
University of Alberta

A Semantic-Driven Framework for Facilitating Reusability and
Interoperability of Construction Simulation Modeling

By

Farzaneh Saba

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in

Construction Engineering and Management

Department of Civil and Environmental Engineering

©Farzaneh Saba
Fall 2012

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis
and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is

converted to, or otherwise made available in digital form, the University of Alberta will advise potential users
of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the thesis and,

except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or
otherwise reproduced in any material form whatsoever without the author's prior written permission.

Dedicated to my beloved parents

Hamidreza and Azar

And

to my lovely siblings

Kazem and Naghmeh

Abstract

This research describes a semantic-driven framework to facilitate reusability and

interoperability of simulation and modeling of construction processes. An immense

amount of knowledge of construction processes and simulation modeling is needed to

develop construction simulation models. Knowledge intensity of construction simulation

models makes the development process an effort and time consuming process. The

research described in the thesis is motivated by the need to effectively reuse the captured

and represented knowledge throughout the life cycle of simulation models. Our approach

addresses these challenges through ontological modeling and linking construction

simulation modeling concepts composed of (i) ontology of the construction process, (ii)

ontology of simulation modeling constructs and elements and (iii) ontological

representation of simulation models. In this research, semantic web approaches and

techniques have been utilized in different aspects: structured documentation and

modeling of construction processes through hierarchical concepts and relationships

between them using semantic web languages such as XML, RDF, and OWL; mapping

techniques for linking and knowledge extraction between modeling ontologies; and

reasoning and inference for knowledge discovery. Stand-alone construction simulation

models and a large-scale HLA-based distributed simulation model of industrial

construction processes have been outlined in order to illustrate the approach.

Acknowledgements

First and foremost, I would like to thank my Ph.D. supervisor, Dr. Yasser Mohamed, for
his strong support and encouragement during the course of my research. I am also deeply
indebted to Dr. Simaan Abourizk for his critical insight throughout the entire research
process and also serving as my candidacy and doctoral committee chair.

I would like to acknowledge Dr. Jeffrey Rankin for serving as my external examiner and
providing invaluable suggestions. I am also grateful to my other doctoral committee
members, Dr. Roger Cheng and Dr. Michael Lipsett for their thoughtful review and
supportive advice.

I would like to take this opportunity to thank Brenda Penner, Stephen Hauge, Hosein
Taghados and other faculty members and staff and colleagues in construction engineering
and management group who assisted me during this work.

During my work at University of Alberta I was fortunate to make lifelong friendships
with many great people. Being away from family, they were the support throughout all
the ups and downs of my graduate student life, especially Ali Gorji, Katayoon Navabi,
Atoosa Zahabi and Mohsen Danaie, who the last has become a very special person in my
life.

Last but not least, my heartfelt appreciations go to my family for their unconditional love,
care and support throughout all the stages of my studies. This thesis is dedicated to them.

Table of Contents

Chapter 1: Simulation modeling of construction processes ... 1
1-1 Introduction ... 1
1-2 Simulation Modelling Processes ... 2
1-3 Reuse in Simulation and Modeling ... 4
1-4 Research Motivation .. 6
1-5 Thesis Objectives and Anticipated Contributions .. 7
1-6 Research Methodology... 7
1-7 Thesis Organization ... 8
1-8 References ... 9
Chapter 2: Industrial Construction Domain and Related Models ... 12
2-1 Introduction ... 12
2-2 Industrial Construction ... 13

2-2.1 Construction phase ... 15
2-2.2 Industrial Construction: fabrication, assembly, and site installation 16

2-3 Modeling Industrial Construction Processes ... 20
2-4 Distributed Large-scale Industrial Construction Modeling .. 22
2-4.1 HLA based large-scale industrial construction modeling ... 22

2-4.2 Industrial construction simulation background .. 23
2-4.3 Industrial construction federation.. 25
2-4.4 Federation object model of the industrial construction federation .. 25
2-4.5 Fabrication shop federate .. 28
2-4.6 Module assembly federate .. 29
2-4.7 Site construction federate ... 30
2-4.8 Calendar federate ... 32
2-4.9 Resource allocation federate ... 33
2-4.10 Visualization federate ... 34
2-4.11 Summary of industrial construction project ... 34
2-5 Heavy-lift Interactive Federation .. 35
2-5.1 Federation description .. 36
2-6 Lessons Learned... 41
2-7 References ... 45

Chapter 3: Ontological Conceptual Modeling of Industrial Construction Processes to Enhance
Interoperability and Reuse .. 47
3-1 Introduction ... 47
3-2 Conceptual modeling ... 48

3-2.1 Conceptual modeling and model reusability .. 50
3-2.2 Conceptual modeling and modeling composability ... 51
3-3 Ontologies and Conceptual Modeling ... 53

3-4 Methodologies for Ontology Development ... 54
3-5 Industrial Construction Ontology (InCon-Onto) Development .. 55
3-5.1 Purpose and scope of InCon-Onto .. 55

3-5.2 Building the InCon-Onto .. 56
3-5.2.1 Ontology capture .. 56
3-5.2.2 Capturing InCon-Onto .. 57
3-5.2.3 Integrating existing ontologies .. 58
3-5.3 Industrial construction ontology coding .. 60

3-5.4 Evaluating the ontology .. 71
3-6 Ontology Interoperability ... 72
3-6 Ontology Interoperability ... 72

3-6.1 Simulation domain ontologies .. 75
3-6.2 Simulation application: simphony ... 77
3-7 Interoperability between Simulation Ontologies ... 78
3-7.1 Ontology interoperability through ontology mapping .. 80

3-6.1.1 Mapping between simulation ontologies .. 80
3-7.1.2 Ontology mapping through SPARQL .. 83
3-4.4.1 SPARQL queries for knowledge retrieval ... 83

3-8 Summary and Conclusion .. 87
3-9 References ... 88
Chapter 4: Enhancing Reusability in HLA-based Distributed Simulation Modeling of Industrial
Construction Processes .. 93
4-1 Introduction ... 93
4-2 Distributed Simulation Modeling Challenges ... 94
4-3 Ontology-Driven Framework for Construction Simulation Modeling .. 96

4-3.1 Overview on ontological framework ... 96
4-3.2 Simulation application ontologies ... 97
4-4 Ontology-Driven Applications.. 98
4-4.1 Role of industrial construction ontology in modeling industrial construction processes at
multiple levels of abstraction ... 98
4-4.2 FOM extraction from industrial construction ontology .. 100
4-4.3 Developing ontology-based process interaction elements .. 103

4-4.3.1 Description of COSYE-compliant elements .. 104
4-5 Distributed Simulation Model of Industrial Construction Processes .. 106

4- 5.1 Element-based spool fabrication federate .. 107
4-6 Discussion on Component-based Industrial Construction Distributed model 111
4-7 Summary and Conclusion .. 111
Chapter 5: A Semantic Approach to Representation, Sharing and Discovery of Construction
Simulation Models ... 115
5-1 Introduction ... 115
5-2 Semantic Web .. 117

5-2.1 Semantic web languages: XML .. 118
5-2.2 Semantic web languages: RDF ... 119
5-2.3 Semantic web languages: OWL .. 119
5-2.4 Semantic web languages: RDF Query Language (SPARQL) ... 119

5-3 Related Work ... 120
5-4 Adaptation of Semantic Web into Construction Simulation Modeling....................................... 121
5-4.1 Simulation modeling representation.. 123

5-4.1.1 Simphony ... 124
5-4.2 Semantic enrichment of construction simulation models ... 126
5-4.2.1 Adding new content to simulation models through model profiles .. 128

5-4.3 XML to RDF/OWL transformation .. 130
5-4.4 Repository of models.. 130
5-4.5 Semantic repository for construction operations simulation modeling 133

5-5 Summary ... 141
5-6 References ... 141
Chapter 6: Conclusion ... 143
6-1 Recommendations for future work: .. 145
Appendix I: XML/RDF Source Code of InCon-Onto ... 147
Appendix II: Tunneling Ontology .. 164
Appendix III: COSYE Fabrication Shop Modeling Elements ... 166
Appendix IV: An Example of Stored Model (Spool Fabrication Shop Model_M1) in Construction
Modeling Repository ... 202
Appendix V: Construction Modeling Repository SPARQL Queries ... 208

List of Tables

Table 2-1: FOM shared spreadsheet ... 44
Table 3-1: Major concepts used in some construction and manufacturing ontologies 59
Table 3-2: Relationships between process and other concepts in InCon-Onto ... 68
Table 3-3: InCon-Onto competency questions.. 72
Table 3-4: Process-oriented concepts used in simulation and industrial construction ontologies.................. 81
Table 4-1: Linking InCon-Onto concepts to FOM components .. 100
Table 4-2: The statistics of different FOM components in four different federations................................... 103
Table 4-3: Modeling environment process interaction concepts mapping ... 104
Table 5-1: Profile of Simulation Model Documentation ... 128
Table 5-2: General Profile Descriptors ... 129
Table 5-3: Descriptive Profile Descriptors ... 129
Table 5-4: Implementation Profile Descriptors ... 129
Table 5-5: XML Document Transformation into RDF/OWL .. 130
Table 5- 6: Construction Repository Statistics .. 139
Table 5-7: Queries for Knowledge Retrieval from the Repository .. 140
Table 5-8: Sample Query and Results in TB .. 140

List of Figures

Figure 1-1: Knowledge involved in construction simulation modeling ... 3
Figure 1-2: Simulation and modeling development process .. 3
Figure 1-3: Reuse opportunities for knowledge process outcomes .. 4
Figure 1- 4: Spectrum of model reuse (Robinson et al. 2006) ... 5
Figure 1-5: Thesis organization ... 9
Figure 2-1: Industrial Construction Project Life cycle .. 15
Figure 2-2: Typical Production process of Industrial Construction ... 17
Figure 2-3: Industrial Construction Federation ... 25
Figure 2-4-1: Industrial Construction Federation Object Model (FOM) .. 27
Figure 2-4-2: Industrial Construction Federation Object Model (FOM) .. 28
Figure 2-5: Shop Fabrication Process ... 29
Figure 2-6: Typical site manager process ... 31
Figure 2-7: Calendar federate .. 32
Figure 2-8: Communication between RA and simulation federates ... 33
Figure 2-9: 3D visualization of site installation .. 34
Figure 2-10: Heavy lift federation .. 37
Figure 2-11: Lift Scenario federate .. 38
Figure 2-12: Player federate main tab .. 39
Figure 2-13: Flowchart of Visualization Federate Logic ... 40
Figure 2-14: Site layout and marker distribution .. 41
Figure 2-15: Snapshot of real time simulation – visualization result ... 41
Figure 3-1: Simulation project life-cycle .. 49
Figure 3-2: The BOM structure .. 50
Figure 3-3: Levels of conceptual interoperability model ... 52
Figure 3-4: Ontological spectrum... 54
Figure 3-5: Process modeling correspondence to 5Ws .. 57
Figure 3-6: InCon-Onto top level concepts and relationships .. 60
Figure 3-7: Semantic web language evolution .. 62
Figure 3-8: Different levels of Industrial Construction Ontology .. 63
Figure 3-9: InCon-Onto higher level hierarchy ... 64
Figure 3-10: Process hierarchy and instances in InCon-Onto .. 65
Figure 3-11: Product hierarchy and instances in InCon-Onto.. 66
Figure 3-12: Resource hierarchy and instances of InCon-Onto ... 67
Figure 3-13: InCon-Onto relationships ... 69
Figure 3-14: Aspects of process, products, and resources in InCon-Onto ... 70
Figure 3-15: InCon-Onto axioms .. 71
Figure 3-16: Sharing in construction domain.. 73
Figure 3-17: Types of Ontologies ... 74
Figure 3-18: PIMODES Structure ... 76
Figure 3-19: Formalized Simphony Structure ... 78
Figure 3-20: Industrial construction simulation framework .. 79

Figure 3-21: Mapping ontologies through a third ontology ... 80
Figure 3-22: Mapping through process-modeling concepts ... 82
Figure 3-23: Mapping Process ... 84
Figure 3-24: Ontological construction simulation framework ... 85
Figure 3-25: Mapping through SPARQL query .. 86
Figure 3-26: Mapping inference results .. 87
Figure 4-1: The ontological framework of construction simulation components ... 96
Figure 4-2: The ontological driven simulation components .. 99
Figure 4-3: Object instances transformation from InCon-Onto to FOM .. 102
Figure 4-4: Industrial construction federation ... 106
Figure 4-5: Production chain within the industrial construction federation.. 107
Figure 4-6: Unified Modeling Language (UML) description federates’ interaction 108
Figure 4-7: Fabrication shop federate developed in Simphony environment using COSYE elements 109
Figure 5-1: Semantic Web Stack .. 118
Figure 5-2: Simphony Model Representation ... 125
Figure 5-3: The BOM structure .. 126
Figure 5-4: Process Modeling of Construction Processes ... 127
Figure 5-5: Linking between simulation model components and other relevant sources 131
Figure 5-6: Representation and discovery process of simulation models ... 133
Figure 5-7: RDF graph representing the templates in the repository ... 134
Figure 5-8: RDF graph of spool fabrication model components .. 135
Figure 5-9: RDF graph of earth moving elements... 136
Figure 5-10: Snapshot of repository ... 137
Figure 5-11: RDF graph of Models’ profile.. 138

List of Abbreviations
BOM Base Object Model
C&SU Commissioning & Start-up
CEM Construction Engineering and Management
COSYE Construction Synthetic Environment
DeMO Discrete Event Model Ontology
DES Discrete Event Simulation
DoD Department of Defense
EPCM Engineering, Procurement, and Construction Management
ES Early Start
FEDEP Federation Development and Execution Process
FOM Federation Object Model
GUI Graphical User Interface
HLA High Level Architecture
HTML Hyper Text Markup Language
IC-PRO-Onto Infrastructure and Construction PROcess Ontology
InCon-Onto Industrial Construction Ontology
KDD Knowledge Discovery in Data
M&S Modeling and Simulation
MASON Manufacturing Semantically Ontology
OMT Object Model Template
OWL Web Ontology Language
PIMODES Process Interaction Modeling Ontology for Discrete Event Simulations
QC Quality Control
RA Resource Allocation
RAB Resource Allocation Base
RDF Resource Description Framework
RTI Run-Time Infrastructure
SISO Simulation Interoperability Standards Organization
SPARQL SPARQL Protocol and RDF Query Language
SPS Special Purpose Simulation
SWRL Semantic Web Rule Language
TBC TopBraid Composer
UML Unified Modeling Language
URI Uniform Resource Identifier
W3C World Wide Web Consortium
WBS Work Breakdown Structure
WDP Winner Determination Problem
WWW World Wide Web
XML eXtensible Markup Language

1

Chapter 1

Simulation modeling of construction processes

1-1 Introduction

Simulation is defined as “the process of designing a model of a real system and

conducting experiments with this model for the purpose of either understanding the behaviour of

the system or evaluating various strategies for the operation of the system” (Shannon 1975).

Construction processes’ uniqueness, uncertainty, and complexity necessitate using simulation as

a decision-making support tool.

Simulation has been an important area in construction research for three decades, during

which a number of construction simulation tools have been developed. The stream of

construction simulation tools began with CYCLONE (Halpin 1977) and was followed by

MicroCYCLONE (Lluch and Halpin 1981), RESQUE (Chang and Carr 1987), and

STROBOSCOPE (Martinez and Ioannou 1994).

Early construction simulation modeling tools were general, and could be used for

simulating a wide range of applications. The tools were powerful but required the user to be fully

familiar with them in order to be able to manipulate the information. To reduce the time and

Chapter 1- Introduction

2

effort involved in simulation modeling development, the Special Purpose Simulation (SPS) tool

“Simphony” was developed (Hajjar and AbouRizk 1999). Object-oriented programming was

used to develop the Simphony environment so that it provides a hierarchical and modular

simulation environment (Sawhney and AbouRizk 1995). Many attempts have used simulation

modeling to portray and predict complex and uncertain construction processes and as an

inexpensive means to test and evaluate different design and control strategies (Mohamed et al.

2007).

However, there are common drawbacks to developing models within stand-alone

simulation environments: simulation models are often built as monolithic and isolated software

systems which are neither able to integrate with other simulation models or applications, nor to

handle large-scale construction simulation models.

In other industries, the distributed simulation modeling approach has been taken to

address these challenges. Within a distributed approach, a large and complicated model is

divided into smaller and more manageable components which are linked with each other in an

interchangeable manner to present the entire system. High Level Architecture (HLA) is an

advanced standard, developed by the United States Department of Defense (DoD), to facilitate

the integration and interoperabality of distributed simulation models (Kuhl et al. 1999). HLA has

been introduced to the Construction Synthetic Environment (COSYE) by AbouRizk et al. (2006).

1-2 Simulation Modelling Processes

Simulation modeling is a knowledge intensive process. In order to develop a model of

construction processes, the modellers should be familiar not only with simulation and modeling

tools and techniques; they should also understand the target construction processes in detail

(Figure 1-1).

Chapter 1- Introduction

3

Figure 1-1: Knowledge involved in construction simulation modeling

The development process for simulation and modeling starts with knowledge acquisition

from construction domain experts in order to gather information about the process and specify

the problem and simulation purpose. The gathered information is traditionally presented within a

conceptual model through the knowledge representation and modeling process. According to the

conceptual models, computer simulation models are built. After validation and verification of the

models, they are put into use (Figure 1-2).

Figure 1-2: Simulation and modeling development process

Considering the amount of knowledge within simulation models and the cost and effort

involved, it is important to reuse the knowledge captured through all simulation development

processes, starting with knowledge acquisition through knowledge representation and knowledge

modeling.

In the following section we investigate in more detail why reuse in simulation and

modeling is appealing. Also, we try to come up with modeling approaches which facilitate

reusing knowledge within conceptual models.

Chapter 1- Introduction

4

1-3 Reuse in Simulation and Modeling

Reusing simulation models leads to reducing development cost and time. According to

Kasputis and Ng (2000), it will even lead to higher quality simulation studies. Considering the

different processes of simulation modeling development, reuse can be feasible at any phase.

After knowledge acquisition phase, the conceptual model is built which documents domain

knowledge. The next step is developing the simulation model and at the end comes model

execution of archiving. (Figure 1-3).

Figure 1-3: Reuse opportunities for knowledge process outcomes

Within simulation practice, reuse has traditionally been addressed through the simulation

model development process, utilizing simulation modeling elements’ libraries and templates.

Developing simulation models from reusable elements reduces development efforts and therefore

speeds up composing simulation models (AbouRizk and Mohamed 2000). However, reuse

challenges with regard to conceptual modeling and also after model execution and archiving has

not been at researchers’ focus. The following section investigates reusability at different stages

of simulation development and points out the shortcomings.

Reuse of Conceptual Models: Effective conceptual modeling is vital for developing a

quality simulation model but it is least understood and investigated phase in the simulation

community (Robinson 2004). According to Lacy (2001), conceptual models are domain-oriented

and provide a detailed representation of real-world problems describing the model requirements.

Conceptual models effectively capture domain experts’ knowledge. Poor documentation of

Chapter 1- Introduction

5

conceptual models makes it difficult to effectively trace and communicate model contents.

Conceptual models are usually portrayed through graphical methods such as process flow

diagrams, activity cycle diagrams, Unified Modeling Language (UML) and object models. These

methods of documenting conceptual models make it easier to understand the process, but they

usually do not do much in terms of structuring and formalising the models.

Reuse in the Development Process: Reuse has been most practically applied through

building simulation models, from reuse of a small portion of code to reuse of a simulation

function or component and finally to the entire model (Figure 1-4). The stand-alone construction

simulation modelling tools allow previously developed simulation components to be reused

(Oloufa 1993; Hajjar et al. 2000) and provide libraries of such components.

Figure 1- 4: Spectrum of model reuse (Robinson et al. 2006)

As was mentioned before, construction simulation modeling is deploying distributed

simulation modeling in order to deal with large-scale construction models and interoperability

and reusability challenges. Decomposing simulation models and distributing simulation efforts

between different development groups cannot happen without coordination and reaching a

consensus between all the involved collaborator parties about the knowledge that they are

sharing. All the parties have to have a harmonized understanding around all core aspects of

simulation modeling. This necessitates documented conceptual modeling.

HLA Technically encourages interoperability and reusability of simulation components

(federates), by being able to combine federates in an interchangeable manner into complex

simulation models (federation). However semantic coordination of components is not a

Chapter 1- Introduction

6

straightforward matter. The reason is that the federates are treated as atomic simulation

components; reusing even a portion of their internal code is almost impossible. The narrow

reusability scope within distributed simulation modeling often makes the development process a

complex and effort-intensive exercise (Radeski et al. 2002).

Reuse of Full Models: Reusing full models is a demanding process too, mostly because

the time and cost to become familiar with other people’s development overshadows the benefits

of reuse. This problem can be partly traced back to a lack of effective documentation of

conceptual models. In addition to conceptual modeling documentation, availability and

accessibility to simulation models and their content for the users is an issue which has not been

addressed.

Reuse, meaningful structuring, sharing, and discovery challenges on the web led to the

spread of the semantic web as a new technology to overcome those challenges. New emerging

semantic web technology can bring new opportunities to developing content-based, structured

environments (built based on ontologies) which facilitate sharing, reuse, and discovery. Many

domains have started adapting semantic web technologies in their fields. In this research we have

tried to join this stream and adapt semantic web technology and techniques, seeking the same

advantages.

1-4 Research Motivation

In simulation modeling, involved knowledge components are coming from two different

worlds: the real world and the simulation implementation world (Tolk and Turnitsa 2007). The

real world is reflected in conceptual models, and the implementation venue of the conceptual

model is the simulation world. Ontological modeling of these components, along with the use of

semantic web technologies, helps in effective sharing, linking, and knowledge discovery from

these different knowledge sources.

Chapter 1- Introduction

7

 In this thesis throughout the different stages of simulation and modeling, ontological

modelling and semantic web technologies are utilized, with the goal of facilitating reuse and

interoperability of simulation models.

1-5 Thesis Objectives and Anticipated Contributions

The objective of the research in this thesis is to facilitate interoperability and reusability

of involved simulation modeling components through the entire life cycle of simulation models,

from conceptual modeling to simulation development and the simulation model use phase. This

is to be investigated for the case study of an industrial construction simulation model. We expect

to achieve the following contributions:

1- To facilitate reusability at the conceptual level, the domain knowledge of industrial

construction is formalized and structured through Industrial Construction (In-Con)

ontology. It also demonstrates the use of ontological mapping tools and techniques to

enable interoperability and the reuse of captured knowledge.

2- To facilitate reuse at the development phase for distributed simulation modelling of

construction processes, an element-based approach is pursued. The simulation elements’

properties are characterized based on simulation-process interaction ontology.

3- To maintain the reuse of the simulation model after development, the research introduces

a semantic representation, sharing, and discovery of construction simulation models.

1-6 Research Methodology

In order to accomplish the proposed research objectives, the following approach will be

pursued:

Chapter 1- Introduction

8

1- The industrial construction processes will be understood from the perspective of domain

experts and by performing different construction and simulation projects.

2- Industrial construction processes will be analysed and modeled within large-scale

simulation models.

3- The literature on modeling reuse, interoperability and composability will be studied, and

ontologies and the semantic web will be exploited to facilitate simulation modelling

reuse.

4- Semantic web techniques and technologies will be applied throughout the different stages

of simulation modeling development:

a. Capture and formalize the construction domain knowledge within ontologies,

following the process modeling approach through concepts’ hierarchies and

relationships between them expressed in semantic web languages.

b. Ontologically model all the simulation components and link them through

mapping techniques in order to make it easier to reuse knowledge and identify an

element-based approach for developing simulation models.

c. Semantic representation of simulation models with the aim of easy discovery and

reuse of simulation model components are included through an environment

which supports storage and sharing of simulation models and knowledge

extraction and discovery.

1-7 Thesis Organization

In Chapter 2, the industrial construction processes and project management challenges

are explained, and different simulation models targeting this area are presented. Chapter 3 of the

Chapter 1- Introduction

9

thesis presents capturing and formalizing the construction domain knowledge within ontologies.

Through interoperability of ontological components, the knowledge residing in them is carried

forward to simulation modeling application. Chapter 4 tackles reusability challenges of the

construction distributed simulation modeling environment, using ontolgies for creating a more

collaborative environment between different involved groups. Chapter 5 introduces a prototype

of modelling repositories which facilitates accessing and sharing of simulation models’ content

and knowledge discovery through reasoning and inference. A final discussion and

recommendations for future research are provided in Chapter 6 (Figure 1-5).

Figure 1-5: Thesis organization

1-8 References

 AbouRizk , S. and Mohamed, Y. 2000. "Simphony: an integrated environment for construction
simulation." WSC '00: Proceedings of the 32nd conference on Winter Simulation, Society for
Computer Simulation International, San Diego, CA, USA, 1907-1914.

Chang, D. Y. and Carr, R. I. 1987. “RESQUE A Resource Oriented Simulation System for
Multiple Resource Constrained Processes”, Proceedings of the PMI Seminar/Symposium,
Milwaukee, Wisconsin, 4-19.

Gruber, T. R. (1995). "Toward principles for the design of ontologies used for knowledge
sharing." International Journal of Human Computer Studies, 43(5-6), 907.

Hajjar, D., and AbouRizk, S. 1999. Simphony: An environment for building special purpose
construction simulation tools. 31th Winter Simulation Conference.

Chapter 1- Introduction

10

Hajjar, D., Mohamed, Y., and Abourizk, S. (2000). "Creating Special Purpose Simulation Tools
with Simphony." Construction Congress VI: Building Together for a Better Tomorrow in an
Increasingly Complex World, February 20, 2000 - February 22, American Society of Civil
Engineers, Orlando, FL, United states, 87-96.

Halpin, D. W. (1977). “CYCLONE: Method for Modeling of Job Site Processes”, Journal of the
Construction Division, ASCE, 103(3),489-499

Kasputis, S., Ng, H.C., 2000, “Composable simulations”, Proceedings of Winter Simulation
Conference

Kuhl, F., Weatherly, R. and Dahman., J. 1999. Creating computer simulation systems: An
introduction to the high level architecture, Englewood Cliffs, NJ: Prentice Hall.

AbouRizk, S., 2006. Collaborative Simulation Framework for Multi-user Support in
Construction. Discovery Grant Proposal, Edmonton, Alberta, CA.

Lacy, L.W., W. Randolph, B. Harris, S. Youngblood, J. Sheehan, R. Might and M. Metz.
2001. Developing a Consensus Perspective on Conceptual Models for Simulation Systems.
Proceedings of the 2001 Spring Simulation Interoperability Workshop.

Lluch J. F., and Halpin D.W. 1981. Analysis of Constmction Operations Using Microcomputers.
Journal of the Construction Division, ASCE, Vol. 108 No. C01:129-145.

Martinez, J. C., and Ioannou, P. G. (1994). "General purpose simulation with stroboscope."
Proceedings of the 1994 Winter Simulation Conference, IEEE, Piscataway, NJ, USA, Buena
Vista, FL, USA, 1159-1166.

Mohamed, Y., Borrego, D., Francisco,L., Al-Hussein,M., Abourizk,S. and Hermann, U. 2007.
Simulation-based scheduling of module assembly yards: Case study. Engineering, Construction
and Architectural Management 14 (3): 293-311.

Mojtahed, V., Tjörnhammar, E., Zdravkovic,J., Khan, A. “The Knowledge Use in DCMF,
Repository, Processes and Products” FOI-R-2606—SE, ISSN 1650-1942, 2008.

 Oloufa, A. A. (1993). "Modeling operational activities in object-oriented simulation."
J.Comput.Civ.Eng., 7(1), 94-106.

Radeski, A., Parr, S., Keith-Magee, R., and Wharington, J., 2002. Component-based
development extensions to HLA. Spring Simulation Interoperability Workshop.

Chapter 1- Introduction

11

Sawhney, A., and AbouRizk, S. M. (1995). "Application of hierarchical and modular simulation
to a bridge planning project." Part 1 (of 2), June 05, June 08, ASCE, Atlanta, GA, USA, 727-
734.

Shannon, R. E. 1975. “Systems Simulation: The Art and Science”, Englewood Cliffs, N.J.:
Prentice-Hall.

Tolk, A., and Turnitsa, C. D. (2007), “Conceptual modeling of information exchange
requirements based on ontological means” Proceeding of Winter Simulation Conference.

12

Chapter 2

Industrial Construction Domain and Related

Models

2-1 Introduction

Construction processes are intrinsically complex and associated with many uncertainty

and randomness (Halpin et al. 2003). One of the ever growing construction processes are

“Industrial construction” for constructing petrochemical and oil/gas production facilities (Barrie

and Paulson 1992). Industrial construction involves a complex production network system

consisting of multiple supply chains associated with many constraints and uncertainties which

complicate reliable project planning and estimation. Many attempts have been used simulation

modeling to portray and predict highly variable behaviours in the production network of

industrial construction and as an inexpensive means to test and evaluate different design and

control strategies (Mohamed et al. 2007). Both stand-alone simulation modeling and distributed

simulation modeling have been deployed to model industrial construction processes. However,

there are common drawbacks to models developed within stand-alone simulation environments;

each portion of the industrial construction process is modeled in isolation, so that the simulation

model does not reflect the effects of dependencies and variations along multiple supply chains.

The only effort to simulate the entire industrial construction process in a detailed manner was

Chapter 2- Industrial Construction Domain and Related Models

13

carried out by Wang et al., who faced many shortcomings using a stand-alone simulation

modeling tool. Shortfalls such as lack of re-use, composability and interoperability,

standardization, computing ability, and versatility in simulating large-scale industrial

construction are identified (Wang et al. 2005).

In other industries, such as transportation and manufacturing (Kelin et al. 1998) (Lee et

al. 2003), Distributed simulation modeling approach has been taken to address these challenges.

Within a distributed approach, a large and complicated Model is divided to smaller and more

manageable components which are inter-linked with each other in an interchangeable manner to

present the entire system. High Level Architecture (HLA) is an advanced standard, developed

by the United States Department of Defense (DoD) to facilitate the integration and

interoperabality of distributed simulation models (Kuhl et al. 1999).

The Construction Synthetic Environment (COSYE) which is an HLA-based distributed

simulation environment has been developed by AbouRizk et al. (2006). COSYE has been

applied to model various large-scale construction and industrial construction projects. In this

chapter two instances of distributed simulation models of industrial construction processes are

presented.

2-2 Industrial Construction

“Industrial construction” is a type of construction which is increasingly growing in

Alberta. Industrial construction projects are, essentially involved in constructing utilities and

industries such as petrochemical and oil/gas production facilities. These projects are more

complex than other construction projects for the following reasons (Hammad 2009):

1- They involve a large number of stakeholders including owners, project

management team, engineers, suppliers, fabricators, constructors, environmental and other

Chapter 2- Industrial Construction Domain and Related Models

14

governmental agencies, plant operators and maintainers, and the general public. These

stakeholders often have different and even conflicting interests.

2- The industrial plants are significantly more complex than other types of

construction projects. Industrial plants are typically complex steel mazes including features such

as processing units, tanks, vessels, pumps, heat exchangers, pipe-racks, connecting pipes, valves,

measurement instrumentations, electrical and instrumentation cables, transformers,

administration buildings, control rooms, and special purpose items. Industrial plants are exposed

to explosive and hazardous materials. Small mistakes in construction of any of these items can

lead to significant damage.

3- Because of their complicated managerial and technical nature, industrial

construction projects require substantial amounts of project management coordination.

The life cycle of an industrial construction project includes five main phases: pre-

engineering, engineering, procurement, construction and Commissioning & Start-up (C&SU).

The pre-engineering phase takes place at the initiation stage of the industrial project.

Engineering, procurement, and construction form the planning and execution life-cycle phases of

industrial projects; and the C&SU phase takes place during the closeout stage when delivering

the project to the owners (Figure 2-1). Industrial construction projects are broken down into

smaller projects performed by different contractors. The involved contractors are the

Engineering, Procurement, and Construction Management (EPCM) offices. Construction phase

which is the focus of this research involves fabrication shops and module assembly yards and

site installation.

Chapter 2- Industrial Construction Domain and Related Models

15

Planning Stage

Execution Stage

00, Pre-Engineering Phase

00-01, Feasibility Study

01, Engineering Phase

01-01, Front End Loading

01-02, Detailed Engineering and Design

01-03, Shop Drawings

01-04, Procurement Support

01-05, Construction Support

01-06, As Builts

02, Procurement Phase

02-01, Engineering Support

02-02, Requisition, Bidding and Awarding

02-03, construction Administration

02-04, Material Management

03, Construction Phase

03-01, Engineering Support

03-02, Fabrication

03-03, Assembly

03-04, Site Installation

04, Commissioning & Start-up Phase

04-01, Engineering Support

04-02, Pre Commissioning

04-03, Dry Commissioning

04-04, Wet Commissioning

2-2.1 Construction phase

Industrial construction has adapted modular construction which makes industrial

construction much different from other construction projects. According to Gupta et al. within

industrial construction modularization, “various materials, pre-fabricated components, and

process equipment are joined together at a location remote from the construction site for

subsequent installation as one unit.” Modular construction is a more efficient approach towards

improving a project’s quality, productivity and safety (Gupta et al. 1997).

Pipe spools and steel structures are fabricated through the shop fabrication process and

modules are assembled through assembly process at module yards. Afterwards they are shipped

to and installed in the final construction site. The material is obtained during the procurement

phase and the shop drawings in the engineering phase.

In structural steel fabrication shops, the structural skeletons of the modules are fabricated

through cutting, drilling, fitting, welding, inspection, painting, and fire-proofing processes. In

Figure 2-1: Industrial Construction Project Life cycle (adapted from Hammad, 2009)

Chapter 2- Industrial Construction Domain and Related Models

16

spool fabrication shops, spools are fabricated from pipes and fittings through cutting roll fitting

and welding, position fitting and welding, quality checking, stress relief, hydro testing,

inspection, and painting. The structural steel, pipe spools and other module components such as

mechanical equipment, electrical, and instrumentation cables are shipped to the module assembly

yard and assembled to form a complete module. Subsequently the modules shipped and installed

as a plant module component.

The following section describes in more detail the complexities and constraints in the

industrial construction processes, with a focus on spool fabrication, module assembly, and site

installation. After that, there is an explanation of some of the research that has been conducted on

modeling the industrial construction processes.

2-2.2 Industrial Construction: fabrication, assembly, and site installation

The process of industrial construction is managed by industrial construction contractors.

Their facilities, including fabrication shops and module assembly yards, are not as temporary as

construction site set-ups, and at the same time are not the same as manufacturing shops.

The main difference of industrial construction (Figure 2-2) with building and

infrastructure construction is the complication of industrial construction structures and

uncertainties within construction process. The industrial plants are complex steel structures

formed from the installation of steel structures, pipe spools, and module assemblies. Each of

these products has unique characteristics which make mass production impossible and

complicate the fabrication and module assembly processes.

Chapter 2- Industrial Construction Domain and Related Models

17

Figure 2-2: Typical Production process of Industrial Construction (adapted from Wang, 2006)

Typically, the industrial construction process starts with receiving Isometric (ISO)

drawings from the client. The ISO drawings are redrafted to create fabricable spool drawings

along with detailed information about the welds. The material including the pipes and the fittings

are supplied by the clients or procured by the contractors. The process of fabricating a spool

starts based on its related module assembly priority and the availability of material. After

fabrication, the spools are either shipped to the construction site or to the module yard. At the

module yard, the pipe spool and equipment are assembled on a steel structure as a module.

Finally these modules are shipped to the construction field for the final site installation. In the

following, each process is explained in more detail.

Drafting and Material Procurement:

The spool shop drawings are drafted based on the ISO drawings and other requirements

received from the clients. Along with spool drawings, the bill of material is generated from

Chapter 2- Industrial Construction Domain and Related Models

18

material takeoff. The shop drawings contain detailed information about the job and control

number, and information about the spool specifications such as needed material and welds and

other finishing requirements. The shop drawings are issued to the fabrication shop and are put

into process according to their priority.

Pipe spool materials including pipes and different types of fittings are either supplied or

procured by the clients. Each material has a barcode which makes it trackable through the

process.

Spool Fabrication:

Fabrication shops usually have multiple shops customized for specific materials within

specific range of size and length. Upon receiving the shop drawing, the shop foremen or

superintendents decide on the fabrication sequences and assign different stations which should

perform the cutting, fitting and welding processes on the spool components. This decision is

made in a heuristic manner and mainly based on experience.

Raw materials (e.g. pipes and fittings such as elbows, flanges, and tees) make up the

initial input of the spool fabrication process. These are assembled into spool components and,

finally, the final spool product. The major fabrication operations include cutting, roll-fitting, roll-

welding, position-fitting, and position-welding. First, the raw pipes go through the cutting

process to be cut to the required length according to the shop drawing. According to the

sequencing order, the cut pieces are stored in waiting areas and then along with the related fitting

they are handled to the fitting tables. The fitted joints are then welded together. All the spool

components go through this process until the components of one spool are fitted and welded. At

the final stage of spool composition, based on spool configuration and type of weld, it might

need position fitting and welding. Position fitting and welding are more expensive than roll

fitting and welding, which is why foremen try to minimize the number of position welds in their

sequences. After each round of fitting and welding on spool components, a quality control crew

Chapter 2- Industrial Construction Domain and Related Models

19

reviews the work. Depending on the clients’ specifications, the spool might need to go through

stress relief, hydro-testing, and painting.

Factors such as shop layout, dispatching rules, buffer location, and different production

flows and sequencing order can also affect the fabrication process.

Module Assembly

Fabricated spools are shipped to the module yard assembly. Along with other module

components such as mechanical equipment, and electrical and instrumentation cables, the spools

are assembled on a steel structure to form a module. Delays in spool delivery usually have a

significant effect on the module assembly processes.

The module assembly (e.g., structural steel erection, equipment installation, electrical

work, heat-tracing, insulation, fireproofing, and instrumentation) is done layer by layer. Space

limitation in module yards and multiple involved trades pose many limitations on planning

module assembly yard activities. That is why module yard scheduling is a multi-project resource-

constrained scheduling problem. After assembling the modules, they are shipped to the

construction site for final installation.

Site installation

Site installation refers to all the final installation activities including site preparation,

rough and final grading, pilling, foundations, module installations, electrical and instrumentation

cable wiring, etc. The most challenging process is the modules’ heavy lifting . These heavy lifts

are usually done using mobile cranes. The configuration and allocation of the cranes are

determined based on obstructions in the site, construction sequences, site congestion and many

other factors.

Chapter 2- Industrial Construction Domain and Related Models

20

2-3 Modeling Industrial Construction Processes

A number of modeling attempts have been made to investigate and address the challenges

of industrial construction. Among the modeling approaches used for this purpose are Special

Purpose Simulation (SPS) modeling, distributed simulation modeling, and knowledge discovery

methods.

The following are some models based on SPS modeling:

Song (2004) used a simulation modeling approach to estimate productivity of the

structural steel drafting and fabrication processes. He developed a virtual steel fabrication shop

to assign the products their unique characteristics. Each simulation entity contains product model

features including physical characteristics and also Work Breakdown Structure (WBS) features.

