was decided

through use of another force sensor installed under the toe of the stimulated leg.

The current study is limited to investigating the prediction of FES switching commands operated
by a skilled subject or physiotherapist from switching patterns in force signals measured under the
feet using a machine learning technique, known as Adaptive Logic Networks (ALNs), which is a
type of artificial neural network for supervised learning. If the ALN can learn and later predict
stimulation switching patterns, based on biomechanical signals and manual control by the subject
or a physiotherapist, then the ALN can be used to transform input sensory signals into output
control signals for stimulation. The concept of such a control system, which can automatically

generate the control rules is presented in Figure 3.3.1.

ELECTRODES MANUAL @
e OVERRIDE
N Y
\— STIMULATOR [q—
ALN CONTROL
, INTERFACE
DOMAIN
FORCE
SENSORS

Figure 3.3.1. The concept of using machine learning techniques in control of FES-assisted locomotion.



114

This method is intended for subjects who are already trained to step periodically by manually
pressing on the switch to turn the required stimulaton on or off. Automatic control can then be
added to manual control to enable the subject to concentrate on other functions during walking,
such as shifting the body weight from one leg to another, avoiding obstacles. moving assistive

devices, carrying objects, etc.

The subject tested (L.W.) was the same one introduced in detail in section 2.1 2.

3.3.1 Adaptive Logic Networks

Version of the ALN learning program: ALN V.2 (see section 2.7.1 and Appendix B for details).
ALN interface program: WALKON (see section 2.8.1 and Appendix C for details).

Encoding technique: Random Walk Encoding (see section 2.7.1.1 for details).

Briefly. the result of the ALN training on a set of signals recorded from natural or artificial sensors
configured as an input vector - an element of the domain, and corresponding outputs - in a set
representing the codomain, is an approximation of the input-output transfer function. This function
is a boolean expression that can be presented in the form of one or more trees composed of iogic
gates performing boolean operations (e.g. ANDs) which approximate the functional dependence

between the inputs and output data (see Figure 3.3.2).

Continuous input and output values are " - ‘2d by encoding into boolean vectors. To import
signals from measuring devices used in the gait laboratory, an IBM PC-based program WALKON
was developed which manipulates signals, converts their samples into booleans, learns input-
output transfer functions and stores the learned functions in binary trees for use on future input

data. The program WALKON is presented in detail in Appendix C.
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Figure 3.3.2. A structure of machine learning system based on adaptive logic networks (ALN version
2.x). Adapration occurs in adaptive nodes where Boolean operators (AND, OR, LEFT and RIGHT) are
initialy distributed randomly. They are changed from one to another during adaptation process
according to algorithm described in Appendix B. ALNs 2.x operate only on binary numbers. Thus, real
values have 1o be quantized and encoded before entering adaptation part of the algorithm. For the same
reason, result obtained from ALNs has to be decoded. Binary complements are introduced 1o enable

ALNs 1o approximate both monotonic increasing as well as monotonic decreasing input/ouiput
Junctions.
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3.3.2 ALN application

To detect the subject's intention to take a step with her disabled leg. Interlink force sensing
resistors (FSRs) were installed in her shoes to record the pressure under the medial metatarsal
regions and under the heels. Although this type of sensor has a highly nonlinear force-resistance
curve, and is not recommended for precise force measurement, it was acceptable for detecting
ground contact.

The complete list of inputs and outputs used in this design (including those

calculated) is presented in Table 3.3.1 and the sample of input signals is shown in Figure 3.3 3

Table 3.3.1. ALN inputs and outputs. The iast two rows are calculated signals by the ALNs.

Signal Name' Role in ALN | Source of the signhal
RIGHT FRONT Domain 14.5 cm? square Force Sensor
RIGHT HEEL Domain 4.9 cm- circle Force Sensor
LEFT FRONT Domain 14.5 cm? square Force Sensor
LEFT HEEL Domain 4.9 cm? circle Force Sensor
MANUAL SWITCH | Codomain Manual switch
ALN ALN Result ALN prediction of Codomain
ERROR ALN Error = (MANUAL SWITCH - ALN)
FSR - RIGHT *. :
FRONT o
FSR - RIGHT :
HEEL i ‘
FSR - LEFT
FRONT
FSR - LEFT .'
HEEL - o I
MANUAL f
SWITCH i L
time marks 5 s

Figure 3.3.3. An example of the signals recorded from four force sensors and manual switch during
FES-assisted walking controlled manually by the subject.
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Since inputs and outputs of boolean functions are binary numbers, input signals have to be
presented to the ALN program in binary form. If input and output data are analog signals. they are
quantized and encoded before presentation to the learning algorithm. Encoding was done using a
‘random walk technique’ with a binary width of 10 or 14 bits for the inputs and 1 bit for the output.
The number of quantization levels was 32 or 128 for the sensory inputs and 2 for the stimulation
contro! signal. Note that the stimulation control is a binary signal to turn the stimulus on or off,
produced by the subject or the therapist. The boo'ean trees were limited to 1024 or 4096 nodes.
the number of voters was 5 and number of data presentations was 15. The ALN Result is the
approximated stimulation control signal computed by the ALN, and ERROR is the difference

between actual and the »aproximated control signal.

3.3.3 Resuits

Two sets of data were analyzed in which either the subject or the physiotherapist controlied the
stimulation by pressing on the manual switch. The signals were recorded using the Axotape data
acquisition system. The sampling rate of the analog input signals was 50 Hz, but it was reduced
during processing to 5 Hz after low-pass filtering at 1 Hz. This was done to reduce the number of
samples and the amount of computation during the training. In both sets of data the subject
covered the same distance, turning around approximately in the middle. The data recorded. from
independent walking sessions were divided into training and test sets to evaluate the performance
of the rules derived in recognizing when to ‘press’ the switch. Approximately half of the total
number of samples was used for training the ALN, and the other half was used for evaluation. The
ALN performance was measured by counting the number of correct samples, either those

restored during training or those predicted during test.
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3.3.3.1 Number of inputs

To measure the significance of each input signal for the ALN prediction, the use of all possible
combinations of input signals from one and two sensors was evaluated when the physiotherapist
controlled the stimulation. In all trials the ALN gave correct predictions for more than 65% of the
time (the mean and standard deviations are shown in Figure 3.3.4. Only one combination of input

signals was evaluated when the subject controlled the stimulatior.
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Figure 3.3.4. Adding more input signals can increase the number of correct predictions both for training
and test.

3.3.3.2 The effect of past data

The impact of data from the past on predictions was investigated by using previous samples
delayed in muitiples of 0.4 s. In Figure 3.3.5, values at 1 represent the ALN results obtained using

current sample of four input signals without previous samples. The values at two, three, four and
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five represent the ALN results obtained using one, two, three and four previous samples of four

input signals respectively, delayed 0.4 s each from previous one, in addition to current samples.
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Figure 3.3.5. Adding past data can increase the number of correct responses during training, but may
not during testing on new data, particularly when physiotherapist controlled stimulation. The number of
samples was varied from only current one to five (current sample plus up to four previous samples at 0.4,
0.8, 1.2 and 1.6 s before the current sample).

3.3.3.3 The early prediction of the stimulation

The ability of the ALN to predict the future pattern of stimulation is demonstrated in Figure 3.3.6.
Previous samples technique explained above was used to increase ALN performance. Two
previous samples delayed 0.4 s each from previous one, in addition to the current sample of four
signals (making 12 inputs) were used to predict state of the stimulation at the current time and up
to two seconds in advance in increments of 0.4 s. Prediction was simulated by delaying input

signals appropriately. Training error was almost constant, demonstrating ALNs capability to learn
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training set independent from time shifts involved, however test error declined with increased

prediction time still remaining above 84% at two seconds prediction.
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Figure 3.3.6. The ALN can predict future patterns of stimulation on the data used for training, but the
number of correct responses declines when tested on new data.

3.3.4 Discusion and conclusion

Results of this evaluation show that ALN can be used for pattern recognition and control of simple
FNS systems, if provided with enough information. information coming from a particular input can
be estimated by measuring the improvement or degradation of the training and prediction after
adding or subtracting this input. The amount of information can be increased, either by using
more inputs, or by using more past information from the same inputs. The best resuits are

obtained by combining the two, as can be seen in Fig. 3.3.5. To attain 90% accuracy for
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predictions required using at least four inputs. A good resuit in training does not mean that testing
on previously unseen data will produce the same good prediction. This Is referred to as
‘overtrained trees' and it is important with neural nets to find optimal training parameters for a

given lype of input so that generalization gives the best results.

One interesting result was the ability of the ALN to predict stimulation events up to 2 s in the
future. However, as shown in Fig. 3.3.6, generalization to the test data was degraded with
increasing delay. An interesting possibility would be to predict the time of stimulation and inform
the subject so that he or she could verify the prediction and, if correct, get prepared for the coming

stimulus. If incorrect, a manual override could be used.

Two objectives are most important for future investigations of ALN: 1) improving the selection and
preprocessing of inputs, and 2) optimizing the generalization to previously unseen data. The first
objective probably does not depend on the ALN program, but the second one may be very
dependent on encoding and training parameters of the ALN program. Its optimization can be
approached by manipulations of input data, such as simulations of a range of walking speeds from

a single speed of walking.

This program could be a very valuable tool in signal processing. pattern recognition and
generating rules for control of gait for SCI subjects. However, the safety of its performance has
not been verified under a wide range of conditions and until this has been accomplished the ALN
must be combined either with algorithmic restrictions or expert systems that will prevent its unsafe

operation.
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3.4 EVALUATION OF IL FOR SWITCHING CONTROL OF FES''

Kirkwood and Andrews (1989) proposed inductive learning (IL) technique for deriving decision
rules for gait event detection in an FES control system, based on a collection of examples of the
events to be detected. The learning task was to learn the control strategy of a manually operated
two-channel stimulation system for walking of a subject with incomplete spinal cord injury. Using
ten attributes (input sensory signals), eight from force sensors built in shoe insoles and two
measuring the load of crutches used to assist walking, they expected IL to mimic anticipatory
actions that the subject performs while manually controlling two-channel stimulation. Their results
have shown that IL is capable of learning such tasks with high accuracy and that it can identify

redundancy in the sensory set used for training.

The study presented in the following secticn builds on the foundations set by the above mentioned
reference and explores the feasibility of IL in more complex control design for the walking of

subjects with complete spinal cord injury.
3.4.1 Methods

3.4.1.1 Subject

In this study we concentrated on a child (A.M. in Table 2.1.1) having a T2 level complete spinal
cord injury and walking with long-leg braces (fixed knee). Stimulating her common peroneal

nerves produces a flexion withdrawal reflex (i.e., flexion at the hip which was not braced) to assist

" A version of this section is accepted in form of short paper “Inductive Machine Learning in Control of
FES-assisted Gait After Apinal Cord Injury” for presentation at the 5th Vienna International Workshop on
Functional Electrical Stimulation, Aug. 17-19, 1995, by Kostov et al. (1995b). Longer version of this section
is in preparation for publication in form of paper “The use of inductive machine iearning to select the most
appropriate sensors to predict gait events: A case study in the application to automatic control of FES-
assisted gait after spinal cord injury” by Kostov et al. (19985c).
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in swing phase. Switching the stimulation ON and OFF for both legs was controiled by the subject
manually pressing on the corresponding switches installed on the wheeled four-point waiker. This
operation required the use of both hands and a great cognitive effort. Reduction of the cognitive
load by automating the switching control of the stimulation was the major motivating element for

all participants in this study.

The stimulator used is a four channe!l Quadstim (Biomech Design Inc.), and the stimulation was
applied through reusable conductive seif-adhesive surface electrodes (Catalog No. 42004,

Chattanooga Corporation, U.S.A.) positioned above the common peroneal nerves of both legs.

3.4.1.2 Recording setup and signal processing

Signals were recorded during four walking sessions from six circular (7/8" diametér) force sensors
(FSRs) installed in the subject's shoes to measure the pressure under her feet and four
inclinometers (Midori UV-1B) installed on her braces to measure inclination of her hips in two
orthogonal planes, ie. hip fiexion-extension (FE) and adduction-abduction (AA). Each of the
walking sessions consisted of 20 to 24 steps and covered approximately five {o eight meters in
distance. The gain applied on signals recorded from FSRs and inclinometers was 1.1 and 2
respectively. Signals were recorded using a 12-bit Axotape data acquisition system (Axon
Instruments, inc.). The digital signals obtained were low-pass fitered (0.5 Hz) by a phase
cancelled, fourth order Buttenworth digital filter (Barr and Chan 1986). An example of the signals
recorded and preprocessed as described above is presented in Figure 3.4.1. Trapezoidal pulses
in the last two traces do not represent the actual duration of the stimulation. but only the intervais

that the subject held the switch pressed. The duration of the stimulation on both channels was

preset t0 0.8 s.

Figure 3.4.1. Signals recorded from six FSRs measuring ground reaction force (GRF). two biaxial
inclinometers, each measuring two hip joint angles, and two manual switches during FES-assisted
walking controlled manually by the subject A.M. (next page)
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The critical characteristic of an inductive learning technique is the size of the decision: tree As the
tree grows most of the positive features listed in the section 2.7 and Appendix B become invalid
because the learning algorithm, after extracting all important and invariant features from the
input/output relationship, continues to learn details due to noise. which increases the training ime
and produces large incomprehensible trees despite the fact that they are still explicit. The training
for IL is usually very fast (within 10 seconds on an IBM PC 486 DX/50 MHz machine for 1000
samples) and it was optimized with regard to preset training error (Kostov et al.. 1995 ). The
actual program used for implementation of the inductive leamning technique, EMPIRIC. was
provided by Heller (1992). The program was originally written in the Pascal programming

language and its algorithm was not optimized for speed of execution.

In the first step of automatic design of the rules for the control system, the inductive iearning
algorithm was used to reduce the number of sensors and. consequently, the complexity of the
control system_ After the set of sensors was reduced by excluding those of least importance for a
particular decision. the derived signals and past data samples were used together with the original
signals to intuitively improve rule induction. The guality of the rule induction was quantified by its
ability to generalize and this was estimated by counting wrongiy predicted samples in data sets
not used for training. The number of such samples represents the test error and it is expressed as

a percentage of the total number of samples in a given data set.

After the decision tree was created. it was tested on the other three data sets. Figure 3.4.2 shows
predictions from the decision tree (dashed line) and actual stimulation intervals (solid line) initiated
by the closure of the right hand switch by the subject. In this example. the percerdage of
incorrectly predicted samples (generalization error) is 4.1%. The functional error is much smaller
than this number, because the stimulation could start earlier or later than they actually did without

significantly affecting the walking.
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Figure 3.4.2. An examiple of IL prediction (dashed line) of actual stimulation intervals initiated by right
hand switch closure (solid line) during FES-assisted walking.

3.4.2 Resiulits

3.4.2.1 Reduction of the number of sensors

Estimating the relative importance of sensors: Each training operation on one of four basic
data sets resulted in a decision tree similar to that in Figure 3.4.3. Importance of attributes used in
training was estimated using the number of samples classified at particular level of decision tree.
Depending on the relative position of the first occurrence of the given signal in the decision tree,
that signal's importance was estimated on a scale starting from one for the least important sensor
(the last one to be used in decision tree) and ending with M for the most important of M sensor
(the first one used at the top of the decision tree). The array of numbers representing the relative

importance of sensors used in that particular decision tree is marked in bold in Figure 3.4.3.

The numbers were then averaged over all four data sets in predicting the right and left hand

switches separately. Average numbers obtained are plotted for each sensor, as shown in Figure

344
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number of nodes = 59 RELATIVE IMPORTANCE OF SENSOR
Node 1. IF (att 7 (R_HIP_AA ) <=288.50) THEN Node 2ELSENode 3 ... 10 R_HIP_AA
Node 2. IF (att 7 (R_HIP_AA ) <= 287.50) THEN Node 14 ELSE Node 15
Node 3 IF (att 8 (R_HIP_FE )<= 163 50) THEN Node 4 ELSE Node 5 L 9 R_HIP_FE
Node 4. CLASS 1 (STIM_ON ) No. Examples correci 69 incorrect 0
Node 5 IF (att 4 (L_TOE )<=9250) THEN Node 6 ELSENode 7 = ... 8 L_TOE
Node 6: IF (att 8 (R_HIP_FE )<= 209.00) THEN Node 8 ELSE Node 9
Node 7:IF (att 10 (L_HIP_FE ) <=61.50) THEN Node 10 ELSE Node 11 ... 7 L_HIP_FE
Node 8 CLASS 1(STIM_ON ) No. Examples correct 42 incorrect 0
Node © CLASS 2 (STIM_OFF ) No. Examples correct 4 incorrect O
Node 10" IF (att 9 (L_HIP_AA ) <=-193.00) THEN Node 16 ELSE Node 17 ............ 6 L_HIP_AA
Node 11. IF (att 5 (L_LAT_MET ) <=280.50) THEN Node 12 ELSE Node 13 ...... ... 8 L_LAT_MET
Node 12° CLASS 1 (STIM_ON ) No. Examples correct 26 incorrect O
Node 13: IF (att 3(R_HEEL )<= 155.50) THEN Node 34 ELSE Node 35 ......... 4 R_HEEL
Node 14. CLASS 1 (STIM_ON ) No. Examples correct635 incorrect O
Node 15: IF (att 1 (R_TOE )<= 330.00) THEN Node 58 ELSE Node 59 ........... 3 R_TOE

Node 16 IF (att 1 (R_TOE ) <= 393.00) THEN Node 18 ELSE Node 19
Node 17: IF (att 5 (L_LAT_MET ) <= 235.50) THEN Node 32 ELSE Node 33
Node 18: IF (att 3 (R_HEEL )<= 74.50) THEN Node 38 ELSE Node 39
Node 19: IF (att 1 (R_TOE )<= 532.00) THEN Node 20 ELSE Node 21
Node 20: IF (att 9 (L_HIP_AA ) <=-222.50) THEN Node 22 ELSE Node 23
Node 21: IF (att 6 (L_HEEL )<=517.00) THEN Node 28 ELSE Node 29 ... 2 L_HEEL
Node 22: IF (att 2 (R_LAT_MET ) <= 410.50) THEN Node 26 ELSE Node 27 ............ 1 R_LAT_MET
Node 23: IF (att 3 (R_HEEL )<=66.00) THEN Node 24 ELSE Node 25
Node 24: CLASS 1(STIM_ON ) No. Examples correct 5 incorrect 0
Node 25: CLASS 2 (STIM_OFF ) No. Examples correct 3 incorrect 0
Node 26: CLASS 2 (STIM_OFF ) No. Examples correct 27 incorrect 0
Node 27: CLASS 1 (STIM_ON ) No. Examples correct 1 incorrect 0O
Node 28 IF (att 10 (L_HIP_FE ) <= 55.00) THEN Node 30 ELSE Node 31
Node 29: CLASS 2 (STIM_OFF ) No. Examples correct 4 incorrect 0
Node 30: IF (att 1 (R_TOE ) <=571.00) THEN Node 40 ELSE Node 41
Node 31: CLASS 2 (STIM_OFF ) No. Examples correct 4 incorrect O
Node 32: CLASS 1 (STIM_ON ) No. Examples correct 1 incorrect 0
Node 33: CLASS 2 (STIM_OFF ) No. Examples correct 14 incorrect 0
Node 34: IF (att 7 (R_HIP_AA ) <= 351.50) THEN Node 36 ELSE Node 37
Node 35: CLASS 2 (STIM_OFF ) No. Examples correct S incorrect O
Node 36: CLASS 1 (STIM_ON ) No. Examples correct 3 incorrect O
Node 37: CLASS 2 (STIM_OFF ) No. Exampies correct 2 incorrect 0
Node 38: IF (att 10 (L_HIP_FE ) <= -20.50) THEN Node 52 ELSE Node 53
Node 39: CLASS 1 (STIM_ON ) No. Examples correct 9 incorrect 0O
Node 40: IF (att 1 (R_TOE )<= 552.50) THEN Node 42 ELSE Node 43
Node 41. CLASS 2 (STIM_OFF ) No. Examples correct 2 incorrect 0
Node 42: IF (att 5 (L_LAT_MET ) <= 149.50) THEN Node 44 ELSE Node 45
Node 43: IF (att 3 (R_HEEL )<= 57.50) THEN Node 46 ELSE Node 47
Node 44: IF (att 2 (R_LAT_MET ) <= 373.00) THEN Node 50 ELSE Node 51
Node 45: IF (att 9 (L_HIP_AA ) <= -244.00) THEN Node 48 ELSE Node 49
Node 46. CLASS 1 (STIM_ON ) No. Examples correct 17 incorrect 0
Node 47. CLASS 2 (STIM_OFF ) No. Examples correct 1 incorrect O
Node 48° CLASS 2 (STIM_OFF ) No. Examples correct 1 incorrect 0
Node 49. CLASS 1 (STIM_ON ) No. Examples correct 7 incorrect 0
Node 50. CLASS 2 (STIM_OFF ) No. Exampies correct 6 incorrect 0O
Node 51. IF (att 1 (R_TOE )<= 545.50) THEN Node 56 ELSE Node 57
Node 52. CLASS 1 (STIM_ON ) No. Examples correct 3 incorrect 0
Node 53: IF (att 10 (L_HIP_FE ) <= 6.00) THEN Node 54 ELSE Node 55
Node 54: CLASS 2 (STIM_OFF ) No. Examples correct 3 incorrect 0
Node 55: CLASS 1 (STIM_ON ) No. Examples correct 2 incorrect O
Node 56: CLASS 2 (STIM_OFF ) No. Examples correct 1 incorrect O
Node 57: CLASS 1 (STIM_ON ) No. Examples correct 2 incorrect 0
Node 58 CLASS 1 (STIM_ON ) No. Examples correct 1 incorrect 0O
Node 59 CLASS 2 (STIM_OFF ) No. Examples correct 1 incorrect O

Figure 3.4.3. Text ferm of IL decision tree showing IF(...) THEN(...; ELSE(...) rules and the extracted
signal importance.
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Figure 3.4.4. The average importance of sensors used in IL training. Higher the bar in the graph, more
important corresponding sensor is for this particular task.
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Figure 3.4.5. Reduction of the number of sensors by inductive learning.

