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Abstract

With increasing computational power, the multi scale simulation of materials is getting

more possible. To show the ability of this method to address macro scale problems, in

this work, the problem of polymer/solvent mutual diffusion was selected based on its sci-

entific and industrial significance. Poly(vinyl alcohol) (PVA) was selected as the polymeric

medium and water, ethanol and benzene as typical solvents. After careful formulation of

the problem of mutual diffusion, the target variables were reduced to self diffusion coeffi-

cient of the solvent and Flory-Huggins interaction parameter of the binary system. Then,

using extensive molecular dynamics simulations, the well-known OPLS-AA force field was

validated for the simulation of PVA by benchmarking its predictions against a few of inter-

esting parameters of pure PVA, namely the specific volume, glass transition temperature,

Hildebrand solubility parameter and heat capacity. The results showed that the OPLS-AA

force field was able to reproduce specific volumes, thermal expansion coefficients, glass tran-

sition temperatures and solubility parameters of the PVAs with different tacticities over a

wide range of temperatures (200-550 K). For the heat capacities, 300% overestimations

were obtained. Such overestimations were reduced significantly to about 30% by applying

the quantum correction method.

It is well-known that properties of PVA in the pure and solution states depend largely

on the hydrogen bonding networks formed. In the context of molecular simulation, such

networks are handled through the Coulombic interactions. Therefore, a good set of partial

atom charges (PACs) for simulations involving PVA is highly desirable. As the original

PACs in OPLS-AA have been parameterized for small molecular species (ethanol), they

need to be systematically validated for PVA macromolecule. Accordingly, the PACs for

PVA were calculated using a few commonly used population analysis schemes with a hope

to identify an accurate set of PACs for PVA monomers. To evaluate the quality of the calcu-

lated parameters, we have benchmarked their predictions for free energy of solvation (FES)

in selected solvents by molecular dynamics simulations against the ab initio calculated val-
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ues. Selected solvents were water, ethanol and benzene as they covered a range of size and

polarity. The best candidate for PVA/solvent simulation was found to be PACs by Merz-

Singh-Kollman which will serve future simulations for the prediction of the PVA/solvent

Flory-Huggins interaction parameter.

In an attempt to provide more insight into the diffusion mechanism of solvents in PVA

matrix, molecular dynamics simulation was used to study the diffusion of two selected pen-

etrants, water and benzene, in PVA over a wide range of temperatures and concentrations.

To help understand the effect of free volume on the diffusion behavior of water and ben-

zene, we used the technique of Voronoi tessellation to determine key characteristics of free

volume redistribution. In the case of water, we showed that it was the free volume redis-

tribution frequency that led to an observation, previously reported in the literature, that

the self-diffusion coefficient of water increases with increasing water concentration despite

the fact that increase in water concentration decreases the mean fractional free volume in

PVA. In the case of benzene (non-polar) diffusing in PVA (polar), we demonstrated that

the failure of the Macki-Meares model was not entirely due to the dissimilarity between

the intermolecular interactions. Rather, one of the reasons was the inability of the benzene

molecules to break the hydrogen bonds between the PVA chains which are essential to in-

crease the polymer segments mobility.

Based on the mechanism found, the free volume model was selected as the best candi-

date for describing the diffusion of small molecules in polymers. However, the experimental

procedure for parameterizing the model is not trivial and in fact extremely time consuming.

Accordingly, following the best practice in the literature, we carried out isobaric-isothermal

molecular dynamics simulations to generate thermodynamic data of a few selected poly-

mer/solvent systems and used the data to parameterize the corresponding Sanchez-Lacombe

equation of state (SLEOS). The characteristic parameters of the SLEOS were then used in

the parameterization of lattice free volume (LFV) model so that diffusivity of the solvents

in the polymers were then calculated. Owing to its consideration of glass transition tem-

perature effects, LFV model was more successful in correlation of the self diffusion data the

Mackie-Meares model.
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Chapter 1

Motivation

There is no doubt that solving a problem without any simplification has been in great in-

terest for scientists or engineers. Despite all the progress in science and computation power,

solving any physical problem by the direct application of the Schrodinger’s equation is still a

fantasy due to numerous practical and theoretical issues (at least not till the quantum com-

puter era). The most important prohibitive factor is the computational resources required

for first principle calculation of any type. Accordingly, in the past couple decades, beside the

continuum (macro) scale modeling, three different micro scale simulation methods have been

emerged for addressing materials simulation (see figure 1.1): quantum mechanical approach

with explicit consideration of the electrons, molecular dynamics with atomistic resolution

and meso-scale modeling which groups a collection of atoms to speed up the calculations.

The spacial resolution and time span of each simulation approach is limited with a wide gap

between them. However, as the computational resources have become more available, the

gap between these approaches is bridged effectively with multi-scale simulation approaches

where output of one level of calculation is fed to upper level and so on. In this approach,

one can benefit from high resolution of micro-scale modeling to parametrize a macro-scale

model or compensate experimental weaknesses to gain better understanding of the problem

in hand. Study of the polymeric materials and their behavior under different conditions is

one of the most challenging problems which has been the center of many multi-scale simu-

lation works during the past couple decades.

Polymeric materials have been known for quiet a long time and without doubt synthetic

polymers play a major role in every aspect of everyday life. One of the most fundamental

properties of these macromolecules is their tune-ability. A macromolecule with the same

chemical formulation can exhibit a variety of properties, simply by changing the molecular

weight of the chain, adding some branches to the back-bone or even subjected the polymer

to a series of heating/cooling processes. It was this fact that opens windows to scientists

to make new polymer-based materials with the desired properties. Every now and then, a

claim of finding a new material with numerous medical, scientific or industrial applications
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Figure 1.1: Time and length scale of material computer simulation.

is all over the news. But what we don’t hear much about is the story of those costly and

unsuccessful trials and errors in the lab prior to the great discovery. Is there anyway to

guide those studies toward the final destiny with less pain? How about doing some com-

puter simulation on the idea before putting it on the test in the lab? (see figure 1.2)

Far before availability of computers with enough computational power, theoretical mod-

eling was the first choice to study materials. Theoretical models developed in that period

are still great predictive tools. But every theory comes with its own weaknesses and simpli-

fications. Theoretical modeling of the polymeric materials witnessed numerous successful

but incomplete theories like entanglement and tube theory, free volume theory, lattice ther-

modynamic and etc. Despite the beauty and success rate of these models, their application

for new materials is quiet a cumbersome task due to lack of required parameters. The

synthesis of the polymer for experimental parametrization of the models is redundant, as

in that case many required properties of the polymer could be measured directly. But how

this gap can be filled in a timely and cost effective way? The answer is the ”multi-scale

computer simulation”.

The art of computer simulation is in its early stage and still many more elaborations

are required to make it practical for prediction of the properties of materials without any

help from experimental data. In hope to put one step forward in this area and in this

work we tried to apply multi-scale modeling approach to a polymer which has been studied

experimentally and theoretically before. The main output of this work will be fine tunning

of the contemporary methods of simulation and of the produced data. Beside that, results

generated in this work will provide better understanding of the selected polymer with the
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Figure 1.2: By providing prior information using computer simulation, number of times
that costly experimental procedures repetition can be reduced largely.

Figure 1.3: PVA repeating unit.

help of atomistic resolution of molecular dynamics.

Before rushing to any simulation, a proper choice for polymer under study is essential.

The best candidate would be a polymer with available experimental data. Also, a specific

problem should be chosen to work on with major scientific and industrial application. After

a comprehensive review of the literature available, poly(vinyl alcohol) (PVA) was selected

as the candidate polymer and mutual diffusion of the polymer/solvent as the problem of

interest. The reason for such choices is explained in the next section.

1.1 Poly(vinyl alcohol)

For the case study, we have selected the poly(vinyl alcohol) (see figure 1.1 and 1.4) which

has numerous applications in different fields of science and technology. Depending on the

molecular weight and processing method, PVA shows numerous interesting properties like[2–

4]:

3



Figure 1.4: PVA monomer has a chiral center, so PVA has three possible stereoregular
conformation namely: Atactic, Isotactic and Syndiotactic.

• Film-forming capability

• Gas barrier (due to small, dense and closely packed monoclinic crystallite)

• Highly hydrophilic

• Excellent chemical stability

• Non-toxic

• Non-carcinogenic

• Bio-adhesive

• Easy to process

• Low price (than other competitor polymers)

• Immiscibility with most organic compounds including hydrophilic solvents such as

ethanol or acetic acid

• Flexible

• Transparent

• Toughness

based on above properties, PVA has been gradually used in a variety of applications

such as [2–7]:

• Drug encapsulation and delivery

• Active membrane in pervaporation separation

• Barrier film for food packaging
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• Contact lenses

• Composite materials

• Metal nano-particles stabilization

• Hydrogel in textile sizing and finishing agent

• Emulsifier

• Photosensitive coating

• Adhesives for paper, wood, textiles, leather

• Lining for artificial hearts

1.2 Polymer/solvent mutual diffusion

To optimize the performance of PVA in many of the aforementioned applications, a molec-

ular level understanding of the diffusion behavior of low molecular weight substances, water

in particular, in PVA is crucial. For example, in pervaporation separation (see figure 1.5) of

solvent mixtures using PVA membrane the diffusion process governs the efficiency of sepa-

ration [2]. In food packaging (see figure 1.6), the diffusion of water changes the film barrier

properties and even a small amount of water is hesitated [7]. In drug delivery devices (see

figure 1.7), release of drug is tuned by adjusting water uptake by PVA matrix or in contact

lenses (see figure 1.8) the rate of oxygen diffusion (essential for eyes) is regulated by water

content which is itself affected by diffusion rate of water in the matrix. Accordingly, predic-

tion of mutual diffusion coefficient of PVA/solvent mixtures is highly desirable. So, having

a powerful tool to predict the mutual diffusion coefficient of solvents in PVA is selected as

major focus of this work.

1.3 Experimental validation of results

On the experimental side of the work, we were planing to use an Intelligent Mass Gravimet-

ric Analyzer (IGA) for very accurate measurements of the mutual diffusion coefficient of

solvent in PVA (for details see chapter 9). Although we were not able to start the planned

experimental work, in the process of learning to use the IGA machine, we came a cross an-

other industrial important problem as we were working on the asphaltenes materials from

oil sands industry, very close to what would happen to PVA. These byproducts of oil-sands

extraction are highly polar macromolecules resembling the situation we would face in the

case of PVA. To show that how the experimental results on mass uptake/release could assist

to derive the mutual diffusion coefficient of macromolecule/solvent system experimentally,

at the very last chapter of this work we will present some of the published work in this area.
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Figure 1.5: Schematic of pervaporation separation.

Figure 1.6: Schematic of polymer film around food.
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Figure 1.7: Schematic of a polymeric rod used for drug delivery.

Figure 1.8: Schematic of contact lenses.
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1.4 Objectives Summary

• Theoretical formulation of mutual diffusion in polymer/solvent systems.

• Validation of the MD force field for both pure PVA and PVA/solvent systems.

• Estimation of solvent self diffusion coefficients in PVA/solvent systems.

• Determination of the diffusion mechanism.

• Parametrization of the candidate models for the prediction of the solvent self diffusion

coefficient.

• Estimation of the thermodynamic factor and mutual diffusion coefficients in PVA/solvent

systems.

• Experimental evaluation of the mutual diffusion in PVA/solvent systems.

• Validation of the MD results by comparing with experimental data.
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Chapter 2

Introduction

In this chapter, the problem of mutual diffusion of polymer/solvent systems will be math-

ematically formulated using the non-linear thermodynamic theory. Then, the problem is

reduced to finding the key underlying parameters, self diffusion of solvent in polymer and the

Flory-Huggins interaction parameter, using the Onsager analysis. The underlying theory

for the calculation of each parameter will also be discussed. Finally, Voronoi tessellation will

be presented as an efficient and simple method to characterize the free volume associated

with molecules in systems of interest.

2.1 Theory of diffusion in polymers

2.1.1 Fick’s formulation of diffusion

The concept of mass transfer had not been totally understood by 1850. Earlier in 1830’s a

chemist named Thomas Graham published several batches of data with regard to the rate

of mass transfer and concentration but unfortunately without any attempt to mathemat-

ically model the phenomenon [8]. Later, in 1855, Adolf Fick, using these published data,

made an analogy between mass transfer and heat conduction. He followed the Fourier heat

conduction model and proposed his famous model for mass diffusion:

J = −D∇x(C) (2.1)

∇t(C) = ∇x.(−J) (2.2)

where t and x represent temporal and spatial coordinates, respectively. C is concentration

and D is Fick’s or mutual diffusion coefficient (For an explanatory discussion on differences

between mutual and self diffusion coefficient see appendix A). While later on in 20 century,

it was found that the true driving force for the mass transfer is chemical potential, these

equations are still applicable in many practical problems with an acceptable accuracy.
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2.1.2 Non-equilibrium thermodynamic formulation of diffusion

According to the general idea of non-equilibrium thermodynamics, each transport phe-

nomenon can be considered as a transport driven by a driving force and a resistance op-

posing the transport (or transport coefficient). The idea behind this is based on the exper-

imental observations of kinetics and is outside the scope of equilibrium thermodynamics.

Empirically, the flux J is linearly proportional to the driving force f [9]:

J = L× f (2.3)

where L, the transport coefficient, is a proportionality constant (which can be scalar or

tensorial depending on the system under consideration). As we discussed before, In the

simplest case, it can be assumed that the driving force of diffusion is the concentration

gradient and the coefficient L is the Fick’s diffusion coefficient. Applying the postulates

of non-equilibrium thermodynamics to the diffusion problem, it has been found [9] that

the general form of molar diffusion flux in a non-equilibrium system (under mechanical

equilibrium) for component i is:

Ji = −
N∑
i=1

Lij (∇Tµj − Fj)−
Lij
T
∇T (2.4)

where µj is the chemical potential of component j, Fj is the external force on component j,

T is the temperature and N is the number of components. Now if we limit our analysis to

binary mixtures in the thermal equilibrium without any external force acting on the system,

Eq.2.4 reduces to:

Ji = −
2∑
i=1

Lij∇Tµj (2.5)

and to evaluate this equation, the phenomenological coefficients Lij and chemical potential

of each component in the mixture are required.

2.1.3 Onsager analysis

Every molecular system has vacancy spaces between its molecules, space which is not occu-

pied by molecules or atoms (see figure 2.1). As molecular species are moving in a mixture,

these vacancies also move. Considering these vacancies, the flux of different chemical species

in the system is given by:

J̄i =

N∑
j=1

LijX̄j + LivX̄v (2.6)

where N is number of species in the system and v identifies the vacancy and Lij are phe-

nomenological Onsager coefficients. The generalized driving force for the flux of mass, X̄j ,

is generally given by Eq.2.4 and X̄v is the chemical potential of the vacancies to be defined
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Figure 2.1: Representation of solvent molecules using the vacancies in the polymeric matrix
to diffuse.

later. If the total volume of the system assumed to be constant, then the net flux in the

system will be zero:
N∑
i=1

J̄i + J̄v = 0 (2.7)

This equation simply implies that the fluxes of different species are not independent. Using

this equation, Onsager showed that the matrix of phenomenological coefficients Lij obeys

a simple rule which is known as Onsager reciprocal relations:

Lij = Lji (2.8)

assuming that chemical potential of the vacancies is zero and using the Gibbs-Duhem

relation, it can be shown that for a binary mixture of A and B:

JA =

(
LAA − LAB

xA
xB

)
∇μA (2.9)

Here, the definition the chemical potential is:

μi = μ0
i + kT ln(γixi) (2.10)

where xi and γi are the mole fraction and activity coefficient of species i and μ0
i is the

reference chemical potential. Accordingly, we have:

∇μi =
kT

xi
∇xi +

kT

γi

∂γi
∂xi

∇xi (2.11)

Now, if we insert Eq.2.11 in Eq.2.9 and replace xA with CA
n we have:

JA = −DA∇CA (2.12)
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when DA is mutual diffusion coefficient of A in B and is[10]:

DA =
kT

n

(
LAA
xA
− LAB

xB

)(
1 +

∂lnγA
∂lnxA

)
(2.13)

2.1.4 The Darken equation

Generally, the self diffusion coefficient can be considered as the Boltzmann factor (kT) times

a constant. Accordingly, we can say (for detail you can see [11]):

DsA = kT

(
LAA
CA

+
LBA
CB

)
(2.14)

where DsA is the self diffusion coefficient of A (in the density of mixture). So, the

Eq.2.13 can be written as:

DA = DsA

(
1 +

∂lnγA
∂lnxA

)
(2.15)

Using this definition, and applying the constraint in Eq. 2.6, Darken [10] related the

mutual diffusion coefficient to self diffusion coefficient of components involved:

D = (xBDsA + xADsB)

(
1 +

∂lnγ

∂lnx

)
(2.16)

which was later extended to polymer mixtures and solutions by Hartley and Crank [12]. A

close look at Eq. 2.16 reveals that for calculation of the mutual diffusion coefficient of a

polymer/solvent system, there is a need to calculate the self diffusion coefficient of each of

the components as well as a thermodynamic factor (or free energy). According to experi-

mental results, it is well known that self diffusion of polymer segments (especially for high

molecular weight chains) is negligible and only self diffusion of the solvents under study is

required. So, in the upcoming section, we will review the theory required for the calculation

and modeling of the solvent self diffusion and a thermodynamic model to predict the free

energy of the system.

2.1.5 Flory-Huggins theory

The thermodynamics of polymer/solvent systems is well explained in the mean-field theory.

The theory is an extension of the lattice fluid theory originally developed to explain the

miscibility of two low molecular weight liquids. The simplest version of this lattice chain

theory is generally referred to as the FloryHuggins mean-field theory. The mean-field theory

for the polymer solutions compares the free energy of the polymer/solvent system before

mixing and that after mixing. According to the Flory-Huggins theory, the Gibbs free energy

of the mixture is:

∆G = nkBT

(
φ

NA
+

1− φ
NB

ln(1− φ) + φ(1− φ)χ

)
(2.17)
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Where n is total number of lattice sites, kB is Boltzmann constant, φ is polymer volume

fraction and χ is the Flory-Huggins interaction parameter. Using this equation, the mutual

diffusion coefficient of solvent in a polymer solution can be obtained:

DA = BAAφ
∂µA
∂φ

= kTBAA

(
1− φ
NA

+
φ

NB
− 2χφ(1− φ)

)
(2.18)

where kTBAA is the equivalent of the solvent self diffusion in the system:

DsA = kTBAA =
kT

NAη
(2.19)

where NA and η are parameters related to the size of the solvent and viscosity of the system.

Eq. 2.18 shows how the Flory-Huggins interaction parameter,χ, is the only parameter

required to estimate the thermodynamic factor required to calculate the mutual diffusion

coefficient.

2.1.6 The Free volume theory

According to the prediction of the transition state theory, the self diffusion of molecules in

the liquid state is proportional to the inverse of the viscosity of the system. On the other

hand, experimentally, it is known that viscosity of glass forming liquids undergoes a drastic

change approaching its glass transition temperature. Accordingly, Cohen and Turnbull [13]

proposed the free volume theory as an successor of the transition state theory to incorporate

the glass transition effect on self diffusion of glass forming liquids:

Ds = ga∗u exp

(
− γν

∗
νf

)
(2.20)

where g is a geometric factor; γ is a numerical factor introduced to correct for overlap of

free volume; νf is average molecular free volume; ν∗ is minimum required free volume for

successful jump of diffusant; a∗ approximately equals the molecular diameter; and u is gas

kinetic velocity. Despite the initial belief, the greatest impact of this theory has been on

describing mass transfer in concentrated polymeric solutions as well as simple liquids.

The formalism, as originally developed, provides a relationship between the system free

volume and the self diffusion coefficient Ds for a one-component liquid. This relation can

be readily be extended to describe the self diffusion of a single species in a binary mixture:

Ds1 = D01 exp

(
− γν̄

∗
1

ν̄f

)
(2.21)

where D01 is the temperature-independent constant. Unlike the solution of hard sphere liq-

uids, in the solution containing macromolecules, preparation of the enough volume for jump

of the entire chain together is not possible. However, individual chain can be considered as

multiple jumping units (polymer segments). Accordingly, Vrentas and Duda count number

of jumping unit as follow:
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ν̄f =
ν̂f

ω1
M1

+ ω2
M2

(2.22)

where ν̂f is the specific hole free volume of a liquid with a weight fraction ωi of species

i, and with jumping unit molecular weights of Mi. Note that Mi for simple molecule is

the entire molecular weight of the component but in the case of polymer chain is a small

fraction of the total chain molecular weight. Accordingly, the solvent self diffusion in a

polymer solution is given by:

Ds1 = D01 exp

(
−γ(ω1ν̂

∗
1 + ω2ξν̂

∗
2)

ν̂f

)
(2.23)

where ν̂∗1 is the specific hole free volume of component i required for a diffusive step

and ξ =
ν̄∗1
ν̄∗2

. The most important parameter in the above equation is the free volume, ν̂f ,

which should be defined for polymer solutions. Vrentas and Duda defined this parameter

as follows:

ν̂f = ω1K11(K21 − Tg1 + T ) + ω2K12(K22 − Tg2 + T ) (2.24)

For polymer solutions, K11 and K21 are free volume parameters for the solvent, while

K12 and K22 are free volume parameters for the polymer. Tgi and i are glass transition

temperature and mass fraction of each component.

2.1.7 Statistical mechanics of self diffusion

The very basic equation used in the calculation of the self-diffusion coefficient of particles in

molecular dynamics simulation is the so called ”Einstein” equation. Since the first attempt

by Einstein, there has been several other approaches by others which make the theory more

elaborate. Beside the original argument and the approach by Smoluchowski (for details see

[14]) which suffers from several unjustified assumptions, there is the proof by Paul Langevin

which is much simpler and complete. Here, a brief summary of the theory is given (for more

complete discussion see [15]).

Let us consider the motion of a Brownian particle in fluid. On average, the motion

is governed by the Newtonian dynamics under friction, mv̇ = −γv, where γ is the friction

coefficient. However, this equation, leading to the continuous decay of the particle’s velocity,

holds only on the average. In order to describe the erratic motion of the particle, resulting

from random, uncompensated impacts of the molecules of surrounding fluid, we have to

introduce additional, fluctuating force ξ(t). We assume only that this force has a zero mean

(so that it does not lead to the net motion on average), and that it is independent on x,

which reflects the homogeneity of the whole system. This results in the following equation:

mv̇ = −γv + ξ(t) (2.25)
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The first task will be to find the mean square displacement of the particle. Let us now

multiply both sides of the above equation by x(t) and use the evident fact that xv̇ = xẍ =
d
dt(xẋ)− ẋ2. So:

m
d

dt
(xẋ) = mẋ2 − γxẋ+ xξ (2.26)

By averaging this equation over the realization of the process and dividing both parts

of the equation by m:

d

dt
〈xẋ〉 = 〈ẋ2〉 − γ

m
〈xẋ〉+

1

m
〈xξ〉 (2.27)

The last mean value vanishes due to the (assumed) independence of x and ξ and due to

the fact that the mean value of ξ is zero. Moreover, by use of the equipartition theorem,

the mean squared velocity of the particle in our one-dimensional model fulfills the relation
mẋ2

2 = kBT
2 . Therefore,

〈ẋ2〉 =
kBT

m
(2.28)

Accordingly,

d

dt
〈xẋ〉 = − γ

m
〈xẋ〉+

kBT

m
(2.29)

Assuming that the initial particle’s position is taken to be at the origin of coordinates,

we have 〈x(0)ẋ(0)〉 = 0. Under this initial condition, Eq. 2.29 can be easily solved and

yields:

〈x(t)ẋ(t)〉 =
kBT

γ

[
1− e(−

γ
m
t)
]

(2.30)

Considering that 〈x(t)ẋ(t)〉 = 1
2
d
dt〈x

2(t)〉 , the mean square displacement of the particle

can be found by an additional integration of above Eq 2.30:

〈x2(t)〉 = 2
kBT

γ

[
t− m

γ

(
1− e(− γ

m
t)
)]

(2.31)

and for large time the leading term corresponds to:

〈x2(t)〉 = 2
kBT

γ
t = 2tDEinstein (2.32)

which simply indicates that self-diffusion coefficient of the Brownian particle is equal to

one half of its mean square displacement (in 3 dimensional space, the coefficient is 6 rather

than 2). But, as usually the particles in short time scale shows ballistic motions and in some

cases due to the cage effect, a plateau in mean square displacement appears. In practice,

the slope of the linear part of the mean square displacement versus time plot is used for the

evaluation of the self diffusion coefficient.
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Figure 2.2: 2 dimensional representation of the normal Voronoi tessellation. Note to the
bisector lines which are not in the Voronoi cell due to long distance. In 3 dimension the lines
will be replaced by planes and eventual Voronoi cell is a polyhedron rather than polygon.

2.1.8 Voronoi tessellation

Considering a set of centroid points in space, Voronoi tessellation at its very basic form

divides the space in a way that each point is enclosed in a potion of space. Each enclosing

portion or region, called a Voronoi cell, is a polyhedron, which can be considered the influ-

ence zone of the point around which the cell is drawn. If there is an atom at that point, the

volume of its Voronoi cell is the volume available to the atom. Voronoi tessellation has so

many specific applications in computational chemistry like[16]: computation of atom and

residue volumes, modeling of protein packing, computation of empirical potentials, study

of voids and cavities, molecular dynamics and other novel applications.

A Voronoi cell is the region of space comprising points that are closer to the centroid

(atoms) of the cell than to any other centroid. The cell is built by constructing the planes

bisecting the lines drawn from the centroid to each of the other centroids (for a 2 dimen-

sional representation see figure 2.2) and selecting the smallest polyhedron formed by these

planes.

While the normal Voronoi tessellation works fine for the size-less or same-size points

(atoms), for systems with diverse size, the allocation based on bisectors is not enough. To

address this problem, Richards [17] proposed to introduce weights when drawing the planes

of the Voronoi construction based on the atom size. This method, denoted as Richards’

method B, has been widely used in the literature. But unfortunately, it lacks mathematical

exactness, with some volume being lost between cells, as the dividing planes no longer

intersect at common points (see figure 2.3).

