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Abstract

The ratio of thermal conductivities of s0lid and fluid at cquilibrium is of
considerable importance in the siudy and theory of dendritic solidification.
The present work was undertaken in order to provide this information for
1He at elevated pressures. The method of ‘guarded concentric cylinders’ was
chosen since the anticipated experimental couditions included pressures up
to 2 kbar and temperatures between 8 K and 80 K. This apparatus was uscd
to obtain the absolute value of the thermal conductivity coefficient for fluid
4He in the range {8 K < T < 80K, 450 bar < P < 2050 bar}, and for solid
and fluid *He in the immediate vicinity of the melting curve for temperatures
between 8 K and 20 K. As such, this project constitutes the first report of
thermal conductivity values for fluid *He in these ranges of pressure and
temperature, and the first detcrmination of the thermal conductivity ratio
for any material for a substantial range of melting temperatures. The overall
accuracy of the results has been estimated at between 5% and 10%.

The results of this experiment show that the fluid thermal conductivity
increases linearly in the temperature just above the melting point, and that
the overall behaviour is dominated by the fluid specific heat for temperatures
ranging from the melting point up to the maximum observed temperature
(80 K), in accord with fluid structure and transport models due to Horrocks
and McLaughlin. The results are numerically low by at least 30% compared
with the Chapman-Enskog theory of heat transport for a dense hard sphere
gas, although the shape of the curves is similiar. However, predictions based
on a model Lennard-Jones fluid are in worse agreement.

The ratio of thermal conductivities at equilibrium () was found to be
anomalously high, having a value near 4 at a mclting pressurce of 2 kbar and
rising to 8 ~ 10 as P — 0. The change in 8 for 1He over the obscrved
temperature range is in general agrccment with the trend displayed by other
quantum solids, suggesting that premature melting in ‘He is a quantum
effect.
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Chapter 1

Introduction

1.1 The Goal of this Project

The analytic study of dendritic solidification in helium [1] {2] has shown that
this system principally follows the predictions of models (3] [4] [9] and has
characteristics in common with succinonitrile [13]. Experimental data for
reduced tip radius, growth velocity and Peclet number can be well fitted to
theoretical power law relationships over two orders of dimensionless super-
cooling. The observed growth velocities and stability parameter o for helium
are, however, much smaller than predicted. The reasons for these disparities

are presently unknown.



The dendrite problem simultancously involves properties of the solid and
fluid phases. Attempts to associate dendrite models with observation re-
veal the deficiency of data on the fluid phase [15]. In the case of helium,
obligatory low temperatures and high pressures have historically conspired
against measurement of thermophysical and transport properties. The study
of dendrites revealed the need for new experiments to determine the thermal
conductivity of solid and fluid helium, both near and away from the melting
line. As shall subsequentially be shown, the ratio of thermal conductivities
of solid and fluid at equilibrium at the melting point is a critical factor in
dendritic growth. For helium, it is entirely unknown. Measurement of this
ratio became the object of this project, motivated by the desire to under-
stand the unique features of dendrites in helium. Progress towards this goal
has shown that the ratio per se is also of considerable interest.

The method of the “steady state guarded concentric cylinders” was se-
lected for this experiment since it best satisfied the experimental require-
ments. The need for high pressures and the comparative ease of manufacture
suggested a cell and measuring device of cylindrical symmetry. This method
has a long history of development to which is added the present adaptations

and refinements.



1.2 Outline

The structure of this thesis consists of the following major chapters:

e Chapter 2. A review of the theoretical background underlying thermal
conductivity of solid dielectrics; an overview of the theory of dendritic
pattern formation in crystals; a review of models of thermal conduc-
tivity in fluids.

e Chapter 3. A description of the experimental apparatus used in this

project and the method employed to obtain results.

e Chapter 4. Presentation of the primary and derived experimental re-

sults with interpretation.

e Chapter 5. Conclusions and proposals for anticipated experiments.



Chapter 2

Theoretical Background in

Review

2.1 Thermal Conductivity

of a Dielectric Solid

The intent of this section is to identify and account for the salient features
of thermal conductivity of a dielectric solid as a function of temperature,
or density. The subject of heat transport in this regime has been under in-

vestigation for many decades, beginning with the theory of Debye [5] and



the work of Peierls [6]. Today. with a few notable exceptions (e.g.. the ef-
fect of dislocations, the case of amorphous solids, and the high temperature
limit), it may be said that tlmrf‘ are no outstanding mysteries concerning this
problem. Formulations of thermal conductivity on the basis of quantum the-
ory generally encounter intractable mathematical difficulties; nevertheless,
a clear temperature dependence of thermal conductivity can be identified.
which has been well confirmed by experiment.

With a little hindsight. the behaviour of heat transport with declining
temperature may be classified into four regions (Op is the Debye tempera-
ture, and ) is the thermal conductivity). Refer to Table 2.1.

While these temperature ranges have been gencralised from the case of
pure materials, the observed hehaviour has these ‘universal® features. Devi-
ations are found, naturally, for impure or polycrystalline samples; the usual
effect is to reduce A(max.). The relevant regions in this project are and II,
since a dielectric solid is expected to display this behaviour near the melt-
ing point. Poiseuille flow refers to the hydrodynamic flow of fluid in pipes
or channels where the velocity profile has a parabolic shape; the fluid layer
at the wall sheilds the central volume of fluid from scattering mechanisms
which dissipate energy. Since there is less friction in the central volume there

3



Region Temp. A Dominant

(K) WmiK! Feature

I T "‘:' Tm x T_l

%{} <Tx T, x el'p(%%) Umklapp

11 ~ %OD- (maximum) | Umklapp
maximum
ITI TR 2 o T-% | Poiseuille
flow
v 0<Tg 2 x T3 specific
heat

Table 2.1: Thermal Conductivity Behaviour in a Dielectric Solid



is an increase in flow. or. in the case of heat transport. an increase in the
coefficient of thermal conductivity. Poiscuille flow in the phonon system, ex-
pected to enhance heat transport below the Umklapp maximum according
to a T® to T® law. has been found to decrease with pressure in helium [37).
An interesting symptom of Poiseuille flow is that the effective mean free path
of phonons, calculated on the basis of the kinetic model (see equation (2.1)
below), can exceed the diameter of the sample [70].

The theoretical explanation for these features may be separated into two
approaches: (a) the rigorous development of a heat current quantum mie-
chanically, and (b) the intuitive picture. The former carrics and offers the
weight of rigor but suffers from unavoidable approximations and reductions;
the latter. though simple and lacking precision, is straightforward.

The intuitive picture [16] begins by drawing an analogy between an ideal
gas and an inferred ‘gas’ of phonons. which is able to pass through a crystal
subject to identifiable scattering processes. The usual understanding of a
phonon as an unlocalised wave disturbance permeating the entire crystal
is unsuitable in this analogy; instead, the appropriate construct is the wave
packet.i. e., the superposition of normal modes in a neighbourhood Ak about
some k which produces a well-defined, localised particle (or, ‘quasiparticle’).

7



The thermal conductivity of an ideal gas:

\ = écvvz (2.1)

sraceable to simple kinetic theory and applicable to a broad range of densities
(except when the mean free path, 1, is of the order of dimensions of the
container), becomes the key to this informal picture of lattice heat transport.
¢, is the isochoric specific heat per unit volume, v is the particle velocity, and
l is the mean free path between particle-particle collisions. Phonon scattering
processes in a crystal include a variety of temperature-dependent ones (and
-independent, such as dislocations and impurity atoms) which strongly affect
[ and, in turn, the thermal conductivity. In the analogy to a phonon gas. ¢,
corresponds to the isochoric lattice specific heat (per unit volume), v is the
speed of sound, and ! is an estimate of the mean free path between phonon
‘collisions’ (i.e., collisions with lattice defects, or other phonons), the rigor- s
calculation of which for a phonon gas has proven to be difficult.

Several important points must be made in connection with phonon scat-
tering in a lattice. First of all, the harmonic approximation in either the
classical or quantum picture completely fails the heat transport problem. By

‘harmonic' is meant the incorporation of terms up to only second order in the



lattice potential energy, which is usually written as a 3-D Taylor’s expansion
about @(R), the deviation of an atom from its average lattice site. Since
normal modes are stationary states of the harmonic Hamiltonian, any distri-
bution of phonons which carries a heat current would not change throughout
time, which implies for a perfect crystal the possibility of vanishing thermal
resistance. With the exception of superfluid helium, such a property is not
found in nature, —certainly not in any solid. Secondly, the harmonic ap-
proximation is invalid in the particular case of helium, since here we have
the unique combination of weak Van der Waals interaction, a relatively light
atom. and very large zero-point motion. (These are responsible for the high
isothermal compressibility of helium, and the existence of the liquid phase
near 0K.)

Ignoring for the moment phonon scattering due to granularity, crystal
imperfections (dislocations and other defects), and impurities, the other scat-
tering mechanisms must lie in the neglected ‘anharmonic’ terms, or terms of
order three and higher, which exist in the true crystal potential. Cubic and
quartic anharmonic terms are included in the total Hamiltonian as a pertur-
bation and treated by that well known method. The essential outcome of
these calculations is the possiblity of transitions between cigenstates of the

9



harmonic Hamiltonian, which are interpreted as phonon-phonon interactions
or ‘collisions’. It turns out that the order of the anharmonic term, p, in-
troduces interactions involving just p phonons. As an example, given here
without proof, consider all possible interactions wherein p = 3 (i.e., cubic

anharmonicity):

— —

1. creation of p = 3 phonons (n;(k) — nl(k:) + l;ng(k-;) — ng(ks) +

1;ng(k3) — na(ks) + 1)

— — -

2. annihilation of p = 3 phonons (ni(k;) — nl(k:;) — 1;ng(ky) — na(ky) —

1; ns(k-;) — ns(k:;) - 1)

—

3. creation of 2 phonons, annihilation of 1 (nl(k:‘l) — nl(l;l) —1;nz(k2) —

na(ky) + 15 n3(K3) — na(k3) + 1)

g

4. creation of 1 phonoun, annihilation of 2 (n,(k:) — nl(k-;) — 1;na(k2) —

na(ky) — 1;n3(Ka) — na(ks) + 1)

where n(i) refers to the occupation number of the mode with wavevector
k (polarisation ignored). Pictorially, these processes are represented in re-

ciprocal space by Figure 2.1. Conservation of energy clearly must prohibit

10
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Figure 2.1: Phonon-phonon scattering (p = 3).



processes (1.) and (2.), since the energy of cach normal mode is given by:

- -

Eg = (n(F) + 5)(F) (2.2)

where w(k) is the angular frequency associated with the k-th mode. The
conservation laws for energy and momentum impose restrictions on the par-
ticipants of processes (3.) and (4.). The net effect of the cubic perturbation
terms is to introduce phonon-phonon scattering processes which can be un-
derstood to degrade the heat current consistent with experimental findings.

Process (4.) implies a property unique to discontinuous, periodic media:
the law of momentum conservation for phonons always includes a reciprocal

lattice vector, Iy, such that ‘momentum conservation’ is modulo K:
kl + k? = k3 + K. (23)
It is possible for i to be zero or non-vanishing; the former caseis t. .ed
‘normal’, whereas the latter is ‘umklapp’ from the German ‘Umklapprozesse’
(‘flop over’ process). The existence of U-processes only in discontinuous (i.e.,
periodic, as opposed to continuous) media is critical to the understanding of
lattice thermal conductivity. Momentum conservation in this context may
better be referred to as an ‘interference condition’, since the momentum %k,
associated with a particular phonon is not transferred by that phonon. To

12



establish the distinctior between this context and that of an ordinary free
particle, the term *crystal momentum’ has been coined for the quantity hk,
and it is this which is subject to the interference condition.

An umklapp process is understood to simply be the “folding’ (or, *flop-
ping’) back of a phonon wavevector, k3. by an amount I which is one of the
principle reciprocal lattice vectors. This occurs if the resultant phonon ks
extends beyond the border of the first Brillouin zone, since any such wave is
equivalent to a disturbance having smaller wavenumber k::;l (or, larger wave-
length) moving in a different direction (sce Figure 2.2). This is consistent
with the general rule that all wavevectors which represent phonons must lie
within the boundaries of the first Brillouin zone.

With the machinery of phonon-phonon interactions and the umklapp pro-
cess, a qualitative description of the underlying behviour may be given. At
high temperatures (T > Op) phonon occupation numbers are expected to
be relatively high, an... using the Bose-Einstein distribution, they can be
estimated:

n(k) = ! . *8T_ (2.4)

Aul k)

e(m‘) -1 hu)(k)

Since the number of phonons increases with temperature, it may be in-

13
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Figure 2.2: Normal and Umklapp processes.
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ferred that the collision frequency would also increase, or, alternatively, that
mean free path between collisions would decrease. Recalling equation 2.1,
and remembering that the specific heat is approximately a constant function
of temperature (except at low temperatures), it is clear that A ~ T, which
has been confirmed by experiment [17).

A further comparison with the kinetic theory of an ideal gas can be made
at this point. It will be recalled that the mean free path of a particle is given
by [18]:

1

l=— (2.5)
ap

where o is the atomic cross section and p is the number density. If, for
the case of a gas of phonons, p is identified with the occupation number
n(E), and ¢ with phonon-phonon coupling (assumed constant), then the same
temperature dependence of [ and A is suggested.

At slightly lower temperatures, the cffect of the umklapp process as
the singularly dominant form of phonon scattering becomes quite appar-
ent. Clearly, for this process, phonons of a certain minimum wavenumber
are required. This critical size may be generalised as one-half of a reciprocal

lattice vector: i.e., either one, or both of the interacting phonons must have a

15



wavevector of k > 51( This requirement is needed in order to push the size
of the resultant third phonon beyond the Brillouin zone. This limitation is
realised only at temperatures above which the population of required short-
wavelength, higher energy phonons is significant. Setting fzw(l:) ~ %hwu

since one of the interaction phonons should have an energy comparable to

one-half the Debye limit, then:

- 1 1
n(k) = —= ~ — (2.6)
eh‘:T;'l -1 69# -1
which, for T < @p, reduces to:
-0
no e . (2.7)

Evidently, the probability of an umklapp process decreases exponentially
with falling temperature, which may be translated into the statement that
the thermal resistance exponentially decreases; such exponential behaviour is
confirmed by experiment. An alternative terminology for these events would
have a ‘freezing’ out of the umklapp process as the temperature was reduced,
with the concomitant increase in thermal conductivity.

It can be shown that a normal process (i.e., one in which crystal momen-

tum is conserved exactly) cannot degrade the thermal current [19]. Suppose

16



that a crystal was prepared with a non-zero total crystal momentum P cor-

responding to a net heat current:
P = Sn(k)hk (2.8)

Since i = 0 for Normal processes, this sum would not be altered by these
processes alone and the heat current would also remain unaltered. The net
energy flux would be distributed amongst a different set of phonon modes
rather than being modulated.

As umklapp processes are frozen out to greater degree at lower temper-
atures, this would imply a thermal conductivity rising to infinity as T — 0
since the mean free path could grow unhindered. Even the inevitable lattice
imperfections and impurities could not completely eliminate this inexorable
theoretical increase, but the finite size of any real specimen could by imposing
a strict upper limit on /. Some studies have even shown that polishing the
sample, which enhances specular surface scattering (reflection) of phonouns,
has the effect of increasing the net conductivity [7] [8].

At some point (often T ~ 9531, A = A(maz.)) the mean free path is limited
by either the size of the specimen (single crystal) or the size of grains, and

the conductivity behaviour below this peak is becomes dominated by the

17



specific heat. This is obvious from equation (2.1) for fixed I. As C, x T?
for T < Op it would be expected that A T3 as well, and there is ample

evidence to confirm this [20].