The WBS consists of five levels including division, load-list, drawing, piece, and component

specifications. The modeled fabrication processes consist of drawings detailing process, fitting,

welding, surface preparation, surface protection, and shipping.

Wang (2006) developed a model of pipe spool fabrication to facilitate implementing lean

concepts in industrial construction. He used SPS modeling to compare the traditional batch-and-

queue system with a flow production system in a pipe-spool fabrication shop. He also built a

large-scale simulation model of the entire industrial construction processes in a detailed manner.

However, he faced many limitations using traditional simulation modeling. The shortcomings

included lack of re-use, composability, standardization, computing ability, and versatility in

simulating large-scale industrial construction.

Mohamed et al. (2007) and Taghaddos et al. (2009) devised simulation-based scheduling

for the module assembly process that follows factors such as physical and logical constraints and

different heuristic rules.

Chapter 2- Industrial Construction Domain and Related Models

21

Hammad (2009) investigated improving resources management practices by forecasting

future project needs through analysing existing historical data from completed projects. He built

his framework based on a Knowledge Discovery in Data (KDD) approach with a focus on labour

resources.

As part of the research for this thesis, the author has been involved in couple of industrial

construction modeling projects. Both of these projects are the result of group work and are

modeled in the Construction Synthetic Environment (COSYE), which is based on High Level

Architecture (HLA), a standard that facilitates distributed simulation modeling. The HLA

supports building complex virtual environments representing the real world while allowing any

interaction of computer models, people, and instrumented real equipment.

The first modeling project is the first time that an interactive 3D visualization has been

attached to a large-scale simulation model of the entire industrial construction project.

The second modeling project is an interactive heavy lift model which models mobile

crane heavy lifts in construction sites. The model’s interactive environment makes it suitable for

both modeling and training purposes. Sections 2-3 and 2-4 describe these two projects. Section

2-5 explains what lessons were learned.

Chapter 2- Industrial Construction Domain and Related Models

22

2-4 Distributed Large-scale Industrial Construction Modeling
1

2-4.1 HLA based large-scale industrial construction modeling

The stated examples of industrial construction processes show that stand-alone process

interaction models are fully capable of modeling the complicated simulation features of

industrial construction.

However, there is a common drawback to these models; each portion of the industrial

construction process is modeled in isolation, so that the simulation model does not reflect the

effects of dependencies and variations along multiple supply chains. For instance, the start of a

module assembly process is dependent on the delivery of fabricated spools.

The only effort, in construction engineering and management, to simulate the entire

industrial construction process in a detailed manner was carried out by Wang et al., who faced

many limitations using traditional simulation modeling. Shortcomings included a lack of re-use,

composability, standardization, computing ability, and versatility in simulating large-scale

industrial construction (Wang 2006).

In other industries, different approaches have been taken to address these challenges. The

United States Department of Defence (DoD) has developed HLA to facilitate the integration of

distributed simulation models within an HLA environment. HLA allows a large scale model to

be decomposed into a number of smaller and more manageable components (i.e. federates),

while maintaining interoperability between them. In the last decade, HLA has been increasingly

1
 A version of Section 2-4 has been published under “Developing Complex Distributed

Simulation for Industrial Plant Construction using High Level Architecture” in Proceedings of

the 2010 Winter Simulation Conference, B. Johansson, S. Jain, J. Montoya-Torres, J. Hugan,

and E. Yücesan, eds

Chapter 2- Industrial Construction Domain and Related Models

23

deployed in a broad range of simulation application areas, including the transportation and the

manufacturing industries (Klein et al. 2010, Lee et al. 2003).

The University of Alberta has developed an HLA-based simulation environment in

construction that is referred to as a Construction Synthetic Environment (COSYE) (AbouRizk et

al. 2009). COSYE has already been applied to model various large-scale construction and

industrial construction projects.

2-4.2 Industrial construction simulation background

These construction simulation tools are effective when the level of abstraction is

manageable. However, the industrial construction process includes drafting, material

procurement and supply, shop fabrication, module assembly, and on-site installation. Using SPS,

it is possible to simulate either a simplified version of the entire process at a high level of

abstraction, or a detailed version of just a portion of the process such as fabrication or module

assembly. The problem with both of these approaches is that they fail to capture

comprehensively and exhaustively the entire industrial construction process. The first approach

(a high level of abstraction) does not include an acceptable level of detail reflecting the product

features and process interactions; the second approach (a detailed version of a portion of the

process) simulates a range of interactive, interdependent processes in isolation from each other.

Both of these approaches result in unanswered questions and vague areas in the planning and

management of construction projects. Moreover, it is unacceptable to claim accuracy of results

and refer management and planning decisions to predicted results based on an incomplete

simulation process.

Wang (2006) pioneered simulating the entire industrial construction process in detail, but

faced many limitations in using SPS. Among the shortcomings he identified are a lack of

knowledge re-use, composability, standardization, computing ability, and versatility in

Chapter 2- Industrial Construction Domain and Related Models

24

simulating large-scale industrial construction. These limitations are addressed by the HLA

system.

HLA was developed in the context of defence applications in the mid-1990s, and then

standardized by IEEE. HLA’s main purpose is to support component-based simulation so that the

development effort is distributed among multiple groups with specific professional interests.

HLA also allows end-users to customize their own combination of simulation components

(federates) from a repository based on their own requirements and interests. The component

models communicate through a Run Time Infrastructure (RTI) using standard HLA-compliant

protocols. HLA supports the interaction of simulation components and facilitates their reusability

and interoperability. The components are independently modeled and executed, and developers

can define their own set of object and interaction classes for data exchange with other simulation

components. This underlying common object model or “interchange document,” is known within

HLA terminology as the Federation Object Model (FOM). According to HLA rules, each

simulation model (federation) should have an HLA Federation Object Model constructed in

accordance with an Object Model Template (OMT) (IEEE 2000.Std 1516.2 2000). OMT

provides a common framework for HLA object model documentation with a standard format and

syntax. However, it is challenging, expensive, and time-consuming to develop a comprehensive

FOM from scratch which fully represents all the involved objects and interactions associated

with the simulation model

The Run-Time Infrastructure (RTI) is the federation’s backbone. It provides software

services such as synchronizations, communication, and data exchange between the federate to

support an HLA-compliant simulation. The COSYE provides a powerful RTI which conforms to

HLA specifications. Employing COSYE facilitates modeling of industrial construction and

overcoming the above-mentioned challenges of traditional construction simulations.

Chapter 2- Industrial Construction Domain and Related Models

25

2-4.3 Industrial construction federation

The current industrial construction federation includes fabrication shop, module yard, and

site manager federates. In addition, some domain-independent federates are designed as

supportive federates to serve one or several federates in the industrial construction federation.

These federates include the calendar, resource allocation, and visualization federates. Figure 2-3

lists the designed federates in the industrial construction federation.

Figure 2-3: Industrial Construction Federation

 The following sections briefly explain the industrial construction federation’s FOM and

some of the developed federates. The author has been responsible for technical coordination

between group members and finalizing the FOM and also developing the fabrication shop

federate.

2-4.4 Federation object model of the industrial construction federation

The Federation Object Model (FOM), which is developed based on the Object Model

Template (OMT), provides the interchange document between simulation components. However,

the OMT is not instructive as to how the commonly used and accepted object classes, attributes,

Chapter 2- Industrial Construction Domain and Related Models

26

and interactions might be identified, or whether or not they are semantically comprehensive or

representative of the knowledge domain. In other words, OMT does not offer a methodology that

promises reusable and flexible simulation object model components, limiting the capacity and

capabilities of HLA (Base Object Model Study Group 2006).

Therefore, the FOM should not only follow HLA rules and the Object Model Template

(OMT) but it should also be comprehensive so that it preserves logical connections, both

syntactically and semantically, among the simulation components. For the industrial construction

federation development, the high level construction ontology has been used as the FOM

reference library (explained more in Chapter 4). Figure 2-4-1 and 2-4-2 show different FOM

components for “space” and “module” object classes. These components include different

attributes having different properties regarding their data type and sharing and communication.

The COSYE research team has followed the same ontology throughout various

construction engineering developments in order to increase technical and syntactical

interoperability. Each of these concepts is elaborated for specific federations.

Chapter 2- Industrial Construction Domain and Related Models

27

Figure 2-4-1: Industrial Construction Federation Object Model (FOM)

Chapter 2- Industrial Construction Domain and Related Models

28

Figure 2-4-2: Industrial Construction Federation Object Model (FOM)

2-4.5 Fabrication shop federate

The objective of this federate is to simulate the process of fabricating spools in the

fabrication shop. There are several stations in the spool fabrication shop, including cutting,

fitting, welding, Quality Control (QC) checking, stress relief, hydro testing, painting, and other

surface finishings. Figure 2-5 depicts the typical processes of a spool fabrication shop.

The fabrication shop federate reads the required information about the spools

specifications and different work satiations from the database. Then it simulates the fabrication

Chapter 2- Industrial Construction Domain and Related Models

29

of a spool going through various stations in the fabrication shop. Once all the spools are

fabricated in the shop, the fabrication shop sends a message to the module yard federate giving

the green light to start the assembly process in the module assembly yard.

Cutting

Fitting

Welding

Typical Material Flow Occasional Material Flow

QC Checking

Stress Relief

Hydro Test

Painting / Other Surface Finishing

Shipping to Module Yard or

Construction Field

NDE

NDE

Figure 2-5: Shop Fabrication Process

The spool fabrication federate was initially developed with many simplifying

assumptions. Then the model was evolved to depict the real-world fabrication processes. Chapter

4 describes details of the final spool fabrication federate.

2-4.6 Module assembly federate

The stand-alone simulation models, mentioned in section 2-2, were modified to comply

with HLA rules and are now the module yard federates. In the previous model, all the modules

Chapter 2- Industrial Construction Domain and Related Models

30

were generated at the beginning of the simulation model and scheduled at their Early Start (ES)

time. Now, in contrast, a module in the industrial construction federation is generated at the

fabrication shop federate once all the required spools are fabricated in the spool fabrication shop.

Then the fabrication shop federate updates the state of the module from “Fabrication Shop” to

“Module Yard.” Once this change is reflected to the module yard federate via the RTI, the

federate starts the assembly process at the earlier of either the Early Start (ES) time of the

module or the current time of the module assembly federate.

The most important enhancement in the module yard federate over the previous

simulation models is separating the optimization component as an independent federate, referred

to as the Resource Allocation (RA) federate. All the modules that are looking for space wait in a

queue and determine their utility function over different resource alternatives. This utility

function represents numerous affecting factors in the space allocation problem, including the

modules’ total float, the amount of blocking in a bay because another module in a bay was

delivered late, and the amount of waste space (i.e., not enough to place a module) in a bay

(Taghaddos et al. 2010). Once the RA federate assigns the available resources to the bidding

entity by maximizing the overall utility function (i.e., social welfare), it sends some interactions

to the module yard federate to declare the winning modules. After receiving an interaction from

the RA federate, the modules in the bays schedule an event to capture space. After capturing the

bay, a number of activities (i.e., structural steel, piping, electrical, tracing, insulation) must take

place before a module can be shipped to the site.

2-4.7 Site construction federate

The site construction federate is another main simulation federate designed to simulate

crane operations and modular construction. Once a module is assembled in the module assembly

yard, it is shipped to the construction site by a transporter. Then it has to be lifted to its

predetermined position, once a proper mobile crane in an accessible location with suitable

Chapter 2- Industrial Construction Domain and Related Models

31

configuration and rigging is available and the predecessor modules (e.g., the bottom modules)

are placed in advance. There are also several other constraints in this problem, elaborated in

Taghaddos et al. (2010). The simulation model reads the objects, cranes, locations, pick points,

crane options, and other general information from the database. The information flow of this

federate is described in Figure 2-6. The simulation model considers the cranes, locations and

pick-point as the main resources.

Figure 2-6: Typical site manager process

As in the module yard federate, the simulation model of the site construction federate is

developed based on the standalone simulation model of the site construction. This federate also

takes advantage of the RA federate to allocate the resources optimally to the modules. The bid

price for each module is calculated by approximating the real cost incurred in the construction,

Chapter 2- Industrial Construction Domain and Related Models

32

which is the summation of the actual lifting cost, delay cost and the idle cost of the crane

(Taghaddos et al. 2010).

The other feature of this federate is its connection with the module yard federate. The

arrival time of the modules to the yard depends on the work load and capacity of the assembly

yard. Moreover, the schedule in the yard should be adjusted based on the lifting schedule in the

yard. For example, if a module is delivered to the site and then there is no crane to lift the

module, it has to be shipped again to storage, incurring extra cost for transporting, loading,

unloading and storing. Therefore, it would save on costs if the module was sitting in the yard and

the effort in the yard was put towards another module more urgently needed on the construction

site.

2-4.8 Calendar federate

The main role of this generic federate is to take into consideration national holidays and

long weekends, as well as the number of working hours and overtime hours during the project.

This federate provides a form, shown in Figure 2-7, to input the working hours and overtime

hours during the week. This form also enables the simulator to determine the holidays (e.g., long

weekends) during the project. The calendar federate synchronizes federate time with calendar

time. Thus, all federates that are interested in advancing time according to the calendar can

register for this federate’s updates.

Figure 2-7: Calendar federate

Chapter 2- Industrial Construction Domain and Related Models

33

2-4.9 Resource allocation federate

This federate is designed to act as an auctioneer to allocate resources among the bidding

agents. In other words, this federate is supposed to solve the Winner Determination Problem

(WDP) in the combinatorial optimization. Currently this federate can allocate two types of

resources (crane and location) to a number of bidding agents based on a greedy algorithm or

ascending-auction algorithm. This federate can easily be expanded to allocate n type of resources

to several agents using a combinatorial optimization. Figure 2-8 shows the schematic view of

communication between the RA federate and other simulation federates (e.g., module yard

federate) in the industrial federation. Initially, this federate operated through a database, but

currently it works through interaction. This federate currently works with the module yard

federate as well as the site construction federate.

The RA federate is called from the module yard federate on a regular basis to maximize

the bidding agents’ social welfare. Moreover, the module yard federate inherits from the

Resource Allocation Base (RAB) federate to automate its communication with the RA federate.

Figure 2-7 shows results in the RA federate for one of the site construction auctions.

Figure 2-8: Communication between RA and simulation federates

Chapter 2- Industrial Construction Domain and Related Models

34

2-4.10 Visualization federate

The visualization federate helps to visualize the assembly process in the module yard as

well as in the site interactively, while the module yard and site construction federates are

running. This federate provides the different parties a common understanding of the field

processes and operations. This federate is developed using Blender, an open source environment

that can be integrated with the .NET framework. The Blender gaming engine updates a module

location after receiving the respective message from the site construction simulation. The Site

Viewer federate then sends reflected attribute values to the visualization model, which

automatically updates the site during run time, putting each module in its predefined location.

This federate has been recently replaced by a 3D visualization federate, which is under

development (Figure 2-9).

2-4.11 Summary of industrial construction project

Within the COSYE environment, large-scale industrial construction was decomposed into

several federates developed by different individuals based on their interest and expertise.

Figure 2-9: 3D visualization of site installation

Chapter 2- Industrial Construction Domain and Related Models

35

Decomposition saves development time and effort and helps the developer to focus on a portion

of the process, while the interaction with other industrial construction federates ensures

comprehensive simulation of the entire industrial construction. Decomposition also makes it

easier to reuse other simulation components: supportive federates such as calendar can be built

once and reused with other federations interested in the same functionality. Also, because

decomposition happens both on a development and execution level, the execution of simulation

components on different engines provides sufficient computing capacity to execute the entire

federation.

This decomposition also allows independence of the federates. Each of the industrial

construction federates, according to their needs, could use different simulation world views with

different time scales. In industrial construction, mostly the process-interaction discrete event

simulation world view provided by Simphony.NET services was used; however, for resource

allocation, the federate agent-based simulation was employed. With regard to the time scale, in

the shop fabrication process, the task duration might be on the order of seconds; however, in

other federates larger time scales have been used. As may be imagined, this eases development

considerably.

2-5 Heavy-lift Interactive Federation
2

In construction, heavy lifting is widely used for module installation or replacement, or

installing other pieces of equipment. For this purpose, mobile cranes are commonly utilized in

North America and they become critical resources for construction sites. In addition, mobile

cranes locate at different places with different configurations for servicing different construction

2 Section 2-5 has been submitted for the course project “Advanced Topics in Construction

Engineering and Management: Advanced Simulation” Spring term 2010. Instructuor: Dr. Yasser

Mohamed. Students:Jangmi Hong, ManaMoghadam, Chunxia Li, Fayyad Sabha, Ronald

Ekyalimpa, Carlos V. Gonzalez. Teaching Assistants: Di Hu, Farzaneh Saba.

Chapter 2- Industrial Construction Domain and Related Models

36

sequences while considering other factors such as site obstructions and congestion. By

interviewing several lift experts, Varghese et al. (1997) identified lift criteria for lift planning:

availability of the crane, access to site, access to lift area, crane location, lift path clearances and

safety factors, ground support during lift, and removal from lift area. These criteria can be used

for evaluating the lift’s feasibility. These feasibilities are influenced by other factors such as

crane type, crane configuration, site layout, and construction sequence or schedule.

The heavy lift interactive federation was originally developed as a graduate level course

(Advanced Topics in Construction Engineering and Management: Advanced Simulation) project.

The HLA implementation described here was mainly a training exercise for graduate students

learning about distributed simulation and HLA for the first time. The main objective was to

define the problem in a way that magnifies the most important capabilities of a distributed

simulation approach. Students were divided into five groups and assigned the development of

one federate in the federation. The author was one of the teaching assistants and involved in

developing one of the federates (Player federate). The gaming and interactive aspects of the

federation provided a medium for the student to learn and explore the capabilities of the

distributed simulation framework. The development of the federation was completed after

several cycles of developments in the class.

2-5.1 Federation description

The project was proposed to simulate the process of crane selection and crane operation

for lifting and placing modules at industrial construction sites. The project considers factors such

as crane availability and suitability, and crane operating time and related costs, as well as module

storage consideration. Also, the project supports decision-making for the user by providing

certain options with detailed information. The user can place lift orders based on the information.

Chapter 2- Industrial Construction Domain and Related Models

37

According to the project scope’s function requirement, the whole federation is made up

of four federates:, lift scenario generation federate, player federate, operation simulation federate

and an auxiliary federate, which is the visualization federate (Figure 2-10).

This federation’s purpose is to serve as a training tool at the university and industry in the

subject area of designing and analyzing mobile crane operations in the construction domain. The

scenario federate, player federate and operations federate were the core federates for this project.

The tool was designed such that it has one administrator and a number of players running it

simultaneously on different computers (as a distributed simulation). Typically, the administrator

would control the scenario federate and the operations federate while the players/trainees would

use/interact with the player federate. The administrator would generate input (crane & module

instances and lift options) for the federation. This would serve as input to the player(s). The

player(s) would select which modules would be lifted by which cranes and which would be sent

to storage. Player selections would be sent to the operations federate as lift orders that would

then be processed by the operations federate. The player would then get to view the

results/implications of the decisions he/she made in terms of cost and time.

Operation federate is a discrete event simulation federate for simulating the lifting

operations and estimating their time and cost. This federate will subscribe lift orders from the

Figure 2-10: Heavy lift federation

Chapter 2- Industrial Construction Domain and Related Models

38

player federate and take it as the main entity in the whole federate. It will make the crane and

crane location in the lift object resources. The crane resource availability depends on the lift

scenario federate. This federate keeps track of crane’s current location and configuration and will

change (configuring, moving, rigging, and lifting) these based on the requirements of the coming

orders. It will also publish information regarding the crane resource’s queue length and current

locations, as well as the finished orders and the time they were finished. In addition, it will

update information about the project’s overall cost and time.

The lift scenario federate (2-11) is a scaled time-stepped federate. It is responsible for

generating modules and lift options for modules for this time step and also the ones that are for

the next period. While considering the difficulty parameter, the actual arrival at a certain period

may be varied from previously forecasted ones. The crane availability or available period is also

controlled in this federate and can be modified based on a difficulty factor.

Figure 2-11: Lift Scenario Federate

Chapter 2- Industrial Construction Domain and Related Models

39

The player federate is also a scaled time-stepped federate. It is the main user interface for

interacting with the federation. It will provide a current lift of modules arriving; a modules lift

for the next period, a list of modules in storage, and locations of current cranes on site and their

last on-site available date. The user can issue lift orders based on this information. Also, the

player federate will subscribe outcomes from other federates, such as time spent by different

cranes on configuring, moving, and lifting; the queue length of different cranes; and the total cost

and emissions to date for the lifting operations.

The player federate provides the main user interface for interacting with the federation. It

displays a current list of modules arriving and waiting for a decision. A player can place lift

orders by selecting a crane and its next location. He/she can also put a certain module in storage.

The modules for the next decision period and a 2D map displaying the cranes’ current location

and state are shown as references. The total cost and working time of each crane are presented at

the end of each period. Figure 2-12 shows the interaction between the player federate and the

other federates.

Figure 2-12: Player Federate main tab

Chapter 2- Industrial Construction Domain and Related Models

40

The visualization federate is a time-stepped federate. It is for visualizing the crane and

module movement. This federate has its own time advancement mechanism. But it needs to

reflect the crane information and module information from other federates. The crane ID will be

subscribed from the lift scenario federate. Its Current Location coordination will be subscribed

from the operation federate. Figure 2-13 shows the logic behind the federate.

Figure 2-13: Flowchart of Visualization Federate Logic

In this part, several snapshots of the visualization federate are presented. Figure 2-15 is a

snapshot of the site layout before the simulation, and Figure 2-16 is a snapshot of the real time

visualization of simulation results.

Chapter 2- Industrial Construction Domain and Related Models

41

Figure 2-14: Site layout and marker distribution

Figure 2-15: Snapshot of real time simulation – visualization result

2-6 Lessons Learned

Comparison between SPS and HLA-based distributed modeling:

Chapter 2- Industrial Construction Domain and Related Models

42

• SPS easiness vs. complexity of distributed modeling: SPS modeling tools such as

Simphony are much easier to learn compared to HLA-based distributed modeling. SPS

tools usually come with a library of reusable components which facilitates model

development. That is why, for quick modeling of the construction process, SPS is the

optimum means and the reason it has been easier to persuade industry to use SPS tools.

• Monolithic vs. distributed: SPS tools keep all information within one model; however, in

distributed modeling, decomposed models and information can be located from

geographic disperse locations.

• Static vs. dynamic: In SPS tools, once the simulation starts neither the model nor the

input information can be changed. But in distributed modeling during runtime,

information can be dynamically received by the federates. This feature makes distributed

models interactive; for instance, in the industrial construction federation, the user can

dynamically change the construction site input data using the visualization federate. The

federation is able to re-simulate the process based on the changed input information.

• Single application vs. multi-application: The SPS tools’ function is exclusively process

modeling. However, in distributed modeling it can be used for a wide range of varying

applications. One of the most important, through the interactive nature of distributed

simulation, is for training purposes. The heavy lift interactive federation, which was

discussed earlier, can be used for training purposes.

In addition to many advantages, distributed simulation modeling has its own special challenges.

The most important is coordination between all the involved groups. Here are some approaches

that helped us to lessen the challenge while developing the “industrial construction” and “heavy

lift” federations.

• Defining a clear project scope:

o Modeling problem and objectives

o Project scope should be finalized with members from all groups present..

Chapter 2- Industrial Construction Domain and Related Models

43

• Uniformity and Consistency in Model Representation

o Such as consensus on the most important one-time scale of all the scales being

used.

• Proper decomposition of model

• Developing a comprehensive FOM

With proper decomposition, each involved party knows their requirements (e.g., subscribing

object classes, attributes, interactions, parameters) from other federates and also deliverables to

other federates’ requirements (e.g. publishing object classes, attributes, interactions, parameters).

The changes in FOM should be minimized by developing a comprehensive FOM; however

sometimes changes are inevitable.

All the parties should be updated on any changes. We kept track of these by setting up an online

spreadsheet (Table 2-1) expressing the interest of all federates and updating all the group

members via email in case of any changes and special requests from other federates.

• Independent development through testing federates:

Through the process of federates’ construction, the developers should be able to independently

follow the development process. This is possible by using temporary test federates, which play

the role of the other federates’ interface. These test federates provide the FOM components to

which the developing federate has subscribed in accordance with the agreed time management.

Also, there are federates which play the role of recipient federates, receiving the message that the

developing federate is publishing.

Within this approach all the participants can go through the development process without being

held back by waiting for other groups’ development. Through different stages of development,

testing sessions were set up. Through testing sessions, groups would give a report on their

progress and the challenges they were facing. Also, the entire federation components were linked

together so that the federation performance could be tested.

Chapter 2- Industrial Construction Domain and Related Models

44

This way of approaching distributed simulation modeling in the COSYE environment, facilitates

more efficient development process.

Table 2-1: FOM shared spreadsheet

Chapter 2- Industrial Construction Domain and Related Models

45

For instance, developing a comprehensive FOM from scratch, which fully represents all the

involved objects and interactions associated with a simulation model is challenging, expensive,

and time-consuming. That is why, in Chapter 4, an alternative method is suggested to extract

FOMs from ontologies that represent formalized construction domain knowledge. Industrial

construction domain knowledge is captured in InCon ontology and the FOM is extracted from

the ontology through semantic query languages.

Moreover, in the industrial construction federation and heavy lift interactive federation,

explained in this chapter, the COSYE federates were developed by writing C# or Visual Basic

code within the Visual Studio environment. This makes the development process in COSYE

difficult when compared to a visual modeling environment such as Simphony. In Chapter 4,

component-based simulation modeling in the COSYE environment is pursued. The idea is to

create a set of modeling elements that provide access to the various HLA services and simulation

modeling services. This approach facilitates developing simulation modeling through reusing

modeling elements. Chapter 4 focuses on characteristics of these modelling elements and

suggests an ontology-driven approach towards developing them.

2-7 References

AbouRizk, S. 2009. “Framework for Highly Integrated, Interoperable Construction Simulation

Environment” , Paper presented at the International Conferonce on Construction

Engineering and Management/Project Management (ICCEM.ICCPM), Juju, Korea.

Gupta, V. K., Chen, J. G., and Murtaza, M. B. (1997). "A learning vector quantization neural

network model for the classification of industrial construction projects." Omega, 25(6), 715-

27.Schimmoller 1998

Hammad, A. 2009 “An Integrated Framework for Managing Labour Resources Data in Industrial

Construction Projects: A Knowledge Discovery in Data (KDD) Approach”, University of

Alberta, Edmonton, Canada

Chapter 2- Industrial Construction Domain and Related Models

46

IEEE 2000. Std 1516.2. 2000. Standard for modeling and simulation (M&S) high level

architecture(HLA)- object model template (OMT) specification.

Klein, Ulrich, Thomas Schulze, and Steffen Strassburger. 1998. Traffic simulation based on the

high level architecture. Proceedings of the 30th conference on Winter simulation: 1095 - 1104

Lee, Jong-Keun, Min-Woo Lee, and Sung-Do Chi. 2003. DEVS/HLA-based modeling and

simulation for intelligent transportation systems. Simulation 79 (8) (August 01): 423-39.

Mohamed, Yasser, Davila Borrego, Luis Francisco, Mohamed Al-Hussein, Simaan Abourizk,

and Ulrich Hermann. 2007. Simulation-based scheduling of module assembly yards: Case

study. Engineering, Construction and Architectural Management 14 (3): 293-311.

SISO. (2006). “BOM template specification”. SISO-STD-003-2006.

Song, L., Wang, P., and AbouRizk, S. (2006). “A virtual shop modeling system for industrial

fabrication shops.” Simulation Modeling Practice and Theory 14(5), 649-662.

Taghaddos, H., AbouRizk, S. M., Mohamed, Y., and Hermann, U. (2010). "Simulation-based

multiple heavy lift planning in industrial construction." Construction Research Congress

2010: Innovation for Reshaping Construction Practice - Proceedings of the 2010

Construction Research Congress, 349-358, 2010

Taghaddos, H., S. AbouRizk, Y. Mohamed, and R. Hermann. 2009. “Integrated simulation-based

scheduling for module assembly yard”. Proceeding of the 2009 Construction Research

Congress, 1270-1279

Varghese, K., Dharwadkar, P., Wolfhope, J., and O’Connor, J. T. ~1997, “A heavy lift planning

system for crane lifts.” Microcomput. Civ.Eng., 12, 31–42.

Wang, P., Mohamed, Y., and AbouRizk, S. M. (2005). "Production-based large scale simulation

modeling for construction projects", 33rd CSCE Annual Conference 2005, Canadian Society

for Civil Engineering, Montreal, H3H 2R9, Canada, Toronto, ON, Canada, CT-118-1-CT-

118-11.

47

Chapter 3

Ontological Conceptual Modeling of Industrial

Construction Processes to Enhance

Interoperability and Reuse

3-1 Introduction

In response to the increasing complexity of construction systems, the development of

sophisticated methods and tools for the modeling and analysis of these systems is needed.

Simulation has been a formal topic in construction engineering research for almost three decades,

but still has not been embraced as a practical tool in the industry. One of the primary reasons for

this lack of research transfer is that building simulation models needs significant amount of

knowledge and data acquisition. Moreover the process of building a simulation model is very

time consuming and costly which is a drawback for industry to use simulation as a useful tool.

The reuse of simulation components is a key feature for cost-effective development.

Although many construction simulation approaches currently allow for the reuse of previously

developed components (Hajjar et al. 2000; Oloufa 1993) and provide libraries of such

Chapter 3- Ontological Conceptual Modeling of Industrial Construction Processes to Enhance Interoperability and

Reuse

48

components, still reuse of earlier developments is not a common practice because of lack of

effective traceability and communication in constructing simulation models.

Documenting and formal conceptual modeling in structural manner enhances the quality

and efficiency of simulation development and also it is a potential way to capture and share the

knowledge within simulation models.

3-2 Conceptual modeling

In Modeling and Simulation (M&S), modeling focuses on purposeful abstraction of the

real world model (Zeigler 1976) and simulation relies on implementing models (Tolk 2007). The

modeling part in the M&S community is usually known as conceptual modeling. According to

Robinson (2006), a conceptual model is “a non-software specific description of a simulation

model that is to be developed, describing the objectives, inputs, outputs, content, assumptions

and simplifications of the model”. Figure 3-1 depicts the relationship between the real world,

conceptual model and simulation model.

Conceptual modeling is known as the most important aspect of a simulation project;

however, it is the least understood part and in most simulation developments, it is missing. There

have been attempts to provide a guideline for developing a conceptual model. Shannon (1975)

describes four steps as follows:

1- Specification of the model’s purpose.

2- Specification of the model’s components.

3- Specification of the parameters and variables associated with the components.

4- Specification of the relationships between the components, parameters, and variables.

Chapter 3- Ontological Conceptual Modeling of Industrial Construction Processes to Enhance Interoperability and

Reuse

49

Figure 3-1: Simulation project life-cycle (adapted from Kotiadis and Robinson, 2008)

The presentation and documentation of conceptual models is another area of developing

conceptual models that has yet to be investigated; in many cases, there is no documentation at all

other than the use of diagramming techniques such as process flow diagrams and event graphs

(Robinson 2004). But documenting and formalizing conceptual models in a structural manner

not only enhances the quality and efficiency of simulation development, it also enhances the

potential reuse of the captured knowledge within conceptual models.

In the military domain, conceptual modeling and its documentation has been investigated

more than in any other domain. Military simulations often involve large-scale models which lead

to more interest in the structure documentation of conceptual models and their reuse (Robinson

2006). The Base Object Model (BOM) is a Simulation Interoperability Standards Organization

(SISO) standard conceptual modeling documentation. Thus, BOM portrays the necessary

information about the simulation model, the simulation model’s components including events

and entities and the behavior of simulation components such as a pattern of interplay and the

entities’ state. This information is leveraged into BOM meta-data (Gustavson and Chase 2007).

In the following BOM, the components are described; its meta-data represents the model

identification, conceptual model definition, model mapping, object model interface and

interaction classes (Figure 3-2).

Chapter 3- Ontological Conceptual Modeling of Industrial Construction Processes to Enhance Interoperability and

Reuse

50

Figure 3-2: The BOM structure (adapted from BOM standard, 2006)

- Model Identification: This part of the BOM contains the general information about the

BOM.

- Conceptual Model Definition: The BOM conceptual model definition provides the

pattern of interplay, the state of an entity, the entity types, and event types.

- Model Mapping: In model mapping, existing entities and event relationships are

presented in the abstract, so that the conceptual model has the potential to be mapped to the

actual simulation model.

- Object Modeling Definition: The object model definition represents the interface of the

conceptual model.

Some studies have been conducted with the aim of carrying BOMs forward as simulation

components through the development process and composing models from BOMs (Moradi

2007).

3-2.1 Conceptual modeling and model reusability

The first step towards reusing other people’s models, is understanding their development.

However, in the current practice the conceptual model usually just exists in the developer’s mind

Chapter 3- Ontological Conceptual Modeling of Industrial Construction Processes to Enhance Interoperability and

Reuse

51

and even if captured it is in loose forms which do not reflect enough of the model. Lack of

proper communication and traceability of the models’ content leads to less reuse of simulation

models.

A conceptual model is similar to a communication bridge, connecting real world to

computer model. Proper documentation of conceptual models helps with understanding the

model and increases the likelihood of reusing the simulation model; however there is not any

common documentation method in the simulation community.

3-2.2 Conceptual modeling and modeling composability

Interoperability is traditionally referred to technical interoperability; however, according

to Tolk (2007), the term interoperability for systems means the ability to communicate

effectively both syntactically and semantically. The following is a more detailed definition for

these terms:

- Interoperability addresses software and implementation details of systems interoperation

such as data exchange. More specifically, in M&S it deals with simulation implementation and

execution.

- Composability, on the other hand, deals with the alignment of concepts on the modeling

level. Composability is concerned with the alignment of conceptual models, which are the

underlying abstractions of reality in simulation models.

Tolk and Muguira (2003) suggest a hierarchy for different levels of models’

interoperability in the M&S community (Figure 3-3).

Technical interoperability: communication technology infrastructure, which is concerned with

exchanging bits and bytes.

Chapter 3- Ontological Conceptual Modeling of Industrial Construction Processes to Enhance Interoperability and

Reuse

52

Syntactic interoperability: using common data structures for exchanging data and using common

protocols.

Semantic interoperability: using common references in order to understand the meaning of data

and their association between concepts and the real world.

Pragmatic interoperability: understanding the intent of using data when systems, simulations, or

applications are involved.

Dynamic interoperability: understanding the effects of exchanging data in sending and receiving

services, which happens through using common execution models.

Conceptual interoperability is achieved when all involved groups understand, with no ambiguity,

the capabilities and constraints of simulation models.

In the following ontologies are introduced as the proper means for documenting

conceptual models.

Figure 3-3: Levels of conceptual interoperability model (adapted from Tolk and Muguira, 2003)

Chapter 3- Ontological Conceptual Modeling of Industrial Construction Processes to Enhance Interoperability and

Reuse

53

3-3 Ontologies and Conceptual Modeling

The term ontology means an “explicit specification of a conceptualization” (Gruber

1995). A conceptualization provides an abstract view of the real world. Simulation models are

knowledge-based models, explicitly or implicitly committed to conceptualization. Following the

definition of ontology, we believe that ontologies are the best means for documenting the

conceptual models and dealing with reusability and interoperability challenges of simulation

models.

Within ontologies, what is captured is a formalized understanding of the domain

conceptualization which declares the domain’s specifications and the assumptions made towards

developing the simulation models. Therefore, the ontology of a domain facilitates analysis of

domain knowledge and improves the reuse and interoperability of systems that are built based on

it (Uschold and Gruninger 1996).

The spectrum of ontological semantics goes from weak semantics to strong. The

semantics are improved by increasing the meta-data to capture more information. Figure 3-4

describes different categories of semantic representation from weak to strong semantics (Obstr

2006). Each category can be explained as follows:

Data dictionaries: This category has the weakest semantics and contains the “terms” used in the

domain.

Thesaurus and Taxonomies: The thesaurus category evolves as equivalence, homographic,

hierarchical, and associative relationships among terms are indentified. Taxonomies contain a

higher level of semantics because of having a structured classification.

Data models: Compared to lower level categories, this category is enriched in pragmatics and

semantics but still falls under semi-formal or semi-informal ontologies.

Chapter 3- Ontological Conceptual Modeling of Industrial Construction Processes to Enhance Interoperability and

Reuse

54

Ontologies: Ontologies are not just hierarchical structures containing all the entities. In addition

to entities, ontologies present the relationships between the entities and the rules governing the

domain knowledge.

Logical models: Logical models are semantically the strongest in this category. Logical

expressions are explicitly specified through axiomatic approaches.

Data Dictionaries

S
e
m
a
n
ti
c
s

Taxonomies and Thesaurus

Data Models

Ontologies

Logical Models

Degree of Complexity

Terms

Relational models, XML

DB Schema XML Schema

Data models, UML

Formal

Taxonomies

Conceptual models

Descriptive Logic

Semantic mapping

Figure 3-4: Ontological spectrum (adapted from Obstr, 2006)

3-4 Methodologies for Ontology Development

Ontology includes the taxonomy of concepts and their properties and an indication of

how concepts are inter-related, which collectively impose a structure on the domain. The shared

understanding of the domain through ontologies facilitates the domain’s accurate and effective

communication, which leads to benefits such as models’ composability and reuse (Uschold 98).

There is no single method for developing domain ontologies. However, still there are

various guidelines for ontology design and development. As an example, Uschold and Gruninger

(1996) present a five-phase methodology as follows:

Chapter 3- Ontological Conceptual Modeling of Industrial Construction Processes to Enhance Interoperability and

Reuse

55

1- Identify purpose and scope: Identifying the scope, purpose, intended use of ontology, and

the targeted user.

2- Building the ontology:

a. Ontology capture: Identifying the most important concepts and relationships in

the domain of interest. Identifying the terms to refer to the concepts and

relationships.

b. Coding the ontology: Explicitly representing the knowledge capture in the

previous phase using ontology representation languages such as Web Ontology

Language (OWL) or Resource Description Framework (RDF).

c. Integrating existing ontologies: Using existing ontologies if appropriate.

3- Evaluating the Ontology: Evaluating the ontology with respect to defined requirements.

The requirements can be captured through competency questions.

4- Documentation

5- Guidelines for each phase

Uschold and Gruninger’s methodology is followed in this research for developing an

Industrial Construction Ontology (InCon-Onto).

3-5 Industrial Construction Ontology (InCon-Onto) Development

3-5.1 Purpose and scope of InCon-Onto

The purpose of InCon-Onto is to provide a proper formalization of the industrial

construction processes. This documentation is human understandable and also computer

interpretable. The industrial construction processes are structured based on process modeling

Chapter 3- Ontological Conceptual Modeling of Industrial Construction Processes to Enhance Interoperability and

Reuse

56

principals. So that the knowledge within them can be deployed in different process oriented

modeling application.