Reduction in the number of sensors: The number of sensors was reduced from ten to four in
three steps. In each step the two least important sensors i.e. the sensors with lowest values were

excluded. The trade-off for this reduction of the decision tree size was a significant increase in the
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average size of the decision tree (from 88 and 89 to 133 and 143 nodes for left and right hand
switch prediction respectively). The largest decision tree size increase occurrs when the number
of sensors is reduced from six to four, suggesting that four sensors carries significantly less
information than set of six sensors.The generalization error remained approximately in the same
range between 9.5 and 10.5 % as for decision trees made by using all ten sensors, which

suggests a high redundancy in the sensory information supplied to the learning algorithm.

Summary of these results is shown in Figure 3.4.5.

3.4.2.2 Optimization of the training using reduced set of sensors

The size of the decision trees and generalization of the learning methwod on the reduced set of
sensors can be improved by using the present signal values together with previous samples, thus

adding a memory (or time dimension) to the method (Veltink, 1990; Kostov et al., 1992).

Use of past data points: The inductive learning algorithm has only spatial characteristics, which
means that the mapping of the inputoutput relationship is achieved in a multidimensional
input/output space excluding the time dimension. in its original form the algorithm does not use
any temporal characteristics of the input/output relationship. To add the time dimension to the
mapping algorithm, memory or signal samples from the past can be used in addition to current
ones i predicting the outputs for the current sample. To illustrate this technology, up to the three
previous samples in addition to the current sample of all original four signals recorded from the
reduced set of sensors were used for training of the current stimulation outputs. The use of
previous samples decreased the average decision tree smize below the corresponding size

obtained using ten sensors. it has also significantly decreased the test error (see Figure 3.4.6).

Use of a differentiated signals: Further improvement of the rule induction was achieved using
both the original and differentiated signals and, in the most successful of all training trials, with one

sample from the past. The use of more than one sample from the past would be even more
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productive, but it was restricted by the program implemented which could not deal with more than
16 input signals. Both the size of decision tree and the generalization error achieved were below

those resulting from the experiments with all ten sensors (see Figure 3.4.7).
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Figure 3.4.6. The use of previous signal samples in addition to the current ones significantly reduces the
size of the decision tree and the generalization error.
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Figure 3.4.7. The use of a differentiated signal and one previous sample in addition to the original four
sensory signals resulted in the smallest decision trees and generalization error.
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3.4.3 Discussion and conclusion

This study demonstrated the potential of inductive learning technique for use as a powerful tool in
designing control systems for FES-assisted locomotion of subjects having a complete spinal cord
injury. IL was used to map the functional relationship between sensory feedback signals and
manually produced stimulation control signals and to create control rules which can replace
manual control. Sensory feedback signals were recorded from six force sensing resistors,
installed in the subject's shoes to measure ground reaction forces under her feet, and four
inclinometers (tiit sensors) installed on her braces to measure inclination of her hips in two
orthogonal planes, i.e. hip flexion-extension and adduction-abduction. Stimulation control signals

were produced by the subject pressing on two switches installed on the handles of her walker.

Kirkwood and Andrews (1989) reported the use of IL in measuring the significance of sensory
input for particular mapping. The same feature was used in this experiment to reduce the number
of sensory inputs from initial ten to only four. Reduction of number f sensors increased slightly
the size of the decision trees but it did not change IL test error. This result demonstrates high
redundancy in the system. The size of decision trees was brought down to the initial level by
optimizing the learning setup with reduced set of sensors. Past data samples and differentiated
signals were used together with the origina! four signals to obtain smaller decision trees and even

lower test errors than with all ten sensors.
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3.5 ALN - IL COMPARISON'

After obtaining encouraging results in the initial feasibility studies with both adaptive logic
networks and inductive learning, the learning and generalization performance of both techniques
were compared on different control tasks for FES-assisted walking of several subjects. Some of
the intrinsic features of both techniques were already known, but from this study we expected to
obtain measurements of performance that would affect the final implementation of a control

system for FES-assisted locomotion of spinal cord injured subjects.

3.5.1 Methods

Version of the ALN learning program: ALN V.2 (see section 2.7.1 and Appendix B for details).
ALN interface program: WALKON (see section 2.8.1 and Appendix C for details).

Encoding technique: Unary Encoding (see section 2.7.1.1).

3.5.1.1 Subjects

We concentrated on subjects with incomplete spinal cord injury that limited their ability to
ambulate. All of the subjects, except L.W. were able to stand and walk with stimulation for a short
distance. The data used in the present study were recorded from the first six SCi subjects
presented in Table 2.1.1, during routine gait analysis, and stored for off-line processing. The
information about their injuries, level of disability and current rehabilitation status related to the use

of FES is summarized in Table 2.1.1. All subjects signed the consent form approved by a local

ethics committee.

2 A version of this section has been accepted for publication in IEEE Transactions on Biomedical

Engineering, in form of paper “Machine learning in control of functional electrical stimulation systems for
locomotion” by Kostov et al. (1995a).
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3.5.1.2 Methods of recording

The signals were recorded from two types of transducers: force sensing resistors (Interlink
Electronics, 1990a) positioned under the medial metatarsal and heel areas of both feet in all
subjects, and flexible goniometers (Penny and Giles, 1994). Goniometers have been attached
across the joints of the affected leg and used in four subjects to measure the hip, knee and ankle
joint angles. The subjects controlled the FES system by using either a finger-operated switch
mounted on the hand grip of a walking aid (walker, crutch or cane), or a heel-switch on the insole
of the subject's shoe (see FES control column in Table 2.1.1). The switching events were also

recorded. An example of signals used in the experiment is shown in Figure 3.5.1.

A particular recording setup was decided for each subject, depending upon the severity of injury,
amount and types of bracing, stimulation necessary for locomotion, walking aids and the subject's
overall condition at the time of recording. The subjects were instructed to walk in one direction
without unnecessary stops for six to eight meters, and, if possible, to turn around and walk back to
the starting position. In one subject (L.W.) we recorded three 30 m sequences of straight walking
outside the gait laboratory. The experimentaily determined stimulation parameters were used to
produce a gait that was as steady as possible with the least psychological and physical fatigue for
the subject. At the beginning of each recording session there was a setup phase used to adjust
stimulation intensity, duration of the stimulation period and the position of the electrodes (or RF
transmitting antenna in the case of the subject LW. with a fully implanted stimulator, modified
Mikrofes, Ljubljana). After satisfactorily adjusting parameters one or more walking rounds were

completed and the data were recorded for analysis.

Signals from transducers were amplified, low-pass filtered (25 Hz), sampled at 50 Hz by a 12 bit
A/D converter (Axon Instruments, Inc.) and recorded in a digital form using an IBM PC compatibie
computer. Low-pass filtering was used mainly to avoid high frequency noise, if there was any. The

useful signal, whose power was concentrated far below 5 Hz was not affected by this filtering.
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Figure 3.5.1. An example of training signals recorded in subject L.W. during FES-assisted walking.
Sensors installed in subject’s shoes (FS) measure ground reaction force in N, and goniometers (GM)
attached across the joints of the stimulated leg measure joint angle variations in deg, Stimulation was
controlled by the subject manually pressing on the switch (bottom trace). Multi-channel inputs are
required for safe control but they make analysis of the recorded data difficult.
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Signals recorded from six subjects were organized in forty-eight data files, which consisted of one
to nine inputs (signals from the transducers) and one or two outputs. These outputs are the
signals from the switching devices (e.g., manual switch, heel switch), each used to control one or
more FES channels. Every data file was split into halves marked A and B. Both halves were used
as a training set in one experiment and a test set in another. The three largest files recorded from

subject L.W. were split into thirds and used in the ‘retraining experiment’ which is described later.
3.5.2 Results

3.5.2.1 The overall performance of both techniques

The performance of the learning algorithms was tested by measuring the training and test errors.
Average training and test errors and standard deviations for all ALN and IL training sessions are
presented in Table 3.5.1. ALN training sessions were done using 2048 leaves and 2048 adaptive
elements, a maximum of 20 presentations of the inputs to the learning algorithrii, seven ALN trees

per bit in the output vector and maximum training error of 6% (see Figure 3.5.2j. IL training |
sessions were done using the same maximum training error of 6% (see Figure 3.5.3). Overall
performance using only original data samples was similar for both algorithms. ALNs showed 7%
smaller test error ((1-10.5/11.3)*100). At the same time, IL had 43% better training error ((1-
3.3/5.8)*100) which is not very useful in applications where the training set represents only a

sampie in the muitidimensionai input space.

Table 3.5.1. Average training and test errors for all ALN and IL learning sessions.

Adaptive Logic Networks Inductive Learning

Training error Test error [%)] Training error Test error [%)]
[%)] (%]
mean 5.8 10.5 3.3 113
SD 58 8.9 3.2 8.9




136

25 _ e e —
— l
L, - i
— 20 4 & ALN fraining duration [s) '
o ..e ALNtesterror [%}
L
© o
55 5.
T =
o 8 fast training and low test error
£ T 10
£ < 1
S o
- Y JE OO e
zZz Z B Nl e e e - !
- = - ‘
< < — -—
o — + + + + + + — + j
0 2 4 6 8 10 12 14 16 18

Preset training error [%]

Figure 3.5.2. Optimization of ALN training with regard to training duration and test error.
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3.5.2.2 The use of previous samples in the training

The training could be improved significantly by the use of samples from the past, in addition to
current ones. This brings a time dimension to the learning algorithm, which is very important for
time-varying functions such as time-dependent signals recorded from artificial or natural sensors.
The dependence of ALN and iL performance on the past sample delay in the range between 0 s
(no sample from the past) and 2 s is tested. An example of the effects of a single sample from the
past, and the delay between that sample and the current one, on the test arror for both ALN and
IL is shown in Figure 3.5.4. In this example the test error achieved using one sample from the past
whose delay varied from 0.2 to 2 s was on average 28% smaller for the ALN than for the IL. This
study showed that adding previous samples with properly chosen delays to the current samples,

may reduce the test error for both algorithms.

—a— ALN test emor [%]

| / ...s--. L test error [%]
0

I — -l

0 0.2 04 06 08 1 1.2 14 16 1 fs 2

Time delay of the past sample [s]

ALN and IL test errors [%]

Figure 3.5.4. The use of a single sample from the past in addition to the current one reduces the test
error. The delay of the sample from the past should be optimized for a particular data set. It is
recommended to use more than one sample from the past if computational power allows it.
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3.5.2.4 Characteristics that are unique to one of techniques

Some of the features were impossible to compare because they relate to only one of the
techniques. An important feature of an ALN is a tree retraining capability. This capability provides
repetitive adjustment of existing trees to new data without significant degradation of the
knowledge stored in them by previous training. The following experiment was designed to
demonstrate the ALN's capability to retrain existing trees. Performance of the retrained ALN trees

was compared to that produced by regular IL training.

Three data files were divided into thirds: A, B and C. In each test for both ALN and IL the training
was done, as usual, on one of the parts and performance was measured by evaluation on the
same (training error) and other parts of the same data file (test error). Thes2 results are shown
and compared in parts 1 and 2 of the graph in Figure 3.5.6 respectively. There is a slightly smaller
error achieved by IL compared to the one achieved by the ALN during training but a slightly
smaller test error for the ALN. in the next phase of the experiment ALN trees were retrained with
the data from the next consecutive part of the same data file. The test was repeated on the last
part of the same data file and the test error achieved is presented in part 3 of the Figure 3.5.6. 1t
shows significant reduction of the test error after retraining the existing trees (from 15.9% to 8.1%
on average). The last phase of the experiment was to demonstrate that the loss of the stored
knowledge in previously trained trees is not significant after retraining. After the retraining on the
second part of the data file, the test was done on the first part of the same data file used for
training. The resulting error is shown in part 4 of Figure 3.5.6 and it should be compared with the

ALN bar in part 1 of the same figure. The error increased from 5% to 6.4% on average.

Retraining of the IL trees has not been reported to date. It is possible to store samples from
previous experiments and to use them together with the new samples in retraining, but this is
limited by the amount of available memory. In addition, for large number of samples the time

required for training may also become the limiting factor.
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Figure 3.5.6. Adaptive logic in ALNs provides the user with a retraining capability. In this graph ALN
retraining was compared to IL regular training and plotied as a reduction of the error resulting from
retraining. The graph has 4 parts: 1) average training error for both ALN and IL techniques; 2) average
test error for both ALN and IL techniques; 3) ALN test error after retraining; 4) test error on the first
part of the data file after retraining (compare with ALN result shown in part 1).

The IL technique, on the other hand, produces small decision trees whose reasoning can be
understood since the rules are of the familiar IF(...) THEN(...) ELSE(...) type. The IL technique
furthermore supplies the information of relative importance (in terms of information theory) of
the sensory data used. The order in which the input channels are used in a decision tree
represents their relative importance,; i.e., the closer the use of the input is to the top of the decision
tree, the more important that input is for that particular learning task. Detailed presentation of this

feature is shown in Chapter 3.4. It may be very useful in reducing the number of sensors during

control system designing and customization to a particular task or a particular subject.

3.5.3 Discussion

The performance of two machine learning techniques (adaptive logic networks and inductive

learning) was compared in replacing part of the voluntary control and the upper level controller in
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simple FES systems Ti..se systems are used by spinal cord injured subjects with incomplete

lesions for assistance during ambulation.

An overall average test error is just seven percent smaller for ALN than for IL. This suggests that
the quality of the learning algorithr does not depend as much on the technique used in training,
as on the amount of information that selected sensory inputs carry into the training. Of course, this

is valid only if the learning aigorithm is optimized for that particular data set.

To bring the time dimension into the learning algorithm, we have tested the use of data samples
from the past together with the current samples. The performance of both techniques was
improved, and again the ALN showed a smaller error than the IL. This is probably due to structural
differences in the two learning algorithms. The ALN uses all of its inputs at any time during the
adaptation. while the IL uses only the input which gives the biggest mutual information gain at a

particular partitioning step.

To verify necessary actions predicted by the learning technique and to signal the next actions to
the subject, so that he or she may accept or cancel them, it is important to predict them in
advance. We have tested both techniques in prediction of stimulation events by up to two
seconds. Both techniques are capable of satisfying the learning task, and yet again the ALN
technique showed a smaller test error and less variability than the IL technique. In addition, both

algorithms showed the expected increase in test error with an increase of the prediction interval.

Besides the characteristics that are common to both algorithms, those which are unique to only
one were evaluated. The most advantageous characteristic of the ALN is that trained trees may
be retrained using new data without significant loss of pre.iously collected knowledge. This is
particularly important for t@mibined man-machine control processes because during the
adaptation period, both man and machine should be able te preserve already collected skill (or
knowledge) and to modify it by new data. Bearing in mind that subjects should be able to put on

different shoes, which may have a significant influence on recorded signals, and still use
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previously learned functions, the retraining feature of the ALN will allow them to further train the
decision trees without passing through the whole training process again. Advastages of the IL are
fast training., small and comprehensible decision trees when there is enough information in input
data (which has to be determined empirically), and provision of information about the relative
importance of a particular input for a particular learning task. This information may be very useful
when designing a control for an FES-system since the importance of the sensors in the detection
of the event is nct intuitively obvious (Kirkwood and Andrews, 1989). Therefore, information on
relative importance would enable the designer to choose the most important sensors and perhaps

to add additional ones for fault-tolerant applications.
A summary of the comparison between ALN and IL is presented in Table 3.5.2.

Table 3.5.2. A summary of the comparison between ALN and IL.

ALN V.2 iL
training speed high (seconds) high (seconds)
generalization very good good

“tTpe of decision trees binary IF () THEN () ELSE
|fsize of the trees [nodes) >1000 <20

ipast points use easy not easy
future events prediction yes yes
retraining yes no
“comprehensible trees no yes

“input significance information not available available
Iﬁ\rdware implementation microproc. + FPGA microproc.

3.5.4 Conclusion

The results suggest that both algorithms can be used successfully in this application, but they may
require specific fine tuning of the factors that influence their generalization on new data, such as
the size of the training set and the preset training error level. Neither approach is better in all
circumstances. Most tasks can be done with either algorithm, aithough the amount of work

required to do the task may differ. Features that are unique to only one technique may be the
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determining factor in deciding which technique to employ in a particular design. If the complexity
of design will benefit from the advantageous features of ALN and if a retraining feature is required,
then adaptive logic networks are the choice. If small, understandable decision trees are preferred,
then the choice is inductive learning technique. In a future work we plan to combine both
techniques in order to exploit all of their advantages. Inductive learning technique may be very
useful for estimation of the relative importance of sensory inputs for particular design, and ALN

may be used in a final control system for its better generalization and retraining feature.
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3.6 REAL-TIME SWITCHING CONTROL OF FES BY ALN"

After the evaluation of two different machine learning techniques (MLTs) demonstrated the
potential of these techniques for automatic rule-generation for control of FES-assisted walking. an
integrated control system (ICS) was designed to implement the same approach in real-time
walking. This approach is presented in great detail in earlier sections, but it is briefly introduced
here again. In the automation of stimulation contro! for FES-assisted walking, the MLT is used to
extract invariant characteristics of the relationship between feedback sensory signals and
stimulation control signals, to store these characteristics in the form of decision trees, and then to
use these decision trees together with feedback sensory signals for prediction of stimulation
control signals. This experiment goes far beyond the feasibility and evaluation studies presented
in earlier sections of this chapter. The decision trees formed during the training are applied to real-
time control of walking by a subject with incomplete spinal cord injury. The major difference
between the evaluation experiments and this experiment is that real-time control can not be
simulated and tested off-line. This iricreased the physical and psychological stress in the subject.
To protect the subject in hazardous situations, the actions proposed by the MLT were filtered
through hand-crafted restriction rules limiting stimulation parameters only to values belonging to
the range measured in the training data set. Additional safety measures for the subject were
introduced to prevent self-oscillating (e.g. muitiple short stimuli caused by clonus) and infinite-loop

events (e.g. the subject can get locked in a transient position requiring stimulation). Such events

'3 An abstract and a version of this chapter were presented in the form of posters “Improved control for
FES-aided locomotion after spinal cord injury”, by Kostov et al., at the 10th Annual Spinal Cord Research
Symposium organized by Canadian Paraplegic Association, Montreal, Oct. 27-28, 1994 and "FES-aided
locomation controlled in real-time by the artificial neural networks”, by Kostov et al., at the 26th Annual
Meeting of the Canadian Physiological Society, Mt. Tremblant, Jan 18 - 22, 1995. The abstract is published
in Physiology Canada, Vol. 25, No. 2, p. 116 and accepted for publication in the Canadian Joumal of
Physiology and Phammacology, March 1995. The paper containing most of this chapter "Automatic
generation of FES-contro! rules: Application to real-time control of locomotion for subjects with incomplete
spinal cord injury”, by Kostov et al. (1995d), is in priparation for publication.
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were expected to arise from the difference between walking controlled manually and walking
controlled automatically (Stein et al., 1993). Although both adaptive log:. “2tworks and inductive
learning have shown that they are able to learn very complex multidimensional mapping functions,
they could not predict situations that result from new situations not seen during the training. We
hypothesized that the generalization of manually controlled walking extends to automatically

controlled walking as well.

3.6.1 Methods

Version of the ALN learning program: ALN V.3 (see section 2.7.1 and Appendix B for details).

ALN interface program: FESCONT (see section 2.8.2 and Appendix C for details).

3.6.1.1 Subjects

Two subjects participated in this study, a person with incomplete spinal injury (L.W.) and a control
subject who does not have any obvious walking abnormalities (A.K.). The development of the
integrated control system required frequent presence of the control subject. The SCI subject who
participated in this study (L.W.) is introduced in detail in the Section 2.1.2. Briefly, she has an
incomplete quadriplegia due to an idiopathic hematoma at C1/C2 level. She has limited hand
function, but can support her body weight when her knees are close to full extension. She can flex
her right leg, but not her left leg while standing, because of spasticity. The stimulation is used to
excite a flexion withdrawal reflex in her left leg assisting the swing of her left leg. She had a single-
channe! FES device implanted on the common peroneal nerve in the popliteal fossa area in April,
1980. In late 1993 she was implanted with percutaneous wires for multichannel FES positioned to
stimulate: common peroneal nerve (induces ankie dorsiflexion and flexor withdrawal reflex);
quadriceps muscle (knee' extensor); psoas muscle (hip flexor); and gluteus maximus muscle (hip

extensor). A single-channe! percutaneous stimulation on common peroneal nerve controlled

manually was used in the following experiment. The subject is able to walk more than 50 steps in
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a single trial. She uses a four point wheeled walker for balance while standing or walking, and is

skilled in both manual and automatic control of FES-assisted walking (see Section 3.2).

3.6.1.2 Experimental Design

The experimental se’  used in this phase of the thesis project is illustrated in Figures 3.6.1 A and
B. For the control subject the stimulator and electrodes were not used and the stimulation control
was only simulated by the subject pressing on the manual switch whenever the left leg was about
to start the swing phase during walking. For the SCI subject, the stimulator, electrodes and the
manual switch are components that are in daily use for manual control of routine FES-assisted
walking exercises. A single-channel percutaneous stimulation on the left common peroneal nerve
was controlled manually in the following experiment as the basis for implementation of machine
learning techniques in automatic generation of control rules for rule-based control of FES-assisted
walking. Shoe insoles were used, each instrumented with three force sensing resistors (FSRs),
positioned under medial and lateral metatarsal joints and under the heel. Instrumented insoles are
described in details in Section 2.3.1. A signal conditioning device for force sensors is described in
Section 2.4. The data acquisition system used in this experiment consists of an AT-MIO-16DH
data acquisition board and LabVIEW for Windows software. Both components are described in
detail in Section 2.5.2. The sampling rate used for ALN training and Off-line test was 20 Hz. It
was reduced to 10 Hz during real-time Walking test and Walking control due to limitations of the
program FESCONT. The program FESCONT, described in Section 2.8.2., was developed in the
graphical programming environment LabVIEW for Windows. The program integrates all functions
of the integrated control system required to implement the approach to designing a control system
evaluated in previous sections. The program is still under development and currently it is in the
form of a functional prototype. It uses a machine learning module implementing ALN V.3 for
training on feedback sensory signals representing the domain and stimuiation control signals

representing the codomain. The learning algorithm is presented in Section 2.7.1.
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Figure 3.6.1. Imtegrated control system (ICS) for control of FES-assisted locomation: A) Data
acquisition, ALN training and Off-line test, B) Generalization of trained ALNs in real-time
Walking test and Walking control.
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The interface module contains: signal conditioning electronics for force sensors (see Section 2.4).
a relay switch. which replaces the manual switch and which is controlled both from the manual
switch and from the ALN control signal, a piezoelectric buzzer, and bidirectional connections to
and from the data acquisition /O system. Schematics of the signal interface and shoe insole
sensors are presented in Figure 3.6.2. To provide feedback information to the subject and the
researcher about the actions proposed by the controller, a small buzzer is installed in the interface

box, which is driven from one of analog outputs of data acquisition /O board.

