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Abstract

As quantum computing research progresses, the need for a quantum network

to allow communication between individual processors is becoming apparent.

Such a network will require the ability to process, transmit, and store quantum

information. Many quantum devices have been investigated, however individ-

ual devices are specialists in one task, and in order to realize a full-scale quan-

tum network multiple devices will need to be combined into a hybrid quantum

system (HQS).

This thesis describes efforts to construct a HQS which will combine laser-

cooled atoms with other cryogenically-cooled quantum devices. The envisioned

system requires the construction of a new apparatus where 87Rb atoms will

be laser cooled, then moved 60 cm into a dilution fridge where they will be

coupled to other quantum devices. Once the apparatus is complete, we plan

to conduct quantum memory, wavelength transduction, and state transfer ex-

periments.

This work details the design of the ultra high vacuum chamber where the

atoms will be laser cooled, as well as the optical set up required for the cooling.

As well, simulations of the transport process are reported, and suggestions for

possible transport schemes are given.
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Chapter 1

Introduction

1.1 Motivation

In 1982 Richard Feynman proposed that to simulate nature, which is quantum

mechanical, we need a computer that is made of quantum elements [1]. Since

then, interest in quantum computers has grown rapidly. These computers

use algorithms that would not be possible with classical computers, providing

increased problem solving capabilities. Algorithms which offer the possibil-

ity to outperform classical computers have been developed, such as Shor’s

algorithm [2], which has security implications for RSA encryption. Quantum

computing and quantum information is an active area of current research, with

efforts ranging from preliminary fundamental research, to companies such as

IBM, D-wave Systems, and Honeywell, who are working towards developing

large-scale quantum processors, to Google’s (albeit disputed [3,4]) result show-

ing quantum “supremacy” [5]. There have been many proposals for areas of

research that could be accelerated by these powerful computers including, but

not limited to drug discovery [6], high-energy physics [7], medical image recon-

struction [8], traffic flow optimization [9], and protein folding simulations [10].

Quantum computation is an exciting area of research, where many exciting

and probably unexpected developments will take place in the years to come.

Although quantum computers themselves are novel and exciting quantum

technologies, research efforts extend beyond processing quantum information

and solving hard problems. Just as the power of classical computers has been
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increased by joining them together and allowing them to communicate via

the internet, a “quantum internet” that allows quantum computers to com-

municate with one another would increase the power of individual quantum

processors [11]. This type of “quantum communication” would require the

ability to transmit the quantum bits, or “qubits” which process the quantum

information [12]. For a full communications network, the ability to coherently

transfer states between light and matter [11], as well as the ability to store

states in a quantum memory are also desirable.

To date, many individual quantum systems have been studied, includ-

ing cold atoms and ions [13], superconducting qubits [14], mechanical res-

onators [15], microwave and optical cavities [16], spin systems [17], and quan-

tum dots [18]. Each of these systems is interesting on its own, however they

are specialists; each is good for one specific task. For example, superconduct-

ing qubits can quickly process quantum information, but have short coherence

times making them a poor storage platform. In contrast, ultracold atoms expe-

rience minimal thermal fluctuations and are isolated from their environment,

resulting in long coherence times, making them ideal for memory applica-

tions [19]. Although we have the capabilities to process, store, and transmit

quantum information there is no device that can do all of these tasks at the

same time [19], making communications via a quantum internet appear out

of reach. Enter the hybrid quantum system (HQS). A HQS would combine

multiple quantum devices, each fulfilling a role to which it is well suited, into

a larger device capable of performing multiple tasks simultaneously [19]. Al-

though this may sound straightforward, in reality the realization of the HQS

is a difficult task. Not all quantum systems interface with one another, and

many operate in different, often extreme and difficult to create, environments,

such as cryogenic temperatures, or ultrahigh vacuum. We aim to build a new

and versatile apparatus that will allow us to combine laser-cooled atoms with

cryogenically-cooled devices in a dilution refrigerator.

Much research into atomic hybrid quantum systems has already taken
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place. Although not an exhaustive list, some examples include a proposal

to couple solid-state qubits to atoms [20], a study of how the the presence

of a superconducting ring close to an atom trap modifies the trapping poten-

tial [21], and the realization of on-chip systems combining cold atoms and a

superconducting coplanar waveguide resonator [22, 23].

In order to create a system with greater versatility, it is desirable to prepare

cold atoms in one location and to later move them closer to the device un-

der investigation, where they can be trapped on a stand-alone atom chip [24].

Preparing the atoms separate from the other device allows multiple devices

to be studied without fabricating additional atom chips [24]. Additionally,

as the atoms are cooled in a separate location, changing samples will not re-

quire the cooling optics to be re-aligned [24]. A 2013 paper by Naides et al.

demonstrated such a system using a two-chamber apparatus [24]. Atoms were

cooled in one chamber before being optically transported into another cham-

ber, where they were magnetically trapped in proximity to another device.

The other device is held on a cold finger and is cooled with liquid nitrogen.

Work has also been done on a system that allows cold atoms to be moved into

the 4K stage of a dilution fridge for further experimentation [25].

Many quantum devices require temperatures below liquid nitrogen (77 K)

and liquid 4He (4 K) cooling. Using a dilution fridge capable of reaching mi-

likelvin temperatures is necessary for devices such as superconducting qubits

to operate at their full potential [26]. To date, a few groups have demonstrated

such as system. J. Fortágh’s group was able a to prepare cold atoms in the 6 K

stage of a dilution fridge and to magnetically transport them to the milikelvin

stage where they would be coupled to devices cooled to milikelvin tempera-

tures [26]. Another similar apparatus designed to couple ultracold atoms to

superconducting devices has recently been built by a group in Singapore [27].

This apparatus distinguishes itself from the former by preparing the atoms

outside of the dilution fridge, before magnetically transporting them to the

milikelvin stage. A German group has built an apparatus where a lattice of
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laser-cooled atoms are held in a chamber outside of a dilution fridge and cou-

pled via light to a mechanical membrane located inside a dilution fridge [28].

They claim that by using a combination of feedback and sympathetic cooling

they will be able to realize coupling between both systems in their ground

state [29].

1.2 Our Hybrid Quantum System

We have designed a hybrid quantum system that combines laser-cooled atoms

and cryogenically-cooled components. Cold atoms will be prepared in an ul-

trahigh vacuum chamber using laser cooling. The chamber is connected to a

dilution fridge via a flexible bellows, allowing the atoms to be moved between

the preparation chamber and the fridge. Once in the fridge, the atoms can be

captured and coupled to the quantum devices which operate inside the fridge.

The exact capture method is yet to be decided, but at this point we are con-

sidering an on-chip magnetic trap. A gate valve will separate the cold atoms

preparation chamber and fridge, allowing the macroscopic quantum system to

be exchanged without the need for baking the cold atoms preparation portion.

In addition, this feature will allow the two systems to operate independently

if desired.

The goal of this system is to couple cold atoms to other quantum sys-

tems in order to perform state transfer, wavelength transduction, quantum

memory, and quantum computation. At this point there are no firm plans for

the experiments, although we are currently investigating microwave to opti-

cal wavelength transduction using atoms in a cryogenically-cooled microwave

cavity.

Details of the laser-cooling procedure are given in section section 2, the

apparatus used to prepare the cold atoms is described in section 3, and the

transport system is discussed in section 4.
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Chapter 2

Laser Cooling

At the center of our experiment lie confined clouds of laser-cooled atoms.

Cooling and trapping atoms is a complicated process, which requires many

steps and a complex set-up. In this chapter the theory behind cooling atoms

is explained, and our cooling and trapping procedure, as well as the optical

set-up, is described.

2.1 Doppler Cooling

2.1.1 The Two Level Atom

Interactions between the atom and incoming light will be explained in the

semi-classical picture where the atom is treated quantum-mechanically, and

can be approximated as a two-level system. The incoming radiation is treated

as a classical oscillating electric field, E = E0cos(ωt), where ω is the radia-

tion frequency. The interaction between the atom and the radiation can be

described as a perturbation to the base Hamiltonian, H0, by an interaction

Hamiltonian term

HI(t) = er · E0cos(ωt), (2.1)

where r gives the atomic electron’s position from the atomic center of mass.

Written in the basis states of the unperturbed Hamiltonian, which satisfy

H0ψn(r) = Enψ(r), n = 1, 2, the wavefunction for this system is

Ψ(r, t) = c1(t)ψ1(r)e−iE1t/~ + c2(t)ψ2(r)e−iE2t/~, (2.2)
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where c1(t) and c2(t) satisfy |c1(t)|2 + |c2(t)|2 = 1.

When Ψ(r, t) is used in the time-dependent Schrodinger equation,

i~
∂Ψ

∂t
= (H0 +HI)Ψ, (2.3)

we end up with two coupled differential equations [30]:

iċ1(t) = Ωcos(ωt)e−iω0tc2(t) (2.4)

and

iċ2(t) = Ω∗cos(ωt)eiω0tc1(t), (2.5)

where ω0 = E2−E1

~ is the atomic resonance frequency, and Ω = 〈1|er·E0|2〉
~ is the

Rabi frequency. If we assume that initially all of the population is in the lower

level, |c1(t)|2 = 1, and invoke the rotating wave approximation (assume the

e−i(ω+ω0) terms average to zero) we find that [30]

|c2(t)|2 =
Ω2

(Ω2 + δ2)
sin2

(√
Ω2 + δ2t

2

)
. (2.6)

In the resonant case ω = ω0, δ = 0, and we find that

|c2(t)|2 = sin2

(
Ωt

2

)
(2.7)

and the population oscillates between ψ1 and ψ2 with period 1
2Ω

. As the

frequency of the incoming light moves further from resonance the oscillation

period decreases, and a smaller fraction of atoms are able to reach the excited

state, ψ2. This is shown in figure 2.1.

The above only considered the interaction of the atoms with an external

electric field. The atoms can also spontaneously emit photons and decay from

the excited state to the ground state. This is quantified by Γ, the natural

linewidth of the transition. Γ−1 gives the lifetime of the excited state.

2.1.2 Scattering Force

Light carries momentum, and when it scatters off of a surface, it will im-

part momentum onto that object. This is seen when light is absorbed and
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Figure 2.1: The populations of the ground state, ψ1, and the excited state, ψ2,
vs. Ωt for various detunings. The blue dotted line shows |c1(t)|2 and the red
dash-dotted line shows |c2(t)|2. At zero detuning, δ (top left) full population
transfer occurs when Ωt = π. As the detuning increases the fraction of atoms
transferred into the excited state decreases, and the period increases. For
δ = −2Ω only 1/5 of the ground state population can be excited and maximum
transfer occurs when Ωt = 2π

5
(bottom right).
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re-emitted by atoms. The force on an atom that absorbs a photon with mo-

mentum ~k is given by:

Fsc =

〈
dp

dt

〉
= ~k

〈
1

∆t

〉
= ~k Γsc, (2.8)

where Γsc = Γρ22 is the scattering rate, where Γ is the transition natural line

width, and ρ22 is the population fraction in the excited state. ρ22 is given

by [30]:

ρ22 =
Ω/4

δ2 + Ω2/2 + Γ2/4
, (2.9)

where Ω is the Rabi frequency describing the light-induced transfer between

the ground and excited states, and δ is the detuning. Using the ratio of the

intensity of incoming light, I, to the saturation intensity, Isat, I/Isat = 2Ω2/Γ2,

we can combine (2.8) and (2.9) to find that the scattering force is [30]

Fsc = ~k
Γ

2

I/Isat

1 + I/Isat + 4δ2/Γ2
. (2.10)

2.1.3 Optical Molasses

Cooling atoms using radiation was first proposed in 1975 [31]. To understand

this technique, consider an atom moving with a velocity v. As it moves towards

a laser beam, the Doppler shift will kick in. If the the light is red-detuned (fre-

quency below resonance), an atom moving towards it will see the light Dopper

shifted closer to resonance. When the atom absorbs, it will get a momentum

kick in the direction opposite to its motion, slowing it down. Assuming the

light intensity is below saturation, the photon will be spontaneously re-emitted

in a random direction. Since re-emission is random, the momentum kicks from

re-emission will average to zero. The process is shown in figure 2.2

Assume there are two counter-propagating beams. The net force felt by a

moving atom is the difference between the scattering forces in each direction,

8



Figure 2.2: Cartoon of the Doppler Cooling mechanism. The atom is modeled
as a two-level system. a) An atom in the ground state moves towards a red-
detuned laser beam, frequency ω, with velocity v. b) When ω − ω0 = k · v
the atom absorbs, and transitions to the excited state. The atom feels a force
F = −av in the direction opposite to its motion, slowing it to v′ < v. c) The
atom spontaneously emits a photon, returning to the ground state. It will
continue with velocity vf = v′ − vsp. When the absorption and re-emission
process occurs for many atoms, the vsp components average to zero, resulting
in a net cooling.