To resolve this problem, this approach was refined by Gellatly and Finney [18] where

they defined a rigorous weighted Voronoi construct in which radical planes are used to
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Unalocated space

Figure 2.3: Richards’ method B deficiency in allocation of space.

replace the bisecting planes and/or linear weighting of the space. In this method, which is

known as Laguerre (radical) polyhedral decomposition, a point x belongs to the generalized

Voronoi cell of particle i, if[19]:

d(x, xi)
2 − r2i < d(x, xj)

2 − r2j ∀j �= i (2.33)

where ri are the radii of the particles, xi the position of the particle center, and d(x, xi)

is the distance between x and xi.

2.2 Conclusion

The problem of determining the mutual diffusion coefficients of polymer/solvent systems

was reduced to finding the self diffusion coefficient of the components involved (Eq. 2.16).

But as the self diffusion coefficients of macromolecules are usually orders of magnitude

smaller than those of the solvent molecules, there is no need to evaluate the self diffusion

coefficients of macromolecules. The other important part is the thermodynamic factor in Eq.

2.16, which can be evaluated using the Flory-Huggins theory by calculating the interaction

parameter χ (Eq. 2.17). Calculation of the self diffusion coefficients and Flory-Huggins

interaction parameter are the major focus of this study, and will be throughly discussed in

the upcoming chapters.
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Chapter 3

Molecular dynamics

3.1 Molecular dynamics

As we will discuss in Chapter 4, theoretically, it is possible to describe every system of in-

terest on the ab initio level of calculation. Although ab initio calculations are very accurate,

its computation cost gets prohibitively high by the size of the system. The next higher level

of description, which in the following we will refer to as the atomistic level, can be reached

by discarding the electronic degrees of freedom and replacing their interactions by effective

coarsegrained interactions between the nuclei, expressed via classical potentials. In this

picture, the motions of the atoms are treated classically, and their trajectory is propagated

deterministically or stochastically through phase space, spanned by the respective particles

degrees of freedom.

3.1.1 Molecular dynamics formalism

To explain this picture in more detail, let us in the following consider a system of N particles,

which is described by the following Hamiltonian:

H(r, p) =
N∑
i=1

p2
i

2mi
+ Φ(r) (3.1)

where the first and second term represent the kinetic and potential energy, respectively.

The variables r = (r1, ..., rN ) and p = (p1, ..., pN ) denote the sets of atomic positions

and momenta, while mi is the mass of the ith atom. For an atomic system, the potential

energy, Φ(r), consists of a set of equations that empirically describe bonded and non-bonded

interactions between atoms. Such energy functions together with the set of their empirical

parameters are referred to as the force field (for details of the force field used in this study

see section 3.1.6). The potential energy Φ(r) is generally approximated by invoking the

pair wise approximation, where many-body effects are partially included in the effective

pair potential Φeff
ij (rij). In the absence of any external field, the potential energy can then
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be written as:

Φ(r) ≈
N∑
i

N∑
j>i

Φeff
ij (rij) (3.2)

where rij = rirj is the distance between particles i and j. The sum over atomic pairs

comprise effective interactions between bonded and non-bonded atoms. A MD simulation

is conducted by numerically integrating in time (t) Hamilton’s equations of motion:

dpi
dt

= −∂H(r, p)

∂ri
(3.3)

dri
dt

=
∂H(r, p)

∂pi
(3.4)

for each of the N particles of the system. In three dimensions, this represents a set of

6N -first-order differential equations, which are integrated numerically by subjecting them to

the initial set of particle positions and momenta as well as periodic boundary conditions, to

reduce the influence of the finite size effects. The resulting trajectory must be representative

and evolve a sufficiently long time in phase space, to fulfill the quasi-ergodic theorem,

expressed by:

Oobs = 〈O〉ens = lim
t→∞
〈O〉t (3.5)

where Oobs is the macroscopic physical quantity and 〈O〉ens is the corresponding ensem-

ble average, while 〈O〉t is the time-average of the observable O over time.

3.1.2 Time integration

At the very heart of the MD simulation, beside the calculation of the potential energy

and forces, there is a time integrator and its accuracy determins the quality of the results.

Although there are numerical methods out there like predictor-corrector or velocity Verlet

algorithms, in all the simulations done in this work, the well-known leap-frog algorithm was

used. The leap-frog algorithm uses positions r at time t and velocities v at time t− 1
2∆t. it

updates positions and velocities using the forces F (t) determined by the positions at time

t using the following relations:

v(t+
1

2
∆t) = v(t− 1

2
∆t) +

∆t

m
F (t) (3.6)

and

r(t+ ∆t) = r(t) + ∆tv(t+
1

2
∆t) (3.7)
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3.1.3 Temperature control

MD in its very nature gives rise to the micro canonical ensemble (with constant number

of particles, volume and energy, NVE). To control the temperature of the system some

modifications, either in simulation procedure or Hamiltonian itself, is required. In this

work, we used the Berendsen heat bath [20] for equilibration simulations and Nose-Hoover

method [21] for cases when dynamics of the system was investigated (e.g., calculation of

diffusion coefficient). A summary of both methods is presented here.

Berendsen Thermostat

The idea behind the Berendsen algorithm is to use an first-order kinetics (connected to an

external bath with given temperature T0) to correct the current temperature. It can be

summarized as:

dT

dt
=
T0 − T
τ

(3.8)

where τ is the time constant of decay of T toward T0. The Berendsen thermostat

abolishes the fluctuations of the kinetic energy, which means that the sampling will be

incorrect. This error scales with 1/N , so this algorithm can be safely applied to large

systems (except fluctuation properties like heat capacity). This is the reason why the

Berendsen algorithm is only used for equilibration simulations only.

Nose-Hoover Thermostat

Unlike the Berendsen weak-coupling, extended ensemble approaches like Nose-Hoover method

can probe a correct canonical ensemble. In this approach, the systems Hamiltonian is ex-

tended by introducing a thermal reservoir and a friction term in the equations of motion.

The friction force is proportional to the product of each particle’s velocity and a friction

parameter,ξ. This friction parameter (or heat bath variable) is a fully dynamic quantity

with its own momentum (pξ) and equation of motion. The time derivative is calculated

from the difference between the current kinetic energy and the reference temperature. In

this formulation, the particles’ equations of motion are replaced by:

d2ri
dt2

=
Fi
mi
−
pξ
Q

dri
dt

(3.9)

where the equation of motion for the heat bath parameter ξ is:

dpξ
dt

= (T − T0) (3.10)

The strength of the coupling is determined by the constant Q. The conserved quantity

for the Nose-Hoover equations of motion is not the total energy, but rather:
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H =

N∑
i=1

pi
2mi

+ Φ(r1, ..., rN ) +
p2
ξ

2Q
+NfkBTξ (3.11)

where Nf is the total number of degrees of freedom.

The Nose-Hoover extended ensemble approach can be non-ergodic by itself, meaning

that only a subsection of phase space is ever sampled, even if the simulations were to run

for infinitely long time. For this reason, the Nose-Hoover chain approach was developed,

where each of the Nose-Hoover thermostats has its own parameters. In the limit of an

infinite chain of thermostats, the dynamics are guaranteed to be ergodic which is obviously

impractical. Using just a few chains can greatly improve the ergodicity, so in this work 10

chains has been used. Readers are referred to GROMACS manual [22, 23] for the detail of

the derivation of equations and implementation of chain Nose-Hoover algorithm.

3.1.4 Pressure control

The idea of weak-coupling and extended-ensemble can also be applied to controlling the

pressure of the system by coupling the system to a pressure bath. The Berendsen algorithm

that scales coordinates and box vectors every step was used for fast equilibration of the

systems occasionally and the extended-ensemble Parrinello-Rahman [20] approach was used

for preserve the dynamics of the system.

3.1.5 Periodic boundary condition

Ideally, a MD simulation should be performed on a very large system to reduce the effect

of the box edge on the system properties on average. As always, there is a limitation for

system size, due to computational costs, periodic boundary conditions (PBC) are classically

applied to minimize the edge effects [24]. In this case, the atoms of the system to be simu-

lated are put into a space-filling box, which is surrounded by translated copies of itself (see

Figure 3.1). Although this way the unwanted effect of the boundaries is removed, another

artifact, namely the artifact of periodic conditions, is introduced to the system. While such

boundary conditions perfectly suit the simulation of crystalline materials, in the case of

non-crystalline materials, periodicity by itself causes errors (Particles correlation with their

own periodic image). Fortunately, there is a way to reduce this error by comparing several

system sizes and selecting a minimum size for the system. Accordingly, in almost all the

analysis done in this work, the effect of system size was checked to find error introduced by

periodicity, if any.

Also, when PBCs are used, care should be taken not to violate the minimum image

convention. Non-bonded interactions are cut-off at some specific distance which is usually

selected independent of the box size to adjust the accuracy of the calculations. In general,
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Figure 3.1: Periodic boundary condition representation in 2D space. The solid rectangle is
the primary box and the 8 other dashed boxes are periodic images.

the box size should be at least twice of the cut-off distance used [24]. Otherwise, parti-

cles start to interact (different from correlation in motion discussed above) with their own

periodic image directly which does not have physical equivalent.

3.1.6 Force field

In all simulations done in this work, the OPLS-AA [25] was used for the calculation of the

interactions between atoms in the system. Accordingly, the discussion on the formalism of

the MD force field is limited to those used in the OPLS-AA. For the detail of the parameters

used, rereads are referred to the GROMACS manual[22, 23].

The potential functions in the OPLS-AA force field can generally be divided to two

distinct sub-groups:

• Non-bonded

– Dispersive Van der Waals interactions which are modeled by Lennard-Jones (12-

6).

– Electro-static interactions which are modeled by Coulomb law.

• Bonded:

– Covalent bond-stretching which is modeled by classical harmonic oscillator.

– Angle-bending which is modeled by classical harmonic oscillator.

– Proper dihedrals which is modeled by Recaert-Belmann model.

– Improper dihedrals which is modeled by Ryckaert-Belleman model.

Lennard-Jones

A commonly used two-parameter potential model for describing non-bonded interactions

between a pair of neutral atoms is the Lennard-Jones 6-12 potential:

ΦLJ(rij) = 4ε

[(
σij
rij

)12

−
(
σij
rij

)6
]

(3.12)
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i j

rij

Figure 3.2: Schematic representation of two bonded atoms.

where ε represents the potential well depth and σ is the pair separation at zero energy.

In the OPLS-AA force field, the geometric average is used as the combination rule which

reads:

σij =
√
σiiσjj and εij =

√
εiiεjj (3.13)

Coulomb interactions

The Coulomb interaction between two charged particles is given by:

ΦC(rij) =
1

4πε0

qiqj
εrrij

(3.14)

where ε0 and εr are the free space and relative permittivity and qi is the partial atomic

charge of particle i.

Bond-stretching

The bond stretching between two covalently bonded atoms i and j is represented by a

harmonic potential:

Φb(rij) =
1

2
kbij(rij − bij) (3.15)

where kbij is the force constant and bij is the equilibrium bond length.

Angle-bending

The bond-angle vibration between a triplet of atoms i− j− k is represented by a harmonic

potential on the angle θijk :

Φa(θijk) =
1

2
kθijk(θijk − θ0

ijk)
2 (3.16)

where kθijk is the force constant and θ0
ijk is the equilibrium bond angle.

Proper dihedrals

For the normal dihedral interaction, the OPLS-AA force field uses a function based on the

expansion in powers of cosφ (the so-called Ryckaert-Belleman potential):
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Figure 3.3: Schematic representation of bond-angle between three bonded atoms.
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φ

Figure 3.4: Schematic representation of dihedral-angle between four bonded atoms.

Φd(φijkl) =
5∑

n=0

Cn (cos(φ− 180))n (3.17)

1-4 interactions and exclusions

Atoms within a molecule that are close by, i.e. atoms that are covalently bonded, or

linked by one or two atoms are called first neighbors, second neighbors and third neighbors,

respectively (see Figure 3.5). Since the interactions of atom i with atoms i + 1 and i + 2

are mainly quantum mechanical, they can not be modeled by a Lennard-Jones potential.

Instead, it is assumed that these interactions are adequately modeled by a harmonic bond

term (i and i+ 1) and a harmonic angle term (i and i+ 2). The first and second neighbors

(atoms i+1 and i+2) are therefore excluded from the Lennard-Jones interaction list of atom

i. For third neighbors (i + 3), the normal Lennard-Jones repulsion is sometimes still too

strong, which means that when applied to a molecule, the molecule would deform or break

due to the internal strain. This is especially the case for carbon-carbon interactions in a

cis-conformation. Therefore, for these cases in the OPLS-AA force field, the Lennard-Jones

and Coulombic interactions are scaled down by a fudge factor of 0.5, which is implemented

by keeping a separate list of 1-4 and normal parameters.
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Figure 3.5: Schematic representation of bond-angle between three bonded atoms.

3.2 Calculation of free energy of solvation-Slow growth method

In Chapter 6 free energy of solvation for oligomers of PVA in water was calculated using

MD simulation1. In this section, the theory behind the calculation is explained. Free energy

differences between two different states of the system can be calculated by the slow-growth

method. The method requires a simulation during which the Hamiltonian of the system

changes slowly from that describing one state (A) to that describing the other state (B).

The change must be so slow that the system remains in equilibrium during the process.

If that requirement is fulfilled, the change is reversible and a slow-growth simulation from

B to A will yield the same results (but with a different sign) as a slow-growth simulation

from A to B. The required modification of the Hamiltonian H is realized by making H a

function of a coupling parameter λ:H = H(p, q, λ) in such way that Hλ=0 describes the state

B, in our case oligomers in vacuum, and Hλ=1 describes the state A, in our case solvated

oligomers.

The Gibbs free energy G is related to the partition function ∆ of an NPT ensemble,

which is assumed to be the equilibrium ensemble generated by a MD simulation at constant

pressure and temperature:

G(λ) = −kBT ln∆ (3.18)

where ∆ is:

∆ =
1

N !h3N

∫ ∫ ∫
e
−H(p,q,λ)

kBT dp dq dV (3.19)

where h is Planck’s constant. These integrals over the phase space cannot be evaluated

from a simulation, but it is possible to evaluate the derivative with respect to λ as an

ensemble average:

1Note that free energy of solvation for PVA oligomer also was calculated on the ab initio level. But as
the detail of the method applied is out of the scope of this work, the theory behind the calculation is not
discussed. Readers are referred to a great review by Tomasi et al. [26] for a through discussion on the theory
of quantum mechanical continuum solvation models
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dG

dλ
=

∫ ∫
∂H
∂λ e

−H(p,q,λ)
kBT dp dq∫ ∫

e
−H(p,q,λ)

kBT dp dq
=
〈∂H
∂λ

〉
NPTλ

(3.20)

The difference in free energy between A and B can be determined by integrating the

derivative over λ:

GB(p, T )−GA(p, T ) =

∫ 1

0

〈∂H
∂λ

〉
NPTλ

dλ (3.21)

Theoretically, it is possible to integrate Eq. 3.21 in one simulation over the full range

from A to B. However, for large changes, insufficient sampling can be expected. So we

determined the value of 〈∂H∂λ
〉

accurately at a number of well-chosen intermediate values

of λ. This way each simulation equilibrated first following by a production simulation of

sufficiently long. While we used the thermodynamic integration scheme to show the concept

of calculation, the total free energy change is actually determined by using of Bennett’s

Acceptance Ratio [27] for transformation from state A to state B.
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Chapter 4

Density functional theory

4.1 Introduction

At the very heart of the computational chemistry or modeling of the materials, the only

important factor which defines the quality of the results is the way that interaction between

particles (electrons, atoms or molecules) is defined. In the MD calculation, as we discussed

in Chapter 3, these interactions are described in the realm of classical dynamics using very

basic definitions like harmonic oscillator or torsion angle constraints which are known as

force fields. While a well parametrized force field can predict certain properties of the sys-

tem correctly, there comes other properties which can be certainly out of reach for them

either due to insufficiency of the formalism of the force field or quality of the parameters.

Accordingly, revisiting of the force fields is inevitable from time to time. As we will discuss

later in Chapters 5 and 6, on several occasions, we used first principle calculations to modify

and/or to confirm the quality of the OPLS-AA force field.

For all the first principle calculations we did, a variant of density functional theory

(DFT) was used. We also used the Hartree-Fock (HF) formalism occasionally to double

check the accuracy of the results. In this chapter, a brief introduction of the DFT is pro-

vided; readers are referred to elsewhere [28–35] for an introductory discussion on quantum

mechanics, HF calculation and its application.

Since its appearance, DFT, owing to its usage of plane wave approximation, was mostly

used in the study of periodic systems and crystals. It was until recently that chemists

successfully adopted a variant of DFT which is now widely used for the simulation of energy

surfaces of molecular systems[31, 36]. In this chapter, the basic concepts underlying density

functional theory and outline the features that have lead to its wide spread adoption will

be discussed.
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4.2 Schrodinger Equation

The fundamental question of the (any) electronic structure calculation method is the cal-

culation of the ground state energy of a collection of atoms which requires to solve the

Schrodinger equation. The time independent and non-relativistic form of Schrodinger equa-

tion after applying the Born-Oppenheimer approximation is:

ĤΨ(r1, r2, ..., rN ) = EΨ(r1, r2, ..., rN ) (4.1)

where Ψ is the wave function, ri are the spatial coordinates and E is the energy (eigen

value). The Hamiltonian operator, H, has three terms namely the kinetic energy, the

interaction with the external potential and the electron-electron interaction which are shown

in Equation 4.2 respectively:

Ĥ = −1

2

N∑
i

∇2
i + V̂ext +

N∑
i<j

1

|ri − rj |
(4.2)

The external potential of interest for simulation of materials under normal conditions

without any external interference is simply the interaction of the electrons with the atomic

nuclei:

V̂ext = −
Natom∑
α

Zα
|ri −Rα|

(4.3)

Here, ri is the coordinate of electron i and the charge on the nucleus at Rα is Zα. Note

that in order to simplify the notation and to focus on the discussion of the main features

of DFT, the spin coordinate is omitted. Equation 4.1 is solved for a set of Ψ subjected to

the constraint that the Ψ are antisymmetric (they change sign if the coordinates of any two

electrons are interchanged). The lowest energy eigenvalue, E0, is the ground state energy

and the probability density of finding an electron with any particular set of coordinates {ri}
is |Ψ|2.

Note that any state of the system specified by an arbitrary Ψ (not necessarily one of the

eigenfunctions of Equation 4.1) has an average total energy which is the expectation value

of H as follows:

E[Ψ] =

∫
Ψ∗ĤΨdr = 〈Ψ|Ĥ|Ψ〉 (4.4)

Note that to emphasis that energy is a functional of wave function, we have used the

notation [Ψ]. According to the variational theorem [36], the lowest possible energy,E0,

corresponds to the ground state, [Ψ0], which translates to:

E[Ψ] ≥ E0 (4.5)
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The ground state wave function and energy may be determined by searching all possible

wave functions for the one that minimizes the total energy. Conventionally, solving the

Schrodinger equation and determine the 3N dimensional wave function is the subject of the

HF method and is quiet costly in computation sense. There is a smarter way to bypass this

cost by using the concept of electron density which is the topic of the DFT.

4.3 DFT formalism

Based on the fact that Hamiltonian operator in Equation 4.2 only involves on the coordinates

of one or two electrons only, there is no need of knowing the 3N dimensional wave function

to compute the total energy. Knowledge of the probability of finding an electron at r1 and

an electron at r2 is sufficient. To make the discussion easier we define a second order density

matrix,P2, as follows:

P2(r′1, r
′
2; r1, r2) =

N(N − 1)

2

∫
Ψ∗(r′1, r

′
2, ..., r

′
N )Ψ(r1, r2, ..., rN )dr3dr4...drN (4.6)

The diagonal elements of P2, often referred to as the two-particle density matrix or pair

density, are:

P2(r1, r2) = P2(r1, r2; r1, r2) (4.7)

This is the required two electron probability function to define all two particle operators.

The first order density matrix is defined in a similar manner and may be written in terms

of P2 as:

P1(r′1; r1) =
2

N − 1

∫
P2(r′1, r2; r1, r2)dr2 (4.8)

Given P1 and P2 the total energy is determined exactly:

E = tr
(
ĤP̂

)
=

∫ [(
−1

2
∇2

1 −
Natom∑
α

Zα
|r1 −Rα|

)
P1(r′1, r1)

]
r1=r′1

dr1+

∫
1

|r1 − r2|
P2(r1, r2)dr1dr2

(4.9)

Now, it is clear that the diagonal elements of the first and second order density matrices

completely determine the total energy. Accordingly, The solution of the full Schrodinger

equation for Ψ is not required. It is just required to determine the P1 and P2 which reduces

the number of dimensions from 3N to 6. Note that there is no direct way to minimize the

E(P1, P2) to find the ground state solution, as it occurs that final density matrices are not

legal (they can not fulfill antisymmetric Ψ requirement).
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4.3.1 The Hohenburg-Kohn Theorems

In the process of making the equation 4.9 applicable for the calculation of the ground state

energy, Hohenburg and Kohn proved two theorems as follows:

• The electron density determines the external potential (to within an additive con-

stant).

• For any positive definite trial density, ρt, such that
∫
ρt(r)dr = N then E[ρt] ≥ E0.

The first statement implies that the electron density uniquely determines the Hamilto-

nian operator (Eq 4.2) and all material properties consequently. This is direct result of the

fact that Hamiltonian is specified by the external potential and the total number of elec-

trons, N , which can be computed from the density simply by integration over all space. For

the detail of the proof of this theorem and its generalization to degenerates states readers

are referred to original work of Hohenburg and Kohn [37] and work of Levy [38].

The proof of second theorem is straightforward. From the first theorem, we know that

the trial density determines a unique trial Hamiltonian (Ht) and thus wave function (Ψt).

So:

E[ρt] = 〈Ψt|H|Ψt〉 ≥ E0 (4.10)

which follows immediately from the variational theorem of the Schrodinger equation (Eq

4.5).

The two theorems lead to the fundamental statement of density functional theory:

δ

[
E[ρ]− µ(

∫
ρ(r)dr −N)

]
= 0 (4.11)

The above statement ensures that the density corresponding to the minimum of some

functional E[ρ] (ground state) contains the correct number of electrons. The Lagrange

multiplier of this constraint is the electronic chemical potential µ. This discussion simply

clarifies that there is a universal functional E[ρ] (we don’t know it yet) which can be inserted

into the above equation and minimized to obtain the exact ground state density and energy.

4.3.2 Energy functional

From the form of the Schrodinger equation (Eq 4.1), we can see that the energy functional

contains three terms: the kinetic energy, the interaction with the external potential and the

electron-electron interaction and so we may write the functional respectively as:

E[ρ] = T [ρ] + Vext[ρ] + Vee[ρ] (4.12)
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The interaction with the external potential is trivial:

Vext[ρ] =

∫
V̂extρ(r)dr (4.13)

The kinetic and electron-electron functionals are unknown. The direct minimization

of the energy would be possible only if a proper estimation to these functionals could be

found which is the place of debate after introduction of the DFT. Kohn and Sham proposed

the following approach to approximating the kinetic and electron-electron functionals [39].

They introduced a fictitious system of N noninteracting electrons to be described by a single

determinant wave function in N orbitals φ. In this system the kinetic energy and electron

density are known exactly from the orbitals:

Ts[ρ] = −1

2

N∑
i

〈φi|∇2|φi〉 (4.14)

Here, the suffix emphasizes that this is not the true kinetic energy but is that of a system

of non-interacting electrons, which reproduce the true ground state density. So, we have:

ρ(r) =

N∑
i

|φi|2 (4.15)

The construction of the density explicitly from a set of orbitals ensures that it is legal

(it can be constructed from an asymmetric wave function). Also, a significant component

of the electron-electron interaction will be the classical Coulomb interaction

VH [ρ] =
1

2

∫
ρ(r1)ρ(r2)

|r1 − r2|
dr1dr2 (4.16)

So, the energy functional can be rearranged as:

E[ρ] = Ts[ρ] + Vext[ρ] + VH [ρ] + Exc[ρ] (4.17)

where we have introduced the exchange-correlation functional:

Exc[ρ] = (T [ρ]− Ts[ρ]) + (Vee[ρ]− VH [ρ]) (4.18)

Exc is simply the sum of the error made in using a non-interacting kinetic energy and the

error made in treating the electron-electron interaction classically. Writing the functional

(Eq 4.17) explicitly in terms of the density built from noninteracting orbitals (Eq 4.16) and

applying the variational theorem (Eq 4.11) we find that the orbitals, which minimize the

energy, satisfy the following set of equations:[
−1

2
∇2 + vext(r)

∫
ρ(r′)

|r − r′|
dr′ + vxc(r)

]
φi(r) = εiφi(r) (4.19)

In which a local multiplicative potential which is the functional derivative of the ex-

change correlation energy with respect to the density has been introduced:
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vxc(r) =
δExc[ρ]

δρ
(4.20)

This set of non-linear equations (the Kohn-Sham equations) describes the behavior of

non-interacting electrons in an effective local potential. For the exact functional, and thus

exact local potential, the orbitals yield the exact ground state density via Equation 4.15

and exact ground state energy via Equation 4.17. These Kohn-Sham equations have the

same structure as the Hartree-Fock equations with the non-local exchange potential re-

placed by the local exchange-correlation potential. The Kohn-Sham approach achieves an

exact correspondence of the density and ground state energy of a system consisting of non-

interacting Fermions and the real many body system described by the Schrodinger equation.

The correspondence of the charge density and energy of the many-body and the non-

interacting system is only exact if the exact functional is known. In this sense, Kohn-Sham

density functional theory is an empirical methodology (there is no way to determine the

exact functional). However, the functional is universal it does not depend on the materi-

als being studied. For any particular system we could, in principle, solve the Schrodinger

equation exactly and determine the energy functional and its associated potential. This,

of course, involves a greater effort than a direct solution for the energy. Nevertheless, the

ability to determine exact properties of the universal functional in a number of systems

allows excellent approximations to the functional to be developed and used in unbiased and

thus predictive studies of a wide range of materials. For this reason, the approximations of

DFT are often referred to as ab initio or first principles methods.