The industrial construction processes are modeled through the following specifications:

- The ontology presents the industrial construction domain through concepts and the

relationships amongst them.

- The set of classes arranged in hierarchal taxonomy represents the domain concepts.

- The concepts’ hierarchy represents the concepts starting from general concepts

decomposing into specialized concepts.

- The ontology represents the industrial construction processes and their characteristics.

- The ontology represents the related concepts around the industrial construction processes

along with the properties.

- The ontology represents relationships between the processes and other related concepts.

- In construction, the pattern of process is captured through process modeling.

3-5.2 Building the InCon-Onto

3-5.2.1 Ontology capture

The next sections explain our approach towards capturing the industrial construction

abstract picture. We start by introducing the 5Ws (who, what, where, why, when), which is a

very general abstraction method used in journalism and literature. We then move into process

modeling to abstract industrial construction process. In order to get familiar with the process of

classification and the decomposition of process, we probed some other existing ontologies in

similar domains such as construction and manufacturing.

Chapter 3- Ontological Conceptual Modeling of Industrial Construction Processes to Enhance Interoperability and

Reuse

57

3-5.2.2 Capturing InCon-Onto

Using models to structure the acquired knowledge from domain experts and other sources

reduces complexity, improves communication and enhances our understanding of the domain. A

very general and basic method for understanding a task is the 5Ws (wikipedia):

1- Who is accomplishing the task?

2- What task must be accomplished?

3- Where is the task performed?

4- When is the task done?

5- Why is the task done?

When it comes to construction processes, the 5Ws can be expressed within process

modeling concepts (Figure 3-5):

Figure 3-5: Process modeling correspondence to 5Ws

According to Kawalek (2004), process modeling refers to a collection of techniques used

to portray the behavior of systems. The industrial construction process expressed within process

modeling concepts can now become formalized within machine-readable ontology

representation.

Chapter 3- Ontological Conceptual Modeling of Industrial Construction Processes to Enhance Interoperability and

Reuse

58

3-5.2.3 Integrating existing ontologies

Many domains have started developing ontologies in their fields. The construction

research community has also joined the stream to convey advantages to the community.

Construction ontologies have been developed to allow domain users to share, in a structured

manner, a common understanding of the information in the construction domain. These

ontologies allow for the reuse of domain knowledge as “reference libraries”, which is extensible,

and its future growth is possible. Ontologies can be modified when necessary and used by

different applications. Very few projects have been undertaken to formalize the construction

domain within ontologies. The existing ontologies are more focused on building industry and

project management aspects of construction engineering. The following are instances of these

ontologies, which have mostly been developed in Dr. El- Diraby’s research group at the

University of Toronto:

- IC-PRO-Onto: an Infrastructure and Construction PROcess Ontology (El-Gohary and El-

Dibary 2010)

- BCTaxo: a semantic representation of the building-construction knowledge-supporting

ontology-based corporate memory system (El-Diraby and Zhang 2006).

- HiOnto: a distributed highway ontology (El-Diraby and Kashif 2005).

- OSPTaxo: an ontolgy for outside plant construction in telecommunication infrastructure

(El-Diraby and Briceno 2005).

- S2HOnto: provides ataxonomy for stakeholder management and sustainability in the

domain of urban highway construction (El-Diraby and Wang 2005).

All of these ontologies are built based on a fundamental process-modeling ontological

concept which is: actors are involved in the processes that are part of a project. Such processes

Chapter 3- Ontological Conceptual Modeling of Industrial Construction Processes to Enhance Interoperability and

Reuse

59

utilize resources according to a mechanism; however, they are constrained by constraints. (El-

Diraby et. al 2003)

Another domain which has much in common with industrial construction is

manufacturing. Both combine discrete processes updating the status of a product until it satisfies

required specifications. Exploring manufacturing ontologies such as Manufacturing Semantically

Ontology (MASON) (2006) shows again that the process modeling approach has been used to

develop a manufacturing ontology. For instance, MASON ontology follows Martin and Dacunto

(2003), who describe the manufacturing domain as the sum of “product, process and resource

concepts.”Table 3-1 shows the major concepts used in some construction and manufacturing

ontologies.

Table 3-1: Major concepts used in some construction and manufacturing ontologies

Construction Ontology Manufacturing Ontology Industrial Construction Ontology

IC-PRO-Onto (2010) MASON (2006) InCon-Onto (2011)

Project

Actor

Product

Process

Resource

Constraint

Mechanism

Attribute

Modality

Family

Entity

Operation

Resource

Process

Product

Resource

For InCon-onto, in order to keep the main structure as simple as possible, the main

industrial domain concepts have been chosen to be “process, resource and product”. (Figure 3-6)

In developing an Industrial Construction Ontology (InCon-Onto), the ontologies which were

named in table 3-1 have been studied and the concepts and relationships which seem to suit the

Chapter 3- Ontological Conceptual Modeling of Industrial Construction Processes to Enhance Interoperability and

Reuse

60

industrial construction domain have been adapted to InCon-Onto. As was mentioned, InCon-

Onto was developed based on process modeling concepts. In the concepts’ classification and

decomposition, the previously mentioned process modeling ontologies are followed.

Figure 3-6: InCon-Onto top level concepts and relationships

The main ontological model followed within industrial construction concepts of InCon-

Onto is the following: the processes utilize the resource to produce or update a product; the

process is performed by a human resource using an operational resource and taking place at a

geographic resource, the process takes a product as an input and after updating the product’s

status delivers it as its output and the output moves to next process. For example a fitting has

parts or spool assemblies as input, is performed by a fitter, requires a welding machine as a tool,

and takes place at a fitting station.

3-5.3 Industrial construction ontology coding

Ontologies can be encoded using a variety of semantic web languages. The most well-

known are RDF and OWL semantic web languages recommended by World Wide Web

Consortium (W3C) since 2004.

Chapter 3- Ontological Conceptual Modeling of Industrial Construction Processes to Enhance Interoperability and

Reuse

61

The evolution of semantic web languages started with the use of XML. XML goal, in

contrast to HTML, is to store and carry information. XML is a simple yet flexible markup

language which with the use of meaningful tags, it is able to convey more semantics than HTML

(W3C 2008).

Within Resource Description Framework (RDF) instead of fixing what data can be

captured, the description of data is enriched. RDF makes statements about the resources, in the

form of triples, indicating their properties or relationships. Triple expressions are composed of

subject-predicate-object. The subject is a resource which is in a relationship with another

resource (object) through the predicate. RDF collection is organized through RDF Schema,

which is a set of classes with certain properties which provide basic elements to describe

ontologies. But RDF Schema does not provide exact semantics for representing complex

constraints (W3C 2004).

The W3C has approved OWL as another standard language for encoding ontologies. It

incorporates and enhances its predecessors’ interoperability features (RDF, RDF-S, DAML,

DAML+OIL). Compared to RDF-S, OWL provides more vocabulary for describing classes (e.g.,

disjointness), properties, and relationships (e.g., symmetry, transitivity) (Figure 3-7) (W3C

2009).

OWL comes in three different expressiveness degrees: OWL Lite, which has

expressiveness similar to that of RDF-S; OWL DL, which is based on description logics which

are computationally complete and decidable; and OWL Full, which provides additional features

but does not guarantee finite computation (McGuinness and Harmelen 2003).

Chapter 3- Ontological Conceptual Modeling of Industrial Construction Processes to Enhance Interoperability and

Reuse

62

Figure 3-7: Semantic web language evolution

InCon-Onto is encoded in OWL DL and was developed using Protégé 2000

(protege.stanford.edu) and TopBraid Composer, which has its roots in Protégé OWL.

(Knublauch 2006). InCon-Onto has been formulated in OWL/RDF bundled with the Protégé

platform. The editor comes with different types (e.g. import, export, validation, visualization…)

of plug-ins (Storey et. al 2001).As figure 3-8 shows industrial domain ontology includes three

representation levels: underlying knowledge representation level, ontology concept level and the

instance level. The ontological knowledge level consist of object classes, data properties and

axioms. At the ontology concept level all the domain specific concepts, attributes and

relationships are defined. The concepts are divided to general process modeling concepts and

specific domain concepts. This allows all the mapping rules to be based on general process

modeling concepts while at the same time covering specific domain concepts. The concepts are

grouped in hierarchies to simplify understanding domain concepts and the relationships define

how the concepts become connected.

Chapter 3- Ontological Conceptual Modeling of Industrial Construction Processes to Enhance Interoperability and

Reuse

63

Figure 3-8: Different levels of Industrial Construction Ontology

The ontology structure consists of five major components as follows:

1- Classes represent domain concepts arranged in hierarchy

2- Instances or objects belong to classes

3- Properties describe domain attributes

4- Relationships are interrelationships between concepts

5- Axioms specify a term’s definition and the constraints on its interpretation.

Ontological Knowledge Representation

Object Classes

Object and data properties

Axioms

Ontological Concept Level

General Process Modeling

Processes, Products and Resources

Domain Specific Concepts

Instance Level

Chapter 3- Ontological Conceptual Modeling of Industrial Construction Processes to Enhance Interoperability and

Reuse

64

Figure 3-9 is a snapshot of InCon-Onto main classes modeled in Protégé using OWL editors.

(Appendix I contains RDF/XML source code)

Figure 3-9: InCon-Onto higher level hierarchy

Here is a description of the main concepts, along with figures of their hierarchies and

relationships for better understanding.

Processes occur within a time span. In InCon-Onto, the processes are divided into

construction processes with the focus on industrial construction and tunneling operations.

Chapter 3- Ontological Conceptual Modeling of Industrial Construction Processes to Enhance Interoperability and

Reuse

65

Included in InCon-Onto are the hierarchy of industrial construction processes, including shop

fabrication, module assembly and site construction, and all the processes involved in them.

Figure 3-10 has two parts: the first shows the main hierarchy and the second shows the extended

hierarchy. (An abstract of tunneling concepts presented in InCon-Onto is presented in appendix

I)

Figure 3-10: Process hierarchy and instances in InCon-Onto

Product: A process produces or updates a product. According to El-Gohary, the products

are mainly knowledge or physical products (2010). In InCon-Onto, the products are mainly

divided into construction and management products. In the case of industrial construction, the

chain of products starts from pipe and fittings which assemble to make spool assemblies, and at

the end they turn into spools which are a module assembly component. Management products

are included in InCon-Onto too (e.g. shop orders, module orders and erection orders) (Figure 3-

11).

(1)

(2)

Chapter 3- Ontological Conceptual Modeling of Industrial Construction Processes to Enhance Interoperability and

Reuse

66

Product hierarchy view:

(1)

Figure 3-11: Product hierarchy and instances in InCon-Onto

Resources: A process utilizes resources to produce a product. Resources have been

divided into sub-categories of geographic, human, and operational resources. The following

figure shows the main hierarchy along with the instances related to industrial construction.

(2)

67

(1) (2)

Figure 3-12: Resource hierarchy and instances of InCon-Onto

68

InCon-Onto relationships

 There are two main types of relationships: hierarchical and non-

hierarchical. Hierarchical relationships are implicitly expressed through the

hierarchies. Those remaining are non-hierarchical. Non-hierarchical relationships

are either object properties or data-type properties. Object properties bind two

concepts together. Data-type properties link an individual to an XML data-type

value. The object-properties link the instances belonging to the domain to

instances belonging to the range. The relationships come in four different

categories: functional, inverse-functional, symmetric, and transitive (Horridge et

al. 2004). InCon-Onto relationships link the main concepts such as product,

resource, process, aspect and scale to each other. Table 3-2 list some the

relationships between “process” and other concepts in industrial construction

ontology.

Table 3-2:Relationships between process and other concepts in InCon-Onto

Domain Relationship Range

Process next_operation Process

Process has_aspect Aspect

Process has_input Input

Process take_place Resource (geographic)

Process is_accomplished_by Resource (human)

Process uses Resource (operational)

Process updating Product

For each relation its inverse and type of relation (functional, inverse-

functional, symmetric, and transitive) is indicated. Within inverse relationship, the

domain and range associated with the relation are inversed. If type of relationship

is functional, it means that for a given instance there is only one instance in

relation with it. As an example in “has aspect” relationship for each scale there is

just one instance from aspect. Another type of relationship is transitive; “part of”

Chapter 3- Ontological Conceptual Modeling of Industrial Construction Processes to Enhance

Interoperability and Reuse

69

and “compose of” are both transitive, from a is part of b and b is part of c, it is

inferred that a is also part of c. (Figure 3-15)

InCon-Onto relationships are displayed in the first part of figure 3-13. The

figure’s second and third parts showcase all the related relationships for the two

industrial construction processes.

Figure 3-13: InCon-Onto relationships

(1)

(2)

(3)

Chapter 3- Ontological Conceptual Modeling of Industrial Construction Processes to Enhance

Interoperability and Reuse

70

Processes, products, and resources have different aspects such as their

physical and configuration properties. These aspects are presented following the

manner in which Gellish (i.e. a product modeling language) presents them

(Remsen, 2003). All the possible aspects are gathered as instances of the aspect

class which has a scale of measurement and value for the particular class they are

representing. The instances of product, process, or resource are linked to the

proper aspects (Figure 3-14).

Figure 3-14: Aspects of process, products, and resources in InCon-Onto

Axioms put restrictions on the individuals participating in the relationship

and clarify the interpretation (Figure 3-15).

Chapter 3- Ontological Conceptual Modeling of Industrial Construction Processes to Enhance

Interoperability and Reuse

71

Figure 3-15: InCon-Onto axioms

3-5.4 Evaluating the ontology

One way to determine the extent of captured knowledge in an ontology is

through competency questions. The competency questions can be imposed on the

ontology through ontology query language.

The following table includes some competency questions which can be

answered based on the knowledge that exists in the industrial construction domain

ontology:

Chapter 3- Ontological Conceptual Modeling of Industrial Construction Processes to Enhance

Interoperability and Reuse

72

Table 3-3: InCon-Onto competency questions

Competency Question Target

1 What processes are involved in industrial construction? General

2 What kinds of resources are involved in industrial construction processes? Resources

3 What kinds of tools are involved in industrial construction? Resources

4 Where do industrial construction processes occur? Resources

5 What are the products of industrial construction processes? Product

6 How are the products measured? Product

7 What is the purpose of “process A”? Process

8 To which domain does “process A” belong? Process

9 To what field does industrial construction “process A” belong? Process

10 What are the sub-processes of “process A”? Process

11 Where does “process A” happen? Process

12 Who is involved in performing “process A”? Process

13 What are the inputs of “process A”? Product

14 What are the outputs of “process A”? Product

15 What tool does “process A” use? Resource

16 What is the next process after “process A”? Process

17 What aspect is described for “process A”? Aspect

18 What is the related aspect of “process A” and what is the scale for

measuring the aspect?

Scale

19 What is the productivity of “process A”? Aspect

20 What kind of operational resources are used in “process A”? Resource

3-6 Ontology Interoperability

3-6 Ontology Interoperability

The purpose of InCon-Onto is to document the conceptual model of

industrial construction processes which can be used for building models in

different applications specially simulation modeling application. The domain

knowledge that InCon-Onto captures should become accessible for reuse in

different applications (Figure 3-16). In this section, sharing and reuse of InCon-

Onto knowledge with other ontologies is investigated.

Chapter 3- Ontological Conceptual Modeling of Industrial Construction Processes to Enhance

Interoperability and Reuse

73

Knowledge representation in ontologies is a tradeoff between several

contradictory aspects including usability, reusability, accessibility,

interoperability, modularity, and extendibility. According to their scope,

ontologies serve a specific domain of interest. On the other hand, they have to be

interoperable with other ontolgies. For instance, to serve the industrial

construction domain, many other applications such as project management,

modeling, and simulation are involved.

It is critical to maintain this interoperability between different ontologies.

In building InCon-Onto, two distinctive types of concepts were used: those

representing the industrial construction domain, and those which do not

physically exist in that domain but are used for abstraction purposes. These types

of concepts such as process, product, or resource, usually are called general

concepts. Although they do not have a tangible use in the domain, they play a

vital role in modeling (i.e. classification), accessing, and reusing the ontologies’

content. The concepts can mediate the ontology interoperability. This will be

investigated more in the coming sections.

As shown in Figure 3-17, there are four types of ontologies:

representation, general, domain, and application (Gomez-Perez et. al, 2004). Here

it should be pointed out that this categorization cannot be strictly applied to

ontologies, because ontologies usually are a combination of these different types,

Figure 3-16: Sharing in construction domain

Chapter 3- Ontological Conceptual Modeling of Industrial Construction Processes to Enhance

Interoperability and Reuse

74

and drawing a fine line between them is not possible. This type of classification

better suits the type of the concepts used in ontologies not the ontologies.

Figure 3-17: Types of Ontologies (adapted from Gomez 2004)

General/Common ontologies represent common sense knowledge which is

reusable across different domains. These ontologies contain concepts related to

things, events, time, space, etc.

General Domain ontologies are reusable in a specific domain such as

different fields of engineering.

Domain ontologies contain domain-related concepts in a way that is application-

independent and reusable within the domain.

Application ontologies contain all the concepts needed to represent an application.

In order to connect industrial construction ontology to simulation

modeling, ontologies of different type are involved: Domain and application

ontologies. The following section contains explanations about involved

ontologiesand also how they are connected to each other.

Chapter 3- Ontological Conceptual Modeling of Industrial Construction Processes to Enhance

Interoperability and Reuse

75

3-6.1 Simulation domain ontologies

Simulation application has two components: the simulation world view

and simulation interface. The simulation world view represents the way that

dynamics of process are presented in a simulation model. The simulation

application interface is the simulation environment component that the simulation

developer is dealing with in order to develop a model. Somehow the simulation

world view bridges the conceptual model to the simulation implementation. The

following describes how the formalism of these simulation components through

ontologies opens many doors in the world of simulation and modeling with

respect to interoperation and knowledge extraction.

The first simulation ontology is Discrete Event Model Ontology (DeMO),

which is a comprehensive Discrete Event Simulation (DES) ontology containing

templates which capture knowledge of different simulation world views,

including activity-oriented, event-oriented, state-oriented and process-oriented

(Fishwick and Miller 2004). This ontology is the most suitable resource in order

to obtain a comprehensive understanding of DES. DeMO has three top-level

classes: DeModel, Model-Component, and Model-Mechanism. Model-

Component’s subclasses define the DES models’ building blocks, such as state,

event, activity, and process, while Model Mechanism subclasses define how

components work within the model. The DeModel class splits into four first-level

subclasses: State-Oriented Model, Event-Oriented Model, Activity-Oriented

Model, and Process-Oriented Model. Each of these classes defines a top-level

DES formalism, and the subclasses of these classes represent existing modeling

techniques.

The Process Interaction Modeling Ontology for Discrete Event

Simulations (PIMODES) is another simulation ontology by Lacy (2005b, 2005c),

which is built specifically for the process-interaction world view which is a

popular paradigm for representing DES. PIMODES includes sets of classes for

Chapter 3- Ontological Conceptual Modeling of Industrial Construction Processes to Enhance

Interoperability and Reuse

76

basic concepts of process interaction such as activity, entity, entity attribute,

resource, queue, and location (Figure 3-18).

Activity

Work Item

(Entity)

Performed on

Nodes & Arcs

Lifecycle

described by

Resource

Located at

Occurs at

Attribute

Described with

Lifecycle

described by

Location

wait in

Organizational

Activities

Process Concepts

Flowchart

Process

Definition

Model

Metadata

consist of

Control flow

Indicated by

Figure 3-18: PIMODES Structure

Between PIMODES and DeMo, PIMODES has been chosen to present

process interaction world view because it is heavily influenced by popular

software packages such as Arena, AnyLogic, and ProModel. This makes it easy to

connect PIMODES to software packages. PIMODES can be used for an ontology-

based representation of models, which facilitates the interchange of simulation

models between different simulation packages.

For modeling construction opeartions, process-interaction world view of

discrete-event simulation is the dominant simulation world view which has been

used and it is fully capable of representing construction operations. The

simulation elements used in different simulation software that follow the same

world view might not be the same in implementation details, but ultimately they

are presenting process-interaction concepts (Silver et al. 2006). That is why

PIMODES has been chosen as the simulation world view representation ontology

for this research. The first step towards extracting industrial construction process

Chapter 3- Ontological Conceptual Modeling of Industrial Construction Processes to Enhance

Interoperability and Reuse

77

knowledge for a simulation model is connecting the conceptual model concepts to

simulation world view concepts. The simulation world view concepts are

represented in the simulation application interface.

3-6.2 Simulation application: simphony

The simulation package used in this research following the process

interaction world view is Simphony, which is briefly introduced here and fully

investigated in following chapters.

Simphony is a special purpose simulation (SPS) tool introduced to the

construction domain by Hajjar and AbouRizk (1999). It is a simulation platform

for building SPS templates and models competent with process-oriented discrete

events simulation modeling. It allows users to implement complex system logic

and dynamic interactions among resources and processes within a flexible

simulation environment that supports graphical, hierarchical, modular, and

integrated modeling (Hajjar and AbouRizk 2002). As with most process

simulation tools, Simphony employs a common three-layer architecture. The first

layer is the Graphical User Interface (GUI), the second provides process

simulation domain objects, and the third provides the simulation services

containing the simulation engine, storage, and communication. Figure 3-19

summarizes the model’s specifications.

Chapter 3- Ontological Conceptual Modeling of Industrial Construction Processes to Enhance

Interoperability and Reuse

78

Figure 3-19: Formalized Simphony Structure

The main layer which the simulation developer is dealing with is GUI and

the simulation elements. A simulation model built in Simphony is composed of a

number of instances of modeling elements that the modeler drags from the

modeling element library into the modeling layout and links together in order to

build the relationships. Each of these modeling elements reacts in a unique way to

different events through input and output variables. A template is a collection of

these elements belonging to a particular construction domain. These

specifications can be stored in the Simphony legacy form and also the XML

format. The XML view of the model provides a neutral and implementation-

independent version of the model, which has the potential to be exchanged

between applications. Simphony can provide the XML view of the simulation

model, and the XML representation has been used as the starting point of

developing the Simphony models’ formal ontology. More discussion on this

matter will be provided in Chapter 4.

3-7 Interoperability between Simulation Ontologies

The following figure 3-20 displays all the involved ontologies in building

a simulation model of industrial construction. These ontologies were elaborated

Chapter 3- Ontological Conceptual Modeling of Industrial Construction Processes to Enhance

Interoperability and Reuse

79

on previously. In order to be able to build a simulation model of industrial

construction, these ontologies should become connected to each other to make

knowledge-sharing and extraction between them possible.

Figure 3-20: Industrial construction simulation framework

The simulation world view connects the conceptual model to simulation

implementation. That is why the first step of ontology integration is connecting

the conceptual model to the world view presentation of the simulation model

through PIMODES.

In order to build the connection between the two ontologies,

interoperability approaches within semantic web are investigated. Our suggested

approach is presented in the following section.

Chapter 3- Ontological Conceptual Modeling of Industrial Construction Processes to Enhance

Interoperability and Reuse

80

3-7.1 Ontology interoperability through ontology mapping

3-6.1.1 Mapping between simulation ontologies

Mapping between different ontologies is fundamental for establishing

correspondence between ontologies. It provides interoperability and integration

means between them. Usually approaches used for ontology mapping are limited

to expressing direct correspondence between concepts, which is labor-intensive

and prone to error. Most existing mapping tools are based on this approach to

support constructing mapping between ontologies; they are based on heuristics to

identify structural and naming similarities between models (Noy and Musen 2000;

Rahm and Bernstein 2001) or on machine-learning techniques to distinguish the

similarities. (Lacher and Groh 2001; Doan et al. 2002). These tools require

feedback from users to refine the proposed mapping (Kalfoglou and Scholemmer

2003).

Experimenting with these tools was not that productive, so instead of

using them, we have followed an approach not often used by general mapping

tools. In this approach, mapping between the two ontologies is established

through an intermediate source, so the mapping is done through pair mapping

from a third ontology. The third ontology, along with its mappings, is called

articulation of two ontologies (Figure 3-21). A few mapping tools follow this

approach, among them MAFRA, follows a framework for distributed ontolgies in

the semantic web that semantic bridges to connect the ontologies (Maedche and

Staab 2000).

Figure 3-21: Mapping ontologies through a third ontology

Chapter 3- Ontological Conceptual Modeling of Industrial Construction Processes to Enhance

Interoperability and Reuse

81

In the case of the ontologies we are dealing with, general process

modeling concepts are common in both domain (industrial construction) and

application (simulation) ontology. The common process modeling concepts play

the role of mediator, linking the two ontologies. InCon-Onto is a combination of

two types of ontologies: the concepts representing general process modeling

ontology and those representing the industrial construction domain. At the same

time, the simulation world view ontology, PIMODES, contains process

interaction world view concepts which have correspondence with concepts

existing in InCon-Onto’s process modeling concepts. Table 3-4 shows the

existing correspondence between high-level hierarchy classes of two ontolgies.

Table 3-4: Process-oriented concepts used in simulation and industrial construction

ontologies

Process Modeling Concept Simulation Concepts Discussion

Product Entity The input and outputs for process

Process Process, Activity The modeling main concept

Resource Resource

Geographic Resource Location

Extracting domain knowledge and transferring it to simulation application

ontology delivers the components of the implementation independent model,

which potentially can be used in any simulation tool following the process-

oriented world view. Continuing the mapping process towards the simulation

implementation provides the simulation components of the simulation model. The

instances of simulation model are presenting the domain concepts which are

extracted within two mapping processes (Figure 3-22). Still, the two-stage

mapping process is superior to conventional mapping based on concept and

structural similarities, because it guarantees full control on the mapping process.

Some reasons for the claim are as follows:

Chapter 3- Ontological Conceptual Modeling of Industrial Construction Processes to Enhance

Interoperability and Reuse

82

Figure 3-22: Mapping through process-modeling concepts

1- Process-modeling concepts and relationships are limited and well-known.

2- By using process-oriented concepts, several related concepts in domain

and simulation ontologies are acquired at once in an aggregated manner.

3- Mapping and coordination between ontologies is simplified because the

process ontologies are simple and contain a limited number of concepts.

4- Within a non-complex and totally controlled mapping process, a

connection is made between two entirely different worlds of industrial

construction and simulation with numerous concepts and relationships.

5- Following the process-oriented presentation of domains makes it easier to

add other domains’ ontologies and applications to the mapping network.

More important, as long as the different domains share a process-modeling

language, they do not need in-depth knowledge about each other’s

ontology contents to foster their communication.

6- As the concepts are mapped based on their role in the process, mapping

needs be established just once. From that point it can be maintained and

used.

Chapter 3- Ontological Conceptual Modeling of Industrial Construction Processes to Enhance

Interoperability and Reuse

83

7- This is the main difference between this work and the other work on

ontology-driven models. In the other work, model development exclusive

mapping has to be rebuilt each time; however, in the current work, using

process-oriented general ontologies in the different domains simplifies the

entire process of mapping and model derivations.

The linkage between process-oriented simulation domain ontology and

process-modeling ontology for industrial construction is connecting end-point

industrial domain concepts to their most usual roles in the simulation domain. It

should be mentioned that mapping follows the most common interpretation of the

concepts. For example, a truck in most models is simulated as a resource;

however, within a creative simulation modeling approach, it might be modeled as

a flowing entity in the simulation model.

The model derived at this stage allows the model developer to see the

composition of the simulation model, the model which is semantically meaningful

but still very easily understood and less bogged down with low-level

implementation details. Also, it is still easy to get connected to the simulation

scenario and build a detailed scenario-based model rather than just the conceptual

model.

3-7.1.2 Ontology mapping through SPARQL

3-4.4.1 SPARQL (SPARQL Protocol and RDF Query Language) queries for

knowledge retrieval

The interaction with ontolgies is a two-way interaction; the first one is

infusing new knowledge into ontologies and the other one is acquiring knowledge

from it. Knowledge inquiry is done through posing queries on ontologies.

According to W3C, SPARQL is a query language for ontologies (Prud'hommeaux

et. al 2008).

SPARQL has rich built-in functions that can be used to query the

ontologies stored as RDF or viewed as RDF through middleware.

Chapter 3- Ontological Conceptual Modeling of Industrial Construction Processes to Enhance

Interoperability and Reuse

84

When the ontologies come from different categories, the mapping purpose

can be different than just finding taxonomical similarities. When one ontology

comes from the domain category and another from the application category, the

domain ontology is the knowledge source. As a result, it has to provide the

instances for the application ontology through mapping. SPARQL (SPARQL

Protocol and RDF Query Language) is an expressive yet simple language that has

been used to formulate mapping relationships between concepts from different

ontologies. SPARQL mapping rules can be executed through inference engines in

order to perform information exchange between the ontologies. In this case,

transformation mostly includes instance transference between mapped classes

(Makris et. al 2009) (Figure 3-23).

In the case of connecting construction domain ontology to the simulation

domain, the aim of mapping is to establish the correspondence between the

ontologies and then transfer the concept instances from the source ontology to the

target. Another crucial reason for using SPARQL as a mapping language is that

SPARQL easily allows for data integration, which down the road is very

important for developing scenario-based simulation models.

Figure 3-23: Mapping Process

Chapter 3- Ontological Conceptual Modeling of Industrial Construction Processes to Enhance

Interoperability and Reuse

85

The following figure describes the SPARQL mapping implementation

between InCon-Onto and simulation application in the TopBraid Composer

environment (2010). SPIN (SPARQL Inferencing Notation) is a framework which

utilizes SPARQL. Its inference engine takes the RDF/OWL model and derives

new information from it based on existing logical rules such as mapping rules

(Furber and Hepp 2010).

In the following, some of possible correspondence between the two

ontologies’ concepts is shown in Figure 3-24. As shown in the graph, all the

involved ontologies are connected through their common ground of process-

modeling concepts. The simulation modeling world view connects the simulation

application to the industrial construction domain.

Product

Process
Operation Task

Resource

produce/

update

consume

Process Modeling Ontology

Industrial Construction Process

Fabrication

Module AssemblySite Insatallation

Fitting

Welding

Painting

Position Welding

Roll Welding

Hydro Testing

Quality Control Checking

Stress Relief

CuttingResource

Human

Operation

Professional

Labour

Crane

Machine

Truck

HandlingBridge

Mobile

Welding

Cutting

Product SpoolPart

Geographic
Module yard

Shop floor

Module

Industrial Construction Domain

Project

has process specifications

Model Specifications (Industrial Construction Domain Instances, (database))

Conceptual Model

Simulation Scenarios

Process Interaction Simulation World View Ontology

Entity

Location

Attribute

DescribedWith

Conceptual

model

Consist ofActivity

Performed on

occurs

formulates

Resource Capture/ release

Located at

supports

Modeling Software Package (Simphony platform)

Relationship

Element

Model

Consist of

Consist of

Template

contains

Connection

points

has

Defined by

Ontological Relationship Mapping

Simulation Domain

A
p
p
lic
a
tio

n
D
o
m
a
in

Simulation Application

Raw material

Simulation

Environment

contains

Parameter

has

Based onBased on

Presenting Based on

Figure 3-24: Ontological construction simulation framework

The mapping expressions are formulated through SPARQL query

language. SPARQL was originally used for querying RDF data on the web; it has

Chapter 3- Ontological Conceptual Modeling of Industrial Construction Processes to Enhance

Interoperability and Reuse

86

a similar notation to SQL for querying: SELECT, FROM, WHERE. And

supporting functions such filter, union, and disjunction allow for more

sophisticated queries. Query reformulation through the CONSTRUCT and RULE

statements gives SAPAQL mapping the capacity to pose a query over another

ontology for mapping purposes. The execution of the CONSTRUCT statement in

the target ontology would yield to the transformation of ontology instances in the

simulation ontology. SPIN, the inference engine, can support saving and reusing

SPARQL queries within its resources for inferring mapping rules.

Below is an example of a SPARQL query which maps InCon-Onto to

PIMODES. The PIMODES ontology concepts and relationships are linked to

their corresponding concepts and relationships in the InCon-Onto. All of the

mapping can be done through one single query containing all the mapping

expressions. The chosen processes, along with their different involved resources

and products, are mapped to equivalent concepts in simulation ontology.

Performing the mapping process, all of PIMODES ontology concepts are

instantiated with the industrial domain ontology instances. (Figures 3-25 and 3-

26)

Figure 3-25: Mapping through SPARQL query

Chapter 3- Ontological Conceptual Modeling of Industrial Construction Processes to Enhance

Interoperability and Reuse

87

Figure 3-26: Mapping inference results

Conceptual model extraction can happen at any level of abstraction of

construction processes.

3-8 Summary and Conclusion

The current simulation modeling in construction pays the least attention to

the conceptual modeling process; however it plays an important role in the

reusability and composability of simulation models. In this chapter, the

conceptual model of industrial construction was ontologically modeled with an

attempt to bridge reuse and composability gaps. The industrial construction

Chapter 3- Ontological Conceptual Modeling of Industrial Construction Processes to Enhance

Interoperability and Reuse

88

ontology has a modular structure based on the process-modeling ontology. Taking

this approach for developing InCon-Onto has been particularly effective in

dealing with the interoperability challenges of construction simulation models.

Through the mapping process, an ontological framework of all the involved

simulation components is built and interoperability between the components is

facilitated. Instead of using existing tools, SPARQL, which is a query language,

has been used to formulize the articulation of mapping rules. The inference of

mapping rules results in sharing the knowledge content of the industrial

construction ontology with simulation application ontology, and carries the

conceptual model forward to the implementation phase. In the coming chapter, we

investigate reusability challenges through the development process, especially for

distributed simulation.

3-9 References

Doan, A., Madhavan, J., Domingos,P. and Halevy, A. (2001) “Learning to map

between ontologies on the semantic web”. In Proceedings of the 11th

International World Wide Web Conference, Hawaii, USA, 303-319.

El Diraby, T., Fies, B., and Lima, C. (2003). "An ontology for construction

knowledge management." Canadian Society for Civil Engineering - 31st

Annual Conference: 2003 Building our Civilization, Canadian Society for

Civil Engineering, 1949-1956.

El-Diraby, T. E., and Kashif, K. F. (2005). "Distributed ontology architecture for

knowledge management in highway construction" Journal of Construction

Engineering and Management, 131(5), 591-603.

El-Diraby, T. E., and Wang, B. (2005). “E-society portal: integrating urban

highway construction projects into the knowledge city." Journal of

Construction Engineering and Management, 131(11), 1196-1211.

El-Diraby, T. E., and Zhang, J. (2006). "A semantic framework to support

corporate memory management in building construction." Automation in

Construction, 15, 504-521.

El-Diraby, T. E., and Briceno, F. (2005). "Taxonomy for outside plant

construction in telecommunication infrastructure: supporting knowledge-

based virtual teaming." Journal of Infrastructure Systems, 11 (2), 110-121.

Chapter 3- Ontological Conceptual Modeling of Industrial Construction Processes to Enhance

Interoperability and Reuse

89

El-Gohary,N. 2008. “Semantic Process Modeling and Integration for

collaborative and Infrastructure Developments” Unpublished doctoral

dissertation, University of Toronto, Toronto, Canada

El-Gohary, N. M., and El-Diraby. T. E. 2010. “Domain ontology for processes in

infrastructure and construction” Journal of Construction Engineering and

Management 136(7), 730-744.

Fishwick, P. and J. Miller. 2004, “Ontologies for modeling and simulation: Issues

and approaches”. Proceedings of Winter Simulation Conference. 251-256.

Fürber, C., Hepp, M. (2010) “Using SPARQL and SPIN for Data Quality

Management on the Semantic Web”. Springer, Heidelberg, 35–46.

Gomez-Perez, A., Corcho,O. and Fernandez-Lopez,M. (2004) “Ontological

Engineering: With Examples from the Areas of Knowledge Management”, e-

Commerce and the Semantic Web, Advanced Information and Knowledge

Processing)

Gruber, T. R. (1995). "Toward principles for the design of ontologies used for

knowledge sharing" International Journal of Human Computer Studies, 43(5-

6), 907-928.

Gustavson, P., Chase T. 2007, “Building composable bridges between the

conceptual space and the implementation space”, Proceedings of the Winter

Simulation Conference, 804-814.

Hajjar, D., and AbouRizk, S. 1999. “Simphony: An environment for building

special purpose construction simulation tools.” 31th Winter Simulation

Conference, 998-1006.

Hajjar, D., and AbouRizk, S. 2002. “Unified modeling methodology for

construction simulation”, Journal of Construction Engineering and

Management, ASCE 128 (2) 174–185

Horridge M, Knublauch H, Rector A, Stevens R, Wroe C. 2004. “Practical

Guideto Building OWL Ontologies Using the Protégé-OWL Plugin and CO-

ODE ToolsEdition 1.0”. Manchester, UK: Univ. Manchester. 118 pp.

http://www.coode.org/resources/tutorials/ProtegeOWLTutorial.pdf, accessed

September 2007.

Kalfoglou, Y., Schorelmmer,M. (2003) “Ontology Mapping: The State of the

Art”, The Knowledge Engineering Review, Vol. 18:1, 1-31

Kawalek, P. (2004). "A quick tour of the process modelling world."

http://www.cs.man.ac.uk/ipR/CS637/quicktour.pdf

Chapter 3- Ontological Conceptual Modeling of Industrial Construction Processes to Enhance

Interoperability and Reuse

90

Knublauch, H. 2006, “TopBraid Composer and Protege-OWL”,

http://topquadrant.com/products/Protege_comparison.html (accessed October

2011)

Kotiadis, K., and Robinson, S. 2008, “Conceptual modelling: knowledge

acquisition and model abstraction”, S.J. Mason, R.R. Hill, L. Mönch, O.

Rose, T. Jefferson, J.W. Fowler, Editors , Proceedings of the Winter

Simulation Conference, 951-958.

Lacher, M. and Groh, G. (2001) “Facilitating the exchange of explicit knowledge

through ontology mappings”. In Proceedings of the 14th International

FLAIRS conference, 305-309, Key West, FL, USA.

Lacy, L. W. 2005a. PIMODES. 37th Winter Simulation Conference (Doctoral

Symposium).

Lacy, L. W. 2005b. PIMODES. Fourth International Semantic Web

Conference Doctoral Symposium. Galway, Ireland.

Lemaignan, S., Siadat, A., Dantan, J.-Y., Semenenko, A. (2006), “MASON: A

Proposal For An Ontology Of Manufacturing Domain Distributed Intelligent

Systems”. In Proceedings of International IEEE Workshop on Distributed

Intelligent Systems, Collective Intelligence and Its Applications, 195–200

Maedche, A. and Staab, S. (2000) “Semi-automatic engineering of ontologies

from texts”. In Proceedings of the 12th International Conference on Software

Engineering and Knowledge Engineering (SEKE 2000), Chicago, IL, USA,

231–239.

Makris, K., Bikakis, N., Gioldasis, N., Tsinaraki, C., and Christodoulakis, S.

(2009)” Towards a mediator based on OWL and SPARQL”. In Proceedings

of the 2nd World Summit on the Knowledge Society, 326-335

Martin, P., and Dacunto, A. 2003. “Design of a production system: An application

of integration product-process”. International Journal of Computer

Integrated Manufacturing, 16 7 (8): 509-16.