2.2 Dendritic Solidification

The ancient Greek “dendron™ (Gk. ‘tree’) is the root of the modern word
“dendrite”, which describes metallurgical, geological, zoological, and anatom-
ical structures having tree-like shapes, i.e., a central projected ‘trunk’ possi-
bly with side branches. In respect of the present study, it refers to crystallisa-
tion of solid helium from the undercooled melt (i.e., liquid below the ‘normal’
freezing point temperature at a given pressure). Such non-equilibrium condi-
tions can be created in the labora‘ory either by rapid or very careful cooling.
The technical importance of the study of dendritic crystallisation stems from
the strength and corrosion resistance properties of metallic alloys which have
this structure, but dendrites are actually widespread in nature (consider the
common snowflake), and are of general theoretical interest as an example of
crystal growth that is remarkably sensitive to growth conditions and material

parameters. Dendritic solidification has also been examined in the context of
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nonlinear dynamical theory [12]; a moving boundary (solidification front) be-
tween solid and fluid displays bifurcations and chaotic behaviour at increasing
translation velocity, appearing much like viscous fingering in Hele-Shaw cell
experiments.

Interest in dendrites is focussed on several questions: do ‘univeral’ rela-
tionships between growth parameters (tip radius, growth velocity, and degree
of undercooling) exist? and, how are the complex shapes of dendrites *se-
lected’ by nature (or, why are complex shapes selected at all, instead of
simple or purely disordered ones)? If precise answers to these questions are,
at present, lacking, some general aspects of the problem are evident. The
controlling factor appears to be the relative magnitude of thermal diffusion
of both solid and fluid, favoring configurations having the largest surface ar-
eas; simple shapes such as rods, spheres, or plates, etc., are unstable and
qu'ckly give rise to complex 3-dimensional structures which rapidly amplify
the surface area and the ability to transfer heat.

To clarify this point, consider, after Langer [9], two disparate solidifica-
tion regimes (Figure 2.3). In both cases, we have a container filled with
a pure fluid. In (a), the container itself is below the melting point (Tas)
and solidification has occured first on the walls. The solid grows slowly and
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uniformly from the stable fluid phase under conditions of thermodynamic
cquilibrinm. The latent heat of fusion released at the interface is, by neces-
sity, conducted through the solid to the surroundings at T < Tyy. In (b), the
fluid has somehow been cooled below its normal freezing point and solidifica-
tion has been initiated in the interior away from the walls, possibly through
homogeneous nucleation or introduction of a ‘seed’ crystal. Now the latent
lieat must be conducted through a surrounding layer of undercooled fluid,
and the crystal expands into this metastable phase. This is growth governed
by non-equilibrium dynamics, and complicated underlying pattern formation
rules come into play which can lead to dendritic shapes.

To found these ideas mathematically, a model has been developed 9]
based on the Mullins-Sekerka stability criterion (3] [4]. The framework of
the model consists of three principle equations which, it is believed, contain
information on any possible crystallisation pattern. This set of coupled non-
linear differential equations do not directly offer ready solutions, but much
insight can be gained through their application first to simple systems and
then to progressively more realistic examples. In the interest of clarity, the
hidden algebraic steps and required approximations will be ignored, with
only the relevant conclusions offered in this presentation.
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Figure 2.3: Formation of Solid
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The set of equations include the temperature diffusion equation, an equa-
tion of heat conservation at the solid-fluid interface, and the Gibbs-Thompson
equation for the decrease (or increase) of the melting temperature as a func-
tion of the curvature of the interface:

aT

DV*:T — ¥ Tl 0, (2.9)

Lun = (D'¢)(VT), = Dey(VT)y)) - 2, (2.10)
. - _ 2

Tmter]ace = T\l [1 L J . (211)

In the second of these equations, L is the latent heat of fusion per unit
volume, giving on the right hand side the heat released per unit area of the
interface. Primed terms refer to the solid phase, unprimed to the fluid phase.

By introducing a reduced temperature ‘v’ and a frame of reference which
moves with velocity v, of the growing interface, these equations may be recast
into a slightly more useful form (where z' = z - Unt):

2 du

Viu+ 197 = 0, (2.12)
va = D[3(Vu)y = (Vu)g] - o (2.13)
Uinter face = _dofcs (2.14)

where various terms have the following definitions:
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L. vy, = %;’-, interface growth velocity,
9 - I-T d 1 lercooling
2. u = 74, reduced undercooling,

<p

3. 3 = 4. ratio of thermal conductivities of solid and fuid,
4. d, = ﬂ,:‘-,ﬂ, the “capillary length”,
5. I = 27’2. the “thermal diffusion length™,

6. D= ﬁ, thermal diffusivity.

=1

Tas: equilibrium melting temperature,
8. ¢p: specific heat per unit volume,
9. ~: fluid-solid surface tension,

10. : surface curvature (x = }).

To demonstrate the model, consider first a planar interface 8(z,t) = z,
with # the 2-dimensional vector in the plane of the growing solidification
front (Figure 2.4(a)). The solution to the steady state diffusion equation is
given by:

exp [:,-2:—'] —1 liquid, 2’ >0

u = (2.15)
0 solid, 2’ < 0,
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which gives a unit undercooling at infinity, but does not relate the growth

velocity to degree of undercooling.
A sinusoidal perturbation is now imposed onto the interface and the model

attempts to predict how this perturbation will behave in the future (Figure

2.4(b)). The form of the perturbation is given by:
6, = cap(ik - T + wit). (2.16)

T is some 2-dimensional wavevector perpendicular to & which represents
the physical size of the perturbation, and wy is a corresponding “growth pa-
rameter” (one for every ‘k’). Formally, one must solve the time independent
diffusion equation (2.12) subject to the boundary condition (2.14), and insert
the result into the continuity expression (2.13) to obtain an explicit expres-
sion for 6(z,t). Following these steps, Langer derives an approximate expres-

sion for the growth parameter, wy, subject to the condition that kl; < 1:
wi ~ (ko = (1 + B)dok*D) (2.17)

This expression represents the competition between two countervailing
effects: a positive destabilising term proportional to the velocity and a neg-

ative. stabilising term containing the surface tension. In the vicinity of one
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of the sinusoidal *bulges’ projecting into the undercooled melt, the temper-
ature gradient in the fluid will be steeper, which accelerates the growth of
the bulge. But the Gibbs-Thompson equation (capillary effect) reduces the
temperature of the forward bulge and. likewise, increases the temperature of
adjacent depressions. The relative strength of these two mechanisms deter-
mines the ultimate shape of the deformed interface.

According to the original definition, the perturbation will continue to
grow if wy > 0 (destabilising, Figure 2.4(c)), or will diminish in size ifwe <0
(stabilising, Figure 2.4(d)). For a growth parameter that is identically zero

there is a critical wavelength associated with the sinusoidal perturbation:

wi =0, (2.18)

Katab = [-——2-——} (2.19)
23 =V 1+ B)(dole)] '

Astab = 2k_1r = 2ra/doles (2.20)

's

where the ‘stab’ subscript refers to ‘stability’, and a = \/T_;__a. Evidently,
critical stability exists when wi = 0 leading to enhanced growth of pertur-
bations having characteristic wavelength Agqp, and the deformed interface
should exhibit dendritic spacing or side-branch spacing of order Ay qp. Fur-

thermore, the fastest growing dendrite should have wavenumber ksqb/ V3,
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which can be seen if wy is maximised with respect to the wavevector k. The
dependence of this critical wavelength on the thermal conductivity ratio 3
is evident. For helium (to be shown) 3 > 1, whereas, for most substances,
the ratio is ~ 1 [66], and in the model under consideration it is sometimes
assumed that 8 < 1 since this corresponds to the metallurgically interesting
case.

The model has been developed beyond the relatively simple case of the
directional solidification front examined by Mullins and Sckerka; cases in-
cluding the growing sphere and a ncedle dendrite (a paraboloid of revolution
with circular cross-section) have also been critically analysed. Perhaps the
most important experimental observation is that the degree of undercooling
always seems to fix the growth velocity of dendrites and, in turn, the tip
radius,~i. e., there evidently is some un. .lying relationship linking these
factors. It is expected that the model will provide numerical values of the
growth velocity, etc., but this has yet to be achieved conclusively [10] [11].

Observations have shown that the product vr? = constant (material de-
pendent), and that the Peclet number, p = vr¢/2D is in good agreement with
theoretical predictions [1]. What remains is to be shown is that unique val-
ues of v and 7, are selected by the growing dendrite for a given undercooling.
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Langer has proposed that the dendrite selects a growth velocity such that
the tip is marginally stable against splitting (i.e., side branching behaviour
at the tip). This marginal stability hypothesis is expressed quantitatively in
the term o = 2Dd,/vr?, such that for ¢ < o~ (the critical point), the tip
is unstable; the dendrite then grows with ¢ ~ o*. N umerical simulations of
dendritic solidification and the extended model of the growth of spheres and
needles have indicated that o* probably has a value in the neighbourhood of

0.019 to 0.025. This matter will be further discussed in Chapter 5.

2.3 Thermal Conductivity of Fluids

2.3.1 Dense Gases

Distinctions between and amongst the terms ‘gas’, *vapour’, ‘fluid’, and ‘liq-
uid’ do not seem generally accepted, so in the etymological view perhaps a
‘dense gas’ and ‘fluid’ are one and the same. However, in the realm of sta-
tistical mechanical theories a clear distinction exists and the two cases are

examined from divergent standpoints.

There are three principle intermolecular transport mechanisms in fluids:
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transport of mass (defined by the cocfficient of diffusion or sclf-diffusion),
the transport of momentum (defined by the cocflicient of viscosity), and the
transport of energy (defined by the cocfficient of thermal conductivity). Each
of these may be described by a similiar flux equation of the following form,
with the particular coefficient uniquely dependent on the substance and its

physical state (pressure, density, temperature):
Q=-KVo (2.21)

where Q is the flux vector, I\ is the coefficient, and V& is the gradient
of a system parameter (diffusion: species concentration; viscosity: velocity
of adjacent fluid layers; thermal conductivity: temperature). These cocthi-
cients may be calculated on the basis of certain sets of assumptions regarding
the form of intermolecular interactions (e. g., hard sphere, Lennard-Jones-
Devonshire potential, etc.), and, when the magnitudes are compared with
experimental values, conclusions may be drawn as to the validity of the as-
sumptions. In other words, the transport coefficients are the only ‘windows’
that we have on real situations and the only means at our disposal to test
statistical theories.

In the dilute gas limit it is assumed that the particles have vanishing size,
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or have dimensions very much smaller than their average spacing. The results
of calculations of the thermal conductivity coefficient from the Boltzmann

Equation in the dilute gas limit [47] are given as follows:

VT /M
A = (8.3224 x 1073) (2.22)

a2Q22)=(T=)’
Q1) = [ [7 ey QY g)dy. (223)
Q%(y) = 2= /m(l — cos? )bdb, (2.24)
0

where v = /pg/2kT, i is the reduced mass, x is the angle of deflection, b
is the impact parameter, and g is the initial relative velocity of the colliding
particles. The prefactor constant in equation (2.22) leaves ), in units of
Wm-'K-! . o is the radial separation of particles at contact and T is the
reduced temperature, given by T* = kT/e, where € is the minimum of the

Lennard-Jones-Devonshire potential:
U(r) = de [(—)12 - (5:-)6] : (2.25)

For helium(4), o = 2.5764, ¢/k = 10.22K [47]. In general, the Q(22)+(T*)
integrals cannot be solved analytically and for practical purposes numerical
calculations are required (however, for the rigid sphere case, Q24*(T*) re-
duces to 1). Higher approximations (i. e., A3) may be made, and are given
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by Hirschfelder [47].

The above development is preliminary to the required theory, namely,
that for the thermal c'onductivity of a dense gas (i.e., under high pressure,
or at high temperature). Enskog was the first to derive a transport theory
based on a model of rigid spheres of diameter o. Binary collisions only are
considered, but, unlike the dilute gas, molecules are assumed to have a non-
vanishing size. As the density of a gas is increased, the collision frequency
increases because ¢ is not negligibly small compared to the mean free path,
but also decreases because nearest neighbours shield a given molecule from
incoming molecules.

The thermal conductivity for a dense gas of rigid spheres in the modified
Enskog theory (MET) is given by:

0
A= ’\‘_f"’ [y +12+ 0.753y] . (2.26)

where X0 is the dilute gas limit value (A;), and:

y = 2oL (2.27)

Y is given by the virial expansion, which is:

b b b
Y =1+ 0.625(=2) + 0.2869(=)? + 0.115(=)3, 2.28
+ o(V) (V) (V) (2.28)
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where b, = 2rNo?. b, is an approximation to the second virial coefficient in

the virial equation of state for a real gas of interacting particles:

PV _ . B(I) C(T) D(T)
FF =ttt T T (2.29)

V is the molar volume of the gas.

It has been shown that this expression for the single case of helium gives
an excellent representation of the thermal conductivity data at high pressures
near room temperature [48] using the experimental values of LeNeindre [49)],
and that sophisticated modern improvements to the Enskog theory [53] do

not seem useful for helium.

2.3.2 Liquids

The approach to thermal conduction in liquids has differed from the case
of dense gases. The structural arrangement has been assumed to consist
of unimolecular cells with intracellular vibrations and possible intercellular
displacements. In fact, the picture is much like that of a solid but with

relaxed restrictions on mobility.

However, the most simple model consists of an extension of classical ki-
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netic gas theory, which. as noted in section 2.1, gives the following:
: l (2.30)
A= zepvl 2,
3 v

For liquids, the most difficult term to evaluate is I, the mean free path
between collisions, which for the liquid state, must be quite small and at
least not larger than several molecular diameters. The dependence on the
isochoric specific heat per unit volume ¢, is anticipated if v and ! are relatively
constant with respect to molar volume or temperature at constant pressure
(a reasonable description of the conditions of this experiment).

More advanced theories include the work of Horrocks and McLaughlin
[54], who examined thermal conduction under the assumption that the liquid
state has a close-packed lattice structure made up of unimolecular cells. En-
ergy transport between layers of the liquid is mediated via two mechanisms:
convective motion of molecules from cell to cell, and vibrational transfer of
energy by molecules between cells. The magnitude of the convective term
was shown to be only about 1% of the vibrational term, leading to a value

of the thermal conductivity dependent on the specific heat:

vave, (2.31)

a

AN =

where v is the intracellular lattice frequency, a is the nearest neighbour dis-
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tance, « = (vV2V/N)¥, and C, is the isochoric specific heat per molecule. In

the harmonic oscillator approximation {53}, the lattice frequency is replaced

by:

L

L [22€ 1 Mv'z)] ° (2.32)

V=27r\/m a?

where m is the mass, Z = 12 is the co-ordination number, v* = odfv, v =

V/N, and L and M are summation constants having values 22.11 and 10.56,

respectively. € and o are defined in terms of the Lennard-Jones-Devonshire

potential, given above.
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Chapter 3

Experimental Method

3.1 Review of Established Techniques

Historically, a variety of experimental techniques have been developed to
measure the thermal conductivity of fluids (liquids and gases) [21]. These
methods fall, generally speaking, into two categories: ‘steady state’ or ‘dy-
namic’. In recent years, the ‘transient hot wire’ technique has become the
pre-eminent dynamic method owing to high precision and rapid data acqui-
sition by computer [22]. Unfortunately, this method is unsuitable at low
temperatures for reasons to be presented later.

The object of the steady state method is to set up isothermal surfaces at
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known temperatures with a known quantity of heat flowing between them.
The sample is confined within the space bounded by these surfaces, and A
is calculated with Fourier's equation. The isothermal surfaces often are just
the structural components of the cell, such as external walls. In the pursuit
of mathematical simplicity and ease of manufacture, designs are restricted to
symmetrical geometries such as planes, cylinders, or spheres. This method
requires sensitive appraisal and minimisation of secondary heat flows. The
complete heat balance equation (referring to all paths of heat flow into and
from thermometer locations) must be examined carefully, all terms identi-
fied and either calculated or estimated. As heat flow is a strictly three-
dimensional phenomena (there being no examples of perfect or near-perfect
thermal insulators), this calculation can become very complicated and te-
dious. This is a serious problem for the steady state method, and gives rise
to a series of correction terms.