The computational cost of solving the Kohn-Sham equations (Equation 4.19) scales

formally as N3 (due to the need to maintain the orthogonality of N orbitals) but in current

practice this is dropping towards N1 through the exploitation of the locality of the orbitals.

For calculations in which the energy surface is the quantity of primary interest, DFT offers

a practical and potential highly accurate alternative to the wave function methods. In

practice, the utility of the theory rests on the approximation used for Exc[ρ]. For the

sake of completeness, one of the simplest way to approximate Exc[ρ], the Local Density

Approximation (LDA), is discussed in the next section and for more elaborate methods,

readers are referred to elsewhere[31, 36].

4.3.3 Local Density Approximation (LDA)

Generating proper approximation for Exc[ρ] is still an active field of research. Different fla-

vors of functional have been generated which can be applied to any particular study more or

less. But careful investigation of results is the only way to judge the success of the applied

approximation.
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The very basic idea of DFT came from a very specific example, the homogeneous elec-

tron gas. In this system, the electrons are subject to a constant external potential and thus

the charge density is constant. Thus, a single number (electron density r = N
V ) defines the

system. Long time before introducing the DFT, Thomas and Fermi studied the homoge-

neous electron gas and showed that orbitals of the system are, by symmetry, plane waves.

So, if the electron-electron interaction is approximated by the classical Hartree potential

(that is exchange and correlation effects are neglected) then the total energy functional can

be readily computed. Under these conditions, the dependence of the kinetic and exchange

energy on the density of the electron gas can be extracted and expressed in terms of a

local functions of the density. This suggests that in the inhomogeneous system, we might

approximate the functional as an integral over a local function of the charge density. Using

the kinetic and exchange energy densities of the non-interacting homogeneous electron gas

this leads to:

T [ρ] = 2.87

∫
ρ

5
3 (r)dr (4.21)

and

Ex[ρ] = 0.74

∫
ρ

4
3 (r)dr (4.22)

These results are highly suggestive of a representation for Exc in an inhomogeneous

system. The local exchange correlation energy per electron might be approximated as a

simple function of the local charge density (εxc(ρ)). That is, an approximation of the form:

Exc[ρ] ≈
∫
ρ(r)εxc(ρ(r))dr (4.23)

An obvious choice is then to take εxc(ρ) to be the exchange and correlation energy

density of the uniform electron gas of density ρ (this is the LDA). Within the LDA, εxc(ρ)

is a function of only the local value of the density. It can be separated into exchange and

correlation contributions as follows:

εxc(ρ) = εx(ρ) + εc(ρ) (4.24)

The Dirac form can be used for εx (Eq 4.22);

εx(ρ) = −Cρ
1
3 (4.25)

where constant C serves to generalize the answer from those of the homogeneous electron

gas. The functional form for the correlation energy density, εc, is unknown and has been

simulated for the homogeneous electron gas in numerical quantum Monte Carlo calculations

which yield essentially exact results. The resultant exchange correlation energy has been

fitted by a number of analytic forms all of which yield similar results in practice and are
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collectively referred to as LDA functionals.

The LDA has proven to be a remarkably fruitful approximation. Properties such as

structure, vibrational frequencies, elastic moduli and phase stability (of similar structures)

are described reliably for many systems. However, in computing energy differences between

rather different structures, the LDA can have significant errors. For instance, the binding

energy of many systems is overestimated (typically by 20-30 %) and energy barriers in

diffusion or chemical reactions may be too small or absent. As it was discussed before, the

DFT theory and LDA approximation of exchange correlation function originated from study

of the homogeneous electron gas system followed by crystalline silicon structure. These

systems are, having a smooth change in gradient of the charge density, are different from

organic materials with known sharp changes in the charge density in the space. Accordingly,

several hybrid exchange correlation functions developed to consider such sharp changes. A

hybrid exchange-correlation functional is usually constructed as a linear combination of

the HartreeFock exact exchange functional and any number of exchange and correlation

explicit to density functionals. One of the most popular hybrid functionals is the Becke,

three-parameter, Lee-Yang-Parr (B3LYP) functional [40]:

EB3LY P
xc = ELDAx +0.20(EHFx −ELDAx )+0.72(EGGAx −ELDAx )+ELDAc +0.81(EGGAc −ELDAc )

(4.26)

where subscript x and represents the exchange and correlation functionals, respectively

and super scripts HF and GGA represents the HartreeFock and generalized gradient ap-

proximation. Note that for all DFT calculations in this work the Gaussian09 package [41]

[42] was used.

4.4 Population analysis and partial atomic charges

Unlike many other properties, atomic charge is a quantity which is not rigorously defined in

quantum mechanics [43]. Usually, calculation of atomic charges is a post processing calcu-

lation after achieving the required energy convergence and there are numerous methods to

do such calculation. In Chapter 6 we have used some of these methods to derive the atomic

charges of PVA oligomers under different conditions. Among all these methods, the Merz-

Singh-Kollman (MSK) [43, 44] scheme yielded much more promising results. Accordingly,

a brief introduction of the method is presented here.

The basic idea behind the MSK method is to reproduce the molecular electrostatic

potential (ESP) around the molecule under study which can be calculated as a quantum

mechanical observable. In the MSK method atomic charges are fitted to reproduce the
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Figure 4.1: Schematic representation of the MSK scheme.

molecular electrostatic potential (ESP) at a number of points around the molecule [43, 44].

As a first step of the fitting procedure, the ESP is calculated at a number of grid-points

located on several layers around the molecule (see figure 4.1). The layers are constructed as

an overlay of vdW spheres around each atom. All points located inside the vdW volume are

discarded. Best results are achieved by sampling points not too close to the vdW surface

and the vdW radii are therefore modified through scaling factors [43, 44]. The smallest

layer is obtained by scaling all radii with a factor of 1.4. After evaluating the ESP at all

valid grid points located on all four layers, atomic charges are derived that reproduce the

ESP as closely as possible. The only additional constraint in the fitting procedure is that

the sum of all atomic charges equals that of the overall charge of the system. The Charges

derived in this way don’t necessarily reproduce the dipole moment of the molecule. The

MSK charge fitting scheme can be modified in the following way in order to improve its

numerical accuracy:

• Using more than four layers of points which is necessary for systems with diffusive

orbitals.

• Using more grid points per layer which is necessary for highly polarized molecules.

Charges calculated using the MSK scheme show a similarly small dependence on the

computational method and basis sets employed.

4.5 Quantum harmonic oscillator

In Chapter 5, we will use the quantum harmonic oscillator to quantum modify the classical

heat capacity. Here, a brief derivation of the equations is presented. The Hamiltonian for

a one dimensional quantum harmonic oscillator is defined as:
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Ĥ = − h̄

2m

∂2

∂x2
+

1

2
mω2x2 (4.27)

So, the Schrodinger equation is:

ih̄
∂Ψ

∂t
= ĤΨ (4.28)

Separating the time dependent part by the separation of variable, the stationary Schrodinger

equation of this system is [29]:

[
h̄

2m

d2

dx2
+

1

2
mω2x2]ψ(x) = Eψ(x) (4.29)

where the ψ(x) is the time independent wave function as follows:

Ψ(x, t) = ψ(x)e−iEt/h̄ (4.30)

Solving Equation 4.29, the energy eigenvalues of harmonic oscillator with classical an-

gular frequency ω are given by:

En = (n+
1

2
)h̄ω with n = 0, 1, 2, 3, ... (4.31)

The partition function for this system is then:

Z =
∞∑
0

e−βEn = e−
1
2
βh̄ω

∞∑
0

e(−nβh̄ω) (4.32)

where β is simply the 1
kbT

. Sum of the infinite geometric series in Eq 4.32 is easily

calculated to be:

Z =
e−

1
2
βh̄ω

1− e(−βh̄ω)
(4.33)

also from section 2.1.7 we know that:

〈E〉 = −∂lnZ
∂β

and Cv =
∂〈E〉
∂T

(4.34)

so putting the Z from Equation 4.33 into Equation 4.34, the quantum weight function

for Cv in Chapter 5 is[45]:

Wcv =
(βh̄ω)2eβh̄ω

(1− eβh̄ω)2
(4.35)
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Chapter 5

PVA melt simulation and force
field validation

5.1 Introduction

Owing to its film-forming property, barrier properties, hydrophilicity and excellent chemical

stability [2], poly(vinyl alcohol) (PVA) has been gradually used in a variety of applications

such as drug encapsulation and delivery, composite materials, metal nano-particles stabi-

lization [6] and active separation layers of pervaporation membranes [3], to name a few.

Like many other vinyl polymers, PVA exists in three possible stereomers (i.e., atactic,

syndiotactic and isotactic). Due to its manufacturing process, commercial PVA is usually

in the atactic form [5, 46–48]. However, detailed information about the tacticity of a PVA

sample can be established by nuclear magnetic resonance (NMR) spectroscopy [5]. It is

well known that physical properties of vinyl polymers (e.g., glass transition temperature)

depend on their tacticity [49]. It is expected that PVA has no exception [5]. However, results

reported in this work seem not to support such an expectation. It has also been reported

that PVA, even in its atactic form, is a semicrystalline polymer with a moderate level of

crystallinity but its crystal structure has not yet been completely established because of its

complicated structure and hydrogen bonding capability [50].

There exist quite a few reports on the use of molecular dynamics (MD) simulation

to study PVA. These include its chain dynamics, interactions between PVA and various

solvents and other polymers, PVA hydrogels and so on [6, 47, 51–53]. The force field used

in majority of these studies were developed by Muller-Plathe et al. [48]. The COMPASS

force field was also used [54–56]. Although most of these authors have been able to obtain

good agreement with experiment for pure PVA, it is inconvenient to study new systems

of interest involving both PVA and molecules of different types as re-parameterization is

required. Obviously, using a force field that is optimized for PVA and a wide variety of

A modified version of this chapter was published: ”Thermodynamic Properties of Poly(vinyl alcohol)
with Different Tacticities Estimated from Molecular Dynamics Simulation”,A. Noorjahan, P. Choi, Polymer
54 (2013) 4212-4219.
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compounds would be beneficial. Another issue of the aforementioned works is that small

system size and/or short chains, as probably constrained by the computer resources available

at the time, were used. In some cases, chains contained only up to 10 monomers [6] were

used. While this is acceptable for the calculation of certain thermodynamic properties (e.g.,

specific volume), it is not the case for conformational sensitive properties (e.g., solubility

parameter). In such cases, longer chains are needed. However, when longer chains are used,

proper equilibration before MD simulation becomes an issue.

In light of the previous simulation works and taking the advantage of the computer re-

sources available to the authors, we carried out a comprehensive set of MD simulations on

PVA with different tacticities using the OPLS-AA force field to calculate a few key thermo-

dynamic properties over a wide temperature range (200-550 K) encompassing both the glass

transition and melting temperatures of PVA. The OPLS-AA force field was chosen as it is

optimized for a variety of biomolecules and organic solvents. To address the equilibration

issue, we used a relaxation strategy proposed by Belmares et al. [57]. The tacticity is of

interest in the present work as its effect on properties of PVA has not been fully addressed

in the simulation literature yet although Fossheim [49] did some work in this area.

5.2 Molecular Dynamics Simulation

In this work, GROMACS 4.5.5 [58–62] was used to perform all MD simulations using the

OPLS-AA force field [25] as implemented in GROMACS (For detail of the atom type setting

for PVA see Appendix B). However, in one simulation, we used OPLS-AA parameters with

the partial atomic charges taken from the COMPASS force field [54] in order to compare

our results with those of Wu [63]. In the preliminary work, we used other force fields

including Amber [64] and force field parameters derived by Muller et al. [48] and found

that the OPLS-AA [25] yielded results that are most comparable to those of experiments.

Also the comparison between the present work and that of Wu [63] suggests that the OPLS-

AA results are comparable to those of using the COMPASS [54] force field if not better.

We are confident in the force field we chose. We used Nose-Hoover thermostat [21] with

a time constant of 0.2 ps and Parrinello-Rahman barostat [65] with a time constant of

2 ps to control the temperature and pressure of the model systems, respectively. In all

simulations, the time step used was 1 fs and the sampling time was 1 ps unless otherwise

stated. A cut-off distance of 1 nm was used for all non-bonded interactions except for

those simulations using a single short chain where a cut-off distance of 0.6 nm was used to

prevent the violation of minimum image convention. We used Particle Mesh Ewald (PME)

for the long range Coulombic interactions [60]. We also applied the pressure correction

to retrieve the correct density of the system as pointed out by Wu [63]. For detail of the

pressure correction method readers can refer to GROMACS manual [22]. All properties

were calculated over the temperature range of 200 to 550 K with an interval of 10 K and

the simulation time used was 100 ns excluding equilibration phase, which varied between
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Figure 5.1: Flowchart of steps used during annealing.

60 to 100 ns. To decide whether a system has been equilibrated or not, we compared the

energy, specific volume and solubility parameter of the system in 10 ns intervals. When

the difference was less than recommended margins, it was concluded that equilibration was

achieved. Since simulation of polymeric systems is usually non-ergodic [66], average on

several different initial configurations were used to generate better estimate of properties.

At totally 21 different temperatures ranging from 300 to 510 K (7 temperatures randomly

selected from each stereomers), simulations were extended to 500 ns and beyond to check if

system properties underwent further changes. Once again, we compared the specific volume,

solubility parameter and conformational properties of the systems in the first and last 100

ns and no significant differences were found, suggesting that production simulations would

generate reliable statistics after equilibration (60-100 ns simulations).

5.2.1 High Temperature Equilibration

It is well known that polymer relaxation is a slow process relative to small molecules and

usually occurs in time scales beyond the capability of the MD simulation. Accordingly,

MD simulation of polymeric systems is not ergodic and only a portion of the phase space

close to the initial configuration is sampled [66]. In general, using well-relaxed chains as the

initial structures for the corresponding MD simulations is crucial for accurate prediction of

the equilibrium properties of polymers. To generate well-relaxed chains, we have followed

the protocol proposed by Belmares et al. [57] with some modifications as follows (see figure

5.1):

1. All PVA chains (atactic, syndiotactic and isotactic) were generated using the polymer

builder toolbox in Materials Studio 4.0 [67]. For all atactic chains, tacticity has been
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assigned randomly with chiral inversion probability of 50 % (i.e., the ratio of meso

diads to racemo diads is 50%). This random assignment of the tacticity, as mentioned

by Rossinsky et al. [6], is consistent with commercial PVA chains formed by free

radical polymerization. The connections for all isotactic and syndiotactic chains were

head-to-tail. This is justified by the experimental findings of Flory et.al. [68] in which

they showed that depending on the temperature of the polymerization, the percentage

of the head-to-head connection of the PVA monomers varies between 1% (at 298 K)

to 2% (at 385 K). End groups for all chains were CH3. Chains generated were then

assembled in a cubic simulation cell subjected to three dimensional periodic boundary

conditions at half of the target density (maximum experimental value reported at

300 K) using the Monte Carlo method developed by Theodorou and Suter [69] as

implemented in the amorphous builder module of Materials Studio. A short energy

minimization was done to remove all close contacts within the cell afterwards.

2. In the next step, all simulation cells were annealed according to protocol proposed

by Belmares et al. [57]. During annealing, the target density was chosen to be 1310

kg/m3 [5, 70–74]. Starting with cells generated in Materials Studio with density of 655

kg/m3, we compressed each cell to 125% of the target density and then expanded them

toward the target density. Both compression and expansion were stage wise processes

in which each stage consisted of a 5000 steps of energy minimization followed by a 100

ps of MD simulation in NVT ensemble at 800 K. The expansion/compression process

was performed in a stepwise fashion by imposing a sudden change in volume on the

system in each step. Equilibration on the expanded/compressed system was done

using the NVT ensemble. Starting from 50% of the target density, we compressed

each simulation cell 15% of the target density in five steps until the density was 125%

of the target density. Afterward, we expanded the simulation cell in five steps with

each step with 5% reduction in density till the target density was reached.

3. After annealing, each cell was cooled in a step wise process. Starting from 800 K,

each cell was cooled down by 10 K and MD simulation was carried out for 100 ps in

a NVT ensemble. At the final step of each simulation, a snapshot has been saved as

relaxed chain at that temperature. This step wise process repeated down to 200 K.

As the goal of this section is to produce an initial structure at each temperature, the

system was cooled as slowly as possible where the time constant of thermostat (which

controls the velocity of cooling) was chosen to be 5 ps which is higher than normal

0.2 ps used in production simulations.

4. Upon generation of the relaxed structures at each temperature, each simulation cell

went through a compression, in a NPT ensemble, to reach equilibrium. We considered

several properties of the system (energy, specific volume and solubility parameter)

as criteria for equilibrium. The equilibration time for different temperatures varied
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Figure 5.2: Comparison of specific volumes of PVA from different works. Data for 100%
hydrolysis retrieved from [73].

between 60 to 100 ns.

5.3 Results and Discussion

5.3.1 Effect of Equilibration

To demonstrate the effect of the high temperature annealing on the simulation results,

we also simulated the same atactic PVA chains without annealing and compared their

properties with those of annealed ones. Figure 5.2 for instance compares the specific volumes

of the PVA with and without high temperature relaxation at different temperatures. It is

obvious that the computed specific volumes with the high temperature relaxation are lower

(i.e., closer to the experimental values) than those without (see [75]). As shown in Figure

5.3, the fast relaxation can be attributed to higher number of torsional transitions and less

number of hydrogen bonds at higher temperatures. The comparison to the data of other

researchers shown in the Figure 5.2 will be discussed in detail in the specific volume section.

Note that the annealing procedure is also critical for polymer/solvent systems. It is

believed that solvents act as plasticizer and help polymer chains to relax faster. To put

that on test, we repeated the work of Wu [63] with and without annealing. Annealing

was done after the addition of water. These systems include 20 wt% water at different

temperatures. We used the TIP4P [76, 77] model for water to have comparable results

with those of Wu. The results are shown in Figure 5.4 along with data reported by Wu

[63]1. As you can see even in the presence of 20 wt% of water relaxed systems adopted

For summary of the sensitivity analysis done on the system see Appendix E
1Wu reported in his work that there was a problem using OPLS-AA original partial atomic charges for
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Figure 5.3: Comparison of number of dihedral transition (for the whole chain) and average
number of hydrogen bonds (for the whole chain) at different temperatures. The hydrogen
bonding definition (acceptor-donor distance and angle) is from [51].

lower specific volumes and the oscillation below the Tg vanished. Note that the effect of

water as plasticizer was pronounced in the reduction of time required for system to reach

equilibrium which was 30 ns. So it can be concluded that annealing of the chains can affect

the volumetric properties of the polymeric systems even in the presence of plasticizers,

especially at T < Tg.

5.3.2 Effect of System Size

There is no doubt that molecular simulation results are size dependent. Usually larger

systems are required to reduce the size effects. In the current study, there are two ways to

increase the size of the system. One is to increase the number of chains in the simulation

box while the other to use a single chain with high degree of polymerization (DP). We

calculated the solubility parameters using both approaches to identify the optimal size of

the system for the calculation of other properties.

Table 5.1 summarizes the calculated solubility parameters for systems with different

sizes. It is obvious that chains with 400 monomers yield results that are closer to the

experimental values. All other smaller systems yielded results that are significantly higher

than the experiment. Also, it was observed that systems with higher DP showed lower

fluctuations in density which has been reported previously by Rigby and Roe [78]. These

simulation of the PVA and partial atomic charges of the COMPASS force field was used. But as we did not
find any problem using the original OPLS-AA charges, we did all simulations with the original partial atomic
charge values given by the OPLS-AA. To compare our results with those of Wu, we have also simulated all
systems using the partial atomic charges from the COMPASS force field as well. According to our results,
both set of charges yielded the same average value for density. The only difference observed was a slightly
more fluctuations associated with the density when the COMPASS charges were used. Also it came to our
attention that using the COMPASS charges, there was a 10% reduction in number of hydrogen bonds in the
system.
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Figure 5.4: Specific volumes of the PVA/water mixture (20wt% water)

results indicated that one chain of DP400 yielded reliable statistics. The other concern was

the value of the cut-off distance itself (1 nm is the value that are mostly used by other

researchers). But it has been suggested in the literature that in some cases, the Coulombic

potentials may not converge (e.g. see [79–81]). To estimate the effect of the conventional 1

nm cut-off distance which has been implemented in most of the simulation literature of PVA,

we have simulated 10 different atactic DP400 systems with two longer cut-off distances (1.1

nm and 1.5 nm). We found that the effect on average density was not significant (except

slightly less fluctuations) and solubility parameter was changed less than 0.7% for systems

with cut-off of 1.1 nm. Increasing cut-off to 1.5 nm did not improve the results. In other

words, a cut-off distance of 1 nm seems to be sufficient.

Table 5.1: Solubility parameter for systems with
different size at 300 K

Tacticity na∗DPb δc

(MPa)0.5
Cut-off
(nm)

NICd

Atactic 1*50 31.1±0.9 0.6 10
Atactic 4*50 29.3±0.4 1 1
Atactic 8*50 29.2±0.3 1 1
Atactic 1*200 28.7±0.3 1 5
Atactic 1*400 25.0±0.1 1 5
Isotactic 1*50 30.6±1.2 0.6 10
Isotactic 1*400 27.3±0.2 1 5

Syndiotactic 1*50 28.9±0.4 0.6 10
Syndiotactic 1*400 26.4±0.1 1 5

a Number of chains.
b Degree of polymerization.
c Solubility parameter. Its experimental value for

PVA is 25-26 (MPa)0.5 [73].
d Number of initial configurations.
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5.3.3 Specific Volume

Following the annealing protocol and recommendations from previous sections, we have

simulated PVA chains (DP400) for 100 ns after complete equilibration. Specific volumes for

all stereomers of PVA at different temperatures are plotted in Figure 5.5. Despite minor

differences below the glass transition temperature (see section 5.3.5 for more discussion),

which is 350 K, specific volumes of chains with different tacticities showed no significant

differences. Isotactic and syndiotactic chains show slightly lower specific volumes than the

atactic chains below the glass transition temperature. Radial distribution functions of oxy-

gen atoms in the system (not shown) did not show any sign of crystallization in the systems.

Accordingly, differences in specific volumes of stereomers are not attributed to difference in

crystallinity. A likely explanation is the difference between their hydrogen bonding capa-

bilities and/or intrinsic local order in the isotactic and syndiotactic chains due to their all

head-to-tail connectivities.

Average specific volume of all stereomers has been plotted in Figure 5.2 along with

experimental data reported by Walsh and Zuller [74] and data reported by Karlsson et

al. [47] at elevated temperatures (using the force field parameters developed by Muller et

al. [48]). As can be seen, specific volumes at higher temperatures show a good agreement

with experimental data while at lower temperatures significant deviations are apparent.

The deviations are partly due to the absence of crystalline phase and are more pronounced

below the melting temperature. It is worth noting that the simulation times used were not

long enough to allow crystallization to occur. It is known from experiment that density of

the PVA (g/cm3) correlates with its degree of crystallinity as follows [5]:

ρ = 1.269 ∗ (
1.345

1.345− 7.6 ∗ 10−4 ∗ (crystalinity%)
) (5.1)

The above equation along with the absence of crystalline phase in the simulation systems

explains the overestimation of the specific volume below the Tm.

Karlsson et al. [47] without annealing obtained much higher values for specific volume in

the first attempt using parameters developed by Muller et. al [48] (not shown). To get

better estimation of the specific volume, they reduced the size of oxygen atoms in the sys-

tem and their reported value has been shown in Figure 5.2. As you can see, our data are

comparable with their reported value (there is no significant difference between OPLS-AA

force field parameters and those reported by Muller et. al originally). Also, using the linear

functionality of the specific volume and inverse of number of monomers, first reported by

Leute et al. [82], Rossinsky et al. [6] extrapolated the specific volume of PVA from DP=10

to infinite chain length at 300 K. Their result shows 6% error with respect to experimental

data and 4% comparing to our values. This simply means that using the linear functionality

suggested above overestimates the specific volume while using longer chains one can obtain

much smaller values.
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Figure 5.5: Comparison of specific volumes of PVA with different tacticities

5.3.4 Thermal expansion coefficient

Having the specific volumes over a broad range of temperatures, it is possible to calculate

the thermal expansion coefficient of PVA. The volume expansion coefficient is defined as:

α =
1

V0
(
∂V

∂T
)P (5.2)

where V , T and P are volume, temperature and pressure of the box respectively and V0 is

a reference volume. At each temperature calculated specific volume has been used as V0 at

that temperature. Assuming an isotropic system, linear coefficient of thermal expansion is

1/3 of the volume expansion coefficient. Calculated values of α and its average experimental

values has been shown in Figure 5.6. These values show great agreement with experimental

data reported in [73] which is direct results of using long enough chain along with appro-

priate force field parameters.

5.3.5 Glass Transition temperature

Using temperature dependency of specific volume (Figure 5.7), we have estimated glass tran-

sition temperatures for PVA with different tacticities to be 350 K which has great agreement

with experimental values reported. Experimentally, Tg of PVA has been reported to be in

the range of 325.5 to 375 K [72, 73, 83–86] depending on sample used and experimental pro-

cedure applied. In the process of calculation of Tg (see Figure 5.7) specific volume data was

grouped into three parts that correspond to three temperature ranges. The first two parts

are related to glassy and rubbery regions and the data in the highest temperature range

was excluded to identify the Tg. Note that sudden jump in thermal expansion coefficients,
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Figure 5.6: Coefficient of linear thermal expansion of PVA

as plotted in Figure 5.6, shows this transition better. The only simulation result on Tg of

PVA, that the authors are aware of, is reported to be 385 K by Pan et al. [52].

Using the specific volume data for PVA/water mixture (20 wt% water), we also calcu-

lated the glass transition temperature of the mixture to be 320 K and 290 K for non-relaxed

and relaxed systems. The difference between the two systems agrees with our expectation

that the annealed systems show lower glass transition temperatures (see [75]). One the

other hand, adding a plasticizer, water, reduces the Tg comparing to pure PVA which has

been reported both experimentally [87] and by simulation [63] previously. The experimental

value for Tg of this mixture has been reported to be 233 K [88].