McGuinness , D.L. and Harmelen, F. 2003. “OWL Web Ontology Language

Overview,” www.w3.org/TR/owl-features

Moradi, F. (2007) “Component-based Simulation Model Development using

BOMs and Web Services”, in Proceedings of the first Asia Modelling

Symposium, AMS, 238-246.

Noy, N. F., and McGuinness, D. L. 2002 . Ontology development 101: A guide

to creating your first ontology, Knowledge System Laboratory, Stanford,

California.

Chapter 3- Ontological Conceptual Modeling of Industrial Construction Processes to Enhance

Interoperability and Reuse

91

Noy, N.F. and Musen, M. (2000) “PROMPT: Algorithm and Tool for Automated

Ontology Merging and Alignment”. In Proceedings of the 17th National

Conference on Artificial Intelligence (AAAI’00), Austin, TX, USA, 450-455

Obrst, L. (2006). “The Ontology Spectrum and Semantic Models. MITRE

Information Semantics Group”, Information Discovery & Understanding,

Center for Innovative Computing & Informatics

Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF

(January2008), http://www.w3.org/TR/2008/REC-rdf-sparql-query-

20080115/

Rahm, A. and Bernstein, A. (2001) “A survey of approaches to automatic schema

matching”. The Very Large Databases Journal, 10(4):334–350

Renssen, A. van. 2003, “Gellish: An information representation language,

knowledge base, and ontology”. In Proceedings of the 3rd IEEE Conference

on Standardization and Innovation In Information Technology, 215-228.

Robinson, S. 2004. “Simulation: The Practice of Model Development and Use”.

Wiley, Chichester, UK.

Robinson, S. 2006. “Conceptual modeling for simulation: Issues and research

requirements”. Proceedings of the 2006 Winter Simulation Conference, 792-

800.

Shannon, R.E. 1975. “Systems Simulation: The Art and Science”, Prentice-Hall,

Englewood Cliffs, NJ.

Silver, G. A., Lacy, L. W. and Miller J. A. 2006. “Ontology based representations

of simulation models following the process interaction world view”. 38th

Winter Simulation Conference, 1168-1176

SISO. (2006). “BOM template specification”. SISO-STD-003-2006.

Storey, M.A., Mussen, M., Silva, J., Best, C., Ernst, N., Fergerson, , R., and Noy,

N. 2001. Jambalaya: Interactive visualization to enhance ontology authoring

and knowledge acquisition in Protégé. In Proceedings of Workshop on

Interactive Tools for Knowledge Capture, K-CAP-2001, Victoria, BC,

Canada, http://www.thechiselgroup.org/jambalaya.

TopBraid Composer(2010) ed: TopQuadrant, Inc

Tolk, A., and C. D. Turnitsa. 2007, ”Conceptual modeling of information

exchange requirements based on ontological means”. In Proceedings of the

Winter Simulation Conference, 1100-1107.

Chapter 3- Ontological Conceptual Modeling of Industrial Construction Processes to Enhance

Interoperability and Reuse

92

Tolk, D. A., and Muguira, J. A. (2003). "The levels of conceptual interoperability

model." In Proceedings of the 2003 Fall Simulation Interoperability

Workshop, number 03F-SIW-007, 14-19.

Uschold, M, and Gruniger, M., “Ontologies: Principles, methods and

applications”. Knowledge Engineering Review, 11(2):93–155, 1996.

Uschold, M., 1998, “Knowledge level modeling: concepts and terminology”. The

Knowledge Engineering Review, 13, 5–29.

Waterfeld,W., Weiten, M., Haase, P. (2008) “Ontology Management

Infrastructures”, Ontology Management Bd. 7. Springer, S. 59–87World

Wide Web Consortium, 2004, “Resource Description Framework (RDF)”

, http://www.w3.org/RDF/

World Wide Web Consortium, 2009, “Web Ontology Language (OWL)”,

http://www.w3.org/2001/sw/wiki/OWL

World Wide Web Consortium, 2008, Extensible Mark-up Language,

http://www.w3.org/TR/REC-xml/

World Wide Web Consortium, 2008, SPARQL Query Language for RDF,

http://www.w3.org/2001/sw/wiki/SPARQL

Zeigler, B.P. 1976. Theory of Modeling and Simulation. Wiley, New York

93

Chapter 4

Enhancing Reusability in HLA-based Distributed

Simulation Modeling of Industrial Construction

Processes

4-1 Introduction

The Construction Synthetic Environment (COSYE), which is a High Level Architecture

(HLA)-based distributed simulation environment, has been developed by AbouRizk (AbouRizk

et al. 2006). COSYE has already been utilized to model various large-scale construction and

industrial construction projects. In the second chapter, two examples of distributed simulation

models were presented. The models were integrated from independently developed components

by different simulation developers. However reuse, composability, and interoperability of these

simulation components are stated as HLA goals; still, it is difficult to fulfil these goals in

implementation (Radeski et al. 2002). The necessary requirement for reaching reusability and

interoperability is that unambiguous and structured formalization of information must be shared

and exchanged between distributed simulation modeling components (Tolk and Turnitsa 2007).

Ontological means have been taken in this research to link and drive information between

heterogeneous knowledge sources and illustrate how knowledge integration leads to increased

reusability and interoperability in distributed simulation modeling.

Chapter 4- An Ontology-Driven Framework to Facilitate Reusability of Distributed Simulation Modeling

of Industrial Construction Processes

94

4-2 Distributed Simulation Modeling Challenges

As was mentioned before, the key motivation for using distributed simulation modeling

in construction management is the decomposition of large-scale construction models into smaller

and more manageable components called federates, so that the development efforts are

distributed between different development groups. Once the federates have been developed

independently, they should be assembled together in order to build the entire model. This cannot

happen without consensus between all the involved collaborator parties about the knowledge that

they are sharing. All the parties have to take a harmonized approach towards all core aspects of

simulation modeling. Having a common understanding about the simulation modeling problem,

simulation modeling world view, and simulation modeling environment is the first step towards

successfully developing a distributed simulation modeling.

The approach taken in this research is based on ontological modeling of all different

aspects involved in a distributed simulation modeling. The approach uses semantic web

technologies to automate sharing and reusing knowledge within these different ontologies to

overcome current challenges facing the construction industry as it develops distributed

simulation models.

In the following section some of the challenges related to modeling construction

processes in a distributed simulation modeling environment based on HLA are investigated more

specifically. Subsequently the ontological modeling framework, including all the involved

components, is elaborately discussed. There is also a description of two specific cases that use

the ontological approach.

Chapter 4- An Ontology-Driven Framework to Facilitate Reusability of Distributed Simulation Modeling

of Industrial Construction Processes

95

4-2.1 Reuse and interoperability challenges within distributed simulation modeling

For the distributed simulation modeling components (federates) to be able to

communicate with each other, they should comply with a common representation for the

exchangeable information through shared federation object model (FOM) object classes and

interactions (IEEE 2000. Std 1516.2 2000). Developing an FOM, which all the collaborates

agrees on, takes lots of time and effort. On the other hand, communication dependency on FOM

highly restricts the federates’ reusability as any changes in FOM lead to lots of code updates and

modifications in the corresponding federates (Rathnam and Paredis 2004). That is why the

Federation Development and Execution Process (FEDEP) (Defense Modeling and Simulation

Office 1999) recommends reusing existing FOMs. In order to develop FOMs which facilitate

reusability, the industry should take a common approach towards FOM development. In this

chapter, ontologies provide the agreed-upon common and shared understanding of the domain

and simulation knowledge.

Another issue which is to be addressed by using ontolgies is the reusability spectrum in

the distributed simulation modeling environments. Reusability within HLA is focused on reusing

federates. The federates are treated as atomic simulation components, and reusing even a portion

of the code within them is almost impossible. The narrow reusability scope within distributed

simulation modeling often makes the development process complex and effort intensive

(Radeski et al. 2002). The steep learning curve and complexity associated with HLA rules and

standards are a part of development complexities. Developing simulation federates from reusable

elements, such as what exists in stand-alone construction simulation modeling environments,

reduces development efforts and therefore speeds up the development process of simulation

models (AbouRizk and Mohamed 2000). In this chapter, in order to apply an element-based

approach for distributed simulation modeling of construction operations, breakdown of elements

and their characteristics are identified and developed serving process interaction concepts while

providing HLA communication services.

Chapter 4- An Ontology-Driven Framework to Facilitate Reusability of Distributed Simulation Modeling

of Industrial Construction Processes

96

4-3 Ontology-Driven Framework for Construction Simulation Modeling

4-3.1 Overview on ontological framework

In chapter 2 we presented the ontological framework of the involved simulation

components modeled and linked together. As was discussed before, the framework (Figure 4-1)

consists of two parts: industrial domain and simulation domain. Industrial construction processes

are modeled through process-modeling concepts within Industrial Construction Ontology

(InCon-Onto).

Figure 4-1: The ontological framework of construction simulation components

Chapter 4- An Ontology-Driven Framework to Facilitate Reusability of Distributed Simulation Modeling

of Industrial Construction Processes

97

The simulation domain itself has two parts: simulation world view and simulation

application. The modeling representation follows a process-oriented world view ontology

presented in POMIDES ontology developed by Lacy (2005). The simulation application is an

element-based presentation of distributed simulation modeling consisting of federates, focusing

on modeling the dynamics of processes. FOM, representing products and resources dealing with

processes, is also captured within ontologies. All ontological components were explained in

Chapter 2. The only component which is discussed further is the simulation application

component.

4-3.2 Simulation application ontologies

The ontology of the simulation interface formalizes the software interface with which the

simulation developer is dealing. In this research, as was stated before, the distributed simulation

model is developed in an element-based environment of a Special Purpose Simulation (SPS) tool

called Simphony. FOM provides the federate’s communications means with other federates,

which might be developed using different applications. Therefore the simulation application

ontology has two components: Simphony, which was explained previously, and FOM.

FOM Ontology: This specifies the major components of FOM, which are composed of

object classes, attributes, interactions, and parameters which are going to be shared and

exchanged within federates. The entire framework is encoded using OWL/RDF semantic

languages as was explained previously.

Chapter 4- An Ontology-Driven Framework to Facilitate Reusability of Distributed Simulation Modeling

of Industrial Construction Processes

98

4-4 Ontology-Driven Applications

4-4.1 Role of industrial construction ontology in modeling industrial construction

processes at multiple levels of abstraction

Modeling industrial construction processes in the COSYE environment allows for the

overall system to decompose into multiple components, which means that models are developed

at different levels of abstraction. At low resolution of a large-scale model, all parties involved in

developing the simulation model have to reach consensus so that the simulation components will

be able to communicate with each other. At lower resolution, few objects or processes can be

aggregated into one object. Successful implementation of models at different levels of

abstraction requires a decomposition strategy which can keep up with consistency of information

at different levels for later integration of simulation components (Benjamin et al. 1998, 2006).

Ontology-driven modeling of large industrial processes provides a reference for decomposing the

process while preserving consistency and connection between the components. The breakdown

of processes in InCon-Onto follows the real-world implementation of the processes. Each main

component is managed separately from others and has its own domain expertise and final users.

The ontological-driven approach is fast yet reliable. Within this approach, the level of

abstraction is chosen and then all the related resources and products of those processes can be

queried from the domain ontology. The extraction queries are imposed upon InCon-Onto through

process interaction ontology (PIMODES; Lacy, 2006) which consists of components of the

industrial construction ontological framework. As an example, querying the InCon-Onto at high

level industrial construction can provide the breakdown of industrial construction processes as

different federates (Figure 4-2) (The query is almost similar to Figure 2-31). As shown in figure

the industrial construction federates can be the following: drafting, material supply, module

assembly, shop fabrication, and site construction. All involved objects at this level are shown as

products or resources forming the federation object model of the federation. It should be noted

that domain ontologies are helpful in developing domain-dependent federates. Domain-

Chapter 4- An Ontology-Driven Framework to Facilitate Reusability of Distributed Simulation Modeling

of Industrial Construction Processes

99

independent federates, such as the calendar federate, weather federate, site condition, and

resource allocation federate, are commonly used in different construction domain federations.

The federates and federation model objects should be considered and included separately.

In order to step into lower levels of abstraction, we can query the lower layers of

industrial construction processes as shown in the following figure (Figure 4-2).

Figure 4-2: The ontological driven simulation components

Ontological-driven modeling guarantees that model behaviour will be consistent at different

levels of abstraction. But the benefits of the ontological modeling framework are not limited to

Chapter 4- An Ontology-Driven Framework to Facilitate Reusability of Distributed Simulation Modeling

of Industrial Construction Processes

100

this. With the help of ontologies, maintaining object consistency is automatic. The following

section discusses extracting the federation’s FOM from InCon-Onto.

4-4.2 FOM extraction from industrial construction ontology

FOM specifies a common representation for all the shared objects and interactions

between all the federates.

Object Model Template (OMT) is the meta-data and contains the structure of objects,

attributes, interactions, and parameters.

As discussed in the previous section, the simulation platform contains multiple

heterogeneous ontologies but they have to become linked together to build an industrial

construction simulation model. In order to build the connection between modeling

representation components with real-world representation, components’ semantic roles should be

considered (Benjamin et al. 2005). Industrial construction processes are the dynamic core of the

model. The federation’s object model mainly represents the products and resources whose status

is shared and updated by interested federates. InCon-Onto components are linked to their

counterparts in FOM ontology (Table 4-1).

Table 4-1: Linking InCon-Onto concepts to FOM components

InCon-Onto Concept FOM Corresponding

Concept Product Object Class

Resource Object Class

Product Data-type

property

Attribute

Resource Data-type

property

Attribute

Chapter 4- An Ontology-Driven Framework to Facilitate Reusability of Distributed Simulation Modeling

of Industrial Construction Processes

101

Mapping the two ontologies builds a bridge for information transformation from InCon-

Onto to the FOM. The transformation mechanism between the two ontologies is built using

SPARQL (SPARQL Protocol and RDF Query Language) queries (Scharffe and Fensel 2008).

The main objective is instance transformation for different FOM components, so that a

set of instances referring to the source ontology (in this case, InCon-Onto) is transferred into

instances belonging to the target ontology (in this case, ontology). In the following example,

product instances are transformed to object class instances within the following SPARQL

construct statement:

CONSTRUCT

 {

? X rdf:type FOM:object Class.

WHERE

?X rdf:type InCon-Onto:Product.

}

Adding other SPARQL constructs such as FILTER and UNION allows for more

sophisticated queries for information transformation. For instance, we could just include

products which belong to a certain process, i.e., only module assembly process products. The

mapping outcome is an enriched FOM ontology with related instances from InCon-Onto. As

FOM is originally an XML document, the final step would be mapping the FOM Ontology to the

FOM XML schema. Figure 4-3 summarizes the entire object instances transformation process.

Chapter 4- An Ontology-Driven Framework to Facilitate Reusability of Distributed Simulation Modeling

of Industrial Construction Processes

102

Figure 4-3: Object instances transformation from InCon-Onto to FOM

The discussed method is able to extract all the objects involved in the FOM in the form of

queries’ results. In order to have the final FOM, the queries’ results should be simply put

together. But still, that does not mean that the outcome can be used as FOM, as it has no manual

interventions, especially regarding data-types. The current adapted OMT in COSYE has a very

complicated structure which makes it a challenge to apply it to the FOM ontology. Another part

of the FOM which is not covered through this method is that of interactions and parameters.

Using interactions has not been popular in the related FOM of different construction federations

developed at the University of Alberta Construction Engineering and Management (CEM) group.

Table 4-2 shows the statistics of different FOM components in four different federations.

The result of ontology extraction includes all the involved objects and their related

attributes, but does not cover the interaction and parameters involved in the FOM.

Chapter 4- An Ontology-Driven Framework to Facilitate Reusability of Distributed Simulation Modeling

of Industrial Construction Processes

103

Table 4-2: The statistics of different FOM components in different federations

F
ed

eratio
n

O
b

ject/A
ttrib

u
te (1

st lev
el)

O
b

ject/A
ttrib

u
te (2

n
d lev

el)

O
b

ject/A
ttrib

u
te (3

rd lev
el)

O
b

ject/A
ttrib

u
te (4

th lev
el)

In
teractio

n
/ p

aram
eter

Industrial construction 1 4/34 4/32 3/8 4/9 4/9

Industrial construction 2 5/34 0/0 0/0 0/0 1/1

Tunnelling 12/34 17/127 15/69 0/0 1/3

Structural steel 5/44 0/0 0/0 0/0 0/0

 4-4.3 Developing ontology-based process interaction elements

Regardless of the simulation environment, when the world view is the same, the same

concepts are used to represent the models. The same applies to the distributed environment;

however, process-interaction code implementations are coupled with communication service

constructs, so that they can satisfy distributed and parallel simulation modeling requirements.

These federate developments are ad-hoc implementations without a standard framework for

facilitating packaging and deployment for reusable piece parts. In the current study we have tried

to come up with packaging these piece parts according to the available process interaction

ontology introduced before. Table 4-3 shows the formal concepts of process-interaction from

PIMODES and the equivalent concepts used in stand-alone simulation software (Simphony) and

the construction distributed simulation modeling environment (COSYE).

Table 4-3: Modeling environment process interaction concepts mapping

Chapter 4- An Ontology-Driven Framework to Facilitate Reusability of Distributed Simulation Modeling

of Industrial Construction Processes

104

O
rg

a
n

iz
a

ti
o

n
a

l

C
o

n
ce

p
t

P
O

M
ID

E
S

 (
D

E
S

O
n

to
lo

g
y

)

S
im

p
h

o
n

y

C
O

S
Y

E
 (

n
ew

ly

d
ef

in
ed

 e
le

m
en

ts
)

A
ct

iv
it

y
 C

o
n

ce
p

ts

Creation Activity New Entity Register

Assignment Activity Set Attribute Update

Resource Interaction

Activity (Seize/Release)

Capture/Release Capture/Release

Delay Activity Task Delay

Branch Activity

Probability Branch

Filter

Conditional Branch

Queue Activity Waiting file Waiting file

Disposition Activity Delete Entity Delete

P
ro

ce
ss

 C
o

n
ce

p
ts

Entity Type - -

Entity Entity Proxy Entity

Location Resource Resource

Variable Variable Variable

Resource Resource Resource

Entity Attribute Entity Attribute Entity Attribute

When a federate presents a model through the process-interaction world view, the model

is composed of process interaction concepts coupled with HLA communication and sharing

Chapter 4- An Ontology-Driven Framework to Facilitate Reusability of Distributed Simulation Modeling

of Industrial Construction Processes

105

requirements, although not necessarily in the organized way presented in Table 4-3. For instance,

for capturing or releasing a resource, the simulation federate not only needs to employ simulation

services in order to capture the resource, but before that it should request the resource object

instance ownership and then go through the simulation process and at the end divest the object

instance ownership so that the object instance can be seized by other components. Reviewing

different simulation federates helps to find the set of modeling constructs corresponding to each

process interaction concept and find out and document their common description, properties,

conditions, and exceptions. This experiment was performed on developed federations. The

inclusive code was packaged within elements to be used in federates developed in a visual

environment such as Simphony. The following are the set of COSYE elements which have been

programmed to serve, at the same time, the process interaction simulation elements and

communication requirements of distributed simulation.

4-4.3.1 Description of COSYE-compliant elements

Register: The “Register” element notifies Run Time Infrastructure (RTI) about the “quantity

number,” which is the number of object instances (proxy entities) that has been created, and

passes it along to the destination element. For the “initial quantity” of entities, the instances of

the object class are registered before simulation starts.

Update: The “Update” element is a combination of the update attribute event and delay function;

it notifies RTI that the attribute value of an associated object instance has been updated after a

delay time.

Reflect: The “Reflect” element is used when other simulation federates need to know the

attribute value of an object instance. When the attribute that the federate has subscribed to

changes, the RTI sends a notification to the interested federates.

Chapter 4- An Ontology-Driven Framework to Facilitate Reusability of Distributed Simulation Modeling

of Industrial Construction Processes

106

Filter: After receiving the attribute value of an object instance via the “Reflect” element, the

modeller is usually interested in a particular attribute value, and the elements with different

attribute values will be filtered.

4-5 Distributed Simulation Model of Industrial Construction Processes

The entire process of industrial construction has been modeled as a large-scale and

distributed simulation model (AbouRizk et al. 2010). The present model is an enhancement of

previous development, with the same model decomposition (Figure 4-4) accompanied by the

extracted FOM XML document from FOM Ontology, containing the object classes and attributes

shared between simulation federates. The major difference in the federation happened with the

spool fabrication federate, which was replaced with the newly developed element-based federate

in a visual environment. The new model is built from COSYE-aware elements, customized for

the shop fabrication domain. The fabrication shop federate’s simulation behaviour is explained in

the following section.

Figure 4-4: Industrial construction federation (AbouRizk et al. 2010)

Chapter 4- An Ontology-Driven Framework to Facilitate Reusability of Distributed Simulation Modeling

of Industrial Construction Processes

107

4- 5.1 Element-based spool fabrication federate

The typical operations of pipe-spool fabrication include cutting, fitting, welding, quality

control, stress relief, hydro testing, painting, and other surface finishing. Each spool travels

through the entire process changing from raw material to spool components and finally a

complete spool. Each spool, with its unique product features, should be traced through the entire

process. The complexity of the product/process model can be captured within a Special Purpose

Simulation (SPS) modeling environment such as Simphony (AbouRizk and Mohamed 2000).

Two such instances of using Simphony are Wang et al.’s use of simulation to support

implementation of lean techniques in spool fabrication (Wang et al. 2009) and Sadeghi and

Fayek’s development of a modeling structure that uses a work breakdown structure of a product

model to model the assembly process and predict the potential design bottlenecks (Sadeghi and

Fayek 2008).

The fabrication shop federate is based on the production chain as shown in Figure 4-5. A

real-world fabrication shop receives the raw material and fittings and fabricates them into spools.

The spools are then shipped to a module yard, assembled into modules, and shipped to the

construction site for final installation.

Figure 4-5: Production chain within the industrial construction federation

The industrial construction federation is broken down into federates in such a way that

each federate contains the largest possible number of interdependent processes, with minimal

dependence on other federates. The spool fabrication federate and module assembly federate are

coupled together through messages from module object instances. In order to give the module

Chapter 4- An Ontology-Driven Framework to Facilitate Reusability of Distributed Simulation Modeling

of Industrial Construction Processes

108

instances, the ability to flow as a regular simulation entity, and also an object instance, a module

carries two identities at the same time: (1) it is a proxy entity that can be transferred to other

traditional simulation elements and (2) it is an object instance that can be communicated between

different federates. When all the spools belonging to a particular module have been fabricated,

they are shipped to the module yard. When other necessary resources are available, module

assembly can start. What happens within and between federates is shown in Figure 4-6.

Figure 4-6: Unified Modeling Language (UML) description federates’ interaction

The COSYE modeling elements described before feature the most common functions

needed to develop a distributed-simulation model within the process-interaction world view.

These elements are customized to better serve the simulation of the industrial construction

domain by adding additional behaviours. In the following, the fabrication process elements are

explained and a spool fabrication federate is developed utilizing these elements. The federate

models a scenario of pipe spool fabrication processes (Figure 4-7). The elements’ detailed

description and their code is attached in Appendix III.

Chapter 4- An Ontology-Driven Framework to Facilitate Reusability of Distributed Simulation Modeling

of Industrial Construction Processes

109

Register Modules by Interval: The Register element registers a quantity number of module

entities and passes them along to the destination element. (Module entities are module object

instances; the module object class and its attributes are shared between the fabrication shop

federate and module assembly federate through the industrial construction FOM.) The first

module object instance is registered at time zero, and the subsequent object instance will be

registered at a specified time interval.

Update Module Attributes: Through the Update element, the attribute values of module object

instances are initialized. In this element, the initial attribute values are assigned to each module

object instance. Attributes are as follows:

- Total number of spools (the attribute value is a sample of a triangular distribution).

- Total number of fabricated spools (equal to zero at the start of the simulation process).

- State of module instance (fabrication shop at the start, then module yard followed by site

construction).

- Component ready time (the time at which all the spools of a module instance have been

fabricated and the module is ready to be assembled).

- Modules assembly priority is used for the fabrication process. All of these attributes can

be communicated to other federates that require the information.

Figure 4-7: Fabrication shop federate developed in Simphony environment using COSYE elements

Chapter 4- An Ontology-Driven Framework to Facilitate Reusability of Distributed Simulation Modeling

of Industrial Construction Processes

110

Reflect: Due to changes in module assembly or field construction, the order of module

installation and subsequently the priority of assembling a module might change. In these cases

the initial priority is updated in the module assembly federate, which will be updated in the

fabrication federate through the Reflect element.

Create Spool for Module, Create Spool Components: This element receives the module entity,

and for each module creates a corresponding number of spools, including their physical

configurations and attributes.

Dispatch: This element sends the entities to the appropriate destination element, based on the

entity’s properties.

Fabrication Station: This represents any type of work station that material or spool components

go through during the fabrication process. The processes are cutting, roll and position fitting, roll

and fixed welding, and quality control and hydro test. Entities are sent to different stations based

on their properties, even when the process is the same. For instance, spool components with a

different diameter size (small, intermediate, large) will each go to a different fitting station.

Handling: This element models the handling process in fabrication, either between work stations

and lie-down areas or out of the fabrication shop. The element supports two types of handling:

manual or crane.

Assembler: This element keeps track of spool components; it collects from one spool all the

components that have gone through roll fitting and welding and sends the spool to the final stage

of assembly.

Modules Assembler: The function of this element is similar to the assembler element, but

operates for spools that belong to the same module. When all the spools of one module are

available, this element updates and sends the module attributes to the RTI for the module

assembly federate to use.

Chapter 4- An Ontology-Driven Framework to Facilitate Reusability of Distributed Simulation Modeling

of Industrial Construction Processes

111

From composition of instances of these elements, spool fabrication federate is built. The

federate serves as one of the simulation federates of the entire industrial construction federation.

4-6 Discussion on Component-based Industrial Construction Distributed model

Assembling simulation models from reusable elements brings more flexibility, ease and,

more importantly, reusability to developing large-scale distributed simulation models. Here are

more specific outcomes of this approach:

Component-based simulation modeling has generally known advantages. Such as:

• It allows for building a complex simulation model from aggregating reusable elements.

• It makes understanding a model easier, even for non-modellers

• It facilitates verification and validation of the model through element unit testing

Increased reusability scope in the distributed simulation modeling environments: At the

simulation level, traditionally each federate is regarded as an atomic object and its reuse within

the federates is not taken into consideration. Within our approach federates are built from

reusable components which speeds up their development and makes it more structured.

4-7 Summary and Conclusion

This chapter described an ontology-driven framework for developing distributed

simulation modeling of construction processes. The use of an ontological modeling framework

has been shown through mapping different ontological components with process modeling

concepts, which provide effective yet simple rules for sharing information between simulation

ontological components. This technique is used to extract the needed information from the

construction process ontology into simulation representation components. Another use of

ontologies is discussed through element identification for an element-based environment within a

Chapter 4- An Ontology-Driven Framework to Facilitate Reusability of Distributed Simulation Modeling

of Industrial Construction Processes

112

distributed environment. In both of these cases, reusing existing information and modeling

elements within the distributed simulation modeling environment leads to enhanced reusability,

which results in a more efficient development process and provides a more sustainable

mechanism for developing distributed construction simulation models.

4-8 References

AbouRizk, S., 2006. Collaborative Simulation Framework for Multi-user Support in

Construction. Discovery Grant Proposal, Edmonton, Alberta, CA.

Abourizk, S., and Mohamed, Y. 2002. Optimal construction project planning. Winter Simulation

Conferonce.

AbouRizk, S., Mohamed, Y., Taghaddos, H., Saba, F., and Hague., S. 2010. Developing

complex distributed simulation for industrial plant construction using high level architecture.

42th Winter Simulation Conference.

AbouRizk, S., and Mohamed, Y. 2000. "Simphony: An integrated environment for construction

simulation", 32th Winter Simulation Conference. 1907 - 1914

Baqai, A., Siadat, A., Dantan, J. Y. and Martin, P. 2008. "Use of a manufacturing ontology and

function-behaviour-structure approach for the design of a reconfigurable machine tool",

International Journal of Product Lifecycle Management 3 (2): 132-50.

Barrie, D.S. and Paulson, B.C. 1992. "Professional Construction Management, Including

C.M., Design Construct, and General Contracting", 3rd ed. New York: McGraw-Hill,

Inc.

Benjamin, P., Akella, K. V., Malek, K., and Fernandes, R. 2005."An ontology-driven

framework for process-oriented applications". 37th conference on Winter simulation, 2355-

2363.

Defense Modeling and Simulation Office (DMSO). 1999. "High level architecture: Federation

development and execution process (FEDEP) model".

El-Gohary, N. M., and El-Diraby. T. E. 2010. "Domain ontology for processes in infrastructure

and construction". Journal of Construction Engineering and Management, 269-283

Chapter 4- An Ontology-Driven Framework to Facilitate Reusability of Distributed Simulation Modeling

of Industrial Construction Processes

113

Gruber, Thomas R. 1995. "Toward principles for the design of ontologies used for knowledge

sharing". International journal of human computer studies, 43 (5-6) (December): 907-928.

Hajjar, D., and AbouRizk, S. 1999. "Simphony: An environment for building special purpose

construction simulation tools". 31th Winter Simulation Conference, 998-1006.

Halpin, D. W., Jen, H. and Kim., J. 2003. "A construction process simulation web service". 35th

Winter Simulation Conference, 1503-1509.

IEEE 2000. Std 1516.2. 2000. Standard for modeling and simulation (M&S) high level

architecture (HLA) - object model template (OMT) specification.

Kelin, U., Schulze, T. and Strassburger, S. 1998. "Traffic simulation based on the high level

architecture". 30th Winter Simulation Conference, 1095-1104.

Kuhl, F., Weatherly, R. and Dahman., J. 1999. "Creating computer simulation systems: An

introduction to the high level architecture", Englewood Cliffs, NJ: Prentice Hall.

Lacy, L. W. 2005a. PIMODES. 37th Winter Simulation Conference (Doctoral Symposium).

Lacy, L. W. 2005b. "PIMODES". Fourth International Semantic Web Conference Doctoral

Symposium. Galway, Ireland.

Lee, J., Lee, M., and Chi, S., 2003. "DEVS/HLA-based modeling and simulation for intelligent

transportation systems". Simulation 79 (8) (August 01): 423-39.

Martin, P., and Dacunto, A. 2003. "Design of a production system: An application of integration

product-process". International Journal of Computer Integrated Manufacturing, 16 7 (8):

509-16.

Mohamed, Y., Borrego, D., Francisco,L., Al-Hussein,M., Abourizk,S. and Hermann, U. 2007.

"Simulation-based scheduling of module assembly yards: Case study". Engineering,

Construction and Architectural Management 14 (3): 293-311.

Protégé (2006), "Protege an free open source ontology editor and knowledgebase framework",

Stanford University, Standord University School of Medicine, Stanford Medical Informatics,

California, USA Available at: protege.stanford.edu.

Radeski, A., Parr, S., Keith-Magee, R., and Wharington, J., 2002. "Component-based

development extensions to HLA". Spring Simulation Interoperability Workshop, Paper ID

02S-SIW-046, March 2002.

Chapter 4- An Ontology-Driven Framework to Facilitate Reusability of Distributed Simulation Modeling

of Industrial Construction Processes

114

Rathnam, T., and Paredis, C. J. J. 2004. "Developing federation object models using ontologies".

preceeding of the 2004 Winter Simulation Conference, 36th Winter Simulation Conference,

1054–1052.

Sadeghi, N., and Robinson Fayek, A. 2008. "A framework for simulating industrial construction

processes". 40th Winter Simulation Conference, Miami, Florida, 2396-2401.

Scharffe, F., and Fensel, D. 2008."Correspondence patterns for ontology alignment". Knowledge

Engineering: Practice and Patterns: 83-92.

Silver, G. A., Lacy, L. W. and Miller J. A. 2006. "Ontology based representations of simulation

models following the process interaction world view". 38th Winter Simulation Conference,

55-63.

Tolk, A., and Turnitsa, C. D. 2007. "Conceptual modeling of information exchange requirements

based on ontological means". 39th Winter Simulation Conference, 1100-1107.

Wang, P., Mohamed, Y. and AbouRizk, S. 2005. "Production-based large scale simulation

modeling for construction projects". 33rd CSCE Annual Conference.

Wang, P., Mohamed, Y. and AbouRizk, S., and Rawa., A. R. T. 2009. Flow production of pipe

spool fabrication: Simulation to support implementation of lean technique. Journal of

Construction Engineering & Management, 135 (10) (10): 1027-1038.

Benjamin, P., Erraguntla, J . Delen, D. and Mayer, R., 1998, "Simulation modeling at multiple

levels of abstraction". In Proceedings of the 1998 Winter Simulation Conference. 391 - 398

Benjamin, P., M. Patki, and R. Mayer. 2006. "Using ontologies for simulation modeling". In

Proceedings of the Winter Simulation Conference, 1151 - 1159..

115

Chapter 5

A Semantic Approach to Representation, Sharing

and Discovery of Construction Simulation

Models

1 Parts of Chapter 5 has been submitted to Construction 2012 Research Congress

5-1 Introduction

Simulation modeling is an effective tool for analyzing construction operations and

supporting the decision-making process (Halpin et al. 2003). Simulation model development

consumes lots of time and resources. The models are the result of extensive knowledge

acquisition in different domains: knowledge of construction, and simulation modeling techniques

and tools. When the model is used for its initial intention, its reuse is not straightforward, mostly

because the process of finding the appropriate modelling components for reuse has not yet been

addressed (Aronson and Bose 1999, Chreyh and Wainer 2009). This problem can be traced back

to the accessibility and availability of models and their content (e.g., simulation components and

their behaviour) for simulation, which so far has not been addressed, especially in the

construction domain.

Chapter 5- A Semantic Approach to Representation, Sharing and Discovery of Construction Simulation Models

116

With internet technology advances, simulation models can be shared in repositories and

distributed over the web, while with efficient web discovery services, the knowledge residing

within them can be extracted. This advancement has not yet been introduced to the construction

industry. In order to share construction simulation models and facilitate meaningful discovery on

the Web, simulation models including model features and model behaviour must be represented

in an appropriate format, one that the semantic web can process. Sharing and discovering

simulation models is richer when the models are properly linked to other useful and relevant

sources of information (e.g., maps, different documents and spread sheets, drawings, images,

video and audio files).

The innovative architecture presented in this chapter blends semantic web technologies

and construction simulation models presented in machine interpretable metadata for storing,

sharing, and discovering construction simulation models and properly linking them to their

related information sources. This environment utilizes semantic web technology which has been

used for resolving similar challenges such as reusability, composability, and interoperability of

resources within the WWW. The goal is to adapt such techniques into the construction

simulation world.

The next section presents a brief background about the use of semantic web and its use in

simulation. This is followed by our methodology to apply semantic web techniques and

technology in construction simulation modeling. Afterwards, the main research efforts are

presented, including a semantic representation of simulation models with the aim of easy

discovery and reuse of simulation model components. We also introduce a semantic web-based

environment which supports storage of simulation models and knowledge extraction and

discovery. Then the prototype is presented and, finally, the summary and future works are

discussed.

Chapter 5- A Semantic Approach to Representation, Sharing and Discovery of Construction Simulation Models

117

5-2 Semantic Web

The semantic web is revolutionizing the World Wide Web. It describes methods and

technologies to allow machines to understand the meaning or "semantics" of information on the

WWW. The traditional web is just about displaying information. It lacks the semantics

underpinning for meaningful sharing and discovery of resources. Data, information, and

knowledge-sharing are more prolific on the semantic web because they can be linked to relevant

sources across the web.

The semantic web is a network of data described and linked in ways to establish content

or semantics, which enables machines to be able to interpret the data and act upon the web

content. This enables more efficient searching, sharing, and information combinations.

The semantic web consists of different types of statements that allow for the formation of

rich expressions, and also for simplified integration and sharing, enabling inference, and

extraction of meaningful information. The semantic web content is made up of resources which

are linked through relationships.

The languages and technologies that comprise the semantic web are shown in semantic

web stack (Figure 5-1). The bottom layer contains foundation technologies of the hypertext web,

which are also the basis for the semantic web; Unicode, Uniform Resource Identifier (URI), and

XML are technologies used for character encoding, resource indexing, and syntax for data

serialization. RDF, RDF Schema (RDF-S), OWL, SPARQL, and Semantic Web Rule Language

(SWRL) are standardized technologies used for enabling semantic web applications, including

functions for description, rule setting, and querying.

Chapter 5- A Semantic Approach to Representation, Sharing and Discovery of Construction Simulation Models

118

Figure 5-1: Semantic Web Stack (adapted from w3.org)

5-2.1 Semantic web languages: XML

Unlike standard text files or HTML web pages, eXtensible Markup Language (XML) is

not only about a form of display, it also contains content representation encoding.

XML is a simple but flexible mark-up language. An XML document contains mark-up

and content, where mark-up is the means to add structure and syntax to the data by allowing

users to create their own tags. Within XML, elements are data containers which may contain

nested elements. Furthermore, elements can include an attribute, which is an explanation about

the element content.

The fact that the user is able to create her own data structure makes the language flexible,

but the structure is still not machine interpretable and is easily prone to errors. That is solved by

another document called schema, which is the description of the XML structure within a set of

rules to which an XML document must conform in order to be considered valid according to that

schema.

The structured data through XML tags can be employed to exchange data across

information systems that may had been built upon different platforms.

Chapter 5- A Semantic Approach to Representation, Sharing and Discovery of Construction Simulation Models

119

5-2.2 Semantic web languages: RDF

XML is used for structuring information, while RDF is used for conceptually describing

or modeling the information. RDF (Resource Description Framework) accepted by World Wide

Web Consortium (W3C) to standardize information stored on the Web. RDF uses a labelled

graph data format for representing information on the Web.

The RDF statements, consisting of triples (subject, predicate, object), form graphs and the

nodes, represent either the subject, object, or predicate. Where the subject refers to the resource

and can be represented by a Uniform Resource Identifier (URI), the predicate refers to the

resource’s features or characteristics and expresses the relationship between the resource and the

object. Finally, the object is a resource or a string.

RDF-S is an extension to RDF to support the expression of structured information. It

provides an ontology representation language which has been widely used.

5-2.3 Semantic web languages: OWL

OWL builds upon RDF-S and provides greater expressivity in the description of concepts

and relationships. The OWL expressiveness allows different domain knowledge modeling, (i.e.,

ontologies). Ontologies provide formal methods for describing the concepts, categories, and

relationships within a domain (McGuinness and Harmelen 2004). OWL supports expressing

cardinalities, hierarchical properties, and capabilities of properties (e.g., transitive, symmetric). It

has three versions with different expressivity: OWL-Lite, OWL-DL and OWL-Full.

5-2.4 Semantic web languages: RDF Query Language (SPARQL)

SPARQL is a declarative language that the W3C recommends for extracting information

from RDF graphs using queries across diverse data sources.