9



Fnet = Fsc(δ + k · v)− Fsc(δ − k · v):

F =
~kΓI

2Isat

[
1

1 + I
Isat

+ 4(δ+k·v)2

Γ2

− 1

1 + I
Isat

+ 4(δ−k·v)2

Γ2

]
=

~kΓI

2Isat

8δk · v/Γ2

(1 + I/Isat + 4(δ + k · v)2/Γ2)(1 + I/Isat + 4(δ − k · v)2/Γ2)

.

(2.11)

If the Doppler shift is much less than the natural linewidth (|k · v| � Γ), we

have:

F = − 8I~k2δv

ΓIsat(1 + I/Isat + 4δ2/Γ2)2
= −av, (2.12)

where a is given by

a = 4~k2 I

Isat

−2δ/Γ

[1 + I/Isat + 4δ2/Γ2]2
. (2.13)

This force is proportional to the velocity, much like viscosity. It is referred to

as “optical molasses”, referencing the fact that molasses is a viscous fluid.

2.1.4 The Doppler Limit

There is a fundamental limit to the Doppler cooling mechanism. Although

the momentum kicks from the emitted photons average to zero, there will

be a small net displacement in the direction of the beam (this is similar to

Brownian motion) [30]. There is a Poissionian variation in the number of

photons absorbed and emitted in a time t, which results in an additional

random walk [30]. Both of these effects oppose the “viscous” force acting on

the atoms, and result in heating. This places a limit on the temperature that

can be reached by molasses cooling. Assuming that the intensity is below the

saturation intensity, this temperature is given as a function of the detuning,

δ, and the natural linewidth, Γ, as [30]

T (δ) =
~Γ

4kB

1 + (2δ/Γ)2

2|δ|/Γ
. (2.14)

This temperature is a function of delta, and will have a minimum for some

value of delta given by

dT

dδ
=

(
−~Γ2

8kB

)(
−1

δ2
+

4

Γ2

)
= 0. (2.15)
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Using (2.15), we find that the temperature has a minimum value at δ = −Γ
2
.

We can use this value in (2.14) to find that the minimum temperature allowed

by Doppler cooling is

TD =
~Γ

2kB
. (2.16)

For 87Rb, Γ = 2π · 6.056 MHz [32], which gives a Doppler temperature of

140 µK.

2.2 Sub-Doppler Cooling

When the first laser-cooling experiments were conducted, it was found that

temperatures well below the Doppler limit could be achieved [33]. This is due

to the fact that atoms are not an ideal two-level system; they actually have

a complicated structure of sub-levels. Two of the mechanisms behind this

phenomenon are outlined below.

2.2.1 σ+/σ− polarization

Figure 2.3: When counter-propagating beams with opposite circular polar-
ization interfere they create a linear polarization gradient that rotates with a
period equal to the wavelength of light.

When two counter-propagating beams with opposite circular polarization

interfere, they create a standing wave with a linear polarization that rotates

with a period of the laser wavelength, λ, as seen in figure 2.3. This results

in a motion-induced atomic orientation, and as a result the atoms will absorb

preferentially from the beam towards which it travels, resulting in a damping

force more efficient than the one in Doppler cooling [34].

Consider an atom in the F = 1 ground state at rest, and take the quanti-

zation axis to be the direction of polarization. The ground state will be split

into mF sub-levels with mf = 0,±1. The mF = 0 sublevel will have a larger

11



population than the mF = ±1 states as this is the stronger π-transition. Now

assume that when the atom moves in the z-direction it is moving towards the

σ− beam. If the beam is red-detuned, when we work in a frame rotating with

the polarization gradient there will more atoms in the mF = −1 ground state

than in the mF = 1 state [34], and the atom will absorb light from the σ−

beam with 6 times greater probability than the σ+ beam. Similarly, atoms

moving along −z, towards the σ+ beam, will have a greater population in the

mF = 1 ground state, and there is greater probability that the atom absorbs

from the σ+ beam. This results in an unbalanced force, which damps the

motion of the atom.

2.2.2 Lin/Lin-Polarization (Sisyphus cooling)

In addition to the sub-Doppler mechanism that is generated by circularly-

polarized light, there are additional effects caused by counter-propagating

beams with orthogonal linear polarization. Although we use circularly-polarized

beams for our experiment, we use light in 3-dimensions, resulting in a complex

polarization pattern, and lin ⊥ lin cooling comes into play.

Figure 2.4: When counter-propagating beams with opposite linear polariza-
tion interfere they create a standing wave pattern that rotates between lin-
ear and circular polarization. Due to the AC Stark shift, the energy of the
mj = ±1

2
sublevels shifts depending on the polarization. Adapted from [30].

The result of counter-propagating orthogonal linear beams is a standing

wave pattern where the polarization rotates between linear and circular po-

larization, as seen in figure 2.4. Consider a two-level atom, with ground state

J = 1
2

and excited state J = 3
2
. The ground and excited states will be split into

mJ sub-levels with −J < mJ < J . Consider a region of σ+ polarization. With

12



σ+ polarized light there are two ground to excited state transitions which sat-

isfy the ∆MJ = 1 selection rule: MJ = −1
2
→MJ = 1

2
andMJ = 1

2
→MJ = 3

2
.

Since the transition strength is stronger for the MJ = 1
2
→MJ = 3

2
transition

(Clebsch-Gordan coefficient of 1, vs.
√

1
3

for the MJ = −1
2
→MJ = 1

2
transi-

tion) the atoms will be optically pumped into the MJ = 1
2

ground state [34].

Due to the AC Stark effect, the ground state sub levels will have an energy

shift downward, with the shift for the MJ = 1
2

sub level being greater because

it is a stronger transition. Following the same argument, in a σ− region atoms

will be optically pumped in the MJ = −1
2

ground state sub level, and this

level will also see an energy shift below the MJ = 1
2

sub level.

Let’s look at the above process more closely to see how it results in cooling

of atoms. As the atom moves in space it sees rotating polarization, causing

the energy levels to shift up and down in a sinusoidal pattern. As the atoms

move in space, they have to “climb” hills, converting kinetic energy to po-

tential energy [34]. Once at the top of a hill, the atom will be excited into

the J ′ = 3
2

state, however, when it spontaneously emits a photon and transi-

tions back to the ground state it is more likely to fall into the lower ground

state sub-level (this is known as “optical pumping”) [34]. For example, if an

atom in the MJ = −1
2

state absorbs a σ+ photon at a potential maximum

and transitions into the M ′
J = 3

2
excited it will have a higher probability to

spontaneously emit into the lower energy MJ = 1
2

ground state. This process

requires a higher energy photon than was absorbed. Physically this means that

the additional potential energy gained when climbing the hill is carried away

with the photon, leaving the atoms with less kinetic energy, thus cooling it [34].

The theoretical limit on the temperature that can be reached through this

mechanism is set by the recoil energy from spontaneous emission [30], and is

given by:

T =
h2

mkBλ2
, (2.17)

where h is Plank’s constant, m is the mass of a 87Rb atom, kB is the Boltzmann
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constant, and λ is the light’s wavelength.

2.3 Magneto-Optical Traps

Figure 2.5: Schematic showing a magneto-optical trap in 1 dimension.
As atoms move along the magnetic field gradient their Zeeman sub-levels
are shifted into resonance with the red-detuned beam, creating a position-
dependent force which pushed them towards the center of the trap.

The force the atoms experience in Doppler cooling slows them down, but

this force does not depend on position, therefore atoms will eventually diffuse

out of the cooling region. Using a set of anti-Helmholtz coils to create a mag-

netic field gradient can create a magneto-optical trap (MOT) for atoms [35].

First consider the one-dimensional case shown in figure 2.5, where 2 red-

detuned, counter-propagating beams have opposite circular polarization (σ+

and σ−). Due to the external magnetic field, the energy levels in the atoms

are Zeeman shifted, and there is an additional term in the detuning,

ωZ =
µ′B

~
, (2.18)

where

µ′ = gFmFµB. (2.19)

In (2.19) mf is the Zeeman sub-level, µB is the Bohr magneton, and gF if given

by

gF =
F (F + 1) + J(J + 1)− I(I + 1)

2F (F + 1)
gJ , (2.20)
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where J is the quantum number describing total angular momentum, I is the

quantum number for nuclear spin, F = I + J, and

gJ =
3

2
+
S(S + 1)− L(L+ 1)

2J(J + 1)
, (2.21)

where S is the spin quantum number, and L is the angular momentum quan-

tum number.

Now the total detuning, δ′, is,

δ′ = δ + ωD + ωZ . (2.22)

Since the magnetic field, B(z), depends on the position, atoms will experience

a position-dependent detuning. Here we assume the magnetic field gradient

is linear, and that the field is zero at z = 0. As an atom moves towards the

σ− beam in the +z direction, the mF = 1 state is shifted to higher energy,

away from resonance, and the mF = −1 state will be shifted to lower energy,

closer to resonance with the red-detuned beam. If the atom moves towards

the σ− beam, it will absorb, and be pushed towards the centre of the trap. A

similar process will take place when atoms moving in the −z direction see the

mF = 1 level shifted to resonance with the σ+ beam. This process cools the

atoms by slowing them down and confines the atoms by pushing them towards

the centre of the trap. This can be extended to three dimensions by using 3

orthogonal sets of counter-propagating beams and a 3-dimensional field gradi-

ent provided by a set of coils in the anti-Helmholtz configuration.

2.4 Optical Dipole Traps

Once we have cooled the atoms, we may wish to confine them, or to trans-

port them to another location. Light can create a dipole force, which can be

used to trap atoms. The dipole force on an atom in an external electromag-

netic field can be understood by approximating the atom as a driven/damped
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harmonic oscillator. In this picture, an electron is bound to the core of the

atom, and it oscillates at the resonance frequency, ω0 [36]. The electric field,

E(r, t) = E(r)e−iωt + c.c., drives the oscillations with frequency ω, and causes

the atom to acquire an atomic dipole moment, p = αE, where α is the com-

plex polarizability. We also assume that the electric field is uniform over the

size of an atom, and neglect the r dependence. The motion of the electron is

described by

ẍ+ Γωẋ+ ω2
0x =

eE(t)

me

, (2.23)

where Γω is the radiative lifetime, and me is the mass of the electron. Using

x in the form x(t) = x0e
−iωt, we find that the solution to (2.23) is

x0 =
eE

me

1

ω2
0 − ω2 − iΓωω

. (2.24)

We can find the polarizibility from (2.24) by using the fact that ~p = −e~x = α~E.

This gives

α =
e2

me

1

ω2
0 − ω2 − iΓωω

. (2.25)

Next, we can consider that the classical radiative lifetime, Γω, is given by [30]

Γω =
e2ω2

6πε0mec3
, (2.26)

where ε0 is the permitivity of free space, and c is the speed of light.