5.3.6 Solubility Parameters

One of the basic properties of polymers that has been usually used to predict the compati-

bility of polymer blends and solutions is the Hildebrand solubility parameter. The solubility

parameter of a polymer is defined as the square root of its cohesive energy density in the

amorphous state at room temperature [73]. The easiest way to measure the cohesive energy

density is based on the enthalpy of evaporation of the material. But, as polymers cannot

be evaporated, indirect methods have been used [73]. Unfortunately, these experimental

methods are difficult to control and results vary depending on the experimental procedures.

The basic method for the calculation of the solubility parameter (see [89]) is based on the

calculation of the cohesive energy density from MD trajectories and application of equation
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Figure 5.7: Temperature dependence of specific volume of PVA, averaged over different
tacticities.

5.3:

δ =

√
∆E

V
(5.3)

But to obtain accurate results, some care should be taken in the calculation of the

cohesive energy from MD trajectories. The change in cohesive energy is defined as the

difference between the non-bonded energy in the condensed and gas phases. Here, the

calculation of the non-bonded energy in the gas phase, as Choi et al. mentioned in their

work [90], can cause a problem as conformations of polymer chains in the gas phase are

different from those used in the condensed state. To overcome this problem, we applied

the procedure proposed by Belmares et al. [57] and just considered those conformations in

the gas phase which have happened in the liquid phase simulation. Accordingly, we have

calculated the solubility parameter using equation 5.4:

δ =

√∑n
i=1〈Eki − Ekc /n〉

N0〈Vc〉
(5.4)

Where in this equation N0 is Avogadro’s number, Vc is the volume of the box, n is the

number of molecules in the box, Ei is the energy of the polymer chain in the gas phase,

and Ec is the non-bonded energy of the system in the condensed phase. The parameter

k represents different components of the non-bonded potential energy and can be used to

separate the components of the Hildebrand solubility parameter to Hansen solubility pa-

rameters, if needed. The only difference between our method and the method of Goddard

et al. is that all production simulations has been done in NPT ensemble instead of NVT.

The reason for this is, as Choi et al. [89] mentioned, to capture the energy changes due
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Figure 5.8: Comparison of computed Hildebrand solubility parameters of PVA with those
of water.

to thermal expansion at different temperatures. Also this way, Vc can be directly obtained

from simulation results and no priori experimental data will be necessary.

Figure 5.8 shows the calculated values of the solubility parameters of PVA and water

(TIP4P). As you can see, the calculated solubility parameters for both PVA and water are

in good agreement with experimental data at 300 K. Karlsson et al. [47] calculated the sol-

ubility parameter of PVA chains to be 22.5 (MPa)0.5 at 300 K while our value, 25 (MPa)0.5,

is in good agreement with experimental values of 25-26 (MPa)0.5 [73]. This difference is

partly due to the difference in force field parameters and chain lengths between the two

works and more importantly the relaxation of the chains. It is unclear whether Karlsson

et al. relaxed their model chains prior to production simulation. Given that solubility pa-

rameter decreases with increasing chain length of a polymer [73], and that the chain length

used in the work of Karlsson et. al was 145 monomers, the value reported by them would

have been lower if they had used longer chains in their work.

As expected, with increase of temperature the solubility parameter of both water and

PVA decrease [73] and this is more pronounced in the case of water (For effect of degree

of hydrolysis on Hildebrand solubility parameter see appendix C). The reason for this is

that higher number of hydrogen bonds in water weaken as temperature increases. Exper-

imentally, it is known that PVA and water are miscible at temperatures around 370 K

and higher. But direct comparison of the Hildebrand solubility parameter for them does

not confirm this, as the difference is very high even at very high temperatures. The more

elaborate way to assess the compatibility is via the Flory-Huggins interaction parameters
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Figure 5.9: Computed Hildebrand solubility parameters of PVA with different tacticities.

which will be discussed in detail in our upcoming publication.

It is known that solubility of PVA in water varies with its tacticity. Experimental

results indicate that partially syndiotactic chains are usually less soluble in water than

isostatic chains and highly syndiotactic chains are almost insoluble in water [91]. The at-

actic chains usually show solubility parameters between isotactic and highly syndiotactic

chains [5]. Comparison of solubility parameters of PVA stereomers in Figure 5.9 shows that

MD results are consistent with this observation qualitatively as the isotactic chains have

higher solubility parameters (more soluble in water) and atactic chains have middle solu-

bility parameters while purely syndiotactic chain shows lowest solubility parameter. But

as we mentioned before Hildebrand solubility parameter is not a good measure of solubility

for system with hydrogen bonding capability and further analysis using the Flory-Huggins

interaction parameter is required.

5.3.7 Heat capacity

Heat capacity, a measure of the required energy to increase the temperature of a unit amount

of material, can be directly calculated from MD simulation with two different approaches. In

the first method, a system is simulated at several different temperatures and heat capacity

can then be calculated as the ensemble (time) average of change in total energy of the

system with respect to temperature as shown in the following equation [24]:

CV = 〈dE
dT
〉V (5.5)
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Figure 5.10: Heat capacity of the PVA. Experimental values from [73]. Note that the heat
capacity of the polymers is conventionally reported per monomer.

where CV is the constant volume heat capacity, E is the total energy of the system and

T is absolute temperature. The other direct method for the calculation of heat capacity

using MD data involves the use of energy fluctuations at constant temperature which is

formulated as follows [24]:

CV =
〈E2〉 − 〈E〉2

kB〈T 〉2
(5.6)

where kB is the Boltzmann’s constant. Note that as the value of the PV is negligible

compared to total energy (incompressible material), the enthalpy and internal energy are

almost identical and so the CV and CP . The heat capacity calculated using equations 5.5

and 5.6 is shown in Figure 5.10. Comparing to the experimental values reported for PVA,

it is clear that both methods dramatically overestimate (a factor of 3) the heat capacity.

The above results are somewhat expected. Apart from statistical issues, there is a

more profound reason (which both low and high molecular weight liquids share) for the

overestimation of the heat capacity. In such complex systems, there are some relevant

quantum effects involved that should be included in the calculations [92]. Berens et al. were

the first researchers who considered these quantum mechanical effects in MD simulation [45].

They have developed a method to systematically calculate the thermodynamic properties

using quantum harmonic oscillator approximation for every degree of freedom in the system.

This assumption works well for solids, e.g. see [93]. According to the authors [45], the

velocity spectrum of a molecular system is defined as:
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S(ν) = 4πβ

3N∑
j=1

mj〈D[Vj(t)]〉 (5.7)

Where:

D[Vj(t)] =
1

2π
lim
τ→∞

∣∣∣∣∫ τ

−τ
dt exp(−i2πνt)Vj(t)

∣∣∣∣2 (5.8)

and the heat capacity (constant volume) can be calculated using the quantum harmonic

oscillator approximation as follows:

Cv = kB

∫ ∞
0

dνS(ν)W (ν) (5.9)

where the quantum correction weight function, W , is:

W (ν) =

(
u2eu

(1− eu)2

)
(5.10)

in which u is:

u = βhν (5.11)

and β = 1/kBT and h is the Planc’s constant.

However, applying the method to glass forming liquids (like PVA) is not very suitable.

Nonetheless, we have applied this method to calculate the heat capacity of the PVA and

the results are shown in Figure 5.10. These results are based on 100 ps simulation of well

equilibrated systems with a time step of 0.1 fs (for detail see [94, 95]). This result indicates

that including the quantum correction strongly improves the prediction over the classical

methods but the problem of overestimation still exists. As you can see at 300 K, value

calculated using the method of Berens et al. coincide with the group contribution theory

prediction[71, 73]. So the values of the CP reported in Figure 5.10 can easily be used for

prediction of the heat capacity of the PVA chains with different degrees of polymerization

at different temperatures up to the group contribution accuracy. Our calculations showed

that contribution of each monomer to the total density of state (DOS), regardless of its

position on the chain, is almost identical. Another interesting fact is that the change in

slope of the CP Vs. T is strongly correlated with number of dihedral transitions shown in

Figure 5.3. The slope is reduced around the 450 K where vibrations of the dihedral angles

are taken over by free rotations.

Surprisingly, there exist no significant differences in the heat capacity of PVA with dif-

ferent tacticities. This is because the heat capacity is mainly related to the degrees of
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Figure 5.11: Velocity spectrum of one monomer of PVA (averaged over all monomers).
Vertical axis is C (speed of light) multiplied by the DOS and the horizontal axis is the
frequency scaled by βh

freedom of vibrations which are identical in all types of chains.

Recently Goddard et al. [94, 95] introduced the so-called two phase thermodynamic

(2PT) model, which is a modification of the method of Berens, to obtain better estimation

of the DOS for the glass forming liquids. In this method, the DOS of liquids is divided to

two distinct portions of gas and solid like. Accordingly, the heat capacity is estimated by

applying the method of Berens et al. to the solid like portion of the DOS. This method

has been successfully applied to several different systems, including Lennard-Jones particles

[94] and real liquids of low molecular weights [95, 96], without significant deviations from

experimental values [96]. The main idea of this method is based on the analogy of the DOS

at low frequency to that of gas like materials. Unfortunately, in the case of the high molec-

ular weight polymeric systems, the correction calculated via 2PT model is negligible as the

zero frequency motion of the monomers (their self-diffusion coefficient) is very small as can

be seen in Figure 5.11 (refer to [94, 95] for the details of calculations). As zero frequency

DOS is related to the self-diffusion coefficient of each monomer, we tried to estimate its

value from self-diffusion value obtained from 500 ns trajectories but failed (as original 100

ps trajectories are too short to capture monomers self-diffusion). It seems that the 2PT

correction for polymer segments is negligible. This means that the way the gas phase DOS

is estimated should be changed to remove its exclusive dependency on zero frequency DOS.

Otherwise, a totally new approach is required.
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5.4 Conclusion

The high temperature annealing seems to generate representative conformations of PVA.

Using the OPLS-AA force field allowed us to reproduce experimental specific volume of

the PVA over the temperature range of 200 to 550 K. As crystallization is a slow process

and could not be mimicked in the MD simulation, no crystallization was observed. The

simulation also provided good predictions of the solubility parameters and the glass transi-

tion temperature of PVA. It is noteworthy that the glass transition temperature of PVA is

insensitive to its tacticity in MD simulation. We showed that for high density PVA classical

methods overestimate the heat capacity. We used the quantum correction to obtain better

estimation of the heat capacity. We showed that the 2PT method is not applicable to the

PVA and a new method is needed to correct the quantum effects for polymeric materials.

Comparing the properties of the different PVA stereomers, it has been found that they

show differences in their solubility parameters but share the same specific volume, thermal

expansion coefficient, glass transition temperature and heat capacity.
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Chapter 6

Free energy of solvation and Force
field modification

6.1 Introduction

Poly(vinyl alcohol) (PVA) and its blends with other polymers and composites filled with

fibers are found in numerous technological applications[2–5, 7]. To process the materi-

als, solvent is usually needed. Water is the only known practical solvent for PVA but it

only works over a limited range of temperatures. Solvent mixtures containing a significant

amount of water are also used[97]. Despite the presence of the hydroxyl moiety, both vinyl

alcohols (e.g., ethanol) and carboxylic acids (e.g., acetic acid), are known to be immiscible

with PVA[98]. This implies that identifying new solvents for PVA based on the idea of

matching chemical functional groups is not as fruitful as one might expect. Nevertheless,

being able to find solvents other than water is desirable for some applications of PVA in

which PVA involves in reactions to form water-insoluble derivatives[97].

Owing to the cost and time consuming nature of experimental procedures, molecular

dynamics (MD) simulation seems to be a cost effective, viable alternative to design solvents

of interest[53, 57, 99–104]. It is well-known that accuracy of the MD simulation is mostly

dictated by the quality of the force field used. A well parameterized force field can accu-

rately reproduce experimental measurements in a much efficient fashion. Needless to say,

before doing any extensive simulations on any polymer/solvent sets, checking the accuracy

of the force field adopted is an essential step.

Most of the known properties of PVA are attributed to its strong hydrogen bonding

network[2–4, 6, 48, 53, 56, 87, 88, 105–114]. Obviously, introducing solvent molecules into

the polymeric matrix will disturb such network. Interactions between PVA and solvent

A modified version of this chapter has been accepted for publication in Journal of Molecular Mod-
eling:”Effect of partial atomic charges on the calculated free energy of solvation of poly(vinyl alcohol) in
selected solvents”
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molecules are affected by both the size of the solvent molecules (breaking hydrogen bonds)

and the ability of the hydrogen bonding network to accommodate the solvent molecules.

For example, in the case of water, its small size and strong hydrogen bonding capability

are both in favor of mixing. Keeping this in mind, an accurate prediction of the hydrogen

bonding interactions in any PVA/solvent systems is crucial.

In the context of MD, hydrogen bonds are usually handled through the Coulombic in-

teraction. As a result, partial atomic charges (PACs) become the tuning parameters. To

have an accurate prediction of the hydrogen bonding interaction, a set of well-tunned PACs

are required. The process of tuning PACs in a force field is not a trivial task even for small

molecules[25, 115, 116]. A common practice for developing a force field for polymers is to

optimize the PACs to reproduce key properties of small molecule analogs[25] and then to

extend the results to the corresponding polymeric systems. However, there is no guarantee

that the optimized PACs based upon the small molecule analogs are able to reproduce the

properties of the polymers where conformation and tacticity also play a major role [117].

Accordingly, in this work, we replaced the empirical optimization of PACs by using quan-

tum mechanically derived electrostatic potentials fitted to selected point charge models[116].

There exist several conventional methods that can be used to derive PACs directly us-

ing the electron density obtained from ab initio calculations [118]. To select the best PAC

set for PVA, we have benchmarked the free energy of solvation (FES) for PVA oligomers

in selected solvents calculated from MD simulation using PAC sets obtained from various

point charge models against the ab initio calculated values (for flowchart of calculation

steps see figure 6.1). To capture the effect of tacticity, we have repeated the calculations for

long enough PVA oligomers with different tacticities (atactic, isotactic and syndiotactic).

Solvents used in this study were water, ethanol and benzene. They were chosen as they

have different sizes and hydrogen bonding capabilities. In this work, we retrieved all bonded

and non-bonded parameters except PACs from the original OPLS-AA force field. As in our

previous work [119] we showed that the OPLS-AA force field can reproduce properties of

PVA in its pure state reasonably well. Effects of chain conformation and tacticity [117] on

the PACs were studied in this work. Here, we identified a set of PACs for PVA which can

reasonably predict the interactions between PVA and the selected solvents. Another major

contribution of this work is the identification of a point charge model for the calculation

PACs compatible with the OPLS-AA force field for similar systems when proper values are

missing.

55



Figure 6.1: Flowchart of calculation steps for validation of the partial charges.

6.2 PVA oligomers

All oligomers used in this study had 10 repeating units capped with two methyl groups.

This size was selected as a compromise between the computation cost of ab initio calcula-

tions and capturing the tacticity effect without any significant end effects. All calculations

in this study repeated for isotactic, syndiotactic and atactic PVA (with 50% chance of chiral

center inversion). Similar to previously reported work [68], all monomer connectivities are

head-to-tail.

To create the required structures for calculations, a chain with the tacticity of interest

was created using the Amorphous Builder module in Materials Studio 5.01 [67] at very low

density (vacuum). In the next step, this chain went through a geometry optimization using

the original OPLS-AA parameters in GROMACS to remove close contacts, if any. This

was followed by an equilibration MD simulation in vacuum at 400 K. Finally, a short,5 ns,

simulation at 400 K in vacuum was performed on the chain and snapshots were saved every

100 ps (a total of 50 different snapshots saved for each chain). All ab initio and MD calcula-

tions were repeated for every snapshot created here to capture the effect of conformational

changes on the calculated properties as per the method of [120, 121]. For the calculation

of FES at the ab initio level, an implicit solvent model (see the section on the Calculation

of FES) was used. At the MD level, each oligomer was mixed with 1000, 400 and 231

molecules of water, ethanol and benzene, respectively, in a three-dimensional periodic box.

These numbers were determined by trial and error to keep number of solvent molecules and

the system size effect on the calculated FES at the minimum simultaneously.
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6.3 ab initio Calculation

6.3.1 Calculation of PACs

For all ab initio calculations, we used the Gaussian09 package [41] and the level of theory

used was UB3LYP/6-31G* [42]. It was used previously in the calculation of partial atomic

charges used in the AMBER force field [115, 116] but is different from that (RHF/6-31G*)

used in the development of the original OPLS-AA force field [25]. Having the basis set

(energy) converged for a molecular system, a few selected population analysis methods

were used to calculate the PACs. In this study, we used the Mulliken Population Analysis

(MPA)[122], Natural Population Analysis (NPA)[123], Merz-Singh-Kollman (MSK) [43, 44],

Atoms In Molecules (AIM) [124] and Hirshfeld [125–128] methods. All aforementioned

methods are incoporated in the Gaussian09 package except the AIM method that we used

the ”Bader Charge Analysis” code [115] for the post processing of the data. It is worth

mentioning that to obtain accurate results, cube files generated by Gaussian09 were exported

with fine meshing. In addition, as other researchers suggested [118], we used 2,000 points

for each atom when the MSK scheme was used. The following summarizes the procedure

for the calculation of PACs.

• First, PACs were calculated for all snapshots created by the 5 ns MD simulations in

vacuum. The level of theory for this calculations was UB3LYP/6-31G*. Note that it has

been reported that PACs calculated using UB3LYP/6-31G* are very close to the results

of high quality ab initio calculations[118]. These values will be used to discern the effect

of geometry optimization.

• Then, using the same level of theory, all snapshots have been geometry optimized in

vacuum and PACs were calculated for these optimized structures.

• Finally, each oligomer (snapshot) was solvated in implicit solvent (either water, ethanol

or benzene) using the Polarizable Continuum Model using the integral equation formal-

ism variant (IEFPCM)[129] method. Then, using converged basis sets in implicit solvent

environment, PACs were calculated again.

The SCF convergence criteria were set to 10−n for the root mean square changes in

the elements of the density matrix between two successive cycles with n being 8 for the

calculation of SCF energies, gradients and second derivatives. The criteria for the con-

vergence of the geometry optimization were set as follows; 0.00045 and 0.0003 (Eh a0
−1)

for maximum force and the root mean square of the forces, respectively; 0.0018 and 0.0012

(a0) for the maximum displacement and the root mean square of displacements, respectively.
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6.3.2 Calculation of free energy of solvation

For the calculation of free energy of solvation, the IEFPCM method available in the Gaus-

sian09 package was used. For the topological model we used the UAKS which has been ob-

tained from united atom topological model applied on radius optimized for the PBE1PBE/6-

31G* level of theory. The electrostatic scaling factor was chosen to be 1.2 as suggested by

Wen et al.[130]. The free energy of solvation was calculated simply by subtracting the free

energy of each oligomer in vacuum from that in the solvated state. Solvents considered

for this work were water, ethanol and benzene. Note that as Wen et al. [130] previously

mentioned and our results confirmed, the geometry optimization in the solvated state is not

necessary as changes in both geometry and energy are insignificant.

6.4 Molecular dynamics simulation

In this work, we used GROMACS 4.5.5 [58–62] for carrying out all MD simulations. We

used the OPLS-AA force field [25] to describe the intra and intermolecular interactions of

ethanol, benzene and PVA except the PACs of PVA. For water molecules, the TIP4P model

developed by Jorgensen et al. [76, 77] and SPC [131] models were used while all bonds were

constrained using the SHAKE algorithm [132] unless otherwise stated.

In all simulations, the Berendsen thermostat/barostat [20] with a time constant of 0.2/1

ps were used to control the temperature/pressure of the simulation box. FES at MD level

was calculated at 300 K. Given the short length of the oligomers and plasticization effect

of the solvent, this temperature was enough to capture essential conformational changes of

the oligomers although there is a high chance of missing conformations with high energy

barriers [133, 134]. Newton equations of motion were integrated using the leap-frog algo-

rithm [135] with a time step of 2 fs along with a sampling time of 1 ps. The cut-off distance

of the non-bonded interactions was set to 1.1 nm and the Particle Mesh Ewald (PME)[136]

method was used for handling the long range Coulombic interactions. The long range dis-

persion energy and pressure corrections were applied to retrieve the correct density values

of the systems.

6.4.1 Slow-growth calculation of the free energy of solvation

For the calculation of FES via MD simulation, we have used the slow-growth coupled

with the thermodynamic integration method in the GROMACS package. This method re-

quires a simulation during which the Hamiltonian of the system changes slowly from state

A, a solvated chain, to that describing the pure solvent, state B. The required modifica-

tion of the Hamiltonian, H, is realized by making H a function of a coupling parameter
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Figure 6.2: Probability distribution of the PAC of the oxygen atom in PVA with different
tacticities as calculated by different population analysis methods.

λ:H = H(p, q;λ) in such a way that λ = 0 describes state A and λ = 1 describes state B. It

is known that the change in the system, between states A and B, must be so slow that the

system remains in equilibrium [23]. Accordingly, the path between states A and B has been

split to 201 intermediate states for proper sampling. These steps are related to gradual

removing of the Coulombic and vdW interaction of the chain from the Hamiltonian, each

of them in 100 steps (for a typical graph of changes in free energy see the appendix G). At

each step, we simulated the system for 1 ns to obtain proper sampling of the conformational

changes in the chain. After determining the Hamiltonian, the total free energy change was

then calculated by the Multiple Bennett’s Acceptance Ratio (MBAR) [27].

6.5 Results and discussion

6.5.1 Atomic partial charges

We collected a total of 292,500 PAC data points for all the systems in this study. Upon

careful analysis such data, several interesting facts emerged and are summarized as follows:

• PACs on the monomers are independent of their positions in the backbone. Therefore,

PAC for each atom was averaged over all atoms of the same type in all monomers and

over 50 snapshots (i.e., an average over 500 PAC values for each atom). Figure 6.2 shows

the distribution of the PACs for the oxygen atom as calculated using different population

analysis methods before the geometry optimization. As one can see, the distribution is

rich enough to produce meaningful averages for each method and tacticity of interest.
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Figure 6.3: Probability distribution of the PAC of the oxygen atom in isotactic PVA as
calculated with different methods.

Figure 6.4: Probability distribution of the PAC of the oxygen atom in solvated isotactic
PVA as calculated by the MSK method.
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• Since the snapshots were taken directly from MD simulations, this means that atomic

positions were not at the lowest energy state. Figure 6.3 compares the PACs before

(Figure 6.2) and after geometry optimization. Here, MPA results are not shown for

better clarity. As can be seen, all PAC distributions shift slightly. Also, except the

MSK method, all other methods show multiple peaks which make determining a unique

PAC for each atom more complicated. This observation occurs to other types of atoms

too. While MPA results are not sensitive to the geometry optimization, the maximum

relative change in the average values of other methods were around 40% except NPA

(500%). We believe that by a short energy minimization of snapshots at the MD level

(keeping the dihedral angles constrained to avoid any change in the chain conformation)

the computationally expensive step of ab initio geometry optimization could be bypassed.

• Comparing the PACs for atoms in oligomers with different tacticities revealed that there

was no significant differences between calculated PACs. This holds true for all values

before and after optimization and even the solvated systems. Based on this result, we

can confidently conclude that all the differences between PVA with different tacticities

is attributed to their different hydrogen bonding networks and not by any difference in

their hydrogen bonding strength.

• In Figure 6.4 we have compared the PACs for the oxygen atoms in isotactic PVA in

vacuum and in three different solvents as calculated by the MSK method. As it has

been reported before [130], our results indicate that there is a minor shift in the PACs in

solvents compared to those calculated in the vacuum (the degree of shift is correlated with

the polarity of the solvent). Likewise, the same trend was observed for other calculated

PACs (for detail of the deviations from PACs of optimized structures in vacuum, see the

appendix F). While the sensitivity of PACs from all methods are around 10% (relatively),

the AIM results showed 125% change respect to optimized values in vacuum. But as

environment dependent parameters are not practical for MD simulations and average

values are not that different, in this work we used the optimized PACs and ignored the

solvent effect.
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Table 6.1: PACs of PVA calculated using different
population analysis methods. Note that after aver-
aging the data small changes (third significant digit)
has been made in the values for some atoms to make
the sum of the PACs for each monomer zero. For
the corresponding standard errors of values reported
here, see Table F.2 in the appendix F

Atom OPLS-
AA

MPA NPA MSK AIM Hirshfeld

Ha 0.06 0.149 0.029 0.081 0.019 0.039
Ha 0.06 0.149 0.029 0.081 0.019 0.039
Ha 0.06 0.149 0.029 0.081 0.019 0.039
Ca -0.18 -0.447 -0.087 -0.243 -0.057 -0.117
Hb 0.06 0.14 0.027 0.116 0.02 0.042
C1 -0.12 -0.296 -0.063 -0.418 -0.008 -0.054
Hb 0.06 0.144 0.027 0.109 0.021 0.042
C2c 0.205 0.132 0.107 0.51 0.726 0.112
H 0.06 0.131 0.017 -0.005 0.012 0.045
O -0.683 -0.657 -0.271 -0.7 -1.353 -0.408
Hd 0.418 0.406 0.156 0.388 0.582 0.221
He 0.06 0.149 0.03 0.128 0.024 0.042
He 0.06 0.149 0.03 0.128 0.024 0.042
He 0.06 0.149 0.03 0.128 0.024 0.042
Ce -0.18 -0.447 -0.09 -0.384 -0.072 -0.126

a Starting methyl group-Carbon connected to C1
b Connected to C1
c Connected to O
d Connected to O
e End methyl group-Carbon connected to C2

Based on the above discussion, we selected the PACs calculated for optimized structures

in vacuum as representative of each method. Since differences between PACs of different

tacticities are negligible, we considered the same PAC set for all stereoisomers where PACs

were averaged over all three tacticities. Table 6.1 shows the final partial charges for each

method which were used in the MD simulations. In agreement with previous studies [118],

our results show that predictions by the AIM method for the oxygen atom in the hydroxyl

group are exaggerated. On the other hand, predictions by the MSK method is moderately

damped while the NPA’s predictions lies in between of the other two methods. The interest-

ing fact here is how the PACs of the OH group calculated via the MPA and MSK methods

are close to those of the original OPLS-AA force field. However, the PACs of both carbon

atoms in the PVA monomer calculated from the MSK method are significantly different

from the original OPLS-AA force field.