Routine preparation for walking of the SCI subject consists of stretching the extremities,
connecting all parts of the system together and checking the functionality of the ICS. The
complete experimental protoco!l contains the following five steps reiated to the automatic
generation of control rules and their application in real-time FES-assisted walking. For obvious

reasons, the last step in the list, the real-time control of the FES-assisted walking could not be

tested with the control subject.

1. Data acquisition: Input and output signals were recorded during several steps of manually
controlled FES-assisted walking. |f the walking represented a typical sample of the subject's
walking pattern. i.e., if there were no problems with the fatigue or stimulation parameters,

recorded signals were examined and we proceeded to the second step.

2. ALN Training: An ALN training was done usually on one half of the recorded data set. This
part of the data is denoted ‘training data set’. Trained ALNs are evaluated on the same data set
and if the signal produced by ALNs was free of functional errors (missing pulses or extra pulses)
the training was declared ‘successful' and the ALNs were ready for the next step (see Figure
3.6.3A). If functional errors existed after evaluation on the training set (see Figure 3.6.3B). it was
expected that there will be even more errors in the evaluation on new test data. In such a case,
the training was repeated with a different training data set configuration and/or modified training

parameters until the result of the evaluation on the training set was without functional errors.
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3. Off-line test: Test of the trained ALNs was done on the second half of the recorded data set or
on a data set recorded during another walking round. If the signal predicted by the ALNs, after
being filtered through the restriction rules was free of functional errors, the ALNs were ready for
the next step. If functional errors were present in the predicted signal, even after it was filtered by
restriction rules, the previous step was repeated with a different configuration of the training data

and/or modified training parameters until the predicted result was without functional errors.

4. Walking test: The walking test of the trained ALNs was done while the SCI subject controlied
her stimulation manually as usual, but this time the ALN-based control syster : was delivering its
predictions of the manual switchirg signal in the form of sound signals whenever the stimulation
should be ON. The control subject simulated stimulation control as in the first step. This served to
test the generalization of the trained ALNs on the same walking pattern once more and to
demonstrate successful stimulaticn prediction to the subject. If this last test before the real-time
application of ALN-control was successful (all stimulation trains correctly predicted), ALNs were

ready for the next step. Otherwise, a sequence starting with step number two was repeated.

5. Walking control: In this step the ICS produces the actual stimulation which is responsible for
the swing phase of the subject's walking. This step was completed only with a SCI subject. Real-
time ALN-control was applied to the FES-assisted walking. The subject stands up from the
wheelchair, takes one or more steps controlled manually to check the stimulation parameters
(intensity and pulse duration) and if all components of the system operate satisfactory, the direct
control of the stimulation by ALNs is turned ON. After that the subject's ‘only’ task is to initiate
every new gait cycle by stepping first with her less impaired leg (right) and to shift body weight
from left to right. That is enough for the controller to recognize the subject's intention to take
another step with the paralyzed leg and the stimulation is delivered. The stimulation duration
directly depends on the speed of weight transfer, the faster the weight transfer is - the shorter will
be the interval between periods of stimulation. If the weight transfer to the right leg did not occur

the stimulation will not be activated and the subject can rest in this position indefinitely.
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3.6.2 Results and discussion

A standardized pattern for data presentation is designed for the resulits in the following text of this
Section. Nine-trace diagrams are used to present results after completion of ALN training (steo
two) and Off-line test (step three). The upper six traces in the diagrams are feedback force
sensory signals Other three traces are: simulated (subject A.K.) or real (subject L.W.) manual
control of the stimulation (Seventh trace), and the results of the evaluation of trained ALNs on the
feedback sensory signals in the same data set, before (eight trace) and after (ninth trace)

restriction rules are applied. respectively.

The results after completion of the Walking test (step four) and Walking control (step five) are
presented using eight-trace diagrams. The first six traces are the same as in the nine-traces
diagrams. The seventh trace is the actual control signal that drives the stimulator, produced either
manually or by the ALNs. To distinguish between pulses produced manually and those produced
by ALNs. manual pulses have a higher amplitude than those produced by ALNs. The amplitude of
the pulses does not have any significance for the stimulator, i.e. both amplitudes produce the
same stimulation intensity. The last trace is the ALN prediction of the stimulation control signal,

after being filtered through the restriction rules.

The results of this experimental work are described qualitatively rather than quantitatively,
because currently there are not enough subjects and data to perform any statistical analysis. In
the future the ICS will be applied to more subjects and a quantitative analysis of the results wiii be
performed. The criterion used for deciding on the continuation of the experiment or repeating the

previous step was the presence of several functional errors, i.e. missing and extra stimuli.

3.6.2.1 Control subject (A.K.)

The following three figures illustrate ALN Training, Gff-line Test and Walking Test on signals

recorded during walking by subject simulating manual control of the stimulation.



154

TRAINING (Subject: A K., Date: 12/03/1995)
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Figure 3.6.4. ALN training results applied on the training data set recorded in a control subject (A.K.).
The subject was asked to simulate the stimulation signal required to activate flexion iz his left leg. The
simulated stimulation control signal (seventh trace) was produced by pressing on a manual switch. The
two bottom traces are resuits of the evaluation of trained ALNs before and after restriction rules were

applied. There are no functional errors (missing or extra stimuli) in the obtained output control signal
(bottom trace).
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Off-line TEST (Subject: A.K., Date: 12/03/1985)
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Figure 3.6.5. Off-line test results on a new sequence of data recorded in a control subject (A.K.). There
are no functional errors in the obtained output control signal (bottom trace)-
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WALKING TEST (Subject: A.K., Date: 12/03/1995)
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Figure 3.6.6. Walking test results obtained by reai-time evaluation of the trained ALNs during
walking. A stimulation control sigial predicted by the ALNs was presented to the subject in the form of a
tone signal which sounded whenever the stimulator should be ON. 43 in previous steps, the subject was
asked to simulate the stimulation signal required to activate flexion in his left leg.
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3.6.2.2 Subject with incomplete SCI (L.W.)

Most of the experimental work related to the development of the ALN-based Integrated Control
System (ICS) was done between May 1994 and the end of October 1994. Very soon after the
system was integrated and first satisfactory ALN training and generalization over the same
session were obtainad, we stopped the experimental work temporarily due to an acute iliness of
the subject. Walking experiments with the ICS were continued in early March 1995, and the
subject needed a few sessions to bring her skill back to where it was before the iliness. In the
following text only the resuits obtained after the four month pause are presented, demonstrating
restoration of the subject's motor skills, from the first insecure walking steps controlied manually to

a smooth walking, fully controlled by ALN-based ICS. Three walking sessions are presented.
Session one

The data acquired during the first session after the four-month pause are presented in Figures
3.6.7 and 3.6.8. The subject «:20d up from the wheelchair without stimulation and took a dozen
steps (about 7 m) manually controlling stimulation. Then she stopped and made a turn around her
disabled leg and walked back the same distance. The subject turned back by pivoting around her
disabled leg. She is aiso trained to use the stimulation to mov: ier diszbled leg backwards, which
usually shortens the time required for turning arcund and reduces fatigue. In this experiment the
first half of the data recorded is used for ALN training (Figure 3.6.7) and the second half is used
for Off-line test (Figure 3.6.8). Durgtion of the ALN training was only 35 s In the ALN Control
trace of Figure 3.6.7 a double or ‘twin’ stimuli produced by the subject can be sein in the second
step. Since this was just a single case, it did not influence any of the periodic steps in the centrai
part of the diagram. it probably helped to produce the second stimulus in the last step. However,
both of these twin stimuli were sticcessfully removed by restriction rules and the output control
signal resembles almost perfectly the manual stimulation control. The development of fatigue can

be seen in the Figure 3.6.8 where the walking is not as continuous as in the Figure 3.6.7.
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After the successful ALN training and Off-line test, the walking test of the trained ALNs was
performed. The subject walked over the same distance (7 m). controlling the stimulation manually
(see Figure 3.6.9). The computer program FESCONT acquired sensory signals, and applied the
trained ALNs and restriction rules on them, producing an output control signal. The output control

signal also drove a small piezoelectric buzzer which produced a tone every time the ALNs

predicted that the stimulation should be ON.

After a successful Walking test, a real-time evaluation of the ALN-base:: control was performed.
The subject stands up from the wheelchair, takes one or more steps controlling the stimulation
manually (as during the Walking test), and then the output control signal predicted by ALNs and
filtered by the restriction rules is connected to the stimulator as the primary control system, in
paraliel to the manual switch. The switch enables the subject to keep her manual override function
in case of missing stimuli. In the current systen the prablem of extra stimuli produced by ALNs

remains unresoived. Walking control texts #n: presande - Figures 3.6.10 and 3.6.11.
Session two

As with the fiszd =

=i s@ssion, signals are recorded during manually controlied walking which
includes walr: -a = = Hrection, turning by pivoting around the more disabled leg (no stimulation)
and walking back. i*se first part (walking straight) was used for ALN training (Figure 3.6.12), while

the Off-line test was done on part including turning and walking back (Figure 3.6.13).

After the successful ALN training and Off-line test, the Walking test of the trained ALNs .. 's
performed (Figure 3.6.14). Afte: -~ successful Walking test, a real-time evaluation of the ALN-
based control was performed (Figure 3.6.15). After standing up from the wheelciil - the subject
took two steps controtiing the stimulation manually (same as during the walking test), and then the
output control signal predicted by ALNs and filtered by the restriction rules was connected to the

stimulator as the primary control system, in paraliel with the manual switch.
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TRAINING (Subject: L.W., Date: 13/03/1995)
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Figure 3.6.7. ALN training results applied on the training data set recorded in an SCI subject (L. n.)
The subject controlled the stimulation by pressing on a manual switch installed on a grip of her four-
point wheeled walker. The stimulation control signal (seventh trace) was used to activate a flexion
withdrawal reflex in tier left leg. The two bottom traces are results of the evaluation of trained ALNs
before and after restriction rules were applied.
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Off-line TEST (Subject: L.W., Date: 13/03/1995)
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Figure 3.6.8. Off-line test results on a new sequence of data recorded in an SCI subject (L.W).
Although there are some glitches ct the end of several stimuli in the second trac: from the bottom, there

are no functional errors in the obtai:.cd output control signal (bottom trace) due to application of
restriction rules.
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WALKING TEST (Subject: L.W., Date: 13/03/1995)
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Figure 3.6.9. Walking test results obtained by real-time evaluation of the trained ALNs during
walking. The stimulation control signal predicted by the ALNs was presented to the subject in the form
of u tone signal which sounded whenever the stimulator was supposed to be ON. As in previous steps, the
subject was asked to manually produce the stimulation signal required to activate flexion in her left leg.
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WALKING CONTROL (Subject: L.W., Date: 13/03/1995)
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Figure 3.6.10. Walking control test performed after three steps that the subject controlled manually.
Not being physically fit for walking, and having not walked because of an acute illness for several
months, the subject was very tense which was reflected in the quality and number of steps taken. This
was the reason behind having short walking sequences with fong resting periods. After the walking
session the subject admizted that she carried more than the usual part of her body weight on her upper
extremities, which resulted in continuous turning of her walker to the right. That was another reason to

stop after every few steps to correct the direction of walking and the walker. There were no functional
errors in this walking session.
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WALKING CONTROL (Subject: L.W., Date: 13/03/1995)
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Figure 3.6.11. The second Walking control test demonstrates better subject’s confidence in the controt
svstem, longer walking sequenccs and shorter resting intervals. Also, there was less load on the subject’s
arney, which resulted in less turning of the walker and a straighter walking path. After the sixth step {two
marrzally and four ALN controlled), the subject accidentally, pressed on the marual switch. This caused
instability and two extra stimuli (see arrow). Although a situation su:h as ihis one is potentially
dangerous, we helped the subject to restore her balance and she continued walking. An additional

restziction rule remains to be added which would prevent events such as this, but at the time of the
experiment it did not exist.
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TRAINING (Subject: L.W., Date: 14/03/1955)
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Figure 3.6.12. ALN training results on signals recorded during manually controlied walking in one
direction. No functional errors were generated by ALNs and all stimuli were approxiniated succzssfully.



165

Off-line TEST (Subject: L.W., Date: 14/03/1995)
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Figure 3.6.13. Off-line test of the trained ALNSs on the second half of the same walking round used for
trauining. Although turning around was not part of the training data set, ALNs generalized well during
turning around without stimulation and during walking back to start position. No functional errors or
obvious dissimilarities between the original stimuli and ALN-produced ones are present.
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WALKING CONTROL (Subject: L. W., Date: 14/03/1995)
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Figure 3.6.15. Walking ccntrol iest performed after two steps controlled manually by the subject. This

walking sequence was also very short due to the subject’s fatigue. There were no functional errars in this
walking session.
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Session three

Previous two walking sessions, as well as the previous sections presenting resuits from the
evaluation of the machine learning techniques. demonstrated a good generalization of the trained
ALNs on the new data set recorded during the same walking session. These results also
positively answered the question whether the rules generated from data recorded during manually
controlled walking can generalize to the automatically controlled walking. The next question
answered in the remaining text of this section is if the rules generated from data recorded in one
session can generalize to the walking done after large time periods (days. weeks, months). In
practical terms, the question is: How often do the ALNs have to be trained or retrained depending
on the time expired after the last training or changes and modifications in the system. In previous
sessions we already concluded that taking the shoes and sensory insoles off and putting them on
usually did not change the setting significantly and did not require retraining. This situation usually
occurred in the middie of the experiment, or between walking rounds. when the subject had to use

the bathroom.

The same ALNSs trained and tested in session two were used three days later. This time only last
two steps of the experiment were done: Walking test (step four) and Walking control (step five).
The first Walking test (Figure 3.6.16) still looks insecure and in the first step it even has an extra
stimulus, but it stabilizes nicely and in the second walking test (Figure 3.6.17) shows subject's full
confidence in the system and very nice periodic walking. It is obvious that the ALN-predicted
stimuk are shorter than the original ones. However it is too early to conclude that this may result in
a problem for real-time walking control, because of the differences between manually and

automatically controlied walking.

After the Walking test, a real-time Walking control was done in the next three walking rounds
(Figures 3.6.18-20). Same as described in previous two walking sessions, the subject stands up

from the wheelchair, takes two or more steps controlled manually and then the ALN-control is
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turned ON. Although there are some signs of insecurity at the beginming of all walking control
rounds, after the ALN control is turned ON and the subject regards it as the primary control

system of her stimulation, the walking becomes periodic, and the steps become very reproducible

The three Walking control rounds clearly d“monstrated that the ALNs do rot need to be
retrained at the beginning of every walking session. In addition, we have learned that due to
differences between manually and automatically controlled walking. even if a walking test of
trained ALNs does not look perfect, the walking control can be very good. This is probably due to

the flexibility of the subject’s preserved control mechanisms.
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WALKING TEST (Subject: L W., Date: 17/03/1995)
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Figure 3.6.16. Walking test done using ALNs trained during the Second session (tree days before this
experiment). This was the first walking test of the ALNs trained before the current walking session. After
initial insecurity (one early and one extra stimulus during the first stev), the rest of the stimulation was
predicred correctly.



17

WALKING TEST (Subject: L. W., Date: 17/03/1995)
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Figure 3.6.17. The second Walking test done right after the first one. Obviously, the subject
demonstrated nice periodic walking during which all stimuli were correctly predicted.
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WALKING CONTROL (Subject: L.W., Date: 17/03/1995)
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Figure 3.6.18. Walking control done using ALNs trained three days before this experiment. Walking
was very smooth and the subject demonstrated a full understanding of the importance of the appropriate
weight transfer, as a way to voluntary inform the controller about her intentions.
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WALKING CONTROL (Subject: L. W., Date: 17/03/1895)
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Figure 3.6.19. The second Walking control round started with small instability resulting in one early
and one extra stimulus (similar to the one shown in Figure 3.6.16). After the ALNs were put in charge of

controlling the stimulation, the walking became as nice and smooth as one in the previous walking
round.
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WALKING CONTROL (Subject: L. W., Date: 17/03/1995)
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Figure 3.6.20. The third Walking control round suffered the same problem at the beginning as the
previous one, and it was much shorter due to development of fatigue. Otherwise, the steps recorded were
regular and periodic.
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3.7 EVALUATION OF ALNs FOR CONTINUOUS CONTROL OF

FES USING BIOLOGICAL FEEDBACK SIGNALS

In previous sections machine learning techniques were evaluated for control tasks requiring
simple switching control outputs. It was shown that both adaptive logic networks and inductive
learning technique are capable of generating control rules from samples of sensory signals,

saving them in form of decision trees, and later producing control signals.

The focus of the following study was on two qualitatively new issues, as compared to the previous
work: the use of natural signal sgurces (neural sigrals) fer sensory feedback, and the generation

of the continuous control outputs equivalent to those of natural motor drives (electromyographic

signals).

3.7.1 USING BIOLOGICAL FEEDBACK S$/iGNALS FOR SWITCHING FES-

CONTROL™

Among several applications that can be envisioned with natural sensors, one is of particular
interest. Control of hand functions in tetraplegic subjects may be improved if a closed-loop control
is implemented. Use of artificial sensors is almost impossible because of the difficulties in their
installation and space limitations. Neural recordings may be very useful to estimate position on the
basis of muscle spindle activity of nonstimulated muscle. In this case nerves in the forearm should

be instrumented with cuff-electrodes.

'“ A version of this section was published in IEEE Trans.Biomed.Eng. as a part of the article “Sensory
Nerve Recording for Closed-Loop Control to Restore Motor Functions”, by Popovic et al. (1993). My
contribution to this publication was the conceptual and experimental work related to the application of
adaptive logic networks to the contro! problem and production of corresponding parts of the manuscript.
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Another immediate application is in stroke subjects having an implant on the common peroneal
nerve to enhance dorsiflexion during the swing phase of FES-assisted gait. The sural nerve can
be instrumented with a cuff electrode, and recordings of the neural activity used as a trigger to
start the stimulation. An obvious advantage of this technique over those available is that such a
system will not require an external insole switch, force transducer or inclinometer. The use of cuff
electrodes could increase the complexity of the system, so it may be necessary to include an
effective telemetry system to avoid leads penetrating the skin and the always problematical

connectors.

3.7.1.1 Methods

Sensory signals were recorded from Tl and SP nerves using cuff electrodes and EMG activity was
recorded from MG and TA muscles using epimysial electrodes. This technique was not ready for
use on the human subjects and therefore the following experiment was performed on adult cats of
either sex that showed suitable gait performance on a treadmill after appropriate training in a

range of walking speeds from 0.4 - 1.0 m/s.
Surgical Procedure is described in detail in Section 2.2.

Monitoring: Compound action potentials(CAPs) were elicited by stimulation of nerves at 1 Hz
with a pulse width of 10 us, and an amplitude sufficient to have a maximal potential. These
measurements were done for all implanted electrodes to verify that normal conduction was
preserved and no nerve biock occurred as a result of surgical intervention. An increase of peak-
to-peak amplitude was often observed in the first few weeks after surgery in parailel with an
increase in the electrode impedance (Stein et al., 1978), due to the replacement of saline with
connective tissue of higher impedance. Impedances were measured with a Hewlett-Packard
vector impedance meter (model 4800A) at 10 Hz, since the major component at that frequency is

thermal resistance. As expected, phase angles at that frequency were typically small (< 30°). No
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change in conduction velocity was observed, indicating that the nerve diameter had not changed.

Neural recordings were stable, and with time, less EMG contamination was recorded (see Figure

3.7.1). Results from three cats for more than 200 days showed that the relative amplitude of the

peak to peak CAP remained constant. In comparison the relative contamination of the CAP by

EMG decreased somewhat in all chronic cats.
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Figure 3.7.1. The amplitudes
(top) aof compound action
potentials were measured with
triphasic cuff electrodes on three
different nerves: sciatic, tibial
and superficial peroneal in three
legs (different symbols) of two
chronic cats. The potentials were
elicited by stimulating the sciatic
nerve and recording from the
other two nerves which are
branches of it and by stimulating
the branches while recording
Jrom the sciatic nerve. The four
values relative to the mean for
each nerve over the entire
recording period were averaged
and plotted. The amplitudes of
EMG contamination on the other
nerves (bottom) were also
averaged in the same way when
the sciatic nerve was stimulated
maximally. The EMG
contamination could easily be
distinguished because of its
greater latency and slower time
course.

Signal Processing: Neural recordings in peripheral nerves elicited from cutaneous receptors or

muscle spindles are typically in the range of 3 to 10 pyV. The frequency spectrum has a peak

around 2 kHz with most power concentrated between 1 and 5 kHz (see Figure 3.7.2). The thermal

noise with nerve electrodes is in range of 1 pV, comparable in size with the neural signals.
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Peripheral nerves are surrounded by muscles producing electrical signals that are orders of

magnitude larger, but have a peak near 200 Hz (Figure 3.7.2.(a)) and most power below 1 kHz.

