

EVALUATION OF OBFUSCATED ANDROID MALWARE

Co-authored by

Himanshu Patel, Deep Patel, Jaspreet Ahluwalia,

Vaishali Kapoor, Karthik Narasimhan, Harmanpreet Singh,

Harmanjot, Gadi Harshitha Reddy, Sai Sushma Peruboina

Research Project

Submitted to the Faculty of Graduate Studies,

Concordia University of Edmonton

In Partial Fulfillment of the Requirements for the

Final Research Project for the Degree

MASTER OF INFORMATION SYSTEMS SECURITY MANAGEMENT

Concordia University of Edmonton

FACULTY OF GRADUATE STUDIES

Edmonton, Alberta

Advisor: Dr Sergey Butakov (sergey.butakov@concordia.ab.ca)

June 2021

EVALUATION OF OBFUSCATED ANDROID MALWARE

Himanshu Patel, Deep Patel, Jaspreet Ahluwalia,

Vaishali Kapoor, Karthik Narasimhan, Harmanpreet Singh,

Harmanjot, Gadi Harshitha Reddy, Sai Sushma Peruboina

Approved:

Sergey Butakov [Original Approval on File]

Sergey Butakov Date: June 23, 2021

Primary Supervisor

Patrick Kamau [Original Approval on File]

Patrick Kamau, PhD, MCIC, PChem. Date: June 23, 2021

Dean, Faculty of Graduate Studies

Table of Contents
I. Introduction .. 6

II. Background ... 6

A. Android Architecture ... 6

B. Android Attack Surface ... 7

C. Malware Analysis .. 7

D. Obfuscation Strategies ... 7

III. Related Works ... 8

IV. Methodology ... 8

A. Trivial techniques .. 9

B. Non-Trivial Techniques .. 9

C. Design And Implementation Of Script For Methodology Automation ... 11

1) Python Script Flow: .. 11

V. Experimental Results ... 11

A. Finding 1: Obfuscation Stratagies ... 11

B. Finding 2: Impact of Obfuscation on Static analysis ... 12

C. Finding 3: VirusTotal Dynamic Analysis Findings ... 12

D. Finding 4: Manual Dynamic Analysis Findings .. 12

E. Finding 5: Application Installation and Runnability ... 13

VI. Conclusion... 14

VII. Acknowledgment .. 15

List of Tables
Table 1 Trivial Obfuscation Techniques .. 9
Table 2 Non-Trivial Obfuscation Techniques – Rename ... 10
Table 3 Non-Trivial Obfuscation Techniques – Encryption .. 10
Table 4 Non-Trivial Obfuscation Techniques – Code .. 10
Table 5 Obfuscation Strategies .. 10
Table 6 Dangerous permissions .. 10
Table 7 Detection Ration based on Obfuscation Strategies ... 11
Table 8 Detection Ratio based on Static Analysis. .. 12
Table 9 Comparison of permissions in the manifest file of the original APK with the obfuscated APK. 12
Table 10 Executability of Obfuscated samples seen under VirusTotal Droidy and R2DBox results .. 12
Table 11 Executability of APK samples checked with Strace tool in Android Studio. ... 13
Table 12 Information regarding Installability of Obfuscated Applications ... 14

List of Figures
Figure 1 APK file structure. ... 7
Figure 2 Methodology for Research .. 9
Figure 3 Comparative Analysis of Static Analysis, Dynamic Analysis and Executability of Obfuscated APKs 14

Evaluation of Obfuscated Android Malware

Himanshu Patel

hcpatel@student.concordia.ab.ca

Deep Patel

dpatel6@student.concordia.ab.ca

Jaspreet Ahluwalia

jahluwal@student.concordia.ab.ca

Vaishali Kapoor

vkapoor@student.concordia.ab.ca

Karthik Narasimhan

knarasim@student.concordia.ab.ca

Gadi Harshitha Reddy

greddy@student.concordia.ab.ca

Harmanjot

hkaur19@student.concordia.ab.ca

Harmanpreet Singh

hsingh35@student.concordia.ab.ca

Sai Sushma Peruboina

speruboi@student.concordia.ab.ca

Advisor: Dr. Sergey Butakov

sergey.butakov@concordia.ab.ca

Department of Information Systems Security and Assurance Management

Concordia University Of Edmonton

Edmonton,Canada

Abstract— Malware is rapidly spreading on mobile

platforms, causing problems for users. Worldwide, 72.72% of

users are using android-based smartphones [1]. New malware is

created rapidly: obfuscation techniques can evade the signature-

based mechanism implemented in current antimalware

technology. This paper presents the results of a study that

examines how obfuscation techniques affect malicious and

benign applications by two widely used malware detection

approaches, respectively static and dynamic analysis. The

research looked at 5000 samples of malware and benign

applications and evaluated the impact of obfuscation on

Android applications. Experimental results indicated that up to

73% of the reviewed applications “survived” the obfuscation

that increased their chances of evading antivirus detection.

Keywords— android, malware, obfuscation, static analysis,

dynamic analysis, android virtual device (AVD), android package

kit (APK), malware detection ratio.

I. INTRODUCTION

The number of mobile devices continues to grow
exponentially. Android is one of the most popular mobile
device platforms, with installation on billions of devices
worldwide. As the popularity of smartphones has grown, so
have the number of malware applications targeting such
devices and alternative Android application repositories that
distribute such applications. Consumers often use anti-
malware programs to protect their mobile devices, which scan
apps for malicious code. However, these products have not
always been able to detect malware. Malware creators
frequently rely on code obfuscation to prevent detection. Code
obfuscation [2] converts code into a more complicated format
to decipher, interpret and reverse engineer for humans and
computers. Such a modification does not alter the semantics
of the code. Code obfuscation may be minor or sophisticated,
like bytecode encryption or adding unused code [3]. There are
several commercial and open-source obfuscators available on
the market [4] [5]. They provide the ability to imply single or
multiple code obfuscation strategies to the application code to
prevent the reverse engineering of code and protect the
intellectual proprietary. However, malware writers leverage
the same tools for performing code obfuscation of the
malicious code and injecting it inside the benign application
to bypass anti-malware tools. The easy accessibility of reverse
engineering tools in conjunction with rich bytecode semantics
has led to an exponential increase in Android malware.

Consequently, substantial attempts have been made to
establish strategies for identifying Android malware. Anti-
malware products based on the detection methodology used
can be classified based on two broad categories: static and
dynamic detection. Static detection analyzes the Android
application code through reverse engineering techniques
without the Android application (APK) being run. On the
other hand, the dynamic detection technique analyzes the
application's run time behaviour to detect malicious calls.

This project discusses (1) the effects of single and
combined obfuscation techniques on the detection capability
of anti-malware products through multiple obfuscation tools,
(2) the accuracy of anti-malware product to differentiate
malicious and benign apps after transformation, (3) the time
impact on the identification of individual items by obfuscated
app and (4) the "survival" ratio of malware after subjecting to
obfuscation.

II. BACKGROUND

A. Android Architecture

Android supports Java language and enables developers to
build an application using available Java libraries. The
Android architecture consists of five layers: application,
application framework, libraries and Dalvik virtual machines,
Android runtime, and Linux kernel [6]. Linux 2.6 is the basis
for Android, and the installed applications and device
hardware interact with the kernel's help. The Linux kernel
handles the functionalities related to storage, power,
application and device drivers, network, memory, and process
management. The application developer uses the Linux kernel
to perform various tasks, ranging from process management
to security. The Dalvik virtual machine components' primary
function is to execute files with extensions ".dex," developed
in Java. The file with "dex" consists of ".jar" and compiled
source classes ".class," which is used by the application
running on the Android operating system. Application
framework consists of services such as activity manager,
windows manager, content providers, package manager,
resource manager, location manager, and many more and
referred to as application programming interface (API)
component. While developing an Android application,
developers make use of these services to perform the intended
activities [7]. The layer that interacts with the end-user is an
application, for example, Browser, Settings, Banking
application. The security and privacy concerns related to the

mailto:hcpatel@student.concordia.ab.ca
mailto:jahluwal@student.concordia.ab.ca
mailto:knarasim@student.concordia.ab.ca
mailto:greddy@student.concordia.ab.ca
mailto:hkaur19@student.concordia.ab.ca
mailto:hsingh35@student.concordia.ab.ca
mailto:speruboi@student.concordia.ab.ca
mailto:sergey.butakov@concordia.ab.ca

developed application must be taken care of by the application
developer.

Figure 1 APK file structure [8]

The application running on Android can call or use an
element of other installed or running applications. This
function can be achieved by the essential components such as
activity, services broadcast receivers, and content providers
[9]. The subclass for each activity is written, and each activity
inherits from the activity class, making it the base class.
Services are also considered the main component of any
application, and they are running in the background when the
application is being used. Whenever an action is requested, a
corresponding response is provided with the help of broadcast
receivers, and the application may consist of many broadcast
receivers to receive and respond to the request.

B. Android Attack Surface

An attack surface is a primary attribute used to classify if
the target is vulnerable to attack based on the risk. An attack
vector applies to the way an intruder targets a device. In other
words, a vulnerable code can be considered an attack surface.
Unlike an attack vector, an attack surface does not depend on
the attacker's actions or requires a vulnerability to exist;
instead, it describes the places in code where vulnerabilities
might be. In general, a target's size is directly proportional to
its interaction with other systems. Therefore, a system can be
targeted or secured faster if it is focused on risky attack
surfaces. Based on the research study, several properties are
needed to identify attack surfaces, including attack vectors,
memory protection, and access privilege. Also, Remote attack
surface is one of the most common attack methodologies used
by attackers to gain local or root access to the Android
terminal [10].

An attacker can make changes to the permissions specified
in the AndroidManifest.xml required by the Android
application. APK tempering is a vulnerability that, if
exploited, can be mitigated by adding an application code
signing mechanism [11]. The Android OS allows developers
to sign their applications using a certificate provided by the
company that developed the application. After an application
is signed, the certificate is used to identify the application, and
during communication between the application and the other
applications, trust between the two is established. Code

signing mechanism is verified while installing the application
on the device. Suppose the attacker makes the changes to the
existing application. In that case, the attacker will not be able
to sign the new build of the modified application with the
developer's certificate and restrict installing the modified build
on the devices and preventing further attacks focused using
the modified build.