A typical steady state experiment uses concentric cylinders; an example
is the extensive work of Zeibland and Burton [23] with heavy water as the
sample fluid. More recent developments include the work of Tufeu et. al.[24]
on rare gases at high pressure. A variation of the concentric cylinder design
is that developed by Liedenfrost [25] in which the cylinders were capped by
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concentric hemispheres. Each of these methods uses an electrically heated
metal cylinder within another cylinder of slightly larger bore; the annular
gap that scparates them is filled with the sample fluid. By mecasuring Q
(heat delivered to inner cylinder and transported across the fluid) and AT
(temperature difference between cylinders), A of the fluid may be determined
using modified form of Fourier's equation. This method has been selected for
the present project.

Other steady state experimental designs include horizontal parallel plates,
concentric spheres, and the hot wire cell. In the first design, two parallel,
circular metal plates are separated by a gap which contains the sample fluid.
The upper plate is heated electrically ( Q) and the temperature difference AT
between plates is monitored. The thermal conductivity of the fluid layer is

found to first order through the foliowing equation:

_ e
= 157 (3.1)

where [ is the layer thickness and 4 is the plate area.
A series of corrections must be made to account for extraneous heat path-
ways. Usually the upper plate is surrounded by an independently heated

guard ring. This design has been used at low pressure and room tempera-
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ture [27], as well as for high pressures [28]. The need for a large diameter
containment cell (since the plate diameter : gap thickness ratio should be
as large as practical), and the presence of large secondary heat flow render
this design less desirable than the concentric cylinder method for the present
experiment. The horizontal parallel plate geometry is particularly suited to
measurements near the critical point of fluids since gravitational convection
due to the divergent compressibility of fluids near the critical point is min-
imised by using a small gap (the fluid is situated in a constant gravitational
field).

The concentric sphere design is an extension of the steady state method
to spherical geometry [26]. An inner solid sphere is heated; energy flows
radially across a fluid-filled space to an outer sphere and, as before, the
temperature difference between the spheres is recorded. Practical difficulties
inherent in this design,~namely, the problem of precise concentric alignment
of the spheres, and the nced for a large external pressure cell,~have made
the relative simplicity of construction of the concentric cylinder design more
attractive. The hot wire cell (steady state), has a single, serious deficiency. A
single platinum wire, suspended longitudinally inside a hollow cylindrical cell,
is heated electrically and its’ temperature history 1s recorded. The volume
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of surrounding fluid is much larger than that in the concentric cylinder case,
and undesireable convective flow is more likely (except for the lowest heating
rates, at which level the temperature differences would be subject to large
uncertainties).

In non-steady state, or dynamic, experiments, the objective is to set up
conditions corresponding to equation (3.10). In these situations it has been
prudent to seek conditions which simplify both the theory and design. It has
been shown [21, page 72] that one of the most simple configurations is that
of an infinite, continuous line source of heat in a infinite volume of isotropic,
homogeneous fluid. An alternative dynamic method also employs coaxial
cylinders [40].

The theory of the transient hot-wire experiment assumes a continuous line
source of heat immersed in an infinite volume of fluid [29]. In practise, a fine
wire is suspended along the longitudinal axis of a hollow cylindrical vessel;
the ratio of wire diameter to vessel diameter is typically ~ 1073, The wire
is heated by passing a current through it, and the temperature of the wire is
recorded as a function of time. Data is recorded with millisecond precision
up to the onset of convection. Generally speaking, the rate at which the wire
temperature increases is directly dependent on the thermal conductivity of
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the surrounding fluid (i.e., the ability to carry away heat).

Since the heating wire is also its’ own temperature sensor, a material with
good thermal sensitivity (%; R = electrical resistance) is required, and the
material of first choice has always been platinum; however, at temperatures
below ~ 204, % for platinum is too small for accurate temperature deter-
mination. The lack of a suitable and convenient replacement for platinum
therefore makes the transient hot wire technique unsuitable for the present
project.

The coaxial cylinder (cooling) method developed by Golubev [40] uses
concentric, coaxial cylinders which confine the sample fluid in the relatively
small annular gap. The inner cylinder is heated briefly and then the heater
is switched off. Cooling of the inner cylinder proceeds by conduction of
heat across the gap. By monitoring the cooling rate of the inner cylinder
as a function of time, A of the sample may be determined. The key to this
method is that the temperature decay is found to be exponentiai over some
time domain called the regular regime, which can conveniently be analysed.
However. this method requires a relatively large volume of fluid, a relatively
large gap (~ lmm), and a large temperature difference (~ 5K’) between the

cvlinders in order to be effective. As well, accurate knowledge of the heat
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capacity of the heater and its’ constituent parts is needed. This method was

not selected for the present project.

3.2 Theory of Operation

Although the two elementary equations which form the mathematical foun-
dation of this experiment.- namecly. the Fourier Equation and the Equation
of Continuity,- are well known, their derivation is straightforward. We begin
by considering an isotropic, homogeneous, quiescent fluid medium without
sources or sinks of heat.

The Fourier transport equation (1811) is simply an empirical statement:
the flux of heat across a given boundary was found to be proportional to the

temperature gradient at the boundary:
Qx-VT (3.2)

where the constant of proportionality is just the thermal conductivity of the

medium.

O = —AVT (3.3)

The minus sign appears because Leat always flows from the hotter to the
colder region. The assumptions of isotropicity and homogeneity apply to
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fluid properties such as A, C (specific heat). and p (density). Furthermore,
is necessary to assume that these same properties are independent of tem-
perature over small temperature intervals, otherwise non-linear differential
equations will result and numerical solution will be necessary. Conversely,
we can restrict the experimental conditions at the moment of measurement
to be ‘isothermal’ (or, ncarly so).

The fluid in question is assumed to be quiescent (convection free); that
is. we arc interested only in thermal conductivity through the mechanism
of intermolecular interactions, without bulk movement of fluid. Convective
transport of heat in a fluid, driven by density variations due to temperature
gradients, is a complex phenomiena beyond :he scope or intent of this project.
Special consideration was given to ensuring that convective transport could
uot take place, or would be insignificant (sce section 3.3.3).

At some point ‘P’ in the fluid, we form the usual Cartesian coordinate
system (x.,y,z) and enclose ‘P’ at the centre of a small cube of dimensions
(2dz,2dy,2dz). Refer to Figure 3.1. We assume that there exist continuously
variable heat fluxes along the coordinate axes throughout the fluid. However,
we assume that the differential cube is uniform in temperature. In the x-
direction, we then have a heat flow into the cube at surface ABCD given by
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Figure 3.1: Heat Flux in a Fluid
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(3.4), and one out of the cube at surface EFGH (3.5):
[heat(in)]; = (Q; — %—Q—t(l.r)-idyd:& (3.4)
T

[heat(out)). =(0Q, + Qrdl)4dl/d~5t (3.3)

where Q, (lz) is the time-independent heat flow at point ‘P’ in the x-
direction, and &t is a small time interval. Consequently, the net heat gain by

the cube is the difference between (3.4) and (3.5):

[net(in)], = —86£Id;rdyd:6t. (3.6)

More generally, in 3 dimensions, this becomes:
[net(in)] = —8dxdyd=¢tV - Q. (3.7)

But we can also express the lieat gain thermodynamically in terms of the

temperature rise since the Net Heat(in) = (Mass) x (Sp. Heat), x 6T:
[net(in)] = p8dxdydzCpéT. (3.8)

By equating (3.7) and (3.8) we arrive at the Equation of (thermal) Con-

tinuity,
ar

V'Q+pCp-(?—t'=0 (3.9)
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and. by substituting (3.3) into (3.9) and taking a differentially small time

interval 6t, we arrive at the thermal diffusion equation:

pCp 0T _

2 -_ =
v Aot

0. (3.10)

Assuming elimination of intrinsic heat sources and sinks in the fluid, the
question can be examined via two distinct routes. The first would be to set

up ‘steady-state’ experimental conditions, such that:

oT _

- =0. (3.11)

We would then be left with Laplace’s equation for the temperature field:
VT = 0. (3.12)

Alternatively, a *dynamic’ experiment could be performed, allowing spa-
tiotemporal variation of the fluid temperature. A thorough theoretical treat-
ment of both cases for many geometries is to be found in Carslaw and Jacger
(29].

Since we have a steady state experiment, we consider equation (3.12),

expressed in cylindrical coordinates:

PT 19T 19T T _,

4 = i Vi 3.1
52 T oy Troe T a9z (3-13)
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We assume that the design will allow the following simplifying conditions:

or _oT _ (3.14)

d= 04
i.c., longitudinal and angular temperature dependence are zero. This would
be the case only for infinitely long cylinders; this unrealisable requirement

can be simulated in the apparatus. Laplace’s equation thus reduces to:

2
T 10T _ (3.15)

and applies to the sample medium corfined within the gap, with the ‘inner’
and “outer’ cylinders as the isothermal boundaries to the sample. During
the experiment, the inner cylinder is heated, and heat flow is from ‘inner’ to
‘outer’ across the gap.

Then, with additional boundary conditions: (1) T = Tj at r = ry isother-
mal surface of inner cylinder, and (2) T =Tz at 7 =12 isothermal surface of

outer cylinder, the general solution of (3.13):
T(r) =Cilnr + C, (3.16)

gives rise to the particular solution:

(T) - I;)Inr N Tolnry —ThInr,

InZ InZ
rg ra

(3.17)

T(r)=
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Applying boundary conditions (3.14) in the case of the Fourier equation

(3.3) in cylindrical coordinates. we have:
Q(r) = —\ L (3.18)

and, making the substitution (3.18) into (3.19), have:

: I, -1y 1
Q) = M=)+ (3.19)

This expresses the heat flux, Q (X5). as a function of radial distance from

™m
the central axis. The total heat (power), Q(H'). transmitted radially from
the inner cylinder of length [ is simply the arca of the inner cylinder times

the flux at that radius (Q(r1)):

T, -T,

In 2
ri

Q = 27IrQ(r;) = 2xl\( ). (3.20)

Equation (3.20) is the basic defining equation for the steady state ex-
periment (applying to concentric, coaxial cylinders). It relates the power
(Q(W)) delivered by the (heated) inner cylinder to the temperature differ-
cnce between the cylinders (T} > T»).

Rewritten, (3.20) becomes a formula for the thermal conductivity:

ln(ff) 1
27!'1 (T1 - Tz)

A= Q( (3.21)
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Geometric quantities can be regrouped into a single constant term, giving

rise to the simplified form:

QK
A= . .22
AT (3.22)

In summary, the steady state type of experiment involves just the mea-
surcment of Q (heater power) and temperature difference (AT). Corrections

terms added in the final analysis will be discussed in section 3.4.2.

3.3 Details of Apparatus

3.3.1 External High Pressure Cell

The requirements of the cell body were: (a) high strength, (b) good thermal
conductivity, (¢) cylindrical symmetry, (d) large thermal mass (acts as a
heat sink), and (e) sufficient internal working volume. Beryllium copper
alloy was selected as the material for the cell owing to its relatively high
tensile strength and thermal conductivity compared to stainless steel [30]. A

schematic diagram of the cell is shown in Figure 3.2.
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Figure 3.2: Schematic Diagram of Experimental Arrangement.
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A OFC cold finger attachment on liquid helium dewar (clamps cell)
B Radiation shield near cell temperature

C Radiation shicld at liquid nitrogen temperature (77 K)

D External vacuum can arrangement

F High pressure capillary

F Compression nut

G Concentric cylinder arrangement

H BeCu plug (seals to cell body, R)

J Auxiliary thermometer

K Harwood 3M high pressure conduit containing lead-in wires
L Fecdthrough block (at room temperature)

M Electrical feedthrough

N1, N2 Compression nut

R BeCu cell body



T Calibrated germanium thermometer



The cell (R) was machined from a single piece of Beryllium Copper (‘Be-
Cu 25") supplied by Brush Wellman Inc. (Brush Wellman Inc., 3516 Cadieux
Rd., Detroit, 48224). After heat treatment at 325°C for 4 hours (followed
by air-cooling), the cell was found to have a hardness of 42 on the Rockwell
‘C” scale, and, according to the supplier’s literature, should have an ultimate
tensile strength of ~ 1.3 X 10"c—f;-?;. The tensile strengths of most materi-
als used in high pressure research increase with a decrease in temperature
[31]. The approximate rupture pressure of tubes of given material of known

ultimate tensile strength, is provided by [31]:

Pop=0clna (3.23)

where ¢ = ultimate tensile strength, a = ;'%’ R = outer radius, 1o = inner

radius. This equation is based on the assumption that the entire thickness of
the tube wall has gone over into the plastic state. Insertion of the appropriate
numbers for the cell gave a burst pressure of ~ 16.6 kbar,-a safety factor of at
least eight (however, other components such as the capillary had an ultimate
burst pressure of ~ 6 kbar).

The -ell maintained the cylindrical symmetry dictated by its internal

components. The larger end of the cell provided reserve strength for the
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threading of the compression nut (N1), as well as a thermal sink and a place
on which to mount thermometers (T) and (J). The high pressure gas capillary
(E) and the high pressure wiring condnit (K) were introduced to the cell
along the central, longitudinal axis. The conduit was a stainless steel tube
(Harwood 3M, 0.375" o.d. x 0.025" i.d. x 2 meter long), which conveyed the
necessary wiring from the cell (at operating temperature) to the feedthrough
block (L) at room temperature. The length of tubing contributed to greater
thermal isolation of the cell.

The high pressure conduit to the electrical feedthrough block was hard
soldered into a BeCu plug (H) which scaled to the cell body through an
Indium coated soft BeCu ring. The high pressure gas capillary (E) entered
at the opposite end of the cell; a standard conical fitting, into which the
capillary (1/32” o.d. x 0.008” i.d.) was hard soldered, was forced into a
conical seat by an external nut (F).

Also shown in Figure 3.2 are: (A) cold finger attachment (OFC) on the
dewar; (B) radiation shield near cell temperature; (C) radiation shield at
Ny(1) temperature; (D) external vacuum can(s); (G) concentric cylinder ar-
rangement; (M) high pressure electrical feedthrough plug; (N2) compression

nut for (M).



3.3.2 Electrical Feedthrough

To construct a satisfactory high pressure clectrical feedthrough connecting
the internal heater and thermometers to external instruments was a primary
engineering goal of this project. The measitring system required a minimum
of 6-8 wires: 2 for the differential thermecouple, up to 4 current lead-in wires
for the internal heater, and 2 voltage lead-in wires for :he internal heater.

Several feedthrough types were tried but were found to be wholly or par-
tially deficient. A new type had to be developed for this project to provide
a high pressure seal for helium to 2 kbar with repeated cycling. The require-
ment for thermal cycling between 300 K and 4 K was found to be the most
challenging criterion. A schematic diagram of the final design is shown in
Figure 3.3.

Feedthrough designs which failed included the pressed pyrophillite cone™
and the “epoxy-filled well”. Rather than enter a detailed discussion of these
methods, only a brief description of cach and their failure mode will be pre-
sented. In the former, wires were embedded in a conical layer of pyrophillite

powder which, when subjected to 200 bar pressure, became transformed into

a ceramic-like seal.
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A Feedthrough plug (hardened BeCu)

B Wire bundle (internal)

C Energising comvression nut

D " ‘ulded epoxy cone containing wire bundle
E Teflon Tape layer

F Vespel conical shell

G Wire bundle (external)

H Body of feedthrough block

J .Cu scaling ring (coated with Indium)



Extreme care had to be taken cither (a) to avoid pinching off the wires
while pressing the layer. or (b) to insufficiently press the layer. leading to
leaks. The other design consisted of a metal plug with a central hole con-
taining the wire bundle and cpoxy. Both designs worked well at room tem-
perature but would begin to leak as the cell temperature was lowered, owing
to differential elastic deformations of the various components or to formation
of fine cracks in the epoxy. Since the cell was maintained in high vacuum,
such leaks were intolerable.