This signal is partially suppressed using a good fitting cuff electrode and suturing it tightly shut. In

addition, the triphasic nature of the recording produces additional common mode rejection (Stein

et al,, 1975). Nonetheless, for the tibial nerve near the ankle, two distinct peaks are observed in

the spectrum (Figure 3.7.2.(b)), but high pass filtering at 1000 Hz (fourth order Krohn-Hite filter,

model 3700) can eliminate virtually all EMG contamination (Figure 3.7.2.(c)). With other nerves

(SP, sural) the location near major muscle groups may require a cutoff frequency of © 500 or even

2000 Hz or more.

100

10000
1000
:‘m: 100
= 10
=
> 1
£ 01
o
Ei 10000
> 1000
g 100
g 10
© 1
RS} 0.1
S
- 10000
o 1000
=
()
o

—
- O

©
-

10

A) EMG Signal

B) Unfiltered Nerve Cuff Signal

C) Filtered Nerve Cuff Signal

100 1000
Frequency (Hz)

10000

Figure 3.7.2. (a) Power
spectral  density calculated
from EMG recorded from
medial gastrocnemius (MG
muscle, while a chronic car
walked on a treadmill. (b)
Corresponding spectra are
shown from a nerve cuff on
the tibial nerve without
Sfiliering. (c) After high-pass
Siltering with a cutoff at 1000
H: Note thar without
filtering the peak spectral
density of the EMG is
approximately 100 times that
of the neural signal (10 times
the amplitude), but the ratio
can be reversed using a
Sourth order high-pass filter.
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Circuit Design: In FES applications stimulation produces a large signal which is usually
considered as an artefact and which is best eliminated by using a blanking circuit (Hoffer and
Haugland, 1992). To measure the average output from the nerve, the signal is rectified and low-
pass filtered, using a combination of RC and Paynter filters. Although these techniques have been
used for a number of years with rack-mounted equipment, the challenge was to develop a
portable system small in size, weight and power consumption. In addition, it should be easily
integrated into the FES system, which consists of the following cascaded blocks: fow noise and
low input impedance preamplifier, bandpass filter. amplifier, blanking circuit, rectifier, Paynter filter,
controller, and stimulator. The preamplifier was made for nerve recordings using INA110 Burr
Brown instrumentation amplifier. To increase the signhal to noise ratio, and to match the low
impedance typically observed with nerve cuff electrodes to the high impedance that is suitable for
FET preamplifiers, a miniature step-up transformer (turns ratio of 20) was employed (PICO
24400). An INA110 instrumentation amplifier was set to have the gain of 200, which made the

total gain of the preamplifier equal to 4000.

The output of the INA110 is fed to the fourth-order bandpass fiiter and then to a two stage
amplifier using precision operational amplifier (OP77) with selected gains of 75, 400, 1500, and
2250 times 10°. Total amplification was in the order of 10° for EMG signals and 10° for nerve
signals. The blanking circuit (real.zed with two 14066 CMOS analog switches) grounds the
amplifier just before the stimulation and releases it after the stimulation. To prevent the output
from decaying, the low-pass filtered signal is sampled and held for the period of the blanking. This.

blanking circuit is transparent for the signal and allows recordings whenever the stimulation is

turned OFF.

Rectification is accomplished with a full wave rectifier. Smoothing of the rectified signal effectively
creates a signal similar to the envelope of the neural or muscular electrical activity, This signal can
be amplified and offset. The controller can be either a microprocessor-based circuit or a

preprogrammed discrete circuit. The simple control for the stimulation in this project uses fixed
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thresholds; thus, the simplest controller can be reduced to a comparator which triggers a biphasi:,

charge-balanced stimulator.

CMOS technology was used widely to reduce power consumption. The total power consumption
1s currently in the order of 9.5 mW and the conventional printed circuit boards occupy a volume of
8 cm’ per channel. Special attention was given to the layout of components and realization of
ground loops tc maximize signal to noise ration. Further details can be found in Nikolic and

Popovic (1992) and Nikolic et al. (1994).

Rule Based Control of the FES System: The control architecture system adopted in the present
system is based on the finite-state approach to the control of prosthetic and orthotic devices. The
implementation of the finite-state approach is based on the use of rule-based control. Rule-based
methods belong to nonanalytical control systems and have an IF(...) THEN(...) ELSE(...) structure
(Andrews and Bajd, 1984; Popovic et al, 1991). The cyclic motor activity is presented as a
sequence of discrete events. Each of these discrete events is associated with a unique sensory
pattern. A sensory pattern occurring during particular motor activity is recognized with the use of
artificial and/or natural sensors. The specific discrete event is calied the state of the system in
analogy to the state of finite-state automata. A recognized sensory pattern during a specified state

of the system initiates corresponding functional movement.

Rules in a rule-based control system were initially hand-crafted. This involved human expertise
and was very appropriate for simple systems having a limited number of states. The expertise for
detecting rules can be classified as a pattern recognition skill. An alternative to hand-crafting
event detection rules is to use rule induction methods, developed for machine learning in artificial
intelligence (Andrews et al., 1989; and Veltink et al., 1990). The development of artificial neural

networks provides a new tool for computer generation of rules for control of an assistive device.

Adaptive Logic Networks: If the transfer function between input and output of a system is not

known and cannot be easily described in an analytical form, if at all, artificial neural networks can
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Adaptive Logic Networks: If the transfer function between input and output of a system is not
known and cannot be easily described in an analytical form. if at all. artificial neural networks can
be used for approximation of the required mapping. One of the interegisig control problems in
design of a prosthesis is to map the relationship between afferent neusa. signas -~d activation of
muscles of the same or the opposite limb. We have attempted to reproduce this mapping using
adaptive logic networks. In our experiment the inputs to an ALN were derived from neural
recordings presented in the first two traces of Figure 3.7.3. (tibial nerve and superficial peroneal
nerve). Each input signal was quantized to a certain number of levels and each level was
converted into a boolean vector in such a way that close levels resulted in vectors which were
close in Hamming disiance (Smith and Stanford, 1990; Armstrong et al.. 1991). The required
output of the system was boolean (trace 2 in Figure 3.7.6), namely a thresholded EMG signal from

trace 1 in Figure 3.7.6 {medial gastrocnemius EMG). The output signal has been considered as

an indication of the muscle activity.

Version of the ALN learning prograrm: ALN V.2 (see section 2.7.1 and Appendix B for details).
ALN interface prcgram: WALKON (see section 2.8.1 and Appendix C for details).

Enceding technique: Random Walk and Unary Encoding (see section 2.7.1.1).

3.7.1.2 Results

We concentrated in this study on controlling a single joint by stimulating ankle extensors and
flexors and processing signals using custom built eiectronic circuits (see Methods). Figure 3.7.3
shows typical recordings from the SP and tibial nerves as well as ankle extensor (MG) and flexor
(TA) muscles of a chronic cat. The signals cover a period of 20 s, where the cat stood for 3 s,
made one step, stood again for about 2 s, climbed up on the wall cf the treadmill with #ts forepaws
while balancing on its hindlegs (note the strong burst of activity recorded in the MG muscle), took

another step and then stood for 2 s before starting to walk rhythmically on the treadmill with a
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cycle time of = 750 ms. There is a characteristic double burst with each step in the SP nerve and
the single burst in the tibial nerve. Furthermore, although the signal amplitudes are much smaller,
the processed electroneurograms (ENG) are much more reproducible in amplitude from step to

step than the corresponding EMG signals.

- 25uv .
Ti nerve ;— Steps——v Walklng
- 2.5 uV
SP nerve

AU

MG muscle

L 100 pv

TA muscle Climbing
W : %.Sm
- Standing

Figure 3.7.3. Recordings from superficial peroneal (SP) and tibial (Tib) nerves as well as medial
gastrocnemius (MG) and tibialis anterior (TA) muscles of a chronic cat. This 20 s recordings were
selected to indicate the distinct rhythmic activity in peripheral nerves and ankle muscles in various
behaviors,

The ENG signals were also used to design a simple state diagram, based on setting thresholds on
the filtered nerve records (dashed lines on Figure 3.7.4). The single peak in tibial nerve activity
occurs each time the cat' s paw hits the ground and corresponds closely to the time when the MG

activity begins. Thus, the first rule in Figure 3.7 4 is:

if the tibial nerve signal exceeds threshold,

then activate the MG stimulus for a period corresponding to the average duration (307

ms) that the MG activity remains above a threshold level (not shown).
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As mentioned above, the SP nerve shows two peaks, une corresponding to the time when the

paw hits the ground and another, larger peak when the paw is lifted off the ground. The latter peak

corresponds to the onset of the TA activity. Thus the second rule is:

if the SP activity exceeds its threshold and the tibial nerve is below its threshold,

then activate the TA stimulus for a period equal to the . erage duration (420 ms) that the

TA activity remains above a threshold level.

These two simple rules are sufficient to reproduce the basic alternating pattern between the

flexors and extensors controlling the cat's ankle joint.

Figure 3.7.4. Threshold levels were set
(dashed lines) to determine instants
when  processed electroneurograms
(ENG) recordings from tibial and
superficial peroneal nerves (upper two
traces) crossed above these preset levels.
Threshold crossings activated transitions
in a simple rule-base with four states
(third trace), as explained further in the
text. Entering state 2 turned on circuits
Jor a fixed period of time (trace 5) that
correspond on average to the duration of
suprathreshold activity of MG EMG
(trace 4). Similarly, entering state 4
turned on a circuit for a period (bottom
trace) corresponding lo the
suprathreshold period of the TA EMG
(trace 6). Note that the circuit operated
reliably with no false positive or
negatives.

Stim TAEMG Stim MGEMG States SPENG TIENG
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in the example shown in Figure 3.7.3, no stimuli were actually applied. However, with the blanking

circuit it was possible to stimulate the muscle to generate substantial force without affecting the

sensory nerve recordings. Recordings from the tibial nerve for one gait cycle are shown in Figure

3.7.5, and for tibial and superficial peroneal nerves when the cat is walking in Figure 3.7 .4. Hoffer

et al. (1989) obtained similar results but used a computer to process the signals. A number of

years ago Hoshimiya et all. (1976) developed an analog circuit for this purpose. The results

shown here utilized a smali battery operated circuit that a subject could use practically on a daily

basis.
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Figure 3.7.5. When the rule-
base was connected to a
stimulator and stimuli were
applied (middle trace),
artifacts were generated on the
processed tibial ENG (top
trace), even with filtering, but
this could be greatly reduced
(bottom trace) by switching in
a blanking circuit.
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Figure 3.7.6. To match the activity pattern of an ankle muscle, based on the signals from the tibial and
SP nerves, we used an adaptive logic networks (ALN). Neural signals (upper two traces in Figure 3.7.4)
were presented to the ALN as the input, together with an ouiput which consisted of pulses (second trace
in this figure) representing periods when MG EMG exceeded a threshold value. The data on the left half
of the figure were used in training the ALN to reconstruct the binary representation of the EMG signal.
The reconstructed result is in the third trace, and the error is in the fourth trace. The right half of the

figure presents test data, where reconstruction was nos as successful as in training. Further details in the
text.

The rule base of Figure 3.7.4 only matches two features of the normal EMG signals, their onset
and average duration, but it does so reliably (nc faise positives or false negatives) if input signals
(neural recordings) are of a certain amplitude and shape as described earlier. it may be desirable
for some purposes to match the exact timing for each step profile. We examined if adaptive logic
networks could perform this function in two series of trials. The first served to find the number of
samples from the past required for training and an optimal region i_n the prediction error plane. The

second produced the actual results of training in that region. Based on previous experience with
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similar signals (Kostov et al., 1992), a decision was made to quantize neural signals to 128 levels
and encode them with 14 bits. In contrast, the EMG signals were quantized to 2 levels and
encoded with only 1 bit. The best training results were obtained using the original neural signals
plus two copies of the same signals delayed 80 and 160 ms and two copies of differentiated
neural signals with the same delays. The artificial neural trees contained 1536 nodes, the majority
vote of seven trees being taken to compute an output bit, the number of presentation (epochs) of
the training set to the learning algorithm during training of every tree was 20. The results from the
ALN are presented in Figure 3.7.6. The top trace is the EMG signal. The second trace shows the
actual intervals when EMG activity was above the threshold. This binary representation of the MG
EMG was presented as a target signal to the ALN during the training. The neural recordings,
shown in the first two traces in Figure 3.7.4, were used as input to the ALN representing a
domain. The third trace presents the reconstruction of the actual EMG intervals by the ALNs. To
compare the actual timing with that predicted by the ALNs, we included the errors in the bottom
trace. The errors during training were very few (below 1 %, left half of Figure 3.7.6), but increased
considerably when we tested the performance of the ALN against data that it had not seen before
(over 8 %, right half). This error can be reduced if different filtering is appliad to the original
signals. However, the present paper is not intended to be a test of neural networks but merely to
demonstrate that ALNs applied to neural and muscular signals may be appropriate for
determination of invariant features in the locomotion and as a replacement of hand-crafting rules

for control.

3.7.1.3 Discussion and conclusion

To prove our hypothesis that multiclectrede recordings from sensory nerves can provide
satisfactory information for a rule-based control, we used a cnron¢ cat model. The ankle joint of
the cat's hind limb was selected for several reasons: 1) many characieristics of seripheral nerve

recordings and muscle signals are well described in the literature {e.g., Stein et al., 1975 and
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1977) a percutaneous system consisting of several nerve-cuff and epimysial recording electrodes
can be easily installed; 3) cats can be trained to perform simple motor tasks, such as walking on a
powered treadmill and 4) long term recording and stimulation has proven to be effective. In this
modei system recordings from two sensory nerves (TI and SP) were sufficient to trigger the
appropriate periods of stimulation reliably to ankle flexor and extensor muscles. The exact timing

of activity could be learned using an ALN.

3.7.2 CONTINUOUS FES-CONTROL USING BIOLOGICAL SENSORY

FEEDBACK SIGNALS'®

The study presented in the previous sections demonstrated the use of biological feedback for
ON/OFF type of control of ankle flexion and extension in a chronic cat preparation. Encotu.raged by
the success of adaptive logic networks in correctly restoring and predicting muscle activation
timing from afferent recordings, in the following study we experimented with restoring and
predicting the full shape of the corresponding EMG signals while a cat walked on the powered
treadmill. Sucessful prediction of the EMG patterns would provide not anly the time parameters of
the stimulation, but also the intensity of the stimulation at every instant of the -gait cycle, given the
relationship between the EMG signal, intensity of the stimulation and the force produced by the
stimulation. The experimental hypothesis was that cutaneous and proprioceptive sensory afferent

signals carry enough information, which can be used to describe precisely simultaneous activity in

ankle flexor and extensor muscles.

The experimental design involved in three steps: training, test and real-time application. Two of
these three steps are performed in this study and presented in Figures 3.7.7 A) and B). The third

step, actual real-time application renains to be done in future work.

A version of this section was presented in the form of a short article “Learning of EMG-patterns by
Adaptive Logic Networks”, by Kostov et al. (1993), at the 15th Annual International IEEE - EMBS
Conference. The article is published in the Proceedings of the Conference.
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EVALUATION OF ALNs FOR
CONTINUOUS CONTROL OF FES

TARGET
EMG
QUTPUTS

NEURAL /2 =
INPUTS ULH______,JDA

R\ cats right hind limb - ALN TRAINING

o

KA (posterolateral view)

STIMULATION
OUTPUTS

STIMULATOR }—{S T=—g :
A= |
NEURAL

INPUTS | DC_____.,JEQ

cat's right hind limb ALN TEST

KA (posterolateral view)

Figure 3.7.7. Configuration setup for evaluation of ALNs for continuous control of FES. A) Training of
the ALNs 1o approximate and predict target EMG signals from neural inputs during wali.ing on a
treadmill. B) Test of the trained ALNs on neural signals not used during the training. The ALNs are
here predicting the muscular aciivity from indirectly related neural activity.
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Figure 3.7.8. A sample of neural and muscular activity presented in the form of ENG and EMG signals

recorded in the cat’s hind limb during walking on the powered treadmill. A degree of shape irregularity
is much higher in the EMGs than in ENGs.
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3.7.2.1 Methods

Neural signals from the tibiai (T1) and superficial peroneal (SP) nerves near the ankie of a cat's
right hind limb and EMGA signals from medial gastrocnemius (MG) and tibialis anterior (TA)
muscles were recorded from the cat walking on the powered treadmill. The signal recording,
conditioning and preprocessing was as described in Methods of the section 3.7.1. Recording
resulted in data files each containing about 40 steps over about 1700 data samples {(sampling rate
50 Hz). Figure 3.7.8 illustrates a szmple of the signals recorded during several steps. TI ENG
(electroneurogram) and SP ENG are sensory signals used as an input in the ALN algorithm, and
MG EMG and AT EMG are myoelectric signals used as outputs to be reproduced by the machine

learning algorithm.

Three data files were recorded and split into halves. Each half of the file was used for training,

while {i»a othier half was used for testing.

Different methods were used to analyze and visualize the relationship between neural inputs and
myographic outputs (see Figures 3.7.9 and 3.7.10). The final goal was to understand the

possibilities of using afferent signals to predict muscular activity in the same limb.
Version of the ALN learning program: ALN V.2 (see section 2.7.1 and Appendix B for details).
ALN interface program: WALKON (see section 2.8.1 and Appendix C for details).

Encoding technique: Unary Encoding (see section 2.7.1.1).

Machine learning technique ALN V.2 was used to generate the rules describing the relationship
between sensory inputs and EMG outputs. The learning task was the most difficult one yet tried
with this technique, due to the very small number of sensory innuts (two) and the complexity of the
control output signals (EMGs). An extensive study was done in search of an optimal set of

encoding and training parameters which will produce good test results in the shortest time.
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Figure 3.7.9. Three-dimensional relationship between output %G EMG signal and sensory inputs (TI
and SP ENGs) in approximately four gait cycles.
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Figure 3.7.10. Three-dimensional relationship between output TA EMG signal and sensory inputs (TI
and SP ENGSs) in approximately four gait cycles.
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The amplitude distribution for MG and TA EMGs was measured in order to experiment with the
‘expert encoding’, described in section 2.7.1.1. As illustrated in Figures 3.7.11 and 3.7.12, the
distribution is not uniform over the amplitude range, specially for the MG EMG signal. Non-uniform
amplitude distribution is a good basis for the ‘expert encoding’ which enables the researcher to
pick those threshold levels which would produce the best representation of the signal for the
smallest number of threshold levels. Keeping the number of threshold levels low provides fast
training without increasing test error. This feature is built into the program WALKON which was

used to do the study.

MG EMG Distribution
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Figure 3.7.11. Amplitude distribution for the MG EMG signal.
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Figure 3.7.12. Amplitude distribution for the TA EMG signal.
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As Figure 3.7 13 shows, ‘expert encoding’ resulted in significant reduction in training time.
although the training and test errors obtained were not significantly affected. Since there was no
change in the performance and the reproducibility of the results, we continued using uniform
unary encoding instead of ‘expert encoding’ in further experiments. ‘Expert encoding’ certainly has

potential, but in this particular application the achieved improvement was insignificant.

UNIFORM vs. EXPERT ENCODING
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1000 -

100

. —@—UNIFORM ENCODING (TRAINING TIME)
- - & - -UNIFORM ENCODING (TRAINING ERROR)}
10 - ~—e— UNIFORM ENCODING (TEST ERROR)
-~y EXPERT ENCODING (TRAINING TIME}
- - & - -EXPERT ENCODING (TRAINING ERROR)
~—0-— EXPERT ENCODING (TEST ERROR}

number of errors & training time (s)

1 2 3 4 S € 7

triai

Figure 3.7.13. Expert encoding compared to uniform unary encoding.

During the process of training parameter optimization, training and test errors were defined as the
numbers of those samples in which the restored and predicted output EMG amplitude
respectively, differs more than 10 % (of the original EMGs range) from the original EMGs. Figures
37.14 and 3.7.15. illustrate the optimization of the AN training parameters with regard to

achieved training and test error respectively.

A summary of the optimisation process is presented in Figure 3.7.16. ALN training time was

measured while the number of uniformiy distributed unary encoding levels in MG EMG and the
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size of the ALN trees were varied. it can be seen from Figure 3.7.16 (thinner lines) that by
increasing the number of encoding levels from 4 to 64. training time increases. If ihe number of
encoding levels further increases, some training sessions do not converge. probably because the
ALN trees were too small for the task. Note that the first training session which starts showing

divergence does not have to be the one with the smallest ALN trees, due to the random

processes involved.

ALN training error

ALN training error {%)

ALN voters

ALN tree size (nodes)

4096

Figure 3.7.14. ALN training error
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ALN TEST ERROR & TRAINING TIME (for MG EMG)

50 - ——— B -~ 1000¢
‘—o—Test error (1024 nodes)

a5 - JE —dr=Test error (2048 nodes; 9000
&~ Test error (4096 nodes)
a0 . —O== Traimng tume (1024 rodes) 60GL
—o— Traming time (2048 noges)
—O=Training time (4095 rodes)
— 35 - B e S e - - 7000
& =
— —
5 30 - - -- 6000 @
E £
O 2. - 5000 &
- on
[7] [ =
2 20 o . i . e 4000.5
Z s
—_
< 5. f el 3000
10 - 2000
5 - —-—— 1000
[o R (o]

128

number of encoding levels

Figure 3.7.16. ALN training time and test error relationships with the number of encoding levels and the
size of ALN rrees.
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In addition. ALN test error was measured while the number of uniformly distributed unary
encoding levels in the MG EMG and the size of the ALN trees were varied. Test error was defined
as the number of sémples in which the predicted output EMG was more than 10% different from
the original output EMG. It shows an opposite effect to the one described for training time. As the
Figure 3.7.16 shows (thicker lines), increasing the number of encoding levels reduces the test
error until the number of encoding levels changes from 32 to 64, wher the test error increases for
the smallest ALN tree size of 1024 nodes. This is a sign that the size of the ALN tree is probably
not large enough to process the amount of information presented to the learning process. In
support of this finding, as the number of encoding levels further increases to 128, next tree size
(2048 nodes) becomes too small and only the ALN tree of 4096 nodes is still capable of learning
the required task. This analysis shows a high level of predictable behavior of artificial neural

networks and the possibility of intuitive designs in predicting configurations that will most

successfully resolve the required tasks.