C. Malware Analysis

Malware analysis is the process of analyzing the malware
and studying the components and behaviour of malware. The
commonly used malware analysis techniques are static and
dynamic malware analysis [12]. Static analysis is a process in
which the analysis is done without running the malware, and
it is also more secure when compared to the dynamic analysis.
In contrast, dynamic analysis is a process of analyzing the
malware by running the code, and the process should be done
in a more secure environment. Dynamic analysis can be
divided into two stages: fundamental analysis and advanced
dynamic analysis [13].

a) Static Analysis: Static analysis is the technique that

involves viewing the APK file without inspecting the actual

instructions. This type of analysis can verify whether the data

is malicious, present information about its functionality, and

sometimes give information to create some uncomplicated

network signature [14]. Malware detection is divided into

various phases like detection, pre-processing phase,

extraction phase, feature phase [15]. The feature extraction

phase extracts the critical information by parsing the

application’s source code to form patterns for classifying the

malicious applications.

b) Dynamic Analysis: An application's behaviour can

be studied by performing dynamic analysis, also known as

behavioural analysis. A few checks typically run during this

process, for example, API calls, system calls, network calls,

etc. This technique of detection is aimed at evaluating

malware in a natural environment by executing the program.

Implementing dynamic analysis enables us to identify the

dynamic loading of code during run-time and observe the

program's behaviour [12]. Static analysis techniques cannot

calculate code executed during run time. Occasionally,

applications can fail to run the malicious code while

recording the functions. Instead, an application's source code

is run and checked based on the application's actions as soon

as it is run. This is useful when the application's source code

is obfuscated. It can therefore be used effectively and

efficiently in deriving the specific types of behaviour for each

malware. However, in addition to signature-based detection

on smartphones, antivirus companies think that in-phone

analysis is not in the best interest of all parties since scans

require limited resources and mobile devices have power and

memory limitations.

D. Obfuscation Strategies

Malware developers are in the constant race in attempt to
avoid detection from antivirus engines. A popular method for
achieving this is obfuscation that intends to modify the
executable and help the APK evade detection. Obfuscation is
also employed by application developers to make it secure
from malware authors and to protect the application from
being reverse engineered. Research has been done by various
authors in this regard and some of them can be reviewed
below.

assets/

(asset files)

META-INF/

(signatures)

lib/

(libraries)

classes.dex

(bytecode)

res/

(resource files)

resources.arsc

(compiled resources)

androidmanifest.xml

(manifest file)

III. RELATED WORKS

Rastogi et al. [16] evaluated the efficiency of anti-malware
products for detecting malware subjected to trivial and non-
trivial obfuscations. The study proved that 10 out of 10 anti-
malware products used for research failed to detect the
applications that had undergone code obfuscation. The
outcomes derived from the research on the obfuscation of
malware also showed that obfuscating malware can have a
disadvantage which states that the malware will lose its
malicious function, causing no damage to its victim's system.
Rastogi et al., in their study, found that Anti-malware
programs repeatedly failed due to repetitive transformations.
Also, Anti-malware tools like VirusTotal lack the capability
of developing resilience against the obfuscation method
instead of updating its signature database after a malicious
variant of the application is detected. Anti-malware tools used
in the study took around nine days to detect, analyze, and
develop signatures, providing substantial time to damage the
Android device. Out of 10 leading anti-malware providers,
only 57% of the signatures provided code-level artifacts. The
study revealed that 43% of signature identifications were not
focusing on code-level artifacts and that component names in
the Android manifest were the only way to identify defects.
The study also indicates that 90 percent of signatures did not
require static bytecode review since much of the information
was contained in the classes—dex file of the application with
Android runtime code.

In their study, Hammad et al. [17] propose that an anti-
malware product's detection capability depends on both the
obfuscation methodology used and the tool used for
obfuscation. Analysis derived showed that obfuscating the
code of an Android application has a significant impact on the
top anti-malware product's detection action. The detection rate
of top anti-malware products shows a 20% decreased rate
when subjected to obfuscation. The combination of multiple
security obfuscation techniques does not increase the anti-
malware evasion probability over a single transformation. The
non-trivial and combined obfuscation detection ratio also
remains the same when scanning by top anti-malware
products. The results also showed that applications with
malware had a significantly less chance of being installed and
runnable precisely as in the original form when subjected to
obfuscation. Hammad et al. study outcomes prove that
applying the correct set of transformations, both trivial or non-
trivial, along with commercial obfuscation tools, can have a
high anti-malware evasion rate, a more extended survival
period less accurate signature detection.

Ajiri et al. [18] looked at the effectiveness of antivirus
(AV) engines against Android malware obfuscated. Because
anti-malware engines rely on malware analysis for detection
purposes, static analyzer detection ratings are evaluated based
on their detection effectiveness. His report took each Android
malware sample that belonged to 10 different malware
families before obfuscation, and their detection ratings were
taken. Then, they were compared with obfuscated Android
malware by applying three obfuscation techniques, namely
string encryption, renaming and control flow individually and
their combination. Before obfuscation, Android malware
detection ratio values were high and more efficient.
Nevertheless, after the implementation of obfuscation
techniques individually, their detection ratio decreases
significantly, and when the combination of obfuscation
techniques was applied, the likelihood of the detection rate
was reduced. For example, the research analysis showed that

using a combination of obfuscation techniques (Control flow,
Renaming, String Encryption), only an average of 23.19%
samples out of 50 malware samples (5 samples each under ten
families) were detected by around 66 analyzers under
VirusTotal. While without obfuscation, the average detection
rate was 54.58%. He also mentioned that further step is
required for this research study to perform dynamic analysis
on obfuscated Android malware to capture their system calls
and compare their results with system calls invoked by non-
obfuscated Android malware.

In their study, Malik and Khatter [19] proposed that
detection of obfuscated malware is insufficient with static
malware analysis tools and techniques. System call analysis is
a powerful technique for malware that is highly encrypted or
obfuscated with other methods. Malicious applications call
almost the same system calls with different numbers and
perform the same file and network operations during the
runtime. Therefore, in their research report, they focused more
on the behavioural characteristics of malware. They used a
trace tool for system calls extraction and extracted 345
Android malicious APKs that belong to ten Android malware
families. In their findings, they mentioned malicious
applications initiate more system calls than benign apps, like
ptrace() system call is invoked 43561 times by Opfake
malicious apps and FakeInstaller applications invoke this
system call 39384 times. Malware belongs to different
malware families involves a different set of system calls and
with different frequencies. They also mentioned system calls
that were invoked most frequently like sigproc(), open(),
recvfrom(),sendto(), read(), write() etc.

Allix et al. [20] initiated the AndroZoo project that collects
millions of Android applications using multiple crawlers and
analyzing them for malware. The intention behind the creation
of AndroZoo was to provide millions of pre-analyzed
applications to the research community for experimental
purposes. To access the AndroZoo Repository, permission
needs to be acquired from the University of Luxembourg's
authorities; when permission is granted, an API Key will be
acquired. Then, with the combination of SHA256 values of
APK's and the API Key, applications can be successfully
downloaded.

The research project presented in this paper aims to study
the impact of obfuscation on the malware functionality and
detection ratio. Such impacts can be reviewed through the
analysis of the installability of the obfuscated software. This
is a crucial step because automated malware tools perform
“blind” obfuscation that may incapacitate the malware. This
research aims to answer the following questions:

1. Can feature extraction prove helpful in identifying APKs
that have been subjected to obfuscation?

2. What is the most effective obfuscation method out of the
ones being implemented?

3. Which obfuscation method produced the most installable
and runnable APKs?

4. Which obfuscation method produced the most non-
installable and runnable APKs?

IV. METHODOLOGY

The approach for Android malware analysis uses static and
dynamic methods along with comprehensible and Obfuscated
Android APK files. To accomplish this, a Python script is

proposed, which includes all the steps shown below.
Furthermore, it involves minimal human involvement and

automates all the tasks to generate the CSV/JSON format
dataset.

Figure 2 Research Methodology

Step 1. APK Gathering
Android Applications for this experiment were collected

from an extensive app database called AndroZoo. AndroZoo
is a growing collection of pre-analyzed Android apps that are
sourced from several sources, including the official Google
Play application market [20].

For this experiment, 5000 APK’s from 2013 to 2016
were selected from AndroZoo by filtering them by
vt_detection=[0,30+] to obtain higher confidence of malware
samples. In addition, different Android application markets
such as Google Play Store, slide and anzhi were selected to
ensure efficient sampling.

Step 2. Obfuscation
The process of performing transformations on an

Android application is called Obfuscation Strategies. These
transformations can either be a single or polymorphic
transformation. The Android ecosystem has established a
categorization of obfuscation techniques into two main
groups: trivial and non-trivial [21].

A. Trivial techniques

The simplest obfuscation techniques are the trivial ones.
These trivial obfuscation techniques do not change the
semantic of the code but can help malware evade specific
signatures in anti-malware products. There are four trivial

techniques, which include: Align, Re-sign, Rebuild, and
Randomize Manifest [21] [22].

NewAlignment Application code is realigned.

NewSignature
A new custom signature can be used to resign the

application.

Rebuild
The application is rebuilt using the new obfuscated
parameters.

RandomManifest
The entries in the manifest file are reordered

randomly.

Table 1 Trivial Obfuscation Techniques [21] [22]

B. Non-Trivial Techniques

In contrast to straightforward trivial techniques, non-
trivial techniques offer a lower detection rate and greater
robustness. Resources, including bytecode and other resources
(XMLs, asset files, and external libraries), are the targets of
non-trivial obfuscation. [22]. There are four subcategories of
non-trivial obfuscation techniques: Renaming, Encryption
and Code [21].