As mentioned before, properties of PVA are mostly dictated by its hydrogen bonding

network (or the Coulombic interactions). So, any change in the PACs of the PVA can

cause drastic changes in the PVA’s properties. Accordingly, following the procedure pre-

sented in our previous work [119], we calculated the properties of pure PVA looking for

effect of PACs. In Figure 6.5 densities of isotactic PVA at different temperatures calculated

using different sets of PACs are shown. The results confirm that values calculated using

the MPA and MSK methods are very close to the OPLS-AA predictions. This is not sur-
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Figure 6.5: MD results for density of pure isotactic PVA as a function of temperature
calculated using different PAC sets.

prising, as it was reported before that PACs calculated using the MSK method are more

successful than other methods[118]. Also note that how over estimation of the PACs of

the OH group by AIM method causes a dramatic overestimation of the density. Both NPA

and Hirshfeld methods underestimate the PACs of the hydroxyl moiety, thereby the density.

In the formulation of the OPLS-AA force field, the non-bonded interactions between

atoms connected by 3 bonds (1-4 interactions) are considered with a fudge factor of 0.5. So

any change in the PACs of the back-bone carbon atoms of PVA can change the dihedral

angle distribution and therefore, the chain’s conformation. In Figure 6.6, the dihedral angle

distribution for the back-bone carbon atoms of an isotactic PVA chain with 400 monomers

is shown. Despite the significant difference in the PACs of carbon atoms calculated by the

MSK method with respect to the original OPLS-AA values, the dihedral angle distributions

are in good agreement (see the appendix F for the comparison of the other methods). Note

that the minor deviation in the gauche+ can be easily removed by a slight change in the

parameters of the Ryckaert-Belleman potential. This trend, close proximity of the MSK

results with those of OPLS-AA, holds true for other properties of the PVA (data not shown).

6.5.2 Free energy of solvation

FES calculated via MD simulations need to be validated by comparing with proper experi-

mental estimations. As no experimental data is available for current hypothetical oligomers,

we calculated the FES using accurate ab initio calculations by applying the implicit solvent

model[129, 130]. To capture the effect of conformational changes [117], FES was calculated
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Figure 6.6: Comparison of back-bone carbon atoms dihedral angle distribution of an isotac-
tic PVA chain with 400 monomers determined by the original OPLS-AA and MSK PACs.
Results were averaged over all possible dihedral angles in a 5 ns MD simulation on a well
relaxed chain in a NPT ensemble at 300 K and 1 bar.

for all snapshots of each tacticities (see appendix G). For averaging the FES over all snap-

shots, data were weighted by a Boltzmann factor[117]. This is necessary as all snapshots

were generated at very high temperature (500 K) and the results are about to be com-

pared with values calculated at 300 K in MD simulations. So, averaged values for ab initio

calculations shown in the first part of Table 6.2 were calculated as follows:

〈∆Esolvation〉 = 〈Esol〉 − 〈Evac〉 =

N∑
i=1

Eisole
−E

i
sol

kBT

N∑
i=1

e
−
Ei
sol

kBT

−

N∑
i=1

Eivace
−E

i
vac
kBT

N∑
i=1

e
−E

i
vac
kBT

(6.1)

where N is the number of snapshots; ∆Esolvation is the FES. Esol and Evac are the

absolute ab initio calculated energy of the oligomer in the solvated state and vacuum, re-

spectively; kB is the Boltzmann constant and T is the absolute temperature here set to 300

K. For the detail of the regular averaged values, readers are referred to the appendix G.

Based on the results, such short PVA oligomers were thermodynamically miscible with all

three solvents as the negative value for the FES indicates. While the solvation in solvents

with polar groups (water and ethanol) is highly exothermic, the heat released in the case

of benzene is significantly lower. Note that the fact that these oligomers are miscible with

benzene and ethanol is not in contrast with the fact that PVA macromolecule is not miscible

with these solvents. Oligomers used in this study were very short and miscibility of such
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short oligomers has been reported before in the case of PVA with molecular weights less

than 10000 (g/mol) [109]. Comparing the FES for oligomers with different tacticities shows

that there is no significant difference, another indication that differences between difference

stereoisomers of PVA comes from topological differences between their hydrogen bonding

network and not conformational differences.

Using the PAC sets developed in previous section we calculated the FES for each

oligomer using the MD simulation coupled with the slow-growth method. As each struc-

ture evolves during the MD simulation there is no need to repeat this calculation for each

snapshot (we repeated a couple of simulations using 5 different initial structures and the

results did not show any deviation). Calculated FESs are shown in Table 6.2. As it was

mentioned before in the case of PACs and ab initio calculated FESs, MD calculated FES

exhibited no significant difference between PVA oligomers with different tacticities in water.

Accordingly for other solvents, the simulations were limited to isotactic oligomers.

Table 6.2: Summary of the calculated FES
(kJ mol−1) of PVA oligomers in selected solvents.
The maximum estimated error for MD calculated
FES was less than 2%. For the distribution of the
ab initio calculated FES, see the appendix G.

Solvent
Method Tacticity Water Ethanol Benzene

Ab initio
Ata -158.3 -149.5 -63.1
Iso -155.9 -147.9 -63.9
Syn -148.0 -138.3 -56.9

OPLS-AA
Ata -160.7 - -
Iso -169.3 -169.2 -125.7
Syn -159.4 - -

MPA
Ata -179.2 - -
Iso -182.2 -168.6 -128.9
Syn -180.8 - -

NPA
Ata 1.1 - -
Iso 0.1 -76.0 -89.4
Syn 0.0 - -

MSK
Ata -157.8 - -
Iso -164.5 -156.6 -86.7
Syn -154.7 - -

AIM
Ata -698.7 - -
Iso -699.6 -526.8 -173.5
Syn -740.0 - -

Hirshfeld
Ata -34.4 - -
Iso -36.1 -90.1 -101.6
Syn -36.6 - -

A quick comparison of the MD results with ab initio results reveals that the predictions

by NPA, AIM and Hirshfeld PAC sets deviate significantly from the expected values. On

the other hand, the predictions by the MPA and original OPLS-AA PAC sets are reason-
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able for PVA oligomers solvated in water and ethanol. But both PAC sets exhibited poor

prediction for the benzene case. Further, our results suggest that FES calculated by the

MSK PAC set gives the best prediction of oligomers solvated in all three solvents with less

deviation in the case of benzene. To ensure that water model and the system size do not

affect the results, we repeated the calculation using the SPC water model and systems with

more solvent molecules. Our results confirm that in all cases, FES deviates no more than

1% with respect to the values reported here. This insensitivity of the FES to the water

model used has been reported previously [137] for drug like molecules.

It is interesting to note that PACs calculated by the MSK scheme are in such great agree-

ment with the OPLS-AA force field and also can predict the solvation energy of PVA in three

different solvents even better than using the OPLS-AA PACs. Nevertheless, to check if this

holds true as a general rule, such calculations should be repeated for an extended list of sol-

vents and other macromolecules. If successful, the cumbersome task of assigning the PACs

to new molecules will be replaced by a series of short and affordable ab initio calculations.

In the near future, we will present a comprehensive study on several other polymers and will

extend the list of solvents to evaluate the robustness of the approach presented in this work.

6.6 Conclusion

To asses the quality of the PACs of PVA used in the original OPLS-AA force field, we

collected a rich data set on PACs for short chain PVA oligomers using different conventional

population analysis schemes. Our results confirmed that PACs are very sensitive to the

initial structures in most of the cases and geometry optimization before PAC calculations is

necessary (either at MD or ab initio level). While the sensitivity of the PACs to tacticity of

the oligomers was not significant, they showed slightly different values in different solvents.

Among all PAC data sets, values of the MSK and MPA schemes were closer to those of

the original OPLS-AA force field, and this was reflected in the properties of the pure PVA

too. Based on the ab initio results, the FES of PVA oligomers in water and ethanol was

lower than those in benzene which is a direct results of hydroxyl groups available in those

solvents. While the MD calculated FES using PACs calculated by MPA scheme showed

great agreement with values predicted by original OPLS-AA parameters, both showed great

deviation for FES of oligomers solvated in benzene. However, use of PACs obtained from

the MSK scheme yielded FES values that showed better agreement with ab initio calculated

values even in the case of benzene.
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Chapter 7

Dynamic of solvent in PVA matrix

7.1 Introduction

Poly(vinyl alcohol) (PVA) is a versatile polymer. Owing to its non-toxic and non-carcinogenic

characteristics and ease of processing, PVA is found in a variety of applications in science

and engineering. Major applications include its use as textile sizing and finishing agents,

emulsifiers, photosensitive coatings, adhesives for paper, wood, textiles and leather, and

barrier films for food packaging [4]. It has also been frequently found in biomedical appli-

cations such as contact lenses, lining for artificial hearts, and drug delivery devices.

To optimize the performance of PVA in many of the aforementioned applications, a

molecular level understanding of the diffusion behavior of low molecular weight substances,

water in particular, in PVA is crucial. Given the difficulties associated with studying dif-

fusion at the molecular level experimentally, molecular simulation does provide a viable

alternative. For the PVA/water system, there exist quite a few of such studies using molec-

ular dynamics (MD) simulation [106, 111, 138, 139]. However, such studies used different

force fields, chain lengths of PVA, simulation times, concentrations of water and tempera-

ture ranges. This makes drawing a general conclusion on the diffusion behavior of water in

PVA rather difficult. Therefore, in this study, we used a force field that has been shown to

be suitable for PVA [119] and a very long PVA chain under a wide range of temperatures

and concentrations to ensure the reliability of the data. We then used the resultant MD data

to interpret a previous observation of Zhang et al. [2] in their study on a pervaporation

separation process in which they found water diffusivity increases with increasing water

concentrations while the corresponding mean free volume decreases. At first, this result

seems to be counter intuitive according to the free volume theory but a detailed analysis of

the free volume redistribution dynamics would reveal the underlying reason.

A modified version of this chapter was published as an invited paper to a special issue of Chemical
Engineering Science (In Press) to showcase molecular simulation work done in the chemical engineering
community in light of the 2013 Noble Prize of Chemistry being awarded to three chemists who developed a
variety of molecular simulation methods: Effect of free volume redistribution on the diffusivity of water and
benzene in poly(vinyl alcohol)”
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There are different classes of predictive models for the estimation of self-diffusion co-

efficients of small molecules in polymers. For a great review on these models, readers are

referred to [140]. Among all of these models, the Mackie-Meares model, a simple lattice

based model, shows an exceptional ability to predict water diffusivity in PVA as reported

by Muller-Plathe [3]. The Mackie-Meares model is shown as follows:

DS,1

D0,1
=

(
1− φ
1 + φ

)2

(7.1)

where φ is the volume fraction of the polymer in the system and DS,1 and D0,1 are

the self-diffusion coefficient of the penetrant in the mixture and pure state, respectively.

Muller-Plathe stated that the Mackie-Meares equation works well when the nature of in-

termolecular interactions are alike (e.g., polar penetrant and polar polymer or vice versa)

but not for systems containing components interacting with dissimilar intermolecular inter-

actions (e.g., PVA and benzene). However, we will show that the prediction of the model

can be poor even for the PVA/water system at low temperatures and/or low water concen-

trations. And the reason for the failure of the Mackie-Meares model essentially stems from

the size fluctuations of the free volume holes as they redistribute in the system.

In the first part of this work, we will show the computed self-diffusion coefficients of

water and benzene from MD to validate the simulation protocols and force fields used. We

will then use the self-diffusion coefficients of water and benzene in PVA along with the corre-

sponding free volume data to analyze the underlying diffusion mechanisms of the penetrants.

7.2 Molecular dynamics simulation

In this work, we used GROMACS 4.5.5 [58–62] for carrying out all MD simulations. We

used the OPLS-AA force field [25] to describe the intra and intermolecular interactions of

PVA and benzene. For water molecules, the TIP4P model developed by Jorgensen et al.

[76, 77] was used while all bonds were constrained using the SHAKE algorithm [132].

In all simulations, the Nose-Hoover thermostat [21] with a time constant of 0.2 ps and

the Parrinello-Rahman barostat [65] with a time constant of 2 ps were used to control the

temperature and pressure of the simulation cell, respectively. A temperature range of 270

to 370 K was used, as pervaporation separation is usually operated near the boiling tem-

perature of water [3] while all biomedical applications are at 310 K. Also, use of such a

wide range of temperatures allowed us to elucidate the effect of temperature on the diffu-

sion mechanism. In terms of the concentration, we considered the range from 1 wt% water

(where all the separations are believed to happen in the pervaporation process) to 20 wt%
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water (swelling of polymer matrix by water in drug delivery devices).

Newton equations of motion were integrated using leap-frog algorithm [135] with a time

step of 1 fs and a sampling time of 1 ps. The total production simulation time after full

equilibration was on average around 100 ns. Readers are referred to our previous work [119]

for the procedure for the generation of the initial structures and the equilibration criteria.

The cut-off distance of the non-bonded interactions was set at 1 nm and the Particle Mesh

Ewald (PME) method was used for handling the long range Coulombic interactions. The

long range dispersion energy and pressure correction was applied to retrieve the correct

density of the system, as previously mentioned by Wu [63].

Single chain PVA models were used and the PVA chain was atactic with the head-to-tail

connection, as it is the major stereomer of PVA produced by the hydrolysis of poly (vinyl

acetate) [5, 68]. The PVA chain contained 400 monomers and two methyl end-groups (i.e.,

the corresponding molecular weight was 17,630 g mol−1). Accordingly, simulation cells, each

containing a single PVA chain, were built with appropriate numbers of penetrant molecules

to obtain the required concentrations (wt%). Concentrations of interest here were 1, 3, 5,

10, 15 and 20 wt%.

7.3 Determination of free volume

To study the effect of free volume on the diffusivity of the penetrants, two major characteris-

tics of free volume were determined, namely statistical and frequency changes. To calculate

free volume, there are two methods currently used in the literature. The first option is the

probe method (i.e., the Connolly surface analysis). This has been recently used by Zhang et

al. [2] for calculating the mean fractional free volume of the PVA/water system. The more

sophisticated method is based on the concept of Voronoi tessellation of the space. It enables

one to determine the free volume associated with each penetrant molecule independently

[141–143] as it is defined in the original free volume theory. The diffusional motion of a

penetrant molecule in a polymer matrix is mainly influenced by its local free volume, not

by the mean free volume per penetrant molecule as determined by the Connolly surface

analysis. One implication of defining free volume by the Voronoi tessellation method is that

there is no free volume when there are no penetrant molecules. Nonetheless, Greenfield and

Theodorou used such an approach for their work on determining the diffusion pathway in

glassy and melt polypropylene [144]. As the computational cost of this method is much less

than the probe method, one can apply it to a series of consecutive frames to obtain the

evolution of free volume as a function of time. Having this rich information, it increases

our ability to analyze the dynamics of free volume that is not possible with the use of the

probe method. For the three-dimensional tessellation of space, we used the VORO++ code
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[145].

7.4 Results and discussion

For detailed analysis of PVA/solvents density and glass transition temperature please refer

to appendix D.

7.4.1 Solvents’ self diffusion coefficients

Figure 7.1 shows the self diffusion coefficients of water and benzene (D0,1) over the tem-

perature range of 270 to 370 K along with the available experimental data. Obviously,

the results obtained using the selected force field are in reasonably good agreement with

experiment and the deviation is less than 5% for both liquids. In the case of water, the

overestimation is attributed to the system size considered here (500 water molecules). The

computed activation energy (By fitting Arrhenius law on the temperature dependency of

self diffusion coefficients) for self-diffusion of water is 13.9 kJ mol−1 while that of the ex-

perimental data shown in Figure 7.1 is 17.5 kJ mol−1. Activation energy values of 18.5 to

20 kJ mol−1 [3, 70] based upon MD data (short simulation time) have also been reported

where Tamai et al. [70] slightly underestimated the activation energy (see Table 7.1). But

in the case of benzene, the deviation of the self-diffusion coefficient is slightly higher. This

is result of the system size (100 benzene molecules) and simulation time (100 ns) used. The

other reason for the deviation is that the benzene molecules do not adopt a planar structure

which has been reported previously [146]. The activation energy calculated in this work is

26.4 kJ mol−1 while the two sets of experimental data shown yield values of 13.3 and 12.5

kJ mol−1, respectively. The discrepancy is due to the fact that the activation energy of this

work covers a wide range of temperatures while those from the experimental data mainly

derived from the high temperature region. Given that the computed self-diffusion coeffi-

cients of benzene changes slope around 300 K, it is possible to split the data set into two

regions. And the corresponding activation energy values for the low and high temperature

regions will then be 38 and 18.7 kJ mol−1, respectively. It is clear that the result of the high

temperature region is in line with experiment. Nevertheless, for the sake of consistency,

we will use our calculated self-diffusion coefficient data of the pure penetrants, instead of

experimental data, for comparison purpose in section 7.4.5.

7.4.2 Self-diffusion of water in PVA

In Figure 7.2, we compare our self-diffusion coefficient (DS,1) results of water in PVA with

those reported by Muller-Plathe [3]. As can be seen, our results are about one order of

magnitude smaller than those of Muller-Plathe. This is because we used the TIP4P model
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Figure 7.1: Computed self diffusion coefficients of water and benzene. The experimental
data for water are from [147] while those for benzene [148] and [149].

for water, a more effective hydrogen bonding model, and all-atom force field for PVA that

includes realistic geometrical obstruction by considering explicit hydrogen atoms. In addi-

tion, considering the shorter chain length and simulation time adopted by Muller-Plathe,

the difference was totally expected. In Figure 7.3 we compare our results at 20 wt% water

at different temperatures with values reported by Wu [63] at 21 wt% water. As there are no

significant differences between the respective works (small differences in chain lengths and

partial charges used), the self-diffusion coefficient values are in good agreement especially

at elevated temperatures. And both sets of values at low temperatures are within the error

range of experimental values reported. It is known that diffusion coefficients calculated

using MD simulation are affected by size of the system considered [150]. Accordingly, we

have conducted a similar analysis introduced by Yeh et al. [150] and found that the size of

the system used in this work was sufficient.

In Table 7.1 we show both the experimental and simulation data on self diffusion for

the PVA/water system under different conditions that we could find. Since most of these

data are single point data, there is no point to compare them in a graph with our data.

Accordingly, we compared them one by one and did not find any significant discrepancies

(extrapolation was required for some data points). Nevertheless, our results and those of

Karlsson et al. [7] do not agree and their reported values are much higher than ours from

extrapolation to 502 K using the calculated activation energies (see Table 7.2). In addition,

the calculated density of PVA in the work of Karlsson et al. is much lower than what we

reported previously [119]. It seems that all observed differences are attributed to different

force fields used in the respective works.
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Figure 7.2: Comparison between the computed self diffusion coefficients of water in PVA at
different water concentrations from this study and those of Muller-Plathe [3, 98]. Results
of Muller-Plathe were obtained from using the SPC model for water and a short simulation
time of 20 ns.

Figure 7.3: Comparison between the computed self-diffusion coefficients of water in PVA
at 20 wt% of water at various temperatures in this study and those of Wu [63].
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Table 7.1: Reported values for self-diffusion
coefficient of water and its activation energy
in the PVA.

T (K) Ds0 ∗1010

(m2/s)
Ea

(k/mol)
Reference

370-
400

2.8-42 167.97 [151]b

298 0.1-10 - [108,
152]c

510 36 50 [153]d

298 0.1-0.24 - [154]e

502 1-1.78 - [7]f

200-
400

0.63-63 18-20 [70]g

200-
420

0.015-
18.2

15 and
32.4a

[63]h

300 4.8-130 - [2]i

300 1.9-15.6 - [2]j

502 9.5 - [7]k

502 21 - [7]l

a Below and above the Tg
b Infinite dilution using inverse gas chro-

matography
c 0.5-7.5 wt% water
d MD with low water content
e Vapor phase sorption on cross linked

PVA at relative humidities of 0.38-0.74
f MD at 2.6-5.2 wt% water
g MD simulation at 50 wt% water
h MD at 21 wt% water
i Sorption on systems containing 18-46

wt% solvent (water and ethanol)
j MD on systems containing 18-46 wt%

solvent (water and ethanol)
k 2.6 wt% water
l 5.2 wt% water

According to Zhang et al. [155], the diffusion coefficient of water in PVA, in the presence

of a small amount of ethanol, was a linear function of the degree of swelling induced by

the water. We observed a similar phenomenon at very high water contents that were close

to the water contents used in the work of Zhang et al. But analysis of the concentration

range studied here indicated that the functionality at low water contents is exponential as

it is often reported in literature [152, 153]. The reason is a sharp increase in the diffusional
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Figure 7.4: Self diffusion coefficients of water in PVA as a function of the degree of swelling.
The degree of swelling is defined as: ρPV A/ρMixture − 1.

parameters caused by significant changes in the polymer mobility by adding solvent (reduc-

tion in Tg). Figure 7.4 shows the diffusion coefficients of water in PVA. According to the

free volume theory and work of other researchers (e.g. see [108, 152]), diffusion coefficient

shows an exponential functionality with the degree of swelling (or water content). Although

the fits of some data points seem not so good, one noteworthy point is that the slope of the

fitted lines seems to be insensitive to temperature. The average slope of the fitted lines is

0.056 ± 0.015. Note that these lines cannot be extrapolated to very low water contents as

it has been shown experimentally that there is a sudden decrease in the values at very low

water contents (in the log scale plot)[108].

Having the self-diffusion coefficient data over a range of temperatures allowed us to cal-

culate the activation energy of the diffusion for water at different water contents. Figure

7.5 shows the temperature dependence of self diffusions coefficients as well as lines fitted to

calculate the activation energy of diffusion. Table 7.2 summarizes the calculated activation

energy and the corresponding literature values. According to Zielinski and Duda [156], the

activation energy of diffusion should decrease with increasing solvent content in polymers

[156]. As can be seen in Table 7.2, the activation energy for systems containing 1 to 10 wt%

of water follows this prediction. In contrary, activation energy value increases considerably

from 10 to 15-20 wt%. This is very likely due to the decrease in the glass transition of

the system. As Wu [63] reported before, the activation energy of water diffusion in PVA

at 21wt% of water underwent a sudden change passing the glass transition temperature.

And they reported values of 15.0 and 32.4 kJ mol−1 for temperatures below and above Tg,

respectively. The value for the rubbery region is in good agreement with our values for 15
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Figure 7.5: Temperature dependence of self diffusion coefficient of water in PVA.

and 20 wt% of water in our systems.

Table 7.2: Summary of the acti-
vation energy of water diffusion in
PVA at different water contents.

Water Content
(wt%)

Eact
(kJ/mol)

1 32
3 29
5 27
10 26
15 37
20 36

7.4.3 Self-diffusion of benzene in PVA

Due to its larger size and its inability to affect the hydrogen bond network of PVA, the

self diffusion coefficient of benzene in PVA is about one order of magnitude lower than

that of water. Accordingly, much longer simulation times (400 ns) was required to prop-

erly estimate the self diffusion coefficients. Also, by closely monitoring the mean square

displacement curves of different benzene molecules, we excluded the data that had not yet

reached the Einstein regime. As a result, the resultant values carry larger statistical errors

compared to the case of water. The self diffusion coefficients of benzene in PVA containing
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Figure 7.6: Self diffusion coefficients of water and benzene in PVA as a function of the
degree of swelling.

20 wt% benzene are shown in Figure 7.6 along with the data for water at 370 K. Unlike

the PVA/water system, experimental data on the PVA/benzene system is scarce. The only

experimental data we could find is 0.25 ∗ 10−12 m2/s at 323 K and 2.5 wt% of benzene

as reported by Pan et al. [157]. Comparing their results at 320 and 300 K with our data

0.27 ∗ 10−12 m2/s at 370 K indicates that our data is well in the range of experimental

data. Pan et al. [52, 157] also did MD simulation on the system and reported values of

1.55 ∗ 10−12 m2/s for the NVE ensemble and 1.05 ∗ 10−12 m2/s for the NVT ensemble

under the same conditions. It is clear that their simulation results are an overestimation

of their own experimental data. By using a larger system and a much longer simulation

time, our values are in a better agreement with the experimental data of Pan et el. Us-

ing a coarse grained force field and a much longer simulation time, Gautieri et al. [158]

reported a diffusion value of 0.263 ∗ 10−12 m2/s at 2.5 wt% for benzene in PVA and 300 K.

Considering that coarse grained simulations are known to yield overestimation, our data at

370 K seems to be reliable. Figure 7.6 shows the dependence of the diffusivity of benzene

on the degree of swelling of the PVA/benzene system along with data for water. Please

note that at the same degree of swelling, the weight concentration of benzene is lower than

that of water. In other words, at the same weight concentration, the PVA/benzene system

contains more free volume holes than the PVA/water system. This is because there are

lower intermolecular attractions between PVA and benzene (apolar) molecules comparing

to the PVA/water(polar) system. Nevertheless, the self diffusion coefficients of benzene are

significantly lower than those of water. This is attributable to the larger size of the benzene

molecules making them more difficult to undergo diffusion jumps.
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7.4.4 Effect of free volume redistribution frequency on water diffusivity

According to the original free volume theory [13], there requires a minimum (critical) free

volume, a necessary condition, for successful diffusional jumps. This critical value in the

original paper was considered to be about 10 times of the volume of the jumping (dif-

fusing) molecule. Accordingly, the average free volume is not so important (either at a

particular instant or averaged over a time period.). What is important is the availability of

the minimum required free volume and its frequency of appearance. Figure 7.7 shows the

normalized probability distribution for free volume per water molecule at different temper-

atures and water concentrations. As can be seen in the figure, by adding more water to

PVA at constant temperature, the average free volume decreases which is consistent with

the results of Zhang et al. [2]. Zhang et al. [2] mentioned in their work that with increasing

water content, the fractional free volume decreases while the diffusion coefficient of water

increases which is in contradiction to the free volume theory. Since the authors calculated

the average free volume using the probe method, they were not able to explain the counter

intuitive results. Further examination of Figure 7.7 reveals the reason for this observation.

This figure shows that there exist long tails on the right hand side of the distribution at high

water contents (magnified in Figure 7.8 for better resolution). Now, defining an arbitrary

critical free volume value (say 10 times the size of water molecule), it is easily deduced that

more holes with appropriate size are provided by the high water content systems while the

average free volume of such systems is lower than that of the low water content systems.