3.7.2.2 Results

The analysis described above resuited in the following encoding and ALN training setup: All
signals were quantized to 32 levels and encoded with 31 bits using a ‘thermometer’ or unary code
(described in the section 2.7.1.1). The best training resuits were obtained using the original neural
signals together with their differentials in a configuration comprising the current sample and two
samples from the past (delayed 80 and 160 ms). The size of the trained ALN trees was 4096
noces. the number of epochs was 20 and the number of voters (ALN trees per output bit) was

seven. Such a configuration required several hours to finish the training on a 486 DX/50 MHz IBM

PC compatible computer.

The applied encoding and training parameters resulted in high correlation between an original and
predicted EMG signals. To estimate the generalization of the learning algorithm, the variance

accounted for (VAF) was calculated as follows:



where:

1 N —\2
var,, = ﬁ z;l(y' -x)

var,, = ‘}1{; Z:l(xl - j":)2

x, is a sample.
¥, is a prediction,

N is the number of samples.

VAF = ]OO(]

_ "'ar_mj
varzlm

198

Overall results are presented in Table 3.7.1. As expected, the VAF by the ALN prediction of the

test data was lower than the VAF of the training data.

Table 3.7.1. VAF as a measure of ALN learning performance and generalization on test data.

TRAINING

TEST

MG EMG

TA EMG

MG EMG

TA EMG

VAF (%)

85.2

94.6

79.8

80.7

An example of the restored and predicted EMG signals, together with the input sensory signals, is

presented in Figure 3.7.17. The colorad areas in the last two traces represent the difference

hetween original and predicted EMGs during training and test. In red areas the predicted samples

are smaller than the original and larger than the original in green areas. Although the predicted

signals do not match the original ones perfectly, it is important that the shape of the EMG signals

is very well preserved.
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Figure 3.7.17. An example of input and ouiput signals used in ALN training and test. The colored areas
in the last two traces show the difference between original and predicted EMGs during training and test.

3.7.2.3 Discussion and conclusion

In this study continuous control of FES-assisted walking was evaluated. The control system is
based on the rules generated by adaptive logic networks from neuroelectric and myoelectric
signals. Adaptive logic networks were trained to extract invariant characteristics from the input-
output relationship, to store these characterictics in the form of artificial neural networks and later
to use these networks for production of the control output from the sensory input.
Electroneurograms were recorded from the tibial and superficial peroneal nerves and were used
to predict the form of electromyograms from medial gastrocnemius and tibialis anterior muscles.
Adaptive logic networks were capable of learning the relationship between these inputs and
outputs, and of producing the control outputs after successful training when supplied only with

sensory inputs. The resuits achieved are very encouraging. |f expressed in variance accounted for
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(VAF), the restoration of training control outputs is about 95 %. it is still around 80 % for test

signals not used during the training. It is very important that the shapes of predicted EMG signals

match the originals very well.

The efficacy of the learning 2gorithm could improve by increasing the size of the trained ALN
trees and the number of voters or by using ALN V.3. To optimize the learning and to obtain
satisfactory results in a reasonably short time one has to choose properly the number of past
points, the applied preprocessing functions on the input signals and the size of the training set.
This is very important because the algorithm in its present form requires a long training. However,
its very fast execution of the learned function and easy hardware implementation qualifies it for

control applications.

The third step of this experimental design, actual real-time application and miniaturization of this

control system, remains to be done in future work.
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4. DISCUSSION, CONCLUSIONS AND THE

FUTURE WORK

After recognizing the complexity of the rule-design problem for rule-based control systems for
FES-assisted walking of subjects with incomplete spinal cord injuries, it was hypothesized that the
rules can be automatically generated, using machine learning techniques, from examples
recorded in the form of data sets comprising sensory feedback signals and stimulation control
signals. The primary target was the upper level controller or the controller at the coordination level
in the controller module of the neuroprosthetic device (Figure 1.6.1). To prepare for automatic
generation of control rules, manually controlled FES-assisted walking of subjects with incomplete
spinal cord injury was studied (Section 3.1). Manually controlied stimulation for walking is
important in the rehabilitation of SCI subjects as it provides the subject with a full, easy and
reliable way to learn how the muscles would react to different stimulation conditions. It also

remains as the backup control system for the stimulation during the development of more

sophisticated control systems.

To provide a source of sensory feedback information for au‘nmatic control of stimulation, a various
sensors were evaluated. It was concluded that an affordable array of force sensors built into the

subjects’ shoe insoles can provide reliable and reproducible source of feedback information for

design of control rules. These sensors are presented in Section 2.3.

The force sensors built into the subject's shoe insoles are used in a simple rule-based control
system designed by hand-crafting the control rules (Section 3.2). The development of simple rule-
based control of the stimulation not only demonstrated the complexity of the controi-system
design, but it also introduced automatic control of the stimulation to the subject. This experience

was very useful, both for the subject and the researcher during the development of ALN-based

201
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control since the subject acquired an experience of using automatic control and the researcher
could learn about practical aspects of the stimulation control for walking. Autcmatic control of
walking usually resulted in faster walking (shorter gait cycle) and longer walking sessions.
Although successful, automatic control uncovered a very serious problem of generating control
rules for stimulation control, originating in differences between subjects, their stimulation needs,
walking skills and patterns. Every subject’s walking is different and requires different hand-crafted
rules, which limits the transferability of the control rules. Machine learning techniques which can
generate the control rules automatically were proposed as a solution for the problem. An
Integrated Control System (ICS) based on machine learning technique was designed for fast

evaluation of new subjects and generation of rules for control of their stimulation.

Two machine learning techniques for supervised learning were evaluated for automatic generation
of control rules by mapping the control output for manual stimulation onto the sensory feedback
signals. These techniques are Adaptive Logic Networks (ALNs) and Inductive Learning (IL) which
are presented in Section 2.7. ¥ was already evaluated for similar task of event detection
(Kirkwood, 1989; Kirkwood and Andrivs, 1989; Heller, 1992), so much more attention was paid to

the evaluation of ALNs, which were never before used for detection of time-dependent events.

Evaluation of ALNs for cloning the manual skill of skilled subject or therapist in controlling one
channel stimulation for FES-assisted walking is presented in Section 3.3. The capability of ALNs
to generate control rules from manually controlled stimulation is demonstrated. in addition, it is
demonstrated that the quality of ALN learning depends on the number of sensory feedback
channels and that the use of more sensory inputs reduces both training and test errors. To
introduce the time-dimension in the learning and prediction process, previous sensory signal
samples were used together with the current ones which further reduced the errors. An important

feature for control was introduced: an early prediction of stimulation events, which provides a time
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interval during which the subject can be informed about the coming stimulation. The ALNs were

tested in predicting the stimulation events up to two seconds in advance.

IL was evaluated in a complex environment for cloning the control rules for walking of a subject
with a complete spinal cord injury. The resuits are presented in Section 3.4. it was demonstrated
that IL is also capable of cloning the skill of skilled subject in controlling a two-channei stimulation
for FES-assisted walking. The design of control rules was done in two steps. In the first step IL
was used to measure the relative importance of a particular sensor and, based on this
information, to reduce the sensory set from ten sensors to only four of highest importance for
particular design. In the second step the reduced sensory set was used as a training set for IL to
produce the smallest decision trees with the best generalization. The best results were obtained if

previous data samples and differentiated signals were used for training together with the original

data samples.

ALN and IL were compared on a larger sample recorded from six subjects. The results of this
comparison are presented in Section 3.5. It is demonstrated that, although IL generates its
decision trees faster and with lower training error, the ALNs have better generalization. A practical
implication of this result is that IL may be better for use in contro!l systems where the training data
set represents the domain very well, but it is obvious that the training set acquired during walking
of subjects with SCI can not represent all possible situations, because some high-risk situations
that would be of interest as a part of training set lead to possible injuries (e.g. instability leading to
a fall). Both techniques give better results if previous samples are used together with current
ones. Also, both techniques are capable of predicting future stimulation events. Overall
performance was better with ALNs than with IL, which was crucial for deciding which machine

learning technique to use for the design of integrated control system.

After the evaluation of two different machine learning techniques (MLTs) demonstrated the

potential of these techniques for automatic rule-generation for control of FES-assisted walking, the
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integrated control system was designed to implement and test the same approach in real-time:
walking (Section 3.6). The final goal of this expernnent was to demonstrate the capability of Al.Ns
to generalize control rules designed by cloning manually controlled walking into automatically
controlled walking. To provide additional safety for the subject, restriction rules were designed by
hand-crafting, using statistical values determined in the training set, and applied to the control
signal produced by ALNs. To test the generalization of the trained ALNs before they were
connected to the stimulator as the primary source of stimulation control, several tests were done,
first with the control subject and then with SCI subject. Trained ALNs were evaluated on the same
data set used for training (ALN training). If their approximation of the output control signal did not
contain any functional errors (extra or missing stimuli), they were tested on new data which were
not used during the training (Off-line ALN test). If there were no functional errors in predicted
output control signals, a similar test was repeated, but this time during real-time manually
controlled walking (Walking test). The subject still controlled the stimulation manually, but this time
she heard a buzzing noise from the controller interface every time the ALNs predicted the
stimulation should be ON. The conditions of this test were the closest possible to those of ALN
real-time contro! of the stimulation. After this test was passed without functional errors, the next
was to apply the ALNs in real-time control of stimulation for FES-assisted walking (Walking
control). The subject, after standing up from the wheelchair, took one or more manually controiled
steps and then the ALN control was switched ON and put in parallel with the manual control,

which remained active as a functional override.

The results obtained so far demonstrate the capability of ALNs trained on manually controlled
FES-assisted walking to generalize over automatically controlled FES-assisted walking. It was
also demonstrated that the generalization is satisfactory not only over the same walking session,
but it also extends over the following days. This result implies that this control approach and the
system designed may be quite robust and that frequent retrainings of the ALNs (calibration) may

not be necessary. It remains to be seen how fast the walking pattern changes requiring new ALN
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of time (weeks, months)®, the ICS can be divided into two parts: FES control fitting station and the
FES controller itself. The FES controller can be miniaturized and built into the portable battery
operated neuroprosthetic device in two different ways: 1) by transferring it from a desktop
computer to a much smaller, but equally or even more powerful notebook computer, 2) by
developing custom-designed hardware driven by commercially available microcontroller.
Considering the speed of development and the price reduction of high technology teday, it is
possible to predict that the first of the above options can be done incomparably faster than the
other one. The control rules ;an be generated in the laboratory or at home using an FES control
fitting station, which can be based on a small notebook computer with data acquisition extensions.
After the control rules are produced, they can be downloaded or transferred in some other way to

the FES controller, which makes the FES controller an independent device.

This thesis project has just scratched the surface of the whole new field of implementation of
machine learning techniques in the control of biomedical systems. Now that the results of this
thesis have proved that the human skill can be automatically transferred into the computer, and
that both, the subject and the computer can improve their performance while working together, the
next step is to explore the field in which this technique is applicable. Depending on the results of
such a study, this technique can be improved and implemented in the form of a commercial
device. In the future work the ICS should be applied to stimulation control of as many SCI subjects
as possible. More frequent use of the ICS, first in one research center and later in a multi-center
trial, would direct its further development into an easy-to-use gait evaluation tool for subjects with
incomplete spinal cord injuries. It can provide the fastest way to design the control rules for

automatically controlled FES-assisted walking and to demonstrate to the subject what

® There are some encouraging preliminary results which demonstrate good generalization even four months
after the training.



206

autematically controlled walking is all about. With the ICS all this can be achieved during the same

walking session.

Although ALNs have very low generalization error, the restriction rules should be present in future
developments based on this approach either in the form of a functional filter after the ALNs or in

the form of a priori knowledge built into the ALN trees. The latter is already possible with ALN V.3.

Even before the ALN's capability to generalize from manually to automatically controiled walking
was demonstrated, the evaluation of ALNs for continuous output control was done. This type of
control falls under lower level control or control at the actuator level in the controller module of the
neuroprosthetic device (Figure 1.6.1). The biggest challenge was to try to use artificial neural
networks to clone the function of the natural reflexes and control loops. Since this experiment
required implantation of recording electrodes in living subject, the experiment was done in chronic
cats. Electroneurograms (ENGs), recorded using cuff electrodes, implanted around the tibial and
superficial peroneal nerves, were used as the sensory feedback information, and
electromyograms (EMGs), recorded using epimysial electrodes, implanted on the tibialis anterior

and medial gastrocnemius muscles, were used as the control output signais.

In the first experiment, ALNs were used to approximate the transfer function between continuous
ENG inputs and simplified (binary) EMG outputs. This was similar to experiments described
previously with ON/OFF type control. The ALNs performed comparably to a simple hand-crafted
rule-based control system. The advantage of the ALNs was that they could predict not only the
existence of control pulses, but aiso their duration (Section 3.7.1). This work also demonstrated

that natural sensory signals can be used as sensory feedback information in control systems for

locomotion.

In the second experiment, the ALNs were used with the same input and outpiit signal sources, but
this time for approximation of the transfer function between continuous ENG inputs and

continuous EMG outputs. Optimization of the ALN V.2 training was done for this particular design.
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Results demonstrated ALN's capability of approximating very complex transfer functions and
predicting the full shape of rectified and integrated EMGs from ENGs. In future work the predicted
EMGs can be used to modulate stimulation pulse trains and delivered to the appropriate muscles,

whose motoneurons are chemically blocked, to produce automatically controlled FES-assisted

walking.

The basic concept of this technique can be improved by implementing reinforced learning instead
(or in parallel) with supervised learning technique, which will provide this control system with seif-

adaptation feature. This will provide continuous learning during the use of the control system.
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Appendix A : DATA ACQUISITION SYSTEMS
AXOTAPE

The Axotape system enables a microcomputer to continuously acquire and display multichannel
data. Functionally, it is similar to a multichannel tape recorder, but it takes advantage of the recent
dramatic advances in mass storage devices and records directly to any logical storage drive on a
computer. There are numerous advantages of the Axotape system over a conventional tape
recorder (Axon Instruments, 1989). Data can be recorded directly to the disk with simultaneous
screen display for easy monitoring. In order to monitor the activity and range of the input signal,
data can also be displayed on the screen without recording it. In this mode Axotape is working like
an oscilloscope. For maximum-frequency recording conditions, data can be recorded to the disk
without any display. The 12-bit recording resolution provides a noise level of only +0.02%, which,
for a £10V signal is +£5mV, while a conventional FM tape recorder has a 45 dB sighal to noise ratio
corresponding to about 50 mV of noise for the same recording range. After data are collected,
they are aiready in the correct format and readily accessible for further computer analysis. In
addition, the Axotape program allows ciie to move quickly to any specified time in the data file.
For recordings of long duration this provides an enormous saving of time.

After data have been recorded, they can be played back for review using a range of timebase and
display options. Measurements can be made using a pair of cursors and stored in ASCH file.

Selected portions of the data can be plotted to a high-resolution graphics device or written to an
ASCII file so that it can be read by other programs.

The Axotape system consists of the following hardware and software components:

A/D data acquisition board - Axon TL-1-125 is an extension board which plugs into one of the
ISA extension slots of an IBM PC or compatible computer. 1t can sample up to sixteen channels of
data with the maximal sampling rate of 125 kHz when recording only one channel. The input
range is adjustable up to +10V. The board converts continuous signals in binary numbers with the
quantization resolution of 12 bits. The data are stored in a proprietary FETCHEX 5.2 binary data
file format (Axon Instruments, 1989), which also contains all recording parameters stored in the
file header. The information stored in the data file header provides a researcher with the
opportunity to write a customized program for direct retrieval and analysis of the stored data.

Axotape program - provides the following functions: Record, DisplayOnly, AcquireOnly, Stop,
Playback, Configure, Help, and Quit. The function names are self-explanatory and the details on
all of them can be found in the program’'s documentation. Besides cursor measurements in the
Playback function, the program does not have any other data analysis functions or tools. The
proprietary FETCHEX 5.2 data file format is an original one and it is not recognized by any
commercial data analysis programs. Thus, to access recorded data and make it available to the
commercial data analysis programs, a conversion program HEX_ASC.EXE (see Appendix C) was
written in the C computer language, which reads the Axotape data files and converts them into
standard ASCIl format. A variation of the same program was used to prepare the data files for

machine learning programs by modifying a new ASCII header to accommodate the requirements
of these programs.

AT-MIO-16DH DATA ACQUISITION BOARD AND LABVIEW FOR
WINDOWS
The second input/output system, which was used as a platform on which the real-time integrated

control system (ICS) was built, also consists of hardware and software parts. The hardware is in
form of an AT-MIO-16DH multifunctional I/0 extension board (National Instruments, 1993), which
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plugs into one of the ISA extension slots of an IBM PC or compatible computer. It can do 12-bit
analog to digital conversion of data with a maximal sampling rate of 110 kHz per channel. The
board can be configured to record from up to sixteen single-ended channels or eight differential
channels. The input range is jumper-selectable to +10 V, +5 V or 0 to 10 V. The gain can be
programmatically adjusted to 1, 2, 4, or 8. The board has two 12-bit analog outputs, jumper-
configurable to 0 to 10 V unipolar mode or +10 V bipolar mode. The current drive capability is +2
mA. it also has 32 TTL-compatible digital lines and four timing /O channels (3 counter/timers and
one frequency output).

Basic software support for the board comes in the form of NI-DAQ, which is a library of functions
for controlling National Instruments PC-based data acquisition bogrds. The function library is
provided for DOS and for Windows. DOS functions can be called from programs developed in
Microsoft C, QuickBasic, Turbo C and Turbo Pascal. Windows NI-DAQ is in the form of a
Microsoft Windows 3.x DLL (dynamic-link library) caliable from any Windows application
developed in Microsoft C with SDK (software development kit), Microsoft Visual C++, Microsoft
Visual Basic, Turbo Pascal for Windows and Borland C++.

However, National Instruments also provides higher level software support for its data acquisition
boards. Two integrated development environments are currently available: LabWindows (for DOS
and Windows) and LabVIEW (LV) for Windows. The first one, LabWindows enhances Microsoft
QuickBasic and C with an interactive development environment, containing function panels to
generate source code, and libraries for data acquisition, instrument control, data analysis and
presentation. The second one, LabVIEW for Windows (National Instruments, 1993), which was
the software platform used for ICS development, offers a graphical programming environment for
constructing application software for the PC.

LabVIEW for Windows is a 32-bit integrated programming environment made for the 16-bit
Microsoft 3.x operating system. This discrepancy caused incompatibility between LabVIEW
programs and custom Windows DLLs that contained heavy computations inappropriate for
programming in a graphical programming environment. To resolve this incompatibility, a third-
party program Downshift (Viewpoint Software Solutions, 1993) was used as a bridge between the
two environments. The future version of Microsoft Windows (Windows Chicago or Windows 95) is
planned to be a full 32-bit operating system, which will make the use of the bridging program
unnecessary.



Appendix B : THEORETICAL BASIS FOR
MACHINE LEARNING TECHNIQUES

ADAPTIVE LOGIC NETWORKS (ALNs)

Two versions of Adaptive Logic Networks were evaluated and implemented in the design of FES-
control system presented in this thesis:

1. ALN V.2 based on learning algorithms embodied in the program Atree 2.7', which produces
adaptive logic networks, dealing with binary numbers. The learning algorithm is implemented in
the form of computer program "WALKON" described in Appendix C, which is based on the
Adaptive Boolean Logic Element (ABLE) patented by W.W. Armstrong®.

2. ALN V.3 based on learning algorithm Atree 3.0°, which produces adaptive logic networks,
dealing with continuous quantities instead with binary numbers. It is implemented in the form of a
dynamic-link library (DLL) of computer functions for Microsoft Windows and it is based on more

general use of adaptive linear threshold elements, recently developed by W.W. Armstrong and
M.Thomas.

ATREE version 2.7

The learning algorithm called Atree 2.7 is a computer program which implements the ABLE
principles in approximating Boolean functions. Although it deals with binary numbers and uses
Boolean operators to process binary information, the use of the program is not restricted to the
binary information. Through the use of various quantization and encoding techniques for

converting continuous quantities into binary numbers it is possible to process any information with
this algorithm.

Adaptive Boolean Logic Element (ABLE)
The ABLE is defined as follows:

"A digital logic circiiit, ..., of which an interconnected plurality together with their connections to a
control unit comprise a learning rmachine which synthesizes a Boolean function of » variables as
the result of a training procedure.

Each element may operate as a two-input, one-output combinational circuit of one of four logical
types, where the type is determined by the current internal state of the element. All four types are

such that a (ZERO, ZERO) input pair gives rise to a ZERO output, and a (ONE, ONE) input
pair gives rise to a ONE output, while the particular operation realized is determined by two

function value units which compute suitable outputs under the (ONE, ZERQ) and (ZERO, ONE)
input pairs to the element.

'ATREE 2.7 simulator, available from ftp.cs.ualberta.ca in file put:atreefatre27.exe (binary mode),
including C++ source code and extensive on-line help.

W.W. Armstrong, Adaptive Boolean Logic Element, U.S. Patent 3934231, Feb. 28, 1974 (fillings
in various countries), assigned to Dendronic Decisions Limited, 3624 - 108 Street, Edmonton,
Alberta, T6J 1B4, Tel. (403) 4381103. N.B. Expired January 1993.

SW.w. Armstrong and M.M. Thomas, Dendronic Decisions Atree 3.0 iieta release 1, ALN Theory,
A practical Guide to Aproximating Relations
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Three different species of element are described differing in their computation of heuristic
responsibility. The ‘global search’ species is useful when the function to be synthesized is not
constant: there is a convergence theorem related to this species. The ‘latest error’ species is also
useful for applications where the function to be synthesized may be a constant; but this type does
not obey a known convergence theorem. The ‘hill climbing’ species is useful principally to improve
an existing approximate synthesis.