 Renaming: Software should have meaningful names for
identifiers such as variables, functions, and so on to enhance
readability while maintaining flow. The exact names,
however, may expose code functionality. In addition, as the
package name uniquely identifies an application, a change to
it essentially means that the app is being placed into the

Android ecosystem as a new application. Thus, each identifier
is renamed into an obscure and meaningless one, using the
renaming technique.

ClassRename Replace the package name and rename classes

FieldRename Fields are renamed

MethodRename Methods are renamed

Table 2 Non-Trivial Obfuscation Techniques – Rename [21] [22]

 Encryption: In an APK file, the developer can specify
what resources to request at run time. It might be a string or a
native library. Code and resources are encrypted in packages
and decrypted during the execution phase by the secret keys
of obfuscation tools.

AssetEncryption Asset files are encrypted

ConstStringEncryption
Constant strings in the overall code are
encrypted

LibEncryption Native libraries are encrypted

ResStringEncryption
Resource strings inside the code are

encrypted

Table 3 Non-Trivial Obfuscation Techniques – Encryption [21]

[22]

 Code: Code obfuscation techniques involve modifications
to the source code after decompiling that affect instructions
inside the classes.dex. Several different techniques have been
developed to hide the application’s behaviour, each
addressing a different aspect of the code [21] [22].

Reflection

In this method, existing code is examined to find

invocations of the main application method,

while ignoring the Android framework calls.
This method can be called using the Reflection

APIs if it finds a method invocation that matches

a suitable instruction.

AdvancedReflection
Using reflection, dangerous APIs from the

Android Framework are invoked.

ArithmeticBranch

Uses junk code insertion technique. A branch

instruction is crafted in such a way that the

branch is never taken, which results in a piece of
junk code composed by arithmetic computations

and a branch instruction.

CallIndirection

It adds new methods that invoke the original

ones. It modifies the control-flow graph without

touching the code semantics.

DebugRemoval
The debug meta-data will be removed using this

method.

Goto

The software will insert a goto into the method

and a second goto after the first goto at the end

of the method so that the control-flow graph will
be modified by adding two new nodes.

MethodOverload

This exploits the Java overloading feature to

return different methods with the same name, but
varying their arguments.

Nop
Random Nop instructions are inserted into every

method implementation with this technique.

Reorder

The order of blocks is changed in this technique.

An inverted condition and reordered basic blocks
are created when a branch instruction is found.

Table 4 Non-Trivial Obfuscation Techniques – Code [21] [22]

Table 5 outlines the 6 different obfuscation

strategies implied using Obfuscapk [21] for conducting

research

Obfuscation

Strategies

Methods

Encryption AssetEncryption, ConstStringEncryption,

LibEncryption, ResStringEncryption

Code AdvancedReflection, ArithmeticBranch,

CallIndirection, DebugRemoval, Goto,
MethodOverload, Nop, Reflection, Reorder

Rename ClassRename, FieldRename, MethodRename

Low ClassRename, AssetEncryption,

AdvancedReflection, MethodOverload, Goto

Medium ClassRename, FieldRename,

ConstStringEncryption, ResStringEncryption,

AssetEncryption, AdvancedReflection,
MethodOverload, ArithmeticBranch,

CallIndirection

High ClassRename, FieldRename, MethodRename,

ConstStringEncryption, ResStringEncryption,

AssetEncryption, AssetEncryption,
AdvancedReflection, MethodOverload,

ArithmeticBranch, CallIndirection, DebugRemoval

Table 5 Obfuscation Strategies

Step 3. Static Analysis
In the static analysis stage, the application is decompiled

to obtain four features that are used to classify the application:
permissions, native-permissions, intent-priority, and sensitive
functions [23]. Android provides permissions [24] as a
security feature. Associative functions can be abused if the
application wants to execute a specific function without
declaring the appropriate permission in Android
Manifest.xml. Permissions are used to control applications'
functions and to manage the resources of the mobile phone.
Android 4.0 includes 153 permissions [24]. Despite this, in a
highly free environment, some may utilise this feature to hide
the real purpose of applications or embed malicious functions
within normal ones for malicious purposes.

ACCESS_BACKGROUND_LOCAT

ION [API level 1]

USE_SIP [Added in API level

9]

ACCESS_COARSE_LOCATION

[Added in API level 1]

MODIFY_PHONE_STATE

[Added in API level 1]

ACCESS_FINE_LOCATION

[Added in API level 1]

WRITE_CALENDAR [Added

in API level 1]

CALL_PHONE [Added in API level

1]

INSTALL_PACKAGES

[Added in API level 1]

READ_PHONE_STATE [Added in

API level 1]

WRITE_CONTACTS [Added

in API level 1]

READ_SMS [Added in API level 1]
READ_CALENDAR [Added

in API level 1]

RECEIVE_MMS [Added in API
level 1]

GET_ACCOUNTS [Added in
API level 1]

RECEIVE_SMS [Added in API level

1]

READ CONTACTS [Added

in API level 1]

RECEIVE_WAP_PUSH [Added in
API level 1]

READ_CALL_LOG [Added
in API level 16]

READ_EXTERNAL_STORAGE

[Added in API level 16]

WRITE_APN_SETTINGS

[Added in API level 1]

ACCESS_MEDIA_LOCATION
[Added in API level 29]

RECORD_AUDIO [Added in
API level 1]

ACTIVITY_RECOGNITION

[Added in API level 29]

CAMERA [Added in API

level 1]

ANSWER_PHONE_CALLS [Added
in API level 26]

SEND_SMS [Added in API
level 1]

BODY_SENSORS [Added in API

level 20]

WRITE_CALL_LOG [Added

in API level 16]

READ_PHONE_NUMBERS[Added

in API level 26]

PROCESS_OUTGOING_CA
LLS

[Added in API level 1 ,

Deprecated in API level 29]

Table 6 Dangerous permissions [24]

Manifest.xml also defines intent-priority, which
identifies the priority of program activities [8]. For example,
Application A has a higher intent-priority value than
Application B. In that case, related messages will be sent first
to A. Most malware raises the intent-priority value to ensure
they see information before normal software. Static analysis
also examines function calls made by sensitive functions. As
part of static analysis, this study analyzes how often sensitive
functions are utilized by an application. The table below lists
the most common permissions that are necessary to perform
static analysis.

Manual verification was also used to verify if any
parameters (permissions, activities, services) have changed
while comparing the original APK to the obfuscated APK. For
instance, using meld software the manifest files of the original
APK and the obfuscated APK were compared to find out if
any permissions were added or deleted in either of the
manifest files. Random APK’s were selected from the dataset
and the comparison was done between the manifest files of the
original APK and the obfuscated version of the same APK.
The results are extracted and stored in Microsoft excel for
reference.

Step 4. Dynamic Analysis

a) Automatic Dynamic analysis: For dynamic analysis

using VirusTotal API, [25] original and obfuscated APK’s

were submitted to VirusTotal and results were retrieved

thereafter. The results were fetched and stored in an Excel file

in tabular format for ease of analysis. The results were based

on execution behavior analyzed by any two of the Android

Sandbox namely R2DBox and Droidy used by VirusTotal.

The process of submission and retrieving results was done

with the help of custom Python scripts to enable large number

of sample submission and analysis.

b) Manual dynamic analysis: For manual verification,

original and obfuscated APKs were installed and executed in

Android Studio to check if the APKs had survived the

different obfuscation methods and executed the same as the

original ones or not. During the execution of applications,

package names under which apps were running, which

system calls APKs were calling for the original and

obfuscated APKs, which includes system call name, time

percentage, usecs/call, frequency, and errors, were recorded

[26]. System calls help a malware analyst to understand the

behaviour of the application. This data extraction was

performed with the help of the Strace tool in the adb (Android

debugger) shell. Their results were recorded for further

analysis. 74 APK samples were randomly selected from the

dataset of obfuscated and original APKs.

Step 5. Data Extraction
 Data Extraction was embedded as a part of static and
dynamic analysis, wherein static analysis quark Framework
generated the result in JSON format and Dynamic Analysis
excel file were used for logging activity response.

Step 6. Installability
 Finally, the original and obfuscated applications were
installed on AVDs [27] to check their installability and verify
the number of valid applications produced by every
obfuscation method. For successful execution and analysis,
Anbox and Android Studio were used for loading the
applications into them.

C. Design And Implementation Of Script For Methodology

Automation

Python scripts are constructed based on a methodology
that is customized to the specific requirement.

1) Python Script Flow:
The code continuously works in a loop downloading the

APKs (Android Application Package) from the AndroZoo
using API calls. Upon successfully downloading the APK file,
the function "static analysis" is called. This function uses
Quark Framework, which performs the static analysis and
generates the report for a particular APK. A report generated
by the function is stored in the folder "Report". After a static
analysis of the APK has been completed, the APK can then be
imported into an analysis function called "dynamic analysis"
that uses the Cuckoodroid [28] to analyze and create a report.

Once the APK File has been analyzed both statically and
dynamically, it is passed through the Obfuscation function,
producing six different obfuscated APK files using six
different Obfuscation techniques (Rename, Encryption, Code,
Low, Medium, High). To accomplish this modular Python
tool, Obfuscapk has been used.

APK files obfuscated by these programs are now again
submitted for dynamic and static analysis and reporting
purposes. In addition, these files are imported into an emulator
to check how they survive after obfuscation. A Python module
had been used for the Android bridge driver. Afterward, the
user will get a CSV file showing the installed applications and
those that did not.

Source code of the script is available at
https://github.com/ddeepp109/Android-Malware-Analysis
[29]

V. EXPERIMENTAL RESULTS

A. Finding 1: Obfuscation Stratagies

 Table 7 shows how different types of obfuscation have a
varying effect on the detection ratio. To better understand the
impact of every obfuscation strategy on static and dynamic
analysis, the original dataset was obfuscated using Obfuscapk
with varying levels of obfuscation methods described in Table
Y of Section IV. The research outcome showed that the
detection rate of VirusTotal on the original dataset is 91%.
This detection rate was dropped to 71% on obfuscated apps
using Medium, 66% on obfuscated apps using Encryption, and
65% on obfuscated apps using High obfuscation. It was also
observed that most of the malware detection was not affected
by Low obfuscation.