Figure 7.9 shows the averaged accessible free volume per water molecule and its standard

deviation at the lowet and highest temperatures considered in this study. The figure clearly

shows that the average/standard deviation consistently decreases/increases by adding more

water to the system. In fact, such data was our first clue on this problem and led us to

calculate the free volume probability distribution for further investigation.

Theoretically, even at low water contents, some water molecules would have access to the

free volume holes with size larger than the critical free volume in some instances although

data shown in Figure 7.15 does not show such behaviour due to limited time span. What

causes the difference between low and high water content systems is the frequency of the

occurrence of this favorable hole formation. When the water content is low, PVA is in the

glassy state and its segments do not participate in free volume redistribution much. This

can be easily seen in Figure 7.10, where the mobility of PVA segments is compared in the

sense of mean square displacement averaged over all segments. For the systems with higher

water contents, the mobility of the chain segments increases due to the plasticization effect

of water, thereby enhancing the free volume redistribution. It is known that increasing

water content increases the frequency and amplitude of polymer segment wiggling motion

under isothermal conditions [153].
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Figure 7.7: The normalized free volume probability functions of water in PVA at different
temperatures and concentrations.

Figure 7.8: Tails of the normalized free volume probability functions of water in PVA at
different temperatures and concentrations.
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Figure 7.9: Average free volumes and their standard deviations per water molecule. The
averages were obtained from the last 5 ns of the production simulation runs.

Figure 7.10: Mean square displacements of PVA segments at different temperatures and
water concentrations.
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Now, the question is how does the increasing mobility of polymer segments increase the

chance of forming larger free volume holes? Answer to this question lies in the time evolu-

tion of free volume. In Figure 7.11, we compared the Fast Fourier Transform (FFT) of free

volume (as we had access to free volume versus time for each water molecule separately) at

different temperatures and water contents. It should be noted that the analysis was done

on the last 5 ns of the trajectories. The data analysis needed to be done for each penetrant

molecule individually at different temperatures and concentrations. Therefore, we had to

limit our analysis to a practical time span. Our preliminary results indicated that a 5 ns

span was enough to show the concept that we had in mind. For more accurate and smooth

results, the analysis should be done on the entire trajectory of a production simulation. As

can be seen in Figure 7.11(a), the high frequency changes in free volume are similar for low

and medium water content systems while it is higher for high water content. By increasing

temperature, 7.11(b) and 7.11(c), one can easily see that the behavior of the medium wa-

ter content system approaches that of the high water content system while the low water

content system shows no significant changes. What this really means is that high frequency

redistributions of free volume holes are intensified by adding water. The faster the changes

(i.e., higher intensity for high frequency changes) in free volume around a water molecule

(with the collaboration of the polymer segments) take place, the higher the chance that low

probability outcome like large free volume holes can be satisfied over a fixed time span.

To show that the increase in free volume redistribution frequency is not due to the forma-

tion of water clusters during simulation, we compare the water radial distribution functions

(RDF) shown in Figure 7.12 at the initial and final stages of the simulations. As we care-

fully generated the initial structures to have uniform water distribution in the system, any

deviation from the initial form of the RDF can be interpreted as a sign of extensive water

clustering in the system. In both figures, the blue and red lines represent the RDF over

the first and last 5 ns of production simulation runs, respectively. It is clear that the radial

distribution function at high water content systems do not undergo a significant change.

But for low water content systems (1 and 3 wt% systems) the initial RDF is changing during

simulation time that is a sign of poor initial water distribution (in the sense of thermody-

namic equilibrium) due to low number of water molecules. Accordingly, we inspected these

systems visually and no water cluster has been identified over the entire simulation period.

Hence, we can conclude that changes in the dynamics of the free volume redistribution are

attributed to the placticization effect of water and higher mobility of the polymer segments.

7.4.5 Limitation of Mackie-Mears model

The Mackie-Mears model [159], originally developed for ion exchange membranes, is based

on the obstruction concept in which polymer chains are regarded as motionless objects rel-
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(a) 300 K (b) 340 K

(c) 370 K

Figure 7.11: Frequency dependence of the intensity of free volume fluctuations. Data were
collected from the last 5 ns of the production simulation runs.
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(a) 270 K

(b) 370 K

Figure 7.12: Radial distribution functions of water. The blue/red lines show data for the
first/last 5 ns of the production simulation runs.
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Figure 7.13: Comparison between the computed self diffusion coefficients of water and
benzene in PVA at 270 and 370 K and the prediction of the Mackie-Meares model.

ative to the penetrating molecules. In fact, the polymer molecules are considered to be a

collection of fixed impenetrable segments that increase the mean diffusion path length of

the penetrating molecules [140]. Despite its simplicity, the prediction of the model for the

self-diffusion coefficients of small molecules in a polymer matrix containing down to 60 vol%

small molecules, is exceptional [160]. This seems to be the case for data at high contents

of penetrating molecules shown in Figure 7.13. As mentioned before, Muller-Plathe [3] re-

ported that the prediction of the Mackie-Mears model for water in PVA matrix is in good

agreement with their MD results, and suggested that the agreement would vanish in the

case of benzene, a non-polar substance. Accordingly, the self-diffusion coefficient data for

water at 270 and 370 K and those for benzene at 370 K are shown in Figure 7.13 along with

the prediction of the Mackie-Mears model. It is obvious that the model prediction and our

simulation data agree reasonably well for water at 370 K while a significant deviation arises

for the other two data sets.

Figure 7.14 compares the calculated self diffusion coefficients of both water and benzene

in PVA for all temperatures and concentrations of interest. An interesting fact here is that

the Mackie-Mears model systematically overestimates the self diffusion data except for a few

data points at low penetrant concentrations and temperatures. As the PVA segments are

not completely motionless (one of the models assumptions), our expectation was that the

Mackie-Mears model would underestimate the self diffusion coefficient. Also, based upon

the prediction of Muller-Plathe, we would expect to see more deviations for benzene than

water, which is not the case as shown in Figure 7.14.

83



Figure 7.14: Comparison between the computed self diffusion coefficients of water and
benzene in PVA at all temperatures and concentrations used and the prediction of the
Mackie-Meares model. All values have been reported in the Appendix H.

Regarding these observations, there are three noteworthy points:

1. As mentioned, the Mackie-Mears model works reasonably well at high penetrant con-

centrations. Figure 7.15 shows the change in the diffusion mechanism of water in the

PVA/water system as the water content increases. Starting at lowest temperature and

water concentration (Figure 7.15(a)), it is clear that there exists no significant change

in the position of the water molecules over a time span of 5 ns and that the motion of

the water molecules are limited to jiggling within their confining cages. Consistently,

there are no sudden changes in position and free volume during the same time (i.e., no

hopping). In the next four figures, by increasing temperature and water concentration,

sudden jumps in position and free volume start to emerge with increasing frequencies.

The interesting fact here is that the jumps in the position and free volume of the water

molecules are synchronized as predicted by the free volume theory. Another notewor-

thy point is that the spatial displacement of the water molecules continues to amplify

as the free volume starts to reach higher values (around 0.08 nm3). Eventually, at the

highest temperature and water concentration (Figure 7.15(f)), water molecules start

to drift in space and they diffuse by a fluid-like streaming mechanism rather than

hopping process.

2. Our data on the intermolecular hydrogen bonds between PVA segments (not shown)

indicates that water even at small amount is effectively plasticizing the PVA chains as

it breaks the hydrogen bond network of the PVA. A direct result of this phenomenon is

that the mobility of the PVA segments is significantly increased (see Figure 7.10) and
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(a) 1 wt% water and 280 K (b) 3 wt% water and 300 K

(c) 5 wt% water and 320 K (d) 10 wt% water and 340 K

(e) 15 wt% water and 350 K (f) 20 wt% water and 370 K

Figure 7.15: Trajectories and free volume of a water molecule. Data were collected from
the last 5 ns of the production simulation runs.
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reduction in the glass transition temperature of PVA. Despite this, the Mackie-Mears

model still overestimates the self diffusion of the water molecules in the PVA matrix.

This is because hydrogen bonds formed between water molecules and PVA segments

hinder the motion of the water molecules. As shown in Figure 7.13, increasing the

temperature effectively decreases the life time of hydrogen bonds. Consequently, the

systematic overestimation is reduced drastically for the PVA/water system.

3. In the case of benzene, since it is incapable of breaking the hydrogen bond network of

PVA and it requires larger free volume holes for jumping, even at very high tempera-

tures and benzene contents, jumping is suppressed, let alone diffusing through a ”the

fluid-like” streaming mechanism as required by the Mackie-Mears model. Numbers

of hydrogen bonds formed between PVA segments for water and benzene at different

concentrations as shown in the Appendix H support such an argument.

It is clear from the above discussion that both intermolecular interactions and size of

the penetrant play major roles in determining its diffusion in the PVA matrix. However,

these two factors are not considered in the Mackie-Mears model. Considering changes in

the activation energy of diffusion around the glass transition temperature and the expo-

nential relationship between self diffusion coefficient and the degree of swelling, the free

volume model of Vrentas&Duda [161, 162] seems to be a logical candidate for correlating

the diffusion data. In such a model, it considers both the intermolecular interactions and

size of penetrant. Unfortunately, parameters required for the free volume model of Vrentas

and Duda are numerous and difficult to obtain either experimentally or by MD simulation.

In this regard, Costa et al. [163] recently made a break through by combining the free

volume model and Sanchez Lacombe equation of state [164–166] in such a way that the free

volume parameters can be easily obtained from MD simulation. As our preliminary results

indicate (results will be presented in a forthcoming publication), this lattice free volume

model yields better predictions without sacrificing the simplicity of model.

7.5 Conclusion

We used molecular dynamics simulation to study the diffusion of water and benzene in

a PVA matrix over a practical range of temperatures and concentrations. Computed self

diffusion coefficients for both penetrants in the pure and mixed states showed great agree-

ment with experimental and simulation data available in the literature. By applying the

Voronoi tessellation method, we determined the free volume of the PVA/water system. We

showed that diffusivity of water in PVA correlated with the frequency of free volume re-

distribution and probability of the occurrence of the critical (minimum) free volume. And

such correlation depends on the water concentration. Here, the higher the water concen-

tration, the higher the probability of the formation of free volume holes larger than the
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critical free volume. Using this fact, we explained the counter intuitive observation that

the diffusivity of water increases while the average free volume decreases as a result of in-

creasing water concentration. Our data indicates that the quality of the prediction of the

Mackie-Mears model for both water (polar) and benzene (non-polar) in PVA (polar) is com-

parable. In particular, the model overestimates the diffusion coefficients of both systems at

low temperatures and low penetrant concentrations. This is because effects of intermolec-

ular interaction (PVA/water) and size of the penetrant (PVA/benzene) are not considered

in the Mackie-Mears model.
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Chapter 8

Modeling solvent self diffusion in
PVA matrix

8.1 Introduction

Undoubtedly, poly(vinyl alcohol) (PVA) is a technologically useful polymer [2–5, 7]. Review

of a variety of applications using PVA shows that knowing the diffusivity of low molecu-

lar weight substances in PVA under different conditions (e.g., concentration, temperature,

etc.) is essential to optimize the use of the material [167]. In our previous work [167], using

molecular dynamics (MD) simulation, we calculated the self diffusion coefficients (SDCs)

of water and benzene in PVA. Besides discerning the underlying diffusion mechanism of

the solvents and the role of free volume (FV) redistribution, we also demonstrated that the

Mackie-Meares model [159] is not sufficient for predicting SDCs of solvents in PVA which

is in contrast to what was reported previously [3]. Our previous results [167] showed that

there is a strong correlation between the calculated SDC and the degree of swelling (DS)

of PVA, suggesting that a more sophisticated model that is capable of capturing the effect

of FV on the predicted SDC is needed. Such a model, known as the FV theory for simple

liquids [13] and its extension to polymeric systems [161, 162], is available with a great suc-

cess on correlating SDCs of solvents with different system variables [168, 169].

The FV theory is a very useful, predictive model which can be applied to polymeric

systems at temperatures above and below the glass transition temperature (Tg) so long as

all required model parameters are known [170]. Unfortunately, parameterization of the FV

model is not a trivial task [163]. In fact, most of the parameters needed are difficult to

obtain. Most recently, Costa and Storti [163] have developed a lattice free volume (LFV)

model, based on the original FV theory and Sanchez-Lacombe equation of state (SLEOS)

[164–166], which is much easier to parameterize. Also, parameters used in the LFV model

bear physical meanings that make the analysis of the system much easier [163] comparing

A modified version of this chapter has been accepted for publication in Polymer:”Prediction of self
diffusion coefficients of selected solvents in poly(vinyl alcohol) using lattice-free volume theory”
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to the original FV theory.

To use the LFV model, parameterization of the SLEOS is needed. In this work, SLEOS

parameters for PVA and three solvents (water, ethanol and benzene) were determined.

After validating the SLEOS parameters, they were used in the LFV model to calculate

SDCs of the corresponding solvents at various concentrations and temperatures. A brief

recap of underlying theories and a summary of simulations required to calculate the SLEOS

parameters will be presented in the next section before the discussion of the results.

8.2 Theoretical background

In this section, the SLEOS and the LFV formulation using the original FV theory are

provided. Readers who are interested in the original FV theory are referred to the work of

Vrentas and Duda [161, 162].

8.2.1 Sanchez-Lacombe equation of state

The Sanchez-Lacombe equation of state (SLEOS) [164–166] is a powerful lattice based

thermodynamic model for the prediction of properties of fluids in the pure and mixed states

including those of polymer solutions and blends. As an evolutionary counterpart of the

Flory-Huggins (FH) theory [171, 172], it considers the volume change upon mixing, which

is not considered in the FH theory. Therefore, the SLEOS is able to predict both lower

and upper critical solution temperatures (LCST and UCST) while the FH theory can only

predict the UCST, a well-known weakness of the FH theory [173]. Equation 8.1 shows the

general form of SLEOS [173]:

ρ̃2 + P̃ + T̃ [ln(1− ρ̃) + (1− 1

r
)ρ̃] = 0 (8.1)

Here, r is a molecular size parameter (see Equation 8.10) and

ρ̃ =
ρ

ρ∗
P̃ =

P

P ∗
T̃ =

T

T ∗
(8.2)

where ρ, P and T are density, pressure and temperature, respectively and ρ∗, P ∗ and

T ∗ are the respective characteristic parameters yet to be determined. Conventionally, the

characteristic parameters are obtained by fitting a large set of experimental PVT data for

pure components while mixtures are handled by applying proper mixing rules. Recently,

a method for the derivation of these characteristic parameters using MD simulation has

emerged in the literature [173, 174]. In this study, we followed the procedure proposed

by Jo and Choi [173] along with the correction proposed by Li et al. [174] to accurately

estimate the temperature dependency of the characteristic temperature, (T ∗). For binary

mixtures containing PVA and solvent, we utilized a commonly used mixing rule (unless

otherwise stated) as follows [163]:
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φi =
wi/ρ

∗
i∑

iwi/ρ
∗
i

(8.3)

ρ∗mix =

(∑
i

wi/ρ
∗
i

)−1

(8.4)

∆P = P ∗1 + P ∗2 − 2χ
√
P ∗1P

∗
2 (8.5)

P ∗mix =
∑
i

φiP
∗
i − φ1φ2∆P (8.6)

ν∗mix =

(∑
i

φi/ν
∗
i

)−1

(8.7)

T ∗mix =
P ∗mixν

∗
mix

R
(8.8)

rmix =
∑
i

xiri (8.9)

where φi is the volume fraction; wi is the weight fraction; ν∗i is the characteristic specific

volume; and xi is the mole fraction. In the above equations, the asterisk signifies the SLEOS

characteristic parameters and super script ”mix” denotes the property of the mixture. The

χ parameter in Equation 8.5 refers to the Flory-Huggins interaction parameter of a pair

of polymer and solvent. Although we had the values for this parameter for the systems

under study in this work, we used an estimate value of 1 (only in the cases of ethanol and

benzene.) as suggested by Costa and Storti [163]. This is because values of P ∗mix (Equation

8.6) were not sensitive to the value of ∆P (Equation 8.5). To calculate r and ν∗, the

following equation is needed:

ν∗ =
RT ∗

P∗
r =

MP ∗

RT ∗ρ∗
(8.10)

where M is the molecular weight.

8.2.2 Lattice free volume model

The lattice free volume (LFV) model is basically derived from the FV theory by re-

parameterizing it based upon the concept that there exists equivalence between free volume

and the so-called unoccupied volume stated in the SLEOS. For the details of the derivation,

interested readers are referred to the work done by Costa and Storti [163]. The final form

of the LFV model reads:

DS,1 = D0,1exp

(
−γ ω1/ρ

∗
1 + ξω2/ρ

∗
2

1/ρmix − 1/ρ∗mix

)
(8.11)
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where DS,1 and DS,0 are the SDCs of the solvent in the mixture and pure states, re-

spectively; γ is the overlap factor in the original FV theory; ωi is the weight fraction of

each component; ρi is the density of pure components or mixture. The asterisk indicates

the SLEOS characteristic parameters. The parameter ξ is defined as follows:

ξ =
M#

1 ρ
∗
2

M#
2 ρ
∗
1

(8.12)

where M#
i refers to the molecular weight of the solvent and that of the hypothetical

jumping unit of the polymer. Originally, the FV model was developed for the rubbery state,

but its prediction for the glassy region (without any modification) is also reasonable [170].

8.3 Molecular dynamics simulation

In this work, molecular dynamics (MD) simulation was used for the parameterization of

the SLEOS of the polymer, solvents and their binary mixtures. To calculate SDCs of the

solvents in the binary mixtures using Equation 8.11, we used the calculated SDCs of the

solvents in the pure state reported previously [167]. For polymer/solvent binary mixtures,

SDC values previously calculated [167] over a concentration range of 1-20 wt% of the sol-

vent and a temperature range of 270-370 K were used to compare with the results obtained

using the LFV model. For the parameterization of the SLEOS for each component in its

pure state, isobaric-isothermal MD simulations were carried out at the atmospheric pres-

sure and over a temperature range of from 50-600 K with 50 K intervals. Since some of the

systems were not stable at elevated temperatures, only data with liquid like densities were

used. GROMACS 4.5.5 [58–62] was used for performing all MD simulations along with

the OPLS-AA force field [25] to describe ethanol, benzene and PVA. The TIP4P model

developed by Jorgensen et al. [76, 77] was used for water.

In all simulations, the Berendsen thermostat/barostat [20] with time constants of 0.2/1

ps were used to control the temperature/pressure of the simulation cells. Newtons equations

of motion were integrated using the leap-frog algorithm [135] with a time step of 1 fs and a

sampling time of 1 ps. The cut-off distance of the non-bonded interactions was set to 1 nm

and the Particle Mesh Ewald (PME) [136] method was used for handling the long range

Coulombic interactions. The long range dispersion energy and pressure corrections were

applied to retrieve the correct density of the system. Depending on the system (solvent

or polymer), simulation times ranged between 10-30 ns were used. Note that our previous

work showed that the aforementioned simulation times were long enough to equilibrate the

systems.
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8.4 Results and discussion

8.4.1 SLEOS parameters for pure components

Having computed the equilibrium density and potential energy for each pure component

over a wide range of temperatures, we determined their ρ∗ and P ∗ by extrapolating the

density and cohesive energy density (Ecoh)to 0 K, respectively. The cohesive energy density

is defined as:

Ecoh =
Evacuum − Econdensed

V
(8.13)

where E is the total potential energy in vacuum and in the condensed state, respectively,

and V is the molar volume of material in its condensed state. Note that in the case of PVA,

for both ρ∗ and P ∗, only the data below its Tg (350 K) was used. After obtaining these two

characteristic parameters, T ∗ can then be easily calculated by fitting ρ∗ and P ∗ to Equation

8.1. The value of T ∗ is not constant and shows a temperature dependency. Accordingly, a

Boltzmann distribution was fitted to the calculated T ∗ to obtain the extrapolated values at

higher temperatures as suggested by Li et al. [174]. For the sample MD calculation of the

characteristic parameters, readers are referred to I.

Table 8.1: Sanchez-Lacombe equation of state pa-
rameters

ρ∗

(kg/m3)
P ∗

(bar)
T ∗

(K)
Reference

Water
1083 16716 756 [175]
1030 30500 826 This study

Ethanol 881 3989 583 Experimentala

960 11500 431 This study

Benzene
971 4962 564 [175]
996 4480 520 [163]
1045 6800 458 This study

PVA
1346 8288 859 Experimentala

1293 7947 888 This study
a These parameters are the results of fitting SLEOS di-

rectly on a set of experimental densities for ethanol [176]
and PVA [74] over a wide range of temperatures and
pressures. For the data used for the fitting and the qual-
ity of the fits see I. As the SLEOS is only valid for
the rubbery region, only data collected at temperatures
above the Tg of PVA but below its melting point were
used.

The computed characteristic parameters are shown in Table 8.1. In the cases of water

and benzene, characteristic parameters computed in this work are compared with values

reported in the literature. But, in the case of PVA and ethanol, to the best knowledge of the

authors, no such parameters have been reported previously. Therefore, results are compared
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(a) Water (b) Ethanol

(c) Benzene (d) PVA

Figure 8.1: Comparison between density values calculated from isobaric-isothermal MD
simulations and experiment at atmospheric pressure and different temperatures.
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with those obtained by fitting the SLEOS to the experimental PVT data available. The

calculated characteristic parameters for PVA are in good agreement with those obtained by

the fitting of the experimental PVT data to the SLEOS. But in the cases of solvents, there

exist significant discrepancies. The discrepancies between P ∗ from this work and those of

experiment should not be viewed negatively on the quality of the computed P ∗. In fact,

to obtain P ∗, the SLEOS was solved by simultaneously inserting ρ∗ and T ∗ and adjusting

P ∗ to fit the MD data. Therefore, the discrepancies are not solely of P ∗. In our view,

individual characteristic parameters should not be compared one by one. Instead, their

quality should be examined based upon their predictions of properties. Accordingly, we

compare the predicted density using the characteristic parameters shown in Table 8.1 to

the experimental values (see Figure 8.1). As can be seen, in all cases, predictions are fairly

close to the experimental values. The only deviation is on the PVA density at very low

temperatures where our parameters reproduce the MD calculated densities well, but off the

experimental values. This is not a problem with the SLEOS itself. In fact, it is a known

problem of MD simulation of PVA due to the lack of crystalline phase in the PVA model

[119]. Since the crystalline phase does not exist in our simulated systems, characteristic

parameters derived in this study should be valid to be used in the LFV model.

8.4.2 SLEOS parameters for mixtures

To validate the derived characteristic parameters from the mixing rule, we compare the

direct MD calculated densities of the mixtures with those calculated using the SLEOS

along with the mixing rule as shown in Figure 8.2. As can be seen, despite small deviations

in predictions by the SLEOS for pure components, predictions for PVA/solvent mixtures

are in reasonable agreement with the direct MD calculations. While the mixing rule in

Equations 8.3-8.9 worked well in the cases of PVA/benzene and PVA/ethanol systems,

predictions for the PVA/water system was poor (results not shown). However, it was found

that the normal weighted average for both ρ∗mix and T ∗mix based on weight fractions yielded

reasonable results:

ρ∗mix = w1ρ
∗
1 + w2ρ

∗
2

T ∗mix = w1T
∗
1 + w2T

∗
2

(8.14)

It is worth noting that there exist other mixing rules in the open literature [177, 178].

However, we found that none of them yielded better predictions than the normal weighted

average for the PVA/water system. To justify this choice, we calculated the T ∗ and P ∗

for the PVA/water system with different solvent contents by the direct simulation of the

mixtures over the temperature range mentioned earlier. Figure 8.3 shows the comparison

of directly calculated characteristic parameters with the weighted average values and those

calculated by the mixing rule depicted in Equations 8.3-8.9. This comparison confirms the

accuracy of the weighted average values comparing to those obtained by the mixing rule.
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(a) PVA/Water (b) PVA/Ethanol

(c) PVA/Benzene

Figure 8.2: Comparison between density values of the PVA/water system at various water
concentrations and those predicted by the SLEOS. For each solvent concentration, data are
obtained over a temperature range of 270-370 K with an interval of 10 K.

Note that values of T ∗mix are very sensitive to the χ parameter of the system. The reason

behind this is that there exists a large difference between P ∗ of water and that of PVA.

For other solvents, when the mixing rule was applied, the sensitivity to χ parameters was

negligible and its value was considered to be 1 as recommended by Costa and Storti [163].

Furthermore, in Figure 8.4, experimental densities of the PVA/water system at very

low polymer concentrations are compared with predictions by the SLEOS. The perfect

agreement indicates that the parameterized SLEOS is a good representation of the system

over a wide range of concentrations. The reason that predictions by the SLEOS at high water

contents is more accurate than those at low water contents is attributed to the fact that no

crystalline phase exists at high water contents, as it was experimentally demonstrated that

all crystalline domains of PVA dissolve under such conditions [179].
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(a) ρ∗mix (b) T ∗mix

Figure 8.3: Comparison between characteristic parameters of the SLEOS for the PVA/water
system at various water concentrations.