Means are provided for setting and reading out the functions realized by the elements in a tree-
like network in order to facilitate storage and transmission of synthesized functions.”

Due to the state of computer technology at the time of invention, the adaptive Boolean logic
element was invented and patented as a learning machine whose adaptation process occurred in
its hardware. This invention provided significant improvement to existing machine learning
techniques.

Background of the invention of ABLE

Let us consider an idealized model for adaptive classification (Armstrong, 1974). We are given a
training set of stimuli, which are represented as » -tuples of 0's and 1's, and a partition of this set
into a O-class and 1-class representing the desired classification on the training stimuli. We

execute the following random search procedure to find a Boolean tree function which correctly
classifies all members of the training set:

1. let L=0.

2. Consider the balanced binary tree, such as one illustrated in Figure B.1, having L layers of

bifurcations (2" — 1 non-leaf nodes, and 2" leaf-nodes); to each leaf-node randomly assign one
of the n Boolean variables or its complement (with multiple ‘connections’ allowed).

3. To each non-leaf node randomly assign one of the four non-constant increasing Boolean
functions of two variables: AND, OR, LEFT or RIGHT, and interconnect them according to the
tree.

4. Repeat step 3. a certain number of times, stopping any time the currently synthesized Boolean
tree function of » variables is satisfactory, i.e. computes the correct class of any stimulus in the
training set when the stimulus is presented at the » input variables.

5. If no satisfactory function has been obtained, go to step 2., choosing a new connection pattern
to the variables and complements at the leaf-nodes, unless this has been tried a certain number
of times without success.

6. If no satisfactory function has been obtained, increase L by 1 and go to step 2.
7. Stop. The current function of 1 variables correctly classifies all members of the training set.

If a satisfactory function has been found, it may be used to classify any input n-tuple, whether in
the training set or not, by simply applying that n-tuple to the » input variables. Armstrong proved
that, given the number n, a network of elements with appropriate connections to » logical signals

and their complements could, in theory, be constructed in such a way that any of the 2*" Boolean
functic.1s of »2 variables would be attained for at least one state (Armstrong, 1976). The resulting
machine would thus be a universal function-learner for n variables. Such a machine was
described by Halpern in 1966 (Halpern, 1966). The problem with Halpern's machine grew with the
number of variables »n, so that for 1 in the hundreds or thousands, the practical realization of the
machine was very difficult, due to the great number of possible states and therefore parts required
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(at least 2"). It was clear that for practical applications this idealized procedure must be replaced
by a much faster heuristic procedure.

Fortunately, many useful functions of a large number » of variables are of very low sensitivity
compared to most Boolean functions of » variables. The term sensitivity is used with regard to
producing changes in the output of the learning machine when certain number of inputs is

changed. A sensitivity is approached theoretically in Bochmann and Armstrong (1974) and will not
be elaborated in more details here.

There were several designs for insensitive functions before the design of ABLE:
e Perceptron of F. Rosenblatt (Minsky and Papert, 1969),
e The networks of Artrons of R.J. Lee (Lee, 1967),
o The Slam networks of |. Aleksander (Aleksander, 1970), and
¢ The trainable digital apparatus of W. Armstrong (Armstrong, 1971).

The central part of Perceptron, where the learning occurs, is capable of realizing a certain class
of, so-called, linearly separable classification problems. Its operation is based on a Perceptron
convergence theorem which states that certain training algorithm will lead to a state in which the
output signal is always the specified response to the input signals. A fundamental difficulty with
the Perceptron system is that the class of linearly separable functions of n variables is extremely
small so that the power of this system must be augmented by finding task-specific transformations
of the data before they are applied to the function-learner. The advantage of the ABLE over
Perceptron is that such external augmentation was not needed in systems based on ABLEs.

It is important to notice that at the time the ABLE was patented, the author stated that “the use of
several layers of linear-threshold learning devices to attain a larger class of functions has not
been very successful up to the present time since no satisfactory training algorithm was known for
such networks”. The ABLE represented a solution to this problem, though for a very special kind
of linear threshold element. Atree version 3.0, which uses non-restricted linear threshold elements

as an adaptive elements and which is described in the next section, represents more general
solution to the problem.

The design of ABLE had advantages over designs listed above with regard to the capacity of
learning and insensitive generalization. The restriction of the class of Boolean functions of two

variables realizable by the elements of a binary tree network to four nonconstant increasing
functions of two variables is crucial. These functions are:

AND(x. y) = Xy
OR(x.y)=x+y
LEFT(x.y)=x
RIGHT(x.y)=y

All four functions have increasing nature which equates the output signal of an element in the
network to the output of the network whenever that element is responsible, i.e. whenever
changing its output would change the output of the network. A convergence theorem states that a
synthesis of a specified function will be obtained by means of a certain algorithm for assigning
these four functions to nodes of a binary tree provided:

¢ a synthesis of the function exists, and

e the components of the n-tuples are statistically independent under the distribution P.
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This theorem is proved in the paper by Armstrong and Bochmann (1972). but the algorithm based
or the theorem is not sufficiently powerful for practical applications, and it is therefore replaced by
= statistical procedure based on the concept of “heuristic responsibility” of an element when a
certain n-tuple 1s at the input of the network. The implementation of this concept significantly
speeds up the training process and makes practical applications based on ABLE possible.

The ALN adaptation algorithm

The text in this section is mainly adapted from Armstrong and Gecsei (1979). To explain the ALN
adaptation algorithm implemented in Atree version 2.7, the focus will be on the functions causing
two-input elements (nodes) arranged in a binary tree to assume particular states in which they
each realize some Boolean function of two variables. The leaves of the tree are connected to
input variables either in a one-to-one fashion (the disjoint case) or with multiplicity of connections
going to the same input variable and its inverse (the non-disjoint case). The functions which can
be realized by any node of the binary tree are AND. OR. LEFT and RIGHT, ie.,

g(x.y)=xy. x+y, x, y,respectvely. important to note is that the set of node functions

proposed consists precisely of all non-constant increasing Boolean functions of two variables®.
The tree composition of such node functions is also increasing and nonconstant. To prevent this
being a real restriction, inversions are allowed in the connections of the leaves of the tree to the
input variables®. Clearly, a sufficiently large nondisjoint tree can compute any Boolean function.

The main reason for using tree functions of the above restricted type is because they
preferentially realize, for any fixed size and shape of tree, Boolean functions which have the
property that an output value tends to remain unchanged when small perturbations are applied to
the input variabies. This property of tree functions has been referred to as insensitivity (Bochmann
and Armstrong, 1974) and it provides good extrapolation or generalization on the test data set. It
is particularly pronounced in Binary Tree Functions (BTF), and within that class more so when the
node functions are restricted to be AND, OR, LEFT and RIGHT. This holds for both disjoint and
nion-disjoint types of the tree.

Theoretically (Armstrong W.W. and Godbout G.; 1974, Bochmann and Armstrong, 1874), even a
randomly chosen binary tree function compatible with the training data is a good basis for

extrapolation. The adaptation algorithms can be regarded as making the random choice in an
accelerated manner.

The most difficult problem in designing en effective adaptation procedure is to determine which
nodes to change during adaptation. This is the basic “credit-assignment problem” referred to by
Minsky in (Minsky, 1961). This solution involves recursive computation of “heuristic responsibility”
signals which inform the two descendants of a node whether or not they are candidates for
changing state at a given adaptation step.

Definition of binary tree functions

Consider a binary tree composed of the set K of nodes. Each node k has attached to it one of the
following:

“If a zero at an input is changed to a one, an increasing function will never change its value from
one to zero.

5There is no need to have inversions between elements of the tree, since by simply passing from
AND to OR or vice versa, one can move an inversion from the output of an eiement to its two
inputs and iterate until the only inversions left are at the input variables.
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e two successor nodes k, and k, . or

e one successor k, or k,, and one connection to one of the input variables x,.x,.....x,,, of
» two connections to the input variables.

Any connection to an input variable may contain an inverter. Figure B.2 illustrates an example of
such a tree.

Node & will be called descendent of k, if k, =k, or k, is a successor of a descendent of k,.

Each node is a two-input, one-output combinational circuit receiving Boolean input values from its
successors or from the input variables or their complements. Let

G= {AND, OR,LEFT ,RIGHT } be the four non-constant increasing Boolean functions of two

variables. A mapping g:K — G will be called an assignment. The function assigned by g to
node k will be denoted by g, . Figure B.2 and Table B.1 illustrate these concepts.

Table B.1. Definition of four node functions.

S Jo g - AND LEFT RIGHT OR
0 0 0 0 0 0
0 1 0 0 1 1
1 0 0 / 0 1
1 1 1 1 1 1

For any fixed assignment g, the value at the output of the root node is f (x,..vt2 ..... x,,,) , & is said
to realize the function f.

A Boolean function h(x,,xz,...,xm) is realizable by a given tree including a given connection

pattern to the variables, if and only if there is an assignment such that f = s. Such an h will be
called a Binary Tree Function (BTF) for that tree.

Decomposition of disjoint binary tree function

As pointed out previously, any Boolean function is a BTF for some tree. If the connections are
one-to-one and contain no inversion, we shall speak of a Disjoint Binary Tree Function (DBTF).
That is, each variable of DBTF is connected toexactly one leaf node of the tree, as for example in
Figure B.3. Without the loss of generality, we may assume that the tree used is balanced. There

are n levels, with level n containing only the root node, and level 1 containing 2" nodes. The
tree has 2" inputs connected one-to-one to 2" variables.

Due to their fixed and known underlying structure, every DBTF of 2" variables has a simple
disjoint decomposition of the form

f - {gk(ﬂl’-f;tr)s
. gk(xkl‘xkr)’

forkinlevels2, 3, ... n

for kin level 1

where xk,(xk,) is the variable connected to the le# (right) input of a leaf node.

Take as an example the tree in Figure B.3. The DBTF realized by this tree has the form
f= f](xleng---,xs) = g?(gs(gl(xl9x2)9g2(x3’x4))9g6(g3(x5'x6)~g4(x7*xu)))' (8.1)
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Thus, in order to determine if a given function h(X ) is a DBTF for the tree of Figure B.3, one has

to establish whether a decomposition of & in the form (B.1) exists. If it does, then g, (k ek )

specifies the assignment realizing /; otherwise # is not a DBTF for this tree. It has been shown
(Bochmann and Armstrong, 1974) that such an assignment is unique if and only if 2 depends on
all variables in X.

To be able to understand better the adaptation algorithm, a decomposition method introduced by
Curtis (1962) is described briefly in the following section. The starting point is the tabular

representation of the function A{ X ) to be decomposed; the end product is 2" —1 decomposition
charts (DC) (one DC for each node function g, ). Decomposition charts are the principal means
for the explanation of adaptation algorithms later in the paper.

Let X be the set of variables x,,X,.....x,, and X, < X the set of variables connected to the

descendants of node k. Let X, = X — X, , i.e.. X, represents the set of variables not connected
to the descendants of the node £.

A DC is a table of four rows corresponding to combinations of input values f,. f,, of node k

(x,,.x,, if kis a leaf node) and 2" columns, one for each possible value of X, . The entries in
the table are the prescribed values of A.

Take as an example the function A(X)=xx,+x;+x,. which is a DBTF. Its tabular

representation is shown in Table B.2 and the comresponding two-fevei tree in Figure B.4. The DC
for leaf nodes is just a simple rearrangement cf Table B.2 as seen in Table B.3.

Table B.2. Truth table for 7 =xx, +x; +x,.

X, X, X, X, h I £
0 0 0 0 0 0 0
0 0 0 1 1 0 1
0 0 1 0 1 0 1
0 0 1 1 1 0 1
0 1 0 0 0 0 0
0 1 0 1 1 0 1
0 1 1 0 1 0 1
0 1 1 1 1 0 1
1 0 0 0 0 0 0
1 0 0 1 1 0 1
1 0 1 0 1 0 1
1 0 1 1 1 0 1
1 1 0 0 i1 1 0
1 1 0 1 1 1 1
1 1 1 0 1 1 1
1 1 1 1 1 1 1

Table B.3. Decomposition charts for nodes 1 (A), 2 (B), and 3 (C).



(A) {.\’3.1‘4} = ‘Y;

X, Xy 00 01 10 11
o 0 0 1 1 1
0 1 0 1 1 1
1 0 0 1 1 1
1 1 1 1 1 1
(B) {x,xz} =X,
X, e 00 01 10 11
0 0 0 0 0 1
0 1 1 1 1 1
1 0 1 1 1 1
1 1 1 1 1 1 1
(€) X;=0
A A
0 0 0
0 1 1
1 0 1
1 1 1

$n order to construct the DC for g,. the assignments to g, and g, should be determined. This

can be done by analyzing the columns appearing in Table B.3.(A) and (B). In each DC there are
constant and non-constant columns (CC and NC). Constant columns (e.g., column 11) contain

only one value (0 or 1) for all combinations of signals belonging to X, . The meaning of CC is that
at the given value of X k (shown above the CC), node k has ro influence on (responsibility for)
the output. This is so since all four possible functions g, € G are non-constant. Thus, CC ina DC
give no indication for the choice of an assignment to g, . The non-constant columns, on the other
hand, indicate that (at those values of X, k )} node k does influence (is responsible for) the valu= ¢~
h. In effect, f,, = # in all positions of an NC.

Therefore, for any DBTF

a) all NC in a DC must be identical among themselves, and

b) all NC in a DC must be identical to one of the four columns in Table B.1 (i.e., curzspond
toa g, €G).

This immediately yields in the example presented in Figure B4 g, = AND, g, = OR . If there is
no NC in a DC, any assignment to g, can be made.

The next step in the evaluation of the example is to construct the DC for g,, shown in Table
B.3.(C). The entries in this DC are obtained using columns f; and f, in Table B.2. Since there
are generally more lines than one with the same values of f;, f, (unlike the construction of DC
for teaf nodes), it is conceivable that both #=0 and h =1 are found as a particular entry in the
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DC. Such would be the situation if h(X ) were not a DBTF on the given tree, e.g., x,X,X; +X,.
However, it can be easily seen that this situation is impossible when all DC's on the lower level of
the tree satisfy conditions a) and b). Thus, g, = OR. which concludes the example of

determining g, by the application of decomposition charts.

To recapitulate, this decomposition method is an inherently sequential procedure where the
assignments obtained for a lower level are used to determine those for the next higher level. The

existence of all g, € G, k € K (conditions a) and b)holiding for all DC's) is the necessary and
sufficient condition for a function to be a DBTF on the given tree.

Definition of true responsibility

Let X be a binary tree, g an assignment realizing f ()1) and & a particular input vector (value of
X). The notion of responsibility of a node &, as a situation where f, = f in all position of a NC,
was introduced in the preceding section. An equivalent description of this would be to state that k
is responsible if and only if changing the value of f, would change the value of f- (One can
imagine an “experimental” determination of responsibility by cutting the line /. . injecting signal
values 0 and 1, and seeing if the tree output f follows the injected values.) For fixed g, the

responsibility depends, of course, on the actual input vector &. The root node is evidently always
responsible.

This concept is formalized as follows:
1. p(&) =1, forall &
2. pu(&)=1.iff p,(£)=1 and one of the following three conditions holds:

a) g, =LEFT or
b) g, = AND and f&)=1or
c) g, =OR and f,(£)=0.

3. p‘,(.f_f) =1, iff p, (f) =1 and one of the following three conditions holds:

a) &, = RIGHT or
b) g, = AND and fu(&)=1 or
c) g =OR and f,,(&)=0.

Take as an example the function f (X ) =XxX, +X;+x, in Table B2. We recall that
g, =AND.g,=OR and g, =OR. Setting £=1100 we find p, =1, p, =0, p, =1, setting
£=0110yields p, =0,p, =1, p; =1.

It can be seen that p, (5) actually depends only on those g, such that i is not a descendent of k

and on those components of & which are in X, = X — X, . This is equivalent to what was said

previously about responsibilities: node k is truly responsible precisely for the non-constant
columns in its decomposition chart. A generalized notion of responsibility is essential to the
operation of some adaptation algorithms presented in the following sections.
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Adaptation algorithms

With the final goal of implementing these algorithms in fast hardware, two approaches are
possible for adaptation of the binary trees: first, the node assignments can be determined in the
external computer and downloaded into the tree of fixed connections, and the second, the
determination of assignments can be done within the node elements themselves, resulting in
distributed-intelligence system. The tree nodes would be capable of gathering information directly
from their inputs and adjusting their behavior (assignment) according to the desired values of
h(X ) The nodes then become adaptive logic elements whose processing power and
interconnections with other elements are relatively limited. Adaptation algorithms are considered
in the sense of actions executed by such adaptive elements. In studying some of the algorithms
the resuits and notions (e.g., decomposition chart, responsibility) seen in the preceding sections
will be used. The advantage of the second approach is much greater speed of learning than is

possible with a general-purpose computer. The main disadvantage is the cost of special
hardware.

Figure B.5 shows the system configurations envisaged by the above two approaches. To
understand their operation, it will be useful to distinguish between the training set and the test set
of input vectors. The former is used to obtain the node functions; the latter represents subsequent
classification tasks on input vectors. Actual adaptation occurs only while elements of the training
set are presented (with the desired value of A); the node functions are fixed during the
classification (testing) period. The size of the training set depends on the application.

In the adaptive system in Figure B.5(B), each node k receives from its predecessor a signail s, ,
called heuristic responsibility, indicating whether & is zonsidered to be responsible for the actual

output fand “enabled” for adaptation during the presentation of the current input vector. Heuristic
responsibility is usually not equal to true responsibility defined in previous section.

Adaptation algorithms for DBTF

The method of decomposition charts is not directly applicable to a system with adaptive nodes
because it would be unrealistic to assume that a node has enough memory to hold the (possibly
very large) decomposition chart.

The method is, thus, modified so that while the input vectors are presented, the internal logic of a
node k gathers information relevant to its assignment, via the sequence of triplets [f“ . f,‘,,h(?,")]

presented at k’'s input at every new input vector £. This accumulation of information within k can
be done essentially with the aid of a few counters and associated logic or arithmetic circuits.
Adaptation algorithms can be viewed as an attempt to determine the nature of non-constant
columns in a DC. The main problem is that unless the sequencing of vectors is controiled by the
algorithm, it is difficult for a node to determine which column has occurred. On the other hand, the
lines of the DC can be readily distinguished by the values of ( Sus fk,). Thus, the processing
done by the nodes will have to include some §&rm of statistical analysis of lines (e.g., by counting
the occurrences of h(é) =0 and h(g) =1 in each line).

There are two types of algarithms:

a) All columns (NC and CC) are used in the search for the correct assignment. Such
algerithms will be called homogeneous since all nodes of a tree level adapt
independently from all others except their descendants. The remainder of this section

contains a typical example. The algorithm is demonstrated to work for any DBTF on
the given tree.



B-12

b) An attempt is made to recognize the NC's of a node using the states of nodes which
are not descendants, and these “tentative” NC's are used to find the node
assignment. The convergence of these responsibility-based algorithms has not been
proved, but they have been demonstrated to work much better than homogeneous
algorithms in approximating non-realizable functions in the non-disjoint case. Two
such algorithms are presented in the next section.

The following observation are made:

Observation 1: Since in a DC of a DBTF the NC's are all the same, there can be maximally two
different kinds of lines (e.g., the DC in Table B.3(A) has lines 0111 and 1111). Designate these
two types of lines in a DC by O and R, defining the line corresponding to the input pair (00) to be
of the type (J. When all lines are of the type Q, there is no NC. Otherwise, the line corresponding
to the input pair (11) is of type R.

Observation 2: The ones in lines O are a subset of the ones in lines R. Therefore line types can
be obtained from the numbers of ones and zeros in the four lines of the DC.

Observation 3: Lines of types O and R can be distributed in a DC in one of five possible ways, as
shown in Table B.4. The resuiting node functions are in the bottom line.

Table B.4 Line types in DC and the determination of node functions

column _, 1 2 3 4 5
line Ju Je Ky>K K,>K Ki<K K;<K K=K
index K>K Ko<K Ka>K Kao<K K=K

0 8] 0] Q Q Q Q Q
1 0 1 R R Q Q Q
2 1 0 R Q R Q Q
3 1 1 R R R R Q

g - OR RIGHT LEFT AND any

Observation 4: Direct counting of ones (i.e., occurrences of h(é’) = 1) by nodes would give the
actual number of ones in a line only in leaf nodes. In non-leaf nodes a DC entry generally
corresponds to several vectors £ (as in the example of Table B.2); hence different number of
ones may be obtained even in two lines of the same type. However, it is easy to see that if all

vectors £ are presented exactly once, the fraction of observed ones and zeros is the same for all
occurrences of a given line type.

Consider now only the cases where both line types exist. Let &, and z,,7 6{0,1,2,3}, be the

numbers of ones and zeros observed in line i and K, = u,/ z,. We observe that line zero being
always ) and line 3 always R,

K, <K, ( K; may be infinite).

Further, K, and K, must be equal to either K, or K, .Therefore, for some a >0, >0 we can
write
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2
u
K=§ ' _ oy + P

azy + P,

3

:l
=0

Lemma: Let Ky =1,/ zy < K; =u,/ z; with z,,14; >0, and u,.z; 20 .Then
K, <K <K,. (B.2)
Proof: We have
UyZ,y < Uz,
hence
Pu,zs + auyz, < fusz, + oz,

which leads to

YUy AU+ P, '

zy Oz, + Pz,
We prove similarly the second part of the inequality.

Inequality (B.2) can be used by an adaptive algorithm to determine the line types and thus the
node functions, sincefor i=1,2

K, < K ifflineiis of type QO

K, > K ifftine i 1. of type R.
One algorithm employs six counters Cy,. C,, C. Cl,. C°, C' per node, used to determine
s Uy ZH, Uy, Zlozi and Zlo u, respectively. T:..:se values will be accumulated during training

of a particular layer, consisting of one presentation of every vector & together with the desired

vaiue of h(&). Comparing K, and K, to K gives the required node functions, as shown in Table
B.4.