Obfuscation

Techniques
Detection Ratio Percentage

Encryption 3498/5299 66.03%

Code 3602/5299 67.98%

Rename 3815/5299 72.00%

High 3443/5299 64.99%

Medium 3867/5299 72.99%

Low 4132/5299 77.98%

Table 7 Detection Ration based on Obfuscation Strategies

 Another noticeable outcome derived was the impact of
trivial and non-trivial obfuscation techniques had almost
similar detection rates. A counter intuitive conclusion that can
be derived considering an Android APK is an archive with a
lot of files and a malicious component can be found almost

https://github.com/ddeepp109/Android-Malware-Analysis

anywhere, it is not possible to know which of the above-
mentioned techniques to be used as a rational, since each
technique has different effects on the files contained within.

B. Finding 2: Impact of Obfuscation on Static analysis

A random sample of 2000 applications from the benign
and malware sets were selected for static analysis. Each APK
was decompiled using QUARK [30] to extract five kinds of
features: 1. Permission requested. 2. Native API call. 3.
Certain combinations of native API. 4. Calling sequence of
native API. 5. APIs that handle the same register [30]. Out of
the total 2000 APKs subjected for static analysis, Quark
detected all the malware APKs in original form. However, the
detection ratio reduced to 82% for monomorphic obfuscation
techniques while producing the lowest detection ratio High
obfuscation of 72%, which had polymorphic obfuscation
strategies enabled. Below table 7 defines the detection ratio
for varying level of obfuscation.

Obfuscation

Method

APKs

Tested

APKs

Detected
Percentage

Encryption 5299 4371 82.50%

Rename 5299 4398 83%

Code 5299 4191 79.10%

High 5299 3831 72.30%

Medium 5299 3974 75%

Low 5299 4451 84%

Table 8 Detection Ratio based on Static Analysis.

 Meld [31] a static analysis tool was used to perform two-
way and three-way comparisons of the files. The manifest files
were compared to determine the impact of obfuscation on the
permissions listed in the original APK. Random APK’s were
selected from a dataset of 30,000 APKs to check if the
permissions were added or deleted from the obfuscated file
compared to the original file. In conclusion, all APK’s
compared have the same permissions in both original and
obfuscated manifest files. But in some APK’s, although all the
permissions are the same in the original and the obfuscated
manifest file, the only difference is the number of times each
permission is being used in the obfuscated file.

 Permissions

APK Original Obfuscated

xxxxB917 23 21

xxxxD1C8 5 4

xxxx7C07 15 9

xxxx93FF 10 10

xxxxD60C 10 10

Table 9 Comparison of permissions in the manifest file of the

original APK with the obfuscated APK.

C. Finding 3: VirusTotal Dynamic Analysis Findings

Table 10 shows the results after the samples were
uploaded to VirusTotal and after behavioural reports were
fetched from two VirusTotal Sandboxes named R2DBox and
Droidy. (For detailed results, refer to Appendix B at the end
of the report). The analysis done under VirusTotal shows that
out of all the obfuscations done, Medium and High levels of

obfuscations have shown the most impact on executability of
obfuscated samples as 70% were seen showing any behaviour.
In contrast, low obfuscations showed more executability as
almost 77% of samples produced behavioural results. The
single technique obfuscations methods (Code, Rename and
Encryption) were shown exhibiting the most execution ratio
with 79% of samples producing results. Thus, the ability of
obfuscators to produce different variants of a malware sample
with fewer detection capabilities and good survival ratios can
act as a detrimental tool to bypass specific mechanisms
deployed for the detection and protection against suspicious
packages.

Samples Obfuscation Execution ratio

5299 Encryption 79.39%

5299 Rename 79.36%

5299 Code 79.48%

5299 High 70.48%

5299 Medium 70.04%

5299 Low 77.65%

Table 10 Executability of Obfuscated samples seen under

VirusTotal Droidy and R2DBox results

A special feature of Android since API Level 23 is

dynamic permission support [32], which allows apps to

request, acquire, and revoke permissions as they run.

According to this new runtime permission mechanism, static

approaches will not be able to detect when abnormal

permission requests and grants are made at runtime. In

addition, users may revoke dangerous permissions after their

apps are installed, which could cause a false alarm.

D. Finding 4: Manual Dynamic Analysis Findings

The data extraction from original and obfuscated APKs in

this proposed research is derived from permissions and

system calls for Android malware analysis. The system calls

will be extracted to compare the behaviour of original APKs

and obfuscated APKs, as all requests from malicious apps

will go through the system call interface [23] before being

processed.

The APKs that were not executed at all called only 9

system calls (read, open, close, getpid, ioctl, mprotect, writev,

fstat64, clock_gettime) that were used to perform functions

like read, open, get process id, file status, clock time, and

write operations on the files stored on external storage. The

original and obfuscated malicious APKs were using process-

related functions like futex, getpid, getuid, gettid,

sigprocmask, and prctl. These APKs used sendto() and

recvfrom() system calls responsible for sending to and

receiving data from remote servers. Other heavily used

system calls that were noticed while doing manual dynamic

analysis were related to accessing data and perform read-

write operations on files stored on external storage and

perform memory functions like read, write, open, close,

fcntl64, dup, mmap, munmap, stat64, fstat64 etc. These

malicious system calls were used most frequently by original

and obfuscated malicious APK samples.

Sample APKs Original

Obfuscation Methods

Code Encryption High Low Medium Rename

1 14 86% 86% 86% 86% 86% 86% 86%

2 10 100% 100% 80% 80% 80% 80% 80%

3 10 70% 60% 60% 40% 50% 40% 60%

4 10 60% 60% 60% 40% 40% 40% 60%

5 10 60% 70% 80% 40% 70% 60% 80%

6 10 70% 80% 70% 40% 50% 30% 70%

7 10 50% 60% 70% 30% 50% 50% 60%

AVG 74 70.8% 73.7% 72.3% 58% 60.8% 55.1% 70.8%

Table 11 Executability of APK samples checked with Strace tool in Android Studio.

Table 11 indicates the executability of APK samples

manually analyzed with the Strace tool in Android Studio (for

detailed results, refer to Appendix C at the end of the report).

It shows that obfuscation methods High, Low and Medium

affected the executability of malicious APK samples. The

Medium obfuscation method had affected the executability

the most and decreased it by 15.7%. The following two

obfuscation methods, High and Low, decreased it by 12.8%

and 10%, respectively. All other methods showed the

percentage of executability almost the same, i.e., near to 70%.

Moreover, some obfuscated APKs were successfully

executed but affected the working of the Android OS. For

instance, while analyzing the APK samples manually, it is

noted that 7 % High obfuscated APKs, 5% of Rename

obfuscated APKs, 4% of Encryption, and Medium obfuscated

APKs froze or slowed down the emulator. Furthermore, the

system calls generated by original and obfuscation methods

were also recorded to notice if there was any change in their

frequency. It is observed that APK samples obfuscated with

High and Medium methods generated more system calls in

9% of the APK samples as compared to original and other

obfuscation techniques. The encryption method was

intermediate because it generated system calls more in 7% of

the APKs and least in 9% of the APKs as compared to

original and other obfuscation methods. System calls for the

remaining majority of the APK samples were almost the

same.

E. Finding 5: Application Installation and Runnability

For the installability of the applications from Sample 1 that
have been obfuscated, they were first installed in Anbox
Application Manager using the automated script. Out of the
14 applications that have been randomly selected for every
obfuscation method, 12 applications were successfully
installed every time. The other two applications could not be

installed. However, these 12 applications were not runnable
on Anbox. The applications froze Anbox every time they were
loaded into the emulator. Additionally, these applications
were manually installed in Android Studio. All 14 applications
were successfully installed and were runnable.

From samples 2-7, the obfuscated applications did not

successfully install in the Anbox application manager. An

error regarding APK signature identification was displayed

on the screen for every application. The reason for this can be

the higher API level that Anbox runs on. This reason was

identified because the obfuscated applications were also

installed on Android Studio with a higher and a lower API

level machine. The applications were successfully installed

on the virtual Android device with a lower API level of 22

and were not installed on the Android with a higher API level

of 24. It is also to be noted that the original applications were

successfully installed in Anbox and Android Studio.

Table 12 shows the information regarding the

installability of the applications before and after they are

obfuscated. The data took installability information in

Anbox, Android Studio and VirusTotal. Results from Anbox

and VirusTotal are not considered for summarizing the results

because they are automated and sometimes produced no

result because of a higher API level than Android Studio that

produced results in an apt way. The information given in the

table above shows that the obfuscation method “Code”

produced the highest number of valid applications post

obfuscation with 73.71% valid applications. The

“Encryption” method produced 72.28% valid applications.

The “Rename” method produced 70.85% valid applications.

The “Low” method produced 60.85% valid applications. The

“Medium” method produced 55.14% valid applications, and

the “High” method produced the lowest number of valid

applications by producing just 50.85% valid applications.

