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In power system simulation, the mathematical solution methods are typ-
ically regarded as pure numerical operations, which are independent of
the circuit principles. In this letter, it is demonstrated that the compu-
tational procedures in the commonly used numerical solution methods
for circuit equations are essentially equivalent to the basic principles of
electricity. The computational procedures of the representative Gaus-
sian elimination based solution methods (including GE and pivoting
method for sparsity of GE/LU) are comprehensively analyzed and their
deep relationships with the circuit principles are revealed: the compu-
tation process of these mathematics based numerical solution methods
can be completely explained using circuit principles. The interesting
findings could help understand the computational process of solution
methods from the circuit perspective, which may also guide the design
of new circuit solution methods.

Introduction: In electric circuits, the laws that determine the currents
and voltage behaviors are called circuit principles, mainly including the
Ohm’s law, Kirchhoff’s current and voltage laws (KCL and KVL), and
other circuit theorems such as the superposition theorem, Thévenin’s
theorem, and Norton’s theorem. These circuit principles play crucial role
in circuit simulation, which is the commonly used approach for checking
and verifying the design of electrical and electronic circuits and systems
prior to manufacturing and deployment [1, 2].

Typically, given an electric system, the process of circuit simulation
is divided into two stages: stage one, circuit principles are leveraged to
formulate a set of linear or nonlinear algebraic equations (also called
the matrix equations) based on power equipment modelling [3–6] and
nodal analysis [7, 8]; stage two, the techniques for solution of these
equations are utilized to compute the node voltage values and other
electrical parameters. The specific techniques of two stages have been
the subject of decades of research in power equipment models and nu-
merical analysis. Although both stages of circuit simulation have drawn
focused attention in research, they are usually regarded as independent
areas, since the power equipment models and nodal analysis strongly
correlate to the circuit principles, while the solution methods are purely
numerical operations on the specific values based on mathematical
analysis. Therefore, the relationships between electric circuit principles
and their numerical solution methods are neglected. After a thorough
analysis over the commonly used circuit equation solution methods, we
found that the computation process of matrix equation solvers can also
be derived purely using circuit principles, i.e. when solving the matrix
equations specifically formulated from electric systems, the solution
process can be completely explained from the perspective of circuit
principles.

In this work, the above discoveries are demonstrated upon the
representative Gaussian elimination based solution methods (including
GE and pivoting method for sparsity of GE/LU), which show the
equivalence of circuit principles and numerical solution methods of
electric systems. Although this work does not propose any new solution
methods, it provides a new perspective on the interpretation of existing
numerical methods of solving linear equations, which also leads to more
imaginations that may guide the design of new numerical methods.

Formulations: In this work, the analysis is performed over the electro-
magnetic transient (EMT) simulation case, which is more complicated
and can be easily extend to the steady-state or dynamic power flow sim-
ulation. In EMT simulation, each power equipment can be represented
by an equivalent circuit by discretizing the formulated differential
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Fig. 1 Explaining the Gaussian elimination method using circuit princi-
ples. (a) Example circuit with N nodes. (b) Formulated matrix equation of
the example circuit using nodal analysis. (c) Resulting matrix equation af-
ter the first FE step of GE. (d) Left-side circuit connected with nodes 2-
N. (e) Using Thevenin’s theorem, the current source i1 in parallel with
the conductor G1 is equivalent to a voltage source v1 = i1/G1 in series
with a conductance G1. (f) Using the laws for resistors/conductors in se-
ries, the conductor G1 in series with G1,2→N is equivalent to the conduc-
tor G

′
1 = ([G−1

1 ] + Diag(G1,2→N )−1)−1. (g) Using the Norton’s theorem, the
voltage source v′

1 = i1/G1 with a series conductance is equivalent to a cur-

rent source i
′
1 = G

′
1v′

1 in parallel with the conductance G′
1; where G′

1 and i
′
1

are exactly the same as the results obtained by GE shown in (c).

equations, such as the transformer [3], machine [4], and transmission
line [5] model. For a specific electric system containing different elec-
tric apparatus, combining the equivalent circuits together using nodal
analysis results in a set of simultaneous linear or nonlinear algebraic
equations, which can be expressed in a compact pattern:

Gv = i, (1)

where G is the equivalent conductance matrix with size of N × N for
a N-node network, i = {i1, i2, . . . , iN } is the N-length current injection
vector, and v is an N-vector of the unknown node voltages to be solved.
Note that the values of G may be dependent of v (in the nonlinear case)
or change over time, and in this article we only focus on the case of
constant G since the fundamentals for the G changing over time or over
iterations are the same.