In view of these deficiencies, a new approach had to be taken. This
involved two parts: (a) a multi-wire feedthrough to withstand repeated pres-
surisation. and (b) removal of the feedthrough from the region of low tem-
perature. [t became apparent that leaks due to deformation of feedthrongh
components through differential thermal contractions (or crack formation)
could not be easily overcome: placing the feedthrough outside of the cryostat
and maintaining it at room temperature, with a high pressure tube (couduit)
connecting to the cell, could entirely avoid this problem. The only drawback
introduced by this design was a heat leak to the cell. The feedthrough plug
(Figure 3.2, (M)) was held by compression nut (N2) in a hardened BeCu
block (L): the plug seal consisted of an Indium coated soft BeCu ring.
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After several stages of evolution, the following design was developed (Fig-
ure 3.3). The feedthrough consisted of five components: wire bundle (up to
16 #42 AWG Copper wires) (B)-(G). wolded Stycast 2850 epoxy cone (D).
Teflon Tape layer (E), Vespel (SP - 1) conical shell (F). and hardened BeCu
plug (housing the above components) (A). The conical aperture in the plug,
Vespel shell, aud the molded epoxy cone all have the same half-angle of 7.3°.
Vespel is an extremely durable polyamide plastic material that is easily ma-
chined to a fine tolerance; being highly elastic compared to the hardened
BeCu components, the Vespel sh2ll and Teflon Tape layer provided the es-
sential compliance to pressure vaiiations during the course of the experiment.

The feedtlirough was constructed as follows. First, the wires were strung
individually on a simple wooden frame and a short portion (~ 2 mm) of
the varnish chemically removed near one end. These exposed portions were
cleaned with methanol, then coated with a thin layer of degassed Stycast
2850. The epoxy was permitted to harden for 24 hours. Individual coating of
wires insured a better epoxy-metal bond and eliminated leakage underneath
the varnish.

Next. the wires were cut to length and soldered together at each end so

that the coated sections were located side by side. The bundle was passed



through a brass mold (not shown, but similiar in size and shape to (A), the
plug) having a conical aperture of half-angle of 7.5% and of the same depth
as the Vespel shell. The aperture had been polished using wooden tools and
commercial polishing compounds (alumina, United States Products Col),
then coated with mold-release. The wire bundle was pulled through the mold
until the coated sections were about half-way through the aperture. A fresh
mixture of degassed Stycast 2850 was prepared and injected into the mold
by hypodermic needle, insuring that no air bubbles were trapped and that
the epoxy completely wetted all surfaces in the bundle. After centering the
bundle in the mold. the epoxy was permitted to harden at room temperature
for at least 24 hours.

By briefly warming the brass mold with a hot-air gun (t» 150 C.) and
pulling gently on the wires. the bundle imbedded in a Stycast cone was
extracted. Cleaning and inspection for defects were then performed.

The Teflon Tape layer was prepared by winding a strip of ordinary sealant
tape (1 mm x 10 cm) tightly with 50% overlap onto the end of a tapered
steel rod (half-angle = 7.3°) that had been coated with mold-release. The
wrapped rod was then hand-forced with rotation into the brass mold until
the Teflon layer had become uniformly mashed into a single semi-transparent
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picce, This intact layer was removed from the steel rod and carefully placed
over the Stycast cone.

The aperture in the plug (A) was polished and tinned with Indium.
The Vespel conical shell was inserted loosely into this aperture. followed
by threading of the wire bundle through it until the Stycast cone came into
contact with the Vespel. The compression nut (C) was carefully installed.
and. with a special tool, screwed down until the Stycast cone was firmly
scated.

The BeCu feedthrough block (Figure 3.2, (L)) which always remained
at room temperature during the experiment, had been hard soldered to a
2 meter length of straight Harwood 3M tubing, at the other end of which
a special BeCu (H) plug had been hard soldered which eventually sealed at
the cell. The wire bundle was fed into the block and pulled through the
3M tube, using a length of pizno wire. The feedthrough plug (Figure 3.2,
(M)) at the same time was installed in the block and seated with closure
nut (N2). The measuring unit, consisting of the concentric cylinders, was
mounted onto the BeCu plug, the necessary wiring connections made, and
the plug was inserted into the cell and seated firmly by the external closure
nut (N1). The 3M tube was wound into a 5 cm. dia. coil (about 30 cm in
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length overall) in order to fit within the vacuum can.

3.3.3 Concentric Cylinders

The measuring system consisted of a pair of eylinders: cylinder No. 1 (Fig-
ure 3.4. (J)). the "emitting’ or inner cylinder (5.994 mm dia. x 17.526 mm
long). made of solid BeCu except for a central longitudinal hole which car-
ried an electric heater; cyvlinder No. 2 (M), the ‘receiving’ or outer eylinder
(6.198 mm bore x 31.013 mm lony). also made of BeCu, was hollow and
accepted cylinder No. 1 within the bore with a fixed gap of 102m (L). The
dimensions of the various BeCu cylinder components were measured at room
temperature with an electronic - ruier caliper accurate to within £ 0.0001
inch. or £ 0.002 mm: the dimensions reported here are therefore precise to
within 2 pm. The opposing faces of the inner and outer cylinders were pol-
ished to a mirror finish using a commercial lapping compound (partical size:
1 micron). The unusually small gap, enclosing a small volume of fluid, had
several advantages. The system reached a quasi-steady state rapidly, facil-
itating measurements. The temperature differences were always very small

(~ 100mK or less) which meant that the value of thermal conductivity was
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Figure 3.4: Schematic Diagram of the Concentric Cylinders
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A Vespel end cap

B Screw

C Vespel alignment piece

D Guard cylinder

E Vespel spacer

F Thermocouple channel (T,)

G Thermocouple well (T))

H Thermocouple location

J Inner cylinder

K Internal heater

L Annular gap

M Outer cylinder

S Vespel end cap

63



well defined. and lower heater power could be used at lower temperatures.
The purpose of the small gap was to ensure that convection was strongly
inhibited in the apparatus. According to fluid mechanies theory, the onset
of convection in a fluid is likely if the dimensionless Rayleigh Number. Ra.
exceeds some critical value, R..

R, has the following form, being itself the product of two hydrodynamic

parameters, the Grashof Number and the Prandtl Number:

3 .2 /
R, = GrPr = [‘-l—’-’—“n%él‘l] [”—iﬂ} (3.24)
2 3,
= [—————” 2 AT] (3.23)

where 7 is the shear viscosity, ¢, is the specific heat, A is the thermal con-
ductivity. d is a relevant cell dimension (for concentric cylinders, it is the
gap). p is the fluid density, D is the thermal diffusivity, a, is the coefficient
of thermal expansion, AT is the temperature difference between layers, g 1s
the gravitational acceler.‘ion.

Substitution of the appropriate term values from numerous published
sources [56](60]. gives R, ~ 0.04 at T = 20.5 K, P = 1.841 kbar, AT =0.1
K.and d = 0.01 cm. The critical Rayleigh number for helium confined within
a horizontal parallel plate Rayleigh-Bénard cell has recently been calculated
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[58]. giving R. = 1708, which is five orders of magnitude larger than R,
indicating that convection was extremely unlikely in the annular gap.

The heater (IX). contained within a stainless steel tube, was substantially
longer than the inner cylinder; the additional length of the heater carried a
pair of ‘guard cylinders’ (D),- one at either end of the inner cylinder (J) and
separated from it by a Vespel spacer (E). The entire arrangement was capped
at each end by a Vespel “alignment picce’ (C) which fit snugly into the hollow
bore of the outer cylinder, ensuring concentric alignment and uniform gap.
Each end of the outer cylinder was fitted with a Vespel *end cap’ (A) and
(S). and held together with screws (B).

There were two channels machined into the inner and outer eylinders in
which the separate differential thermocouple sensors were located. A groove
(F). terminating in a small well (H) which penetrated halfway into the thick-
ness of the outer cylinder, carried one sensor at Ty; a small hole drilled
into the inner cylinder (G) nroraded the Jicati n for the other sensor at T,
(T, > T;). The holes were filled with a mixture of Apiezon N grease and
copper powder to improve thermal contact between thermocouples and the

cylinders.



The heater consisted of a 357 steel drill rod former which was covered with
an cquivalent length of heat shrinkabic rubber tubing. A 175 Q1 Manganin
wire was wound in bifilar fashion over the rubber tubing and sealed with G.E.
=031 varnish. then coated with a layer of vacuum grease mixed with copper
powder. The heater was installed inside the stainless steel tube, which then
provided a linear structural mount for the inner cylinder, guard cylinders,
spacers and alignment pieces.

During cxperimental trials, a current was passed through the Manganin
wire and the resulting heat flowed radially outward through the stainless steel
tube to the inner cylinder and guard cylinders. The basis of this method is
that a substantive portion of heat generated in the inner cylinder should flow
radially across the fluid-filled gap to outer cylinder. Heat may ‘escape’ from
the ends of the inner cylinder, but this is reduced significantly by presence of
the Vespel spacers, which have u relatively low thermal conductivity; further-
more, heat which does cross the Vespel spacers is replaced by heat from the
heated guard cylinders flowing in the opposite direction. Only that portion
of the total heat generated by the heater which flows into the inner cylin-
der is counted in the calcuiation of the thermal conductivity; since the inner
cylinder covers 56.48% of the total length of the heater, this is the fraction
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of total power which was used in the calculation of \ (refer to section 3.5.3

for further discussion on this point).

3.3.4 Thermocouples

It has been shown [32] that the combination of Au + 0.07% Fe vs. Chromel
has the highest thermoelectric power over the temperature range of interest
in this project. Wires of these types were obtained from the Sigmund Cohn
Co. (distributor: Leico Industries Inc., 250 W. 57 St., N.Y., N.Y. 10107)
and thermocouples were made according to the following procedure. Refer
to Figure 3.5.

A thermocouple is formed where two different metals are chemically
joined, or fused. In this case, the wires (0.003” dia.) were melted together
by passing an electric current through them. First, the dissimiliar wires were
each cut to the necessary length and stripped of their Teflon insulation at the
ends (a stereo microscope was indispensible for this and other tasks). The
exposed segments of the wires were held together side by side between two
copper alligator clips separated by 5mm. The alligator clips were electrt ally

insulated from each other and connected through an open switch to a Variac
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He gas in wmp

Chromel = | out

Figure 3.5: Manufacture of Thermocouples
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set at 12 VAC. The alligator clip arrangement was then installed side a
glass tube and helinm gas passed through it for several minutes in order to
reduce oxidation contanmination. When the switch was closed. current flowed
throngh the circuit which inclnded a path across the parallel Chromel and
AuFe wires. This voltage was sufficient to suddenly melt the wires and fuse
them. The reproducibility of these trials was not very high. so it was found
necessary to include extra length in case the wires failed to fuse together, or
did so poorly. Since a temperature difference was measured. a differential
pair of thermocouples was made having a common central element of AuFe;
the voltage between the outer clemenws {Chrowel) was proportional to AT,

Calibration of he thermocouples was not deemed necessary, since the
added effort would not be rewarded with any substantial improvement in the
overall precision of the experiment (other factors, such as Q. being subject
to relatively large uncertainty). The thermoelectric power of the Chromel
vs. AuFe pair was derived frem published sources (32], which provide a 14-
order polynomial equation in temperature for a generic thermocouple of this
tvpe. The effect of pressure on thermoelectric power [33] is probably very
small in the range of pressures in use in this exp.riment, and could safely
be ignored. For example, Bartholin [34] has shown that the thermoelectric

69



power of a copper-constantan thermocouple decreased linearly by only 0.25%

when subjected to pressures up to 3 kbar.

3.3.5 <cCryostat and High Pressure System

A controlled temperature dewar (Irternational Cryogenics Inc.. model 31-
1000) with optical tail’ was modified for this experimeat. The high pressure
cell was attached to the Swenson temperature-control block with the con-
duit to the feedthrough block suspended vertically down; a pair of radiation
shields at liquid nitrogen and helium temperatures enclosed the cell. and the
whole arrangement was encased in a vacuum can. A backing pump and oil
diffusion pump maintained a vacuum pressure at or below 107 Torr during
experiments.

Helinm gas was couveyed v :he cell via a stainless steel capillary (35"
o.d. x 0.008" i.d.) from the high pressure section. Purired helium gas
(“Matheson purity” 99.9999% He, containing less than 1 ppm in total of Np,
0,, Ar, CO, CO,, THC as CH,, and H,0) from the supply bottle (Figure
3.6, (E)) passed through a filtre (Messer Griesheim, HD absorber) (G) and

coud trap (F) befor= entering the low-pressure side of a two-stage diaphragm
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compressor (American Instrument Co.. catalog 46-14021. 2 kbar max.) (D):
the high pressure side led to a Heise 100.000 psi Bourdon gange (C) before
leading to the capillary and cell (A). Use of small diameter capillary reduced

the heat leak to the cell.



Figure 3.7: Schematic Diagram of Complete System
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A High pressure cell containing concentric eylinders measuring system
B Calibrated Germaninm thermoteter

C Cryostat equipped with Swenson cooler (liquid helium evapourator) and

clectric heater

D High pressure electical feedthrough block connected to cell A by 2 meter

length of Harwood 3M conduit containing lead-in wires
E Lakeshore Model 120 constant current source for the thermometer
F Computer controlled power supply for the cell heater
G Stable resistor (9.978 )
H 24 VDC power supply for inner cylinder heater
J Keithley Model 199 DMM with 8 channel Scanner
K Keithley Model 181 Nanovoltmeter
L IEEE 488 GPIB

N Zenith Data Systems microcomputer
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3.4 Experimental Method

3.4.1 Details of Method

At the beginning of a trial. the cell was flushed with Helinm four times
to >4000 psi. thereby diluting entrapped contamination (water vapour, air,
ete.) by a factor of about 10°. The maximum desired working pressure was
then developed in the cell, nsing the diaphragm compressor to 2 kbar. Next,
the crvostat was evacuated and filled with cryogenic liquids to commence
cell cool-down. Between 300 K and approximately 30 K, no attempt was
made to regulate the cell temperature other than merely allowing it to drift
steadily down in accordance with the evapouration rate of cryogenic liquids
in the Swenson block. Below about 30 K, a combination of the evapouration
rate and a controlled heating rate, using a custom-built computer controlled
power supply, was used to hold the cell at fixed temperatures (within £ 10
mK). Primary readings of cell temperature were obtained from a Germanium
resistance sensoi {Lakeshore Cryotronics Inc., model GR-200B-2500) (Figure
3.2, (T)). calibrated by the supplier against maintained standards (0.5 to 30
I, EPT-76; >30 K, IPTS-68). A Lakeshore Cryotronics stable current sup-
ply (model 120 Current Source) delivered a regulated current through the
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sensor. and the IR drop was measured with a Keithley Model 199 DMM.
The resulting temperature was calculated using Chebychev polynomial coef-
ficients supplied by the manufacturer. and could be read to within £1 mlx.
However, ever present cell thermal fluctuations and noise in the DMM led to
apparent fluctuations of about % 40 mK ncar 77 K, and about £3 mK near
10 K.