We can use (2.26), along with the fact that the the resonant damping rate

is given by Γ =
ω2
0

ω2 Γω to rewrite α as

α = 6πε0c
3

Γ
ω2
0

ω2
0 − ω2 − i(ω3

ω2
0
)Γ
. (2.27)

For strong dipole-allowed transitions, such as the D lines in 87Rb, the natural

linewidth of the transition is a good approximation to Γ [36]. It should also

be noted that the above is a classical approximation, however, we are dealing

with a quantum-mechanical system. Quantum-mechanical systems introduce

the possibility of saturation. Optical dipole traps use light which is far de-

tuned from the atomic transition, therefore saturation is negligible, and the
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classical case is a reasonable approximation [36].

Next, consider the potential resulting from the interaction of the induced

dipole with an external field which has an intensity profile I = 2ε0c|E|2,

Udip = −1

2
〈pE〉 = − 1

2ε0c
Re(α)I(r), (2.28)

where the real component of the polarizibility corresponds to the in-phase

component of the oscillations and thus contributes to the force. In contrast, the

imaginary component is out-of-phase and contributes to the optical dispersion.

We can determine the corresponding dipole force by taking the gradient of this

potential

Fdip(r) = −∇Udip(r) =
1

2ε0c
Re(α)∇I(r). (2.29)

The atom can also absorb power from the driving field, which will then be

re-emitted as photons. This results in a scattering process, with a rate which

depends on the absorbed power:

Γsc =
Pabs

~ω
=

1

~ε0c
Im(α)I(r). (2.30)

We can use equation (2.27) for the complex polarizability in equations (2.28)

and (2.30) to find

Udip(r) =
3πc2

2ω2
0

(
Γ

ω0 − ω
+

Γ

ω0 + ω

)
I(r), (2.31)

and

Γsc(r) =
3πc2

2~ω3
0

(
ω

ω0

)3(
Γ

ω0 − ω
+

Γ

ω0 + ω

)2

I(r). (2.32)

We can define the detuning as δ = ω−ω0. If we assume that |δ| � ω0, we can

make the rotating wave approximation, which gives:

Udip(r) =
3πc2

2ω3
0

Γ

δ
I(r), (2.33)

and

Γsc(r) =
3πc2

2~ω3
0

(
Γ

δ

)2

I(r). (2.34)
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Equations (2.33) and (2.34) illustrate two important features of optical dipole

traps. First, the sign of the potential depends on the sign of the detuning. If

the light is red detuned (δ < 0), the potential minimum will be in regions of

high intensity. In others words, atoms will be attracted to intensity maxima.

If light is blue detuned (δ > 0) atoms will be repelled from intensity maxima.

Second, the strength of the potential decreases as 1/δ as the laser light moves

away from atomic resonance. However, the scattering goes as 1/δ2. Therefore,

it is advantageous to use large detuning to reduce scattering, since scattering

causes atoms to heat up and escape the trap.

Gaussian beams have an intensity profile which is maximum in the centre

and decreases towards the edges:

IG(r, z) =
2P

πw2(z)
e
− 2r2

w2(z) , (2.35)

where

w(z) = w0

√
1 +

(
z

zR

)2

, (2.36)

P is the laser power, w0 is the beam waist, and zR is the Rayleigh range which

gives the distance over which the beam cross-section doubles.

A Gaussian beam will create an intensity gradient. We assume that the

atoms have low thermal energy, and are confined to the bottom of the trap.

Then, we can approximate the potential felt by the atoms as harmonic:

U(r, z) = U0 −
1

2
mω2

rr
2 − 1

2
mω2

zz
2, (2.37)

where U0 is the trap depth (optical potential),

U0 =
3c2P

ω3
0w

2
0

Γ

δ
, (2.38)

and ωr =
√

4U0

mw2
0

and ωz =
√

2U0

mz2r
are the radial and axial frequencies, respec-

tively.
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2.5 Magnetic Trapping

Atoms in a magnetic field “see” their mF energy levels shifted by an amount

proportional to the magnitude of the magnetic field:

U = gFµBmF |B|. (2.39)

This potential creates a force acting on the atoms:

F = −∇U = −gFµBmF
dB

dz
. (2.40)

For atoms in a state with gFmF < 0 the force increases with increasing field,

and the atoms are attracted to regions with larger magnetic fields. For states

with gFmF > 0 the force is greatest at low fields, and the atoms are attracted

to a magnetic field minimum. This force can be used to trap atoms.

A magnetic field gradient can be created by using two coils in the anti-

Helmholtz configuration. The magnetic field will be at a minimum at the

centre of the coils, and increases linearly in the radial direction. Atoms in

trappable states, gFmF > 0 will be trapped in the magnetic field minimum at

the centre of the coils.

It is experimentally feasible to create large field gradients, and thus deep

traps. However, problems arise near the centre of the trap where the magnetic

field, and thus the spacing between Zeeman energy levels, is small. Noise,

fluctuations in the field, and collisions can cause atoms to be transferred into

untrappable energy levels, causing them to escape the trap. If the field is

zero the mF state is undefined, and the atoms can project themselves into

an untrappable state when they move back into the field. To remedy this a

constant magnetic field can be applied so that the minimum is no longer at

B = 0 [30]. Atoms will still be confined, but a non-zero field will allow Zeeman

level separation.
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Figure 2.6: Plots showing the concept of evaporative cooling. Top: the atoms
follow a Maxwel-Boltzmann distribution at 100 µK. Center: Lowering the
trap potential allows the “hot” atoms at the tail of the distribution to escape.
Bottom: The atom re-thermalize at a lower temperature, 50 µK.

2.6 Evaporative Cooling

In evaporative cooling the “hot” atoms in the large-velocity tail of the Maxwell-

Boltzmann distribution are selectively removed from the trap, as shown in

figure 2.6. Next, the atoms are allowed to re-thermalize, resulting in a new

thermal distribution peaked at a lower temperature. The thermalization pro-

cess takes 2.7 inelastic collisions on average [37]. This is similar to how steam

carries off energy from a hot bowl of soup, allowing it to cool down. Evapo-

rative cooling has allowed groups to cool atoms to nano-kelvin temperatures,

and to make Bose-Einstein condensates.

Atoms can be evaporated out of a magnetic trap by using RF radiation

to selectively remove hot, fast moving atoms. These atoms are found at the
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edges of the trap, where the magnetic field, and thus the spacing between

Zeeman levels, is high. By choosing a RF frequency resonant with transitions

at the edge of the trap, transitions can be induced in atoms at the tail of the

thermal distribution with the largest velocities, causing them to transition to

untrappable states [38]. These hot atoms then leave the trap, allowing it to

thermalize to a lower temperature. The RF radiation can then be swept to a

lower frequency to evaporate atoms from the tail of the new distribution.

Another method for evaporative cooling is to lower the depth of an optical

dipole trap trap by reducing the power of the beam, allowing hot atoms to

escape [39].

2.7 Our Cooling/Trapping Procedure

We use cooling light which is red-detuned from the F = 2 → F ′ = 3 transi-

tion on the 87Rb D2 line (5S1/2 → 5P3/2 transition). We choose this transition

since the only dipole-allowed transition from the F ′ = 3 state is back to F = 2,

which helps minimize the number of atoms that transition to another energy

level, and out of the cooling cycle, through spontaneous emission. However,

since the cooling light is detuned, there is still a possibility of off-resonant tran-

sitions, and some atoms could be excited via the F = 2 to F ′ = 2 transition.

As a result, atoms could fall into the F = 1 state by spontaneous emission,

bringing them out of the cooling cycle. To maximize the number of atoms

available for cooling, we bring atoms that have fallen into the F = 1 state

back on the cooling cycle by using repump light resonant with the F = 1 →

F ′ = 2 transition. A diagram showing the hyperfine structure of the 87Rb D2

line, with these transitions labeled, is shown in figure 2.7. The optical set-up

for the repump light is described in section 2.7.1 and the set up for the cooling

light is described in section 2.7.2.

Our first cooling step is a 2D MOT. Once atoms diffuse from the dispenser,

a red-detuned push beam encourages them into the 2D-MOT region, where
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they are cooled in two directions. This results in a “beam” of atoms directed

towards the 3D-MOT region. A 3D MOT is used to trap the atoms. Once

the trapping stage is complete, the 2D MOT and the magnetic field for the

3D MOT are turned off, allowing the captured atoms to be cooled via optical

molasses. Next, the light is switched off, and the magnetic field is turned on,

capturing the atoms in a magnetic trap. From here, evaporation cooling can

be used to further cool the atoms if required. Finally, the magnetic field can be

turned off, as an optical dipole trap is turned on and used to hold the atoms and

transport them from the 3D-MOT chamber into the dilution fridge. If required,

further evaporation cooling can also be done from the optical dipole trap.

Implementation of this procedure is still in progress. The exact parameters,

and final temperature of the atoms, will depend on many yet-to-be-determined

factors, including the specific quantum devices being investigated.

2.7.1 Repump Optics

We use a MOGLABS CEL 780 nm external-cavity diode laser with a max-

imum output of 100 mW to generate the repump light. The optics for this

set-up are shown in figure 2.9.

The total output from the laser is split into two beams using a half-wave

plate and a polarizing beam splitter. A small portion is used for laser locking

and frequency monitoring. The rest is used to sent to the vacuum system via

fibres and used to pump atoms out of the F = 1 state.

The locking/monitoring light is further split 3 ways. A portion of the light

is used for beat-note locking and monitoring with a wave-meter, some light is

sent to a Fabry-Perot cavity for monitoring, and the remaining light is used

for locking via saturated-absorption spectroscopy. The light used for saturated

absorption is split into two beams: a strong pump beam and a weak probe

beam. The pump beam is shifted by 160 MHz using a double pass through an

acoustic-optical modulator (AOM). When the light passes through the AOM,

it will receive a momentum kick from an acoustic wave, which, through con-
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servation of momentum, shifts the light’s frequency. This results in the laser

being locked 80 MHz below resonance for the F = 1→ F ′ = 2 transition. The

use of the AOM allows the beam to be modulated using a signal generated by

the MOGLABS laser controller, a requirement for the locking process. The

probe beam passes directly through the cell and into a photodiode. The signal

from the photodiode is sent to the MOGLABS laser controller, which performs

small-signal detection in order to lock the laser.

Since the laser is locked 80 MHz below resonance, additional AOMs are

used to shift the repump light frequency back on resonance. The repump light

passes through an AOM, and the first diffraction order is shifted up 80 MHz,

and is used for the 2D MOT repump light. The 0th order is sent through

another AOM to be shifted back to resonance for use as 3D repump light.

Using separate AOMs for the 2D and 3D repump light allows us more control

over the frequency, as well as control over the power in each beam.

2.7.2 Cooling Optics

For the cooling light we use a MOGLABS MSA 780 nm laser. This laser has

two outputs, one from the seed beam (22 mW) and one after the beam has

passed through the tapered amplifier (2 W). It is locked using beat-note lock-

ing.

The seed beam is used to lock the laser and monitor frequency. It is split

into two beams. One is used for beat-note locking, and the other is sent to

a Fabry-Perot cavity for frequency monitoring. Half-wave plates and beam

splitters are used to divide the light, and control the power in each beam. The

unused light is dumped into a beam-block.