Chapter 5- A Semantic Approach to Representation, Sharing and Discovery of Construction Simulation Models

120

SPARQL has four query forms: SELECT, CONSTRUCT, ASK, and DESCRIBE. These

query forms use pattern matching to form result sets or RDF graphs. SELECT returns matching

triples with the query. CONSTRUCT returns an RDF graph. ASK returns a Boolean indicating

whether a query pattern matches or not, and DESCRIBE returns an RDF graph that describes the

found resources. Result sets can also be serialized into either XML or RDF.

5-3 Related Work

The semantic web brings with it new ways of thinking about modeling and new methods

and tools (Taylor 2011). The following are some of the instances of use of semantic web

techniques and technologies in simulation and modeling.

Ontologies have been proposed to represent knowledge about simulation modeling

domains. The first simulation ontology is Discrete Event Model Ontology (DeMO) which is a

comprehensive Discrete Event Simulation (DES) ontology containing templates which capture

knowledge of different simulation world views such as activity-oriented, event-oriented, state-

oriented and process-oriented (Fishwick and Miller 2004). This ontology is a suitable resource

for obtaining a comprehensive understanding of DES.

The Process Interaction Modeling Ontology for Discrete Event Simulations (PIMODES)

is another simulation ontology by Lacy (2005b, 2005c), which is built specifically for the process

interaction world view, a popular paradigm for representing DES. PIMODES is heavily

influenced by popular software packages such as Arena, AnyLogic, and ProModel. This makes

it easy to connect PIMODES to software packages. PIMODES can be used for an ontology-

based representation of models which facilitates the interchange of simulation models between

different simulation packages. Sliver et. al (2007) suggested a technique to establish links

between domain ontologies and simulation ontologies and use these relationships to instantiate a

simulation model. Lozano et. al (2009) presented a semantic approach to simulation component

identification and discovery. They used Simulation Reference Mark-up Language (SRML)

Chapter 5- A Semantic Approach to Representation, Sharing and Discovery of Construction Simulation Models

121

documents to search through a simulation repository of Base Object Models (BOM). BOM is a

Simulation Interoperability Standards Organization (SISO) standard for conceptual modeling

documentation. It provides a formal way to capture and share conceptual simulation

documentation (Gustavson 1998). Moradi et al. have investigated ontological BOM discovery

and composition for building new models (Moradi et al. 2007). Fishwick recently proposed

hypermodeling, the general theory and practice of linking system models and their components

(2011).

One of few efforts in the construction domain towards using web services has been made

by Halpin et. al (2003). They have used web-based simulation modeling for simplified access to

a construction simulation modeling tool, providing different levels of interface for people at

different levels of simulation and domain knowledge. However, this work certainly does not seek

to take advantage of the semantic web.

Within this chapter, the goal is to borrow semantic web techniques and technology and

apply them to construction simulation modeling. Within this adaptation, a new representation is

given to simulation models through the use of semantic mark-up languages. Using query

capabilities of semantic mark-up languages, the knowledge and information within simulation

models can be retrieved and processed. Within the proposed representation, the simulation

models and their components can become connected to relevant and useful sources of data and

information on the web. The semantic web technology brings other advantages regarding

reusability, composability, and interoperability to construction simulation models, which are

discussed later in the chapter.

5-4 Adaptation of Semantic Web into Construction Simulation Modeling

Adapting semantic web techniques and technologies has significant effects on modeling,

discovery, composition, interoperability and reuse of simulation models. In order to be able to

apply these techniques to existing construction engineering simulation models developed in

Chapter 5- A Semantic Approach to Representation, Sharing and Discovery of Construction Simulation Models

122

conventional construction simulation modeling tools, some pre-work on models is needed, as

follows:

1- Model representation: Any storing, sharing, and discovery in the semantic web is highly

dependent on the model’s structure and encoding. As mentioned before, information

encoded within semantic mark-up languages such as XML, RDF, or OWL is semantic

web readable. The coming section explains how the XML text view of models developed

in Simphony (A special purpose simulation modeling tool) is used as the basis for the

semantic representation of simulation models of construction operations.

2- Model content: The acquired models need enhancement both in representation and

content. The XML text view of models contains a full description of the modeling

elements and their input and output properties, along with the relationships within the

elements. But it does not provide essential big picture information about the model. This

information is important for sharing and discovery purposes and is added to the model

through a separate section in the XML model description, the model “profile.”

3- Linking the relevant sources of data and information: An important aspect of the

semantic web is proper linking to relevant information. Simulation models are always

built based on vast amounts of knowledge coming from conceptual models and

documents containing input data. The sources are included in the repository through

linking them to the model. The linking is cited in the added “profile” section.

4- Outcomes of semantic web adaptation in construction simulation modeling encompass a

wide range of enhancement in reusability, composability, and interoperability. Tangible

examples of knowledge extraction through SPARQL queries are discussed later.

Chapter 5- A Semantic Approach to Representation, Sharing and Discovery of Construction Simulation Models

123

5-4.1 Simulation modeling representation

Documenting simulation models with the aim of easy discovery and reuse requires well-

arranged structured and formalized simulation model representation. Three simulation views are

available for a simulation model:

- Graphical view, which is generated by a Graphical User Interface (GUI) and is the most

convenient view for the end user.

- Code view: The behaviour of simulation elements is customized through writing code in

visual basic or C#.

- XML text view: Provides the experimental frame of the model, including textual

description of elements along with input and output results in Extensible Mark-up

Language (XML). This view has been provided to facilitate data-storage in simulation

modeling tools and at the same time it provides a human-legible format of data and meta-

data of simulation models.

None of these views has been formatted towards proper sharing and discovery of

knowledge about models and their components. Considering that our primary goal is to use

existing resources instead of creating and suggesting a completely new model representation for

the purpose of proper sharing and discovery, the XML view has been the best candidate for

semantic representation of simulation models. It can be used as the starting point and enhanced

to a higher level for richer semantic representation.

The approach taken in this chapter is to use the existing textual XML format, which is

easily storable and readable, and with minor changes and add-ons show its potential for the

purpose of meaningful sharing and model discovery. Hence, the changes should be applied

towards the simulation document’s content and format.

At first general information about model, which are missing but are vital for discovery,

should be added to the model, this part is done through different profiles. Moreover meaningful

Chapter 5- A Semantic Approach to Representation, Sharing and Discovery of Construction Simulation Models

124

tags and relationships should be added to the models and their syntax should be transformed

XML to more sophisticated semantic web languages such as RDF and OWL, which are used for

semantic web development.

In the following Simphony (Hajjar and AbouRizk 1999), the used simulation modeling

tool, with emphasis on its XML representation is introduced. Then the suggested semantic

enrichment and formatting changes are discussed in order to prepare the representation for

sharing and discovery purposes. Finally, the discovery process is presented.

5-4.1.1 Simphony

Simphony is a simulation platform for building construction domain templates and

models. Similar to most of process simulation tools, Simphony employs a common three layer

architecture. The first layer is the Graphical User Interface (GUI), the second provides process

simulation domain objects, and the third provides the simulation services containing the

simulation engine, storage, and communication.

The main layer which the simulation developer is dealing with contains GUI and the

simulation elements. A simulation model built in Simphony is composed of a number of

instances of modeling elements that tbe modeller drags from the modeling element library into

the modeling layout. The modeller then links them together in order to build the relationships.

Each of these modeling elements has its own behaviour that produces different events through

input and output and statistics variables. The elements are members of templates which are

collections of elements serving the same construction domain. The model XML document

contains brief information about the model and the templates used in building the model. Then it

contains the list of elements <Elements> taking part in the simulation model along with their

attributes and graphical representation information. At the end, it provides information about the

interconnection between the elements <Relationship>. Figure 5-2 summarizes the model’s

specifications. These specifications can be stored in XML format. The XML view of the model

Chapter 5- A Semantic Approach to Representation, Sharing and Discovery of Construction Simulation Models

125

provides a neutral and implementation-independent version of the model in human and machine

readable format, which has the potential to be exchanged between applications. Simphony can

provide the XML view of the simulation model; however the schema has not been developed

with interoperability purposes in mind. But still, the XML representation has been used as the

starting point of developing the formal ontology of Simphony models with some modifications

and add-ons to the document.

The first stage of modifications is minor document clean up, because the model’s XML

document is the result of model execution; it contains details which are least important for

knowledge search and discovery within models.

Figure 5-2: Simphony Model Representation

General and specific information about the model should be added to simulation models,

mainly because the information provides a unique description for each simulation model. This

distinguishes them from other simulation models and also more semantic weight to simulation

models.

In the following section, the suggested semantic enrichment of the simulation document

is explained.

Chapter 5- A Semantic Approach to Representation, Sharing and Discovery of Construction Simulation Models

126

5-4.2 Semantic enrichment of construction simulation models (modeling content and

proper linking)

BOMs are the only form of structured modeling documentation developed by the military

simulation community. Modeling documentation has been investigated in the military domain

more than in any other domains, because military simulations are often large-scale models and

this makes structured documentation more crucial (Robinson 2006).

As the only reference for modeling documentation, the BOM documentation process has

been investigated. BOM documentation is used for conceptual modeling documentation. It is

carried forward as simulation components through the development process. The first step is

discovering the patterns within the processes and leveraging them into BOM meta-data. The

events and entities are mapped to the interface describing the specific class structures (Gustavson

and Chase 2007). The meta-data consist of the identification model, conceptual model definition,

modeling mapping, and object modeling definition. General information about each component

is stored in model identification and the rest of model is conceptual model representation through

capturing the patterns of interplay within the domain. In construction modeling, the pattern of

process is usually expressed through process modeling (Figure 5-3).

Figure 5-3: The BOM structure (adapted from BOM standard, 2006)

Chapter 5- A Semantic Approach to Representation, Sharing and Discovery of Construction Simulation Models

127

Within our approach we have tried to enhance the existing simulation textual

documentation with insight from BOMs without discarding the existing Simphony

documentation. The XML text view of models heavily documents the graphical representation of

model and also modeling elements and their input and output parameters and relationships, but

nothing about their simulation role. For instance, in a simulation document through the XML tag,

a particular simulation component is identified as a simulation element but there are no tags

regarding the content of the element if the element is presenting a process, resource or product.

That is because the simulation application has another component which has remained untouched

in the current simulation documentation. This part is the simulation world view which provides

the means to model the domain knowledge within process-oriented concepts. The current

research tries to briefly introduce this component to simulation documentation.

In the construction, application processes are usually modeled based on the process-

oriented world view. Through many developed models that world view has demonstrated that it

is capable of representing construction operations (Figure 5-4).

Figure 5-4: Process Modeling of Construction Processes

As an initial attempt to add semantic content to the model, the main process-oriented

concepts including Process, Product, and Resource (PPR tagging) are added to the model. The

Chapter 5- A Semantic Approach to Representation, Sharing and Discovery of Construction Simulation Models

128

tags give more expressiveness to the model and they can simply get linked to other process-

oriented applications. More importantly, the model can be compared to ontologies of the

domain-conceptual model. Linkage to conceptual models can bring to model composition and

interoperability new opportunities, such as comparison and verification with other sources. These

are discussed later.

5-4.2.1 Adding new content to simulation models through model profiles

According to standard modeling documentation, model identification is an essential

component. The information includes what the modeling component simulates, how it has been

used, and descriptions aiming towards helping users to find and reuse the model. Other

information such as intended application domain, the component’s purpose, use history, and use

limitation are parts of the meta-data. The profile also includes references to other documents

(e.g., an OWL document).

The current Simphony documentation has a few components such as the name of the

simulation model and the required templates in the model. But following BOM, more profile

information is indispensable for sharing and efficient search and discovery.

A Profile is a descriptor of the simulation model which gives the simulation model’s brief

individual identity and facilitates model discovery. The simulation profile has three main

categories: General profile, Descriptive Profile and Implementation Profile (Table 5-1).

Table 5-1: Profile of Simulation Model Documentation
Profile Purpose

General Profile Basic identification information

Descriptive Profile More specific information

Implementation profile Related to implementation of the model

The “General Profile” components capture basic identification information about a simulation

model, including the name which is assigned to the model, the model developer’s name, and the

simulation model’s modification date and version (Table 5- 2).

Chapter 5- A Semantic Approach to Representation, Sharing and Discovery of Construction Simulation Models

129

Table 5-2: General Profile Descriptors
Profile component Profile component Description

General Profile

Name of Model Name assigned to the model

Model Developer Name of developer & contact information

Modification Date Date of modification

Version Version of the model

The “Descriptive Profile” component provides more specific information about the simulation

model. The model’s application domain is specified and more detailed specifications, such as the client or

modeling case, are provided. Finally, the ontologies related to the model are stated (Table 5- 3).

Table 5-3: Descriptive Profile Descriptors
Profile component Profile component Description

Descriptive Profile

Application Domain Which construction operation the model is

presenting, for example spool fabrication.

Description A brief description of modeling purpose.

Ontologies Ontolgies related to the model.

The “Implementation Profile” component provides information related to implementing

the simulation model. A few components are about the version of the simulation tool (Simphony)

and the rest present the simulation model or XML document URI and the model’s location. In

Simphony, multiple templates can be used for developing one model. The required template

component provides the link to those sources. Another thing is that in most simulation models,

the data comes from a database. In document dependencies, the location of those documents is

provided. Finally, if there are any software dependencies for model implementation is specified

at the end (Table 5- 4).

Table 5-4: Implementation Profile Descriptors

Profile component Profile component Description

About Simulation tool Software version and built.

Security classification Simulation content restrictions (0-5

rating).

URIs The URI where simulation model XML

document can be located for use.

Chapter 5- A Semantic Approach to Representation, Sharing and Discovery of Construction Simulation Models

130

Implementation Profile Location of the source model Name of developer & contact

information

Required templates The templates which the model is

dependent on.

Document dependencies The documents which the simulation

model is dependent for execution.

Software dependencies The software dependencies.

5-4.3 XML to RDF/OWL transformation

The XML to OWL transformation is implemented to make the simulation models

processable by semantic web tools and techniques. This is done through a basic mapping

between simulation models meta-data to the model ontology. As shown in the following Table 5-

5, the XML element is mapped to OWL class, XML attributes to RDF/OWL data-type property,

element instance to instance of the created class and the only relationship expressed in XML is

parent-child relationship is mapped to an object property.

Table 5-5: XML Document Transformation into RDF/OWL

XML model representation Model ontology representation

Element/tag name OWL class

Attribute OWL data-type property

Element instance Instance of created class

Parent-child relationship OWL Object property

After the XML to OWL transformation, simulation models and templates are imported to

the repository as RDF/OWL files. Owl:import is the basic primitive for reusing ontologies. The

imported ontology is not a “copy-and-paste” of the original ontology and any changes in the

import environment are reflected into the original one and vice-versa. An Example these models,

is presented in Appendix IV.

5-4.4 Repository of models

The construction modeling repository mainly contains simulation templates and models

and other relevant sources (Figure 5-5). Simulation templates contain a collection of elements

Chapter 5- A Semantic Approach to Representation, Sharing and Discovery of Construction Simulation Models

131

 PPR.png

Figure 5-5: Linking between simulation model components and other relevant sources

Chapter 5- A Semantic Approach to Representation, Sharing and Discovery of Construction Simulation Models

132

serving a particular construction simulation domain. The simulation templates’ description

consists of two parts: the template profile and belonging elements. Simulation models, on other

hand, are composed of modeling element instances which can be created from different

templates. Their description contains three parts: model profile; participating elements along

with their different parameters such as input and output parameter, and statistics and their

corresponding values; and the relationships between the elements. All these components reside

in the repository. Sharing and integrating them makes it possible to infer and extract meaningful

information through structuring queries. The discovery process focuses on three main areas:

1- Content of simulation models: Accessing the simulation models and their content is

inevitably important regarding both the use and reuse of models. The modeling content,

such as simulation components and their properties and relationships taking place in the

simulation model, can be dug out through the semantic web without the need for any

other application. The queries can be quantitative or qualitative.

2- Related sources of information: inquiring about other sources of information (e.g.,

domain ontologies, documents, spread sheet, videos) is possible through the cited links

within the simulation models.

3- Model interoperability with other sources: Accessing other sources is not just limited to

their URI, but can be extended to their content. This opens up new means for model

comparison and verification. For example, the semantics of the model can be verified

with the domain ontologies’ content.

Figure 5-6 summarizes the entire process of semantic representation and discovery of simulation

models.

Chapter 5- A Semantic Approach to Representation, Sharing and Discovery of Construction Simulation Models

133

Figure 5-6: Representation and discovery process of simulation models

5-4.5 Semantic repository for construction operations simulation modeling

The prototype repository of construction simulation models has been developed in order

to evaluate the discovery environment’s usability and performance. The simulation models are

stored within ontologies using RDF and OWL syntax and accessed through SPARQL queries.

The prototype repository, as shown in the following figures, contains 7 templates and 4 models..

The repository has been built using TopBraid Composer (TBC) (2010) and Protégé (2006) tools.

Figure 5-7 to 5-10 represent different repository members in TBC.

 Figure 5-7 shows different templates which are imported to the repository, Figure 5-8

depicts different components of a simulation element (PipeWorkStation) from an instance of

spool fabrication model built from spool fabrication template. As it is shown the

PipeWorlStation element is an instance of class element and has related inputs, outputs, files and

statistics.

Chapter 5- A Semantic Approach to Representation, Sharing and Discovery of Construction Simulation Models

134

 Figure 5-9 shows different elements of earth moving template. Figure 5-10 shows the

repository before and after importing a model into it. In 5-10-1 different modeling classes are

shown and in 5-10-2 different modeling classes are instantiated with tunneling model

components.

Figure 5-7: RDF graph representing the templates in the repository

Chapter 5- A Semantic Approach to Representation, Sharing and Discovery of Construction Simulation Models

135

Figure 5-8: RDF graph of spool fabrication model components

Chapter 5- A Semantic Approach to Representation, Sharing and Discovery of Construction Simulation Models

136

Figure 5-9: RDF graph of earth moving elements

Chapter 5- A Semantic Approach to Representation, Sharing and Discovery of Construction Simulation Models

(1)Modeling Class

Figure 5-11 presents the RDF graph

contains different components of model profile such as general, descriptive and implementation

profile and the values for the specific example.

A Semantic Approach to Representation, Sharing and Discovery of Construction Simulation Models

137

(2)Class instances for tunneling model

Figure 5-10: Snapshot of repository

11 presents the RDF graph for spool fabrication model profile. As

contains different components of model profile such as general, descriptive and implementation

profile and the values for the specific example.

A Semantic Approach to Representation, Sharing and Discovery of Construction Simulation Models

(2)Class instances for tunneling model

for spool fabrication model profile. As it is shown it

contains different components of model profile such as general, descriptive and implementation

Chapter 5- A Semantic Approach to Representation, Sharing and Discovery of Construction Simulation Models

Figure 5

A Semantic Approach to Representation, Sharing and Discovery of Construction Simulation Models

138

Figure 5-11: RDF graph of Models’ profile

A Semantic Approach to Representation, Sharing and Discovery of Construction Simulation Models

Chapter 5- A Semantic Approach to Representation, Sharing and Discovery of Construction Simulation Models

139

Table 5-6 contains some statistics on the repository and its different components. The

repository contains 7 templates and 4 models with the total number of 7995 RDF resources.

Table 5- 6: Construction Repository Statistics

It
em

 N
u

m
b

er

Name of Resource

T
y

p
e

o
f

re
so

u
rc

e
(m

o
d

el

o
r

te
m

p
la

te
)

N
am

es
p

ac
e

T
o

ta
l

n
u

m
b

er
 o

f

re
so

u
rc

es
 (

rd
fs

:R
es

o
u

rc
e)

N
u

m
b

er
 o

f
(o

w
l:

th
in

g
)

N
u

m
b

er
 o

f

(o
w

l:
D

at
at

y
p

eP
ro

p
er

ty
)

 Repository 7995 7042 327

1 Tunnelling_Model Model TunM 4457 4148 101

2 Tunnelling_Template_ Shaft_Construction Template TunT1 297 68 30

3 Tunnelling_Template _Support Template TunT2 305 74 31

4 Tunnelling_Template_ Tunnel Template TunT3 481 244 38

5 Tunnelling_Template_Weather_Generation Template TunT4 261 32 30

6 Earthmoving_Model Model EaM 356 109 41

7 Earthmoving_Template Template EaT 317 93 26

8 General_Template Template GT 447 212 32

9 Spool_Fabrication_Template Template FabT 321 95 27

10 Spool_Fabrication_Model_M1 Model FabM1 1378 1125 43

11 Spool_Fabrication_Model_M2 Model FabM2 1155 902 43

12 Related Documents Documents - 5 - -

In order to write queries, it is beneficial to be aware of the overall meta-data of the

ontology; however, despite regular query languages the queries could be written meta-data

oblivious. In this type of query, multiple variables are allowed in one query and the returned

results are based on the restrictions specified in the query. The logic behind this is that SPARQL

is an RDF query language. RDF documents are constructed based on triples. As long as the

variables are linked with each other through the triples, the unknown can be found through the

known components.

Table 5-7 contains sample queries expressed in SPARQL. The results are the matching

simulation components retrieved from the modeling repository. Table 5-8 shows Q6 query

syntax and results displayed in TBC. The rest of queries can be found in Appendix V.

Chapter 5- A Semantic Approach to Representation, Sharing and Discovery of Construction Simulation Models

140

Table 5-7: Queries for Knowledge Retrieval from the Repository

Query Explanation

Q1 What are the models and templates in the repository

and which domain do they belong to?

Repository content

Q2 What are “Descriptive Profile” properties and what

are the properties’ values for the “Spool

Fabrication” Model?

Profile of a model

Q3 Find the simulation component which has the

“Resource” role in the “Spool Fabrication” model.

And also “objects” in industrial construction

domain ontology under “resource”

Semantic role of simulation components and

comparison with linked data

Q4 Find simulation elements with “process” role which

contain inputs regarding “resources” in the “spool

fabrication” model.

Semantic role of simulation components

Q5 What are required templates for developing a

model of “Tunnelling operations”?

The query returns the URI of the supporting

documents.

Q6 What are the differences between two models of

“Spool Fabrication Shops”?

Comparing two ontologies through querying

two ontolgies at the same time through linking

resources.

Q7 In the properties of “tunnelling” profile and search

if there is any “document” related properties and if

there is what’s the document URI?

The result is the URIs of related documents.

Q8 Which models consider work shifts in their

simulation components?

Investigative queries to get to know the

simulation content.

Q9 Find the Simulation element instances in the

“Tunnelling model” which their output is involved

with Cost>30000.

Investigative queries to get to know the

simulation content.

Q10 Find the Simulation “work station” instances in

Spool fabrication which are operating with more

than 2 workers.

Investigative queries to get to know the

simulation content.

Table 5-8: Sample Query and Results in TBC

Query Result

Q6

Chapter 5- A Semantic Approach to Representation, Sharing and Discovery of Construction Simulation Models

141

5-5 Summary

The innovative approach presented in this chapter blends semantic web technologies and

construction simulation models for meaningful storage, sharing, and discovery of construction

simulation models. It also properly links the models to their related information sources. The

repository of simulation models contains three main components: composed models of

construction processes, templates containing simulation components, and related data and

information sources. Model discovery is achieved by the web service semantic search. Merging

the semantic web into the construction simulation modeling some of its outcomes are: i) easy

storage and accessibility of models, ii) knowledge extraction from simulation model content iii)

access to data and knowledge sources. The benefits of the semantic web have been briefly

investigated; there can be many other advantages to simulation model reuse, composability, and

interoperability.

5-6 References

Aronson, J., and P. Bose., 1999. “A Model-Based Approach to Simulation Composition”. In

SSR, edited by M. Jazayeri, A. Mili, and R. Mittermeir, 73–82

Chreyh, R., and G. Wainer., 2009. “CD++ Repository: An Internet Based Searchable

Database of DEVS Models and Their Experimental Frames”. In Proceedings of the Spring

Simulation Conference, edited by G. Wainer and M. Chinni, 13–21. San Diego, USA.

Bell, D., de Cesare, S., & Lycett, M., 2005. Semantic transformation of web services. In

OTM 2005—SWWS 2005, vol. 3662, 856–865.

BOM – Base Object Model. Web Site: http://www.boms.info/ Accessed November 2010

Berners-Lee, T., J. Hendler, and O. Lassila. 2001. “The Semantic Web”, Scientific

American, May 2001, 35-43.

Fishwick, P. A. and Miller, J. A., 2004, “Ontologies for Modeling and Simulation: Issues

and Approaches”, Proceedings of the 2004 Winter Simulation Conference, Washington, DC,

259-264.

Chapter 5- A Semantic Approach to Representation, Sharing and Discovery of Construction Simulation Models

142

Garcia Lozano, M., Moradi, F. Ibarzabal, E., and Tjörnhammar, E., 2007, “A Semantic

Approach to Simulation Component Identification and Discovery”, Proceedings of the 21st

European Modeling and Simulation Symposium

Gustavson, P., Chase T., 2007, “Building composable bridges between the conceptual space

and the implementation space”, Proceedings Winter Simulation Conference, 804-814

Halpin, D. W., Jen, H. and Kim., J., 2003, “A construction process simulation web service”,

Proceeding of 35th Winter Simulation Conference, 1503-1509

Hajjar, D., and AbouRizk, S., 1999, “Simphony: An environment for building special

purpose construction simulation tools”, Proceeding of 31th Winter Simulation Conference, 998 -

1006

Lacy, L. W., 2005a, “PIMODES”. 37th Winter Simulation Conference (Doctoral

Symposium).

Lacy, L. W., 2005b, “PIMODES”. Fourth International Semantic Web Conference Doctoral

Symposium. Galway, Ireland.

Protégé, 2010, ed: Stanford Center for Biomedical Informatics Research

McGuinness, D. L. and F. Harmelen., 2004, “OWL Web Ontology Language Overview”

[online]. Available via < http://www.w3.org/TR/owl-features/ >

Robinson, S. (2006). “Conceptual modeling for simulation: Issues and research

requirements”, Proceedings of the 2006 Winter Simulation Conference, 792 - 800

Robinson, S., Nance, R. E., Paul, R. J., Pidd, M. and Taylor, S. J. E, 2004, “Simulation

model reuse: Definitions, benefits and obstacles” Simulation Modelling Practice and Theory, vol.

12, no. 7–8, 479–494

Silver, G., O. Hassan, J. Miller., 2007, “From Domain Ontologies to Modeling Ontologies to

Executable Simulation Models”, In Proceedings of the 2007 Winter Simulation Conference,

1108 - 1117

Tolk, A., and Turnitsa, C. D., 2007, “Conceptual modeling of information exchange

requirements based on ontological means”, Proceeding of 39th Winter Simulation Conference,

1100-1107

TopBraid Composer, 2010, ed: TopQuadrant, Inc

W3C. XML., http://www.w3.org/TR/xml/, Accessed 2012-01-21

W3C. Semantic Web,http://www.w3.org/2004/OWL/, Accessed 2012-01-21

143

Chapter 6

Conclusion

The research described in the thesis was motivated by a lack of reuse and interoperability of

construction simulation models. Construction simulation models are knowledge intensive and are

built up on construction domain knowledge and simulation modeling knowledge. The objective

of this research was to capitalize on this embedded knowledge and effectively share and reuse it.

The research focuses on two main areas: capture and representation of construction processes

and simulation modeling, and simulation and modeling knowledge retrieval.

The study began by determining different simulation aspects in which modeling sharing and

reuse could be enhanced. The first was conceptual modelling, which is the representation means

of the acquired industrial construction knowledge. The second was the modeling development

process, while utilizing HLA-based distributed simulation modeling environment. The third was

reuse of the models that already are developed. Chapters 3, 4 and 5 consequently presented these

areas.

Chapter 2 presented the industrial construction domain and the models addressing the challenges

of the domain. In Chapter 3 the conceptual model of the industrial construction domain is

captured and formalized through its ontological model containing concepts’ hierarchies and

relationships between them for further extraction and reuse in the simulation development

process. Chapter 3 investigated reusability challenges through the modeling process, especially

Chapter 6- Conclusion

144

for the HLA-based distributed simulation modeling environments. In Chapter 5, the focus was on

facilitating the reuse of models by introducing a new means for accessing, sharing, presenting,

and discovering simulation models in a domain.

Thesis contributions:

1- Studying reuse through the entire simulation life cycle

This study for the first time utilized semantic web technology and techniques through the

entire life cycle of simulation modeling. It is expected that this research will initiate more

implementation of ontologies in the construction industry.

2- First attempt to formalize the industrial construction domain through ontologies.

The study introduced formalizing and structuring of the industrial construction domain

knowledge.

3- Sharing and reusing the captured domain knowledge within industrial construction

ontology for the use of applications.

This has been done through mapping related concepts to each other and ultimately

connecting industrial construction domain instances to simulation modeling element

instances.

4- Ontological approach towards facilitating reuse within distributed simulation modeling.

An ontological framework was utilized to facilitate a collaborative environment. An

example of this is shown for developing a federation object model, which is shared

between all the simulation modeling components (federates). Moreover, an element-

based development approach is employed for the distributed simulation model

components, to facilitate reuse through the development process.

Chapter 6- Conclusion

145

5- Using the semantic web for storing, sharing, and reuse and discovery of developed

construction models.

The innovative architecture blends semantic web technologies and construction

simulation models presented in a machine-interpretable metadata for storing, sharing, and

discovering construction simulation models and properly linking them to their related

information sources.

6-1 Recommendations for future work:

1- This research also provides a knowledge-based foundation through the entire life-cycle of

construction simulation modeling. Also, it is applicable for any knowledge-intensive

application.

2- In order to evaluate the industrial domain ontology, it should be put into use. The

ontology can be modified and extended according to new needs. The best practice for

accomplishing this is to provide the ontology of domain knowledge as a wiki for

interested parties. A wiki is a collaborative website designed to enable domain exports to

access and contribute or modify the website’s content. Important parts which have to be

added to the ontology are domain projects and lessons learnt in different areas. This will

lead to an invaluable source of knowledge for the construction industry.

3- The semantic web offers an important opportunity to compose simulation models from

existing simulation components. The simulation components stored in simulation

repositories can be discovered based on a specific simulation scenario and glued to each

other to build a simulation model. This is an interesting area to be investigated.

4- Linking models to related sources can be extended without limitations. Moreover the

access to these sources can easily exceed from their URLs to their contents. Shifting from

Chapter 6- Conclusion

146

a document to its content brings powerful features for model interoperability, discovery

and simulation models’ knowledge extraction process.

147

Appendix I

XML/RDF Source Code of InCon-Onto

<?xml version="1.0"?>

<!DOCTYPE rdf:RDF [

 <!ENTITY owl "http://www.w3.org/2002/07/owl#" >

 <!ENTITY swrl "http://www.w3.org/2003/11/swrl#" >

 <!ENTITY swrlb "http://www.w3.org/2003/11/swrlb#" >

 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >

 <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >

 <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >

 <!ENTITY protege "http://protege.stanford.edu/plugins/owl/protege#" >

 <!ENTITY xsp "http://www.owl-ontologies.com/2005/08/07/xsp.owl#" >

 <!ENTITY InCon "http://www.owl-ontologies.com/Ontology1291499709.owl#" >

]>

<rdf:RDF xmlns="http://www.owl-ontologies.com/Ontology1291499710.owl#"

 xml:base="http://www.owl-ontologies.com/Ontology1291499710.owl"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

 xmlns:swrl="http://www.w3.org/2003/11/swrl#"

 xmlns:protege="http://protege.stanford.edu/plugins/owl/protege#"

 xmlns:InCon="http://www.owl-ontologies.com/Ontology1291499709.owl#"

 xmlns:xsp="http://www.owl-ontologies.com/2005/08/07/xsp.owl#"

 xmlns:owl="http://www.w3.org/2002/07/owl#"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

 xmlns:swrlb="http://www.w3.org/2003/11/swrlb#"

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

 <owl:Ontology rdf:about=""/>

 <InCon:Construction_site rdf:about="&InCon;Access_path">

 <InCon:belonging_domain rdf:resource="&InCon;Tunneling_Construction_Operation"/>

 </InCon:Construction_site>

 <InCon:Management_product rdf:about="&InCon;As_built_drawing">

 <rdfs:subClassOf rdf:resource="&InCon;Drawing"/>

 <InCon:belonging_domain rdf:resource="&InCon;Construction_operation"/>

 </InCon:Management_product>

 <owl:Class rdf:about="&InCon;Aspect">

Appendix I- InCon-Onto XML/RDF Source Code

148

 <rdfs:subClassOf rdf:resource="&owl;Class"/>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="&InCon;is_an_aspect"/>

 <owl:someValuesFrom>

 <owl:Class>

 <owl:unionOf rdf:parseType="Collection">

 <owl:Class rdf:about="&InCon;Process"/>

 <owl:Class rdf:about="&InCon;Product"/>

 </owl:unionOf>

 </owl:Class>

 </owl:someValuesFrom>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="&InCon;has_scale"/>

 <owl:someValuesFrom rdf:resource="&InCon;Scale"/>

 </owl:Restriction>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:Class rdf:about="&InCon;Assembly">

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="&InCon;composed_of"/>

 <owl:someValuesFrom>

 <owl:Class>

 <owl:unionOf rdf:parseType="Collection">

 <owl:Class rdf:about="&InCon;Assembly"/>

 <owl:Class rdf:about="&InCon;Part"/>

 </owl:unionOf>

 </owl:Class>

 </owl:someValuesFrom>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf rdf:resource="&InCon;Industrial_construction_product"/>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="&InCon;is_accomplished_by"/>

 <owl:minCardinality rdf:datatype="&xsd;nonNegativeInteger">2</owl:minCardinality>

 </owl:Restriction>

 </rdfs:subClassOf>

 </owl:Class>

 <InCon:Machine_resouce rdf:about="&InCon;Auger_boring">

 <InCon:belonging_domain rdf:resource="&InCon;Tunneling_Construction_Operation"/>

 </InCon:Machine_resouce>

 <owl:Class rdf:about="&InCon;Bay">

 <rdfs:subClassOf rdf:resource="&InCon;Site"/>

 </owl:Class>

 <owl:ObjectProperty rdf:about="&InCon;belonging_aspect">

 <rdf:type rdf:resource="&owl;FunctionalProperty"/>

 <rdfs:domain rdf:resource="&InCon;Scale"/>

 <owl:inverseOf rdf:resource="&InCon;has_scale"/>

 <rdfs:range rdf:resource="&InCon;Aspect"/>

 </owl:ObjectProperty>

Appendix I- InCon-Onto XML/RDF Source Code

149

 <owl:ObjectProperty rdf:about="&InCon;belonging_domain">

 <rdfs:domain>

 <owl:Class>

 <owl:unionOf rdf:parseType="Collection">

 <owl:Class rdf:about="&InCon;Product"/>

 <owl:Class rdf:about="&InCon;Resource"/>

 </owl:unionOf>

 </owl:Class>

 </rdfs:domain>

 <rdfs:range rdf:resource="&InCon;Construction_operation"/>

 </owl:ObjectProperty>

 <InCon:Worker rdf:about="&InCon;Boilemaker">

 <InCon:belonging_domain rdf:resource="&InCon;Industrial_Construction_Operation"/>

 </InCon:Worker>

 <owl:Class rdf:about="&InCon;Building">

 <rdfs:subClassOf rdf:resource="&InCon;Geographic_resource"/>

 </owl:Class>

 <owl:Class rdf:about="&InCon;Building_zone">

 <rdfs:subClassOf rdf:resource="&InCon;Geographic_resource"/>

 </owl:Class>

 <InCon:Industrial_Construction_Operation rdf:about="&InCon;Cable_tray">

 <rdfs:subClassOf rdf:resource="&InCon;Module_assembly"/>

 </InCon:Industrial_Construction_Operation>

 <InCon:Worker rdf:about="&InCon;Carpenter">

 <InCon:belonging_domain rdf:resource="&InCon;Industrial_Construction_Operation"/>

 </InCon:Worker>

 <owl:ObjectProperty rdf:about="&InCon;composed_of">

 <rdf:type rdf:resource="&owl;TransitiveProperty"/>

 <rdfs:domain rdf:resource="&InCon;Assembly"/>

 <owl:inverseOf rdf:resource="&InCon;part_of"/>

 <rdfs:range>

 <owl:Class>

 <owl:unionOf rdf:parseType="Collection">

 <owl:Class rdf:about="&InCon;Assembly"/>

 <owl:Class rdf:about="&InCon;Part"/>

 </owl:unionOf>

 </owl:Class>

 </rdfs:range>

 </owl:ObjectProperty>

 <InCon:Industrial_Construction_Operation rdf:about="&InCon;Concrete_work">

 <rdfs:subClassOf rdf:resource="&InCon;Site_construction"/>

 </InCon:Industrial_Construction_Operation>

 <owl:Class rdf:about="&InCon;Construction_operation">

 <rdfs:subClassOf rdf:resource="&InCon;Process"/>

 </owl:Class>

 <owl:Class rdf:about="&InCon;Construction_product">

 <rdfs:subClassOf rdf:resource="&InCon;Product"/>

 </owl:Class>

 <owl:Class rdf:about="&InCon;Construction_site">

 <rdfs:subClassOf rdf:resource="&InCon;Site"/>

 </owl:Class>

 <InCon:Handling_resource rdf:about="&InCon;Crane">

 <InCon:belonging_domain rdf:resource="&InCon;Construction_operation"/>

 </InCon:Handling_resource>

 <InCon:Worker rdf:about="&InCon;Cutter">

Appendix I- InCon-Onto XML/RDF Source Code

150

 <InCon:belonging_domain rdf:resource="&InCon;Industrial_Construction_Operation"/>

 <InCon:is_involved_in rdf:resource="&InCon;Cutting"/>

 </InCon:Worker>

 <InCon:Industrial_Construction_Operation rdf:about="&InCon;Cutting">

 <InCon:has_aspect rdf:resource="&InCon;Duration"/>

 <InCon:has_aspect rdf:resource="&InCon;Productivity"/>

 <InCon:input rdf:resource="&InCon;Fittings"/>

 <InCon:input rdf:resource="&InCon;Pipe"/>

 <InCon:is_accomplished_by rdf:resource="&InCon;Cutter"/>

 <InCon:next_operation rdf:resource="&InCon;Fitting"/>

 <InCon:taking_place rdf:resource="&InCon;Cutting_station"/>

 <InCon:updating rdf:resource="&InCon;Spool_assembly"/>

 <InCon:use rdf:resource="&InCon;Cutting_machine"/>

 </InCon:Industrial_Construction_Operation>

 <InCon:Tool_resource rdf:about="&InCon;Cutting_machine">

 <InCon:belonging_domain rdf:resource="&InCon;Industrial_Construction_Operation"/>

 </InCon:Tool_resource>

 <InCon:Station rdf:about="&InCon;Cutting_station">

 <InCon:belonging_domain rdf:resource="&InCon;Industrial_Construction_Operation"/>