At a fixed cell pressure, readings were obtained during cool down for the
fluid phase starting at about 80 K. The cooling rate was determined by con-
trolling the evapouration of liquid helium through the Swenson block. This
was accomplished with a network of vernier ncedle valves (E) (Figure 3.8)
and flow gauges (F) located between the Swenson block and the laboratory
heliwm gas recovery system (G). An adjustable pressure regulator (D) main-
tained constant boil-off of the liquid helium. Interest was focussed on the
region below 77 K (LN,), since an uninterrupted run to 7 K could be made
using liquid helium as the cryogen. The high sensitiviy of the thermocou-
ples made temperature regulation vtremely problematic, slow, and expen-
sive (high consumption of liquid helium cryogen). The inherent thrrmal lag
of the massive cell, and automatic heater current fluctuations, resulted in
erratic swings in the thermocouple voltage with long settling times. There-
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Figure 3.8: Pressure and Boil-off Control for the Cryostat
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fore. attempts to deliberately control cell temperature using a commercial
controller were abandoned, and data were obtained as the cell slowly cooled.
By keeping the cooling rate low, and making the reading time short. temper-
ature drift during individual data collection was kept quite small, typically
+ 50 mK or less.

Although the aim of the method v as to establish steady state conditons.
this was virtually impossible for the fluid phase measurements for reasons just
given. It wes necossary to take advantage of the opportunities which the given
situation offered, even if these were less than ‘ideal’. The measuring system
never reached a true steady state in terms of temperature, but a constant
rate of change of temperature of the cell was easily managed. As the cell
cooled, the thermocouple voltage signal always registered a non-zero value,
reflecting the fact that the inner cylinder was a little warmer than the outer
cylinder, since it was insulated from the outer cylinder by the fluid helium
layer. (The outer cylinder was assumed to be in good thermal contact with
the pressure cell body, whose absolute temperature was recorded.) As long
2= the cooling race was constant, the thermocou;- ¢ voltage signal remained
constant. and was in fact used as an indicator it « manual feedback effort to

maintain a stable cooling rate. This voltage was recorded as the initial ‘zero’
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reading prior to each datun. The thermocouple voltage also included some
small thermoclectic signals (typically, < 200 uV £ 30 0V), likely generated
in two pairs of soldered connections (Cu-Chromel, and Cu-Cu) leading from
the cell to the digital nanovoltmeter (Figure 3.9). Such values were treated
as a subractable “bias” and zeroed out mathematically in cach trial.

A custom QuickBasic program was written by the author to collect, col-
late and analyse all data. This ensured that human subjectivity was elini-
nated from the acquisition routine. Voltages read by the Keithley nanovolt-
meter and the DMM Scanner were input to a Zenith personal microcomputer
(equivalent to IBM PS/2) via an IEEE 388 CPIP cable. The system enabled
three readings per second of cell temperature, thermocouple voltage, and
heater power. The program also automatically controlled the heater at the
lower tempertures.

Each data point was collected in a three-phase routine:

Initial zero The equilibrium thermocouple voltage (heater off) was recorded

for 2 minutes (150 readings).

Re:ding The thermocouple voltage was recorded (heater on) for a prede-

termined length of time (minimum of 1 minute, or 50 -300 readings).
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22 Thermocouples

——Cell

Soldered Connections
[anchored 1o

aluminum block]
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Figure 3.9: Wiring Circuit for Thermocouples
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[1 75 ohm Bifilar
wound heater
[[inner cylinder]

Pressure cell
and feedthrough
boundary R=9.978 ohm

DMM Scanner [

24 VDC Supply

Figure 3.10: Wiring Circuit for Inner Cylinder Heater
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Final zero The equilibrium thermocouple voltage (heater off) was recorded

for 3 minutes (250 readings).

When the heater was switched on, there followed an immediate jump in
the thermocouple voltage readings, since the inner cylinder became relatively
‘hot’ {AT = 50-100 mK, typically). Owing to the small sample mass (c.g.,
0.0103 g at P = 1500 bar and T = 17.9 K), thermal equilibrium was achiceved
rapidly, on the order of 30 seconds (or less at lower temperatures). The set
of heater-on readings were recorded (about 200 in total) and then the heater
switched off. The voltage returned to ncarly its previous ‘zero’ value, and
the final ‘zero’ readings were recorded.

The readings in each phase were assumed to conform to a simple lin-
ear relationship with the time, and the program assumed that the overall
readings would fit a step-like shape (Figure 3.11). Best-fit linear regression
calculations were performed on the two “zero” sets, and the resulting lines
were joined to the best-fit line which represented the heater-on readings. The
average height of the vertical lines (lines ‘A’ and ‘B’ in Figure 3.11) corre-
sponded to the probable average thermocouple voltage (and the temperature

difference). During the entire procedure the cell continuted to cool at a more-

82



or-less constant rate; any deviation from constant cooling was compensated
by averaging lines ‘A’ and ‘B’.

Below about 30 K, temperature regulation was improved, due in part
to the lower heat capacity of the cell. By using a computer-controlled cell
heater in combination with constant effective cooling via the Swenson block,
cffective stabilisation was obtained; furthermore, the cell temperature was
controlled in this range by varying the heater power. Data were obtained
until evidence of solidification was obvious (e.g., sharp increase in thermal
conductivity), then further collected as the temperature drifted to a minimum
determined by the balance of heat fluxes into and out of the cell. The lowest
temperature achieved was 7.50 K. The cell was cooled to this point, then
the software-controlled heater brought the temperature back up to desired
levels. Taking advantage of the superior thermal stability in this temperature
range, the sample was tested at closer intervals and data in the vicinity of
the melting line was obtained. The sample was melted and frozen in order to
scan the transition region. Upon completion of the investigation of the low
temperature region, the sample was warmed to 77 K, the cell pressure was

reduced to a new fixed point, and the above procedure repeated.
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Figure 3.11: Heat Pulse in Thermocouple Voltage
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3.4.2 Review of Method

The inner cylinder was heated by passing a current through the Manganin
resistance winding. A regulated, varniable 0-24 VDC source provided this
current which was determined by measuring the voltage drop across a ref-
crence resistor (9.978 £ 0.001 ). This voltage and that of the DC supply
(manally set) were measured with £1 pvolt accuracy using a Keithley Model
199 DMM with scanner option. The DC supply was stable to a minimum of
1 ppm. The differential thermocouple voltage was measured with a Keithley
Model 181 nanovoltmeter (accuracy: £ 10 nanovolt). Each data point was

obtained in the following way:
1. The initial ‘zero’ readings of the nanovoltmeter were recorded.
2. The Manganin (inner cylinder) heater was energised.

3. If the cell was below 30 K, heater power was automatically reduced by

an amount equal to the power delivered to the Manganin heater.
4. The thermocouple voltage was recorded for 50-300 readings.

The Manganin heater was switched off.

[S1}
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6. After the thermocouple voltage settled (about 1 minute), the final *zero’

readings were taken.

Step (3.) was included in the procedure to eliminate acute temperature
drift during data collection at temperatures below about 15 K; even at power
levels as low as 20 mW. the heat energy released by the inner cylinder during
a data run was sufficient to drive the entire cell temperature upwards. By
reducing the cell heater power by identically the amount delivercd to the
inner cylinder, the net electric heating power delivered to the cell remained
fixed. Furthermore, since the temperature difference between inner and outer
cylinders was dirertly related to the power level, the relative uncertainty in
the thermocouple voltage (and the final result) was reduced by using higher
power levels. Higher power levels were also useful during trials in the solid
phase, which had a much higher thermal conductivity than the fluid phase.
The cell temperature was recorded frequently during the entire run (about 3
times per second); total drift was always below 100 mK, and frequently less

than 50 mK, during individual trials. For T < 15 K, drift was about 10 mK.
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3.4.3 Details of the Calculations

The thermal conductivity was determined for each temperature/pressure
pair in two stages. The initial value was obtained from a direct applica-
tion of equation (3.23), in which the cell geometric constant A’} was (0.2978
+ 0.0001) m~!'. The final value was found by applying several correction
factors.

The temperature difference beoween concentric cylinders was found by

dividing the differential thermocouple voltage by the thermopower:

- ot

ST (3.26)

AT

where S(T) was obtained by differentiation of a standard expression for the

thermoelectric voltage of a AuFe-Chromel pair as a function of temperature

[32].
E(T) = f bT', (3.27)
S(T) = %TT—). (3.28)

The behaviour of S(T) is shown in Figure 3.12.
As mentioned in section 3.3.3, the heater power term Q was subjected to

a proportionality factor ‘f’ equal to the fraction of the internal heater length
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in direct contact with the inner cylinder. From a purely geometric stand-
point, f = 0.56487. A scries of simple tests showed that for typical ranges
of hicater power, the inner cylinder probably gained a small quantity of heat
from the guard cylinders, rather than losing heat (anticipated) or being in
thermal equilibrium (ideal case). These tests were performed on the con-
centric cylinder arrangement installed in the cell, at ambient temperature,
and with an air/helium mixture at 1 atmosphere as the sample flud. The
heat gain was estimated by placing the inner cylinder thermocouple first in
the guard cylinder and running a set of trials, followed by a set at the same
power levels with the thermocouple located in the inner cylinder. By using
the known value of the room temperature thermal conductivity of the Vespel
spacers [35] separating the inner and guard cylinders, the known thermal
conductivity of the stainless steel heater sheath, and the temperature differ-
ence between the inner and guard cylinders, an estimate of the longitudinal
heat flux in or out of the inner cylinder was found. The direction of the
heat flux was from the guard to the inner cylinder, and the magnitude was
approximately 6% of the heater power. The final values of the thermal con-
ductivity coefficient reported, however, do not include this factor because the
tests which led up to it were not carried out under typical experimental con-
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ditions. Unfortunately. a subsequent set of trials under realistic experimental
conditions could not be obtained since the measuring system was damaged
when removed from the cell. The lack of precise knowledge of the longitudinal
heat flux in/out of the inner cylinder was the main source of uncertainty in
the results.

The first estimate of A thus consisted of the following expression:

A = k2D ls

Ay, R

(3.29)

where V] is the voltage across the inner heater, and V3 is the voltage across
the constant resistor (R = 9.978 £ 0.0012). The constant terms can be
grouped 1nto one, giving:

5(T)
AV,

A\ =0.01686232 x [ V,VQ} ) (3.30)

A set of correction terms were found for A. This included a term to
account for the thermal contraction of the BeCu inner cylinder during cool
down from room temperature (where the dimensions were measured), a term
to accomodate the placement of the thermocouples not at the surfaces of the
inner and outer cylinders, a term to account for a heat path along the AuFe

common element of the differential thermcouple, and a radiation loss term.
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Since the geometric constant involved the radii r; and r; in a logarith-
mic ratio, the thermal contraction correction of these terms was very small
and only that of the inner cylinder length, 1, was relevant. The 6—} % vs.
temperature relationship for BeCu is known for between 82 K and 300 K
[41], and was extrapolated down to 10K. The resulting values amounted to
a correction of less than 0.1%.

The thermcouples were located in small wells machined in the inner and
outer cylinders and hence recorded a temperature difference somewhat larger
than the true difference at the opposing lateral surfaces of the cylinders. The
equation for this correction term can be derived by consideration of the most
probable temperature distribution (see Figure 3.13) and Fourier’s equation.
It should be noted that the version of this equation given in “Thermal Con-

ductivity” (Vol. 2), Tye, R.P., pg. 104, is in error. The proper form is:

ATiue = ATy — —2 [lnﬁ+1nfl], (3.31)

where the various terms are defined in the figure. )\, is the thermal conduc-
tivity of BeCu which is known [42] to 5 K. The magnitude of this correction
became increasingly large as T — 0.

The next correction term was the secondary heat pathway along the AuFe
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component of the thermocouples which linked the inner and outer cylinders
directly. The AuFe wire had a diameter of 80 um, was about 10 cm in length
and had a thermal conductivity on the order of 200 Wm~1K'~!, leading to a
heat transfer of about 10 W (or, ~ 0.01%), which was ignored.

The final correction term, namely, that for radiative transfer of heat (QR).
was evaluated with the Stefan-Boltzman equation (3.32). Heat transfer near
10 K between the cylinders with a temperature difference of 1 degree. assum-
ing a transparent fluid and perfect black body emission (€;; = 1, worst case),
amounted to only 87 nW. At 77 K, it was 34 ¢W. The actual temperature
difference was about 100 mK, so the value of the radiative loss was even less.

This quantity could be safely ignored.
Qr = 2nrloge s [T} = T3] | (3.32)

where o = 5.6697 x 1078Wm =2k ~1, the Stefan-Boltzman constant.

The cell pressure was read on a standard 100,000 psi Heise Bourdon gauge.
Owing to a large excess volume of high pressure gas outside the cell (in
the length of connecting capillaries, various valve bodies, the gauge, etc.)
the cell pressure dropped only slightly during the entire cool down segment

(i.e.. Ap < -3%). Thus. the experimental conditions during the fluid phase
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measurements could almost be termed “isobaric™. Nevertheless, the small
pressure drop was incorporated into the equation of state which generated a
corresponding molar volume.

It can easily be appreciated that during experimental trials, neither the
pressure or temperature, nor even the density, were constant; this left the
results in form which could not easily be used for comparison or further cal-
culation, and suggested that the raw data should be recast in the form of
thermal conductivity as a function of fluid density, rather than as a function

of temperature over (almost) isobars. This implied the necessity of deter-

mining the rmolar volume (;,’;‘;e) for each pressure and temperature pair by
utilising an Equation of State (EOS) for fluid helium over the existence range
in this experiment.

A major project carried out at the NIST in Boulder, Colorado (formerly,
NBS) in 1972 [15] was the determination of a precise EOS for fluid helium over
a broad range of pressure and temperature, from which many thermodynamic
functions and properties could be found. The result was a mixed polynomial
equation (McCarty EOS), giving the pressure (in standard atmospheres) as
a function of the density (moles/litre) and the absolute temperature, which

well represented all the then known P-V-T data at low temperatures.
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3 4
P(p,T) = pRT[1 + B(T)p] + Z 111;p3T"5"/2 + Z nyupiTh5' +

=1 =1
6 - 3 . )
Z nsiPSTO.ts—l/" + Z n.“p36"7p Tl—l +

=1 =1

3 2
S nsip®e® T+ Y neip®T', (3.33)
i=1

i=1

where B(T) is the second virial coefficient, 7 is a constant and the nj; are

constants. Rather than produce a single EOS, the range of applicability was

divided up into three regions, to each of which there corresponded a different

set of constants. The range of applicability was limited to 0 < P < 1000 bar
and 2 < T < 1500 K (fluid phase only).

To calculate the molar density of the fluid, an iterative procedure was used
since direct inversion to solve for the density would have involved intractable
mathematical problems. This procedure consisted of first generating a ‘seed’
value for the density, then substitution along with the temperature to solve
for the pressure. If this estimate of the pressure differed by more than 0.01
bar from the known pressure, a correction term was found for the density by

differentiation of equation 3.33:

= P'(p,T), (3.34)



AP

Ap~ —————,
P P T)

(3.35)
The correction term (Ap) was subtracted from the density estimate and
the new value entered into the EOS to again find the pressure. This procedure
was repeated until the density correction was < 107! mole/litre and the
pressure difference (between real and calculated values) was < 0.01 bar.
Other research [57] carried out at much higher pressures by Mills, Licben-
berg and Bronson led to the development of an EOS modelled on the Benedict
equation for nitrogen [59]. Here, the range of applicability extended from 2

kbar to 20 kbar and from 75 K to 300 KX. This equation directly related molar

volume to pressure in kbar and temperature in Kelvin.

3 2
V=3 X AwItPT (3.36)

m=1-n=

The authors of this equation (MLB EOS) have stated that, although their
experimental data were obtained at 77 K and 2 kbar and higher, their EOS
could be extrapolated down to 50 K and 1 kbar while maintaining reasonable
agreement (i.e., within an average error of 1.3%) with values calculated using
the McCarty EOS. Thus, these two regimes meet in the P-T plane, but they
do not overlap; furthermore, even in combination they leave a very large
gap for which no EOS has been reported (i.e., coefficients have not been
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calculated), due perhaps to a lack of P-V-T data here. This gap extends
upwards in pressure from 1 kbar, and from near the melting line up to about
50 K, where the MLE EOS can be subsumed. Unfortunately, most of the
data in this experiment were obtained from points in the gap for which we
have no explicit EOS. These regions are shown in Figure 3.14; the gap has
designation A’.