APK

Original

Obfuscation Methods

Code Encryption High Low Medium Rename

Sample 1 14 x 7 APK

Anbox 100% 86% 86% 86% 86% 86% 86%

Android Studio 86% 86% 86% 86% 86% 86% 86%

VirusTotal S1 0% 93% 93% 93% 93% 93% 93%

VirusTotal S2 0% 50% 64% 71% 57% 57% 64%

Sample 2 10 x 7 APK

Anbox 100% 0% 0% 0% 0% 0% 0%

Android Studio 100% 100% 80% 80% 80% 80% 80%

VirusTotal S1 0% 70% 50% 70% 50% 80% 70%

VirusTotal S2 80% 70% 70% 60% 60% 70% 60%

Sample 3 10 x 7 APK

Anbox 70% 0% 0% 0% 0% 0% 0%

Android Studio 70% 60% 60% 40% 50% 40% 60%

VirusTotal S1 0% 40% 40% 20% 30% 30% 40%

VirusTotal S2 60% 50% 40% 30% 50% 40% 40%

Sample 4 10 x 7 APK

Anbox 60% 0% 0% 0% 0% 0% 0%

Android Studio 60% 60% 60% 40% 40% 40% 60%

VirusTotal S1 0% 60% 60% 40% 60% 30% 60%

VirusTotal S2 100% 70% 60% 50% 60% 40% 60%

Sample 5 10 x 7 APK

Anbox 60% 0% 0% 0% 0% 0% 0%

Android Studio 60% 70% 80% 40% 70% 60% 80%

VirusTotal S1 0% 40% 50% 20% 30% 30% 40%

VirusTotal S2 70% 50% 50% 10% 20% 40% 60%

Sample 6 10 x 7 APK

Anbox 70% 0% 0% 0% 0% 0% 0%

Android Studio 70% 80% 70% 40% 50% 30% 70%

VirusTotal S1 0% 40% 30% 30% 40% 20% 30%

VirusTotal S2 60% 50% 50% 30% 60% 30% 40%

Sample 7 10 x 7 APK

Anbox 60% 0% 0% 0% 0% 0% 0%

Android Studio 50% 60% 70% 30% 50% 50% 60%

VirusTotal S1 0% 40% 40% 20% 30% 30% 40%

VirusTotal S2 60% 50% 40% 40% 60% 40% 50%

Table 12 Information regarding Installability of Obfuscated Applications

F. Finding 6 : Comparative Analysis

Figure 3 compares the results obtained from static and

dynamic analysis along with installability check. It was

observed that applying multiple levels of polymorphic

obfuscation bypassed both static and dynamic detection

algorithms at the same time caused greater degree of changes

in the application semantics resulting in an obsolete malware

APK. On the other hand, Trivial and monomorphic

obfuscation produced APKs with higher detection ratio but

maintained the semantics of the APKs. Overall code

obfuscation produced the most optimum results with lower

detection ration and higher installation probability.

Figure 3 Comparative Analysis of Static Analysis, Dynamic

Analysis and Executability of Obfuscated APKs

50.00%
55.00%
60.00%
65.00%
70.00%
75.00%
80.00%
85.00%

Encryption

Rename

Code

High

Medium

Low

Static Dynamic Install

VI. CONCLUSION

This paper evaluated the effectiveness of static and
dynamic analysis against code obfuscation and the survival
ratio of malware after varying levels of Obfuscation. From the
analysis presented above, it was observed that polymorphic
obfuscation techniques had a lower detection ratio as
compared to monomorphic obfuscation techniques.

Key findings of the study include the following: (1)
regardless of the technique implied, dynamic or static
analysis, obfuscation leads to decreased detection ratio of
malware code; (2) results obtained from static analysis such as
permissions and native API calls produced significantly more
information as compared to dynamic analysis (3) in most
cases, a trivial transformation, such as modifying the Android
manifest file or rebuilding application with a new signature,
was effective to bypass detection techniques; (4) despite its
relatively weak functionality, dynamic system calls when
combined with other features extracted through manual
analysis produce effective results increasing the detection
ration (5) the APKs’ executability was affected by High,
Medium and Low obfuscation methods with majority of
APKs execution had identical system calls; (6) the
applications that were obfuscated with multiple level of
obfuscation strategies, High and Medium, to some extent had
loss in their application logic and semantics; (7) while
monomorphic obfuscation techniques exhibit strong detection
resilience, a mixture of obfuscation techniques, polymorphic
obfuscation, exhibits an even higher level of detection
resilience; and (8) out of all the obfuscation strategies, Code
obfuscation proved to be most effective with lower detection
ratio and higher installation probability. The results of our
study, including the framework developed, are publicly
available online.

 The experimental setup and results obtained in the paper
show that there is a need for an improvement in android
security, as both the obfuscation techniques and the tools to
manipulate them are readily available to the public. Ease of
access to tools and techniques can be leveraged by attackers
or script kiddies to execute a successful malware being
undetected in case of a targeted attack campaign.

This paper presents data and features generated by the
static and dynamic analysis methods, which can be used for
future work for a deeper study of how these features can be
used to improve the performance of machine learning
algorithms for detection and classification purposes.

VII. ACKNOWLEDGMENT

The authors would like to express their gratitude to
AndroZoo for providing access to a large APK dataset,
VirusTotal (www.virustotal.com), to provide access to
Academic API, helping us analyze mass samples and their
behavioural summary reports, to Cybera (cloud.cybera.ca) for
providing access to their cloud resources.

VIII. REFERENCES

[1] Statcounter Global Stats, "Mobile Operating System Market Share
Worldwide," May 2021. [Online]. Available:

https://gs.statcounter.com/os-market-share/mobile/worldwide.

[Accessed 12 June 2021].

[2] A. Kovacevic, "What is Code Obfuscation? How to Disguise Your
Code to Make it More Secure," 20 NOVEMBER 2020. [Online].

Available: https://www.freecodecamp.org/news/make-your-code-

secure-with-obfuscation/. [Accessed 10 May 2021].

[3] C. Collberg, M. GR and H. Andrew, "Sandmark-a tool for software

protection research," IEEE security & privacy 99, pp. 40-49, 2003.

[4] L. Berzinskas, "Obfuscating Android Apps: Do you know your
choices for protection?," 25 Jun 2020. [Online]. Available:

https://proandroiddev.com/obfuscation-is-important-do-you-know-

your-options-30b3ef396dfe. [Accessed 13 May 2021].

[5] S. Aonzo, G. C. Georgiu, L. Verderame and A. Merlo, "Obfuscapk:

An open-source black-box obfuscation tool for Android apps,"

SoftwareX, vol. 11, no. 100403, 2020.

[6] Google, "Android Architecture Components," 24 February 2021.

[Online]. Available:

https://developer.android.com/topic/libraries/architecture.
[Accessed 13 May 2021].

[7] Android Developers, "Application Fundamentals," 23 February

2021. [Online]. Available:
https://developer.android.com/guide/components/fundamentals.

[Accessed 14 May 2021].

[8] Google, "App Manifest Overview," 20 April 2021. [Online].
Available:

https://developer.android.com/guide/topics/manifest/manifest-intro.

[Accessed 20 May 2021].

[9] Android Developers, "App Manifest Overview," 20 February 2021.

[Online]. Available:

https://developer.android.com/guide/topics/manifest/manifest-
intro#components. [Accessed 20 May 2021].

[10] S. R. Kotipall and M. Imran, "Understanding the app's attack

surface," in Hacking Android, Packt, 2016.

[11] codemagic, "Android code signing," 15 June 2021. [Online].

Available: https://docs.codemagic.io/code-signing/android-code-

signing/. [Accessed 23 May 2021].

[12] O. Or-Meir, N. Nissim, Y. Elovici and L. Rokach, "Dynamic

Malware Analysis in the Modern Era—A State of the Art Survey,"

ACM Computing Surveys, pp. 1-34, 2019.

[13] S. Yusirwan, Y. Prayudi and Riadi, "Implementation of malware

analysis using static and dynamic analysis method," International
Journal of Computer Applications, pp. 11-15.

[14] Hacken, "Android Application Malware Analysis," 5 November

2018. [Online]. Available: https://hacken.io/industry-news-and-
insights/android-application-malware-analysis/. [Accessed 2021

February 13].

[15] K. Bakour, H. M. Unver and R. Ghanem, "The Android Malware
Static Analysis: Techniques, Limitations, and Open Challenges,"

3rd International Conference on Computer Science and

Engineering (UBMK), 2018.

[16] V. Rastogi, Y. Chen and J. Xuxian, "Catch Me If You Can:

Evaluating Android Anti-Malware Against Transformation

Attacks," IEEE Transactions on Information Forensics and
Security, vol. 9, no. 1, pp. 99-108, 2014.

[17] M. Hammad, J. Garcia and S. Malek, "A large-scale empirical

study on the effects of code obfuscations on Android apps and anti-
malware products," Proceedings of the 40th International

Conference on Software Engineering, pp. 421-431, 2018.

[18] V. Ajiri, S. Butakov and P. Zavarsky, "Detection Efficiency of
Static Analysers against obfuscated Android Malware," IEEE 6th

Intl Conference on Big Data Security on Cloud (BigDataSecurity),

2020.

[19] S. Malik and K.Khattar, "System Call Analysis of Android

Malware Families," Indian Journal of Science and Technology,

vol. 9, no. 21, 2016.

[20] K. Allix, T. F. Bissyandé, J. Klein and Y. L. Traon, "AndroZoo:

Collecting Millions of Android Apps for the Research

Community," IEEE/ACM 13th Working Conference on Mining
Software Repositories (MSR), 2016.

[21] G. C. Georgiu, "Obfuscapk," 17 December 2020. [Online].

Available: https://github.com/ClaudiuGeorgiu/Obfuscapk.
[Accessed 25 February 2020].

[22] G. C. Georgiu, .. L. Verder, A. Simone and A. V, "Obfuscapk: An

open-source black-box obfuscation tool for Android apps,"
SoftwareX, vol. 11, 2020.

[23] F. Tchakounte and P. Dayang, "System Calls Analysis of Malwares

on Android," Maejo International Journal of Science and
Technology, vol. 2, pp. 669-674, 2013.

[24] Google, "Manifest.permission," 09 June 2021. [Online]. Available:

https://developer.android.com/reference/android/Manifest.permissi
on. [Accessed 13 June 2021].

[25] VirusTotal, "VirusTotal API version 3 Overview," [Online].

Available:
https://developers.virustotal.com/v3.0/reference#overview.

[Accessed 22 March 2021].

[26] H. Yuan, Y. Tang, W. Sun and L. Liu, "A detection method for
android application security based on TF-IDF and machine

learning," PLOS ONE, vol. 15, no. 9, p. e0238694, 2020.

[27] Google Devloper, "Run apps on the Android Emulator," 17 June

2021. [Online]. Available:
https://developer.android.com/studio/run/emulator. [Accessed 17

June 2021].

[28] idanr, "CuckooDroid - Automated Android Malware Analysis.," 25
July 2017. [Online]. Available:

https://github.com/idanr1986/cuckoo-droid. [Accessed 22 March

2021].