Correct adaptation depends, of course on correct subtree values ( j;,,f,‘,); therefore, in an n-

level tree, n training periods are necessary, first training the leaf nodes, and then those in the next
layer, etc. This was summarized as algorithm A1.

A1 (Homogeneous adaptation)

1) Set all counters in all nodes to zero
2) DOforlevels j=1,2,...,n
3) DO (possibly in parallel) for all nodes % in levelj (for a sequence of all vectors )

DO for every input vector :
calculate the outputs of all descendants of k starting at the leaves of the tree

chiange the state of node % as follows:
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Su fe h(g) Action

0 0 0 C'«C°+1

0 0 1 CeC'+1

0 1 0 C’« C*+1,Cf, «C§, +1
0 1 1 C'«<Cl1+1,C), « Gy, +1
1 0 0 C'«C"+1,C) «C +1
1 0 1 C'«C'+1,C, «Cl,+1
1 1 0 C'e«C°+1

1 1 1 C'«C'+1

END,;

Determine g, as in Table B.4.

END;

END;

A more general treatment of this algorithm is given in Armstrong and Bochmann (1972).

Adaptation for non-disjoint trees and non-realizable functions

The majority of practical pattern classification problems lead to Boolean functions of a great
number of variables. Generally, such functions can not be realized by any disjoint tree, nor by any
given non-disjoint tree. While it is clear that such non-realizable functions can not be synthesized
exactly, it is important to see if approximate synthesis is possibie.

In this section two algorithms are demonstrated which successfuily approximate on fixed non-
disjoint trees.

Disadvantage of Homogeneous Adaptation algorithm in non-disjoint cases is its homogeneity: all
nodes in the tree (or in a level) adapt in ignorance of what is happening in other nodes except
descendants and regardless of whether they are responsible in a given situation or not. It was
concluded that similarly to other complex learning algorithms, it is essential not to vary too many
parameters at a time; chances of successful adaptation will increase if a subset of nodes can be
found whose function is “important” for the synthesis of the desired output for a given vector,
adaptation being done only on this subset while the state of other nodes is frozen.

A natural indicator of importance of a node in the above sense appears to be its responsibility
P (5) introduced earlier. As it was defined, the responsibility of the left (right) successor of node
k depends on the opposite right (left) input of k, on £, and on whether & is responsible. Thus the
responsibility of any node can be determined by its predecessor, which is expressed by the
descending signal lines s, in Figure B.5(B).The information on s, is designated heuristic
responsibility (which may be different from the true responsibility o, as in A3). Heuristic
responsibility can be viewed in two ways: first as an attempt to approximate P in a correctly
trained tree; second, it is a signal that enables adaptation in node k.

Responsibility-based algorithms are those which allow only responsible nodes to adapt at any
time during the training. it's been shown in previous sections that p, =1 in an indication of node
k being in a NC. It can be shown that the intersection of any line with all NC in the decomposition
chart of a DBTF can contain only zeros or only ones. Therefore, if there was a way of knowing the
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correct value of p, even in an untrained tree, and if the functions were limited only to DBTF, two
flip-flops (one for each line 01, 10), set by the value of h(g) in the first NC encountered, would

suffice for the determination of g, . Since none of this conditions is generally valid, a reasonable

choice seems to be to use one up/down counter in each line (01 and 10), indicating in its sign bit

whether ones or zeros are in majority. Up (down) counting occurs only if the responsibility signal
indicates that the column is assumed to be a NC.

Defining s, = p, leads to adaptation aigorithm A2, where the nodes contain sufficient logic to

generate p, and two counters (;, and C,. The instantaneous state of these counters
determines at all times g, .

A2 (True responsibility Algorithm)
1) Set all counters to zero

2) DO for a “long” random sequence of input vectors &:

a) calculate the outputs of all nodes starting at the leaves of the tree
b) determine sk(é) = pk(f) for every node in the tree as in Section, starting at

the root
c) change the states of the nodes as follows
Sk (= Pk) Ju Jir h(g) Action
1 0 1 0 |GG —1
1 0 1 1 C,, < C,, +1
1 1 0 0 Cpp < Cpp—1
k 1 0 1 | GoeCpo+1
d)set g, to

AND if G, <0,C,<0
LEFT if C,<0.C,,>0
RIGHT if C,,>0,C, <0
OR ifC,,>0,C,>0
END;

This algorithm (implemented with limits on C;,, and C,) is quite unsuccessful, it has the
drawback that generating o, in the indicated way does not yield in an untrair.2d tree its “correct”

values (i.e., g, as they would appear in an already correctly trained tree). Having these correct
true responsibilities would be, of course, the ideal guide for efficient training. A2 tries to use the
incorrect responsibilities and hopes that after some amount of training they will bring about some
improvement in node assignments which can, i turn, cause more correct (statistically)
responsibilities, etc. it can be shown that any single wrong node assignments in an otherwise
well-trained tree will be readily corrected by A2. On the other hand, A2 has the tendency to “lock
in" local optima even if better solutions are attainable through simultaneous changes in several
node assignments at once.
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A significant improvement over A2 can be achieved by excluding from the computation of s,,, s;,
the influence of the (possibly wrongly assigned) g, and replacing it by an assumption based on

the (correct) value of desired output h(é"). Define the situations ( S =0, h(§)= s, = 1) and

( Jo=1 h(¢') =0,s, = 1) as errors (made by k, for the input &) of types 0 and 1, respectively.
Take the point of view that in these situations the left successor k, must be heuristically
responsible (s, =1) and should adapt accordingly to eliminate the error. Further, node X, will

also be held responsible whenever the value of f,, (0 or 1) occurs that caused the /atest error
(i.e.. until the occurrence of an error of the opposite type). By similar reasoning we determine
independently s,, based on the latest error in f,, .

A little reflection reveals that this way of determining heuristic responsibility is equivalent to
assuming that on an error of type 1, g, becomes AND and stays that way until an opposite error
is encountered which changes the assumed g, to OR. These assumptions are made
simultaneously by the logic for generating s,, and s,, and thus may be contradicting each other
at any time.

In a practical implementation each node would contain two flip-flops E, and E, to remember the
type of latest error observed in f;, and f,,. Thus E, <1 when f,, =1, h(é-’) =0,and 5, =1;

E, «- 0 when f,, =0, h(ﬁ) =1,and s, =1. E, is controlled similarly by f;,. The values of E,
and £, can be initialized arbitrarily. Now we can formulate the “latest error” algorithm:

A3 (Latest Error Algorithm): As A2 except for step 2b):

2b) Set s, =1 for k the root node. For every node, starting at the root update E, and Ej if
s, =1;and

determine s,, for the left successor of node k as s, = s, A(f,, = E)

and for its right successor as s;, = 5; A ( Ju= E,,)

While it is difficult to give precise arguments or proofs justifying A3, a simple example will illustrate
its advantage over A2.

Lets consider a sequence of nodes arranged as in Figure B.6. Considering x;x,x,x, as a four-bit
binary number x, the task for the tree is to learn the function fwhere f(x)=1 ifand only if x>y
for some fixed threshold y. Lets choose y =1010 (ten in binary) for concreteness. The input x,

is an “error” in the sense of A3 only for the inputs x =1000 and x =1001, when the desired
network output is 0. Hence as soon as one of these vectors is presented during adaptation, the

latest error E, for x, is fixed at the value 1. At this adaptation step, and those following, the right
descendent, node 2 is heuristically responsible if and only if x; =1. This in effect, imposes the
task of learning the three-bit threshold x,x,x, =010 on the right subtree of node 1, since for

inputs with x; = 0, the right subtree does not adapt. By repeating the argument for node 2, it can
be seen that the right subtree of node 2 is responsible if and only if node 2 is heuristically
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responsible (x;=1) and x, equals the latest error on x,. Erors for x, occur for
XX,X;x, =1010 and 1011 when the desired network output is 1: so node 3 is heuristically
responsible if and only if x; =1 and x, =0. Thus the task this imposes cn node 3 is to learn
XX, 210, which leads to node 3 becoming a LEFT function, independently of what function is

realized by nodes 1 and 2. Next, whenever node 2 is heuristically responsible (.\'_, = l) and when

its input pair is 01 (cases x=1100 and 1101), ,or when its input pair is 01 (cases x=1010 and
1011), a 1 output is desired for the network. This leads to node becoming an OR function
independently of what is in node 1. Finally, whenever node 1 has inputs 10 or 01 the desired
network output is 0, and node 1 adapts to become an AND function.

Practical applications of early Adaptive Logic Networks

The new approach to high-speed pattern classification was described by Armstrong and Godbout
(1974). Functions were synthesized in form of Boolean trees formed of two-input, one-output
elements capable of realizing AND, OR, LEFT and RIGHT operators. A theory is developed
and computer simulation experiments are described involving applications ranging from pattern
recognition to performing key-to-address transformations for information retrieval. The former type
of application is one which critically depends on so-called “smooth extrapolation” or generalization
on the data not used during the training, while the latter type does not necessarily require it. The

practical applications were recognition of handwritten numerals, numerical taxonomy and medical
diagnosis.

A typical result from this study was 91.7% correct classifications of the test set in the well-known
problem of statistical classification of iris plants. The problem is :defined as follows:

e the data describe 150 iris plants, 50 in each of three species,
e each plant has four measurements (petal length and width and sepal length and width),

e the goal is to train the network with a part of the data set (training set) and to achieve the
best classification on the rest of the data (test set).

Since the measurements of the flower's dimensions are not usually expressed in binary numbers,
the first step in applying tree networks to this problem was to find a way of representing the
numerical measurements as bit vectors at the inputs to the tree. Although any binary coding would
provide the required information, a better scheme using knowledge that these bits represent a

numerical quantity was applied. First the range of each measurement was divided into 2”
subintervals such that the frequencies of occurrence of measurements in all of these were

(roughly) equal. The choice of p is a question of judgment, but in any case when the ordered

sequence of subintervals is represented by the ordered set of binary integers from 0 to 2" —1
each bit of that representation carries one bit of information in the Shannon sense.

Another application of adaptive tree networks was in statistically more difficult task. The problem
is defined as follows:

+ the data describe 299 patients, having one of six diseases,

e each patient is presented with 11-dimensional Boolean vector corresponding to presence
or absence of eleven symptoms,

e the task is to classify the subjects according to which one of six diseases they have.

In this example the adaptive tree networks in their original form could not match the best results
obtained using classical statistics which were 52% and 46 % correct classifications for training on
the whole data set or just on a half of it respectively. However, using three majority votes over
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several tree networks to compute each bit resulted in 45.2% and 52% correct classifications after
training on halves of the data set and test on the another half.

A maijority votes proved to be valuable technique for improving accuracy of ALNs. Instead of
having only one tree for evety bit of the output, a number of trees can be trained for that task.
These trees then vote (majority wins) on what the output bit should be. This helps to eliminate
errors caused by peculiaritie$ of individual trees.

Latest error adaptation algorithm (A3) was applied (Armstrong and Gecsei, 1979) to two generally
nonrealizable functions, which are approximated by learned BTF. The first problem is defined as
follows:

o the data consisted of 400 Boolean variables representing a half-tone image on a 20 x 20
grid

» the images were obtained by taking a vertical div'-ling line and generating black picture
points to the left of this line with probability b, and to the right of this line with probability
b

e the vertical dividing line can be in any of the 20 positions except numbers 5 and 15 from
the left

e the task is to determine whether the dividing line is between positions 5§ and 15 or not.

The best results were obtained when majority votes over several 1023 element tree functions
were used. In the case b,=0.35. b,=0.65, the human eye has difficulties to detect the dividing

line. 15 of 60 trained trees with the best results were selected and used in a majority vote system.
They were able to correctly classify 85.7% images.

in the second example, character images were created by applying distortions on a set of
synthesized 16 x 16 characters obtained from a text editing system. The distortions involved
translation, rotation by an angle between and degrees, and inversion of individual-black or white
dots with probability (binary symmetric channel or BSC noise). There were several tasks ranging
from recognition of single character to the recognition of several characters. Overall results
showed that majority votes improved performance of the recognition system in all cases. Up to 15
of 60 trained trees wese used in majority votes in the most difficult task resulting in 96.6% correct
recognitions. Results siso confirmed previously stated theoretical claims about insensitivity of the
BTF to noise.

Majority votes

According to Armstrong and Godbout (1974), it is advaritageous to compute the majority value
over several BTF in order to obtain good generalization from training to test sets. In principle,
larger tree, a larger training set, and a longer training period, would be capable of producing the
same effect. Taking majority votes is an easy way to improve extrapolation based on sparsely
distributed training data. It saves creating larger training set and adapting for longer time to obtain
the same quality of performance by a single tree

ATREE version 3.0

Atree 3.0 is based on more recent developments by W.W. Armstrong and M. Thomas (1994) and
deals with continuous quantities instead binary numbers. In Atree 3.0, the logic trees containing
AND and OR operators have been furnished with input operators in the form of Linear Threshold
Elements (LTE). The direct consequence is that with the new ALN design it is possible to apply
ALNs directly to real values and thus define piecewise linear approximations of functions. This
approach is not restricted to approximating functions, but can approximate relationships of more
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general types represented as sets of data points or samples, which is important for pattern
recognition applications.

The fundamental difference between Atree 2.7 and 3.0 versions is the way ALNs are used to
solve problems (Armstrong and Thomas, 1994). instead of computing an output as a function of
some inputs, ALNs in Atree 3.0 are used to represent relations among inputs. The Atree 2.7
“output”, in the functional sense of the word, now becomes just another input to the ALN, which

computes whether or not all of its input quantities are related in a certain way. This subtle yet

fundamental change in paradigm allows much greater flexibility than traditional neural networks
architectures:

e The inverse of the function can be derived from the learned relationship without retraining.

e Constraints on the relations are easy to enforce, which allows a priori knowledge to be
added into the systern before learning begins. This is vital for safety critical applications,
where design of safe systems is easier than testing to see if a system is safe.

An ALN is used to approximate a relationship among # inputs/outputs in an n-dimensional space.
Such a space is called a region, and the ALN is called approximant. Each dimension in the space
is called a variable of the region. Variables and approximants in a region may have subregions

(subsets of the space) which specify different constraints on the variables and approximant (see
Figure B.7).

Approximants

There are two types of elements used to form relation approximants in a region:
e logic gates {AND and OR), and
e linear threshold elements.

The logic gates may have an arbitrary number of iogical inputs (fanin), and produce a logical

output. The LTE have real valued inputs (represented by IEEE 64-bit double precision floating-
point numbers), and also produce logical output.

Logic Gates

Logic gates can be AND or OR and they can have an arbitrary number of Ic jic inputs. An OR
gate has logical output value of zero if and only if all of its inputs are logical zero The equivalent
linear expression for an OR gate with » Boolean inpuis is x, + x,+...+x, = 1. An AND gate has

a logical output value of one if and only if all of its inputs are logical ones. The equivalent linear
expression for an AND gate of n Boolean inputs is x| + Xx,+...+X, 2 1

Linear Threshold Elements

The basic element of approximation is the linear threshold element, which is very similar to the
Perceptron developed in the 1950's. The LTE performs additions. multiplications and a
comparison to zero of the form w, + wX; + wyX,+..+w,X,, 2 0. it has a logical output value of one
if this inequality is satisfied and a logical value of zerc otherwise. All input points (x,,X,,....Xx,)

that satisfy the inequality (thus producing output equal to orie) are on one side of the hyperplane
Wy + WX, + WX, +..+w,x, = 0, foerming a half-space (see Figure B.8).

The LTE fits the data presented to it during training by performing a least-squared error fit, similar
to linear regression. Thus, the most elementary ALN which has only one LTE is capable of doing
linear regression, but with possibly less accuracy than standard statistical package.
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General ALN structure

General structure of the ALN usually includes a tree of several layers of logic AND and OR gates
that have linear threshold elements as inputs (see Figure B.9). The inputs to the linear threshold
elements are the inputs and outputs of the problem. The half-spaces formed by the LTEs are
joined by the logic gates in intersection (AND) and union (OR) operations. This allows a
piecewise representation of data sets or functions.

The goal of training an ALN is to recognize that certain input/output combinations are in a
relationship to each other, while some other are not. The way an ALN represents a function as a
relation is as follows:

“All points that lie on and under the graph of the function (x;,x,....,x,) will be classified s logical
one, while all other points are to be classified logical zero.”

Implementation of the LTE on simple classification problems

An LTE can be used as a linear classifier such as one presented in Figure B.10. In this exampie
an LTE sets the simple hyperplane which separates two sets of data points in multidimensional
input/output space.

Implementation of the LTE on complex classification problems

in more complex classification problems, such as one presented in Figure B.11, the resulting ALN
is an 4.\'D combination of two hyperplanes, sothat ¥ = E(11,.

ALN approximation of non-linear functional relationships

In the case of problems involving non-linear functions, the piecewise linear approxirnation is
introduced. The resulting ALN tree may have only one logic gate to process outputs from linear
threshold elements. For convex-type functions an AND logic gate outputs the intersection or
minimum of all linear threshold elements in a given region (see example in Figure B.12).

For concave-type functions an OR logic gate outputs the union or maximum of all linear threshold
elements in a given region. For functions having both convex and concave parts, the resuiting
ALN tree must have at least two layers, one of each AND and OR logic gates (Figure B.13).

Controlling the fitting accuracy of the /inear threshold elements

Using a value calied learning rate, a linear threshold element will adjust its weights to correct
some of the error in its fit of a data point during training. The higher the learning rate, the more it
will correct itself to fit the point, but correcting too much may change the fit of the linear element to
other data points it has previously been responsible for. It may lose its responsibility for some
points (responsibility which will be assumed by other linear elements), and it may gain
responsibility for fitting new points that it hasn’t seen before.

Uniike a standard linear regression that fits a fixed set of data points, a linear threshold element
has a constantly changing set of points that it is trying to fit. Lowering the learning rate slows down
adaptation, but makes the fit more accurate. The closer to zero the learning rate is, the more
accurate the least-squares fit.

Constraints and ALNs

Having elements with adaptive weights only at the bottom level of an ALN, and knowing that there
is only one linear threshold element responsible for an input point at any time, it is easy to place
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constraints on the ALN relation approximant that will force it to learn only relations of a certain
type and with a certain accuracy. This is equivalent to including an expert knowledge in the
training process which can drastically speed up learning of relations, as well as provide an
element of safety in design. Constraints on the ALN can be of the following types.

Range constraint which restricts possible values that an input of an ALN can take. This
constraint is used to help decide resporsibility when the input space is partitioned into several
smaller regions, each with its own set of constraints on variables and approximants.

Epsilon constraint which helps to define the maximum desired accuracy of an approximant in a
part of the input space. The learning algorithms will not waste time trying to adapt weights on
variables that are already being fitted to a precision within the epsilon tolerance.

Monotonicity constraints are used to restrict the possible values that a weight on a variable can
take in a linear threshold element. Monotonicity can be:

e free - in which a weight is allowed to vary freely;

e decreasing - in which a weight is only allowed to be non-positive;

e increasing - in which a weight is only allowed to be non-negative; and
s constant - in which a weight is only allowed to be zero.

Slope constraint is also used to restrict the possible values that a weight on a variable can take
in a LTE. This constraint allows precise control of the partia! derivative of the output variable with
respect to the variable being constrained. Since the linear thireshold approximant guarantees that
the weight of the output variable is 1.0 (for monotonic increasing cutput variables) or -1.0 (for
monotonic decreasing output variabies), a bound on the partial derivative simply becomes a
bound on the magnitude of the weight on the constrained variable.

Advantages of Atree 3.0 over backpropagation-type neural networks

Reduced number of calculations during training and evaluation

The “greater than or equal to” threshoid on the linear expressions for both logic and linear
threshold elements is called a hard-limiter and it replaces the sigmoid transfer function used in
backpropagation neural network elements. The obvious advantage of using a hard-limiter is in
speed of evaluation: a comparison operation is much faster than computing a sigmoid or even
doing a table lookup to find a precalculated sigmoid value. The not so obvious advantage is that
not all inputs of a logic gate have to be evaluated when using a hard-limiter. As soon as a zero
input to an AND gate is found, we know the AND gate output is zero. As soon as a one input to
an OR gate is found, we know that the OR gate output is one.

The effect of using hard-limiters is that the entire ALN does not need to be evaluated to determine
the cutput of the tree. This contrasts with backpropagation-type neural networks, where every
input of every layer must be evaluated before calculating the output.

Simplified adaptation during training

During the training, a logic gate employs a type of heuristic responsibility to determine which of its
children is responsible for fitting a particular input point. This works its way down the logic tree
until a single linear threshold element is made responsible for a data point. The linear threshold
element adjusts its weights to reduce the square error of its fit to the point.

The fact that only one linear threshold element is made responsibie for a data point is another
difference between ALNs and backpropagation neural networks. The hard-limiters used in ALN
elements make possible discrete choices of responsibility. In the backpropagation algorithm, the
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use of sigmoids results in distribution of responsibility for error over all weights in the system (in
theory at least).

An ALN limitations

In the two dimensional example illustrated in Figure B.14 with inputs x, and x,, a trained ALN will
output a logical one if an input pair (x,,x,) lies anywhere on or below curve, and a logical zero
elsewhere. To find the value of the function x, = f(x,). we can fix the input X, to, say, 12.5 and
try evaluating the ALN with successive x,'s until we find the x, that causes the ALN output to
change from a logical one to a logical zero with a slight change of x,. !n the example, the value of
x, that causes such a change is 16.2. In Atree 3.0, such an evaluation procedure is performed by
a binary search which can work because the value of the ALN changes only once (from one to
zero) as - “+wes from —o0 to +00. It can be said that the output of the ALN is monotonic
decreax.: + it respect o x,. The number of steps of binary search is determined by the
precisivr °. _uired (derived from the number of quantization levels and the range of values of x,.