Exploring the Gaussian elimination method using circuit principles:
Gaussian elimination (GE) is a basic method to solve linear matrix
equations, which performs the forward elimination (FE) and backward
substitution (BS) operations. We will show that it is possible to find
some clues of the underlying connections between GE and circuit prin-
ciples, although it seems that the GE method is solely a computational
procedure.

Here, we start with the first step of FE, as shown in Figure 1a, node
1 is connected with nodes 2-N via branch conductances G1,2, . . . , G1,N ,
which is reflected in the conductance matrix shown in Figure 1b. It is
assumed here that node 1 is connected with all the other nodes, and the
case where node 1 is only connected with part of the other nodes is de-
scribed in the following sections. Here, G2→N is the conductance matrix
only including nodes 2-N , and Diag(G1,2→N ) is the diagonal matrix with
G1,2, . . . , G1,N on the diagonal. After performing the first step of FE, the
elements on the first column of G are eliminated into zero (except for the
first element), which result in an extra conductance matrix (�G2→N )
and an extra current injection (�i2→N ) for nodes 2-N , as shown in
Figure 1c. From the computation principle of FE, it is easy to check
that:

�G2→N = Diag(G1,2→N ) − G1,2→N GT
1,2→N

G1 + ∑N
j=2 G1, j

, (2)

�i2→N = i1

G1 + ∑N
j=2 G1, j

{G1,2, . . . , G1,N }T, (3)

where G1,2→N = {G1,2, . . . , G1,N }T.
Surprisingly, if we analyze the circuit purely based on circuit prin-

ciples, we can also get the same format. As shown in Figure 1d,e,
applying the Thevenin’s theorem, the current source i1 in parallel with
the conductance G1 can be equivalent to a voltage source v′

1 = i1/G1 in
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Fig. 2 In step j of FE for multiple-node networks, only considering the net-
work containing node j to N. The circuit at the left-side of the network con-
taining node j + 1 to N is equivalent to a current source i

′
j in parallel with

a conductance G( j)′
j , and then the obtained network for node j + 1 to N is

equivalent to the matrix equation after the jth FE step.

series with a conductance G1. Next, by applying the laws for resistors in
series and in parallel, the conductance G1 in series with G1,2, . . . , G1,N

is equivalent to the conductance G′
1 = ([G−1

1 ] + Diag(G1,2→N )−1)−1,
where [G−1

1 ] is the full matrix with all elements having the same value:

[G−1
1 ] =

⎡
⎢⎢⎢⎣

G−1
1 . . . G−1

1
G−1

1 . . . G−1
1

...
. . .

...
G−1

1 . . . G−1
1

⎤
⎥⎥⎥⎦

(N−1)×(N−1)

. (4)

Let A = Diag(G1,2→N )−1, B = {G−0.5
1 , G−0.5

1 , .., G−0.5
1 }T, and C = BT,

it can be observed that G′
1 = (A + BC)−1. Using the Woodbury identity

[10], it can be checked that:

G′
1 = (A + BC)−1

= A−1 − A−1B(I + CA−1B)−1CA−1

= Diag(G1,2→N ) − G1,2→N GT
1,2→N

G1 + ∑N
j=2 G1, j

. (5)

It can be seen that the equivalent conductance G′
1 is exactly equal to

�G2→N that is computed via FE. After applying the Norton’s theorem,
the voltage source in series with the conductance G

′
1 is equivalent to a

current source i
′
1 = G

′
1v′

1 in parallel with the conductance G
′
1, as shown

in Figure 1f,g. It is easy to check that i
′
1 is also exactly the same as

�i2→N . That means, the forward elimination of the conductance matrix
can be completely regarded as the process of finding the correspond-
ing equivalent circuit based on circuit principles. If using the proposed
equivalent circuit in each iteration, it is equal to conducting the GE so-
lution method.