[29] D. Patel, "EVALUATION OF OBFUSCATED ANDROID

MALWARE," [Online]. Available:

https://github.com/ddeepp109/Android-Malware-Analysis.

[30] quark-engine, "Quark-Engine," [Online]. Available:

https://github.com/quark-engine/quark-engine. [Accessed 24 March

2021].

[31] K. Willadsen, "Meld," [Online]. Available: https://meldmerge.org/.

[Accessed 12 January 2021].

[32] Google, "Request app permissions," Google, [Online]. Available:
https://developer.android.com/training/permissions/requesting.

[Accessed 19 February 2020].

Appendix A

Analysis Automation ScriptLink To the Code: https://github.com/ddeepp109/Android-Malware-Analysis/

Shell Script: obfuscat.sh

In Above command, $1, $2 and $3 represents value, key, and ApkFileName as separate arguments, each of which will be

passed through the following Python script.

Python Script: flow.py

docker run --rm -it -u $(id -u):$(id -g) -v "/home/ubuntu/RM":"/workdir" obfuscapk -p -w /tmp/ -o RandomManifest -o Rebuild -

o NewSignature -o NewAlignment $1 -d obfuscatedAPK/$2/$3 APKs/$3

#importing required packages

import os

import wget

#obfuscation function

def obfuscation(ApkFileName):

 passing_value={

 "Rename":"-o ClassRename -o FieldRename -o MethodRename",

 "Encryption":"-o AssetEncryption -o ConstStringEncryption -o LibEncryption -o ResStringEncryption",

 "Code":"-o AdvancedReflection -o ArithmeticBranch -o CallIndirection -o DebugRemoval -o Goto -o

MethodOverload -o Nop -o Reflection -o Reorder",

 "Low":"-o RandomManifest -o ClassRename -o AssetEncryption -o AdvancedReflection -o MethodOverload -o

Goto -o Rebuild -o NewSignature -o NewAlignment",

 "Medium":"-o RandomManifest -o ClassRename -o FieldRename -o ConstStringEncryption -o ResStringEncryption

-o AssetEncryption -o AdvancedReflection -o MethodOverload -o ArithmeticBranch -o CallIndirection -o Rebuild -o

NewSignature -o NewAlignment",

 "High":"-o RandomManifest -o ClassRename -o FieldRename -o MethodRename -o ConstStringEncryption -o

ResStringEncryption -o AssetEncryption -o AssetEncryption -o AdvancedReflection -o MethodOverload -o ArithmeticBranch -o

CallIndirection -o DebugRemoval -o Rebuild -o NewSignature -o NewAlignment"

 } # commands as a value to perform 6 obfuscation and key is the type of the bfuscation

 for key, value in passing_value.items() :

 obfuscat = "sh ./obfuscat.sh " + "'"+ value + "'" + " " + key + " " + ApkFileName

 os.system(obfuscat)

 static_analysis(ApkFileName,1,key) #calling static analysis function with 2nd argument "1" which define the apkfile is

obfuscated

 dynamic_analysis(ApkFileName,1,key) #calling Dynamic analysis function with 2nd argument "1" which define the apkfile

is obfuscated

def static_analysis(ApkFileName,n,key="Normal"):

 if n == 0: # value zero for non-obfuscated function

 ApkFilePath = "/home/ubuntu/Android-Malware-Analysis/APKs/" + ApkFileName

 ReportFilePath = "/home/ubuntu/Android-Malware-Analysis/Reports/Static/APK_Report/" + ApkFileName +".json"

 command="quark -a "+ApkFileName+" -s -c -o "+ ReportFilePath

 else:

 ApkFilePath = "/home/ubuntu/Android-Malware-Analysis/obfuscatedAPK/"+ key +"/" + ApkFileName

 ReportFilePath = "/home/ubuntu/Android-Malware-Analysis/Reports/Static/Obfuscapk_Report/"+ key + ApkFileName +

".json"

 command="quark -a " + ApkFilePath + " -s -c -o " + ReportFilePath

 os.system(command)

 print("Static Analysis" + ApkFileName)

https://github.com/ddeepp109/Android-Malware-Analysis/

def dynamic_analysis(ApkFileName,n,key="Normal"):

 if n == 0: # value zero for non-obfuscated function

 command="python /home/ubuntu/Android-Malware-Analysis/cuckoo/utils/submit.py /home/ubuntu/Android-Malware-

Analysis/APKs/"+ApkFileName

 if n == 0:

 command="python /home/ubuntu/RM/cuckoo/utils/submit.py /home/ubuntu/RM/APKs/"+ApkFileName

 else:

 command="python /home/ubuntu/Android-Malware-Analysis/cuckoo/utils/submit.py /home/ubuntu/Android-Malware-

Analysis/obfuscatedAPK/"+ key +"/ obfuscated_"+ApkFileName

 os.system("python /home/ubuntu/Android-Malware-Analysis/cuckoo/cuckoo.py --clean")

 command="python /home/ubuntu/RM/cuckoo/utils/submit.py /home/ubuntu/RM/obfuscatedAPK/"+ key +"/

obfuscated_"+ApkFileName

 os.system("python /home/ubuntu/RM/cuckoo/cuckoo.py --clean")

 os.system(command)

 os.system("python /home/ubuntu/Android-Malware-Analysis/cuckoo/cuckoo.py")

#Read the count file to know last processed function

 os.system("python /home/ubuntu/RM/cuckoo/cuckoo.py")

def last_processed_APK():

 file = open("count.txt", "r")

 count = file.readline()

 print (count)

 count = int(count)

 file.close()

 return count-1

#Log the last processed APK

def processed_APK(Number):

 file = open("count.txt", "w")

 file.write(str(Number))

 file.close()

if __name__ == '__main__':

 try:

 print("Downloading APK File....")

 API_key= "fake" #Add Androzoo API Key Here

 count = last_processed_APK()

 file = open("sha256.txt", "r")

 lines = file.readlines()

 print(len(lines))

 LinesInFile = len(lines)

 print (count)

 print (LinesInFile)

 for i in range(count,LinesInFile): for i in range(count,LinesInFile): # Auto Download APK files from Androzoo

 download1="https://androzoo.uni.lu/api/download?apikey="+API_key+"&sha256="+lines[i]

download1="https://androzoo.uni.lu/api/download?apikey=1fad2754d5ed9728b4f94ea343008c3427830f11a6e55baaa0b951642c

44c6bb&sha256="+lines[i]

 ApkFileName=wget.download(download1)

 print(ApkFileName)

 static_analysis(ApkFileName,0)

 dynamic_analysis(ApkFileName,0)

 print("Static Analysis is Done(Without obfuscation)")

 obfuscation(ApkFileName)

 print("Static Analysis is Done(With obfuscation)")

 print("Back to main")

 processed_APK(i)

 file.close()

 except KeyboardInterrupt:

 print('Hello user you have pressed ctrl-c button.')

 processed_APK(i)

 print("Thank You")

 print("Thank You")