The light from the amplified beam is split multiple times, allowing indi-

vidual control over the frequency and power in each beam. The first path is

the “2D-MOT” path. Some of this light is split off and shifted by -96 MHz

to be resonant with the F = 2 to F ′ = 2 transition for optical pumping. The
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remaining light is sent through an AOM double pass. After the double pass,

the light in the first-order beam is shifted by 2 x 80 MHz. This light is used as

cooling light in the 2D MOT. The 0th-order beam is shifted 80 MHz from the

first pass through the AOM. It is sent through another AOM and is shifted by

99 MHz to be resonant with the F = 2 to F ′ = 3 transition for imaging.

The second path is the “3D-MOT” path. This light is sent through an

AOM double pass, similar to what was done on the 2D-MOT path. The first

order beam from the double pass is shifted by 2 x 80 MHz, and is red-detued

from the F = 2 to F ′ = 3 transition. This light is used as cooling light in

the 3D MOT. Before the fibre couple for the 3D-MOT cooling light there is

a waveplate and beam splitter. This will allow more control over the beam

power, and offers the possibility to create another beam path if needed. The

light found in the 0th-order after the double pass is shifted by 80 MHz. It

goes through another AOM, receiving a 103 MHz shift. This light is used in

the push beam.
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Figure 2.7: Diagram showing the hyperfine structure on the 87Rb D2 line. The
transitions that we use for cooling, imaging, repump, and optical pumping are
marked on the diagram. Adapted from [32]
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Figure 2.8: Legend showing all of the components used in our optical set-ups.
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Chapter 3

Apparatus

The proposed hybrid quantum system requires a new apparatus which com-

bines a dilution refrigerator and an ultra-high vacuum chamber where the

atoms are laser cooled. A CAD drawing of the apparatus is shown in figure

3.1. This chapter details the design of this apparatus, and the construction of

the cold atoms portion of the new apparatus.

3.1 Design

We have designed a custom vacuum chamber where the atom cooling portion of

the experiment will take place. This system is capable of achieving ultra-high

vacuum (UHV) in order to minimize background pressure. Any background

molecules or atoms could collide with the 87Rb that we are studying, causing

heating, or causing atoms to escape during trapping phases. Where possible,

we have used non-magnetic parts made of 316-stainless steel to avoid stray

magnetic fields interfering with the cooling and trapping processes.

The system has three main parts: I. the dispenser region, II. the 2D-MOT

region, and III. the 3D-MOT region. Each of these is described below. A 3D

model of the system is shown in figure 3.2.

3.1.1 Dispenser Region

The dispenser region is labeled I in figure 3.2. In this region, we connect

multiple components to the system via a 6-way cross. Optics for the push
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Figure 3.1: CAD drawing of the new apparatus showing the cold-atoms vac-
uum chamber and the dilution fridge. Image courtesy of Myles Ruether.

beam are mounted to the furthest end, and directed straight along the axis

into the 2D-MOT chamber. The push beam is shown in yellow in Figure 3.2.

Also connected to this cross is a valve for the turbo pump, part number 54132-

GE02 from Kurt J. Lesker, labeled 1 in figure 3.2. The turbo pump will be

used to remove air from the chamber in the first stage of vacuum, before the

ions pumps are activated to get to UHV. Opposite to the valve is a custom-

made tee which houses an ion pump and a non-evaporable getter (NEG). The

ion pump/ NEG combination is labeled 4 in figure 3.2. We have placed a

gate valve, part number 302001 from MDC, between the ion pump/NEG tee

so that it can be kept under vacuum if we open the rest of the system. All

gate values are labeled with the number 3 in figure 3.2. After the 6-way cross,

we have inserted a tee. The tee allows us to attach the Rb dispensers, which

are soldered to wires inside a 4-pin electrical feed-through, part 9142004 from

MDC. After the dispenser and before the 2D MOT we have used another gate

valve to separate this region from the rest of the system, allowing us to change

the dispensers without requiring a full bake.

30



(a)

(b)

Figure 3.2: 3D model of the UHV system. The labelling system is a follows: I
Dispenser region, II 2D-MOT region, III 3D-MOT region. 1. Valve for turbo
pump, 2. Dispensers, 3. Gate vales, 4. Ion pumps. Beams are color coded,
yellow is push beam, red is MOT beam, blue is imaging, and purple is the
transport ODT beam. a) View from front side, b) View from back side.The
system is shown without any optics or coils mounted for clarity.
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3.1.2 2D-MOT Region

The 2D-MOT region is labeled II in figure 3.2. We use a custom-made glass

cell from Precision Glass Blowing for the 2D MOT. The main part is a rect-

angular glass cell that is 100 mm long, 40 mm high, and 40 mm wide. The

large glass surface provides optical access for two sets of counter-propagating

laser beams. This glass cell has been welded onto 2-3/4”-conflat flanges on

both ends to allow it to be secured to the other conflat components. The end

attached to the dispenser cross has a bellows connected to the flange.

To create the magnetic fields necessary for the MOT, two coils are mounted

around the cell. They are made of awg 12 copper wire with 2.2 mm diam-

eter and have 25 turns each. The coils are mounted in supports which were

machined in house. The supports are hollow in the region where the coils are

attached to allow for water cooling as the coils will heat up when we run cur-

rent through them. The supports were designed so that standard ThorLabs

rails could be screwed in to mount optics.

Repump and cooling light is carried by fibres from the optics table. Once

the light exits the fibre it is focused with two cylindrical lenses, focal lengths

75 mm and 100 m.

Differential Pumping Tube

To pass from the 2D MOT to the 3D MOT, atoms go through a differential-

pumping tube. We used a 6” long piece of 316-stainless steel tubing with an

outer diameter of 3/8” and wall thickness of 0.035”. This extends from the

end of the 2D-MOT cell into the 3D-MOT chamber.

When the atoms leave the 2D-MOT region they have been slowed in two

directions, resulting in a beam of atoms with velocity along one direction.

Atoms that were not sufficiently cooled in the directions transverse to their
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propagation will diffuse out of the region before they enter the tube, meaning

that “hot” atoms will not make it into the larger chamber.

3.1.3 3D-MOT Region

After the differential pumping tube, the atoms enter a large 3D-MOT cham-

ber, where the remaining cooling steps are carried out. This chamber is an

8-inch spherical octagon from Kimball physics made from 316-stainless steel.

The circumference of the chamber is equipped with 8 2-3/4-inch CF flanges,

and there are 8-inch CF flanges on the top and bottom.

The atoms will enter the chamber from the 2D-MOT cell through one of

the smaller openings on the circumference of the chamber. Directly opposite

this, a viewport allows the push beam to exit the chamber without any back

reflection. We also have 3 pairs of mutually orthogonal 3D-MOT beams (red

beams in figure 3.2) directed into the chamber. Two sets are entering through

the large top/bottom viewports and are angled at -45 and 45 degrees with re-

spect to vertical, respectively. The third beam pair is in the horizontal plane,

entering through the viewports on the circumference of the chamber. Similar

to the 2D MOT, light for the 3D MOT is brought to the chamber from the op-

tics table via fibres, and combined with the repump light. Taras Hrushevskyi

designed custom mounts to attach optics to the 3D-MOT chamber. A model

of the apparatus with the optics and coils mounted is shown in figure 3.3. The

light from the fibre is focused to create one inch beams.

The optical dipole trap is shown in purple in figure 3.2. The optics for

this beam are mounted on the viewport between the exit to the 2D MOT and

the 3D-MOT beam. The flange directly opposite will be connected to a tube

leading to the fridge, allowing for optical transport of the atoms.

Imaging is done along two perpendicular axes: one horizontal and one

vertical. The imaging beams are shown in blue in figure 3.2. We will use

resonant absorption imaging to determine the cloud density and temperature.
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The imaging beam on the horizontal axis passes through a tee. This allows a

gate valve, an ion pump, and non-evaporative getter (NEG) to be mounted on

the top end of the tee, while also giving the imaging beam an obstruction-free

path out of the chamber.

All of the viewports are fused silica and made from non-magnetic 316-

stainless steel. We get them from the company MPF.

3D-MOT coils

A large set of coils are used to create the magnetic field gradient required

for the 3D MOT. They were designed to go around the viewports so as not

to restrict optical access. These coils are made out of hollow, square copper

wires. The wire cross section is 5.5 mm. The hollow core allows cool water to

run through the coils, preventing heating caused by the high currents required

to create the necessary magnetic field gradients. The coils are separated by

75 mm and have a inner radius of 105 mm. Each coil is 9 turns wide and

7 turns tall. They are capable of producing an axial gradient of 0.42719 G
cm·A

( 170 G/cm at 400 A) and a radial gradient of 0.20043 G
cm·A . The coils are

mounted to the chamber using custom mounts designed by Taras Hrushevskyi

and are shown in figure 3.3.

Bias Coils

Stray magnetic fields may cause the MOT centre to shift away from the centre

of the chamber, where all of the cooling, trapping, and imaging beams overlap.

In order to compensate for this, three set of Helmholtz coils are used to create a

bias magnetic field, which can be adjusted throughout the experiment. These

coils are made out of awg 12 copper wire, with a 2.2 mm diameter circular

cross section. The size of each coil, along with the magnetic field that they

produce, is given in table 3.1. We are able to run upto 20 A of current through

each coil.
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Figure 3.3: CAD drawing of the vacuum system with coil and optics mounts.
Image courtesy of Taras Hrushevskyi.

Axis Number of Turns Separation (mm) Radius (mm) Field (G/A)
X 36 350 70 0.33
Y 36 350 70 0.33
Z 6 115 77 0.5

Table 3.1: The dimensions of each set of bias coils, along with the magnetic
field that they produce.
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3.2 Cleaning, assembly, and bakeout

When the vacuum parts arrive, it is possible that there is some residue re-

maining on them from the manufacturing process. This residue will off-gas,

prolonging the baking process, or making it impossible to reach ultra-high

vacuum. To prevent this from happening each component is cleaned before

assembling the vacuum chamber. We start by washing them with Alconox

Alcojetr low-foaming powered detergent and warm tap water. Then, we rinse

each part with tap water, followed by distilled water. Finally we use two sol-

vents, acetone followed by methanol, to remove any remaining residue. All

parts are cleaned following this procedure, except for the pumps, valves, and

the 2D-MOT cell. Additionally, to prevent any of the oil from our skin, which

is difficult to remove through baking and pumping, from contaminating the

parts, we wore nitrile gloves whenever we handle the parts.

After cleaning, we assembled the vacuum system. A silver-plated copper

gasket was placed between each part. The knife edges on the conflat flanges

cut into these gaskets, forming a tight seal. The silver plating prevents the

parts from fusing together at the high temperatures required for the bake. We

used silver-plated bolts, again to prevent the parts from fusing during bake

out, in order to assemble the parts. When tightening the bolts each both is

tightened by a small amount, about an eighth of a turn, before moving to the

next bolt. Moving in small steps will apply even pressure to the gasket, pre-

venting it from being pushed out of place. This process is repeated in a circle

until the desired torque is reached. The 2- 3/4-inch flanges are tightened to

144 inch-pounds, and the 8-inch flanges are tightened to 180 inch-pounds, as

per the specification given on Kurt J. Lesker’s website [40]. A torque wrench

was used whenever possible, however some parts fit together closely thus re-

quiring the use of a smaller wrench. In this case we did our best to “feel” for

the correct torque and to ensure a similar torque for each bolt.

After the system was assembled, it needs to be baked in order to release
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organic contaminants. The first step in this process was to wrap heater tapes

around each part. To avoid damaging the glass on the 2D-MOT cell we sur-

rounded it with a metal frame, and wrapped the heating tapes around the

frame. Then we attached thermocouples in order to monitor the temperature.

Our system has both glass and metal parts, which have different thermal con-

ductance rates. In order to ensure even heating, and to avoid damaging any

of the glass/metal joins we placed two thermocouples on parts made of both

materials; one on the glass portion, and one on the metal portion. Finally, we

wrapped the entire system in tinfoil to help keep the heat in and to ensure

even heating of the system.

The system has been prepared for the bake, but due to a lab closure we

have been unable to complete the baking process.
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Chapter 4

Atom Transport

In our apparatus, cold atoms are prepared in a vacuum system outside of

the dilution fridge. To couple the atoms to the cryogenically-cooled devices

inside the fridge we will need to transport the atoms from the centre of the 3D-

MOT chamber to the edge of the dilution fridge. This distance is about 60 cm.