The problem of determining the molar volumes in an existence range
without an explicit EOS was temporarily solved by extrapolating the two
EOS predictions and then taking a linearly weighted average, where the
weighting factor for each prediction was determined by the distance from the
respective limits of applicability. This led to smoothed linking of the values
when switching from one EOS to the other, which was necessary for region

A (P > 1kbar and T > 50 K). The explicit weighting factors were as follows:

1. For the McCarty EOS:

-3

5-T

3.37
25 (3.37)

LV] =

2. For the MLB EOS:

Wy=1-W, (3.38)

The MLB EOS alone was used in region B (P > 2 kbar and T > 75 K),
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while the McCarty EOS was used exclusively for region C (P < 1 kbax). In
the ‘gap’ region A’ (P > 1 kbar and T > 15 K) the McCarty EOS was ex-

trapolated upwards for all pressures siuce the MLB EOS exhibited unreliable

behaviour (fluctuations) below 50K.

99



Chapter 4

Results

4.1 System Testing

To determine if convection were present in the trapped fluid, a series of trials
were performed at a single pressure and temperature (700 bar, 78K). Convec-
tive effects, if present, would lead to a non-linear thermocouple differential
temperature as a function of applied heater power and a pseudo-increase in
the thermal conductivity values. The test consisted of varying the supply
power from 5 mW to 600 mW (to the Manganin inner cylinder heater) and
recording the thermocouple voltage. The results are shown in Figure 4.1 as

the resultant thermocouple differential temperature vs. heater power. The
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test revealed a very linear response over this range (i.e., correlation coefficient
= ().99991), signifying that convection was absent. Furthermore, the best-fit
line passed through the origin, which indicated that the measuring system
was probably free of systematic errors.

However, a separate series of trials at 1000 bar and 78 K did reveal that
the final values of thermal conductivity were weakly dependent on the heater
power, as can be seen in Figure 4.2. This graph shows the effect for a range
of values from 1 mW to 400 mW, but most experimental trials were run near
40 mW. The line in the figure is a third order polynomial best fit to the open
circles, and when extrapolated to the limit of zero power shows that recorded
thermal conductivity values were possibly about 1.4% high. The figure also
shows that the measuring system became unstable at very low power levels
(filled circles).

Since the steady state method employed here leads to an absolute deter-
mination of the thermal conductivity of helium, the only means of verifying
the results is by comparison with other work. For the range of temperatures
and pressures in this experiment, comparison can only be made with the
work of Golubev et. al. [36]. A total of 9 trials at an average temperature
of 78.03 + 0.04 K over a region of overlapping pressures were performed,;
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these (filled circles) are shown along with the 77 K isotherm extracted from
Golubev (open circles) in Figure 4.3. Although the two experiments are in
excellent agreement this may be a fortuitous coincidence. Genuine agree-
ment would imply that end-loss corrections are negligible for the measuring
instrument developed for this project! It is interesting to note that a “tran-
sient” method,-in contrast with the stcady state method here,-was used by
Golubev; this consisted of a concentric cylinder arrangement in which the
cooling history of the inner cylinder was monitored (previously referred to as
the concentric cylinder (cooling) method in Section 3.1).

Results have been reported for existence ranges outside the parameters of
the present project. LeNeindre et. al. [49] obtained the thermal conductiv-
ity of helium, neon, argon, krypton, and xenon at room temperature at high
pressures (up to the meiting line in some cases), and it was shown by Ab-
delazim (48] that modified Enskog theory (MET) very accurately modelled
the results for helium. Acton [50] measured the thermal conductivity of the
dilute gas, dense gas and liquid helium at low pressures (<25.5 atm). Studies
of the thermal conductivity of solid helium have concentrated on U-process
behaviour; the results can be extrapolated toward the melting line assum-
ing an exponential dependence in temperature (equation (4.2)). Perhaps the
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most sensitive examination of thermal conductivity in solid helium is due to
Seward et. al. [37], who obtained results at pressures up to 1 kbar. Experi-
mental data were also obtained by Bertman et. al. [63], and much earlier at
low pressures by Webb et. al. [39]. An overall assesment of thermodynamic
and transport properties of helium was completed by McCarty {15] at NBS
(now. NIST) in 1972 which incorporated all the then known experimental
data.

Some preliminary results of this project were reported earlier [51], cover-
ing a narrower range of pressures but using the same apparatus described in
Chapter 3. The technique to obtain these earlier results was essentially the
same but without the automatic, independent recording by computer of the
thermocouple voltages and temperature. Owing to the mistake in the correc-
tion formula for placement of thermocouples (see Section 3.5.3), the values of
the thermal conductivity for the solid were all significantly low; nevertheless,
a similiar trend in the ratio of thermal conductivities can be deduced. The

mistake in this formula was discovered as the data for this thesis were being

prepared.
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4.2 General Results

A total of 11 trials were performed at 7 different values of pressure rang-
ing from 450 bar to 2050 bar, and over temperatures ranging from 7.50 K
(minimum) to 80 K. The results were amalgamated into 8 separate trials
with the results shown in Table 4.2. Pi, is the cell pressure at the start of
cach trial; the cell pressure was nearly constant during the cool-down from
80K to the melting point. The value of Pini for trial 5b. is unknown due
to an error in data aquisition; in this trial, a valve located between the cell
and Heise gauge (Figure 3.6, (C)) was accidentally closed for the entire run.
This meant that the pressure loss during cool down was larger than in all
other t.ials; the melting pressure for trial 5b. was determined from the ob-
served melting temperature. Values of thermal conductivity for the solid A,
in trials 2 and 3 are unknown due to insufficient number of data points at
the lowest temperatures. Ty is the melting point observed from the graphs
(Appendix A), where it has been assumed that the temperature associated
with the abrupt change in the thermal conductivity curve coincides with on-
set of solidification. P,y is the corresponding melting pressure, calculated

with a Simon-type melting equation and using empirical constants as quoted
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T SN | T, > 4K

a -20.6 -8.112
b 17.452 16.91
c 1.54681 1.555

Table 4.1: Constants in the Simon melting equation

in Driessen [60] for the overlapping regions 4K < T,, < 25K [61] [62] and

14K < T,, < 100K [57)].

P =a +bT¢ (4.1)

The constants a, b, ¢ are given in Table 4.1.

AP 4. 1s the pressure drop in the cell during the fluid-solid transition,
where it has been assumed that this occurs under isochoric (constant volume)
conditions; values of this quantity were also obtained from Driessen, and
ATcqic is the expected value of the temperature width of the transition [60].
The final two columns contain values of thermal conductivity of the two
phases at, or in the vicinity of, the transition; these were read visually from

graphs of the raw data given in Appendix A. Ay was read from that point on
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rach graph where the thermal conductivity made an abrupt “jump”, which
was also the marker for the onset of solidification, Tmy . The value of A,
was taken from that point on the thermal conductivity curve situated AT atc
below Tryg .

Since it is impossible to know exact details of solidification within the
cell, it has been assumed as a first approximation that solidification within
the concentric cylinders was an isochoric process; this means that there was
a finite thermal and pressure width to the transition, and the pressure in
the solid was less (by AP ) than the fluid from which it formed. Thus,
the values of thermal ~onductivity of fluid and solid helium were taken at
different pressures.

The individual trials shown in Appendix A reveal behaviour reminiscent
of that previously observed for the thermal conductivity of solid [63] and
of liquid [64] helium at low pressures near a melting point of 1.9 K. These
disparate sources of data have been combined [66] in order to examine the
behaviour of the thermal conductivity at melting, and the representative
graph is shown in Figure 4.4. The values in the solid regime were calculated
using a semi-empirical relation based on the theory of Peierls [6] for the
effect of the Umklapp process (equation (4.2)), while the values in the fluid
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Trial Pinit ij me APcnlc ATcale: A] ’\n

No. (bar) | (K) | (bar){ (bar) (K) | (Wm™'K-!")

1. 486.1 8.0 | 415 113 1.40 | 0.066s | 0.264
2. 906.6 | 10.30 | 623 159 1.70 | 0.0873 | (")
3. 954.9 | 12.00) 794 196 1.94 | 0.10 | (")

4. 1291.0 | 14.00 | 1016 | 242 220 | 0.113 | 0.55

Sa. 1646.1 | 18.90 | 1625 | 365 2.85 | 0.18 |0.68;

Sb. | 1650est | 18.90 | 1625 | 365 2.85 | 0.18 [ 0.67T,

6. 1975.0 | 20.90 | 1902 | 419 3.10 | 0.21, | 0.69

7. 2054.6 | 21.05| 1923 | 423 3.11 | 0.22, | 0.78,

Table 4.2: Summary of Trials. The first two digitsin Ay and A, are considered

significant.
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regime were obtained from an empirical relation (equation (4.3)) derived
by Kerrisk [64] for the thermal conductivity along the P = 26 atm isobar.
By contrast, this experiment constitutes the first critical examination of the
thermal conductivity behaviour of both phases in the same apparatus.

For the solid, where A = 1.9x 1073 IWm~!K'~!, b = 2.9 (related to phonon

dispersion). n ~ 0, and @p = 26.51\, the Debye temperature for this density:

Ay = AT exp [(1?—1?] . (4.2)
For the fluid:
M(T\P)=Fy+ F\T + F,P + F3T* + F,P? + F;PT, (4.3)

where:
Fo = —1.4642 x 1073,
F; = 8.8025 x 10~°,
F; = 9.1386 x 10713,
F3 = —8.700 x 1078,
Fy = -4.1701 x 10~%,
Fs = 8.3023 x 10~13,

P in units of dyne/cm?.
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Having indicated in Section 3.4.2 that the trials were conducted under
nearly isobaric conditions (pressure change orly -3% during the fluid phase
trials), it may appear contradictory to state that the freezing transition oc-
eured under isochoric conditions. The explanation lies in the following pe-
culiar feature of the apparatus: freezing always occured first in the capiilary
which connected the cell to the Heise pressure gauge, and then later in the
cell. This is because the stainless steel capillary could not, for safety reasons,
be subjected to sharp (i.e., small diameter) bends, and so was wound along a
circuitous route from the cell to the vacuum feedthrough and out of the cryo-
stat. It is very likely that along this route, the capiliary made contact with
some part of the cryostat that was always colder than the cell (“cold touch”),
and the helium froze at this location in the capillary while the helium inside
the cell remained in the fluid state. The important feature is that when the
frozen capillary became effectively blocked, the cell was isolated from the
pressure gauge.

During the trials, the pressure gauge reading was observed to fall very
slowly as the cell cooled, then to reach some plateau value (likely when the
capillary blocked) while the cell temperature continued to drop. Below this

temperature, the cell could be considered to be isolated, and hence further
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cooling through the freezing transition was under isochoric conditions. This
is borne out by the experimentally observed freezing point (i.e., Tpyy or the
liquidus) which was always lower than would be expected by reading the
pressure gauge. Further evidence of the blocked capillary was obtained by
simple experiments: with the heliumm sample in the cell frozen (and with
the capillary therefore blocked), the pressure outside of the capillary was
lowered 50 bar by venting some gas to atmosphere; the cell was then gradually
warmed until clear evidence (i. e.. thermocouple signal) was given of melting
of the contained sample. However, it was not until the cell was warmed above
the melting point by 5 to 10 degrees that the capillary became unblocked, as
indicated by an abrupt increase on the gauge.

As far as the thermal conductivity measurements were concerned, the
blocked capillary meant that values for solid helium were obtained at pres-
sures lower than for fluid helium in the same trial. This is because an isochore
in the P-T plane intersects the phase boundary line at two distinct points, as
shown in Figure 4.5 (points ‘mf’ and ‘ms’). The values of A\; were obtained
at pressures Pn (liquidus point), while the A, were obtained at Py, (solidus
point). The isochores of helium have been sensitively analysed and tanulated
in Driessen [60]. Liquidus and solidus for helium are shown in Figure 4.6;
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the region between the lines corresponds to a mixed phase of fluid and solid.
In preparation of the final graph of thermal conductivity vs. pressure, the
values for solid helium had to be shifted down by amount AP from P,y
for each trial in Table 4.2.

The difficult interpretive task was the attempt to identify Tp, from the
thermal conductivity curves. It has already been mentioned that the onset
of solidification, as indicated by the abrupt “jump” in thermal conductivity,
was rather unambiguously marked in all cases. By ccaustrast, there did not
appear to be any similarly clear signal for Tp, . Therefore, it was assumed
as a first approximation that the intermediate phase of combined fluid and
solid existed over the entire thermal width of the transition, i.e., between
Ty and Tyn, , and the cell was completely filled with solid only at T, .
The value of T,,, was obtained from T, s by reference to Driessen [60], who
has provided tables of P-V-T data for the solid up to Tm, and the fluid at
Toy -

The derived data were plotted as a function of melting pressure, and
shown in Figure 4.7. Since there were initial uncertainties in determining
the longitudinal heat flux from the inner cylinder, and there were further
uncertainties in graphically reading the thermal conductivity values, a sim-
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ple average line (best-fit, or least squares analysis) was used to represent the
results; any other fitting procedure is probably not justified. Low pressure
values are shown in the figure as a filled triangle [63] for the solid (\, ~
0.233Wm~'K-1), and an open triangle for the fluid (\; ~ 0.0171Vm ' K-
(64], ~ 0.024Wm~' K1 [50], ~ 0.036/Wm~' A~ [52]). The former values for
the fluid are experimental, while the latter is quantum-mechanically caleu-
lated.

The ratio of thermal conductivities at the same pressure corresponds to
the experimental conditions during dendritic solidification, to which reference
has previously been made. This ratio was determined by simply calculating
and plotting the ratio of the two straight lines representing solid and fluid,
and is shown in Figure 4.9 as line ‘A’. The ratio is relatively constant at the
higher pressures (3 — 4.3), but gradually rises at the lower pressures, and
rises steeply to an apparent limiting value of f ~ 9 as P — 0. Of course, not
much confidence can be attached to the numeric values of the ratio owing to
the uncertainties associated with the various levels of this simple analysis.
As can be easily appreciated, the value of the ratio is a strong function of the
ratio of the slopes of the straight lines in the limit of high pressure. It can
be concluded with certainty, however, that the ratio is anomalously high at
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pressures above 1 kbar and reaches even higher values as the melting pressure
is reduced.

The foregoing constitutes a conservative assesment reflecting the inherent
difficulty in finding T,,, in the thermal conductivity curves. The raw data
curves show an additional feature which might be interpreted as an enhance-
ment of the thermal conductivity in the mixed solid-fluid phase. This can be
seen in the graphs as a small "bump” situated below T,y in the anticipated
mixed phase region. It may be speculated that the bump itself represents
the entire transition region, and that its’ low temperature side is at T, .
However, the width of the bump in all of the trials is substantially smaller
than the known thermal width of the isochoric freezing process, AT 4 , as
shown in Table 4.3.

How could this small enhancement region be understood to represent a
compressed transition region? Perhaps the assumption of an isochoric freez-
ing transition should be amended. Since iliere was a large excess volume
of helium gas in the 2-meter length of Harwood 3M pressure conduit which
connected the cell to the feedthrough block (Figure 3.2, (K)), once the cap-
illary (E) had blocked, it was possible that helium freezing inside the cell
could continue to draw on this volume of gas until the conduit also blocked.

120



Trial | ATeate | AT pec A,

no. | (K) | (K) |Wm K-

1. 1.40 | 0.55 0.25;
2. 1.70 | 1.30 | 0.53; (?)
3. 1.94 | 1.15 | 0.48, (?)
4. 2.20 | 1.45 0.485

da. 2.85 1.85 0.63;

Sb. 2.85 2.15 0.61¢

6. 3.10 2.15 0.60,

7. 3.11 1.80 0.68g

Table 4.3: Speculated Transition Widths and Thermal Conductivity
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After all, the cell was connected to the Swenson cooler at one end and to
room temperature at the other via the pressure conduit, rendering a thermal
gradient along the length of the cell. Therefore, one would expect the high
pressure capillary to freeze first, then the cell, and finally the conduit. If this
were true, the pressure drop in the cell would not be as large as in the case
of the truly isochoric case; the transition would in fact be neither isochoric
or isobaric.