 <InCon:place_of_occurance rdf:resource="&InCon;Cutting"/>

 </InCon:Station>

 <InCon:Aspect rdf:about="&InCon;Depth">

 <rdfs:subClassOf rdf:resource="&InCon;Dimension"/>

 </InCon:Aspect>

 <InCon:Aspect rdf:about="&InCon;Dimension"/>

 <InCon:Aspect rdf:about="&InCon;Dimeter">

 <rdfs:subClassOf rdf:resource="&InCon;Dimension"/>

 </InCon:Aspect>

 <InCon:Industrial_Construction_Operation rdf:about="&InCon;Drafting">

 <InCon:has_aspect rdf:resource="&InCon;No."/>

 <InCon:input rdf:resource="&InCon;ISO_drawing"/>

 <InCon:next_operation rdf:resource="&InCon;Shop_fabrication"/>

 <InCon:taking_place rdf:resource="&InCon;Main_office"/>

 <InCon:updating rdf:resource="&InCon;Shop_order"/>

 </InCon:Industrial_Construction_Operation>

 <InCon:Management_product rdf:about="&InCon;Drawing">

 <InCon:belonging_domain rdf:resource="&InCon;Construction_operation"/>

 </InCon:Management_product>

 <InCon:Construction_site rdf:about="&InCon;Dumping_area">

 <InCon:belonging_domain rdf:resource="&InCon;Tunneling_Construction_Operation"/>

 </InCon:Construction_site>

 <InCon:Aspect rdf:about="&InCon;Duration">

 <InCon:is_an_aspect rdf:resource="&InCon;Cutting"/>

 <InCon:is_an_aspect rdf:resource="&InCon;Fitting"/>

 <InCon:is_an_aspect rdf:resource="&InCon;Hydro_testing"/>

 <InCon:is_an_aspect rdf:resource="&InCon;Painting"/>

 <InCon:is_an_aspect rdf:resource="&InCon;Position_welding"/>

 <InCon:is_an_aspect rdf:resource="&InCon;Quality_control_checking"/>

 <InCon:is_an_aspect rdf:resource="&InCon;Roll_welding"/>

 <InCon:is_an_aspect rdf:resource="&InCon;Shipping"/>

 <InCon:is_an_aspect rdf:resource="&InCon;Stress_relief"/>

 </InCon:Aspect>

 <InCon:Industrial_Construction_Operation rdf:about="&InCon;Earth_work">

 <rdfs:subClassOf rdf:resource="&InCon;Site_construction"/>

 <InCon:next_operation rdf:resource="&InCon;Concrete_work"/>

Appendix I- InCon-Onto XML/RDF Source Code

151

 </InCon:Industrial_Construction_Operation>

 <InCon:Industrial_Construction_Operation rdf:about="&InCon;Electrical">

 <rdfs:subClassOf rdf:resource="&InCon;Module_assembly"/>

 <rdfs:subClassOf rdf:resource="&InCon;Site_construction"/>

 </InCon:Industrial_Construction_Operation>

 <owl:Class rdf:about="&InCon;Employee">

 <rdfs:subClassOf rdf:resource="&InCon;Human_resouce"/>

 </owl:Class>

 <InCon:Industrial_Construction_Operation rdf:about="&InCon;Equipment">

 <rdfs:subClassOf rdf:resource="&InCon;Module_assembly"/>

 <InCon:next_operation rdf:resource="&InCon;Piping"/>

 </InCon:Industrial_Construction_Operation>

 <InCon:Construction_site rdf:about="&InCon;Equipment_storage_area">

 <InCon:belonging_domain rdf:resource="&InCon;Tunneling_Construction_Operation"/>

 </InCon:Construction_site>

 <InCon:Management_product rdf:about="&InCon;Erection_order">

 <InCon:belonging_domain rdf:resource="&InCon;Industrial_Construction_Operation"/>

 </InCon:Management_product>

 <InCon:Shop_floor rdf:about="&InCon;Fabrication_shop">

 <InCon:belonging_domain rdf:resource="&InCon;Industrial_Construction_Operation"/>

 <InCon:place_of_occurance rdf:resource="&InCon;Quality_control_checking"/>

 <InCon:place_of_occurance rdf:resource="&InCon;Shipping"/>

 <InCon:place_of_occurance rdf:resource="&InCon;Shop_fabrication"/>

 <InCon:place_of_occurance rdf:resource="&InCon;Stress_relief"/>

 </InCon:Shop_floor>

 <InCon:Industrial_Construction_Operation rdf:about="&InCon;Fire_profing">

 <rdfs:subClassOf rdf:resource="&InCon;Module_assembly"/>

 <InCon:next_operation rdf:resource="&InCon;Module_preparation"/>

 </InCon:Industrial_Construction_Operation>

 <InCon:Industrial_Construction_Operation rdf:about="&InCon;Fitting">

 <InCon:has_aspect rdf:resource="&InCon;Duration"/>

 <InCon:has_aspect rdf:resource="&InCon;Productivity"/>

 <InCon:input rdf:resource="&InCon;Fittings"/>

 <InCon:input rdf:resource="&InCon;Pipe"/>

 <InCon:input rdf:resource="&InCon;Spool_assembly"/>

 <InCon:is_accomplished_by rdf:resource="&InCon;Pipe_fitter"/>

 <InCon:next_operation rdf:resource="&InCon;Roll_welding"/>

 <InCon:taking_place rdf:resource="&InCon;Fitting_station"/>

 <InCon:updating rdf:resource="&InCon;Spool_assembly"/>

 <InCon:use rdf:resource="&InCon;Fitting_weld_positioner"/>

 </InCon:Industrial_Construction_Operation>

 <InCon:Station rdf:about="&InCon;Fitting_station">

 <InCon:belonging_domain rdf:resource="&InCon;Industrial_Construction_Operation"/>

 <InCon:place_of_occurance rdf:resource="&InCon;Fitting"/>

 </InCon:Station>

 <InCon:Tool_resource rdf:about="&InCon;Fitting_weld_positioner">

 <InCon:belonging_domain rdf:resource="&InCon;Industrial_Construction_Operation"/>

 </InCon:Tool_resource>

 <InCon:Part rdf:about="&InCon;Fittings">

 <InCon:belonging_domain rdf:resource="&InCon;Industrial_Construction_Operation"/>

 <InCon:input_of rdf:resource="&InCon;Cutting"/>

 <InCon:input_of rdf:resource="&InCon;Fitting"/>

 <InCon:part_of rdf:resource="&InCon;Spool_assembly"/>

 </InCon:Part>

 <InCon:Tool_resource rdf:about="&InCon;Fixed_welding_positioner">

Appendix I- InCon-Onto XML/RDF Source Code

152

 <InCon:belonging_domain rdf:resource="&InCon;Industrial_Construction_Operation"/>

 </InCon:Tool_resource>

 <owl:Class rdf:about="&InCon;Geographic_resource">

 <rdfs:subClassOf rdf:resource="&InCon;Resource"/>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="&InCon;place_of_occurance"/>

 <owl:someValuesFrom rdf:resource="&InCon;Process"/>

 </owl:Restriction>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:Class rdf:about="&InCon;Handling_resource">

 <rdfs:subClassOf rdf:resource="&InCon;Operational_resouce"/>

 </owl:Class>

 <owl:ObjectProperty rdf:about="&InCon;has_aspect">

 <rdfs:domain>

 <owl:Class>

 <owl:unionOf rdf:parseType="Collection">

 <owl:Class rdf:about="&InCon;Process"/>

 <owl:Class rdf:about="&InCon;Product"/>

 <owl:Class rdf:about="&InCon;Resource"/>

 </owl:unionOf>

 </owl:Class>

 </rdfs:domain>

 <owl:inverseOf rdf:resource="&InCon;is_an_aspect"/>

 <rdfs:range rdf:resource="&InCon;Aspect"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="&InCon;has_scale">

 <rdf:type rdf:resource="&owl;InverseFunctionalProperty"/>

 <rdfs:domain rdf:resource="&InCon;Aspect"/>

 <owl:inverseOf rdf:resource="&InCon;belonging_aspect"/>

 <rdfs:range rdf:resource="&InCon;Scale"/>

 </owl:ObjectProperty>

 <owl:DatatypeProperty rdf:about="&InCon;has_value">

 <rdfs:domain rdf:resource="&InCon;Aspect"/>

 <rdfs:range rdf:resource="&xsd;float"/>

 </owl:DatatypeProperty>

 <InCon:Machine_resouce rdf:about="&InCon;HDD">

 <InCon:belonging_domain rdf:resource="&InCon;Tunneling_Construction_Operation"/>

 </InCon:Machine_resouce>

 <InCon:Aspect rdf:about="&InCon;Height">

 <rdfs:subClassOf rdf:resource="&InCon;Dimension"/>

 </InCon:Aspect>

 <InCon:Employee rdf:about="&InCon;HSE_staff">

 <InCon:belonging_domain rdf:resource="&InCon;Industrial_Construction_Operation"/>

 </InCon:Employee>

 <owl:Class rdf:about="&InCon;Human_resouce">

 <rdfs:subClassOf rdf:resource="&InCon;Resource"/>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="&InCon;is_involved_in"/>

 <owl:someValuesFrom rdf:resource="&InCon;Process"/>

 </owl:Restriction>

 </rdfs:subClassOf>

 </owl:Class>

Appendix I- InCon-Onto XML/RDF Source Code

153

 <InCon:Bay rdf:about="&InCon;Hydro_test_yard">

 <InCon:belonging_domain rdf:resource="&InCon;Industrial_Construction_Operation"/>

 <InCon:place_of_occurance rdf:resource="&InCon;Hydro_testing"/>

 </InCon:Bay>

 <InCon:Industrial_Construction_Operation rdf:about="&InCon;Hydro_testing">

 <rdfs:subClassOf rdf:resource="&InCon;Shop_fabrication"/>

 <InCon:has_aspect rdf:resource="&InCon;Duration"/>

 <InCon:has_aspect rdf:resource="&InCon;Productivity"/>

 <InCon:input rdf:resource="&InCon;Spool_assembly"/>

 <InCon:is_accomplished_by rdf:resource="&InCon;Quality_control_worker"/>

 <InCon:next_operation rdf:resource="&InCon;Painting"/>

 <InCon:taking_place rdf:resource="&InCon;Hydro_test_yard"/>

 <InCon:updating rdf:resource="&InCon;Spool_assembly"/>

 </InCon:Industrial_Construction_Operation>

 <InCon:Machine_resouce rdf:about="&InCon;Impact_moling">

 <InCon:belonging_domain rdf:resource="&InCon;Tunneling_Construction_Operation"/>

 </InCon:Machine_resouce>

 <owl:Class rdf:about="&InCon;Industrial_Construction_Operation">

 <rdfs:subClassOf rdf:resource="&InCon;Construction_operation"/>

 </owl:Class>

 <owl:Class rdf:about="&InCon;Industrial_construction_product">

 <rdfs:subClassOf rdf:resource="&InCon;Product"/>

 </owl:Class>

 <owl:ObjectProperty rdf:about="&InCon;input">

 <rdfs:domain rdf:resource="&InCon;Process"/>

 <owl:inverseOf rdf:resource="&InCon;input_of"/>

 <rdfs:range rdf:resource="&InCon;Product"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="&InCon;input_of">

 <rdfs:domain rdf:resource="&InCon;Product"/>

 <owl:inverseOf rdf:resource="&InCon;input"/>

 <rdfs:range rdf:resource="&InCon;Process"/>

 </owl:ObjectProperty>

 <InCon:Industrial_Construction_Operation rdf:about="&InCon;Instrumentation">

 <rdfs:subClassOf rdf:resource="&InCon;Site_construction"/>

 </InCon:Industrial_Construction_Operation>

 <InCon:Industrial_Construction_Operation rdf:about="&InCon;Insulation">

 <rdfs:subClassOf rdf:resource="&InCon;Module_assembly"/>

 <rdfs:subClassOf rdf:resource="&InCon;Site_construction"/>

 <InCon:next_operation rdf:resource="&InCon;Fire_profing"/>

 <InCon:next_operation rdf:resource="&InCon;Mechanical_equipment"/>

 </InCon:Industrial_Construction_Operation>

 <InCon:Worker rdf:about="&InCon;Ironworker">

 <InCon:belonging_domain rdf:resource="&InCon;Industrial_Construction_Operation"/>

 </InCon:Worker>

 <owl:ObjectProperty rdf:about="&InCon;is_accomplished_by">

 <rdfs:domain rdf:resource="&InCon;Process"/>

 <owl:inverseOf rdf:resource="&InCon;is_involved_in"/>

 <rdfs:range rdf:resource="&InCon;Worker"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="&InCon;is_an_aspect">

 <rdfs:domain rdf:resource="&InCon;Aspect"/>

 <owl:inverseOf rdf:resource="&InCon;has_aspect"/>

 <rdfs:range>

 <owl:Class>

Appendix I- InCon-Onto XML/RDF Source Code

154

 <owl:unionOf rdf:parseType="Collection">

 <owl:Class rdf:about="&InCon;Process"/>

 <owl:Class rdf:about="&InCon;Resource"/>

 </owl:unionOf>

 </owl:Class>

 </rdfs:range>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="&InCon;is_involved_in">

 <rdfs:domain rdf:resource="&InCon;Worker"/>

 <owl:inverseOf rdf:resource="&InCon;is_accomplished_by"/>

 <rdfs:range rdf:resource="&InCon;Process"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="&InCon;is_used">

 <rdfs:domain rdf:resource="&InCon;Operational_resouce"/>

 <owl:inverseOf rdf:resource="&InCon;use"/>

 <rdfs:range rdf:resource="&InCon;Process"/>

 </owl:ObjectProperty>

 <InCon:Management_product rdf:about="&InCon;ISO_drawing">

 <rdfs:subClassOf rdf:resource="&InCon;Drawing"/>

 <InCon:belonging_domain rdf:resource="&InCon;Industrial_Construction_Operation"/>

 </InCon:Management_product>

 <InCon:Worker rdf:about="&InCon;Labourer">

 <InCon:belonging_domain rdf:resource="&InCon;Industrial_Construction_Operation"/>

 <InCon:is_involved_in rdf:resource="&InCon;Painting"/>

 <InCon:is_involved_in rdf:resource="&InCon;Shipping"/>

 <InCon:is_involved_in rdf:resource="&InCon;Stress_relief"/>

 </InCon:Worker>

 <InCon:Aspect rdf:about="&InCon;Length">

 <rdfs:subClassOf rdf:resource="&InCon;Dimension"/>

 </InCon:Aspect>

 <InCon:Management_product rdf:about="&InCon;Lift_order">

 <InCon:belonging_domain rdf:resource="&InCon;Industrial_Construction_Operation"/>

 </InCon:Management_product>

 <InCon:Material_resource rdf:about="&InCon;liner_plate">

 <InCon:belonging_domain rdf:resource="&InCon;Tunneling_Construction_Operation"/>

 </InCon:Material_resource>

 <InCon:Tunneling_Construction_Operation rdf:about="&InCon;Lining">

 <InCon:updating rdf:resource="&InCon;Linner"/>

 <InCon:updating rdf:resource="&InCon;Undercut"/>

 </InCon:Tunneling_Construction_Operation>

 <InCon:Tunneling_Product rdf:about="&InCon;Linner">

 <InCon:belonging_domain rdf:resource="&InCon;Tunneling_Construction_Operation"/>

 <InCon:output_of rdf:resource="&InCon;Lining"/>

 </InCon:Tunneling_Product>

 <owl:Class rdf:about="&InCon;Lot">

 <rdfs:subClassOf rdf:resource="&InCon;Site"/>

 </owl:Class>

 <owl:Class rdf:about="&InCon;Machine_resouce">

 <rdfs:subClassOf rdf:resource="&InCon;Operational_resouce"/>

 </owl:Class>

 <InCon:Building rdf:about="&InCon;Main_office">

 <InCon:belonging_domain rdf:resource="&InCon;Construction_operation"/>

 <InCon:place_of_occurance rdf:resource="&InCon;Drafting"/>

 </InCon:Building>

 <owl:Class rdf:about="&InCon;Management_product">

Appendix I- InCon-Onto XML/RDF Source Code

155

 <rdfs:subClassOf rdf:resource="&InCon;Product"/>

 </owl:Class>

 <InCon:Aspect rdf:about="&InCon;Material"/>

 <owl:Class rdf:about="&InCon;Material_resource">

 <rdfs:subClassOf rdf:resource="&InCon;Operational_resouce"/>

 </owl:Class>

 <InCon:Industrial_Construction_Operation rdf:about="&InCon;Material_supply">

 <InCon:next_operation rdf:resource="&InCon;Shop_fabrication"/>

 <InCon:updating rdf:resource="&InCon;Material"/>

 </InCon:Industrial_Construction_Operation>

 <InCon:Industrial_Construction_Operation rdf:about="&InCon;Mechanical_equipment">

 <rdfs:subClassOf rdf:resource="&InCon;Site_construction"/>

 <InCon:next_operation rdf:resource="&InCon;Insulation"/>

 </InCon:Industrial_Construction_Operation>

 <InCon:Machine_resouce rdf:about="&InCon;Micro_tunneling">

 <InCon:belonging_domain rdf:resource="&InCon;Tunneling_Construction_Operation"/>

 </InCon:Machine_resouce>

 <InCon:Worker rdf:about="&InCon;Millwirght">

 <InCon:belonging_domain rdf:resource="&InCon;Industrial_Construction_Operation"/>

 </InCon:Worker>

 <InCon:Construction_product rdf:about="&InCon;Module">

 <InCon:belonging_domain rdf:resource="&InCon;Industrial_Construction_Operation"/>

 </InCon:Construction_product>

 <InCon:Industrial_Construction_Operation rdf:about="&InCon;Module_assembly">

 <InCon:has_aspect rdf:resource="&InCon;Productivity"/>

 <InCon:input rdf:resource="&InCon;Spool_assembly"/>

 <InCon:next_operation rdf:resource="&InCon;Site_construction"/>

 <InCon:taking_place rdf:resource="&InCon;Module_yard_bay"/>

 <InCon:updating rdf:resource="&owl;Thing"/>

 </InCon:Industrial_Construction_Operation>

 <InCon:Management_product rdf:about="&InCon;Module_order">

 <InCon:belonging_domain rdf:resource="&InCon;Industrial_Construction_Operation"/>

 </InCon:Management_product>

 <InCon:Industrial_Construction_Operation rdf:about="&InCon;Module_preparation">

 <rdfs:subClassOf rdf:resource="&InCon;Module_assembly"/>

 </InCon:Industrial_Construction_Operation>

 <InCon:Bay rdf:about="&InCon;Module_yard_bay">

 <InCon:belonging_domain rdf:resource="&InCon;Industrial_Construction_Operation"/>

 <InCon:place_of_occurance rdf:resource="&InCon;Module_assembly"/>

 </InCon:Bay>

 <InCon:Lot rdf:about="&InCon;Module_yard_lot">

 <InCon:belonging_domain rdf:resource="&InCon;Industrial_Construction_Operation"/>

 <InCon:place_of_occurance rdf:resource="&InCon;Shipping"/>

 </InCon:Lot>

 <owl:FunctionalProperty rdf:about="&InCon;next_operation">

 <rdf:type rdf:resource="&owl;ObjectProperty"/>

 <rdfs:domain rdf:resource="&InCon;Process"/>

 <rdfs:comment rdf:datatype="&xsd;string">next_operation</rdfs:comment>

 <rdfs:range rdf:resource="&InCon;Process"/>

 </owl:FunctionalProperty>

 <InCon:Aspect rdf:about="&InCon;No."/>

 <owl:Class rdf:about="&InCon;Operational_resouce">

 <rdfs:subClassOf rdf:resource="&InCon;Resource"/>

 <rdfs:subClassOf>

 <owl:Restriction>

Appendix I- InCon-Onto XML/RDF Source Code

156

 <owl:onProperty rdf:resource="&InCon;is_used"/>

 <owl:someValuesFrom rdf:resource="&InCon;Process"/>

 </owl:Restriction>

 </rdfs:subClassOf>

 </owl:Class>

 <InCon:Worker rdf:about="&InCon;Operator">

 <InCon:belonging_domain rdf:resource="&InCon;Industrial_Construction_Operation"/>

 </InCon:Worker>

 <owl:ObjectProperty rdf:about="&InCon;output_of">

 <rdfs:domain rdf:resource="&InCon;Product"/>

 <owl:inverseOf rdf:resource="&InCon;updating"/>

 <rdfs:range rdf:resource="&InCon;Process"/>

 </owl:ObjectProperty>

 <InCon:Shop_floor rdf:about="&InCon;Paint_shop">

 <InCon:belonging_domain rdf:resource="&InCon;Industrial_Construction_Operation"/>

 <InCon:place_of_occurance rdf:resource="&InCon;Painting"/>

 </InCon:Shop_floor>

 <InCon:Industrial_Construction_Operation rdf:about="&InCon;Painting">

 <rdfs:subClassOf rdf:resource="&InCon;Shop_fabrication"/>

 <InCon:has_aspect rdf:resource="&InCon;Duration"/>

 <InCon:has_aspect rdf:resource="&InCon;Productivity"/>

 <InCon:input rdf:resource="&InCon;Spool_assembly"/>

 <InCon:is_accomplished_by rdf:resource="&InCon;Labourer"/>

 <InCon:next_operation rdf:resource="&InCon;Shipping"/>

 <InCon:taking_place rdf:resource="&InCon;Paint_shop"/>

 <InCon:updating rdf:resource="&InCon;Spool_assembly"/>

 </InCon:Industrial_Construction_Operation>

 <owl:Class rdf:about="&InCon;Part">

 <rdfs:subClassOf rdf:resource="&InCon;Industrial_construction_product"/>

 <owl:disjointWith rdf:resource="&InCon;Spool_assembly"/>

 </owl:Class>

 <owl:TransitiveProperty rdf:about="&InCon;part_of">

 <rdf:type rdf:resource="&owl;ObjectProperty"/>

 <rdfs:domain>

 <owl:Class>

 <owl:unionOf rdf:parseType="Collection">

 <owl:Class rdf:about="&InCon;Assembly"/>

 <owl:Class rdf:about="&InCon;Part"/>

 </owl:unionOf>

 </owl:Class>

 </rdfs:domain>

 <owl:inverseOf rdf:resource="&InCon;composed_of"/>

 <rdfs:range>

 <owl:Class>

 <owl:unionOf rdf:parseType="Collection">

 <owl:Class rdf:about="&InCon;Assembly"/>

 <owl:Class rdf:about="&InCon;Part"/>

 </owl:unionOf>

 </owl:Class>

 </rdfs:range>

 </owl:TransitiveProperty>

 <InCon:Industrial_Construction_Operation rdf:about="&InCon;Piling">

 <rdfs:subClassOf rdf:resource="&InCon;Site_construction"/>

 <InCon:next_operation rdf:resource="&InCon;Earth_work"/>

 </InCon:Industrial_Construction_Operation>

Appendix I- InCon-Onto XML/RDF Source Code

157

 <InCon:Part rdf:about="&InCon;Pipe">

 <InCon:belonging_domain rdf:resource="&InCon;Industrial_Construction_Operation"/>

 <InCon:input_of rdf:resource="&InCon;Cutting"/>

 <InCon:input_of rdf:resource="&InCon;Fitting"/>

 <InCon:part_of rdf:resource="&InCon;Spool_assembly"/>

 </InCon:Part>

 <InCon:Worker rdf:about="&InCon;Pipe_fitter">

 <InCon:belonging_domain rdf:resource="&InCon;Industrial_Construction_Operation"/>

 <InCon:is_involved_in rdf:resource="&InCon;Fitting"/>

 </InCon:Worker>

 <InCon:Machine_resouce rdf:about="&InCon;Pipe_jacking">

 <InCon:belonging_domain rdf:resource="&InCon;Tunneling_Construction_Operation"/>

 </InCon:Machine_resouce>

 <InCon:Machine_resouce rdf:about="&InCon;Pipe_Ramming_">

 <InCon:belonging_domain rdf:resource="&InCon;Tunneling_Construction_Operation"/>

 </InCon:Machine_resouce>

 <InCon:Industrial_Construction_Operation rdf:about="&InCon;Piping">

 <rdfs:subClassOf rdf:resource="&InCon;Module_assembly"/>

 <rdfs:subClassOf rdf:resource="&InCon;Site_construction"/>

 <InCon:next_operation rdf:resource="&InCon;Tracing"/>

 </InCon:Industrial_Construction_Operation>

 <owl:ObjectProperty rdf:about="&InCon;place_of_occurance">

 <rdfs:domain rdf:resource="&InCon;Geographic_resource"/>

 <owl:inverseOf rdf:resource="&InCon;taking_place"/>

 <rdfs:range rdf:resource="&InCon;Process"/>

 </owl:ObjectProperty>

 <InCon:Industrial_Construction_Operation rdf:about="&InCon;Position_welding">

 <InCon:has_aspect rdf:resource="&InCon;Duration"/>

 <InCon:has_aspect rdf:resource="&InCon;Productivity"/>

 <InCon:input rdf:resource="&InCon;Spool_assembly"/>

 <InCon:is_accomplished_by rdf:resource="&InCon;Welder"/>

 <InCon:next_operation rdf:resource="&InCon;Quality_control_checking"/>

 <InCon:taking_place rdf:resource="&InCon;Position_welding_station"/>

 <InCon:updating rdf:resource="&InCon;Spool_assembly"/>

 <InCon:use rdf:resource="&InCon;Position_welding_station"/>

 </InCon:Industrial_Construction_Operation>

 <InCon:Station rdf:about="&InCon;Position_welding_station">

 <InCon:belonging_domain rdf:resource="&InCon;Industrial_Construction_Operation"/>

 <InCon:place_of_occurance rdf:resource="&InCon;Position_welding"/>

 </InCon:Station>

 <owl:Class rdf:about="&InCon;Process">

 <rdfs:subClassOf rdf:resource="&owl;Class"/>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="&InCon;has_aspect"/>

 <owl:someValuesFrom rdf:resource="&InCon;Aspect"/>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="&InCon;updating"/>

 <owl:someValuesFrom rdf:resource="&InCon;Product"/>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

Appendix I- InCon-Onto XML/RDF Source Code

158

 <owl:Restriction>

 <owl:onProperty rdf:resource="&InCon;input"/>

 <owl:someValuesFrom rdf:resource="&InCon;Product"/>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="&InCon;taking_place"/>

 <owl:someValuesFrom rdf:resource="&InCon;Geographic_resource"/>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="&InCon;use"/>

 <owl:someValuesFrom>

 <owl:Class>

 <owl:unionOf rdf:parseType="Collection">

 <owl:Class rdf:about="&InCon;Operational_resouce"/>

 <owl:Class rdf:about="&InCon;Transportation_resource"/>

 </owl:unionOf>

 </owl:Class>

 </owl:someValuesFrom>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="&InCon;is_accomplished_by"/>

 <owl:someValuesFrom rdf:resource="&InCon;Human_resouce"/>

 </owl:Restriction>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:Class rdf:about="&InCon;Product">

 <rdfs:subClassOf rdf:resource="&owl;Class"/>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="&InCon;input_of"/>

 <owl:someValuesFrom rdf:resource="&InCon;Process"/>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="&InCon;output_of"/>

 <owl:someValuesFrom rdf:resource="&InCon;Process"/>

 </owl:Restriction>

 </rdfs:subClassOf>

 </owl:Class>

 <InCon:Aspect rdf:about="&InCon;Productivity">

 <InCon:is_an_aspect rdf:resource="&InCon;Cutting"/>

 <InCon:is_an_aspect rdf:resource="&InCon;Fitting"/>

 <InCon:is_an_aspect rdf:resource="&InCon;Hydro_testing"/>

 <InCon:is_an_aspect rdf:resource="&InCon;Painting"/>

 <InCon:is_an_aspect rdf:resource="&InCon;Position_welding"/>

 <InCon:is_an_aspect rdf:resource="&InCon;Quality_control_checking"/>

 <InCon:is_an_aspect rdf:resource="&InCon;Roll_welding"/>

 <InCon:is_an_aspect rdf:resource="&InCon;Shipping"/>

Appendix I- InCon-Onto XML/RDF Source Code

159

 <InCon:is_an_aspect rdf:resource="&InCon;Stress_relief"/>

 </InCon:Aspect>

 <InCon:Industrial_Construction_Operation rdf:about="&InCon;Quality_control_checking">

 <rdfs:subClassOf rdf:resource="&InCon;Shop_fabrication"/>

 <InCon:has_aspect rdf:resource="&InCon;Duration"/>

 <InCon:has_aspect rdf:resource="&InCon;Productivity"/>

 <InCon:input rdf:resource="&InCon;Spool_assembly"/>

 <InCon:is_accomplished_by rdf:resource="&InCon;Quality_control_worker"/>

 <InCon:taking_place rdf:resource="&InCon;Fabrication_shop"/>

 <InCon:updating rdf:resource="&InCon;Spool_assembly"/>

 </InCon:Industrial_Construction_Operation>

 <InCon:Station rdf:about="&InCon;Quality_control_station">

 <InCon:belonging_domain rdf:resource="&InCon;Industrial_Construction_Operation"/>

 </InCon:Station>

 <InCon:Worker rdf:about="&InCon;Quality_control_worker">

 <InCon:belonging_domain rdf:resource="&InCon;Industrial_Construction_Operation"/>

 <InCon:is_involved_in rdf:resource="&InCon;Hydro_testing"/>

 <InCon:is_involved_in rdf:resource="&InCon;Quality_control_checking"/>

 </InCon:Worker>

 <owl:Class rdf:about="&InCon;Resource">

 <rdfs:subClassOf rdf:resource="&owl;Class"/>

 </owl:Class>

 <InCon:Material_resource rdf:about="&InCon;Rib_lagging">

 <InCon:belonging_domain rdf:resource="&InCon;Tunneling_Construction_Operation"/>

 </InCon:Material_resource>

 <InCon:Industrial_Construction_Operation rdf:about="&InCon;Roll_welding">

 <InCon:has_aspect rdf:resource="&InCon;Duration"/>

 <InCon:has_aspect rdf:resource="&InCon;Productivity"/>

 <InCon:input rdf:resource="&InCon;Spool_assembly"/>

 <InCon:is_accomplished_by rdf:resource="&InCon;Welder"/>

 <InCon:next_operation rdf:resource="&InCon;Position_welding"/>

 <InCon:taking_place rdf:resource="&InCon;Roll_welding_station"/>

 <InCon:updating rdf:resource="&InCon;Spool_assembly"/>

 <InCon:use rdf:resource="&InCon;Roll_welding_station"/>

 </InCon:Industrial_Construction_Operation>

 <InCon:Tool_resource rdf:about="&InCon;Roll_welding_positioner">

 <InCon:belonging_domain rdf:resource="&InCon;Industrial_Construction_Operation"/>

 </InCon:Tool_resource>

 <InCon:Station rdf:about="&InCon;Roll_welding_station">

 <InCon:belonging_domain rdf:resource="&InCon;Industrial_Construction_Operation"/>

 <InCon:place_of_occurance rdf:resource="&InCon;Roll_welding"/>

 </InCon:Station>

 <InCon:Worker rdf:about="&InCon;Scaffolder">

 <InCon:belonging_domain rdf:resource="&InCon;Industrial_Construction_Operation"/>

 </InCon:Worker>

 <owl:Class rdf:about="&InCon;Scale">

 <rdfs:subClassOf rdf:resource="&owl;Class"/>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="&InCon;belonging_aspect"/>

 <owl:allValuesFrom rdf:resource="&InCon;Aspect"/>

 </owl:Restriction>

 </rdfs:subClassOf>

 </owl:Class>

 <InCon:Tunneling_Product rdf:about="&InCon;Shaft">

Appendix I- InCon-Onto XML/RDF Source Code

160

 <InCon:belonging_domain rdf:resource="&InCon;Tunneling_Construction_Operation"/>

 <InCon:output_of rdf:resource="&InCon;Shaft_excavation"/>

 </InCon:Tunneling_Product>

 <InCon:Tunneling_Construction_Operation rdf:about="&InCon;Shaft_excavation">

 <InCon:next_operation rdf:resource="&InCon;Tunnel_excavation"/>

 <InCon:updating rdf:resource="&InCon;Shaft"/>

 </InCon:Tunneling_Construction_Operation>

 <InCon:Industrial_Construction_Operation rdf:about="&InCon;Shipping">

 <rdfs:subClassOf rdf:resource="&InCon;Shop_fabrication"/>

 <InCon:has_aspect rdf:resource="&InCon;Duration"/>

 <InCon:has_aspect rdf:resource="&InCon;Productivity"/>

 <InCon:input rdf:resource="&InCon;Spool_assembly"/>

 <InCon:is_accomplished_by rdf:resource="&InCon;Labourer"/>

 <InCon:next_operation rdf:resource="&InCon;Module_assembly"/>

 <InCon:taking_place rdf:resource="&InCon;Fabrication_shop"/>

 <InCon:taking_place rdf:resource="&InCon;Module_yard_lot"/>

 <InCon:updating rdf:resource="&InCon;Spool_assembly"/>

 <InCon:use rdf:resource="&InCon;Handling_resource"/>

 </InCon:Industrial_Construction_Operation>

 <InCon:Industrial_Construction_Operation rdf:about="&InCon;Shop_fabrication">

 <InCon:input rdf:resource="&InCon;Fittings"/>

 <InCon:input rdf:resource="&InCon;Pipe"/>

 <InCon:next_operation rdf:resource="&InCon;Module_assembly"/>

 <InCon:taking_place rdf:resource="&InCon;Fabrication_shop"/>

 <InCon:updating rdf:resource="&InCon;Spool_assembly"/>

 </InCon:Industrial_Construction_Operation>

 <owl:Class rdf:about="&InCon;Shop_floor">

 <rdfs:subClassOf rdf:resource="&InCon;Building_zone"/>

 </owl:Class>

 <InCon:Management_product rdf:about="&InCon;Shop_order">

 <InCon:belonging_domain rdf:resource="&InCon;Industrial_Construction_Operation"/>

 <InCon:output_of rdf:resource="&InCon;Drafting"/>

 </InCon:Management_product>

 <owl:Class rdf:about="&InCon;Site">

 <rdfs:subClassOf rdf:resource="&InCon;Geographic_resource"/>

 </owl:Class>

 <InCon:Industrial_Construction_Operation rdf:about="&InCon;Site_construction"/>

 <InCon:Industrial_Construction_Operation rdf:about="&InCon;Space_allocation">

 <rdfs:subClassOf rdf:resource="&InCon;Module_assembly"/>

 <InCon:next_operation rdf:resource="&InCon;Structural_steel"/>

 </InCon:Industrial_Construction_Operation>

 <InCon:Assembly rdf:about="&InCon;Spool_assembly">

 <rdfs:subClassOf rdf:resource="&owl;Thing"/>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="&InCon;composed_of"/>

 <owl:someValuesFrom>

 <owl:Class>

 <owl:unionOf rdf:parseType="Collection">

 <owl:Class rdf:about="&InCon;Fittings"/>

 <owl:Class rdf:about="&InCon;Pipe"/>

 <owl:Class rdf:about="&InCon;Spool_assembly"/>

 </owl:unionOf>

 </owl:Class>

 </owl:someValuesFrom>

Appendix I- InCon-Onto XML/RDF Source Code

161

 </owl:Restriction>

 </rdfs:subClassOf>

 <InCon:belonging_domain rdf:resource="&InCon;Industrial_Construction_Operation"/>

 <InCon:composed_of rdf:resource="&InCon;Fittings"/>

 <InCon:composed_of rdf:resource="&InCon;Pipe"/>

 <InCon:composed_of rdf:resource="&InCon;Spool_assembly"/>

 <InCon:input_of rdf:resource="&InCon;Fitting"/>

 <InCon:input_of rdf:resource="&InCon;Hydro_testing"/>

 <InCon:input_of rdf:resource="&InCon;Position_welding"/>

 <InCon:input_of rdf:resource="&InCon;Quality_control_checking"/>

 <InCon:input_of rdf:resource="&InCon;Roll_welding"/>

 <InCon:input_of rdf:resource="&InCon;Stress_relief"/>

 <InCon:output_of rdf:resource="&InCon;Cutting"/>

 <InCon:output_of rdf:resource="&InCon;Fitting"/>

 <InCon:output_of rdf:resource="&InCon;Hydro_testing"/>

 <InCon:output_of rdf:resource="&InCon;Painting"/>

 <InCon:output_of rdf:resource="&InCon;Position_welding"/>

 <InCon:output_of rdf:resource="&InCon;Quality_control_checking"/>

 <InCon:output_of rdf:resource="&InCon;Roll_welding"/>

 <InCon:output_of rdf:resource="&InCon;Shipping"/>

 <InCon:output_of rdf:resource="&InCon;Shop_fabrication"/>

 <InCon:output_of rdf:resource="&InCon;Stress_relief"/>

 <owl:disjointWith rdf:resource="&InCon;Part"/>

 <rdfs:comment rdf:datatype="&xsd;string">Spool_assembly</rdfs:comment>

 </InCon:Assembly>

 <owl:Class rdf:about="&InCon;Station">

 <rdfs:subClassOf rdf:resource="&InCon;Building_zone"/>

 </owl:Class>

 <owl:Class rdf:about="&InCon;Storage">

 <rdfs:subClassOf rdf:resource="&InCon;Building_zone"/>

 </owl:Class>

 <InCon:Industrial_Construction_Operation rdf:about="&InCon;Stress_relief">

 <rdfs:subClassOf rdf:resource="&InCon;Shop_fabrication"/>

 <InCon:has_aspect rdf:resource="&InCon;Duration"/>

 <InCon:has_aspect rdf:resource="&InCon;Productivity"/>

 <InCon:input rdf:resource="&InCon;Spool_assembly"/>

 <InCon:is_accomplished_by rdf:resource="&InCon;Labourer"/>

 <InCon:next_operation rdf:resource="&InCon;Hydro_testing"/>

 <InCon:taking_place rdf:resource="&InCon;Fabrication_shop"/>

 <InCon:updating rdf:resource="&InCon;Spool_assembly"/>

 </InCon:Industrial_Construction_Operation>

 <InCon:Bay rdf:about="&InCon;Stress_relieve_bay">

 <InCon:belonging_domain rdf:resource="&InCon;Industrial_Construction_Operation"/>

 </InCon:Bay>

 <InCon:Industrial_Construction_Operation rdf:about="&InCon;Structural_steel">

 <rdfs:subClassOf rdf:resource="&InCon;Site_construction"/>

 <rdfs:subClassOf rdf:resource="&InCon;Module_assembly"/>

 <InCon:next_operation rdf:resource="&InCon;Equipment"/>

 </InCon:Industrial_Construction_Operation>

 <InCon:Tunneling_Product rdf:about="&InCon;Tail_tunnel">

 <InCon:belonging_domain rdf:resource="&InCon;Tunneling_Construction_Operation"/>

 <InCon:output_of rdf:resource="&InCon;Tunnel_excavation"/>

 </InCon:Tunneling_Product>

 <owl:ObjectProperty rdf:about="&InCon;taking_place">

 <rdfs:domain rdf:resource="&InCon;Process"/>

Appendix I- InCon-Onto XML/RDF Source Code

162

 <owl:inverseOf rdf:resource="&InCon;place_of_occurance"/>

 <rdfs:range rdf:resource="&InCon;Geographic_resource"/>

 </owl:ObjectProperty>

 <InCon:Machine_resouce rdf:about="&InCon;TBM">

 <InCon:belonging_domain rdf:resource="&InCon;Tunneling_Construction_Operation"/>

 </InCon:Machine_resouce>

 <InCon:Aspect rdf:about="&InCon;Thickness">

 <rdfs:subClassOf rdf:resource="&InCon;Dimension"/>

 </InCon:Aspect>

 <owl:Class rdf:about="&InCon;Tool_resource">

 <rdfs:subClassOf rdf:resource="&InCon;Operational_resouce"/>

 </owl:Class>

 <InCon:Industrial_Construction_Operation rdf:about="&InCon;Tracing">

 <rdfs:subClassOf rdf:resource="&InCon;Module_assembly"/>

 <rdfs:subClassOf rdf:resource="&InCon;Site_construction"/>

 <InCon:next_operation rdf:resource="&InCon;Insulation"/>

 </InCon:Industrial_Construction_Operation>

 <InCon:Machine_resouce rdf:about="&InCon;Train">

 <InCon:belonging_domain rdf:resource="&InCon;Tunneling_Construction_Operation"/>

 </InCon:Machine_resouce>

 <owl:Class rdf:about="&InCon;Transportation_resource">

 <rdfs:subClassOf rdf:resource="&InCon;Resource"/>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="&InCon;is_used"/>

 <owl:someValuesFrom rdf:resource="&InCon;Process"/>

 </owl:Restriction>

 </rdfs:subClassOf>

 </owl:Class>

 <InCon:Transportation_resource rdf:about="&InCon;Truck"/>

 <InCon:Tunneling_Product rdf:about="&InCon;Tunnel">

 <InCon:belonging_domain rdf:resource="&InCon;Tunneling_Construction_Operation"/>

 <InCon:output_of rdf:resource="&InCon;Tunnel_excavation"/>

 </InCon:Tunneling_Product>

 <InCon:Tunneling_Construction_Operation rdf:about="&InCon;Tunnel_excavation">

 <InCon:next_operation rdf:resource="&InCon;Lining"/>

 <InCon:updating rdf:resource="&InCon;Tail_tunnel"/>

 <InCon:updating rdf:resource="&InCon;Tunnel"/>

 </InCon:Tunneling_Construction_Operation>

 <owl:Class rdf:about="&InCon;Tunneling_Construction_Operation">

 <rdfs:subClassOf rdf:resource="&InCon;Construction_operation"/>

 </owl:Class>

 <owl:Class rdf:about="&InCon;Tunneling_Product">

 <rdfs:subClassOf rdf:resource="&InCon;Product"/>

 </owl:Class>

 <InCon:Construction_site rdf:about="&InCon;Tunneling_site">

 <InCon:belonging_domain rdf:resource="&InCon;Tunneling_Construction_Operation"/>

 </InCon:Construction_site>

 <InCon:Tunneling_Product rdf:about="&InCon;Undercut">

 <InCon:belonging_domain rdf:resource="&InCon;Tunneling_Construction_Operation"/>

 <InCon:output_of rdf:resource="&InCon;Lining"/>

 </InCon:Tunneling_Product>

 <owl:ObjectProperty rdf:about="&InCon;updating">

 <rdfs:domain rdf:resource="&InCon;Process"/>

 <owl:inverseOf rdf:resource="&InCon;output_of"/>

Appendix I- InCon-Onto XML/RDF Source Code

163

 <rdfs:comment rdf:datatype="&xsd;string">updating</rdfs:comment>

 <rdfs:range rdf:resource="&InCon;Product"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="&InCon;use">

 <rdfs:domain rdf:resource="&InCon;Process"/>

 <owl:inverseOf rdf:resource="&InCon;is_used"/>

 <rdfs:range rdf:resource="&InCon;Operational_resouce"/>

 </owl:ObjectProperty>

 <InCon:Aspect rdf:about="&InCon;Weight"/>

 <InCon:Worker rdf:about="&InCon;Welder">

 <InCon:belonging_domain rdf:resource="&InCon;Industrial_Construction_Operation"/>

 <InCon:is_involved_in rdf:resource="&InCon;Position_welding"/>

 <InCon:is_involved_in rdf:resource="&InCon;Roll_welding"/>

 </InCon:Worker>

 <InCon:Aspect rdf:about="&InCon;Width">

 <rdfs:subClassOf rdf:resource="&InCon;Dimension"/>

 </InCon:Aspect>

 <owl:Class rdf:about="&InCon;Work_cell">

 <rdfs:subClassOf rdf:resource="&InCon;Building_zone"/>

 </owl:Class>

 <owl:Class rdf:about="&InCon;Worker">

 <rdfs:subClassOf rdf:resource="&InCon;Human_resouce"/>

 </owl:Class>

</rdf:RDF>

164

Appendix II

Tunneling Ontology

Figure A-I-1: Tunneling processes as a part of construction processes

Appendix II- Tunneling Ontology

165

Figure A-I-2: Tunneling products

 Figure A-I-3: Tunneling resources

166

Appendix III

COSYE Fabrication Shop Modeling Elements

Fabrication Shop Modeling Elements:

Element Template Description

Register Module CosyeModeling Register module by interval

Update Module Attributes CosyeModeling The attribute values are initialized

Module Entity Fabrication Module Class

Spool Entity Fabrication Spool Class

Create Spool for Module Fabrication Creating module’s belonging spools

Create Spool Components Fabrication Creating spool’s belonging components

Fab Station Fabrication Different types of work stations: cutting, fitting, welding,...