Multiple groups have demonstrated atom transport using a variety of meth-

ods including a moving optical lattice [41], a magnetic conveyor belt consisting

of a series of magnetic coils used to move the center of a magnetic trap [25,42],

optical tweezers which use a focusing lens mounted on a translation stage to

move an optical dipole trap [24,43], and a moving optical dipole trap created

using a focus tunable lens [44], [45].

We choose to use a focus tunable lens to create a moving optical dipole

trap based off of the work of the Esslinger group at ETH Zurich [44,45]. This

set up is compact, does not require the winding of numerous magnetic coils,

and minimizes vibrations caused by moving parts. Below I will explain the

theory behind this set up, show some calculations of trap depth and scattering

time, and discuss simulation results.

4.0.1 Theory: Moving ODT

We choose to transport the atoms using a moving ODT. Atoms in an ODT

are confined at the focus of a Gaussian beam, as described in section 2.4. If
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the focus point moves, the atoms, still confined, will move with it. An easy

way to accomplish this is to change the focal length of the focusing lens. The

company Optotune manufactures focus tunable lenses. These lenses have a

fluid-filled membrane surrounded by a coil. By running current through the

coil a force can be exerted on the lens, changing its shape, and thus its focal

length. Changing the current in the lens would then equate to moving the

atoms. However, when the focal length of the lens is changed the size of the

waist-at-focus will also change, which is undesirable as it will change the trap

depth and frequency, which will heat atoms and cause them to be lost out of

the trap. Thankfully there are set-ups which allow the waist size to be kept

constant throughout the trap motion [44, 45]. We were originally inspired by

a 2014 paper [44], and after conversing with the authors decided to adapt an

updated version of their set-up [45] for our experiment.

The set-up is as follows: first, the laser beam is collimated by a telescope

consisting of two spherical (non tunable) lens. The focal length of the lenses

used in the telescope determines the incoming beam size, which sets the size

of the focus waist.

Next, the collimated beam goes through the focus tunable lens. We use

Opotune model EL-16-40-TC. This model has the largest aperture of the avail-

able models, 16 mm. The glass casing for our lens is anti-reflection coated for

1064 nm, the wavelength of the laser used for our ODT. The lens operates

with both positive and negative currents, allowing diverging and converging

operation. A final spherical lens (non tunable) with focal length f3 is placed

a distance f3 in front of the tunable lens. It can be shown [45] using ray

propagation matrices for Gaussian optics that if this condition is satisfied, the

divergence angle of the beam after it passes through the final lens is α = r0
f3

,

where r0 is the radius of the beam when it hits the tunable lens, which is

constant regardless of focal length of the tunable lens. A constant divergence

angle means a constant focus waist and trap depth.
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4.1 Results

4.1.1 Calculations

As can be seen in equations (2.33) and (2.34) the scattering decreases much

faster as a function of detuning than the potential. This is shown in figure

4.1. In order to reduce the number of scattering events, which would result

in heating, we choose to use a 1064 nm laser, which is far detunded from the

780 nm resonant transition in 87Rb. To contain the atoms, the trap depth

must be about 3 times the temperature of the cloud. We anticipate cooling

the atoms to about 30 µK, and will require that the trap have a minimum

depth of 100 µK. Our laser has a maximum output of 10 W. Due to losses

in the optical isolator and from reflections we anticipate only having around

6 W of power available for trapping. If the beam has a waist at focus of 70 µm

(140 µm diameter) we will achieve this trap depth.

Before we start the transport process, it is important to check that it is

possible to focus the beam to a waist of 70 µm and move it 60 cm. I have

written code in python that uses the ABCD matrices to trace the beam’s

size at specified distances from the final lens. If the collimated beam waist is

2.5 mm and we use a focusing lens with f3 = 500 mm after the tunable lens,

the beam waist will be 67 µm, very close to the desired waist of 70 µm. The

optical power (inverse of focal length) of Opotune lens model EL-16-40-TC

that we are using ranges from −2 m−1 to 3 m−1. As shown in figure 4.2, if

the optical power starts at 0.65 m−1 the the focus is initially 340 mm away

from the final lens. The spherical octagon where the atoms are cooled has a

diameter of about 200 mm, it is therefore possible to have the focus of the

beam at the center of the chamber with appropriate optics placement. If the

optical power is decreased to −1.57 m−1 the focus will be located 940 mm

away from the lens, or 60 cm from the starting position. Transport over the

desired distance is feasible with a focus tunable lens.
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(a)

(b)

Figure 4.1: (a) Depth of an optical dipole trap with beam radius of 70 µm
as a function of trapping wavelength, at laser powers of 4, 6, and 8 W. We
require a minimum depth of 100 µk, which is shown in the plot. (b) Scattering
in an optical dipole trap with beam radius of 70 µm as a function of trapping
wavelength, at laser powers of 4, 6, and 8 W.
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(a)

(b)

Figure 4.2: Figure showing the size of the transport beam after the focusing
lens. (a) The focus tunable lens is set to optical power 0.65 m−1. (b)The focus
tunable lens is set to optical power -1.75 m−1.
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4.1.2 Temperature Control

It has been previously observed that due to temperature fluctuations, the focal

length of the tunable lens is unstable [45]. Although the lens comes with a

driver that should adjust focal length to compensate for temperature changes,

our application requires finer control over focal length than this device of-

fers. To mitigate this, a temperature controller is needed. This controller will

measure the lens temperature using the sensor built into the lens. Based off

of the factory calibrated data read from the lens’ memory, the temperature

controller will calculate the necessary adjustment to the current in the lens in

order to give the specified focal length. James Chaulk is currently building a

temperature controller.

4.1.3 Simulations

Due to a lab closure, we were unable to cool the atoms, and did not reach a

point where we were able to test the transport system, so I did a simulation

of the transport process. The goal was to determine a transport path shape,

and the time it would take to transport the atoms. Ideally, to avoid increasing

the temperature of the cloud, or losing atoms during the transport process

the transport would be adiabatic, and take place over a time much greater

than the oscillation period in the trap. The transport will take place along the

z-axis. We approximate the optical dipole trap as a harmonic oscillator, and

the potential is given by equation (2.37). The frequency of oscillation along

the z-axis is given by

ωz =

√
2U0

mz2
R

. (4.1)

In our case, U0/kB = 100 µK, m is the mass of an 87Rb atom, and zR is the

Rayleigh range, given by

zR =
πw2

0

λ
, (4.2)

where w0 is the beam waist, and λ is the wavelength of the trapping light. For

our set up, ωz ≈ 2π ·1.12 Hz. This gives a period of T = 0.89 s. To ensure adi-
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abaticity, the transport will need to occur over a time t > 1000T ≈ 15 min.

Our measurements use a destructive imaging method, and require that the

atoms be replaced frequently. We are unable to wait almost 15 minutes be-

tween each iteration, therefore we must find a way to transport the atoms

more rapidly.

It is possible to transport atoms within a shorter time frame, as shown by

Couvert et al [46]. Their theoretical result shows that the absolute value of

Fourier transform of the optical dipole trap’s velocity profile gives the change

in amplitude of atom cloud’s oscillations [46]. This agrees well with experi-

ment. Up to a scale factor, the experimental change in amplitude follow the

same profile as the Fourier transform. Although there was some additional

heating due to equipment instability, when the Fourier transform is zero there

are no residual oscillations, and thus the no heating contribution due to the

motion of the cloud [46].

We decided to take a different approach to modeling this problem. Each

atom will have an equation of motion, which can be derived from the Lagrange

equation:
∂L

∂q
− d

dt

(
∂L

∂q̇

)
, (4.3)

where q is a coordinate, and L is the Lagrangian given by:

L = T − U, (4.4)

where T is the kinetic energy, and U is the potential energy. To account

for the trap’s motion along the z-direction, we add an additional potential

term, mat(t)z, where at(t) is the trap acceleration, to equation (2.37). Our

Lagrangian is then

L =
1

2
mṙ2 +

1

2
mr2θ̇2 +

1

2
mż2 + U0 −

1

2
mω2

rr
2 − 1

2
mω2

zz
2 −mat(t)z. (4.5)

We can use equation (4.5) in equation (4.3) to find the equations of motion in

the frame of the moving optical dipole trap:

mr̈ = mrθ̇2 −mω2
rr, (4.6)
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mθ̈r2 = −2mrṙθ̇, (4.7)

mz̈ = −mω2
zz +mat(t). (4.8)

Since the trap only moves in the z-direction, and the equation of motion for

z is independent of r and θ, we choose to only look at the z-component of

motion in the simulation.

The next step is to describe the initial cloud of cold atoms. The Boltzmann

factor gives the density of the cloud [36]:

n = n0e
−U(r)
kBT . (4.9)

Using a harmonic potential in the z-coordinate gives, with appropriate nor-

malization,

n(z) =

√
mω2

z

πkBT
e−mω

2
zz

2/kBT , (4.10)

which is a normal distribution with mean zero, and standard deviation
√

kBT
mω2

z
.

Python provides built in functions to generate a sample from a normal distri-

bution, and the histogram of positions can be fit to extract the temperature.

Momentum also follows a normal distribution:√
1

2πmkBT
e−p

2
z/2mkBT . (4.11)

The initial distribution of positions and momentum is given in figure 4.3.

I have written python code which integrates the equations of motion for

each atom in the distribution. At each time step it fits the position distribu-

tion to equation (4.10) and extracts the position and temperature. After the

trap has finished moving, the atoms are allowed to sit for a period of time

in the stationary trap, where the atoms oscillate about the center of the trap

with frequency ωz. The temperature extracted from the fit remains relatively

constant throughout the process as the equations of motion do not take in-

teractions between atoms into account. However, the oscillations represent an

increase in potential energy, 1
2
mω2

zz
2, which would result in an increase in tem-

perature when the atoms re-thermalize through collisions. This temperature

change can be estimated by equating thermal and potential energy:
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Figure 4.3: The initial distribution of atom position and momentum in the z-
coordinate, generated from equations (4.10) and (4.11). The histograms show
the position (left) and momentum (right) values, and the black lines shows the
normal distribution fit to the distribution. The temperature extracted from
the fit to position (momentum) is 30.2± 0.5 µK (30.4± 0.6 µK).
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1

2
kB∆T =

1

2
mω2

z〈∆z2〉, (4.12)

∆T =
mω2

z〈∆z2〉
kB

. (4.13)

The oscillations following the transport period are fit to a sine wave,

Asin(Bt+ C) +D. (4.14)

The amplitude, A, of the oscillations can be determined from the fit and used

to find the temperature increase:

∆T =
mω2

z〈A2sin2(ωzt)〉
kB

=
mω2

zA
2

2kB
. (4.15)

We expect the lifetime of atoms in the trap to be around 30 seconds. Ide-

ally we don’t want to wait for the atoms to arrive between measurements,

so transports times less than the trap lifetime are desirable. We have set a

maximum wait time of ten seconds, however, the shorter the better. We also

need the amount of heating to be less than the trap depth (100 µk). The

atoms should come to a stop at the final position, which imposes the condi-

tions zc(0) = 0, zc(tf ) = d, żc(0) = 0, and z̈c(tf ) = 0. We have investigated 3

different velocity profiles that meet these conditions in order to find the best

option for our set up.

Gaussian Velocity Profile

When the velocity profile is Gaussian, the trap trajectory will be in the shape

of an error function. Position, velocity, and acceleration are shown in figure

4.4 and are described by the following equations:

zc(t) =
|Ff − Fi|

2

[
erf

(
6t

tf

)
+ 1

]
+ Fi, (4.16)

żc(t) =
6√
π

|Ff − Fi|
tf

e−9(2t/tf )2 , (4.17)
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z̈c(t) =
6√
π

|Ff − Fi|
tf

e−9(2t/tf )2
(
−72t

t2f

)
, (4.18)

where tf is the transport duration, Ff is the final trap position, in this case

60 cm, and Fi is the initial trap position, in this case 0 cm. Plots of the

position, velocity, and acceleration are shown in figure 4.4.