To estimate this secondary correction, it could be assumed to a first
approximation that the melting curve is linear in the transition region, and
therefore that the ratio of the ‘actual’ to the calculated thermal width of the
transition was equal to the ratio of the ‘actual’ to calculated pressure width

of the transition:

ATolu
ATv:alc

APy, = APeale. (4.4)
[572]

As an example of these corrections, that for ~ ial No. 1 will be given
explicitly. The thermal conductivity for the fluid near the transition, 0.0665
Wm~'K-! is at 414.7 bar (unchanged). But the observed width of the bump
in this case is only 39.3% of the expected value for an isochoric process, and

so the pressure shift is assumed to be only 39.3% of 112.6 bar, or 44.2 bar,
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which puts the value at 414.7 — 44.2 = 370.5 bar. The thermal conductivity
of the solid, 0.2534 Wm~!K~! , is then plotted at 370.5 bar. Note that this
value is somewhat different from A, taken from the same graph but with
the assumption of isochoric freezing. The graph of these values for solid
and fluid is shown in Figure 4.8. The ratio of thermal conductivities at the
same pressure is shown in Figure 4.9 as line ‘B’. The ratio is almost constant
(~ 3.7) at the higher pressures but rises sharply for P < 500 bar and probably
exceeds 14 as P — 0, if the above assumptions are correct.

Slack [66] has prepared an extensive list of the thermal conductivities
of substances at the melting point (including the rare gases, organic and
inorganic liquids, and some metals). For a wide range of different materials,
the thermal conductivity ratio is ~ 1, except in the notable case of water
where it is ~ 4. The ratios for many materials are shewn as a function
of the normal melting temperature (66, pg. 55] in Figure 4.10, and the
unique and divergent behaviour of the “quantum solids” becomes apparent.
Elements shown are: open circle, “He; filled circle, *He; open triangle, Hy;
filled triangle, Ne; open square, No; filled square, Ar; open inverted triangle,
Kr; filled inverted triangle, Xe; open diamond, Hz0.

As a simple definition, the term “quantum solid” is taken to mean that
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small collection of elements whose relatively light atom leads to a dominant
kinetic energy term in the Schrédinger Equation. According to the Principle
of Corresponding States, all members of a class of substances have the same
functional EQS where state parameters such as pressure are expressed in
a reduced form. For quantum solids, the EOS is dependent not only on
critical point values of pressure, temperature and volume, but the quantum

correction factor A* (deBoer [67, 68, 69]) given by:

h

= (4.5)

A" =

where h is Plank’s constant, m is the atomic mass, and o, € are the constants
in the two particle interaction potential (see, for example, equation 2.30,-
the Lennard-Jones-Devonshire potential). For large values of m (*classical’
substances), A* ~ 0, but for light atomic weight elements A" is large.

There seems to be a relationship between elements with large quantum
parameter and the thermal conductivity ratio at melting. This was shown in
the article by Slack [66, pg. 53] and may be stated as follows: for elements
listed in order of increasing quantum parameter, the thermal conductivity ra-
tio at the normal melting point increases (*He is, apparently, an exception).

For classical substances, A®* ~ 0 and 3 ~ 1. Table 4 lists a series of ele-
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Element | A* 5] m.p. | Pressure

(K) (bar)

3He 3.08 | 6.25 | 1.82 67.5

‘He 2.67 | 14.56 | 1.90 32.6

H, 1.729 | 5.24 | 13.8 0.07

Ne 0.591| 2.95 | 24.5 0.42

N, 0.225 | 1.17 [ 63.25 0.12

A 0.187| 1.67 | 83.8 0.67

Kr 0.102 | 1.52 {116.0 0.71

Xe 0.064 | 1.54 { 161.3 0.80

Table 4.4: Quantum Parameter and 3 for various Elements
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ments showing their A* value and 3 for pressures near 1 atmosphere. This
data, as well as curves taken from Figure 4.9 and recast for the correspond-
ing range of melting temperatures in the experiment, are shown in Figure
4.10. Clearly, even at elevated pressures, the results for helium adhere to the
general trend shown by the other elements. It seems that the speculative as-
sumption leading to the line ‘B’ (see above) perhaps better reflect this trend,
but no definitive conclusion can be drawn.

Referring to the graphs of thermal conductivity of helium (Appendix A),
it appears that the curve )\, for the solid phase could be extrapolated to in-
tersect the curve for the fluid phase at a temperature much higher than the
actual melting point. It is as if the trend in ), is abruptly cut off at Tr,. It
is anticipated for most solids (including helium) that the thermal conductiv-
ity decreases with temperature exponentially right up to Tr,. At this point,
the monotonically increasing phonon-phonon interaction has reached the ul-
timate value in the solid phase. For most substances, the conductivity of the
melt then is not significantly different from the solid, perhaps because the
structure of the melt is not itself radically different from the pretransition
solid. But this experiment has shown that helium cannot so be described.
Slack [66, pg. 54] has pointed out that the melting temperature of 1.9 K for
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solid helium at 20.40

;I'Z:c is only 55.6% of the temperature of the intersection
between the extrapolated curve for solid and the curve for the fluid, assuming
an exponential conductivity dependence (refer to Figure 4.4). Conversely, it
may be said that the solid helium has melted prematurely, -i. e., before the
maximum thermally resistive phonon-phonon interaction was reached.
Perhaps premature melting of helium can be understood on the grounds
of the abnormally high value of zero-point energy. It has been pointed out
that the zero-point energy in helium is much larger than the latent heat of
melting; for example, at a density of 18 ;’%, the zero-point energy is about
70 cal/mole, whereas the addition of only 0.49 cal/mole is sufficient to melt
the solid [71]. Premature melting might be understood on the grounds that

the solid phase contains a remarkably high energy content at zero Kelvin,

and melts with a comparatively modest rise in temperature.
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Chapter 5

Discussion

5.1 TUncertainties

The overall accuracy of these results is difficult to assess. Other thermal
conductivity experiments using the concentric cylinder arrangement have re-
ported quite high accuracy; while these are quite numerous and perhaps too
lengthy to report, the modern trend is towards a level on the order of 1% ac-
curacy. In this experiment, the expediency of using a guarded inner cylind-r
but without recording or controlling the guard cylinder temperatures (as was
done, for example, in Ziebland [23]) has limited the degree of precision to

which the radial flow of heat could be estimated. This concerns the modified
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factor K’ (Section 3.5.3) which expresses the degree to which the inner cylin-
der receives heat from the guard cylinders. The author believes this factor
to be accurate to only about 6% since an insufficient number of trials were
obtained for its assessment. Indeed, as pointed out in Scction 3.5.3, there
was some indication that the thermal conductivity values might be low by
about 6%. The results for the linearity trials (Section 4.1) are self consistent
to within 1.4% (i. e., the st. dev. {or a set of 40 separate trials at constant
pressure and temperature was 1.4%). The initial data was recorded by the
digital instruments and computer system to a high degree of precision, as re-
ported in Section 3.4.1. The uncertainties in the raw data and calculation of
the temperature difference between the inner and outer cylinders contribute
approximately 2% to the overall results; this rather large value is due to typ-
ical temperature differences less than 100 mK. In conclusion, the final values
probably have an accuracy not better than 8%.

It is clear that the behaviour of the thermal conductivity of helium at
melting is anomalous. For a range of substances spanning diverse categories,
the common finding is 1.0 < B < 1.5, as has been mentioned previously.
The ratio in helium at 2000 bar is ~ 4.3, and moreover rises dramatically at
lower pressures. Although there are uncertainties in the initial readings due
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to a lack of knowledge of the longitudinal heat flux in or out of the inner
cylinder, they are small when compared with the problem of interpreting
the melting point and thermal width from the graphs. Nevertheless, the
trend in the thermal conductivities seems above speculation; furthermore
the ratio (Figure 4.9), which is derived from these results, would in any case
rise steeply at the lower pressures since it is just the ratio of two straight
lines with different slopes. Refinement in the shape and functional form of

the fitting curves would not contradict the basic finding of this experiment.

5.2 Theory of Dendritic Solidification

With respect to predictions of dendrite theory and the measured parameters
in helium(1], the value of 3 could not, in itself, account for the disparities.
Disagreement remains, but the analysis including 8 = 4 shows some inter-
esting developments.

The experiments on helium reveal a definitive underlying connection [1]
between the undercooling, u, and the growth velocity; in fact, this constitutes

one of the clearest points to be shown in the experimental evidence. The
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velocity term can be expressed in this form:

v = vout”, (5.1)
and the tip radius term is:
-1.35 -
Ty = Tl . (5.2)

By elimination of the u dependence, these two equations show that the
product of growth velocity and tip radius should be a constant, which for
helium has been found by experiment to have the value 2.5 x10%cm?/sec
(v, and r, are empirical constants):

vr? = const. (5.3)

At this point, the experimental evidence for helium and other substances
is in general agreement with theoretical predictions in respect of the above
relationship. It is also known from many observations of dendritic solidifi-
cation that, for a given undercooling, the growth velocity and tip radius are
fixed. However, the theory only provides a value for the product of v and
ry,-i.e., a family of values. This is accomplished through calculation of the

Peclet number:



where, in the model due to Langer, the following definition is given:

u = pe”Ei(p). (5.5)

The Ei(p) term is the exponential integral:

Efp) = /,, ” e—;dy. (5.6)

All theories and experimental evidence on various systems seem to confirm
the value of the Peclet number [1].

Cleatly, an additional expression involving v and 7, is required in order
to distinguish one of the infinite products vr,. Langer has proposed the
“marginal stability hypothesis” to establish the operating point of the den-
drite, which states that the dendrite grows at a rate such that the tip 1s
marginally stable against splitting. This concept is expressed quantitatively
by o, the stability criterion, given by the following expression:

_2Dd,

o= - (5.7)

For values of ¢ < o* = 0.025 (obtained from computer simulations of den-
dritic solidification), the tip is unstable and tends to break up into a cluster
of separate, smaller dendrites, while for ¢ = o* the dendrite is marginally
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stable. Langer argues that this defines the operating point of the growth
velocity-tip radius combination, and the evidence for succinonitrile and ice
seem to support this hypothesis (sce [9]). It is interesting to note that if
the stability parameter ), previously introduced in Chapter 2 is identified
with the tip radius r, in the expression for o, virtually the same value for o*

is reached, ass.ming 3 = 1:

2Dd, ld,
= _L—r?_ =7 (5.8)
let Ayap = 2raxy/ld, = r,; then:
o= Py =0.0253 ~ ¢°, (5.9)
where it is assumed that a = li;ﬁ = 1. Note, in particular, that as /3

increases, the value of o decreases.

According to the analysis, o* depends on 3, but is independent of dy-
namic quantities 7, or v. Inspired by the Mullins and Sekerka analysis of
a directional solidification front, the examination of growth of a sphere de-

formed by a perturbation proportional to the spherical harmonics Y'(j,m) of
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order (j,n), gives the following cxpression for the critical stability criterion:

~ = 2B+, (5.10)

Here, for j = 5 (consistent with the m = 4 modes which are permitied
by cubic anisotropy) and 3 = 1 we arrive at a value of 0.026 for the critical
stability criterion, but as 3 increases, the value of o* decreases.

Dendritic growth in helium was observed for pressures in the range 200
bar to 6500 bar, but the majority of the experiments were conducted above
1100 bar. This implies that the thermal conductivity ratio probably was
about 4 for most of these observations. It is significant that o according to
equation (5.9) is material dependent only through 3, and for helium with 8
= 4 assumes the value 0.0101. This is remarkably similiar to the value of o~
when 3 = 4 is substituted in equation (5.10),i.e., o*(3 = 4,j = 6) = 0.0081.
But substitution for the appropriate terms in equation (5.7) for helium leads
to a value of 0.0013, which is much smaller than any theoretical figure here. It
is not clear whether this observation lends support to equation (5.9). While
Langer has set § = 1 (‘symmetric model’), the above observations s~ ggest
that o* is not a universal constant, but is material dependent for substances

having 3 > 1 (e.g., *He, H,0).
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The results in the case of succinonitrile (SCN)[9] are consistent with the
value o = 0.0195, which is favourable to the theory: a graph of v, versus u
for both SCN and ice [9] shows excellent agreement with a theoretical curve
calculated on the basis of o = 0.025.

Figure 3.1 is a graphical representation of equation (5.10), showing the
stability criterion o* as a function of 3 and assuming j = 6. Theoretical values
for o near 0.025 are confirmed only at lower values of J, even suggesting
3 < 1! It was pointed out earlier in Section 2.2 that the most probable side-
arm spacing parameter \,,;, according to theoretical predictions (including
the assumption that g = 7.25 [1]), was in fact about 25 times smaller than
that found experimentally. The spacing parameter, A4, is proportional to
V1 + 3, so improvement can ouly be realised if 3 is much larger. However, as
just indicated, agreement in terms of o* is achieved at lower values. Perhaps
part of the problem here is that the model is concerned with a free dendritic
crystal, whereas all of the qualitative data were obtained for heliumn dendrites
attached and growing outwards from the cell wall (i.e., as an example of
directional solidification).

Substitution of the appropriate values for helium in the expression for o
gives a value of 0.0013,- much smaller than predicted,- which may be due in
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part to the anomalously high value of 3. With regard to the dendrite spacing
parameter, \yqp, the experimental values for helium are much larger (by a
factor of 25) than those predicted by equation (2.20). The growth velocities,
however are about 40 times smaller than predicted, but the dependence on
undercooling appears to adhere to the anticipated functional form, i. e.,
v o u®, where n = 2.21 in the “modified Ivantsov” theory [43], n = 2.65 in
the theories of Trivedi [44] and Nash and Glicksman [45).

In conclusion, it seems that dendritic solidification in pure helium qual-
itatively obeys some of the principle relationships derived in the model due
to Langer and others, but numerical agreement is not good. In this thesis,
it has been shown that 3 > 4 for the range of pressures and temperatures in
which dendrites have been observed, and that 3 increases as the pressure de-
creases. Nevertheless, values in this range are insufficiently large to account
for the large discrepancy between observed and predicted side-arm spacing.
[t seems much more experimental and theoretical work needs to be done on

this subject.
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5.3 Thermal Conductivity Peak in Transi-

tion Phase

An unexpected feature of the graphsis the sharp peak in thermal conductivity
within the transition region (mixed phase). This can be most clearly seen in
Figures A.8 (trial 4.), A.10 (trial 5a.), A.12 (trial 5b.), A.14 (trial 6.), and
A.16 (trial 7.). In trials that were able to scan the transition completely the
curve shows first a gradual flattening below the transition region, then the
sharp peak and an abrupt drop to the upper melting point (T,ns,~liquidus
point), then the slowly rising values in the fluid phase. The trials were
most often obtained as the sample cooled through the transition; therefore,
it is impossible to speculate about hysteresis. It may be that the peak is
due at least in part to the latent heat of fusion given up at solidification.
A formal analysis would begin by assuming that the annular gap between
concentric cylinders was filled with coexisting layers of solid and fluid; the
thermal conductivity and thermal gradient across each layer, the latent heat
of solidification of helium at given density and pressure, and possibly Kapitza
thermal resistance across the boundary would have to be included. At the
moment, no satisfactory explanation can be given for the effects noted in
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various trials.