In the example illustrated in Figure B.14, the inverse of x, = f(Xx;) is not a function, since there

may be many different values of x; that correspond to a single value of x,. Using the ALN
relation approximant, we would find that the ALN output may change from zero to one and back
again many times as we increase x; from —o0 to +oo for a fixed value of X, . In this case we can

not use binary search to evaluate the inverse because Atree 3.0 does not have a method for
evaluating inverses that are not functional, even though the relational approach has no difficulty
with the representation of the inverse (one would just have to add parameters to binary search to
start the search in a subinterval). In practical terms this limitation means that in the specification of
the parameters for ALN training there should be at least one functional output which will be used
for evaluation of the trained ALN tree.

INDUCTIVE LEARNING ALGORITHM (IL)°

The inductive learning program EMPIRIC is an implementation of the hierarchical mutual
information classifier algorithm of Sethi and Sarvarayudu (1982). This algorithm forms a decision
tree by maximizing the average mutual information gain at each partitioning step. This section will
explain these concepts and their implementation.

in information theory, information is regarded as the removal of uncertainty. Thus, the occurrence
of a likely event conveys less information than that of an unlikely event as there is less a priori
uncertainty of its occurrence. If an alphabet X (all possible source outputs) consists of J symbols,

the j-th symbol occurring with a probability of p,, then the amount of information (in bits)
associated with j is:

/,=-log,p,
Shannon’s (1948) entropy’ is defined as:

SMost of the information in this section has been copied from the Ph.D. thesis by Ben Heller
(Heller, 1992) since the program EMPIRIC, which implements inductive learning algorit::m and
which was developed by Ben Heller as a part of his thesis project was used in this study without
any modifications.
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¥ 1_ <
H(O =2, p,log. — = =2 p, log.p,
=1 i 1=1

’

Note: while it is generally accepted to write H(X'), H is not a function of x, but of the
probability function p (Blahut, 1987).

In information theoretic terms, entropy is a measure of the average amount of information gained
per symbol received in an alphabet, it can also be considered as a measure of the uncertainty as
to the identity of a symbol before it is received. If all symbols are equally likely than the a priori
(before the: Zymbol is received) uncertamty as to the symbol is a maximum; the entropy being
equal to thie log of the number of symbols®. If one symbol becomes much more likely than the rest,
then the uncertainty falls and the entropy asymptotically approaches zero.

Mutual information

If a communication channel has an output alphabet Y, with a probability P, that the
j -th symbol of X was transmitted, given that the k -th symbol of } was received, then the
uncertainty as to j on receiving k is:

H,,=-log, P,

J

The mutwal information is the reduction in uncertainty, i.e. the a priori uncertainty as to j less the
a posteriori uncertainty upon receiving k:

P

1,,=-log, P, +log, P, =log,
]
The average mutual information is then the product of /,,and the joint probability of { ik
occurring, summed over all possible (j,k).i.e:

K J P
I(X\Y)=3 3 p,.log: 7

k=1 ;=1 ’

The inductive learning protlem is to choose a threshold / on an attribute «¢ to discriminate

between a set of examples Z with class values X . Y is obtained by applying the production
rule:

' IF(a > 1) THEN(y = 1)ELSE(y =0

to an example z with class value x, i.e. the two possible values of Y are either 0 for attribute
values below the threshold, or 1 for values above it. K is equalto 2, J is equal to the number of
classes. I(X|Y) is then the average mutual information gain for threshold ¢ on attribute « at

node N . By comparing this value with those obtained for all possible thresholds on all possible
attributes at t=2t node, it is possible to select the best discrimination rule (i.e. the rule which gives

sSo-called because the function is the same as that used in statistical mechanics for the
thermodynamic quantity entropy.

8When the logarithm is to base 2, the entropy is the maximum number of bits required to perfectly
encode the alphabet.
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the greatest gain in information/reduction in uncertainty) at that node. In L& absence of true
values for the probabilities, estimates are made based on the data in the training set.

To obtain the average mutual information for all the nodes in the decision tree T . the product of
I(X|Y) atanode and p, , the probability of being at that node must be summed for all nodes:

K
IXIN) =) p L (X,IL)
k=1

Error rates
If the decision tree is to have a probability of classification error F,, for J classes, then we can
calculate / the minimum average mutual information required, as follows:

mn !

The average mutual information may be written:
I(X|Y)= H(X)~- H(X]Y) (B.3)

The maximum value of H(X]Y), which occurs if all errors are equally unlikely, is given by
inequality:

H(X|Y)< H(P)+ Plog,(J-1)
substituting this in (B.3):
I(X|Y)=z H(X)—- H(F)—- F.log,(J-1)

This represents the minimum gain in mutual information that will be provided by a decision tree
having an error rate P.. Thus, expanding for H(X) and H(F,), becomes:

J
I =—2.p,log, p,+ P.log, P.+(1- P)log,(1- P)— P.log,(J - 1)
a=1

Once the cumulative mutua! information provided at each node exceeds this value, the decision
tree has achieved the required error rate.
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COMPUTER
ANALYSIS
OF
TRAINING
SET GIVES
NODE
ASSIGNMENTS ’

’ ¢ fk‘} ke E ‘.
| i T 1

g
v -~ s

TEST SET OF VECTORS TRAINING SET TRAINING AND TEST SET ~ DESIRED h FOR
AND DESIRED h VECTORS TRAINING SET

(a) {b)

Figure B.5. (A) Computer-controlled generation of assignments. Node functions g, are stores in

memory and communicated to the tree. (B) System of adaptive elements. Each
element receives two function values from its successors, a heuristic responsibility

signal s, from its predecessor and desired tree output value h(§) (last two only

during the training). Assignments g, are generated in each node from the above
signals.

X3

X2

Figure B.6. Tree for threshold function x 2 y . X 1 xo

(from Armstrong and Gecsei, 1979, with permission obtained from W.W. Armstrong)
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Figure B.7. Hierarchical decomposition of the input/output space into regions
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Figure B.14. An ALN approximation of a complex function which does not have inverse function.
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Appendix C : PROGRAMS DEVELOPED FOR THIS
THESIS PROJECT

HEX_FILT.EXE

This program is used to low-pass filter data stored in the Axotape FETCHEX 5.2 data files. It is
written in programming language C. It does not change the data file format, which means that its
output file is in the same FETCHEX 5.2 format and the filtered data still can be accessed by
Axotape program. The program implements low-pass, zero-phase shift, dual-pass, fourth-order
Butterworth digita! fitter (Barr and Chan, 1986) to selected data channels stored in a file.

To use the program, the DOS command in the following syntax should bz issued:
hex_filt Original_Axotape_file_name Filtered_Axotape_file_name <Enter>
where.

hex_filt is the name of the executable form of the program which should include tne full
path if the program is not in the same directory as the data file and if the program'’s path is
not listed in the PATH command of the computer's AUTOEXEC.BAT file;

Original_Axotape_file_name is the name of the Axotape FETCHEX data file which
should include the full path if the data file is not in the same directory where the command
was issued; and

Filtered_Axotape_file_name s the name of the new filtered data file which should
include the full path if the ne'v data file was to be created in a different directory from the
one in which the command was issuid.

HEX_ASC.EXE

This program reads the specified Axotape FETCHEX 5.2 data file and converts it intc ASCIi data
file of the following WALKON format:

ChannelFile N
tChannel_1_Name! u

tChannel_2_Name! u

1Channel_N_Namel u

X, X, . Xx
AV VO P
‘\'.\II ‘\'\!3 ‘\'.\l\'

END
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where:
N is the total number of channels in the data file;
Channel_N_Name is the name of the Nith channe;

H is the code for particular channel type and it can take the following values: 0 - for “Not
Used", 1 - for “Domain”, and 2 - for “Codomain”;

X, is the fth data sample of the Jth channel;

M is the number of samples in the file;

ChannelFile and END are words used to mark explicitly the file type and the end of the
file respectively;

exclamation mark (!) is used to delimit the data field for the name of the channel and it is
the only character that can not be used as a part of the name of the channels;

all information in the same line of the header is separated by single space character and
the data columns (data channeis) are separated by single Tab character.

To use the program, the DOS command in the following syntax should be issued:

hex_asc Axotape_file_name ASCII_file_name <Enter>
where:

hex_asc is the name of the executable form of the program which should include the full
path if the program is not in the same directory as the data file and if the program’s path is
not listed in the PATH command of the computer's AUTOEXEC.BAT file;

Axotape_file_name is the name of the Axotape FETCHEX data file which should include

the full path if the data file is not in the same directory where the command was issued;
and

ASCII_file_name is the name of the ASCII data file which should include the full path if

the data file was to be created in a different directory from the one in which the command
was issued.

In addition to its primary function, the program can be also used to decimate the Axotape data file.
After reading the header of the Axotape data file and presenting it on the computer screen, the
program asks for the reduction factor, which should be a non-zero integer. No decimation
(reduction factor equals to one) is assigned by default, which means that if decimation is not
required, it is enough just to press on Enter key to proceed.

PROGRAM “WALKON”

Program’s Concept

Program WALKON contains all functions that are not grayed in Figure 2.8.1. Data acquisition and
storage functicns are done in advance using Axotape system (Axon Instruments, Inc) and real-
time control was not implemented in this program. It can retrieve and save ASCII files in specific
format, which will be called for simplicity “Walkon" format and which is described in previous
section. The program can also import data from ASCIl files prepared in matrix form, where the
signal channels are organized in columns separated by Tab character, and samples in rows.
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funct.ons can be activated by selecting an appfoptiate icon on the customized toolbar. Since the
program uses extensively MS Windows GUI {Graphics User Interface), the primary human
interface to the program consists of the pointing device {computer mouse) and the computer
screen. Computer keytoard is mainly used to enter or edit character-based information. The
program has an extensive context-sensitive on-line help which can be used mainly as a reference.
Program tutorial is planned, but it is not yet realized.

Program Requirements

Computer: Any 385, 486, PS/2 or Pentium computer that will run Microsoft Windows 3.1 or higher
in Enhanced Mode. At least 4 MB RAM is required, 16 MB suggested if processing large data sets
and training large ALKNs.

Software: an instatied copy of Microsoft Windows, version 3.1 or higher.
Display: any Windows-supported video system of VGA or better resolution.

Mouse: any pointing device supported by Windows. Although the program can be _r=rated
entirely from the keyboard, three-button mouse with double-click emulation on a middle buiton is
recommended for optimum convenience and speed.

Windows Conventions
* Aclick means a single press of the left mouse button.

e Adouble click means two clicks of the left mouse button in rapid succession.

e Dragging the mouse means clicking and holding the left button while moving the mouse in
the desired direction.

* The active window is the window having a highlighted border and title bar.

Program Installation

The program is stored in subdirectory WALKON on the diskette contained in a pocket on the front
cover of this thesis. To install the program, start Windows, start File Manager, select the drive in
which is the installation diskette, double click on the folder representing subdirectory WALKON,
locate the install program INSTALL.EXE and double click on its name. Install will prompt you for a
home directory for WALKON 2.1. It will uncompress the distribution files to that directory, and will
create a Program Manager group for WALKON 2.1.

Running the Program

To start the program, doubie click on the WALKON icon in corresponding program group of the
Program Manager. Opening screen will show up, such as one iliustrated in Figure C.1.

The program has the following menu groups and items:

File
New file
Open file
Save file
Savefile as
Preferences
Import V.1 file
Import text file .
Export text file
Exit
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Edit
Cut
Copy
Paste
Delete
Channel
File Encode
File History Points
Stack
Compare
Differentiate
Shift
Truncate
Threshold
ALN
New
Edit Parameters
Train
Evaluate
Window
Cascade
Tile
Arrange icons
Close ali

(titles of currently open windows)
Help

index
Using help
About

Customized toolbar has icons which are linked to the following functions:
e About: Display version and copyright information;
e Open: Locate and open channel or trex iles;
¢« Save: Save current chanr.zl file;
e Cut: Rerapve a channel from current file and put it into clipboard;
o Copy: Copy a channel from current file and pu! i .:lo clipboard,;
e Paste: Paste a channel fro:%: clipboard into current file,
o Stack: Display all the chann=ls from the current file,
e Train: Train or retrain an ALN;
e Evaluate: Evaluate current ALN;
s Help: Display an index of on-line help topics;
o Exit: Exit the program..

Data manipulation functions

Data retrieval can be done either by using Open File and Import data functions located in menu
group “File” or by single click on the Open icon on the toolbar. These functions are standard
Windows functions which are described in every MS Windows user's manual. After the data are
retrieved, new data window opens and the functions and parameters of the signal preprocessing,
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quantization and encoding become available in form of customized spreadsheet (see Figure C.2).
Signals are caliled channels and they are organized in rows of the spreadsheet. Their
characteristics and functions that can be performed on, or with a single channel are organized in
columns. The first column is an icon used to display single channel. Next field is channel name,
which can be edited. The third column contains a button entitled Encode which is used for single
channel encoding. The fourth column is a pull-down list for selection of channel type in ALN
training, and the fifth column contains button used to define history points (past samples) in a
single channel. Those functions that can be performed on multiple channels are grouped under
menu title “Channel”.

Signals can be diagramatically displayed in separate windows or stacked together in single
window. To display a single channel, click on the first icon in the appropriate channe! row of the
spreadsheet. This function will open new Graph window as the one shown in Figure C.3. This
form of graphics display is very useful to set relevant history points, which can be displayed in
different color or hidden.

To display all of the channels, click on the icon Stack. The active window will be maximized and all
channels will be displayed stacked one above another. An example of five signals stacked is
shown in Figure C.4. This window allows for displaying history points and truncating the file. it also
displays the name of the channel and the current coordinates of the mouse cursor at every
instant, which can be used to decide what to truncate from the current file and where.

Previous samples in single channel can be defined using function Set Hpoints or in all channels
using menu function File History Points. A dialog box will open with options to add new or delete
existing history points (see Figure C.5).

As mentioned above, thoss «'=*ory points already set can be viewed, either in single channel
display or usirg Hransk functics (see Figure C.6).

Parts of the dz=~ =& can be ut out using function Truncate Channels. Truncation is reflected to
all channels in = @zl #» 2ue to the restriction that all data samples have same channels.
Truncating pans of ¥ signal that are of no interest for particuiar ALN training session can be
done either from wiivn Stack window (see Figure C.7) or using the function Truncate from menu
group Charnels. History points are produced by shifting original signals to the right, so that some
of the samples at the beginning and at the end of the file are filled with zeros. These samples
should be cut out from the data file before the training. Truncation is also required when shifting
domain signals to the right for future events prediction.

A type of encoding and related parameters can be specified using function Encode. Two types of
encoding are available: Random Walk and Unary (called Linear in the program). After the type of
encoding is chosen, various encoding parameters can be applied to different channels or all
channels can be encoded the same way using File Encode function located in menu group
“Channel”. Figure C.8 illustrates Random Walk type of encoding applied to a single channel.
Parameters that have to be specified are: Minimum, Maximum, n.. "ber of Quantization levels,
binary - ~utor Width, and a Step Size. Graph in an Encode dialog box automatically displays the
signa: .- id corresponding quantization levels.

The second type of encoding available in the program iz < ‘nary fLinear) encoding. It is illustrated
in Figure C.9. The parameters for this type of encoding are displayed in the same dialog box,
described for Random Walk encoding. In this type of encoding the number of Quantization levels
is the most important parameter because it also defines the width of the binary vector. Single
channel encoding dialog bex zlso provides display of the signal and quantization levels.

In addition to uniform distribution of the quantization levels, Unary (Linear) encoding allows for
arbitrary positioning of quantization levels (see Figure C.10). Levels can be ¢pecified numerically
or by using a pointing device (computer mouse). This feature enables a researcher to specify
uneven distribution of quantization levels, which can be used to =2xploit more efficiently same
number of quantization levels.
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To produce various delays between Domain and Codomain, which is useful for prediction of future
events, there is a function Shift located in the menu grcup “Channel”. Another function, calied
Differentiate replaces the original signal in the selected channel with differentiated signal. These
two functions have similar user's interface, illustrated in Figure C.11. To produce differentiated
channel and at the same time to keep the original one, is possible by reproducing (Copy and
Paste) the original channel before one of the copies is differentiated.

Standard MS Windows functions grouped under menu Edit apply to channels. They enable the

user to Cut, Copy and Paste channels, one at the time. The same functions are available as icons
in the toolbar.

ALN-related functions

To define input data set for ALN training, each channel should be characterized either as Domain,

Codomain or Not Included. This function is available in Channel Type column of the data file
spreadsheet.

After the data set is prepared for training, a New ALN can be selected from "ALN” menu. Training
parameters are available in two dialog windows. In the first one the number of presentation~ of the
data set to the learning algorithm, called “# Epcc1” and the allowed training error, called “%
Correct”, are selected (see Figure C.12). The same dialog window lists ALN tree parameters,
which can be accessed by clicking on the button marked Tree/Func Param’s.

~he second dialog window gives access to the ALN tree parametsrs (see Figure C.13). Here, the
user specifies ‘# Leaves”, which defines the size of each binary ALN tree, and “# Volers”, which
defines the number of parallel trees that will be trained to produce the same Codomain bit. Both
windows list all Domain and Codomain channels and the second one still allows for changes of
channel status (Domain, Codomain, Not Included).

After all training parameters are decided, the actual ALN training can be started. During the
training, a message window reports on the current training Epoch number and the training
progress. As s00i* as the number of correctly learned bits reaches the preset training error, the
training is stopped and the total training time is displayed in the window (see Figure C.14). This
window can be displayed always on top of the other open windows, which may be useful for

monitoring the ALN training while working in some other program in Windows pseudo multi-
tasking environment.

In addition to training new ALNSs, the program can be used to retrain existing ALNs with the same

or new dat set. Trained ALN trees are saved in binary format and they can be retrieved and used
for evaluation, or retrained.

To ussess the performance of thw iriined ALNs on the training set, they can be evaluated using
the function Evaluate shown in Figure C.14. This function produces new data set and new
spreadsheet which consists of only one channel automatically named “Resuilt:

actual_channel_name”. A restored signal from Codomain, produced by ALNSs is placed in that
channel (see Figure C.15).

To compare original set of values from the Codomain and the one produced by ALN, there is a
function Compare located in menu group “Channels”. This function can oparate enly within one
data file. Since Result and original Cedoumain are not in the same data set, eithel wie 4ri s pe
copied from its data set (and spreadsheet) to another one. Function Compare produces new

channel with a signal representing the difference between two signals comparéd (see Figure
C.16).

The error of ALN prediction can be measured using the function Threshold located in menu group
“Channel”. This function operates on a single channel and counts all samples wi:sse amplitude is
higher than high threshold and lower than low threshold (see Figure C.17). High and low~
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thresholds can be set arbitrarily either by typing the new position in the corresponding field or by
pointing to a new position on a graphics display with a pointing device (computer mouse).

To test the performance of the trained ALNs on a new data, test set can be loaded and ALNs
evaluated in the same way.

PROGRAM “FESCONT”

The program is still ii; dévelopment phase (functional prototype) and it will not be presented in
details. It incorporates and functionally integrates all functions presented in Figure 2.7.1. To
provide continuity with programs used during the MLTs evaluation phase. function calls to the
ALN-related functions, stored in form of Windows DLL (dynamic-link library), are enclosed. ALN
functions listed are: LVALNCreateALN, LVALNDestroyALN, LVALNTrainALN, LVALNExecALN,
LVALNSaveALN, and LVALNLoadALN. The names of these functions are self-descriptive
enough. Parameters wised in this function calls are as follows:

nLayers | number of layers in ALN trees 1
nVoters number of ALN voters

nDim number of dimensions, total number of domain and codomain channels
nFanin fanin of the ordinary nodes in ALN trees

nLastFanin fanin of the top node in ALN tree

bOR top node is OR (true) or AND (not true)

adblMax an array of maximum amplitudes in each channel

adbiMin an array of minimum amplitudes in each channel

nQOutputindex index of the codomain (zero based)

hALN an ALN handle

nEpochs number of epochs

dbiMinPctCorrect minimum percentage of correct predictions during ALN training
pdbiData two dimensional array of actual data, channels in columns

nSamples total number of samples

dblLearnRate learning rate (described in ALN V.3 Section of Appendix B)

wQuant number of quantization levels for the ALN output

szFileName file name of the ALN tree

The actual header file of the LabVIEW - ALN interface DLL (LVALN.DLL) is as follows:
/! lvain.h
/1 Copyright © 1993 Dendronic Decisions Limited

#ifndef __LVALN_H__
#define __ LVALN_H__

#ifdef ___cplusplus
extern "C"

{
#endif
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/! variable creation

/] ain creation

/1 LabVIEW signature: WWWWWW11W - 32 bit return

DWORD WINAP! LVALNCreateALN(int nLayers, int nVoters, int nDim, int nFanin, int nLastFanin,
int bOR, double far* adbiMax, double far* adbiMin, int nOutputindex),

/I aln destruction
/1 LabVIEW signature: | - 32 bit return
DWORD WINAPI LVALNDestroyALN(DWORD hALN}),

/ aln training
/1 LabVIEW signature: IWD2WD - 32 bit return

DWORD WINAPI LVALNTrainALN(DWORD hALN, WORD nEpochs, double dbiMinPctCorrect,
double far* pdblData, WORD nSamples, double dbiLearnRate),

/I aln execution (single row of data)
I/ LabVIEW signature: 11W - 32 bit return should be cast to float
DWORD WINAPI LVALNExecALN(DWORD hALN, double far* pdbiData, WORD wQuant);

/l ain save
/I LabVIEW signature: IS - 32 bit return
DWORD WINAPI LVALNSaveALN(DWORD hALN, LPCSTR szFileName),

/l aln load
/I LabVIEW signature: S - 32 bit return
DWORD WINAPI LVALNLoadALN(LPCSTR szFileName),

#ifdef ___cpluspius
}

#endif

#endif __LVALN_H__
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Figure C.2. Opening a new data file.
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Figure C.9. Unary (linear) encoding.
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Figure C.15. Evaluation of the trained ALN trees results in new data file spreadsheet (untitled).
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Figure C.16. Original stimulation control signal, the signal predicted by ALN and signal of their
difference are organized in a new data file.
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Figure C.17. Assessing the performance of trained ALNs.