Figure 4.4: Error function trap position (left) described by equation (4.16),
Gaussian velocity (centre) described by equation (4.17), and acceleration
(right) as described by equation (4.18).

The Fourier transform for the Gaussian velocity is also Gaussian, and we

expect the amplitude of oscillations to follow:

A(tf ) = Ff e(
−ωztf

12
)2 . (4.19)

The simulation results for the Gaussian velocity profile are shown in figure

4.5. For times greater than 6.5 seconds the temperature change is less than

the trap depth of 100 µK, therefore we would have to perform the transport

over a minimum of 6.5 seconds if we choose to use this scheme.
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Figure 4.5: Results for transport with a Gaussian velocity profile. Top left:
Sample plot of the position of the cloud of atoms with respect to the centre
of the trap vs. time when the transport occurs over 1 second following which
the atoms oscillate in a stationary trap for 5 seconds. Top right: Sample plot
of atom position with respect to the center of the stationary trap vs. “hold”
time since the transport period finished. Hold time defines the 5 seconds
after the trap stopped moving. The position is fit to equation (4.14). Red
dots are the data from the simulation, and the black dashed line is the fit.
The fit parameters are: A = −0.550634± 3× 10−6, B = 7.037168± 3× 10−6,
C = 1.15713±1×10−5, and D = (−0.5±2)×10−6. Bottom left: Amplitude of
the cloud oscillations vs. transport duration. The amplitude is the amplitude
of the sine-wave fit from each transport time. Simulation data is shown by
the blue dots, and the theoretically expected value is shown with the black
line. Bottom right: Temperature change expected for each transport duration,
calculated based off the oscillation amplitude. The black line shows the trap
depth.
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Triangular Velocity Profile

In this case, the velocity profile is a triangle, increasing with constant acceler-

ation to a maximum at t =
tf
2

and then decreasing with constant acceleration

until it reaches zero at t = tf . The position, velocity, and acceleration are

shown in figure 4.6 and are described by:

zc(t) =

{
1
2
att

2 0 ≤ t ≤ tf
2

1
2
at
( tf

2

)2
+ at

tf
2

(
t− tf

2

)
− 1

2
at
(
t− tf

2

)2 tf
2
< t ≤ tf

(4.20)

żc(t) =

{
att 0 ≤ t ≤ tf

2

at
tf
2
− at

(
t− tf

2

) tf
2
< t ≤ tf

(4.21)

z̈c(t) =

{
at 0 ≤ t ≤ tf

2

−at tf
2
< t ≤ tf

(4.22)

where tf is the transport duration for a distance d = 60 cm, and at = 4d
t2f

.

Figure 4.6: Quadratic trap position (left) as described by equation (4.20),
triangular velocity (centre) as described by equation (4.21), and step function
acceleration (right) as described by equation (4.22).
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In this case the Fourier transform of the velocity is the sinc function, and

the amplitude of oscillations is given by:

A(tf ) = d sinc2
(ωztf

4

)
, (4.23)

where sinc(x) = sin(x)
x

.

The results from the simulation are shown in figure 4.7. In this case, the

oscillation amplitude, and thus the temperature increase, are zero whenever

sinc2
(
ωzt
4

)
is zero. Zeros occur at multiples of 2T = 4π

ωz
, and after the second

zero all transport durations give a temperature increase below the trap depth.

For this scheme, the minimum transport time is 4π
2πωz

= 1.7857 s. As our

equipment has millisecond timing certainty, we should be able to come close

enough to this time and keep heating to a minimum.

Sine-Squared Velocity Profile

In this scheme, the velocity follow a sin2(t) shape between 0 and tf , and is

zero elsewhere. A plot is shown in figure 4.8. The position, velocity, and

acceleration as a function of time are described by:

zc(t) =


0 t < 0

2d
tf

[
t
2
−

tf sin( 2πt
tf

)

4π

]
0 < t ≤ tf

d t > tf

(4.24)

żc(t) =

{ 2d
tf

sin2
(
πt
tf

)
0 ≤ t ≤ tf

0 otherwise
(4.25)

z̈c(t) =

{
2πd
t2f

sin
(

2πt
tf

)
0 ≤ t ≤ tf

0 otherwise
(4.26)

The oscillation amplitude is given by:

A(tf ) =

∣∣∣∣8dπ2

tf

sin
(ωztf

2

)
2πωz − t2fω3

z

∣∣∣∣, (4.27)

however due to singularities at tf = 0 and tf =
√

4π
ω2
z

it “blows up” for times

less than 1 s. This function is zero when sin
(ωztf

2

)
= 0, when

ωztf
2

= π ex-

cept at the first zero, which is too close to a singularity. The results from
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Velocity Minimum transport duration (s) Expected heating (µK)
Gaussian 6.5 66.41 ± 0.02

Triangular 1.8 0.0135 ± 0.0004
Sine squared 1.8 4.890 ± 0.006

Table 4.1: Table summarizing the minimum transport times required for each
velocity profile.

this simulation are shown in figure 4.9. For transport duration greater than

1.7 seconds the temperature increase is below the trap depth, however until

about 1.8 seconds (the second zero of sin
(ωztf

2

)
) the temperature change is

fairly close to the trap depth, and as vibrations from the equipment are likely

to add additional heating, we will have to wait the same amount of time as

with the triangular velocity profile.

Summary

Table 4.1 summarizes the minimum transport duration needed to keep the

heating below the trap depth. Based on the simulation results, the triangular

velocity profile will be the best for our set up as it minimizes the time we will

need to wait in order to replenish the supply of atoms. Although the sine-

squared profile has the same minimum transport duration the temperature

increase, while below the trap depth, is greater than for the triangular velocity.

As we expect additional heating due to equipment instability the option with

the smallest temperature increase is the most desirable.
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Figure 4.7: Triangular velocity profile results. Top left: Sample plot of the
position of the cloud of atoms with respect to the centre of the trap vs. time
when the transport occurs over 1 second following which the atoms oscillate
in a stationary trap for 5 seconds. Top right: Sample plot of atom position
with respect to the center of the stationary trap vs. “hold” time since the
transport period finished. Hold time defines the 5 seconds after the trap
stopped moving. The position is fit to equation (4.14). Red dots are the data
from the simulation, and the black dashed line is the fit. The fit parameters
are: A = 0.187111 ± 3 × 10−6, B = 7.03717 ± 1 × 10−5, C = 1.94896 ±
4 × 10−5, and D = (−0.4 ± 2) × 10−6. Bottom left: Amplitude of the cloud
oscillations vs. transport duration. The amplitude is the amplitude of the
sine-wave fit for each transport time. Simulation data is shown by the blue
dots, and the theoretically expected value is shown with the black line. Bottom
right: Temperature change, calculated based off of the oscillation amplitude,
expected for each transport duration. The black line shows the trap depth.

53



Figure 4.8: Sinusoidal trap position (left) as described by equation (4.24),
velocity (centre) as described by equation (4.25), and acceleration (right) as
described by equation (4.26).
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Figure 4.9: Results when velocity follows a sin squared profile. Top left:
Sample plot of the position of the cloud of atoms with respect to the centre
of the trap vs. time when the transport occurs over 1 second following which
the atoms oscillate in a stationary trap for 5 seconds. Top right: Sample plot
of atom position with respect to the center of the stationary trap vs. “hold”
time since the transport period finished. Hold time defines the 5 seconds
after the trap stopped moving. The position is fit to equation (4.14). Red
dots are the data from the simulation, and the black dashed line is the fit.
The fit parameters are: A = 0.246816 ± 3 × 10−6, B = 7.037169 ± 7 × 10−6,
C = 1.94866±3×10−5, and D = (−0.5±2)×10−6. Bottom left: Amplitude of
the cloud oscillations vs. transport duration. The amplitude is the amplitude
of the sine-wave fit for each transport time. Simulation data is shown by the
blue dots, and the theoretically expected value is shown with the black line.
Bottom right: Temperature change, calculated based off of the oscillation
amplitude, expected for each transport duration. The black line shows the
trap depth.
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Chapter 5

Conclusion

In conclusion, I have designed a new apparatus which will combine laser-cooled

atoms and cryogenicaly-cooled quantum devices. This apparatus consists of

two parts: a UHV system used to laser cool 87Rb atoms and a dilution fridge.

Construction of the UHV system is complete, and it has been prepared for

baking. In addition, the repump and cooling optics are set up and aligned.

Coils for the MOT and magnetic trapping stages, as well as bias coils, have

been wound, and we are awaiting custom machined mounts that will be used

to align the coils to the apparatus. Once these parts are finished, and baking

is complete, we can begin to cool the atoms. The dilution fridge is currently

being manufactured.

We wish to couple the cold atoms to devices that are kept cool in the di-

lution fridge. This requires that atoms be moved approximately 60 cm from

the centre of the cooling chamber into the fridge. A simulation of this pro-

cess shows that a triangular velocity profile will allow the atoms to travel this

distance in 1.8 s seconds while keeping heating below the trap depth, thus

minimizing atom loss.

Much work remains in this project. We have yet to bake our UHV system, a

step which preceeds laser cooling the atoms. When the dilution fridge arrives,

the construction can be completed. Although we have worked out the theory

behind atom transport, implementation will be a further challenge. Once the
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apparatus is functioning it will be used to study cold atom/ cryogenic hybrid

quantum systems. Possible experiments are still in the preliminary planning

stages, but they include quantum memory using atoms in a microwave cavity,

coupling atoms to mechanical resonators or superconducting qubits for the

purpose of state transfer, and experiments where quantum states are trans-

ferred to and stored in the atoms.
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timal transport of ultracold atoms in the non-adiabatic regime. EPL

(Europhysics Letters), 83(1):13001, 2008.

63



Appendix A

Focus Tunable Lens Transport
Code

This code calculates the position and size of the beam waist once a colimated

beam has passed through the focus tunable lens, and a fixed focal length lens.

#!/ usr / b in /env python3
# −∗− coding : u t f−8 −∗−
”””
Created on Tue Feb 11 09 : 56 : 12 2020

@author : M i c h e l l e S u l l i v a n

Code to c a l c u l a t e the beam s i z e at a g iven p o s i t i o n
a f t e r the l e n s . I t w i l l show

beam s i z e vs . p o s i t i o n as we l l as p r i n t i n g out the f ocus
rad iu s and p o s i t i o n .