Appendix B

Detailed Results of Execution seen under VirusTotal Droidy and R2DBox results –

Batches

/Behaviour
Conditions Samples

Android Version and

Year

Successfully Obfuscated Obfuscation Techniques

Low Medium High Code Rename Encryption

Batch1 Total 1000 Marshmallow
6.0 – 6.0.1

2015 API 19-22

976 976 976 976 976 976

BEHAVIOUR Not Observed*

47 46 44 45 48 46

Observed*

929 930 932 931 928 930

Executed*

893 895 898 897 893 895

Not Executed*

36 35 34 34 35 35

Executable*

96.12% 96.23% 96.35% 96.34% 96.22% 96.23%

Batch2 Total 523 Jelly Bean

4.1 – 4.3.1

2012
API 16-18

515 515 515 515 515 515

BEHAVIOUR Not Observed * 128 143 145 117 118 116

 Observed* 387 372 370 398 397 399

 Executed* 276 240 234 294 292 290

 Not Executed* 111 132 136 104 105 109

 Executable* 71.31% 64.51% 63.24% 73.86% 73.55% 72.68%

Batch3 Total 480 Jelly Bean

4.1 – 4.3.1

2012
API 16-18

468 468 468 468 468 468

BEHAVIOUR Not Observed * 116 134 133 110 109 111

 Observed* 352 334 335 358 359 357

 Executed* 253 208 211 269 269 264

 Not Executed* 99 126 124 89 90 93

 Executable* 71.87% 62.27% 62.98% 75.13% 74.93% 73.94%

Batch4 Total 522 Jelly Bean

4.1 – 4.3.1

2012
API 16-18

516 516 516 516 516 516

BEHAVIOUR Not Observed * 111 124 122 109 107 108

 Observed* 405 392 394 407 409 408

 Executed* 270 219 222 280 281 275

 Not Executed* 135 173 172 127 128 133

 Executable* 66.66% 55.86% 56.34% 68.79% 68.70% 67.40%

Batch5 Total 520 Jelly Bean
4.1 – 4.3.1

2012

API 16-18

509 509 509 509 509 509

BEHAVIOUR Not Observed * 137 155 152 134 132 132

 Observed* 372 354 357 375 377 377

 Executed* 281 227 232 284 295 294

 Not Executed* 91 127 125 91 82 83

 Executable* 75.53% 64.12% 64.98% 75.73% 78.24% 77.98%

Batch6 Total 520 Jelly Bean
4.1 – 4.3.1

2012

API 16-18

512 512 512 512 512 512

BEHAVIOUR Not Observed * 130 154 151 127 128 128

Batches

/Behaviour
Conditions Samples

Android Version and

Year

Successfully Obfuscated Obfuscation Techniques

Low Medium High Code Rename Encryption

 Observed* 382 358 361 385 384 384

 Executed* 282 218 228 282 284 283

 Not Executed* 100 140 133 103 100 101

 Executable* 73.82% 60.89% 63.15% 73.24% 73.95% 73.69%

Batch7 Total 480 Jelly Bean

4.1 – 4.3.1

2012
API 16-18

468 468 468 468 468 468

BEHAVIOUR Not Observed * 108 125 123 107 107 108

 Observed* 360 343 345 361 361 360

 Executed* 270 212 216 274 274 268

 Not Executed* 90 131 129 87 87 92

 Executable* 75.00% 61.80% 62.60% 75.90% 75.90% 74.44%

Batch8 Total 355 Ice Cream Sandwich
4.0 – 4.0.42011

API 16-18

346 346 346 346 346 346

BEHAVIOUR Not Observed * 35 39 40 31 33 33

 Observed* 311 307 306 315 313 313

 Executed* 259 250 241 273 268 273

 Not Executed* 52 57 65 42 45 40

 Executable* 83.27% 81.43% 78.75% 86.66% 85.62% 87.22%

Batch9 Total 502 Ice Cream Sandwich

4.0 – 4.0.42011
API 16-18

496 496 496 496 496 496

BEHAVIOUR Not Observed * 50 53 56 46 40 44

 Observed* 446 443 440 450 456 452

 Executed* 388 383 378 414 414 418

 Not Executed* 58 60 62 36 42 34

 Executable* 86.99% 86.45% 85.90% 92.00% 90.78% 92.47%

Batch10 Total 499 Ice Cream Sandwich
4.0 – 4.0.42011

API 16-18

493 493 493 493 493 493

BEHAVIOUR Not Observed * 98 110 107 94 98 95

 Observed* 395 383 386 399 395 398

 Executed* 300 256 272 308 299 310

 Not Executed* 95 127 114 91 96 88

 Executable* 75.94% 66.84% 70.46% 77.19% 75.69% 77.88%

*Not Observed = APKS which were uploaded to VirusTotal and whose original as well as Obfuscated did not execute under R2DBox and Droidy
*Observed = APKS which were uploaded to VirusTotal and whose original or Obfuscated were executed under either R2DBox or Droidy

*Executed = Obfuscated APKS which were observed as producing results under either R2DBox or Droidy

*Not Executed = Obfuscated APKS which failed to produce results under either R2DBox or Droidy
*Executable = Execution rate derived using ((Executed/Observed) * 100)

Appendix C

Detailed Results of executability results and generated system calls with Strace tool:

Batch1:

APK

Original

Obfuscation Methods
Code Encryption High Low Medium Rename

1. 1BE22F2074185914F058387D5ED8B87C02FE222BB4EE1F6125E3517E44B0DB58.apk
System calls 9 9 9 9 9 9 9

Executed or not No, but rotate

the screen.
No, but rotate

the screen.
No No, but rotate the

screen.
No No, but rotate the

screen.
No, but rotate the

screen.
2. 3F41BD60C261837BB60D7FFD547ACA3B2F91F9226604D4E1F3AC993DE900E263.apk

System calls 27 25 26 25 27 27 28
Executed or not Yes Yes Yes Yes, but slows

down the device.
Yes Yes Yes

3. 5D7D04CA4F0EFE3F11A0671319349EA464BB18F104F04B56F7CD9A32311D5C53.apk
System calls 24 25 24 31 24 34 27

Executed or not. Yes Yes Yes Yes Yes Yes Yes
4. 7E6CC7B8906468117BB9C3B7CCACBE37C3D1D826A125FFA3C98D2778BBF6C893.apk

System calls 26 29 30 30 25 30 28
Executed or not Yes Yes Yes Yes, but slows

down the device.
Yes Yes Yes

5. 9E1ABF07E7A30B60FDC2F0ED4181DFBEEB02B82FE65F0B714D28C237B72ECF7D.apk
System calls 26 24 31 27 24 24 26

Executed or not Yes Yes Yes Yes, but slows

down the device.
Yes Yes Yes

6. 7F7F91D206DCFAE4926D4BBFFB985F212145220F19B1572F91451A49CCB9A4E5.apk
System calls 31 31 27 27 30 31 36

Executed or not Yes Yes Yes Yes, but slows
down the device.

Yes Yes Yes

7. 9C19E5F776382E72D87C471198209FC2CBBB173DB7A6D75B461AA31787941628.apk
System calls 34 34 30 32 35 30 36

Executed or not Yes Yes Yes Yes Yes, but slows down

the device.

Yes

8. 89BF9D9F272FCFED0B14E05248C2D7B5E930C6FD30235A6DD5A6C2FBD441A39E.apk
System calls 35 30 29 28 29 29 31

Executed or not Yes Yes Yes, but slows

down the

device.

Yes Yes Yes, but slows down

the device.
Yes, but slows down

the device.

9. 01612E7ABF107EF81CEC7DEC4DCDAF56311D5DDCD457DC250E341C7B82691425.apk
System calls 34 31 30 30 30 29 29

Executed or not Yes Yes Yes Yes Yes, but slows down
the device.

Yes Yes

10. 9943ACA7EF6A1BCEC0D8746464360E916EE12E8EC8E5F5010DDCC6A04E8DAE33.apk
System calls 30 30 29 30 30 30 30

Executed Yes, but slows

down the
device.

Yes Yes Yes Yes Yes Yes, but slows down

the device.

11. DBB7D283A69CFE5913A1DEF31D971103340717658789FECF5960CCEE3C74EC92.apk
System calls 28 31 30 30 30 31 33

Executed or not Yes Yes Yes Yes Yes Yes Yes, but slows

down the device.
12. EB57B7BD48E2D259C05A824F1FB25B8B2473429CFABEB57C6EA4DF998B383B97.apk

System calls 10 9 9 10 10 9 9
Executed or not No No No No No No No

13. 15DB45315FA642960E5315889AB5FED54D1A20923A40BCEE89F94D00003620DA.apk
System calls 30 30 29 29 29 29 30

Executed or not Yes Yes Yes Yes Yes Yes Yes
14. DA76ED42D154EB191642EF2512FDA79D2D0BB9506A8CA46AF9977825F33F4946.apk

System calls 31 29 28 29 28 32 28
Executed or not Yes Yes Yes Yes Yes Yes, but freeze the

device.
Yes

Batch 2

APK

Original

Obfuscation Methods
Code Encryption High Low Medium Rename

1. 00B3AE21A6FEEAE0F616133C7DCBAA0C454990A9B9E4608830F2A3CB66932A5C.apk

System calls 34 34 24 34 34 33 25
Executed or not Yes Yes Yes Yes Yes Yes Yes

2. 01D75DB04EFF364547B60159FC0EDA12DFE98011425C7AE333DFB51018EACB91.apk

System calls 31 13 19 10 9 9 9
Executed or not Yes Yes Yes No No No No

3. 02CC86E73BE61180FD66AC9625F655217757291BA255ADBE1EFECA2D1F2803EC.apk

System calls 21 28 22 24 28 27 25
Executed or not Yes Yes Yes Yes Yes Yes Yes

4. 013B524DDD1AC9D2534D287EFD52E84FAC5825AA8E3A241DEF0800C70545E117.apk
System calls 36 35 16 29 29 30 29

Executed or not Yes Yes Yes, but froze

the screen.
Yes Yes Yes Yes

5. 032E0F6D3DA42E9ED1E0FB3189E47465E4730BEFBF5D281BD9DD47CCAF9A8C64.apk
System calls 34 35 36 36 35 36 36

Executed or not Yes Yes Yes Yes Yes Yes Yes
6. 039F8B1CACF7557B855249A4665B653093222928F4A8AC8A7610D3FCC9A9F3E6.apk

System calls 29 27 29 30 26 29 29
Executed or not Yes Yes Yes Yes Yes Yes Yes

7. 0264B77FEE1D56EC642ED76061EF354582E3A689CAEAF5A9B0A4461201FC36AC.apk
System calls 21 33 25 33 34 34 33

Executed or not Yes Yes Yes Yes Yes Yes Yes
8. 0304AF9CFA21048090AA088A283C7797FB7234A8DEF6505B7BD06345AC88FCE8.apk

System calls 28 30 29 9 9 9 9
Executed or not Yes Yes Yes No No No No

9. 01733E6D472ECAA38ADC3FA7CD14F7CC720165F2CCD3994C18DCD112A321C44C.apk
System calls 17 19 20 22 22 22 22

Executed or not Yes Yes Yes Yes Yes Yes Yes
10. 02839D0ACF52FE60999C6299D6D170AE2491BF9F9C3848B5124AE8DFC73F4F7E.apk

System calls 20 22 23 22 22 22 22
Executed or not Yes Yes Yes Yes Yes Yes Yes

Batch 3

APK

Original

Obfuscation Methods
Code Encryption High Low Medium Rename

1. 04DE1F156F8252312B736E806FF739E9C534E6BF5E2B84450A9E3FB9A2957CF0.apk
System calls 29 27 28 40 28 31 29

Executed or not Yes No No Yes No No No

2. 05B2B1F1ED0007BEFBF6B9EBF41DE6DA7480D6388B55E50D2B88B432A688D211.apk

System calls 24 21 24 9 9 9 24
Executed or not Yes Yes Yes No No No Yes

3. 053B5A6C0A08FC1BCDEC8FF6D8B1A64D9020B168A31B018842F859E33F797199.apk
System calls 36 40 15 9 9 9 35

Executed or not Yes Yes Yes No No No Yes
4. 063FA0B17166CB3BCC5975BAFD528958F7AA1C545931686F7EB51D38128AB80C.apk

System calls 28 24 35 27 27 16 24
Executed or not Yes Yes Yes Yes Yes Yes Yes

5. 04848EB56C4B4301CA97E952398DF561241E844956D7E0D45A5DF015CCDC16C7.apk
System calls 19 20 19 17 20 19 19

Executed or not No No No No No No No
6. 06C6BF912683C4E9CAFB083809BCD3A91E8887C757888DDC54D12D07EB2B6CA2.apk

System calls 33 33 33 33 33 33 33
Executed or not Yes Yes Yes Yes Yes Yes Yes

7. 065AC09DB43F5AA56B9650BFA19469F8E2D03508368F15DEE6E9B58C9D491236.apk
System calls 21 23 22 22 21 22 22