5.4 Comparison with Theories of the Dense

Gas and Fluids

The thermal conductivity of a dense gas of hard spheres has been calculated
on the basis of the Modified Enskog Theory (MET) (see section 2.3.1). These
values are shown in comparison with the results of this experiment in Ap-

pendix B, where the data have been recast in the form of Ay as a function of

Ci"la
mole

molar volume (in ) for each trial, except No. 5b due to an error in record-
ing pressure for that trial. As well, theoretical values of thermal conductivity
on the basis of the MET using a Lennard-Jones interaction potential (equa-

tion (2.25)) have been calculated, based on the Hanson and Ree equation of

state (HREQS)(53]:

P__ Prer —[i:]%‘iiC;z‘+[—l-]iD.-I‘, (5.11)

pkpT - pksT T i=1 T . =1

where:
Pree _ 1 4 Biz + Bya? + Baz® + Byz* + Bioz™®, (5.12)
pksT
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and r = p*/T*+, p* = po®, and T* = kgT/e. pis the particle number density.
The first term on the R.H.S. of equation (5.11) corresponds to the repulsive
part only of the interaction, while the other two terms handle the attractive
part. It is possible to calculate the thermal conductivity of an L-J fluid using

the same dilute gas value as defined in Chapter 2:

= X,p [y~ + 1.2 +0.755y] , (5.13)
where:
p
= . .14
kaT 1+y (5.14)

y is a measure of the deviation from ideal gas behaviour, and is more accu-
rately expressed by replacing the pressure term p with the ‘thermal pressure’
T(Op/OT )v:

y= ;%,B [g%] T 1. (5.15)

Constants B;,C;, D; appearing in the above equations are ,. .vided by
Ree [53).

From the graphs of these calculations and the experimental values (Ap-

pendix B), it can be seen that the hard-sphere model appears to reflect the
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shape of the thermal conductivity curves but the theoretical values are ev-
erywhere higher by a factor ranging from about 30% at the lowest pressure
to about 75% in the 2 kbar trial (No. 7). Agreement both in shape and in
numerical value becomes worse at the higher pressures.

The theoretical curves based on the HREQS, which has been shown to
agree extremely well for *He at pressures between 1 kbar and 8 kbar at 298
K [48], do not seem to reflect the data of this experiment very well.

The thermal conductivity in the existence range of fluid alone is shown in
Appendix C for the trials. Calculated values of the thermal conductivity of
fluid due to McCarty [15] are shown along with experimental results for trials
at comparable pressures in Figures C.1 and C.3. The theoretical data was
extracted from the published table for the isobars at 500 bar and 1000 bar;
these are shown along with trials at P,,;, of 486.1 bar and 954.9 bar. The
theoretical data was calculated with an empirical relation (equation (5.21))
using the results of Golubev [36] and Kerrisk [64] in order to determine fitting

constants:

Ar = 2(T)Ay(p, T) + Aclp, T), (5.16)
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where A\,(T') is the dilute gas limit, A\ (p. T} corrects the dilute gas values
for increasing density and Ac(p,T) is the cnhancement in the vicinity of the
critical point. In general, it scems that while the values at intermediate
temperatures are reasonable, agreement with the experimental values at the
lower temperatures is poor, and becomes much worse in the vicinity of the
melting line.

The graphs of thermal conductivity of the fluid are also reproduced on a
single graph in Figure 5.2. Each curve has the same overall shape: a steep
rise in values immediately above the melting point which achicves a broad
plateau that then gradually falls. This behaviour is reminiscent of the shape
of the specific heat curve for fluid helium reported in the NBS publication
of 1972 [15]; shown in Figure 5.4 are the 507 bar and 1013 bar isobars of
C, per unit mass of the fluid over the appropriate temperature range. Since
these curves lie very close together, an expanded view is provided in Figure
5.5 (same data). Included in these figures are two curves of recast experi-
mental data derived from Dugdale and Franck [72] (open triangles, 500 bar
isobar; filled triangles, 1000 bar isobar). The original experimental curves
were in the form of isochores as functions of temperature; from this data, an
intermediate graph of the isochores as functions of pressure was prepared,
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shown in Figure 5.3; extraction of values for the 500 bar and 1000 bar iso-
bars was accomplished by graphical interpolation between two isochores that
fortuitously straddled vertical isobar lines at 500 and 1000 bar. The values
obtained in this manner cannot be very accurate (especially near the max-
imum specific heat values for the 500 bar isobar), but give a suggestion or
impression of the behaviour.

The comparison of thermal conductivity curves with these specific heat
curves is motivated by the theory of Horrocks and McLaughlin [54], who
have provided an expression for the thermal conductivity of a fluid that is

dependent on the specific heat per molecule at constant volume:

V2, (5.17)

A
a

Al =

where C, is the specific heat at constant volume per molecule, v is the vi-
brational frequency of an atom confined within the cell formed by its nearest
neighbours, and a is the nearest neighbour distance. The model assumes
C,=3kg as a constant for the liquid, and interest has been focussed on the
problem of determining v on the basis of assumptions about the interaction

potential (e. g., the harmonic oscillator approximation, expressed in equa-
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tion (2.39)). However, as shown by Figures 5.4 and 5.5, the specific heat of
the liquid is not constant in the temperature regime relevant to this exper-
iment. It may therefore be concluded that the experimental data presented
here lend strong support to the liquid models of Horrocks and McLaughlin
at intermediate temperatures, i. e., for 20 K < T < 80 K.

From Figure 5.2 it is evident that the fluid thermal conductivity values
immediately above melting lie along a common curve, shown in the figure as
the solid line which extrapolates to 0 K. The slope of the line as shown is

given by a = 0.0097 Wm~'K~2, so we may speculate:

A =axT, (5.18)

valid for each isobar in the vicinity of the melting point. It is as if there
were a ‘universal’ thermal conductivity curve of nearly constant shape which
was shifted along the common line by souie pressure-dependent factor. Along
the common line the thermal conductivity is dependent only on temperature;
a specific trial departs from this common line at some pressure-dependent
point. A speculative means by which the ‘universal’ curve is shifted along

the common curve will be introduced in a subsequent paragraph.
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A simibar interpretation may be applied to the specific heat for fluid,
shown in Figure 5.4. Tt scems that a straight line passing through 0 K would
also rcasonably represent the low temperature data and theoretical curve,
since near the melting point, the curves for both the 300 bar and 1000 bar

isobars lie very close together. Again, we may speculate:

Cy =+ xT. (5.19)

where v = 0.2 (W - 5)g7' =2, A typical molar volume of 12.50 cm*/mole
corresponds to a nearest-neighbour distance *a’ of approximately 3.1 A. If
this value is inserted in equation (5.11) along with the above expressions for
Ay and Cy. which together eliminate the temperature dependence, we are

left with an estimate for the vibrational frequency v:

O =159 x 102 H-. (5 20)

V2

This will be recognised as a typical phonon vibrational frequency. Hor-

vV =

rocks and McLaughlin have provided two means by which v may be calcu-
lated, based on a hard-sphere model and a harmwonic oscillator model. These

are, respectively, given by:



8kpT 1
Vis = 2 [ J . (5.21)

mm |4(a — o)
and
1 27¢ H
vio = N [—aT(Lv“ - Mv'z)] , (5.22)

where the various terms have t! eir usual definitions or have previously been
defined in Sectic u 2.3.2. Inserticn of the appropriate values gives the follow-
ing results: vy« - 1.60 x10'2 Hz at 20 K, while vyo = 0.64 x10'? Hz. These
vi 'nes compare favourably with that obtained above from equation (3.11).
Another model, based on the kinetic theory of thermal conductivity of
gases, also suggests a dependence on the specific heat, assuming that the
heat current in the liquid i1s carried by phonons. The model assumes for
convenience that phonon wave-packets in the fluid can be regarded just like
the particles oi + gas, with similiar equations for mean free path, dispersion,
and thermal conductivity (see equation (2.38) in Chapter 2). This model
has already shown side applicability for dielectric solids. Phonon dispersion
curves due to neutron scattering have been obtained for liquids [73], although
only longitudinal modes are observable. Neglecting diffusive transport and

including only the vibrational modes, the theoretical thermal conductivity is
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given by:

_vlpC, -y
No= 37 (5.23)

where v is the sound velocity, { is the mean free path of a phonon, C,. is the
specific heat at constant volume per mole. and M is the molecular mass. It
has been shown that the speed of sound is relatively constant as a function of
temperature in the liquid at pressures up to 70 bar {74], and. if the assumption
that [ is also relatively constant is valid, the dependence on specifie heat is
clear. This seems to be strongly supported by the results of this experiment.

This equation may also provide a clue as to the means by which the
‘universal’ thermal conductivity curve is shifted along the common curve as
a function of pressure. The shape of the thermal conductivity curve for cach
trial seems to be determined by that of the specific heat function, hut the
placement of the curve is determined by the pressure. In equation (5.17), the
only terms which are pressure-dependent are v (speed of sound), { (mean free
path between collisions), and p (density). As can be seen in Figure 5.4, the
calculated specific heat apparently is not strongly dependent on the pressure,
there being only a 7% difference between the 507 bar and 1013 bar curves at

90 K. It is known that v and p increase with increasing pressure at constant
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temperature. Since the fluid state lacks long-range order. it is to be expected
that the mean free path between collisions (phonons) would be quite small.
and probably of the order of the nearest neighbour distance, a = (V2V/N)3:
the magnitude of this term, however, decreases as the pressure increases.
Therefore, it would be of interest to examine the behaviour of the product
Z = .- p-a as a function of pressure at constant temperature.

The graph of Z for two isotherms at 20 K and 75 K over the pressure
range 0 to 1000 bar is shown in Figure 5.6, from data extracted from the
NBS report (1972) [15). The response of this function is nearly linear in the
pressure. especially at higher temperatures and pressures: hence: the thermal
conductivity of fluid helium seems to be very well represented by this model.
cquation (5.17). derived from simple kinetic theory.

Nevertheless, it is possible to combine the results of the previous analysis
concerning equation (5.11) with this model. It was noted above that both
the thermal conductivity and the specific heat are linear functions of the
temperature at the lower temperatures, and that these linear portiuns for
various pressures overlap on common straight-line curves.

The validity of the kinetic model (equation (5.17)) can be checked by
inserting the empirical relationships for A; and Cv and assuming, as before,
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that | = «:

l
,\j =axT1= [m} [l‘pI]Cv (5.2-1)
v X T = [ 1 } [ T L I
axT=|7 vpal(y x T), (5.20)
hence:
«a 1
— — - -)
5 [3.\1] 2 (3.20)
or:

L.HS. = 4.84 x 107°X2 2277 x 10" A2 = RHS..

where the value Z = 8.304 x 10'5'—:{1; has been chosen, corresponding to fluid
at 20 K and 507 bar.

However. the foregoing included the assumption that the mean free path,
[, was equal to the nearest neighbour distance, . The L.H.S. = R.H.S. if |
= 1.75 a, a reasonable possibility for the fluid state.

The question remains concerning the behaviour of the fluid specific heat,
in particular, the steep decline at lower temperatures near the melting point.
This has already been addressed by Franck [72]. The room temperature
limit of the specific heat of the fluid has the value C, = %R, which is just the
specific heat of an ideal, monatomic gas (C, = 3.116 Jg~'K~! for *He), not
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to be confused with the law of Dulong-Petit (C,. = 3R) for the specific heat
of solids. At lower temperatures. the decline is due to quantum effects which
may be elucidated by the following simple explanation: cach atom of the
fluid is assumed to be confined by its nearest neighbours in a unit cell, which
can be likened to the familiar ‘particlein a box’. The quantised energy levels
in this system are closely spaced at the higher energies (corresponding to
higher temperatures), which results in the classical limit of the specific heat.
At lower temperatures, the available energy levels are more widely spaced.
and when hw ~ kT, the specific heat will begin to diminish. It would be
necessary to know the exact nature of the potential witkin the unit cell (e.g.,
free particle with hard-sphere boundary) in order to construct a theoretical
model. However, quantum calculations of the specific heat of Hy, D, and Ar

[75] based on this simple picture have shown a decline at lower temperatures.

5.5 Proposals

In retrospect, it is evident that changes to the experimental arrangement
would facilitate more precise results and simplify the interpretation of data.

If the high pressure capillary leading to the cell were to be maintained per-
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manently unblocked, and if a comparatively large excess volume of supply gas
were incorporated into the charging systern, all trials could effectively be run
at constant pressure which would more realistically mimic the experimental
conditions during dendritic growth. This would also avoid the problem of in-
terpretation of critical factors such as Tpy, and Tyny , since an isobar intersects
the melting line at a single temperature (T,,) and pressure (P, ); there would,
however, be a molar volume change during such a process. To address the
central difficulty in the present design, namely, the deficient understanding
of longitudinal heat flux in or out of the inner cylinder, each guard cylinder
ought to be monitored separately and as well have a separately controlled
heater to fix the heat flux at zero. For the sake of simplicity, this feature was

dropped from the original design of the measuring system.

5.6 Conclusions

The results of this experiment constitute the first record of: (1) the thermal
conductivity of fluid *He in the regime 450 bar < P < 2050 bar, and 20 K <
T < 80 K; and (2) the thermal conductivity ratio of solid and fluid *He in

the same apparatus for the melting curve between 8 K and 20 K.
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The results of this experiment have shown:

3]

. liquid structure models based on the theory of Horrocks and McLaugh-

lin [54] are confirmed and that the thermal conductivity is largely de-

termined by the specific heat at constant volume

the pressure dependence of the thermal conductivity coefficient is also
well represented by a model derived from simple kinetic theory (equa-

)

tion (5.17)j

the Enskog theory for heat transport in a Lennard-Jones fluid, which
agrees well with experimental thermal conductivity data for helium at
high pressures at room temperature, is a poor model at intermediate

temperatures (20 K < T < 80 K) for *He

tabulated values of the thermal conductivity coefficient in McCarty [15]

are not, in general, reliable near the melting point

the thermal conductivity ratio (3 = A,/A;) at melting is anomalously

high (3 > 4 at 2000 bar, and increases with lecreasing melting pressure)

the value of 8 for ‘He agrees with the trend in 3 for the other quan-
tum solids,-1. e., 3 increases with increasing quantum parameter A°,-
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signifying that the premature melting of helium is due to quantum

cffects
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Appendix A

Graphs of the Raw Data
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Trial | T,.; | Whole | Transition MET Fluid
No. | (K) | Data Region | comparison | only
1. 8.0 Al A2 B.1 C.1
2. 10.3 | A3 Ad B.2 Cc2
3. 1200 | A A6 B.3 C.3
4. | 1400 AT A8 B.4 C4
Sa. | 1890 A9 A.10 B.5 C.5
5b. [ 18.90 ] A.11 AL2 N/A C.6
6. {2090 A.13 Ald B.6 C.7
7. 121.05] A.IS A.16 B.7 C.38

Table A.1: Raw data graph Locator
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Appendix B

Comparison with MET

The graphs in this chapter show experimental values of the thermal conduc-
tivity of helium along with values predicted by the Modified Enskog Theory
(MET) for a dense gas of hard spheres (HS) and a Lennard-Jones fluid (LJ):
the equations for these models are provided in Section 2.3.1 (hard spheres)
and Section 5.4 (Lennard-Jones fluid). The values of molar volume were
calculated on the basis of an equation of state (EOS) given either by Mec-
Carty [15] or Mills, Liebenberg and Bronson [57] for the appropriate region
of applicability. As the molar volumes for the MET equation were obtained
from raw data which in some cases contained small gaps, these gaps are also

present in the predicted values.
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Appendix C

Thermal Conductivity of the

Fluid

This chapter contains figures showing the thermal conductivity values for the
fluid range only in each trial. In figures C.1 and C.3 the curves are taken
from McCarty [15] and represent theoretical thermal conductivity coefficients
along isobars over the same temperature range (Figure C.1: 507 bar isobar;
Figure C.3: 1013 bar isobar). The experimental data were obtained under
nearly isobaric conditions at 486.1 bar (Figure C.1) and 954.9 bar (Figure

C.3).
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