”””

import numpy as np
import matp lo t l i b . pyplot as p l t
import math as math

#Wavelength o f the l i g h t we are us ing
WaveLength = 1064e−9 #in m

w 0 = 2.5 e−3 #Radius o f the beam co l imated by the f i r s t
two lens , in m

f 3 = 500e−3 #f o c a l l e n g t h o f the 3 rd f i n x e d l e n in m (
l e n s a f t e r the t u n a b l e l e n s )

d 2 = f 3 #the d i s t a n c e between the t u n a b l e l e n s and the
f o c u s i n g l e n s i s f i x e d to keep beam w a s i t cons tant
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d 3 = np . l i n s p a c e (0 ,1200 e−3 ,1000) #arrary o f d i s t a n c e s
measured wi th r e s p e c t to the l a s t l e n s

f T = 1/0.65#f o c a l l e n g t h o f t u n a b l e l ens , in m

#Create the system ABCD matrix which r e p r e s e n t s a
c o l l i m a t e d beam

#t r a v e l l i n g through the t u n a b l e lens , a d i s t a n c e d 2 , a
f o c u s i n g l e n s f 3

#f o l l o w e d by a d i s t a n c e d 3 . These v a l u e s must be input .
Wi l l r e turn ABCD matrix f o r e n t i r e system

def ABCD sys( f T , d 2 , f 3 , d 3 ) :
M 00 = ( f 3 ∗ f T−d 3∗ f T+−d 2∗ f 3+d 2∗d 3−d 3∗ f 3 ) /(

f 3 ∗ f T )
M 01 = ( d 2∗ f 3−d 2∗d 3+d 3∗ f 3 ) / f 3
M 10 = ( d 2−f 3−f T ) /( f 3 ∗ f T )
M 11 = ( f 3−d 2 ) / f 3
return np . array ( [ [ M 00 , M 01 ] , [ M 10 , M 11 ] ] )

#C a l c u a l t e z R ( r a y l e i g h range ) g iven w 0
#input :

#w 0 beam w a i s t in meters
#wave length o f the l i g h t in meters

#Function r e t u r n s the r a y l e i g h range in meters
def Rayle igh ( w 0 , wavelength ) :

z R = (np . p i ∗w 0∗∗2) / wavelength
return z R

#C a l c u l a t e the complex beam parameter g i ven the r a d i u s
o f curvature , R ( in meters ) ,

#and the r a y l e i g h range , z R ( in meters ) . The f u n c t i o n
r e t u r n s

#the complex number 1/ q i in mˆ−1
def c o m p l e x i n i t i a l (R, z R ) :

q i i n v = 1/R − 1 j /z R
return q i i n v

#C a l c u l a t e the f i n a l complex beam parameter g i ven the
ABCD matrix a f t e r propagat ion

#Input :
#q i i n i t i a l complex beam parameter
#M sys ABCD matrix f o r the system , a f t e r bema has

been t r a c e d
#r e t u r n s 1/ q f = 1/ R f − i / z Rf
def comp l ex f i na l ( q i , M sys ) :

A = M sys [ 0 , 0 ]
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B = M sys [ 0 , 1 ]
C = M sys [ 1 , 0 ]
D = M sys [ 1 , 1 ]
q f i n v = (C+D/ q i ) /(A+B/ q i )
return q f i n v

#C a l c u l a t e w 0 g iven the r a y l e i g h range
#input :

#z R r a y l e i g h range in meters
#wave length o f l i g h t in meters

#Function r e t u r n s w 0 in meters
def waist ( z R , wavelength ) :

w 0 = np . s q r t ( ( wavelength∗z R ) /np . p i )
return w 0

#Complex beam parameter f o r i n t i a l c o l l i m a t e d beam
z Ri = Rayle igh ( w 0 , WaveLength ) #c a l c u l a t e r a y l e i g h

range
R i = math . i n f #beam r a d i u s o f curva ture
q i i n v = c o m p l e x i n i t i a l ( R i , z Ri )

w = np . z e r o s ( len ( d 3 ) ) #empty array to s t o r e w a i s t s i z e s
for i in range ( len ( d 3 ) ) : #l o o p s through a l l d i s t a n c e s

in d 3 and c a l c u l a t e w a i s t
M sys = ABCD sys( f T , d 2 , f 3 , d 3 [ i ] )
q f i n v = comp l e x f i na l (1/ q i i n v , M sys )
z Rf = −1/ q f i n v . imag
w tes t = waist ( z Rf , WaveLength )
w[ i ] = w tes t #save w a s i t s i z e

#p r i n t (w)

#Make a nice p l o t showing the beam s i z e vs . p o s i t i o n .
I n c l u d e both 1/ e ˆ2 and 99% of power

p l t . p l o t ( d 3 ,w∗1e3 , ’ r ’ , l a b e l = ’ 1/ e ˆ2 wais t ’ )
p l t . p l o t ( d 3 ,−w∗1e3 , ’ r ’ )
#p l t . p l o t ( d 3 ,2∗w∗1e3 , ’ k−−’, l a b e l = ’99% of power ’ )
#p l t . p l o t ( d 3 ,−2∗w∗1e3 , ’ k−−’)
p l t . rcParams [ ’ x t i c k . d i r e c t i o n ’ ] = ’ in ’
p l t . rcParams [ ’ y t i c k . d i r e c t i o n ’ ] = ’ in ’
p l t . g r i d ( )
p l t . x l a b e l ( ’ Distance From Fina l Lens (m) ’ )
p l t . y l a b e l ( ’Beam s i z e (mm) ’ )
#p l t . l e gend ()
p l t . show ( )
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w a i s t s i z e = np . amin (w) #Find the minimum w a i s t s i e z
w a i s t l o c = d 3 [ np . argmin (w) ] #Minimum w a i s t l o c a t i o n

#p r i n t r e s u l t s
print ( ’The focus rad iu s i s ’ , w a i s t s i z e ∗1e6 , ’ microns . ’ )
print ( ’The wais t i s ’ , w a i s t l o c ∗1e3 , ’mm away from the

f i n a l l e n s . ’ )
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Appendix B

Atom Distribution Generation
Code

This code generates a cloud of atoms with normally distributed z-position and

momentum.

# −∗− coding : u t f−8 −∗−
”””
Code to generate normally d i s t r i b u t e d atom pos t i on s and

v e l o c i t i e s in the z coo rd ina te .
Code w i l l generate the d i s t r i b u t i o n , f i t i t to a normal

d i s t r i b u t i o n to e x t r a c t temperature ,
p l o t the r e s u l t s , and save the coo rd ina t e s in CSV f i l e .
”””

import numpy as np
import matp lo t l i b . pyplot as p l t
from s c ipy . opt imize import c u r v e f i t

#Define c o n s t a n t s
omega z = 2∗np . p i ∗1 .12
Temp = 30e−6
k b = 1.38 e−23
mass = 1.44 e−25

#Function to f i t the p o s i t i o n d i s t r i b u t i o n and e x t r a c t
temperature and mean

def p o s i t i o n z ( z , t , mu z ) :
K = np . s q r t ( ( mass∗omega z ∗∗2) /(2∗ k b∗ t ) )
return K/np . s q r t (np . p i ) ∗np . exp(−K∗∗2∗( z−mu z ) ∗∗2)

#f u n c t i o n to f i t momentum d i s t r i b u t i o n and e x t r a c t
temperature and mean
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def d i s t p z ( pz , t ) :
C = 2∗mass∗k b∗ t
return np . s q r t (1/(C∗np . p i ) )∗np . exp(−(pz ) ∗∗2/C)

#Define number o f atoms
npo ints = 10000
#Define number o f b i n s in his togram
nbins = 100

#Standard d e v i a t i o n f o r p o s i t i o n and momentum , to be
used when

#a s s i g n i n g random pos and mommoentum to the atoms
s igma z = np . s q r t ( k b∗Temp/( mass∗omega z ∗∗2) )
sigma p = np . s q r t ( mass∗k b∗Temp)
#Generate a random normal d i s t r i b u t i o n o f atom p o s i t i o n s

and momentums
z d i s = np . random . randn ( npo ints ) ∗ s igma z
p z d i s = np . random . randn ( npo ints ) ∗ sigma p
#save the data
np . savetxt ( ’ a tom coord iante s zon ly . csv ’ , ( z d i s , p z d i s ) ,

d e l i m i t e r = ’ , ’ )

#Make a his togram of atom p o s i t i o n

p l t . f i g u r e (1 )
h i s t z , b ins z , pa t che s z = p l t . h i s t ( z d i s , nbins ,

dens i ty = True )
p l t . t i t l e ( ’ $Z$ ’ )

#make a his togram of atom momentum
p l t . f i g u r e (2 )
h i s t pz , b ins pz , patches pz = p l t . h i s t ( pz d i s , nbins ,

dens i ty = True )
p l t . t i t l e ( ’ $P z$ ’ )

#Find the c e n t r e o f each b in
b i n c e n t e r s z = np . array ( [ 0 . 5 ∗ ( b i n s z [ i ]+ b i n s z [ i +1]) for

i in range ( len ( b i n s z )−1) ] )
#f i t the data to the f u n c t i o n d e f i n e d above , e x t r a c t

temperature and mean
f i t params , f i t c o v = c u r v e f i t ( p o s i t i o n z , b in c en t e r s z

, h i s t z , [Temp , 0 ] )

#Find c e n t r e o f momentum b i n s
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b i n c e n t e r s p z = np . array ( [ 0 . 5 ∗ ( b in s pz [ i ]+ b ins pz [ i +1])
for i in range ( len ( b in s pz )−1) ] )

#Fit the d i s t r i b u t i o n to the f u n c t i o n d e f i n e d above ,
e x t r a c t temperature

f i t params p , f i t c o v p = c u r v e f i t ( d i s t pz ,
b incente r s pz , h i s t pz , [Temp ] )

#Add the f i t to the h i s torgrams
p l t . f i g u r e (1 )
f i t = np . l i n s p a c e (−5∗ sigma z , 5∗ sigma z , 1000 )
p l t . p l o t ( f i t , p o s i t i o n z ( f i t , ∗ f i t pa rams ) )

p l t . f i g u r e (2 )
f i t p z = np . l i n s p a c e (−5∗ sigma p , 5∗ sigma p , 1000)
p l t . p l o t ( f i t p z , d i s t p z ( f i t p z , ∗ f i t pa rams p ) )

#Extrac t d e s i r e d v a l u e s from the f i t and p r i n t them out
T z f i t = f i t pa rams [ 0 ] ∗ 1 e6
T z unc = np . s q r t ( f i t c o v [ 0 , 0 ] ) ∗1 e6

z cen = f i t pa rams [ 1 ] ∗ 1 e6
z cen unc = np . s q r t ( f i t c o v [ 1 , 1 ] ) ∗1 e6

print ( ”Temperature from f i t = ” , T z f i t , ’+/− ’ , T z unc
, ’ mic roke lv in . ’ )

print ( ’The cener o f the d i s t r i b u t i o n i s at ’ , z cen , ’+/−
’ , z cen unc , ’ microns . ’ )

T p z f i t = f i t pa rams p [ 0 ] ∗ 1 e6
T pz unc = np . s q r t ( f i t c o v p [ 0 , 0 ] ) ∗1 e6

print ( ”Temperature from momentum f i t i s ” , T pz f i t , ”+/−
” , T pz unc )

#Make a nice f i n a l f i g u r e , which shows p o s i t i o n and
momentum s i d e by s i d e

p l t . f i g u r e (3 )
f i g , axs = p l t . subp lo t s (1 , 2 , t i g h t l a y o u t = True )

N1 , bins1 , patches1 = axs [ 0 ] . h i s t ( z d i s , nbins , dens i ty
= True , c o l o r = ’b ’ , l a b e l = ’ Dis t rubut ion ’ )

axs [ 0 ] . p l o t ( f i t , p o s i t i o n z ( f i t , ∗ f i t pa rams ) , ’−k ’ )
axs [ 0 ] . s e t t i t l e ( ’ Po s i t i on ’ )
axs [ 0 ] . s e t x l a b e l ( ’ z (m) ’ )
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axs [ 0 ] . s e t y l a b e l ( ’ Normalized Density ’ )
axs [ 0 ] . t i ck params ( d i r e c t i o n = ’ in ’ )

N2 , bins2 , patches2 = axs [ 1 ] . h i s t ( pz d i s , nbins , dens i ty
= True , c o l o r = ’ r ’ )

axs [ 1 ] . p l o t ( f i t p z , d i s t p z ( f i t p z , ∗ f i t pa rams p ) , ’−k ’ )
axs [ 1 ] . s e t t i t l e ( ’Momentum ’ )
axs [ 1 ] . s e t x l a b e l ( r ’ $p z$ ( kg m/ s ) ’ )
axs [ 1 ] . t i ck params ( d i r e c t i o n = ’ in ’ )
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Appendix C

Atom Transport Simulation
Code

Below is the code used in the atom transport simulation. The user can select an

acceleration profile by un-commenting it in the code, and can input an array

of total transport times. The code then use the python function “odeint”

to integrate the equations of motion for each atom. At each time step the

distribution is fit to a Gaussian function to extract the distribution center.

The distribution vs. center data is fit to a since function, which extracts the

amplitude of oscillations. This is repeated for each total transport time, and

plots of oscillation amplitude vs. total transport time and temperature change

vs. total transport time are made.