The equivalence of GE and circuit principles shown above can be
easily extended to the case where node 1 is only connected to part of the
other nodes. The basic idea is that, in step j ∈ {1, 2, . . . , N − 1}, only
considering the network containing node j → N after the ( j − 1)th FE
operation, and the corresponding matrix to be operated is G( j)

j→N , where
the superscript ( j) denotes the jth FE operation. Using the same equiv-
alence techniques as proposed above, the circuit at the left-side of the
network containing node j + 1 to N is equivalent to a current source
i
′
j in parallel with a conductance G( j)′

j , and then the obtained network

for node j + 1 to N is equivalent to the matrix equation with G( j+1)
j+1→N

after the jth GE step, as illustrated in Figure 2. Here, the coupling con-
ductance G( j)

j, j+1→N is a vector containing the branch conductance values
between node j and node j + 1 to N :

G( j)
j, j+1→N = [G( j)

j, j+1, G( j)
j, j+2, . . . , G( j)

j,N ], (6)

and Sum(G( j)
j, j+1→N ) is the sum of values in the vector. The resulting

equivalent circuit after eliminating node j is shown in Figure 2, where

the equivalent conductance G( j)
j

′
is a matrix with the size of (N − j) ×

(N − j). The equivalent conductance should be:

G( j)
j

′ = ([G( j)−1
j ] + [G( j)

j, j+1→N ]−1)−1, (7)

(a)

(c) (d)

(b)

Fig. 3 Explaining the pivoting methods for sparsity using circuit principles.
(a) Conductance matrix of the example circuit with four nodes, where × de-
notes a non-zero element in the structural representation; after the first FE
step, the remaining matrix to be eliminated becomes a full matrix with sev-
eral fill-ins. (b) In the view of equivalent circuit, the example circuit changes
to a three-node circuit with node 1 being eliminated. (c) After node reorder-
ing, the first FE step does not introduce extra fill-ins to the matrix. (d) In the

view of equivalent circuit, the equivalent conductance G(1)
1

′
under the origi-

nal node order is a full matrix, while after the node reordering G(1)
1

′
becomes

a sparse matrix.

where all the elements in [G( j)−1
j ] have the same value:

[G( j)−1
j ] =

⎡
⎢⎢⎣

G( j)−1
j . . . G( j)−1

j

...
. . .

...
G( j)−1

j . . . G( j)−1
j

⎤
⎥⎥⎦ , (8)

and [G( j)
j, j+1→N ] is diagonal matrix with branch conductance values in

diagonal:

[G( j)
j, j+1→N ] =

⎡
⎢⎢⎢⎢⎣

G( j)
j, j+1 0 . . . 0

0 G( j)
j, j+2 . . . 0

...
...

. . .
...

0 . . . 0 G( j)
j,N

⎤
⎥⎥⎥⎥⎦

. (9)

However, there may not exist branch between node j and some node
j + p ∈ { j + 1, . . . , N}, thus G( j)

j, j+p = 0 and the matrix [G( j)
j, j+1→N ] is

irreversible. In practical computation, the corresponding [G( j)−1
j ] and

[G( j)
j, j+1→N ] should be modified according to the branches between node

j and other nodes. To achieve this purpose, two operations are involved:
deleting and padding. (1) Deleting: Assuming there are m branches, then
the size of the two matrices should be m × m, by deleting the rows and
columns where the diagonal elements with values of zero are located. For
example, if G( j)

j, j+p = 0, then the pth row and column should be deleted

from the matrix [G( j)−1
j ] and [G( j)

j, j+1→N ]. (2) Padding: After modifying

the matrices, the computed G( j)
j

′
from Equation (7) also has the size

of m × m, then it should be extended to (N − j) × (N − j) by padding
rows and columns with zero-elements according to the deleting loca-
tions in [G( j)−1

j ] and [G( j)
j, j+1→N ]. Combining the two operations together,

Equation (7) is rewritten as:

G( j)
j

′ = padding{([G( j)−1
j ]del + [G( j)

j, j+1→N ]−1
del )

−1}. (10)

Exploring pivoting method for sparsity of GE/LU: In electric power
systems, the conductance matrices are generally sparse, with majority
elements equal to zero. Therefore, sparse techniques are usually utilized
to solve large scale systems to speed up circuit simulation. In Gauss’s
algorithm for LU factorization (equivalent to GE, denoted as GE/LU
[2]), pivoting methods achieve sparsity by reordering the matrix up-front
via row and column exchanges. We use a four-node circuit topology to
simply demonstrate the principles. The conductance matrix is expressed
using the structural representation to avoid showing specific numerical
calculations, as shown in Figure 3a, where × denotes a non-zero ele-
ment. Using the original node order, the matrix changes to a dense matrix
after the first FE step, which is not preferred to keep sparsity. And if
reorder the nodes by exchanging the node number of 1 and 4, the

2 ELECTRONICS LETTERS June 2023 Vol. 59 No. 11 wileyonlinelibrary.com/iet-el

http://wileyonlinelibrary.com/iet-el


resulting matrix could keep sparsity after the first FE step, as shown in
Figure 3c.

In this section, we show that the pivoting method of GE/LU could
also be derived based on the equivalent circuit described in the section
“Exploring the Gaussian elimination method using circuit principles” of
the paper. Using the equivalent circuit shown in Figure 3b, the objective
of the first FE step (eliminating node 1) to keeping sparsity is equivalent

to find a proper reordering to get a sparse G(1)
1

′
. As described in the above

section:

G(1)
1

′ = padding{([G(1)−1
1 ]del + [G(1)

1,2→4]−1
del )

−1}. (11)

Since [G(1)−1
1 ] is a full matrix with all elements equal to G(1)−1

1 , the

size of [G(1)−1
1 ]del actually determines the number of non-zeros in G(1)

1

′
;

i.e. if [G(1)−1
1 ]del is a m × m matrix, then G(1)

1

′
has m2 non-zeros. Ac-

cording to the deleting operation, the less branches between node 1
and node 2, 3, 4, the smaller size of [G(1)−1

1 ]del and [G(1)
1,2→4]del. As

shown in Figure 3d, if using the original node order, node 1 has cou-
pling conductance with node 2, 3, 4, thus [G(1)

1,2→4]del = [G(1)
1,2→4] =

diag(G(1)
1,2, G(1)

1,3, G(4)
1,4) with size of 3 × 3, and G(1)

1

′
is a full matrix with

size of 3 × 3. If exchange the indices of node 1 with node 4, then there
is no coupling conductance between node 1 and node 2, 3, which re-
sults in the deleting operations over [G(1)

1,2→4], and the size of [G(1)
1,2→4]del

changes to 1 × 1, thus leading to a sparse G(1)
1

′
.

Therefore, to obtain a sparse G(1)
1

′
, the principle is that the number

of branches between node 1 and other nodes should be minimized. This
principle is just the same as the minimum degree (MD) algorithm pro-
posed by Tinney and Walker [11], which aims to find the minimum de-
gree vertex in the matrix graph. The MD strategy has been very success-
ful in practice and becomes the base of modern sparse techniques such
as the multiple minimum degree (MMD) and average minimum degree
(AMD).

Conclusion: In this brief express, we used conventional circuit prin-
ciples to derive the computational process of representative numerical
solution methods, mainly including GE and pivoting algorithm for
sparsity, which show the surprising equivalence of numerical solution
methods and circuit principle based solution methods. The essential
reason may be that, the conductance matrix in this case is specially gen-
erated from electric systems, which has special features that result in the
equivalence. Since the traditional solution methods can be widely used in
various forms of matrix equations, the equivalent-circuit based computa-
tion procedure in the field of electric system is only a special case of the
generic numerical methods. In future work, the circuit principle-based
derivation of other numerical solution methods such as Gauss–Jacobi,
Gauss–Seidel, and matrix decomposition methods will be investigated;
and hopefully, the equivalence could be extended to all numerical
methods.
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