Figure 8.4: Comparison between density values predicted by the SLEOS at high water
concentrations and experiment for the PVA/water system [1].
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8.4.3 Calculation of SDC from the LFV model

Majority of the parameters needed for the LFV model ρ∗i and the mixing rule were de-

termined and validated in the previous section. The only remaining parameters for the

model that needed to be determined were γ and ξ. Here, γ should have a value of 0.5-1

theoretically. But, as Costa and Storti [163] suggested, it can be used as a fitting parameter

with the only requirement of positivity. And the parameter ξ is defined as the ratio of

the molar volume of the solvent to that of a polymer jumping unit. In other words, ξ is

directly related to the mobility of polymer segments. Stiffer chains are expected to have

smaller ξ than more flexible chains. However, when the Vreantas and Duda free volume

theory is used to correlate the diffusion coefficient data, parameter ξ is considered to be

an adjustable parameter. This parameter is the most ambiguous in the free volume theory

formulation [163], and the LFV model also suffers from this drawback. Accordingly, in this

study, we used this parameter as a fitting parameter as well. Results of fitting the LFV

model on the diffusion coefficient data for PVA/solvent systems are summarized in Figure

8.5(a). By comparing the results with the predictions of the Mackie-Meares model in Figure

8.5(b) (from our previous work [167]), it is clear that the LFV model is astonishingly more

successful in correlation of the data. This is partly due to the consideration of the effect of

free volume and glass transition in the model and partly due to the free fitting parameters

in the LFV model. It should be noted that the Mackie-Meares model was developed for

polymers in the rubbery state. As you can see from Figure 8.5, the LFV model outperforms

the Mackie-Meares in that state (high SDCs region in the upper right hand corner of the

figure). The agreement between the Mackie-Meares model and MD results in the glassy

region (low SDCs region) is merely a coincidence, as the model was not built for the glassy

state. However, the LFV model bears a meaningful deviation from the MD results in the

glassy state, as this is one of the major inadequacies of the original FV theory. Upon using

a modified version of the FV theory (the work is ongoing in our lab), such deviations could

be reduced. The deviation at low temperatures, in the case of benzene and ethanol, can

be attributed to two factors. First, as the temperature is low and the size of the solvent

molecules is bigger than water, MD simulations would overestimate SDCs due to slight de-

viation of the means square displacement curves from a perfect line. Secondly, as Figure H.1

indicates, these solvents are not capable of breaking hydrogen bonds in PVA as successful

as water does. Therefore, the system is effectively below the glass transition temperature

of the mixture and the modified version of FV model[170] should be applied. The latter

makes more sense, as the deviation of MD results from the model correlate well with the

amount of hydrogen bonds left in the PVA matrix.

All the parameters used in the LFV model are summarized in Table 8.2. As the results

indicate, γ increases with increasing size of the solvent molecules which is reasonable. This

means that the chance of overlap between free volume elements decreases as their size
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(a) LFV (b) Mackie-Meares

Figure 8.5: Comparison between SDCs of solvents as calculated by MD simulations and
those predicted by (a) the lattice free volume model and (b) the Mackie-Meares model.

Figure 8.6: Number of hydrogen bonds formed between PVA and solvent at various solvent
concentrations.
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Figure 8.7: Temperature dependence of polymer jumping units. Note that M#
1 and M#

2

are the molar mass of the solvent and PVA jumping unit, respectively.

increases. Also, Figure 8.7 shows changes in the polymer jumping unit as a function of

temperature for different solvents. Here, we would like stress on two facts. First, in the

case of water, the polymer jumping unit has the smallest value due to the maximum chain

flexibility (broken hydrogen bonds) and in the case of benzene, it has the largest size due

to the presence of a higher number of hydrogen bonds. Secondly, in all cases, the size

of jumping unit increases as temperature increases. And this observation was reported

previously [163, 180].

Table 8.2: Summary of parameters used in the LFV
model used to describe the PVA/solvent systems.

Solvent γ ρ∗1
(kg/m3)

ρ∗2
(kg/m3)

Mixing rule

Water 0.0504 1030 1293 Wighted average
Ethanol 0.3991 990 1293 Eq. 8.3-8.9
Benzene 0.6662 1097 1293 Eq. 8.3-8.9

8.5 Conclusion

In this work, we determined the characteristic parameters of PVA, water, ethanol and ben-

zene for the corresponding Sanchez-Lacombe equation of state using data generated from

isobaric-isothermal MD simulations. The SLEOS was found to be capable of predicting

properties of the pure components and their mixtures as validated against the experimental

and simulation data available. Using results from the direct simulation of the PVA/water

mixture, we showed that the mixing rule normally used for the system was not effective and

normal averaging based on weight fractions yielded better estimates. Finally, we used such

parameters to correlate the SDCs of solvents in PVA at various solvent concentrations and

temperatures. The results confirm that the LFV model is much more successful in correlat-

ing the data than the simple Mackie-Meares model with considering changes in the mobility
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of the polymer segments. Details of the hydrogen bonding in PVA in different solvents con-

firm that water is more effective in increasing the chain mobility by breaking hydrogen

bonding network of the PVA more effectively. Slight deviation of the MD calculated SDCs

for ethanol and benzene at low temperatures from the LFV model was attributed to the

glassy state of the mixture which requires a modified version of the FV model to handle

that.
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Chapter 9

Study of cyclohexane diffusion in
Athabasca asphaltenes

9.1 Introduction

After Saudi Arabia and Venezuela, Albertas oil sands deposits represent the third largest

proven crude oil reserves in the world[181, 182]. There are currently two methods for bi-

tumen extraction from oil sands[183]. For deep deposits, steam assisted gravity drainage

(SAGD) technology is used where thermal energy is applied to heat the bitumen in-place

and allow it to flow to the well bore and be pumped to the surface. Bitumen recovery

by the in-situ technologies is typically less than 60%. In order to enhance the energy effi-

ciency of these processes, injection of a mixture of steam and solvent is under commercial

development[184]. In this case, the recovery of the solvent from the reservoir is a major

concern.

Shallow oil sands ores are mined by surface mining methods, which currently contribute

55% of the oil production in Alberta. In this case, the bitumen is recovered by water

extraction whereby oil sands are mixed with hot water and caustic and sent through a

hydro-transport pipeline to the extraction plant where the bitumen froth is recovered by

flotation.

While bitumen extraction using hot water is an economic recovery process, its disadvan-

tage is high fresh water and energy consumption. The volumetric water-to-bitumen ratio in

this process is approximately 19. The majority of the process water is recycled, but some

of the water is trapped in the wet unsettled tailings, giving net consumption of 2 to 4.5

barrels of fresh water to produce one barrel of oil.3,5 The resulting wet tailings, a mixture of

water, fine solids, and residual bitumen, require large tailings ponds which had accumulated

A modified version of this appendix was published: ”Study of Cyclohexane Diffusion in Athabasca
Asphaltenes”, Abolfazl Noorjahan, Xiaoli Tan, Qi Liu, Murray R. Gray, and Phillip Choi, Energy&Fuels
28(2) 2014, 1004-1011
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to about 650 million m3 by 2006 [183]. These large volumes of wet tailings are a risk to

wildlife and a liability for future remediation [181, 185, 186]. The use of hot water, which

has a high heat capacity, contributes to the energy consumption in this process[185].

Another input to the extraction process is solvent, which is used to dilute the bitumen

froth to enable the removal residual solids and emulsified water [187]. The majority of the

solvent is recovered, but some is released to the tailings ponds. Depending on the plant, the

solvent may be naphtha or a hexane-rich mixture. In the case of the hexane-based process,

a portion of the asphaltenes in the oil are precipitated[188], so that recovery of residual

solvent from asphaltenes is a major concern.

Solvent extraction of bitumen is an alternative technology that offers high recovery from

a range of ores [182, 185, 189, 190]. Solvent extraction can greatly decrease or eliminate

fresh water demand for the extraction process and eliminate the wet tailings associated

with the hot water process. It works at ambient pressure and temperature, so less energy is

consumed in the addition of solvent. The solvent-extracted mixture of sand and fine solids,

which we call gangue, is almost dry and can be returned to the mine area immediately

to enable fast reclamation of the landscape. The biggest technical, economic, safety, and

environmental challenge of solvent extraction is the recovery of solvents from the gangue

[185, 190].

Several promising solvents have been identified, including aromatics, n-alkanes and cy-

cloalkanes [181, 191–193], but a key criterion is the recovery of the solvent by methods such

as vacuum or atmospheric drying [194]. Cycloalkanes have the advantage of high solvent

power, high vapor pressure, and low odor [181, 191]. A successful process must remove

solvent from the gangue to give residual concentrations lower than circa 250 ppm, better

than the current losses of solvents from the froth treatment process. In the gangue, the

main capacity for retention of solvent will be in residual bitumen, residual asphaltenes, and

insoluble adsorbed organic matter that occurs in oil sands ores [186].

For detailed engineering design, we need to predict the diffusion of solvents out of these

organic materials, especially at low residual solvent concentrations. Several studies on

solvent diffusion in bitumen have shown that the diffusion coefficients are strongly concen-

tration dependent [192, 195–197], with values at low solvent concentrations ranging from

10−11 to 10−12 m2/s at 25 ◦C.

Given the technologies for oil sands production, data on solvent diffusion in asphaltene

fractions are important for enhancing solvent recovery from existing froth treatment pro-

cesses and from future solvent extraction processes. In this study, we examine the rate of
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desorption or release of cyclohexane solvent from bitumen films by gravimetric measure-

ments, and use these data to model the concentration-dependent diffusion coefficients.

9.2 Materials and methods

9.2.1 Materials

The Athabasca asphaltenes used in this study were from the bottom stream of a deasphalt-

ing unit processing bitumen from a steam-assisted gravity drainage (SAGD) operation. This

material contained 28 wt% pentane-solubles based on the standard method of dissolution

then precipitation in 40:1 solvent.

Reagent-grade cyclohexane and methylene chloride purchased from Fisher Scientific (Mis-

sissauga, Ontario, Canada) were used as received. P-type double-side polished silicon wafers

(100) with a 250 µm in thickness and a resistivity of 135 Ω cm were purchased from Uni-

versity Wafer (Boston, MA). Nitrogen (99.999%, Praxair) was used as carrier gas for all

sorption and desorption experiments.

9.2.2 Asphaltene film preparation

To obtain a regular geometry, a rectangular film of asphaltene was prepared. For this

purpose, the silicon wafer was cut into 12 pieces of rectangular shape with known mass and

surface area (a total surface area of 35.28 (cm2 ) ) in order to accommodate these pieces in

the sample bucket for following experiments. A 1.0 wt% of Athabasca asphaltene solution

in methylene chloride was sprayed on both sides of silicon wafers by using an air brush.

The mass of coated asphaltene on these pieces of silicon wafer was pre-calculated to get the

desired thickness. For each piece of silicon wafer, the deposition of asphaltene was multi-

step process where the actual mass of coated asphaltenes on silicon wafer was monitored by

using analytical balance at each step of spraying following by drying at room temperature

in fumehood to evaporate the solvent. After deposition, all asphaltene coated wafers were

air dried for 48 hours in a fumehood then weighted to calculate the mean thickness of

asphaltene films, which was 7± 1.4(µm).

9.2.3 Methods

A Hiden Intelligent Mass Gravimetric Analyzer (IGA) was used for sorption/desorption

experiments. The schematic of this unit is shown in Figure 9.2. The IGA allows isotherms

and the corresponding kinetics of sorption and desorption for set pressure or partial pressure

steps. The balance and pressure control system were isothermal to ±0.01 ◦C to eliminate

changes due to variation in the external environment. The microbalance with a sample

loading range of 50 mg and 2.0 g had a long-term stability of ±1 µg with a weighing

resolution of 0.2 µg. The sample temperature was controlled by water bath while the

pressure was maintained at the set point by active computer control of the inlet/outlet
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Figure 9.1: Sample geometry for sorption
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Figure 9.2: Schematic of Hiden Intelligent mass gravimetry analyzer

valves throughout the duration of the experiment. The solvent vapor with a desired relative

pressure was maintained from a temperature controlled saturated vapor generator and the

output of the generator was mixed with a flow of pure inert gas as carrier gas, and then

the vapor was introduced through the sample chamber with specific flow rates. In our

experiments, the nitrogen was the carrier gas. The experiments were conducted at sample

temperatures of 30 ◦C and 40 ◦C, respectively, while the temperature of vapor generator

was fixed at 30 ◦C to generate the relative pressure of cyclohexane vapor of 0.4 and 0.9 at

each sample temperature correspondingly. In each set of experiment, the asphaltene coated

silicon wafers were pretreated within the IGA at 70 ◦C in nitrogen atmosphere with flow rate

of 100 mL min−1 to remove residual solvents and water until the weight of sample leveled

off. The total flow rate throughout the experiments was kept at 50 mL min−1, whereas the

pressure was maintained at a constant value of 105±0.1 kPa and the temperature variation

was < 0.1 ◦C. The mass uptake of samples was monitored as a function of time in different

cyclohexane vapor concentrations with a computer algorithm.
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9.3 Theory for mass uptake and release kinetics and diffusion
coefficients

Typically the mass uptake and release in sorption/desorption of light components on differ-

ent materials shows 5 different classes of kinetics [9] which can be classified using a power

law relationship as follows:

Mt

M∞
= ktn (9.1)

Where Mt and M∞ are the mass uptake/release in finite time and mass uptake at infinite

time (equilibrium), and k is the kinetic constant. Different values of the exponent, n, and

their physical interpretations are summarized in Table 9.1.

Table 9.1: Typical observed mass uptake kinetics

n Name Note
> 1 Super case II Swelling controlled Diffusion
1 Case II -

1/2 <,< 1 Anomalous -
1/2 Fickian Normal Fickian Diffusion
< 1/2 Pseudo Fickian Concentration Dependent Diffusion

Given the data for sorption and desorption, we can discern the underlying mechanism

with determining the power n to best fit the data. When the limiting mechanism can be

attributed to diffusion, the general form of second law of Fick can be used to determine the

diffusion coefficient of solvent in asphaltenes as follows (for notation see figure 9.1):

∂C

∂t
=

∂

∂x

(
DAS(C)

∂C

∂x

)
= DAS

∂2C

∂x2
+
dDAS

dC

(
∂C

∂x

)2

(9.2)

where C is the concentration of cyclohexane in the asphaltenes, t is time, x is the Carte-

sian coordinate and DAS is the diffusion coefficient. To determine the diffusion coefficient,

the nonlinear partial differential equation in Eq. 9.2 must be solved with the following

boundary and initial conditions:

C = C0 t = 0

C = C∞ x = δa

∂C

∂x
= 0 x = 0

(9.3)

where C0 is the initial concentration (which is zero for sorption and C∞ for desorption),

C∞ is the equilibrium concentration at the end of sorption and δa is the average thickness

of the prepared asphaltene film. It has been assumed that the film surface is always in equi-

librium with gas phase. To solve Eq. 9.2, the method of lines was used, where the spatial
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domain is discretized using central finite difference scheme. And a fifth order predictor cor-

rector has been used for the integration in temporal domain. To reduce the numerical error,

the finest required mesh was obtained according to Richardson extrapolation criteria. To

calculate the value of DAS , a Levenberg-Marquardt optimizer was coupled to an ordinary

differential equation solver to find the best value of DAS which can fit the data. We con-

sidered 3 different functionalities for diffusion coefficients with different levels of flexibility

as follows:

1. A constant value

2. Arational functionality with concentration

D

D0
=

α

β C
C∞

+ α
(9.4)

Where D0, α and β are constants to be determined by optimization.

3. A flexible error function[198]

D

D0
=

(
1 + α erf

(
β

C

Cmax

)
+ γ

C

Cmax

)
(9.5)

Where D0, α, β and γ are constants to be determined by optimization.

In addition to the above analysis, the sorption/desorption data were compared with some

other models from the literature to get more insight about the changes in the asphaltenes

medium during the sorption/desorption processes. The first model is a double-first order

kinetics model, which is the case when a portion of mass uptake or release is governed by

a faster mechanism while the other portion is significantly slower. The mass uptake can be

modeled as follows[199]:

Mt

M∞
= φ

(
1− e−k1t

)
+ (1− φ)

(
1− e−k2t

)
(9.6)

where φ is a fraction of the total mass up taken by first mechanism and k1 and k2 are

kinetic constants related to first and second mechanisms, respectively.

The other model is the Weibull relaxation model[200] which indicates a continuous

relaxation of the model medium during sorption/desorption to a more compact structure

by introducing a stretched exponential with parameter ξ, which is related to the visco-elastic

relaxation time of medium. This relaxation is enhanced by extra mobility of the medium

due to plasticizing effect of the solvent and has been reported mostly for sorption in glassy

polymers[201]. The governing equation is as follows:

Mt

M∞
= 1− e−(kt)ξ (9.7)

where ξ is the Weibull relaxation parameter.
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9.4 Results

Sorption/desorption experiments were carried out on asphaltene films at 30 and 40 ◦C and at

40% and 90% vapor saturation. Vapor saturation was kept below 100% to prevent solvent

condensation on the film surface. The mass uptake and release for these experiments is

plotted in Figure 9.3. At higher vapor saturation, the sorption process is very fast, regardless

of temperature. The sorption at higher vapor saturation is much faster than desorption,

which is not the case in lower vapor saturation where the two processes have comparable

time scales. In every case, however, the desorption kinetics are slower than the rate of the

corresponding sorption process. The data of Table 9.2 show the equilibrium concentration

of the cyclohexane in the sample. These data indicate that with increasing temperature,

the absorption of cyclohexane in asphaltenes is reduced, but as shown in Figure 9.3, the

kinetics of uptake and release are significantly affected by temperature.

The diffusion coefficient of the cyclohexane in gas phase (30-40 ◦C) is around 10−5 m2/s,

which is much larger than the diffusion coefficient in the asphaltene phase. As the Reynolds

number in the tubular section of the IGA is around 1.5 (laminar flow), in the worst case

scenario the boundary-layer thickness would be the diameter of the tabular section of the

IGA which is 5 cm. In this case, the ratio of the resistance of mass transfer in the asphaltenes

phase to gas phase would be:

DgδAS
DASδg

=
10−5 ∗ 7 ∗ 10−6

10−10 ∗ 5 ∗ 10−2
= 14 (9.8)

In this analysis, the value of DAS was taken as larger than the range of values reported

for bitumen in the literature, and still resistance in gas phase is negligible. This calculation

justifies the first boundary condition in Eq. 9.3 and neglecting the gas phase resistance in

all subsequent analysis.

Table 9.2: Equilibrium concentration of cyclohexane in as-
phaltenes

T (◦C) Vap. Sat. (%) Equilibrium concentration (g
Cyclohexane/g Asphaltenes)

30 40 0.038±0.0001
30 90 0.202±0.0001
40 40 0.020±0.0001
40 90 0.065±0.0001

9.4.1 Mass uptake/release analysis

Table 9.3 summarizes the results of fitting Eq. 9.1 to the sorption/desorption data. The

small value of the exponent n suggests that the transport of solvent is most likely diffusion
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Figure 9.3: The experimental mass uptake/release during sorption/desorption of cyclohex-
ane in asphaltenes.

limited with a concentration-dependent diffusion coefficient. The low value of the exponent

suggests that cyclohexane diffusion in asphaltenes is not limited by swelling of film. This

result can be explained by either fast swelling of the film relative to diffusion of cyclohexane

or availability of molecular free volume in the medium in the solvent-free phase. Usually

when swelling limits the sorption phase, sorption kinetics are slower than desorption because

shrinkage during desorption may not occur while swelling does occur during sorption[198].

Table 9.3: Result of fitting Eq. 9.1 on sorption/desorption data

Experiment T (◦C) Vap. Sat.
(%)

k (s−n) n (-)

Sorption

30 40 0.19 0.2
30 90 0.28 0.2
40 40 0.17 0.2
40 90 0.25 0.2

Desorption

30 40 0.22 0.14
30 90 0.3 0.14
40 40 0.22 0.13
40 90 0.25 0.13

As our results show (see Figure 9.6 and discussion there), any relaxation of the as-

phaltenes occurs after saturation of the film with cyclohexane which is a sign that swelling

is not faster than diffusion. On the other hand, the prepared films were dried at a temper-

ature below the glass transition temperature of asphaltene materials (usually 120 ◦C and
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Figure 9.4: Fitting of double-first order kinetics on the sorption data at T=40 ◦C and 40
% vapor saturation.

above[202]) which makes it impossible for the film to relax to a compact structure in the

last stages of the drying. Upon evaporation of methylene chloride used to cast the film,

there was likely some extra free volume left in the film and upon arrival of the cyclohexane

molecules, there is no need for asphaltene film to swell to create open space for the solvent

molecules to diffuse in.

In Figure 9.4, a typical fitting of a double-first order kinetic equation to data for sorp-

tion at 40 ◦C and 40% vapor saturation is shown. This model provides a good fit to the

data, which suggests that at least two different kinetic processes are involved in the sorp-

tion/desorption. In all cases, the double-first order kinetics fitted the experimental data

well, and the resulting values for the mass fraction and kinetic constants are summarized

in Table 9.4.

Table 9.4: Summary of fitting a double-first order kinetics on sorption desorption data

Experiment T (◦C) Vap. Sat.
(%)

φ (-) k1 (s−1) k2 (s−1)

Sorption

30 40 0.55 0.015 0.003
30 90 0.70 0.020 0.004
40 40 0.50 0.015 0.00055
40 90 0.52 0.020 0.003

Desorption

30 40 0.49 0.0120 0.0002
30 90 0.58 0.0092 0.0001
40 40 0.50 0.0092 0.0002
40 90 0.58 0.0042 0.0001
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Figure 9.5: Result of fitting Weibull relaxation model on the sorption data at 40 ◦C and
40% vapor saturation.

As discussed in the previous section, resistance to mass transfer in the gas phase is not

the limiting factor. The significant decrease between k1 and k2 in the solvent transport

rate may be attributed to surface activity of the asphaltenes. For example, hydropho-

bic/hydrophilic interaction at the surface of the film might retard the initial adsorption of

the solvent on the film. But in this case the initial stage should be slower and the second

stage should be faster, whereas our data indicate that initial phase of transport (in both

sorption and desorption) is faster. An alternate explanation is that a structural change

in the asphaltene film during sorption/desorption can be the source of different rates ob-

served. To test this hypothesis, we fitted the data with a Weibull relaxation model, which

can account for the relaxation of the sample. A typical fitting of the Weibull model for 40
◦C and 40% vapor saturation is shown in Figure 9.5. Detailed analysis of the sum of the

squared residuals shows that this model can represent data (in all cases), even better than

double-first order kinetics. The summary for Weibull relaxation model fitting is tabulated

in Table 9.5.

The possibility that the asphaltene film undergoes a structural relaxation during sorption

is consistent with the repeatable overshoot in sorption mass uptake. In Figure 9.6 a clear

overshoot in mass uptake of sorption data at 40 ◦C and 90% vapor saturation can be

detected. The source of such an overshoot in a sorption mass uptake can be attributed to

[203–205]:

• Solvent induced crystallization.
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• Penetrant induced melting and recrystallization.

• Release of indigenous components.

• Slow relaxation of the sorbent to a more compact structure.

Table 9.5: Summary of fitting Weibull relaxation model to sorp-
tion/desorption data.

Experiment T (◦C) Vap. Sat.
(%)

k (s−1) ξ (-)

Sorption

30 40 0.002 0.5
30 90 0.02 0.45
40 40 0.0017 0.54
40 90 0.007 0.72

Desorption

30 40 0.0005 0.3
30 90 0.004 0.40
40 40 0.0007 0.3
40 90 0.0007 0.3

As all the films were thermally treated before experiments, any volatile components

were released before the experiments. As asphaltenes are known to be mixture of glassy

(amorphous) and crystalline phases[202] either relaxation or crystallization induced by sol-

vent can explain the observed overshoot.

To investigate this phenomenon, we repeated a second cycle of sorption/desorption

on the same film, and overshoot consistently occurred each time. If the solvent-induced

crystallization was the reason behind the overshoot, it should be observed only in the

first cycle. This result is an indication that crystallization cannot be the cause of the

observed overshoot. We suggest that the observed overshoot in mass uptake is due to

solvent-induced relaxation of the amorphous phase in asphaltenes toward more compact

structure. This mechanism is in agreement with results of previous analysis with Eq. 9.1,

where no sign of swelling was observed. If we accept this mechanism, then the hysteresis of

the sorption/desorption curves is due to solvent molecules diffusing through a more compact

medium during desorption than sorption, giving a slower rate process.

9.4.2 Estimation of apparent diffusion coefficients

Analysis the data in previous section indicates that a single, constant diffusion coefficient

cannot fit the data well. As illustrated in Figure 9.7, the fit of a constant diffusion coefficient

in Eq. 9.2 is poor. The initial stage of uptake is much faster and final stage is much slower

than the simple diffusion model.
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Figure 9.6: Overshoot in the sorption data at 40 ◦C and 90% vapor saturation.

To our knowledge, no diffusion coefficients have been reported in the literature for sol-

vents in asphaltenes. The closest analogy in the literature is extracted bitumen. Salama

and Kantzas [197] reported the diffusion coefficients of normal alkanes (C6, C7 and C8) in

bitumen using X-ray tomography. They reported that diffusion coefficient increased from

4 ∗ 10−11 to 2 ∗ 10−9 (m2/s) as the solvent fraction increased from 0 to 1. Accordingly, we

used Eq. 9.4 for diffusion coefficients to fit the data. The results are shown in Figure 9.8.

Unlike the results of Salama and Kantzas, during sorption the diffusion coefficient decreased

with increasing solvent concentration, which is consistent with structural relaxation of the

asphaltene film as discussed previously. The data of Figure 9.8 also shows significant hys-

teresis between sorption and desorption. The calculated diffusion coefficient is two orders

of magnitude smaller for desorption. Another interesting observation is that the diffusion

coefficient during sorption is more dependent on vapor saturation than temperature.

Results of a more flexible model for diffusion coefficient (Eq. 9.5) are shown in Figure

9.9. This functionality resulted in a better fit of the experimental data in the sense of sum

of the squared residuals (5% improvement on average). The order of magnitude for diffusion

coefficients using Eq. 9.5 is not significantly different from the results with Eq. 9.4, but

some new patterns emerge. The most important change is the predicted minimum for diffu-

sion coefficient during desorption which happens at 20% of the Cmax. Another interesting

result is that diffusion coefficient during desorption is almost constant with temperature

and only changes with concentration.
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Figure 9.7: Fitting sorption data at 40 ◦C and 40% vapor saturation with constant diffusion
coefficient. The diffusion coefficient is 4 ∗ 10−11 m2/s

Table 9.6: Optimized parameter for Eq. 9.4.