Worker Fabrication Different trades of worker: cutter, fitter, welder,...

Handiling Fabrication Manual or crane handling

Dispatch Fabrication Sending products to appropriate station

Assembler Fabrication Keeping track of spool components

Proxy Module Assembler Updating module attributes

Element: Register Module Properties

Appendix III- COSYE Modeling Elements

167

Code:
Imports System

Imports System.Collections.Generic

Imports System.ComponentModel

Imports System.Drawing

Imports System.Linq

Imports System.Xml

Imports Cosye.Hla.Rti

Imports Cosye.Modeling

Imports Simphony

Imports Simphony.ComponentModel

Imports Simphony.Modeling

Imports Simphony.Simulation

Namespace CosyeModelingVB

 ''' <summary>

 ''' A modeling element that registers object instances.

 ''' </summary>

 <Description("Generates object instances.")> _

 Public Class RegisterByInterval

 Inherits OutputElement(Of ProxyEntity)

 Implements IObjectClassSpecifier

 Implements ICosyeElement

 Private Const QuantityDefault As Integer = 0

 Private Const ObjectClassNameDefault As String = "HLAobjectRoot"

 Private theClass As ObjectClassHandle

 Private rtiAmb As IRTIambassador

 Private proxies As IProxyProvider

 Private countValue As Integer

 Private quantityValue As Integer = QuantityDefault

 Private objectClassNameValue As String = ObjectClassNameDefault

 Private intervalValue As Double

 <InputsCategory()> _

 <DefaultValue(QuantityDefault)> _

 <Description("The number of entities to register.")> _

 Public Property Quantity() As Integer

 Get

 Return quantityValue

Appendix III- COSYE Modeling Elements

168

 End Get

 Set(ByVal value As Integer)

 quantityValue = value

 End Set

 End Property

 <InputsCategory()> _

 <DefaultValue(QuantityDefault)> _

 <Description("The number of entities to register during federation startup.")> _

 Public Property Interval() As Double

 Get

 Return intervalValue

 End Get

 Set(ByVal value As Double)

 intervalValue = value

 End Set

 End Property

 <InputsCategory()> _

 <DefaultValue(ObjectClassNameDefault)> _

 <Description("The object class the register element should register.")> _

 <TypeConverter(GetType(ObjectClassNameConverter))> _

 Public Property ObjectClassName() As String

 Get

 Return objectClassNameValue

 End Get

 Set(ByVal value As String)

 objectClassNameValue = value

 End Set

 End Property

 Private ReadOnly Property ObjectClassName2() As String Implements IObjectClassSpecifier.ObjectClassName

 Get

 Return objectClassNameValue

 End Get

 End Property

 <OutputsCategory()> _

 <Description("The current number of objects registered.")> _

 Public Property Count() As Integer

 Get

 Return Me.countValue

 End Get

 Private Set(ByVal value As Integer)

 Me.countValue = value

 End Set

 End Property

 Public Overrides Sub Paint(ByVal graphics As Graphics, ByVal bounds As RectangleF)

 MyBase.Paint(graphics, bounds)

 Using font = New Font("Webdings", 32)

 Dim format = New StringFormat(StringFormat.GenericTypographic)

 format.Alignment = StringAlignment.Center

 graphics.DrawString("+", font, Brushes.Black, bounds, format)

 End Using

 End Sub

 Public Overrides Sub ReadXml(ByVal reader As XmlReader)

 reader.ExceptionIfNull("reader")

 Me.Quantity = reader.GetAttributeAs(Of Integer)("InitialQuantity", QuantityDefault)

 Me.ObjectClassName = reader.GetAttributeAs(Of String)("ObjectClassName", ObjectClassNameDefault)

Appendix III- COSYE Modeling Elements

169

 MyBase.ReadXml(reader)

 End Sub

 Public Overrides Sub WriteXml(ByVal writer As XmlWriter)

 writer.ExceptionIfNull("writer")

 writer.WriteAttribute("InitialQuantity", Me.Quantity)

 writer.WriteAttribute("ObjectClassName", Me.ObjectClassName)

 MyBase.WriteXml(writer)

 End Sub

 Protected Overrides Sub InitializeRun(ByVal runIndex As Integer)

 MyBase.InitializeRun(runIndex)

 Me.Count = 0

 Me.rtiAmb = Me.GetService(Of IRTIambassador)()

 Me.proxies = Me.GetService(Of IProxyProvider)()

 Me.theClass = Me.rtiAmb.GetObjectClassHandle(Me.ObjectClassName)

 End Sub

 Private Sub RegisterObjectInstance(ByVal Entity As Entity)

 Dim theObject = Me.rtiAmb.RegisterObjectInstance(Me.theClass)

 Dim newEntity = New ProxyEntity(Me.proxies(theObject))

 Me.OutputPoint.TransferOut(newEntity)

 Me.Count = Me.Count + 1

 If Me.Count < Me.Quantity Then

 Dim handler = New Action(Of Entity)(AddressOf RegisterObjectInstance)

 Me.Engine.ScheduleEvent(Entity, handler, Me.Interval)

 End If

 End Sub

 Public Sub BeginExecution() Implements Cosye.Modeling.ICosyeElement.BeginExecution

 Dim entity = New Entity()

 Dim handler = New Action(Of Entity)(AddressOf RegisterObjectInstance)

 Me.Engine.ScheduleEvent(entity, handler, 0)

 End Sub

 Public Sub EndExecution() Implements Cosye.Modeling.ICosyeElement.EndExecution

 'Do nothing.

 End Sub

 Public Sub InitializeInitialInstances() Implements Cosye.Modeling.ICosyeElement.InitializeInitialInstances

 'Do nothing.

 End Sub

 Public Sub MakeInitialDeclarations() Implements Cosye.Modeling.ICosyeElement.MakeInitialDeclarations

 Me.theClass = Me.rtiAmb.GetObjectClassHandle(Me.ObjectClassName)

 Dim pTDO = Me.rtiAmb.GetAttributeHandle(Me.theClass, "HLAprivilegeToDeleteObject")

 Me.rtiAmb.PublishObjectClassAttributes(Me.theClass, New AttributeHandle() {pTDO})

 End Sub

 Public Sub RegisterInitialInstances() Implements Cosye.Modeling.ICosyeElement.RegisterInitialInstances

 'Do nothing.

 End Sub

 End Class

End Namespace

Appendix III- COSYE Modeling Elements

170

Element: Update Module Attributes Properties

Code:
Imports System

Imports System.Collections.Generic

Imports System.ComponentModel

Imports System.ComponentModel.Design

Imports System.Drawing

Imports System.Drawing.Design

Imports System.Xml

Imports Cosye.Modeling

Imports Cosye.Hla.Rti

Imports Simphony

Imports Simphony.ComponentModel

Imports Simphony.Mathematics

Imports Simphony.Modeling

Imports Simphony.Simulation

Imports Microsoft

Imports Microsoft.Scripting

Imports Microsoft.Scripting.Hosting

Imports Microsoft.Scripting.Hosting.Providers

Imports Microsoft.Scripting.Runtime

Imports IronPython.Hosting

Imports IronPython.Runtime

Imports IronPython.Modules

Imports IronPython.Runtime.Types

Namespace CosyeModelingVB

 ''' <summary>

 ''' A modeling element that updates an attribute of an object instance using Python script.

 ''' </summary>

 <Description("Updates an attribute of an object instance from using Python Script.")> _

 Public Class UpdatePyCode

 Inherits FlowElement(Of ProxyEntity)

 Implements IObjectClassSpecifier

 Implements ICosyeElement

#Region "Private Constants"

 Private Const ObjectClassNameDefault As String = "HLAobjectRoot"

 Private Const OrderTypeDefault As OrderType = OrderType.TimeStamp

#End Region

Appendix III- COSYE Modeling Elements

171

#Region "Private Fields"

 Private theClass As ObjectClassHandle

 Private rtiAmb As IRTIambassador

 Private m_PyCode As New CodeString(Me)

 Private m_Values As AttributeNameValueMap

 Private updatedValues As New AttributeNameValueMap(Me)

 Private PyEngine As ScriptEngine

 Private PyRunTime As ScriptRuntime

 Private PyScope As ScriptScope

 Private PySource As ScriptSource

#End Region

#Region "Public Constructors"

#Region "Update()"

 ''' <summary>

 ''' Initializes a new instance of the Update class.

 ''' </summary>

 Public Sub New()

 Me.Delay = New Constant(60)

 Me.ObjectClassName = ObjectClassNameDefault

 Me.OrderType = OrderTypeDefault

 Me.Values = New AttributeNameValueMap(Me)

 End Sub

#End Region

#End Region

#Region "Public Properties"

#Region "Delay"

 ''' <summary>

 ''' Gets or sets the amount of time by which entities will be delayed.

 ''' </summary>

 ''' <value>

 ''' The amount of time by which entities will be delayed.

 ''' </value>

 <InputsCategory()> _

 <Description("The amount of time by which entities will be delayed.")> _

 Public Property Delay() As Distribution

 Get

 Return m_Delay

 End Get

 Set(ByVal value As Distribution)

 m_Delay = value

 End Set

 End Property

 Private m_Delay As Distribution

#End Region

#Region "ObjectClassName"

 ''' <summary>

 ''' Gets or sets the object class the register element should register.

 ''' </summary>

 ''' <value>

 ''' The object class the register element should register.

 ''' </value>

 <InputsCategory()> _

 <DefaultValue(ObjectClassNameDefault)> _

Appendix III- COSYE Modeling Elements

172

 <Description("The object class the register element should register.")> _

 <TypeConverter(GetType(ObjectClassNameConverter))> _

 Public Property ObjectClassName() As String

 Get

 Return m_ObjectClassName

 End Get

 Set(ByVal value As String)

 m_ObjectClassName = value

 End Set

 End Property

 Public ReadOnly Property ObjectClassName2() As String Implements IObjectClassSpecifier.ObjectClassName

 Get

 Return m_ObjectClassName

 End Get

 End Property

 Private m_ObjectClassName As String

#End Region

#Region "OrderType"

 ''' <summary>

 ''' Gets or sets the order type of the update.

 ''' </summary>

 ''' <value>

 ''' The order type of the update.

 ''' </value>

 <InputsCategory()> _

 <DefaultValue(OrderTypeDefault)> _

 <Description("The order type of the update.")> _

 Public Property OrderType() As OrderType

 Get

 Return m_OrderType

 End Get

 Set(ByVal value As OrderType)

 m_OrderType = value

 End Set

 End Property

 Private m_OrderType As OrderType

#End Region

#Region "Values"

 ''' <summary>

 ''' Gets a collection containing the attribute values.

 ''' </summary>

 ''' <value>

 ''' A collection containing the attribute values.

 ''' </value>

 <InputsCategory()> _

 <Description("The attributes and their values.")> _

 Public Property Values() As AttributeNameValueMap

 Get

 Return m_Values

 End Get

 Private Set(ByVal value As AttributeNameValueMap)

 m_Values = value

 End Set

 End Property

#End Region

#Region "Python Code"

 ''' <summary>

Appendix III- COSYE Modeling Elements

173

 ''' Gets or sets IronPython code that the element should execute.

 ''' </summary>

 ''' <value>

 ''' String representing the code to execute.

 ''' </value>

 <InputsCategory()> _

 <DefaultValue("")> _

 <Description("IronPython Code to execute")> _

 <Editor(GetType(DialogEditor(Of PythonEditor)), GetType(Drawing.Design.UITypeEditor))> _

 Public Property PyCode() As CodeString

 Get

 Return m_PyCode

 End Get

 Set(ByVal value As CodeString)

 m_PyCode = value

 End Set

 End Property

#End Region

#End Region

#Region "Public Methods"

#Region "Paint(Graphics, RectangleF)"

 ''' <summary>

 ''' Renders the current element on a GDI+ drawing surface.

 ''' </summary>

 ''' <param name="graphics">

 ''' The GDI+ drawing surface on which the element should be drawn.

 ''' </param>

 ''' <param name="bounds">

 ''' The boundaries of the region to paint on the drawing surface.

 ''' </param>

 Public Overrides Sub Paint(ByVal graphics As Graphics, ByVal bounds As RectangleF)

 MyBase.Paint(graphics, bounds)

 Using font = New Font("Webdings", 32)

 Dim format = New StringFormat(StringFormat.GenericTypographic)

 format.Alignment = StringAlignment.Center

 graphics.DrawString(ChrW(156), font, Brushes.Black, bounds, format)

 End Using

 End Sub

#End Region

#Region "ReadXml(XmlReader)"

 ''' <summary>

 ''' Deserializes the class from an XML reader.

 ''' </summary>

 ''' <param name="reader">

 ''' The XML reader to deserialize from.

 ''' </param>

 ''' <exception cref="ArgumentNullException">

 ''' Thrown if the specified XML reader is a null reference.

 ''' </exception>

 Public Overrides Sub ReadXml(ByVal reader As XmlReader)

 reader.ExceptionIfNull("reader")

 Me.ObjectClassName = reader.GetAttributeAs(Of String)("ObjectClassName", ObjectClassNameDefault)

 Me.OrderType = reader.GetAttributeAs(Of OrderType)("OrderType", OrderTypeDefault)

 Me.PyCode.Code = reader.GetAttributeAs(Of String)("PyCode", Nothing)

 MyBase.ReadXml(reader)

 Me.Delay = reader.ReadComplexElementAs(Of Distribution)("Delay")

Appendix III- COSYE Modeling Elements

174

 reader.ReadComplexElement("Values", Me.Values)

 End Sub

#End Region

#Region "WriteXml(XmlWriter)"

 ''' <summary>

 ''' Serializes the class to an XML writer.

 ''' </summary>

 ''' <param name="writer">

 ''' The XML writer to serialize to.

 ''' </param>

 ''' <exception cref="ArgumentNullException">

 ''' Thrown if the specified XML writer is a null reference.

 ''' </exception>

 Public Overrides Sub WriteXml(ByVal writer As XmlWriter)

 writer.ExceptionIfNull("writer")

 writer.WriteAttribute("ObjectClassName", Me.ObjectClassName)

 writer.WriteAttribute("OrderType", Me.OrderType)

 writer.WriteAttribute("PyCode", Me.PyCode.Code)

 MyBase.WriteXml(writer)

 writer.WriteComplexElement("Delay", Me.Delay)

 writer.WriteComplexElement("Values", Me.Values)

 End Sub

#End Region

#End Region

#Region "Protected Internal Methods"

#End Region

#Region "Protected Methods"

#Region "InitializeRun(int runIndex)"

 ''' <summary>

 ''' Called prior to simulation of each run.

 ''' </summary>

 ''' <param name="runIndex">

 ''' The zero-based index of the run.

 ''' </param>

 Protected Overrides Sub InitializeRun(ByVal runIndex As Integer)

 MyBase.InitializeRun(runIndex)

 rtiAmb = Me.GetService(Of IRTIambassador)()

 Me.theClass = Me.rtiAmb.GetObjectClassHandle(Me.ObjectClassName)

 Me.Values.InitializeRun(runIndex)

 End Sub

#End Region

#Region "OnTransferOut(T entity)"

 ''' <summary>

 ''' Called when an entity needs to be transfered out.

 ''' </summary>

 ''' <param name="entity">

 ''' The entity to send.

 ''' </param>

 Protected Overridable Sub OnTransferOut(ByVal entity As ProxyEntity)

 Me.OutputPoint.TransferOut(entity)

 End Sub

#End Region

#Region "TransferIn(GeneralEntity, TransferInEventArgs)"

Appendix III- COSYE Modeling Elements

175

 ''' <summary>

 ''' Handles arrival of an entity at an input point.

 ''' </summary>

 ''' <param name="entity">

 ''' The entity.

 ''' </param>

 ''' <param name="point">

 ''' The input point at which the entity arrived.

 ''' </param>

 Protected Overrides Sub TransferIn(ByVal entity As ProxyEntity, ByVal point As InputPoint)

 Dim theObject = entity.Instance

 ' Initialize IronPython script engine

 PyEngine = Python.CreateEngine

 PyRunTime = PyEngine.Runtime

 PyScope = PyRunTime.CreateScope

 PySource = PyEngine.CreateScriptSourceFromString(PyCode.Code, SourceCodeKind.AutoDetect)

 'Add attribute names defined in the element as variables in the python code

 For Each entry In Values

 PyScope.SetVariable(entry.AttributeName, entry.Value)

 'Also add reference to current elemnt (me)just in case we need access to other stuff

 PyScope.SetVariable("me", Me)

 ' Me.Scenario.Ints(1)

 Next

 'Execute Python Script

 Try

 PySource.Execute(PyScope)

 Catch ex As Exception

 MsgBox("Exception: " & ex.Message & ControlChars.NewLine & "Exiting without executing Python script")

 Exit Sub

 End Try

 'Harvest updated values from script scope

 Try

 For Each entry In Values

 entry.Value = PyScope.GetVariable(entry.AttributeName)

 'MsgBox(entry.AttributeName & " : " & entry.Value.ToString)

 Next

 Catch ex As Exception

 MsgBox(ex.Message)

 Exit Sub

 End Try

 ' Request ownership of the attributes that will be updated

 Dim theAttributes = Me.Values.GetAttributeHandleSet()

 'Do not request ownership of attributes already owned

 Dim AttributesToRequest As New List(Of AttributeHandle)

 For Each Attr In theAttributes

 If Not rtiAmb.IsAttributeOwnedByFederate(theObject, Attr) Then

 AttributesToRequest.Add(Attr)

 End If

 Next

 'MsgBox(AttributesToRequest.Count)

 Try

 Me.rtiAmb.AttributeOwnershipAcquisition(theObject, AttributesToRequest, Nothing)

Appendix III- COSYE Modeling Elements

176

 Catch ex As Exception

 MsgBox(ex.Message & ControlChars.NewLine & ex.ToString)

 Exit Sub

 End Try

 'Do HLA update

 Try

 Dim theValues = Me.Values.GetAttributeHandleValueMap()

 If Me.OrderType = OrderType.TimeStamp Then

 Dim delay = Me.Delay.Sample()

 Me.rtiAmb.UpdateAttributeValues(theObject, theValues, Nothing, Me.Engine.TimeNow + delay)

 Dim handler = New Action(Of ProxyEntity)(AddressOf Me.OnTransferOut)

 Me.Engine.ScheduleEvent(entity, handler, delay)

 Else

 Me.rtiAmb.UpdateAttributeValues(theObject, theValues, Nothing)

 MyBase.TransferIn(entity, point)

 End If

 Catch ex As Exception

 MsgBox("Exception: " & ex.Message & ControlChars.NewLine & "Failed to complete HLA attribute update call")

 Exit Sub

 End Try

 ' Divest ownership of the updated attributes

 Me.rtiAmb.UnconditionalAttributeOwnershipDivestiture(theObject, theAttributes)

 End Sub

#End Region

#End Region

 Public Sub BeginExecution() Implements Cosye.Modeling.ICosyeElement.BeginExecution

 End Sub

 Public Sub EndExecution() Implements Cosye.Modeling.ICosyeElement.EndExecution

 End Sub

 Public Sub InitializeInitialInstances() Implements Cosye.Modeling.ICosyeElement.InitializeInitialInstances

 End Sub

#Region "MakeInitialDeclarations()"

 ''' <summary>

 ''' Called when the federation is synchronized at ready to declare.

 ''' </summary>

 Public Sub MakeInitialDeclarations() Implements ICosyeElement.MakeInitialDeclarations

 'MyBase.MakeInitialDeclarations()

 Me.theClass = Me.rtiAmb.GetObjectClassHandle(Me.ObjectClassName)

 Me.rtiAmb.PublishObjectClassAttributes(Me.theClass, Me.Values.GetAttributeHandleSet())

 End Sub

#End Region

 Public Sub RegisterInitialInstances() Implements Cosye.Modeling.ICosyeElement.RegisterInitialInstances

 End Sub

 End Class

End Namespace

Appendix III- COSYE Modeling Elements

177

Element: Module Entity

Code:
Imports Simphony.Mathematics

Imports Simphony.Simulation

Imports System.IO

Imports System.Drawing.Imaging

Imports Cosye.Hla.Rti

Imports Cosye.Modeling

Public Enum ModuleState

 Fabshop

 ModuleYard

End Enum

Public Class ModuleEntity

 Inherits GeneralEntity

 Private _TotalNumberofSpool As Integer

 Private _StartDate As Date

 Private _FinishDate As Date

 Private _ShippingDate As Date

 Private _NumberofSpoolsFabricated As Integer

 Private _ModuleID As Integer

 Private _State As ModuleState

 Private _Priority As Integer

 Private _ModuleName As String

 Public Property ShippingDate() As Date

 Get

 Return Me._ShippingDate

 End Get

 Set(ByVal value As Date)

 _ShippingDate = value

 End Set

 End Property

 Public Property StartDate() As Date

 Get

 Return Me._StartDate

 End Get

 Set(ByVal value As Date)

 _StartDate = value

 End Set

 End Property

 Public Property FinishDate() As Date

 Get

 Return Me._FinishDate

 End Get

 Set(ByVal value As Date)

 _FinishDate = value

 End Set

 End Property

 Public Property TotalNumberofSpool() As Integer

 Get

 Return Me._TotalNumberofSpool

 End Get

 Set(ByVal value As Integer)

 _TotalNumberofSpool = value

 End Set

 End Property

 Public Property NumberofSpoolsFabricated() As Integer

 Get

 Return Me._NumberofSpoolsFabricated

 End Get

 Set(ByVal value As Integer)

 _NumberofSpoolsFabricated = value

Appendix III- COSYE Modeling Elements

178

 End Set

 End Property

 Public Property Priority() As Double

 Get

 Return Me._Priority

 End Get

 Set(ByVal value As Double)

 _Priority = value

 End Set

 End Property

 Public Property State() As [Enum]

 Get

 Return Me._State

 End Get

 Set(ByVal value As [Enum])

 _State = value

 End Set

 End Property

 Public Property ModuleName() As String

 Get

 Return Me._ModuleName

 End Get

 Set(ByVal value As String)

 _ModuleName = value

 End Set

 End Property

 Public Property ModuleID() As Integer

 Get

 Return Me._ModuleID

 End Get

 Set(ByVal value As Integer)

 _ModuleID = value

 End Set

 End Property

End Class

Element: Spool Entity

Code:
Spool Entity

Imports Simphony.Mathematics

Imports Simphony.Simulation

Imports System.IO

Imports System.Drawing.Imaging

Imports Cosye.Hla.Rti

Imports Cosye.Modeling

Public Enum SpoolState

 Issued

 Cut

 FittingStorage

 Fitted

 WeldStorage

 Welded

End Enum

Public Enum SpoolSize

 Small

 Intermediate

 Large

End Enum

Public Enum SpoolLength

Appendix III- COSYE Modeling Elements

179

 Small

 Medium

 [Long]

End Enum

Public Enum SpoolMaterial

 CarbonSteel

 LowAlloySteel

 HighAlloySteel

End Enum

Public Class SpoolEntity

 Inherits GeneralEntity

 Private _SpoolID As Integer

 Private _NumberofComponents As Integer

 Private _ModuleID As Integer

 Private _ModuleHandle As ObjectInstanceHandle

 Private _ModuleName As String

 Private _DiameterSize As SpoolSize

 Private _Length As SpoolLength

 Private _Material As SpoolMaterial

 Private _State As SpoolState

 Private _PositionWork As Double

 Private _RollingWork As Double

 Private _TotalWork As Double

 Private _Priority As Double

 Public Property Priority() As Double

 Get

 Return Me._Priority

 End Get

 Set(ByVal value As Double)

 _Priority = value

 End Set

 End Property

 Public Property TotalWork() As Double

 Get

 Return Me._TotalWork

 End Get

 Set(ByVal value As Double)

 _TotalWork = value

 End Set

 End Property

 Public Property RollingWork() As Double

 Get

 Return Me._RollingWork

 End Get

 Set(ByVal value As Double)

 _RollingWork = value

 End Set

 End Property

 Public Property PositionWork() As Double

 Get

 Return Me._PositionWork

 End Get

 Set(ByVal value As Double)

 _PositionWork = value

 End Set

 End Property

 Public Property ModuleHandle() As ObjectInstanceHandle

 Get

 Return Me._ModuleHandle

Appendix III- COSYE Modeling Elements

180

 End Get

 Set(ByVal value As ObjectInstanceHandle)

 _ModuleHandle = value

 End Set

 End Property

 Public Property DiameterSize() As [Enum]

 Get

 Return Me._DiameterSize

 End Get

 Set(ByVal value As [Enum])

 _DiameterSize = value

 End Set

 End Property

 Public Property Length() As [Enum]

 Get

 Return Me._Length

 End Get

 Set(ByVal value As [Enum])

 _Length = value

 End Set

 End Property

 Public Property Material() As [Enum]

 Get

 Return Me._Material

 End Get

 Set(ByVal value As [Enum])

 _Material = value

 End Set

 End Property

 Public Property State() As [Enum]

 Get

 Return Me._State

 End Get

 Set(ByVal value As [Enum])

 _State = value

 End Set

 End Property

 Public Property ModuleName() As String

 Get

 Return Me._ModuleName

 End Get

 Set(ByVal value As String)

 _ModuleName = value

 End Set

 End Property

 Public Property NumberofComponents() As Integer

 Get

 Return Me._NumberofComponents

 End Get

 Set(ByVal value As Integer)

 _NumberofComponents = value

 End Set

 End Property

 Public Property SpoolID() As Integer

 Get

 Return Me._SpoolID

 End Get

 Set(ByVal value As Integer)

 _SpoolID = value

 End Set

 End Property

Appendix III- COSYE Modeling Elements

181

 Public Property ModuleID() As Integer

 Get

 Return Me._ModuleID

 End Get

 Set(ByVal value As Integer)

 _ModuleID = value

 End Set

 End Property

End Class

Element: Create Spool for Module Properties

Code:
Imports System.Drawing

Imports Simphony.Simulation

Imports Cosye.Hla.Rti

Imports Cosye.Modeling

Imports Simphony

Imports Simphony.Mathematics

Public Class CreateSpoolforModule

 Inherits DivergeElement(Of ProxyEntity)

 'Inherits DivergeElement(Of GeneralEntity)

 Private rtiAmb As IRTIambassador

 Private NoSpool As Integer

 Private NoModulesIn As Integer = 0

 Private NoSpoolOut As Integer = 0

 Private SpoolNoComponent As Integer = 3

 Private _CsPercentage As Double = 0.3

Appendix III- COSYE Modeling Elements

182

 Private _LowAlloyPercentage As Double = 0.5

 Private _HighAlloyPercentage As Double = 0.2

 Private _SmallDiPercentage As Double = 0.3

 Private _MediumDiPercentage As Double = 0.5

 Private _LargeDiPercentage As Double = 0.2

 Private _SmallLePercentage As Double = 0.3

 Private _MediumLePercentage As Double = 0.5

 Private _LongLePercentage As Double = 0.2

 <InputsCategory()> _

<Description("The amount of earth to haul in cubic meters.")> _

 Public Property CsPercentage() As Double

 Get

 Return Me._CsPercentage

 End Get

 Set(ByVal value As Double)

 _CsPercentage = value

 End Set

 End Property

 <InputsCategory()> _

 <Description("The amount of earth to haul in cubic meters.")> _

 Public Property LowAlloyPercentage() As Double

 Get

 Return Me._LowAlloyPercentage

 End Get

 Set(ByVal value As Double)

 _LowAlloyPercentage = value

 End Set

 End Property

 <InputsCategory()> _

<Description("The amount of earth to haul in cubic meters.")> _

Public Property HighAlloyPercentage() As Double

 Get

 Return Me._HighAlloyPercentage

 End Get

 Set(ByVal value As Double)

 _HighAlloyPercentage = value

 End Set

 End Property

 <InputsCategory()> _

<Description("The amount of earth to haul in cubic meters.")> _

 Public Property LongLePercentage() As Double

 Get

 Return Me._LongLePercentage

 End Get

 Set(ByVal value As Double)

 _LongLePercentage = value

 End Set

 End Property

 <InputsCategory()> _

 <Description("The amount of earth to haul in cubic meters.")> _

 Public Property MediumLePercentage() As Double

 Get

 Return Me._MediumLePercentage

 End Get

 Set(ByVal value As Double)

 _MediumLePercentage = value

 End Set

 End Property

 <InputsCategory()> _

<Description("The amount of earth to haul in cubic meters.")> _

Public Property SmallLePercentage() As Double

 Get

Appendix III- COSYE Modeling Elements

183

 Return Me._SmallLePercentage

 End Get

 Set(ByVal value As Double)

 _SmallLePercentage = value

 End Set

 End Property

 <InputsCategory()> _

<Description("The amount of earth to haul in cubic meters.")> _

 Public Property LargeDiPercentage() As Double

 Get

 Return Me._LargeDiPercentage

 End Get

 Set(ByVal value As Double)

 _LargeDiPercentage = value

 End Set

 End Property

 <InputsCategory()> _

 <Description("The amount of earth to haul in cubic meters.")> _

 Public Property MediumDiPercentage() As Double

 Get

 Return Me._MediumDiPercentage

 End Get

 Set(ByVal value As Double)

 _MediumDiPercentage = value

 End Set

 End Property

 <InputsCategory()> _

<Description("The amount of earth to haul in cubic meters.")> _

Public Property SmallDiPercentage() As Double

 Get

 Return Me._SmallDiPercentage

 End Get

 Set(ByVal value As Double)

 _SmallDiPercentage = value

 End Set

 End Property

 ' <InputsCategory()> _

 '<Description("The amount of earth to haul in cubic meters.")> _

 'Public Property SpoolNoComponent() As Integer

 ' Get

 ' Return Me._SpoolNoComponent

 ' End Get

 ' Set(ByVal value As Integer)

 ' _SpoolNoComponent = Math.Max(0, value)

 ' End Set

 ' End Property

 'Private AmountLoadedValue As Double = 100

 ' <InputsCategory()> _

 '<Description("The amount of earth to haul in cubic meters.")> _

 ' Public Property NoSpool() As Integer

 ' Get

 ' Return Me._NoSpool

 ' End Get

 ' Set(ByVal value As Integer)

 ' _NoSpool = value

 ' End Set

 ' End Property

 Protected Overrides Sub TransferIn(ByVal entity As ProxyEntity, ByVal point As Simphony.Modeling.InputPoint)

 'MyBase.TransferIn(entity, point)

 NoModulesIn += 1

 Dim theClass = rtiAmb.GetObjectClassHandle("Product.Module")

 Dim theModuleName = rtiAmb.GetAttributeHandle(theClass, "Name")

Appendix III- COSYE Modeling Elements

184

 'entity.Instance

 'Dim theModuleInstanceHandler = rtiAmb.GetObjectInstanceHandle(entity)

 Dim theModuleTotalNumberofSpools = rtiAmb.GetAttributeHandle(theClass, "TotalNumberofSpool")

 Dim ModulePriority = rtiAmb.GetAttributeHandle(theClass, "Priority")

 Me.FirstOutputPoint.TransferOut(entity)

 Trace.WriteLine("Module " & entity.Values(theModuleName) & entity.Values(theModuleTotalNumberofSpools))

 Dim NoSpool = (entity.Values(theModuleTotalNumberofSpools))

 Trace.WriteLine("NSpool " & NoSpool)

 For I As Integer = 1 To NoSpool

 Dim Spool As New SpoolEntity

 NoSpoolOut += 1

 Spool.ModuleName = entity.Values(theModuleName)

 Spool.Priority = entity.Values(ModulePriority)

 'Spool.ModuleName = entity.