”””
This code has three d i f f e r e n t a c c e l e r a t i o n p r o f i l e s .

Uncomment the one you
wish to use .

This code i n t e g r a t e s the equat ions o f motion at each
time point , f o r each atom .

At each time step , i t f i t s the d i s t r i b u t i o n to determine
the d i s t r i b u t i o n center ,

and e x t r a c t a temperature from the f i t .

The t ranspo r t w i l l take p lace over a per iod ” t f i n a l ” .
In t h i s v e r s i on o f the code ,

a loop w i l l ca r ry put the proce s s f o r an array o f ”
t f i n a l ” va lues . After that ,

the atoms remain in a s t a t i o n a r y trap f o r a per iod ’
t wa i t ’ . The cente r p o s i t i o n o f the
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c loud w i l l o s c i l l a t e around the trap cente r . The
p o s i t i o n from t h i s por t i on o f

the motion i s f i t to a s i n e wave in order to e x t r a c t
amplitude and frequency .

Two p l o t s are more . One shows the amplitude change along
with the theory expecta ion ,

the other shows the temperautre change with a log s c a l e
on the y−a x i s .

Data i s imported from a csv f i l e . I use the d i s t r i b u t i o n
generated with the s c r i p t

’ Atom Distr ibut ion zony ’

The paramerts from the f i t to the s i n e wave w i l l be
saved in a csv ,

a long with unce r ta in ty .

”””

import numpy as np
from s c ipy . i n t e g r a t e import ode int
import matp lo t l i b . pyplot as p l t
from s c ipy . opt imize import c u r v e f i t

#c o n s t a n t s
omega z = 2∗np . p i ∗1 .12
Temp = 30e−6
k b = 1.38 e−23
mass = 1.44 e−25
#Standard d e v i a t i o n f o r p o s i t i o n and momentum
s igma z = np . s q r t ( k b∗Temp/( mass∗omega z ∗∗2) )
sigma p = np . s q r t ( mass∗k b∗Temp)

#number o f atoms and b i n s f o r his togram . Same as used
when g e n e r a t i n g

#the d i s t r i b u t i o n
nbins = 100
natoms = 10000

#make an array o f t r a n s p o r t d u r a t i o n s
t f i n a l = np . arange ( 0 . 6 , 5 , 0 . 0 5 )

#a f t e r the t ranspor t , wai t f o r s e v e r a l o s c i l l a t i o n
p e r i o d s
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t wa i t = 5

#d i s t a n c e to t r a n s p o r t over
d = 0 .6

#times to be used when p l o t t i n g the theory r e s u l t
t th eo ry = np . l i n s p a c e (0 ,max( t f i n a l ) ,500)
#r e s u l t expec ted from theory
#theory = d∗np . s i n c ( omega z∗ t t h e o r y /(4∗np . p i ) ) ∗∗2

#load the data
X = np . l oadtx t ( ’ a tom coord iante s zon ly . csv ’ , d e l i m i t e r =

’ , ’ )

#Define a sinwave to be used when f i t t i n g the ”
s t a t i o n a r y ” p o s i t i o n

def s inewave ( t ,A,B,C,D) :
return A∗np . s i n (B∗t−C)+D

#Define t rap p o s i t i o n
#With w a i t i n g

#A c c e l e r a t i o n f o r the s i n e ˆ2 v e l o c i t y .
def a c c e l e r a t i o n ( t , t f ) :

i f 0 <= t <= t f :
return ( (2∗np . p i ∗d) / t f ∗∗2)∗np . s i n (2∗np . p i ∗ t / t f

)
else :
return 0

”””
#Acce l e r a t i on f o r the t r i a n g u l a r v e l o c i t y
de f a c c e l e r a t i o n ( t , t f ) :

i f 0 <= t <= t f /2 :
r e turn a t

e l i f t f /2 < t <= t f :
r e turn −a t

e l s e :
r e turn 0

#a c c e l e r a t i o n f o r the gauss ian v e l o c i t y
de f a c c e l e r a t i o n ( t , t f ) :

i f t< t f :
r e turn v t rap ( t ) ∗(−72∗ t / t f ∗∗2)

e l s e :
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r e turn 0
”””

#d e f i n e ODEs. This i n c l u d e s t rap motion

def t r anspo r t (X, t , t f ) :
z , p z = X
dz = p z /mass
dpz = −mass∗omega z∗∗2∗ z +mass∗ a c c e l e r a t i o n ( t , t f )
return np . array ( [ dz , dpz ] )

#Function to f i t the p o s i t i o n d i s t r i b u t i o n and e x t r a c t
temperature and mean

def p o s i t i o n z ( z , t , mu z ) :
K = np . s q r t ( ( mass∗omega z ∗∗2) /(2∗ k b∗ t ) )
return K/np . s q r t (np . p i ) ∗np . exp(−K∗∗2∗( z−mu z ) ∗∗2)

#f u n c t i o n to f i t momentum d i s t r i b u t i o n and e x t r a c t
temperature and mean

def d i s t p z ( pz , t , mu pz ) :
C = 2∗mass∗k b∗ t
return np . s q r t (1/(C∗np . p i ) )∗np . exp(−(pz−mu pz ) ∗∗2/C)

#arrays to s t o r e c o e f f i c i e n t s from s i n e f i t
A = np . z e r o s ( len ( t f i n a l ) )
A unc = np . z e r o s ( len ( t f i n a l ) )
B = np . z e r o s ( len ( t f i n a l ) )
B unc = np . z e r o s ( len ( t f i n a l ) )
C = np . z e r o s ( len ( t f i n a l ) )
C unc = np . z e r o s ( len ( t f i n a l ) )
D = np . z e r o s ( len ( t f i n a l ) )
D unc = np . z e r o s ( len ( t f i n a l ) )

for k in range ( len ( t f i n a l ) ) :
#s e l e c t the t r a n s p o r t dura t ion f o r t h i s i t e r a t i o n
t t o t a l = t f i n a l [ k]+ t wa i t

#i n t e g r a t i o n t imes
#Time where the t rap i s moving
t r an spo r t t ime = np . l i n s p a c e (0 , t f i n a l [ k ] , 1000)
#Time where the t rap i s s t a t i o n a r y
wait = np . l i n s p a c e ( t f i n a l [ k ]+0.0001 , t t o t a l , 200 )
#Tota l time
wait t ime = np . append ( t ranspor t t ime , wait )
t f = t f i n a l [ k ]
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#a c c e l e r a t i o n
a t = (4∗d) / t f ∗∗2

#Array t h a t w i l l s t o r e the temperature and
u n c e r t a i n t y at each i n t e g r e a t i o n s t e p

wait Temp = np . z e r o s ( len ( wai t t ime ) )
temp unc = np . z e r o s ( len ( wai t t ime ) )
#Array to s t o r e d i s t c e n t r e and unc at each

i n t e g r a t i o n time s t e p
w a i t c e n t e r = np . z e r o s ( len ( wai t t ime ) )
cente r unc = np . z e r o s ( len ( wai t t ime ) )

#array to s t o r e the p o s i t i o n s o u t i o n f o r a l l atoms
at a l l t imes

pos = np . z e r o s ( ( len ( wai t t ime ) , natoms ) )

#Solve the ODEs f o r each atom , s t o r e the p o s i t i o n
and momentum at each

#time s t e p in a n array
for i in range ( len (X[ 0 ] ) ) :

t f = t f i n a l [ k ]
s o l u t i o n = ode int ( t ransport , X[ : , i ] , wait t ime ,

args = ( t f , ) , r t o l = 1e−10, a t o l = 1e−10)
pos [ : , i ] = s o l u t i o n [ : , 0 ]

#For each time step , f i t the p o s i t i o n d i s t r i b u t i o n
for j in range ( len ( wai t t ime ) ) :

h i s t , b in edge s = np . histogram ( pos [ j , : ] , nbins ,
dens i ty = True )

#Find bin c e n t e r s and f i t
b i n c e n t e r s = np . array ( [ 0 . 5 ∗ ( b in edge s [ k]+

b in edge s [ k+1]) for k in range ( len ( b in edge s )
−1) ] )

mu guess = np . mean( pos [ j , : ] )
f i t params , f i t c o v = c u r v e f i t ( p o s i t i o n z ,

b incente r s , h i s t , [Temp, mu guess ] )
wait Temp [ j ] = f i t pa rams [ 0 ]
temp unc [ j ] = np . s q r t ( f i t c o v [ 0 , 0 ] )
w a i t c e n t e r [ j ] = f i t pa rams [ 1 ]
c ente r unc [ j ] = np . s q r t ( f i t c o v [ 1 , 1 ] )

#Data when the t rap i s s t a t i o n a r y
t ime sub = wait t ime [ 1 0 0 0 : ]
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c en t e r sub = w a i t c e n t e r [ 1 0 0 0 : ]
#Fit a s i n e wave to t h i s p o r t i o n o f the data
f i t params sub , f i t c o v s u b = c u r v e f i t ( sinewave ,

time sub , center sub , [max( c en t e r sub ) , 2∗np . p i
∗1 .12 , 1 . 5 , 0 ] )

t i m e f i t s u b = np . l i n s p a c e ( t f i n a l , t t o t a l , 2 00 )
s i n sub = sinewave ( t i m e f i t s u b , ∗ f i t pa rams sub )
#Store the r e s u l t s
A[ k ] = f i t pa rams sub [ 0 ]
A unc [ k ] = np . s q r t ( f i t c o v s u b [ 0 , 0 ] )
B[ k ] = f i t pa rams sub [ 1 ]
B unc [ k ] = np . s q r t ( f i t c o v s u b [ 1 , 1 ] )
C[ k ] = f i t pa rams sub [ 2 ]
C unc [ k ] = np . s q r t ( f i t c o v s u b [ 2 , 2 ] )
D[ k ] = f i t pa rams sub [ 3 ]
D unc [ k ] = np . s q r t ( f i t c o v s u b [ 3 , 3 ] )

#save the t imes and the parameters from when the
p o s i t i o n vs . time data was f i t
#to a s i n f u n c t i o n

np . savetxt ( ’ s i n e 2 v e l o c i t y r e s u l t s 2 . csv ’ , ( t f i n a l , A,
A unc , B, B unc , C, C unc , D, D unc ) , d e l i m i t e r = ’ , ’
)

#p l o t ampl i tude vs . time
p l t . f i g u r e (1 )
p l t . e r r o rba r ( t f i n a l , abs (A) , A unc , l i n e s t y l e = ’ none ’ )
p l t . p l o t ( t f i n a l , A, ’ bo ’ , l a b e l = ’ S imulat ion ’ )
#p l t . p l o t ( t t h e o r y , theory , ’ k−−’, l a b e l = ’ Theory ’ )
p l t . x l a b e l ( ’ Transport Time ( s ) ’ )
p l t . y l a b e l ( ’ O s c i l l a t i o n Amplitude (m) ’ )
p l t . t i ck params ( d i r e c t i o n = ’ in ’ )
p l t . l egend ( )

#c a l c u l a t e the change in temperautre
T = ( mass∗omega z∗∗2∗A∗∗2) /(2∗ k b )
T max = np . ones ( len ( t th eo ry ) ) ∗100
#Plot temperature change vs . time
p l t . f i g u r e (2 )
p l t . p l o t ( t f i n a l , T∗1e6 , ’ go ’ , l a b e l = ’ S imulat ion ’ )
p l t . p l o t ( t theory , T max , ’ k ’ , l a b e l = ’ Trap Depth ’ )
p l t . x l a b e l ( ’ Transport Time ( s ) ’ )
p l t . y l a b e l ( r ’ Temperautre Change ( $\mu K$) ’ )
p l t . t i ck params ( d i r e c t i o n = ’ in ’ )
p l t . y s c a l e ( ’ l og ’ )
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p l t . l egend ( )
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