Experiment Vap. Sat.
(%)

T (◦C) D0 ∗ 1012
(m2/s)

α ∗ 102 β

Sorption
40

30 0.25 111.4 15.1
40 0.8 1.44 0.78

90
30 1.9 2.1 2.0
40 2.7 1.64 0.50

Desorption
40

30 0.3 2.8 -2.3
40 0.3 41.3 -16.1

90
30 0.1 6.2 -2.3
40 0.2 36.2 -25.1

9.5 Discussion

Beside the complexities observed in the sorption/desorption of cyclohexane on the as-

phaltenes, current data give a range of apparent diffusion coefficients for cyclohexane in

asphaltenes to be 10−14-10−16 and 10−15-10−18 (m2/s) for sorption and desorption, respec-

tively. As there is no experimental data reported on diffusion of solvents in the asphaltenes

(to the best knowledge of the authors), we compared these diffusion coefficients with the

closest material to asphaltenes, oilsands bitumen. Table 9.8 summarizes diffusion coef-

ficients reported in the literature. The most striking feature of this set of data is that

diffusion coefficients of the cyclohexane in asphaltenes are orders of magnitudes smaller
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Figure 9.8: Calculated diffusion coefficient versus concentration of cyclohexane in the film
using Eq. 9.4. The Cmax values can be found in Table 9.2. Solid Lines represent D from
sorption data while dashed lines represent D from desorption data. For the parameter see
Table 9.6.
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Figure 9.9: Calculated Diffusion coefficient versus concentration of cyclohexane in the film
using Eq. 9.5. The Cmax values can be found in Table 9.2. Solid Lines represent D from
sorption data while dashed lines represent D from desorption data. For the parameter see
Table 9.7.

than the values in bitumen. Lower values can be attributed to the larger size of the solvents

molecules1 and the higher density of asphaltenes with respect to bitumen. Higher density

implies less free volume available for diffusion of solvent.

1Linear molecules like n alkanes need less free volume to diffuse. Also the aromatic compounds due
to their planar structure need less free volume for diffusion with respect to the chair or boat structure of
cyclohexane[196].
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Table 9.7: Optimized parameter for Eq. 9.4.

Experiment Vap. Sat.
(%)

T (◦C) D0 ∗ 1014

(m2/s)
α ∗ 102 β γ

Sorption
40

30 1.3 -1.8 1.3 0.9
40 0.2 -1.7 1.5 0.8

90
30 0.2 -1.7 1.5 0.8
40 1.6 -126.8 2.7 0.5

Desorption
40

30 0.0075 1610 -2.3 33.4
40 0.0075 1610 -2.3 33.4

90
30 0.0055 1610 -2.3 33.4
40 0.0049 1730 -2.0 34.0

The only concern about the diffusion coefficient data is the uncertainty in the calculation

of the gradients of concentration in the film during the estimation of the diffusion coefficients.

The total mass change during sorption/desorption can be calculated using:

ṁ(t) =

∫ δ

0
AfilmρAS

∂C

∂t
dx (9.9)

So using Eq. 9.2, the total mass uptake/release would be:

ṁ(t) = AfilmρASDAS(C)
∂C

∂x

∣∣∣∣
x=δ

(9.10)

In these experiments, we only have the concentration at the boundary (x = δ) and the

total mass of solvent. No matter what function has been chosen for the dependence of dif-

fusion coefficient on concentration, there would be a concentration profile which will results

in good fitting of the data. Experiments with thinner films than 7 µm are not practical due

to error in mass measurement, and thicker films compound the problem unless a method

were available for measuring gradients directly.
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9.6 Conclusion

In this work, the transport of the cyclohexane (as a candidate for non-aqueous solvent

extraction of oil sands) in asphaltenes has been studied for the first time, giving an estimate

of the apparent diffusion coefficient of 10−14-10−16 for sorption and 10−15-10−18 (m2/s) for

desorption. The apparent diffusion coefficient is concentration-dependent and changes by

two orders of magnitude for a narrow range of concentration. The hysteresis between

sorption and desorption suggests that there is a fundamental difference between sorption

and desorption mechanisms. As sorption is faster than desorption and the film relaxation

kinetics is slower than solvent diffusion, we can conclude that there is no swelling in the

asphaltenes from sorption of the solvent. The observed overshoot in mass uptake during

sorption experiments suggests that a relaxation process is triggered in the asphaltenes by

presence of the solvent.
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Chapter 10

Conclusion and future works

10.1 Conclusion

The problem of polymer/solvent mutual diffusion, with so many applications, was intro-

duced and mathematically formulated. Upon analysis using non-linear thermodynamics,

the problem was reduced to determine self diffusion coefficients of the polymer and solvent

as well as the Flory-Huggins interaction parameter of the corresponding binary system. As

MD -a powerful method with atomistic resolution- was selected to study both quantities, an

introduction to the simulation theory and method was provided. And the next step was to

conduct extensive molecular dynamics and first principle simulations to validate and modify

the simulation protocol and selected force field, OPLS-AA. After fine tuning the procedure,

the mechanism of solvent diffusion in PVA, the selected polymer, was studied using MD

simulation. Results of this study revealed that solvent self diffusion is more correlated with

free volume available for the solvents molecule. With insight provided by these results, free

volume theory was found to be the most appropriate choice for modeling the solvent self

diffusion. As parametrization of the free volume theory is not a trivial task, both exper-

imentally and by simulation, the lattice free volume theory, as an exact alternative, was

used to correlate the data. For parametrization of this new formalism of the free volume

theory, the Sanchez-Lacombe equation of state was parametrized using molecular dynamics

simulation. Up to this point, the first task, determining the self diffusion coefficients of the

solvents in PVA, was successfully achieved. To complete the problem of of predicting the

mutual diffusion coefficients of polymer/solvent systems, there are two more steps of calcu-

lations required which are planned for the future work. In the next section, the summary

of these steps are presented.

10.1.1 Original contributions Summary

• OPLS-AA force field was validated for pure PVA.

• Atomic partial charges in OPLS-AA force field were modified to describe the interac-

tion between PVA and selected solvents.
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• Self diffusion coefficients of the selected solvents were estimated in wide range of

temperature and concentration in PVA.

• The free volume redistribution as main mechanism of the solvents diffusion was esti-

mated and inconsistencies reported in the literature with this regard were addressed.

• Free volume theory as a reasonable candidate was parameterized to correlate the

solvent self diffusion coefficient with system variables.

• It was found that for glassy region a modified version of the free volume theory os

required.

10.2 Future work

For the evaluation of the mutual diffusion coefficients of polymer/solvent systems using

Equation 2.16, we should calculate the Flory-Huggins interaction parameters of the PVA/solvent

systems. Even though this part of calculation has been done using the original OPLS-AA

parameters, preliminary results were not satisfactory. Clarification of the source of this

inconsistency with experimental expectations was the initial motive behind the calculations

in Chapter 6. Now that reliable PACs for PVA are available, the next step is to re-evaluate

the interaction parameters. After providing a reasonable estimate of the interaction param-

eters, the mutual diffusion coefficients can then be easily calculated using Equation 2.16.

Having the mutual diffusion coefficients of polymer/solvent systems, the data needs to

be validated against the experimental data. So, another step is to measure mutual diffu-

sion coefficients of PVA/solvent systems using the technique of IGA as described in the

case of asphaltenes/cyclohexane in Chapter 9. On the other hand, MD simulation of a

non-equilibrium system consisting polymer/solvent double layer can provide insightful in-

formation for the correlation of the simulation and experimental data.

Beside these essential parts to complete determination of mutual diffusion, we faced

several interesting problems that we tried to address in the course of this project (but we

never found chance to complete or publish the data). We believe that understanding and

solving these problems (even though indirectly) can greatly facilitate future research on

this topic (or any other problem of similar nature). Here, we present a short list of these

problems:

• We studied the diffusion of gaseous species especially oxygen, methane and carbon

dioxide in PVA matrix using the same procedure described in Chapter 7. It is known

that water content of the matrix can greatly affect the mobility of the gases in the

PVA. As we have access to the trajectory of a fully equilibrated PVA/water system,

by simply measuring diffusion coefficients of these gases in the wet PVA, a complete
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understanding of the underlying mechanism can be obtained. Results of this study

are crucial for the applications of PVA in contact lenses and food packaging.

• In most of its applications, PVA is cross linked using a chemical agent named glu-

taraldehyde. Recently, we have developed a model of such a system at different cross

linking density. Preliminary analysis on the system indicates that our model is a

good representative of the real sample. As our results indicates, properties of PVA

are very sensitive to cross linking density even at low level (less than 1%). So, it is

worth repeating the calculation of self diffusion coefficients on the cross linked polymer

to evaluate the effect of the constraints added to the chain mobility on the solvent

dynamics.

• Experimentally, it is known that PVA properties, especially its density and crystalline

structure, are highly affected by the tacticity of the chain. Unfortunately, our simu-

lation results (presented in Chapter 5) using small system size could not effectively

capture this effect. Accordingly, we started an extensive study on the problem using

a properly sized system and carefully tuned protocol to capture this effect. These

simulations are half way through and results are promising to address this problem

with atomistic resolution for the first time.
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Appendix A

Self diffusion coefficient

Regardless of the arrangement in the space, all molecules have some kinetic energy or

thermal motion. In the case of solids, this energy is more in the form of vibration of

bonds. But in the case of liquids and gases, it is dominated by translational motion. This

translational motion or thermal motion naturally causes the molecule to move more or

less like a random walker. Although in a system with uniform distribution the average

of this random motion is zero, its mean square displacment is not vanishing. The mean

square displacement of the random walker is a measure of its mobility in the system and

theoretically is proportional to its self-diffusion coefficient. The important point here is to

distinguish the term self-diffusion which is totally different from mutual diffusion coefficient

in the sense of Ficks first law. Unlike the Fickian diffusion coefficient, which is defined for

systems with at least two components with some non-uniformity in the concentration, the

self-diffusion is a measure of mobility of the molecules in the system due to the thermal

motions and can be evaluated even in single component systems. This diffusion coefficient

is also called the tracer diffusion coefficient. Tracer diffusion coefficient can be measured

for molecule A in a system of A molecules (which is self-diffusion of A) or in a system of B

molecule (which is the self-diffusion of A in B). Although the term self-diffusion has been

defined for one component systems, but it is usual to use this term to point to the mobility

of molecules in different environment.
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Appendix B

Assigned OPLS-AA atom types to
PVA monomer

In the Figure B.1 the atom type assignment used in our simulations is presented.

C

H

H

H

C

H

H

C

H

O

H

→ OPLS135

LS140PO

S140LPO

LS140PO

OPLS136

LS140PO

LS140PO

OPLS158

LS140PO

LS154PO

LS155PO

Figure B.1: Mapping of the PVA monomer and end methyl group to the OPLS-AA force
field atom type.
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Appendix C

Effect of degree of hydrolysis on
Hildebrand solubility parameter

Before calculating HS parameter for PVA with different degree of hydrolysis, we have

checked the density of these systems in figure C.1 to confirm if there is any inconsistency.

As we expected, by decreasing degree of hydrolysis the density of the system decreases as

density of pure PVA and PVAc at 300 K is around 1280-1310 and 1190 kg/m3 respectively.

The calculated Tg for these systems using data in figure C.1 is in good agreement with pre-

viously reported value of 320-340 K for PVA with degree of hydrolysis of 88-95% [88, 213].

Figure C.2 shows the effect of hydrolysis on the solubility parameter of the PVA. As

you can see, by adding more hydrophobic acetate groups, the solubility parameter departs

more from those of water.
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Figure C.1: Density of atactic PVA with different degree of hydrolysis and temperatures.

Figure C.2: Hildebrand solubility parameter of PVA with different degree of hydrolysis
compared to those of water and benzene at different temperatures.
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Appendix D

Density and glass transition
temperature of PVA/solvent
systems

D.1 Density

Calculated volumetric properties are mostly used to show both applicability of the applied

force field and also it can provide useful information regarding other properties of the sys-

tem like glass transition. Accordingly, in figure D.1 we have compared calculated density

for systems with 1 and 20 wt% water at different temperatures with experimental density

of the same systems calculated with inverse rule of mixture having the experimental density

of pure PVA [74] and water [214] at different temperatures. As we expected, the density

of higher water content system is in good agreement with experimental data while devia-

tion is slightly higher for low water content systems owing to its slower relaxation. Also

note that the experimental density reported for PVA[74] corresponds to PVA with some

degree of crystallinity and serve as an upper limit as such crystalline phase does not exist

in system considered here. Nonetheless, calculated densities indicate the deviation from

expected experimental values (for PVA/water) is less than 3% at most (for low water con-

tent systems). This result, and agreement with other MD data reported indicates that the

forcefield selected can describe the PVA/water system adequately. It is also worth noting

that for systems with lower water content in some temperatures the density of the system

has been increased to a value bigger than density of pure PVA (reported in our previous

work [119]) which also has been observed experimentally [5]. Comparing to our results,

densities reported by Wu [63] for system with 21 wt% water are smaller due to difference

in preparation method of the samples and the smaller chain’s length used in Wu’s study

(although the force field used for water and PVA are identical). Also Tamai et al. [215],
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Figure D.1: Density of PVA/water mixture at different compositions and temperatures.
Calculated densities are average over last 50 ns of production simulations.

using TIP4P model for water, and OPLS/united-atom for PVA has reported the density of

system with 27.5 wt% water as function of temperature. The data by Tamai et al., shown

in figure D.1, over estimates the density as it was expected (They applied united atom force

field where less geometrical obstacles due to absence of explicit hydrogens in the system

allows monomers’ center of mass to pose a more compact structure respect to our system.

This fact is also obvious in the water self diffusion coefficient data reported in their study).

In figure D.2 density of PVA/water systems with water contents up to 20 wt% has been

shown. As you can see, the density of systems with 1 and 3 wt% water show a great deal

of fluctuation as relaxation in these systems is relatively harder to achieve. In systems with

higher water content (5-20 wt%) these fluctuations are significantly smaller as relaxation is

achieved much faster due to plasticization effect of water.

In figure D.3 we have compared the calculated density for PVA/benzene systems with

different benzene concentrations and temperatures with experimental data obtained by pure

components’ density (density of benzene from [216]) and inverse rule of mixture (which may

not be applicable to this system as PVA and benzene are not miscible). Trend of deviation

of calculated values from experimental data is similar to the case of PVA/water with slightly

higher magnitude.
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Figure D.2: Density of PVA/water mixture at different water contents and temperatures.

Figure D.3: Density of PVA/benzene mixture at different benzene contents and tempera-
tures.
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D.2 Glass Transition Temperature

Using the calculated density in previous section and applying the same method as we ex-

plained in our previous work [119], the glass transition temperature (Tg) of the PVA/solvent

mixtures has been calculated at different concentrations. Great agreement between calcu-

lated and experimental values of Tg shown in figure D.4 confirms the accuracy of the force

field and simulation protocol used for the simulations. Also Wu [63] reported the Tg for

system containing 21 wt% water to be around 283 K which is in agreement with our value

of 272 K for system containing 20 wt% water.

There are several models to predict the Tg of a binary mixture having the Tg of pure

components. These models summarized in equations D.1-D.4 (for complete discussion see

[217]):

Tg = w1Tg1 + w2Tg2 (D.1)

ln (Tg/Tg1 ) =
w2ln (Tg2/Tg1 )

w1 Tg2/Tg1 + w2
(D.2)

1/Tg = w1/Tg1 + w2/Tg2 (D.3)

lnTg = w1lnTg1 + w2lnTg2 (D.4)

The values used for Tg in these equations are 136[218], 170[219] and 350[119] K for wa-

ter, benzene and PVA respectively. In figure D.4 we have compared the calculated Tg of

PVA/water systems with predictions of equations D.1-D.4. As results indicate, the classical

thermodynamic model (Eq. D.2) can describe the behavior of PVA/water system very well.

At low water content systems Tg shows some deviation from classical thermodynamic model

but as water content increases the Tg of mixture gets closer to prediction by this model. The

deviation at lower water content can be attributed to incomplete relaxation of the system

due to limited simulation time. In agreement with findings of Rault et al. [88], our data

indicate that Tg of PVA/water system follows prediction by Fox equation (Eq. D.3).

AS benzene is not capable to plasticize PVA as it doesn’t affect the hydrogen bonding

network of PVA significantly, there is no significant decrease in Tg by adding benzene which

is confirmed by data in figure D.5. Note that possibility of clustering of benzene molecules

has been ruled out as radial distribution function of the benzene does not confirm that

(data not shown). Unfortunately as PVA and benzene are not miscible there is no experi-

mental data on their TG. Also it is interesting that calculated values does follow any of the

mentioned equations D.1-D.4.
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Figure D.4: Tg of PVA/water mixture at different compositions. For experimental data
Rault and Hodge see [88, 220].

Figure D.5: Tg of PVA/benzene mixture at different compositions.
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Appendix E

Sensitivity analysis on simulation
of PVA melt

E.1 Simulation step time

The previous MD simulation on the PVA chain mostly used the united atom force field de-

veloped especially for PVA and as there is no high frequency degree of freedoms like bound

involving hydrogen atoms using large simulation time step as high as (2fs) was possible.

But Wu [63] has used an all atom force field, OPLS-AA, with time step of 1 fs without

any comment on how this can affect the system. Although the using higher time step is

computationally favorable, but we suspect that such large time step (beyond its effect on

stability of the integrator) can affect the properties of the system especially those which are

affected by hydrogen bonds in the system. Irregularity in number of hydrogen bonds and

their mean life time in can directly affect properties like solubility parameter.

To check if there should be any concern with this regard we have simulated all 10 DP50

chains in two different time step of 0.5 and 0.1 fs. Doing this, simulation results indicates

that energy of the system has been decreased as we expected due to more stable hydro-

gen atoms in the system. This energy reduction is more pronounced in the bonds energy

in the system (which are not affecting the solubility parameter). Results for the solubil-

ity parameter of lower time step systems indicate that better estimation can be obtained

with lower time step. This results all indicates that having explicit hydrogen atoms in the

system requires reduction of the time step. But reducing the time step can increase the

computation cost dramatically. As united atom force field is not an option, as explicit

hydrogen atoms are required to capture true hydrogen bonding in the system, there will be

two other options left. First option is doing simulations with time step of 1 fs and after

141



reaching close to equilibrium, continuing the simulation with time step of 0.1 fs for enough

length of time. Obviously this method only works for static properties calculation as they

mostly need short equilibrium trajectories. The second option is constraining all H atoms

in their equilibrium bond length using an appropriate method like LINKS [221]. Applying

this constrain, we repeated all simulations and results shows constraining hydrogen atoms

cause a slightly under estimation of the density (less than 0.5%) and solubility parameter

(less than 2.8%).

E.2 Atomic partial charge distribution

It has been reported that there was a problem using OPLS-AA original partial atomic

charges for simulation of the PVA by Wu [63] and partial atomic charges of COMPASS

force field has been used but we didn’t find any problem using the original OPLS-AA

charges. In other hand it has been numerously stressed in the literature that interchanging

parameters between force fields with different philosophy is not recommended. To clarify

that any difference between our results and those reported by Wu [63] is not due to this

difference we have simulated all DP50 chains at 300 K. Comparing the results with our

results using original OPLS-AA partial charges, both set of charges resulted in a same aver-

age value for density and solubility parameter with slightly more fluctuation in the system

properties in the case of COMPASS charges. Also it came to our attention that using

COMPASS charges there was a 10% reduction in number of hydrogen bonds in the system.

E.3 Effect of anisotropic box

Muller-Plathe et. al. [3] mentioned that they have used anisotropic pressure coupling to

account for contribution to the atomic virial by the bond angle and dihedral angle terms,

which will be canceled out only for the isotropic pressure coupling. Accordingly we have

simulated all DP50 chains with anisotropic pressure coupling and found that there is a

insignificant difference between the densities calculated in which anisotropic systems had

smaller density values. Also systems with anisotropic pressure coupling poses slightly higher

potential energy. Further investigation showed that systems with anisotropic pressure cou-

pling have lower bond energy and higher angle energy. Beside these minor effects, the most

important problem with anisotropic pressure coupling is the distortion of the cell which may
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cause significant reduction in cell size in one dimension. In some cases it happened that

the box size decreased so much that the simulation failed due to violation of the minimum

image convention.
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Appendix F

PAC Calculation

Table F.1 shows the deviation of average PACs calculated in the solvated state using dif-

ferent methods relative to the same PACs calculated in vacuum for optimized structures.

As can be seen, the sensitivity of the AIM results to solvent is quiet high relative to other

methods.

Table F.1: Percentage of relative changes in
calculated PACs in the solvated state rela-
tive to those of optimized geometries in vac-
uum.

MPA NPA MSK AIM Hirshfeld
Water 10 15 39 130 10
Ethanol 9 14 37 123 9
Benzene 10 15 39 130 10

Figure F.1 compares the dihedral angle distributions for different PAC sets. As we ex-

pected, the quality of results are in accordance with calculated densities.

Table F.2 shows the standard deviation of the PACs reported in table 6.1.
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Figure F.1: Comparison of back-bone carbon atoms dihedral angle distribution of an iso-
tactic PVA chain with 400 monomers calculated with different PAC sets. Results were
averaged over all possible dihedral angles in a 5 ns simulation on a well relaxed chain in a
NPT ensemble at 300 K and 1 bar. Note that the density of the data has been reduced for
better resolution.

Table F.2: Standard error (%) for calcu-
lated PACs.

Atom MPA NPA MSK AIM Hirshfeld
Ha 0.92 0.33 1.42 1.16 0.37
Ha 0.94 0.35 1.43 1.24 0.39
Ha 1.04 0.38 1.50 1.26 0.43
Ca 1.19 0.15 4.54 1.07 0.13
Hb 1.46 0.50 3.60 1.56 0.56
C1 1.90 0.67 15.07 1.41 0.45
Hb 1.56 0.51 3.81 1.66 0.55
C2c 1.62 0.36 8.84 5.55 0.21
H 1.87 0.68 3.52 1.95 0.83
O 2.31 0.97 4.06 4.55 2.28
Hd 2.13 0.38 2.31 2.36 0.97
He 1.25 0.42 1.34 1.30 0.46
He 1.22 0.38 1.42 1.16 0.42
He 1.14 0.37 1.25 1.18 0.41
Ce 1.14 0.27 2.88 1.13 0.27

a Starting methyl group-Carbon connected to C1
b Connected to C1
c Connected to O
d Connected to O
e End methyl group-Carbon connected to C2
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Appendix G

Free energy of solvation

Figure G.1 shows an example of Hamiltonian change as the lambda changes in the slow-

growth method. We are aware of the fact that by increasing the number of points we are

able to obtain smoother curves (especially when vdW interactions start to vanish), but our

results indicate that change in the final calculated FES would be minor.

Figure G.2 shows the probability distribution for the ab initio calculated FES for

oligomers of PVA in different solvents. As can be seen, these values are highly confor-

mation dependent and are slightly different for different tacticities.

Table G.1 compares the ab initio calculated FES as averaged by the Boltzmann factor

with regular averaged values.

Table G.1: Average values for ab initio calculated
FES.

Boltzmann weighted Regular
Ata Iso Syn Ata Iso Syn

Water -158.3 -155.9 -148.0 -169.6 -163.0 -164.3
Ethanol -149.5 -147.9 -138.3 -160.9 -154.8 -156.0
Benzene -63.1 -63.9 -56.9 -70.8 -68.6 -68.8
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Figure G.1: A typical graph of changes in free energy during the slow-growth method. Data
is related to solvation of one of the isotactic PVA oligomers.
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(a) Water (b) Ethanol

(c) Benzene

Figure G.2: Probability distribution of ab initio calculated free energy of solvation.
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Appendix H

Solvents self diffusion data

Table H.1: Calculated self-diffusion coefficients of water in the PVA/water system. Numbers multiplied by
1012.

T (K)

wt%

270 280 290 300 310 320 330 340 350 360 370
1 0.03 0.05 0.06 0.10 0.12 0.17 0.26 0.29 0.69 1.26 1.45
3 0.07 0.10 0.24 0.34 0.46 0.69 0.74 1.18 1.30 1.70 2.87
5 0.15 0.17 0.27 0.51 0.81 0.95 1.08 1.47 1.53 2.41 5.17
10 0.36 0.56 0.93 1.11 1.70 2.41 3.03 3.63 4.75 7.10 8.41
15 0.68 0.88 1.14 1.65 2.60 5.26 9.30 11.40 20.98 26.00 59.12
20 2.14 2.95 5.19 7.95 10.62 22.09 39.43 46.00 57.00 62.00 214.16

Table H.2: Calculated self-diffusion coefficient of benzenes in the PVA/benzene system. Numbers multiplied
by 1014.

T (K)

wt%

270 280 290 300 310 320 330 340 350 360 370
1 0.07 8.88 5.70 0.74 16.04 3.18 15.77 33.65 10.97 18.30 17.71
3 28.57 28.79 26.90 36.90 32.67 27.61 58.38 103.98 50.99 16.04 15.35
5 27.55 27.19 28.82 19.86 33.19 38.61 41.47 159.94 72.05 52.04 12.60
10 56.74 53.98 55.35 75.06 93.58 114.71 141.29 504.57 311.80 96.23 92.71
15 18.12 36.00 52.13 91.95 151.59 255.51 393.21 1312.38 843.41 308.20 296.27
20 81.29 107.13 154.60 267.36 429.08 682.42 1005.31 2732.95 2051.37 926.90 891.06
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Figure H.1: Numbers of hydrogen bonds between PVA segments at different concentrations
of water and benzene at 300 K. The averages were obtained from the last 5 ns of the
production simulation runs.
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Appendix I

Derivation of the characteristic
parameters of the SLEOS

I.1 Typical graphs for derivation of the characteristic param-
eters of the SLEOS

Typical derivations of physical parameters obtained from the SLEOS from MD simulation

are shown in figure I.1.

I.2 Quality of the prediction by SLEOS

Figure I.2 shows the experimental data used for the parametrization of SLEOS for ethanol.

As can be seen, after fitting, the parameters are capable of predicting the density with great

accuracy. Figure I.3 shows the experimental data used for parametrization of SLEOS for

PVA. It is evident that after fitting, the parameters are capable of predicting the density

with great accuracy.
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(a) ρ∗ for water. The extrapolation
line indicates the ρ∗ at 0 K.

(b) P ∗ for ethanol. The extrapola-
tion line indicates the P ∗ at 0 K.

(c) T ∗ for benzene. The extrapola-
tion line indicates the P ∗ at 0 K.

Figure I.1:

Figure I.2: Results of the fitting of the SLEOS to the ethanol experimental densities.
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Figure I.3: Results of the fitting of the SLEOS to the PVA experimental densities.
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