Executed or not Yes Yes Yes Yes Yes Yes Yes
8. 067C00C56A412ADE106510E04289E8377412C7D3CB2D6F225C2829A7CBDB02CC.apk

System calls 10 9 9 9 9 9 9
Executed or not No No No No No No No

9. 0751273DD8E2E724E30BF837BF66CF6A062A6F56AD8FFDE952EEB77AED088927.apk
System calls 33 35 36 35 35 36 35

Executed or not Yes Yes Yes Yes Yes Yes Yes

APK

Original

Obfuscation Methods
Code Encryption High Low Medium Rename

10. 0700657141AF5A28329947BF38E3AFEC516616AD7288379738CBF7670EBE8FC9.apk
System calls 9 0 0 9 9 9 0

Executed or not No No No No No No No

Batch 4

APK

Original

Obfuscation Methods
Code Encryption High Low Medium Rename

1. 08B8E291F4B1E72D8CA71F27086ABB8F60385E8A22A1073EC7343A5EE990ADAB.apk
System calls 16 16 15 8 8 8 8

Executed or not yes yes yes no no no yes

2. 09CFED4D8C08EA1144F1C7A016306D981447FE9771F9C42A74DDA1F0A78D32A8.apk

System calls 36 19 17 35 34 36 5
Executed or not yes yes yes yes yes yes yes

3. 086CD34FD0A27889FCE420C9787497BF0ED37677AB73FFFD3E424008C6AAF23C.apk
System calls 0 0 0 0 0 0 0

Executed or not no no no no no no no
4. 0805D08434A1593FC469CD2F8F008723DAFF6D74A2348B4483FFB35BD4AAEE3A.apk

System calls 27 27 31 28 27 30 30
Executed or not yes yes yes yes yes yes yes

5. 09358B2DAC12C1D218D092D7BA2148F01A984F597499634E50F09C8946FC9DD8.apk
System calls 26 27 28 26 25 25 6

Executed or not yes yes yes yes yes yes yes
6. 0A02F83E842C8AAF3F77A229EE9095A1DD72CA040400FA4BBF89B3AC8CCC657C.apk

System calls 3 3 3 3 3 3 3
Executed or not no no no no no no no

7. 0A7D26BFB6DCAFBECC94434C1534AC534ED7622BBB7481888A6BF6E164E6240E.apk
System calls 0 0 0 0 0 0 0

Executed or not no no no no no no no
8. 0A393841094FFA9A81A1D19F9B21A3AC9550033AD59D182B93E373033579DE41.apk

System calls 9 9 9 9 9 9 9

Executed or not no no no no no no no
9. 0AA43A5B1424631DA5C2E6F340E8CC29357940D4784D0CF7E43765CD55E1F8BF.apk

System calls 26 23 23 9 9 9 23
Executed or not yes Yes, but freeze

the device
Yes, , but freeze

the device
no no no yes

10. 0B0C6B68E6168EBC297D0B70A00F53559AAF76B0DEC600501FB6415A38D59D07.apk
System calls 36 36 35 36 37 37 37

Executed or not yes yes yes Yes, , but freeze

the screen
yes yes yes

Batch 5

APK

Original

Obfuscation Methods
Code Encryption High Low Medium Rename

1. 0C04A6FF18C152B02B7AF849D56DD0673BFFB0D89244699810E3561B8CA601BC.apk

System calls 19 23 28 16 22 24 19
Executed or not no yes yes no yes yes yes

2. 0C6FD204A8BA0B1558BD09E1AB361AE2E7EB7E9AAC95A56214B13C1E7A51A4F0.apk

System calls 31 32 32 36 32 33 30
Executed or not no no yes no yes no yes

3. 0CC5F47D81A0F1D1817F799E53A6E5190DFDD7720E5ECACC2AAF0E81F13B7FC1.apk
System calls 28 23 23 34 23 32 23

Executed or not no no no no no no no
4. 0D4C6C17412BB5B5B970C40900C90D9EDBAC0021305B0A3BC2B31B8EA6C73AA4.apk

System calls 22 24 15 23 24 24 11
Executed or not yes yes yes no yes yes yes

5. 0DE630901ACF958B473FB97707765AEC63696CF4D7B119C7413AAAAB7306C986.apk
System calls 27 27 29 31 15 23 29

Executed or not yes yes yes no no no yes
6. 0E8ADBE37260C4E0DA641332098DA1DAC1B2C5A47E78534F3CDA6FBC380AC209.apk

System calls 36 36 36 36 36 36 36
Executed or not yes yes yes yes yes yes yes

APK

Original

Obfuscation Methods
Code Encryption High Low Medium Rename

7. 0E33C4F6286CBCE4DAF26CCD9C5930B5F660D8767718C93A03DF5BB81F8BCC61.apk
System calls 35 35 36 37 35 36 35

Executed or not yes yes yes yes yes yes yes
8. 0E0932A010083FD138361B2EFDA34994C12EA073281CE0C47F10EABAE900822D.apk

System calls 38 38 38 38 38 37 38
Executed or not yes yes yes yes yes yes Yes, but freeze the

screen.
9. 0EA63837421FAA1FD5D32C175CCA28D845DC7157005CF5CDD2F1ABDEC6B6A449.apk

System calls 35 35 35 36 34 33 35
Executed or not yes yes yes yes yes yes yes

10. 0F4AF8B26B98FCD5AB6CE28539149472B862698D0F46B09086B2AB35AE20EB06.apk
System calls 9 9 9 9 9 9 9

Executed or not no no no no no no no

Batch 6

APK

Original

Obfuscation Methods
Code Encryption High Low Medium Rename

1. 0F92BB798552F11400E4112ED23A162BCA8EF07A06D74B06549AA598E0ABF646.apk
System calls 32 33 32 35 31 31 32

Executed or not yes yes yes yes yes no yes

2. 10CD7C1D62E743112B849B335454F7667B3EF7CE6ED262DEB43B78537021FAF1.apk

System calls 33 30 28 22 28 32 30
Executed or not yes yes yes no yes no yes

3. 101B126E30B2BA02FC0CC85F2CCFCBE4CAF93220CC85421F4B967232EB533E51.apk
System calls 19 47 19 19 10 19 19

Executed or not no yes no no no no no
4. 1059B81C0B49A8D66FCF2CF5466A92DCA2238E7819963BE6A4FECDE68B021B50.apk

System calls 34 34 28 34 8 36 28
Executed or not yes yes yes no no no yes

5. 1151289173F7ACAE3B77BD225B5FB9902431B4DFAFC80B0416E00236718B7D56.apk
System calls 0 0 0 0 0 0 0

Executed or not no no no no no no no
6. 11A8143B89C25D37C9BD1E1FDCDCBB5545E7B520071406F9D4A43A2DD173DEAE.apk

System calls 0 0 0 0 0 0 0
Executed or not no no no no no no no

7. 11EC0FCA89A1D2CA996B95F722BC53CB8AFEC24AB06EBDD82C6236D8DCFFB223.apk
System calls 37 35 38 9 9 9 35

Executed or not yes yes yes no no no yes
8. 1176CE1052CA7A179B61FB77A0ED586F3B8712FBB9C052B0C0CF0FA82BD10044.apk

System calls 33 33 37 37 35 36 37
Executed or not yes yes yes yes yes yes yes

9. 1205777F0BC689207F688A505EC3D6BEB6DB5C075A48575416A74F97FCE1C9FE.apk
System calls 20 16 18 22 21 22 16

Executed or not yes yes yes yes yes yes yes
10. 12859368BE0D49D3AAB9E0CC40E52C162FF6497F07BDDC6A629D1F2495B938B6.apk

System calls 25 24 25 24 25 24 26
Executed or not yes yes yes yes yes yes yes

Batch 7

APK

Original

Obfuscation Methods
Code Encryption High Low Medium Rename

1. 03ED74BA6A72CD42B9DE8AEC13AE9B0C0395A688C5E8D5F067594A7901C26A43.apk
System calls 19 24 36 9 9 9 19

Executed or not Yes Yes Yes No No No Yes

2. 03ED81AF1EC5F1019AA71A86D055D2A6B0E1391794860C3228F1C51A76A41483.apk

System calls 0 0 0 0 0 0 0

APK

Original

Obfuscation Methods
Code Encryption High Low Medium Rename

Executed or not No No No No No No No
3. 03EF2758F8D88E13495B00BB9925B47B496A9D987DD8FD9BB725958C9138825F.apk

System calls 27 23 21 38 27 39 21
Executed or not Yes Yes Yes Yes Yes Yes Yes

4. 03F36403E08ECE2B89CA7738BF8DBF6ED543E41961CFA5EEF702A125341C0456.apk
System calls 51 50 50 3 49 50 51

Executed or not Yes yes Yes Yes Yes Yes Yes
5. 03F50FEEFFB3E002E0CABF8364986E4643B8B12FEE5B668FC7483A350A88B38E.apk

System calls 28 28 5 24 5 20 28
Executed or not Yes Yes Yes No Yes No Yes

6. 065AC09DB43F5AA56B9650BFA19469F8E2D03508368F15DEE6E9B58C9D491236.apk
System calls 20 20 20 19 21 22 20

Executed or not Yes Yes Yes Yes Yes Yes Yes
7. 067C00C56A412ADE106510E04289E8377412C7D3CB2D6F225C2829A7CBDB02CC.apk

System calls 9 9 9 9 9 9 9
Executed or not No No No No No No No

8. 06C6BF912683C4E9CAFB083809BCD3A91E8887C757888DDC54D12D07EB2B6CA2.apk
System calls 33 33 33 33 33 33 33

Executed or not Yes Yes Yes Yes Yes Yes Yes
9. 0700657141AF5A28329947BF38E3AFEC516616AD7288379738CBF7670EBE8FC9.apk

System calls 9 0 0 9 9 9 0
Executed or not No No No No No No No

10. 0751273DD8E2E724E30BF837BF66CF6A062A6F56AD8FFDE952EEB77AED088927.apk
System calls 19 19 19 19 19 19 19

Executed or not Yes Yes Yes Yes Yes Yes Yes