 Spool.ModuleID = NoModulesIn

 Spool.ModuleHandle = entity.Instance

 Spool.SpoolID = NoSpoolOut

 Spool.NumberofComponents = SpoolNoComponent

 Dim l1 As Double = Rnd()

 If l1 <= LargeDiPercentage Then

 Spool.DiameterSize = SpoolSize.Large

 ElseIf LargeDiPercentage < l1 And l1 <= (LargeDiPercentage + MediumDiPercentage) Then

 Spool.DiameterSize = SpoolSize.Intermediate

 Else

 Spool.DiameterSize = SpoolSize.Small

 End If

 Dim l2 As Double = Rnd()

 If l2 <= LongLePercentage Then

 Spool.Length = SpoolLength.Long

 ElseIf LongLePercentage < l2 And l2 <= (LongLePercentage + MediumLePercentage) Then

 Spool.Length = SpoolLength.Medium

 Else

 Spool.Length = SpoolLength.Small

 End If

 Dim l3 As Double = Rnd()

 If l3 <= LongLePercentage Then

 Spool.Material = SpoolMaterial.CarbonSteel

 ElseIf LongLePercentage < l3 And l3 <= (LongLePercentage + MediumLePercentage) Then

 Spool.Material = SpoolMaterial.LowAlloySteel

 Else

 Spool.Material = SpoolMaterial.HighAlloySteel

 End If

 Me.SecondOutputPoint.TransferOut(Spool)

 Trace.WriteLine("SpoolID " & Spool.SpoolID & " DiameterSize " & Spool.DiameterSize.ToString) ' " ModuleName " &

Spool.ModuleName & "ModuleID " & Spool.ModuleID & "ModuleHandle" & Spool.ModuleHandle.ToString)

Appendix III- COSYE Modeling Elements

185

 Next

 End Sub

 Public Overrides Sub Paint(ByVal graphics As System.Drawing.Graphics, ByVal bounds As System.Drawing.RectangleF)

 MyBase.Paint(graphics, bounds)

 graphics.DrawImage(My.Resources.CreateModuls.ToBitmap(), bounds)

 End Sub

 Protected Overrides Sub InitializeRun(ByVal runIndex As Integer)

 MyBase.InitializeRun(runIndex)

 Me.rtiAmb = Me.GetService(Of IRTIambassador)()

 End Sub

End Class

Element: Create Spool Components Properties

Code:
Imports System.Drawing

Public Class CreateSpoolComponents1

 Inherits OutputElement(Of ComponentEntity)

 Private _NoModule As Integer = 2

 Private _NoofSpoolperModule As Integer = 10

 Private _SpoolNoComponent As Integer = 3

 Private _ComponentNoPipe As Integer = 2

 Private _SmallPercentage As Double = 0.3

 Private _MediumPercentage As Double = 0.5

Appendix III- COSYE Modeling Elements

186

 Private _LargePercentage As Double = 0.2

 Private _SmallDI As Double = 5

 Private _MediumDI As Double = 10

 Private _LargeDI As Double = 20

 Private _TotalDI As Double

 <OutputsCategory()> _

<Description("Total amount of Diameter Inch")> _

Public Property TotalDI() As Double

 Get

 Return Me._TotalDI

 End Get

 Private Set(ByVal value As Double)

 Me._TotalDI = value

 End Set

 End Property

 <InputsCategory()> _

 <Description("Number of Pipes in each Component")> _

 Public Property ComponentNoPipe() As Double

 Get

 Return Me._ComponentNoPipe

 End Get

 Set(ByVal value As Double)

 _ComponentNoPipe = value

 End Set

 End Property

 <InputsCategory()> _

 <Description("Number of Spools in each Module")> _

 Public Property NoofSpoolperModule() As Double

 Get

 Return Me._NoofSpoolperModule

 End Get

 Set(ByVal value As Double)

 _NoofSpoolperModule = value

 End Set

 End Property

 <InputsCategory()> _

 <Description("Value of Large DI")> _

 Public Property LargeDI() As Double

 Get

 Return Me._LargeDI

 End Get

 Set(ByVal value As Double)

 _LargeDI = value

 End Set

 End Property

 <InputsCategory()> _

<Description("Value of Medium DI")> _

Public Property MediumDI() As Double

 Get

 Return Me._MediumDI

 End Get

 Set(ByVal value As Double)

 _MediumDI = value

 End Set

 End Property

 <InputsCategory()> _

<Description("Value of Small DI")> _

Public Property SmallDI() As Double

 Get

 Return Me._SmallDI

 End Get

 Set(ByVal value As Double)

Appendix III- COSYE Modeling Elements

187

 _SmallDI = value

 End Set

 End Property

 <InputsCategory()> _

 <Description("Percentage of Large DI")> _

 Public Property LargePercentage() As Double

 Get

 Return Me._LargePercentage

 End Get

 Set(ByVal value As Double)

 _LargePercentage = value

 End Set

 End Property

 <InputsCategory()> _

 <Description("Percentage of Medium DI")> _

 Public Property MediumPercentage() As Double

 Get

 Return Me._MediumPercentage

 End Get

 Set(ByVal value As Double)

 _MediumPercentage = value

 End Set

 End Property

 <InputsCategory()> _

<Description("Percentage of Small DI")> _

Public Property SmallPercentage() As Double

 Get

 Return Me._SmallPercentage

 End Get

 Set(ByVal value As Double)

 _SmallPercentage = value

 End Set

 End Property

 <InputsCategory()> _

 <Description("Related Module No")> _

Public Property NoModule() As Integer

 Get

 Return Me._NoModule

 End Get

 Set(ByVal value As Integer)

 _NoModule = Math.Max(0, value)

 End Set

 End Property

 <InputsCategory()> _

<Description("Number of Components for each Spool")> _

Public Property SpoolNoComponent() As Integer

 Get

 Return Me._SpoolNoComponent

 End Get

 Set(ByVal value As Integer)

 _SpoolNoComponent = Math.Max(0, value)

 End Set

 End Property

 Protected Overrides Sub InitializeRun(ByVal runIndex As Integer)

 MyBase.InitializeRun(runIndex)

 For i = 1 To NoModule

 Dim TotalWorkUnit As Double

 For k = 1 To NoofSpoolperModule

 For j = 1 To SpoolNoComponent

Appendix III- COSYE Modeling Elements

188

 Dim MyEntity As New ComponentEntity

 Dim WorkUnit As Double

 MyEntity.ModuleID = i

 MyEntity.SpoolID = k + (i - 1) * (NoofSpoolperModule)

 MyEntity.ComponentID = j

 MyEntity.DI = 0

 MyEntity.NoPipesforComponent = ComponentNoPipe

 MyEntity.NumberofComponents = SpoolNoComponent

 MyEntity.AvailableNoComponents = 0

 Dim l As Double = Rnd()

 'Trace.WriteLine("l " & l)

 If l <= LargePercentage Then

 MyEntity.Diameter = "Large"

 WorkUnit = LargeDI

 ElseIf LargePercentage < l And l <= (LargePercentage + MediumPercentage) Then

 MyEntity.Diameter = "Medium"

 WorkUnit = MediumDI

 Else

 MyEntity.Diameter = "Small"

 WorkUnit = SmallDI

 End If

 For m = 1 To MyEntity.NoPipesforComponent

 MyEntity.DI += WorkUnit

 Next

 Me.OutputPoint.TransferOut(MyEntity)

 Trace.WriteLine(MyEntity.SpoolID)

 TotalWorkUnit = MyEntity.DI

 _TotalDI += TotalWorkUnit

 Next

 Next

 Next

 End Sub

End Class

Appendix III- COSYE Modeling Elements

189

Element: Fab Station Properties

Code:
Imports System.Drawing

Imports Simphony.Simulation

Imports Cosye.Modeling

Imports Simphony

Imports Simphony.Mathematics

Imports System.IO

Imports System.Xml

Imports System.Drawing.Imaging

Public Class FabStation

 Inherits FlowElement(Of ComponentEntity)

 Private _NumberofStations As Integer = 1

 Private _NumberofWorkers As Integer = 1

 Private _NeededWorkerforStation As Integer = 1

 Private _WorkerType As String = "Cutter"

 Private _StationType As String = "Cutting Station"

 Private Station As New Resource(StationType, NumberofStations)

 Private Worker As New Resource(WorkerType, NumberofWorkers)

 Private ComponentsQueue As New WaitingFile("ComponentQueue")

 Private _AmountProcced As New Double

 Private _Troughput As Double = 10

Appendix III- COSYE Modeling Elements

190

 Private _ComponentState As String = "Cut"

 Private ReadOnly CycleTimeValue As New NumericStatistic("CycleTime", False)

 <InputsCategory()> _

<Description("")> _

 Public Property Troughput() As Integer

 Get

 Return Me._Troughput

 End Get

 Set(ByVal value As Integer)

 _Troughput = value

 End Set

 End Property

 <InputsCategory()> _

<Description("")> _

 Public Property NeededWorkerforStation() As Integer

 Get

 Return Me._NeededWorkerforStation

 End Get

 Set(ByVal value As Integer)

 _NeededWorkerforStation = value

 End Set

 End Property

 <InputsCategory()> _

 <Description("")> _

 Public Property WorkerType() As String

 Get

 Return Me._WorkerType

 End Get

 Set(ByVal value As String)

 _WorkerType = value

 End Set

 End Property

 <InputsCategory()> _

<Description("")> _

 Public Property StationType() As String

 Get

 Return Me._StationType

 End Get

 Set(ByVal value As String)

 _StationType = value

 End Set

 End Property

 <InputsCategory()> _

 <Description("")> _

 Public Property NumberofWorkers() As Integer

 Get

 Return Me._NumberofWorkers

 End Get

 Set(ByVal value As Integer)

 _NumberofWorkers = value

 End Set

 End Property

 <InputsCategory()> _

 <Description("")> _

 Public Property NumberofStations() As Integer

 Get

 Return Me._NumberofStations

 End Get

 Set(ByVal value As Integer)

 _NumberofStations = value

 End Set

 End Property

Appendix III- COSYE Modeling Elements

191

 <InputsCategory()> _

 <Description("")> _

 Public Property ComponentState() As String

 Get

 Return Me._ComponentState

 End Get

 Set(ByVal value As String)

 _ComponentState = value

 End Set

 End Property

 <OutputsCategory()> _

<Description("")> _

Public Property AmountProcced() As Double

 Get

 Return Me._AmountProcced

 End Get

 Private Set(ByVal value As Double)

 Me._AmountProcced = value

 End Set

 End Property

 <StatisticsCategory()> _

<Description("")> _

Public ReadOnly Property WorkerUtilization() As NumericStatistic

 Get

 Return Me.Worker.Utilization

 End Get

 End Property

 <StatisticsCategory()> _

<Description("")> _

Public ReadOnly Property StationUtilization() As NumericStatistic

 Get

 Return Me.Station.Utilization

 End Get

 End Property

 <StatisticsCategory()> _

<Description("")> _

Public ReadOnly Property FileLength() As NumericStatistic

 Get

 Return Me.ComponentsQueue.FileLength

 End Get

 End Property

 <StatisticsCategory()> _

<Description("")> _

Public ReadOnly Property WaitingTime() As NumericStatistic

 Get

 Return Me.ComponentsQueue.WaitingTime

 End Get

 End Property

 <StatisticsCategory()> _

<Description("")> _

Public ReadOnly Property CycleTime() As NumericStatistic

 Get

 Return Me.CycleTimeValue

 End Get

 End Property

 Public Sub New()

 Me.AddResource(Me.Station) 'Adding a resource to the constructor

 Me.AddResource(Me.Worker)

 Me.AddWaitingFile(Me.ComponentsQueue) 'Adding a waiting file to the constructor

 Me.Station.WaitingFiles.Add(Me.ComponentsQueue) 'Linking up the Resource and Waiting File

 Me.Worker.WaitingFiles.Add(Me.ComponentsQueue)

 Me.AddStatistic(Me.CycleTime)

Appendix III- COSYE Modeling Elements

192

 'Me.Size = My.Resources.Fabrication.Size

 End Sub

 Public Overrides Sub Paint(ByVal graphics As System.Drawing.Graphics, ByVal bounds As System.Drawing.RectangleF)

 Dim myBrush As New SolidBrush(Color.DarkSlateBlue)

 Dim f As Font = New Font("Arial", 8, FontStyle.Regular)

 graphics.DrawString(Me.StationType.ToString, f, myBrush, bounds.Left - 15, bounds.Top + 60)

 MyBase.Paint(graphics, bounds)

 graphics.DrawImage(My.Resources.Fabrication.ToBitmap, bounds)

 End Sub

 Protected Overrides Sub InitializeRun(ByVal runIndex As Integer)

 MyBase.InitializeRun(runIndex)

 Me.AmountProcced = 0

 End Sub

 Protected Overrides Sub TransferIn(ByVal entity As ComponentEntity, ByVal point As Simphony.Modeling.InputPoint)

 'MyBase.TransferIn(entity, point)

 Dim Handler = New Action(Of ComponentEntity)(AddressOf Me.StartFabProcess)

 Dim MyRequirements As New MultipleResourceRequirement()

 MyRequirements.Add(Me.Station, 1)

 MyRequirements.Add(Me.Worker, 1)

 Me.Engine.RequestResource(entity, MyRequirements, Handler, Me.ComponentsQueue, entity.Priority)

 Trace.WriteLine("Queue " & Me.ComponentsQueue.FileLength.ToString & "WaitingTime " & Me.ComponentsQueue.WaitingTime.ToString)

 'Me.GetType.GetElementType.

 End Sub

 Private Sub StartFabProcess(ByVal Entity As ComponentEntity)

 Dim Handler = New Action(Of ComponentEntity)(AddressOf Me.FinishFabProcess)

 Me.Scenario.Floats(1) = Me.Engine.TimeNow

 Dim duration = Entity.TotalWork * _Troughput

 'Trace.WriteLine("Vasat" & Entity.Id)

 Me.Engine.ScheduleEvent(Entity, Handler, duration)

 Trace.WriteLine("TIME " & Me.Scenario.Floats(1))

 End Sub

 Private Sub FinishFabProcess(ByVal Entity As ComponentEntity)

 Entity.State = ComponentState

 Me.AmountProcced += Entity.TotalWork

 'Trace.WriteLine("Bye" & Entity.Id)

 Me.Engine.ReleaseResource(Entity, Me.Station, 1)

 Me.Engine.ReleaseResource(Entity, Me.Worker, 1)

 Me.OutputPoint.TransferOut(Entity)

 Me.CycleTime.Collect(Me.Engine.TimeNow - Me.Scenario.Floats(1))

 End Sub

End Class

Element: Worker

Code:
Imports System.Drawing

Imports Simphony.Simulation

Imports Cosye.Modeling

Imports Simphony

Imports Simphony.Mathematics

Imports System.IO

Imports System.Xml

Appendix III- COSYE Modeling Elements

193

Imports System.Drawing.Imaging

Public Class Worker

 Inherits ElementBase

 'Private _WorkerType As String = "Cutter"

 Private _NumberofWorkers As Integer = 4

 'Private Worker As New Resource(WorkerType, NumberofWorkers)

 Private ComponentsQueue As New WaitingFile("ComponentQueue")

 Private ReadOnly _Worker As New Resource("Worker", 4)

 Friend ReadOnly Property Worker() As Resource

 Get

 Return Me._Worker

 End Get

 End Property

 <OutputsCategory()> _

<Description("")> _

Public ReadOnly Property AvailableWorkers() As Integer

 Get

 Return Me.Worker.Available

 End Get

 End Property

 <OutputsCategory()> _

<Description("")> _

Public ReadOnly Property InUseWorkers() As Integer

 Get

 Return Me.Worker.InUse

 End Get

 End Property

 <InputsCategory()> _

 <Description("")> _

 Public Property NumberofWorkers() As Integer

 Get

 Return Me._NumberofWorkers

 End Get

 Set(ByVal value As Integer)

 _NumberofWorkers = value

 End Set

 End Property

 <StatisticsCategory()> _

<Description("")> _

Public ReadOnly Property WorkerUtilization() As NumericStatistic

 Get

 Return Me.Worker.Utilization

 End Get

 End Property

 <StatisticsCategory()> _

<Description("")> _

Public ReadOnly Property FileLength() As NumericStatistic

 Get

 Return Me.ComponentsQueue.FileLength

 End Get

 End Property

 <StatisticsCategory()> _

<Description("")> _

Public ReadOnly Property WaitingTime() As NumericStatistic

 Get

 Return Me.ComponentsQueue.WaitingTime

 End Get

 End Property

 Public Sub New()

 Me.AddResource(Me.Worker)

Appendix III- COSYE Modeling Elements

194

 Me.AddWaitingFile(Me.ComponentsQueue) 'Adding a waiting file to the constructor

 Me.Worker.WaitingFiles.Add(Me.ComponentsQueue) 'Linking up the Resource and Waiting File

 ' Me.Worker.WaitingFiles.Add(Me.ComponentsQueue)

 End Sub

 Public Overrides Sub Paint(ByVal graphics As System.Drawing.Graphics, ByVal bounds As System.Drawing.RectangleF)

 Dim myBrush As New SolidBrush(Color.DarkSlateBlue)

 Dim f As Font = New Font("Arial", 8, FontStyle.Regular)

 graphics.DrawString(Me.Name.ToString, f, myBrush, bounds.Left - 15, bounds.Top + 60)

 MyBase.Paint(graphics, bounds)

 graphics.DrawImage(My.Resources.Fabrication.ToBitmap, bounds)

 End Sub

 Protected Overrides Sub InitializeRun(ByVal runIndex As Integer)

 MyBase.InitializeRun(runIndex)

 End Sub

End Class

Element: Handling Input Output

Code:
Imports System.Drawing

Imports Simphony.Simulation

Imports Cosye.Modeling

Imports Simphony

Imports Simphony.Mathematics

Imports System.IO

Imports System.Xml

Imports System.Drawing.Imaging

Public Class Handling

 Inherits FlowElement(Of ComponentEntity)

 Private _NoCranes As Integer = 2

 Private _NoWorkers As Integer = 2

 Private _PercentageofCraneNeed As Double = 1

 Private _NeededWorkerforCrane As Double = 1

 Private _NoofHandling As Integer

 Private _HanlingFleetType As String = "Cran"

 Private _WorkerType As String = "Operator"

 Private Crane As New Resource(HanlingFleetType, NoCranes)

 Private Worker As New Resource(WorkerType, NoWorkers)

 Private HandlingComponentsQueue As New WaitingFile("HandlingComponentQueue")

 Private _NoofPipesHandled As New Integer

 Private _Duration As Double = 1

 Private _ComponentState As String = "Moved"

 Private ReadOnly CycleTimeValue As New NumericStatistic("CycleTime", False)

 <StatisticsCategory()> _

 <Description("")> _

Appendix III- COSYE Modeling Elements

195

 Public ReadOnly Property WorkerUtilization() As NumericStatistic

 Get

 Return Me.Worker.Utilization

 End Get

 End Property

 <StatisticsCategory()> _

 <Description("")> _

 Public ReadOnly Property CraneUtilization() As NumericStatistic

 Get

 Return Me.Crane.Utilization

 End Get

 End Property

 <StatisticsCategory()> _

 <Description("")> _

 Public ReadOnly Property FileLength() As NumericStatistic

 Get

 Return Me.HandlingComponentsQueue.FileLength

 End Get

 End Property

 <StatisticsCategory()> _

 <Description("")> _

 Public ReadOnly Property CycleTime() As NumericStatistic

 Get

 Return Me.CycleTimeValue

 End Get

 End Property

 <InputsCategory()> _

 <Description("")> _

 Public Property PercentageofCraneNeed() As Integer

 Get

 Return Me._PercentageofCraneNeed

 End Get

 Set(ByVal value As Integer)

 _PercentageofCraneNeed = value

 End Set

 End Property

 <InputsCategory()> _

 <Description("")> _

 Public Property NoCranes() As Integer

 Get

 Return Me._NoCranes

 End Get

 Set(ByVal value As Integer)

 _NoCranes = value

 End Set

 End Property

 <InputsCategory()> _

 <Description("")> _

 Public Property NoWorkers() As Integer

 Get

 Return Me._NoWorkers

 End Get

 Set(ByVal value As Integer)

 _NoWorkers = value

 End Set

 End Property

 <InputsCategory()> _

 <Description("")> _

 Public Property WorkerType() As String

 Get

 Return Me._WorkerType

 End Get

Appendix III- COSYE Modeling Elements

196

 Set(ByVal value As String)

 _WorkerType = value

 End Set

 End Property

 <InputsCategory()> _

 <Description("")> _

 Public Property HanlingFleetType() As String

 Get

 Return Me._HanlingFleetType

 End Get

 Set(ByVal value As String)

 _HanlingFleetType = value

 End Set

 End Property

 <OutputsCategory()> _

 <Description("")> _

 Public Property NoofPipesHandled() As Integer

 Get

 Return Me._NoofPipesHandled

 End Get

 Private Set(ByVal value As Integer)

 Me._NoofPipesHandled = value

 End Set

 End Property

 Public Sub New()

 Me.AddResource(Me.Crane) 'Adding a resource to the constructor

 Me.AddResource(Me.Worker)

 Me.AddStatistic(Me.CycleTime)

 Me.AddWaitingFile(Me.HandlingComponentsQueue) 'Adding a waiting file to the constructor

 Me.Crane.WaitingFiles.Add(Me.HandlingComponentsQueue) 'Linking up the Resource and Waiting File

 End Sub

 Protected Overrides Sub InitializeRun(ByVal runIndex As Integer)

 MyBase.InitializeRun(runIndex)

 Me.NoofPipesHandled = 0

 End Sub

 Public Overrides Sub Paint(ByVal graphics As System.Drawing.Graphics, ByVal bounds As System.Drawing.RectangleF)

 MyBase.Paint(graphics, bounds)

 graphics.DrawImage(My.Resources.Handling.ToBitmap(), bounds)

 End Sub

 Protected Overrides Sub TransferIn(ByVal entity As ComponentEntity, ByVal point As Simphony.Modeling.InputPoint)

 'MyBase.TransferIn(entity, point)

 Dim Handler = New Action(Of ComponentEntity)(AddressOf Me.StartHandling)

 Dim l As Double = Rnd()

 Dim MyRequirements As New MultipleResourceRequirement()

 If l <= PercentageofCraneNeed Then

 MyRequirements.Add(Me.Crane, 1)

 MyRequirements.Add(Me.Worker, 1)

 Else

 MyRequirements.Add(Me.Crane, 1)

 End If

 Me.Engine.RequestResource(entity, MyRequirements, Handler, Me.HandlingComponentsQueue)

 End Sub

 Private Sub StartHandling(ByVal Entity As ComponentEntity)

 Dim Handler = New Action(Of ComponentEntity)(AddressOf Me.FinishHandling)

 Dim duration = Entity.NoPipesforComponent * _Duration

 Me.Engine.ScheduleEvent(Entity, Handler, duration)

 End Sub

 Private Sub FinishHandling(ByVal Entity As ComponentEntity)

Appendix III- COSYE Modeling Elements

197

 'Entity.State = ComponentState

 Me.NoofPipesHandled += Entity.NoPipesforComponent

 Me.Engine.ReleaseResource(Entity, Me.Crane, 1)

 Me.Engine.ReleaseResource(Entity, Me.Worker, 1)

 Me.OutputPoint.TransferOut(Entity)

 End Sub

End Class

Element: Dispatch Properties

Code:
Imports System.Drawing

Imports Simphony.Simulation

Imports Cosye.Modeling

Imports Simphony

Imports Simphony.Mathematics

Imports System.IO

Imports System.Xml

Imports System.Drawing.Imaging

Public Class Dispatch

 Inherits DivergeElement(Of ComponentEntity)

 Private OperatorValue As String = "True"

 Private ComponentPeropertyValue As String = "DiameterSize"

 Private PeropertyValue As String = "Small"

 <InputsCategory()> _

<Description("")> _

 Public Property [Operator]() As String

 Get

 Return Me.OperatorValue

 End Get

 Set(ByVal value As String)

 OperatorValue = value

 End Set

 End Property

 <InputsCategory()> _

<Description("")> _

 Public Property ComponentPeroperty() As String

Appendix III- COSYE Modeling Elements

198

 Get

 Return Me.ComponentPeropertyValue

 End Get

 Set(ByVal value As String)

 ComponentPeropertyValue = value

 End Set

 End Property

 <InputsCategory()> _

 <Description("")> _

 Public Property Peroperty() As String

 Get

 Return Me.PeropertyValue

 End Get

 Set(ByVal value As String)

 PeropertyValue = value

 End Set

 End Property

 Protected Overrides Sub InitializeRun(ByVal runIndex As Integer)

 MyBase.InitializeRun(runIndex)

 End Sub

 Public Overrides Sub Paint(ByVal graphics As System.Drawing.Graphics, ByVal bounds As System.Drawing.RectangleF)

 Dim myBrush As New SolidBrush(Color.DarkSlateBlue)

 Dim f As Font = New Font("Arial", 8, FontStyle.Regular)

 graphics.DrawString(Me.Peroperty.ToString, f, myBrush, bounds.Left, bounds.Top + 60)

 MyBase.Paint(graphics, bounds)

 graphics.DrawImage(My.Resources.Dispatch, bounds)

 End Sub

 Protected Overrides Sub TransferIn(ByVal entity As ComponentEntity, ByVal point As Simphony.Modeling.InputPoint)

 'MyBase.TransferIn(entity, point)

 Select Case ComponentPeropertyValue

 Case "DiameterSize" : If entity.DiameterSize.ToString = Peroperty Then

 Me.FirstOutputPoint.TransferOut(entity)

 Else

 Me.SecondOutputPoint.TransferOut(entity)

 End If

 Case "Length" : If entity.Length.ToString = Peroperty Then

 Me.FirstOutputPoint.TransferOut(entity)

 Else

 Me.SecondOutputPoint.TransferOut(entity)

 End If

 Case "Material" : If entity.Material.ToString = Peroperty Then

 Me.FirstOutputPoint.TransferOut(entity)

 Else

 Me.SecondOutputPoint.TransferOut(entity)

 End If

 End Select

 End Sub

End Class

Element: Assembler Input Output

Appendix III- COSYE Modeling Elements

199

Code:
Imports System.Collections

Imports System

Imports System.Drawing

Imports System.Data

Public Class Assembler

 Inherits FlowElement(Of ComponentEntity)

 Private SpoolinfoTable As New DataTable()

 Dim NSpoolSArrived As Integer = 0

 Private Sub CreatSpoolinfoTable()

 Dim myDataColumn As New DataColumn("SpoolID1", GetType(System.String))

 SpoolinfoTable.Columns.Add(myDataColumn)

 myDataColumn = New DataColumn("NoComponents1", GetType(System.Int32))

 SpoolinfoTable.Columns.Add(myDataColumn)

 myDataColumn = New DataColumn("FinishedNoComponents1", GetType(System.Int32)) 'enum type

 SpoolinfoTable.Columns.Add(myDataColumn)

 myDataColumn = New DataColumn("PositionDI1", GetType(System.String))

 SpoolinfoTable.Columns.Add(myDataColumn)

 SpoolinfoTable.AcceptChanges()

 End Sub

 Private Sub InitialzeSpoolinfoTable()

 For i As Integer = 0 To 100

 Dim myDataRow As DataRow

 myDataRow = SpoolinfoTable.NewRow()

 myDataRow("SpoolID1") = "0"

 myDataRow("NoComponents1") = 0

 myDataRow("FinishedNoComponents1") = 0

 myDataRow("PositionDI1") = "0"

 SpoolinfoTable.Rows.Add(myDataRow)

 Next

 End Sub

 Public Sub New()

 CreatSpoolinfoTable()

 End Sub

 Protected Overrides Sub InitializeRun(ByVal runIndex As Integer)

 MyBase.InitializeRun(runIndex)

 InitialzeSpoolinfoTable()

 End Sub

 Public Overrides Sub Paint(ByVal graphics As System.Drawing.Graphics, ByVal bounds As System.Drawing.RectangleF)

 MyBase.Paint(graphics, bounds)

 graphics.DrawImage(My.Resources.Assembler.ToBitmap(), bounds)

 End Sub

 Protected Overrides Sub TransferIn(ByVal entity As ComponentEntity, ByVal point As Simphony.Modeling.InputPoint)

Appendix III- COSYE Modeling Elements

200

 Dim exsist As String = "NO"

 For i As Integer = 0 To NSpoolSArrived - 1

 If entity.SpoolID = SpoolinfoTable.Rows.Item(i)("SpoolID1") Then

 exsist = "YES"

 SpoolinfoTable.Rows.Item(i)("FinishedNoComponents1") += 1

 Trace.WriteLine("EntityStayes" & entity.SpoolID)

 If SpoolinfoTable.Rows.Item(i)("FinishedNoComponents1") = entity.NumberofComponents Then

 Me.OutputPoint.TransferOut(entity)

 Trace.WriteLine("EntityOut" & entity.SpoolID)

 End If

 End If

 Next

 If exsist = "NO" Then

 SpoolinfoTable.Rows.Item(NSpoolSArrived)("SpoolID1") = entity.SpoolID

 SpoolinfoTable.Rows.Item(NSpoolSArrived)("FinishedNoComponents1") += 1

 NSpoolSArrived += 1

 End If

 End Sub

End Class

Element: Proxy Module Assembler Properties

Code:
Imports System.Drawing

Imports Simphony.Simulation

Imports Cosye.Hla.Rti

Imports Cosye.Modeling

Imports Simphony

Imports Simphony.Mathematics

Public Class ProxyModuleAssembler

 Inherits FlowElement(Of SpoolEntity)

 Private ReadOnly spoolCount As New Dictionary(Of ObjectInstanceHandle, Integer)

 Private rtiAmb As IRTIambassador

 Private proxies As IProxyProvider

 Private SpoolinfoTable As New DataTable()

 Dim NModuleSArrived As Integer = 0

 Protected Overrides Sub InitializeRun(ByVal runIndex As Integer)

 MyBase.InitializeRun(runIndex)

Appendix III- COSYE Modeling Elements

201

 'SpoolinfoTable.Clear()

 'InitialzeModuleinfoTable()

 Me.spoolCount.Clear()

 Me.rtiAmb = Me.GetService(Of IRTIambassador)()

 Me.proxies = Me.GetService(Of IProxyProvider)()

 End Sub

 Protected Overrides Sub TransferIn(ByVal entity As SpoolEntity, ByVal point As Simphony.Modeling.InputPoint)

 'MyBase.TransferIn(entity, point)

 Trace.WriteLine("Modulehandle:** " & entity.ModuleHandle.ToString)

 Dim proxy = Me.proxies(entity.ModuleHandle)

 Dim theClass = rtiAmb.GetKnownObjectClassHandle(entity.ModuleHandle)

 Dim theModuleTotalNumberofSpools = rtiAmb.GetAttributeHandle(theClass, "TotalNumberofSpool")

 Dim theModuleFinishedNumberofSpools = rtiAmb.GetAttributeHandle(theClass, "NumberofSpoolsFabricated")

 Dim CompReadyTime = rtiAmb.GetAttributeHandle(theClass, "CompReadyTime")

 If Me.spoolCount.ContainsKey(entity.ModuleHandle) Then

 Me.spoolCount(entity.ModuleHandle) += 1

 Else

 Me.spoolCount(entity.ModuleHandle) = 1

 End If

 rtiAmb.AttributeOwnershipAcquisition(entity.ModuleHandle, New AttributeHandle() {theModuleFinishedNumberofSpools}, Nothing)

 rtiAmb.AttributeOwnershipAcquisition(entity.ModuleHandle, New AttributeHandle() {CompReadyTime}, Nothing)

 Dim theValues As New AttributeHandleValueMap()

 Dim lookahead = CType(Me.Scenario, CosyeScenario).Lookahead

 theValues.Add(theModuleFinishedNumberofSpools, Me.spoolCount(entity.ModuleHandle))

 theValues.Add(CompReadyTime, Me.Engine.TimeNow)

 rtiAmb.UpdateAttributeValues(entity.ModuleHandle, theValues, Nothing, Me.Engine.TimeNow + lookahead)

 rtiAmb.UnconditionalAttributeOwnershipDivestiture(entity.ModuleHandle, New AttributeHandle() {theModuleFinishedNumberofSpools})

 rtiAmb.UnconditionalAttributeOwnershipDivestiture(entity.ModuleHandle, New AttributeHandle() {CompReadyTime})

 If Me.spoolCount(entity.ModuleHandle) = proxy.Values(theModuleTotalNumberofSpools) Then

 Dim newEntity = New ProxyEntity(proxy)

 Dim handler = New Action(Of ProxyEntity)(AddressOf TransferOut)

 Me.Engine.ScheduleEvent(newEntity, handler, lookahead)

 Trace.WriteLine("Lookahead" & lookahead)

 End If

 End Sub

 Private Sub TransferOut(ByVal entity As ProxyEntity)

 Me.OutputPoint.TransferOut(entity)

 End Sub

End Class

202

Appendix IV

An Example of Stored Model (Spool Fabrication Shop

Model_M1) in Construction Modeling Repository

Fig A-IV-1: Classes in Spool_Fabrication_Model_M1

Appendix IV – Spool_Fabrication_Model

203

Fig A-IV-2: Properties in Spool_Fabrication_Model_M1

Appendix IV – Spool_Fabrication_Model

204

Fig A-IV-2: Instances in Spool_Fabrication_Model_M1

Appendix IV – Spool_Fabrication_Model

205

Fig A-IV-2: Ontologies in Spool_Fabrication_Model_M1

Spool_Fabrication_Model_M1 RDF Code (just first and last page):

<?xml version="1.0"?>

<rdf:RDF

 xmlns:sxml="http://topbraid.org/sxml#"

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:owl="http://www.w3.org/2002/07/owl#"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

 xmlns:composite="http://www.topbraid.org/2007/05/composite.owl#"

 xmlns="file:///evn.topbraidlive.org/Mixed-Repository/FabshopModel-M1.xml#"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

 xml:base="file:///evn.topbraidlive.org/Mixed-Repository/FabshopModel-M1.xml">

 <owl:Ontology rdf:about="">

 <owl:imports rdf:resource="http://topbraid.org/sxml"/>

 </owl:Ontology>

 <owl:Class rdf:ID="Input_Text">

 <rdfs:label>Input_Text</rdfs:label>

 <sxml:element>Input_Text</sxml:element>

 </owl:Class>

 <owl:Class rdf:ID="Simphony_Model">

 <rdfs:label>Simphony_Model</rdfs:label>

 <sxml:element>Simphony_Model</sxml:element>

 </owl:Class>

 <owl:Class rdf:ID="ParameterValues">

 <rdfs:label>ParameterValues</rdfs:label>

 <sxml:element>ParameterValues</sxml:element>

 </owl:Class>

 <owl:Class rdf:ID="Element">

 <rdfs:label>Element</rdfs:label>

 <sxml:element>Element</sxml:element>

 </owl:Class>

 <owl:Class rdf:ID="Files">

 <rdfs:label>Files</rdfs:label>

Appendix IV – Spool_Fabrication_Model

206

 <sxml:element>Files</sxml:element>

 </owl:Class>

 <owl:Class rdf:ID="Input_Distribution">

 <rdfs:label>Input_Distribution</rdfs:label>

 <sxml:element>Input_Distribution</sxml:element>

 </owl:Class>

 <owl:Class rdf:ID="RequiredTemplates">

 <rdfs:label>RequiredTemplates</rdfs:label>

 <sxml:element>RequiredTemplates</sxml:element>

 </owl:Class>

 <owl:Class rdf:ID="Statistic_Numeric">

 <rdfs:label>Statistic_Numeric</rdfs:label>

 <sxml:element>Statistic_Numeric</sxml:element>

 </owl:Class>

 <owl:Class rdf:ID="Implementation_Profile">

 <rdfs:label>Implementation_Profile</rdfs:label>

 <sxml:element>Implementation_Profile</sxml:element>

 </owl:Class>

 <owl:Class rdf:ID="Input_Numeric">

 <rdfs:label>Input_Numeric</rdfs:label>

 <sxml:element>Input_Numeric</sxml:element>

 </owl:Class>

 <owl:Class rdf:ID="Model_Profile">

 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >Model_Profile</rdfs:label>

 <sxml:element rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >Model_Profile</sxml:element>

 </owl:Class>

 <owl:Class rdf:ID="Output_Numeric">

 <rdfs:label>Output_Numeric</rdfs:label>

 <sxml:element>Output_Numeric</sxml:element>

 </owl:Class>

 <owl:Class rdf:ID="Input">

 <rdfs:label>Input</rdfs:label>

 <sxml:element>Input</sxml:element>

 </owl:Class>

.

.

.

 <RequiredTemplate rdf:ID="r-0-1-0-0">

 <composite:index rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

Appendix IV – Spool_Fabrication_Model

207

 >0</composite:index>

 <Name-RequiredTemplate>General</Name-RequiredTemplate>

 </RequiredTemplate>

 </composite:child>

 <Count-RequiredTemplates>2</Count-RequiredTemplates>

 </RequiredTemplates>

 </composite:child>

 <Related_Ontologies_3-Descriptive_Profile>PIMODES.owl</Related_Ontologies_3-

Descriptive_Profile>

 <Related_Ontologies_2-Descriptive_Profile>Simphony.owl</Related_Ontologies_2-

Descriptive_Profile>

 <Related_Ontologies_1-

Descriptive_Profile>Industrial_Construction.owl</Related_Ontologies_1-Descriptive_Profile>

 <Application_Domain-

Descriptive_Profile>Industrial_Construction</Application_Domain-Descriptive_Profile>

 </Descriptive_Profile>

 </composite:child>

 <composite:child>

 <General_Profile rdf:ID="r-0-0">

 <composite:index rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >0</composite:index>

 <Version-General_Profile>2</Version-General_Profile>

 <Name-General_Profile>Spool_Fabrication_Shop</Name-General_Profile>

 <Developer-General_Profile>Naeimeh_Sadeghi</Developer-General_Profile>

 <Description-General_Profile>Lockerbie and Hole fabrication shop</Description-

General_Profile>

 <Date-General_Profile>Septermber2009</Date-General_Profile>

 </General_Profile>

 </composite:child>

 <composite:index rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >0</composite:index>

 </Model_Profile>

 </composite:child>

 <xmlns-Simphony_Model>http://www.construction.ualberta.ca/Simphony/Model</xmlns-

Simphony_Model>

 </Simphony_Model>

 </sxml:root>

 </sxml:Document>

</rdf:RDF>

<!-- Created with TopBraid -->

208

Appendix V

Construction Modeling Repository SPARQL

Queries

Table A-III-1: Construction Modeling Repository SPARQL queries syntax and results

displayed in TBC
Query Result

Q1

Q2

Appendix V - Repository Queries

209

Q3

Q4

Q5

Appendix V - Repository Queries

210

Q6

Q7

Q8
WHERE {

 {

 ?Element a TunM:Element .

 ?Element TunM:Element-Element ?ElementI .

 ?Element TunM:Element_Name-Element ?Element_Name .

 FILTER regex(?Element_Name, "Shift") .

 ?Element TunM:Template-Element ?Template .

 }

 UNION

 {

 ?Element TunM:Element-Element ?ElementI .
 ?Element TunM:Element_Name-Element ?Element_Name .

 ?Element TunM:Template-Element ?Template .

 ?Element composite:child ?Inputs .

 ?Inputs composite:child ?Input .

 ?Input TunM:Name-Input ?InputName .

 FILTER regex(?InputName, "Shift") .

 }

 UNION

 {

 ?Element TunM:Element-Element ?ElementI .

 ?Element TunM:Element_Name-Element ?Element_Name .
 ?Element TunM:Template-Element ?Template .

 ?Element composite:child ?Ouputs .

 ?Ouputs composite:child ?Output .

 ?Output TunM:Name-Output ?OutputName .

 FILTER regex(?OutputName, "Shift") .

 }

UNION

 {

 ?Element a FabM1:Element .

 ?Element FabM1:Element-Element ?ElementI .

 ?Element FabM1:Element_Name-Element ?Element_Name .
 FILTER regex(?Element_Name, "Shift") .

 ?Element FabM1:Template-Element ?Template .

}

 UNION

 {

 ?Element FabM1:Element-Element ?ElementI .

 ?Element FabM1:Element_Name-Element ?Element_Name .

 ?Element FabM1:Template-Element ?Template .

 ?Element composite:child ?Inputs .

 ?Inputs composite:child ?Input .

 ?Input FabM1:Name-Input ?InputName .

 FILTER regex(?InputName, "Shift") .
 }

 UNION

 {

 ?Element FabM1:Element-Element ?ElementI .

 ?Element FabM1:Element_Name-Element ?Element_Name .

 ?Element FabM1:Template-Element ?Template .

 ?Element composite:child ?Ouputs .

Appendix V - Repository Queries

211

 ?Ouputs composite:child ?Output .

 ?Output FabM1:Name-Output ?OutputName .

 FILTER regex(?OutputName, "Shift") .

 } .

}

Q9

Q10

Appendix V - Repository Queries

212

Q10

Q1

Appendix V - Repository Queries

213

Q2

