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Abstract

In this thesis, we focus un aspects in enhancing the quality of multimedia applications
comprising audio and full motion video data. Distributed/networked multimedia ap-
plications involve usage of a communication network to transfer multimedia informa-
tion to a remote site. Shared media LANs like Ethernet and FDDI offer only limited
capanilities for incorporating networked multimedia applications. Hence the interest
in using ATM-based switched LANs. ATM has also been adopted as the switching
technique in B-ISDN. ATM makes VBR coding of video signals possible. But cell
loss seems to be the major drawback in ATM. We propose a layered coding algorithm
for motion video. It results in reduction of the subjective deterioration of the resul-
tant image quality in the event of cell loss in the ATM network. This compensatory
technique is based on layering in the spatial and frequency domain. It is particularly
suited to teleconferencing applications.

Synchrorization of multiple data streams in time has been recognized as a signif-
icant requirement of future multimedia applications utilizing broadband communica-
tion technology. We have implemented a scheme for synchronizing audio and video
information for live and orchestrated applications. Two techniques have been consid-
ered for intra-medium synchronization while a master-slave-based playback technique
is used for inter-media synchronization. The video codec and synchronization scheme
l:ave been incorporated in an application which can be used to playback live as well

as stored multimedia data.
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Chapter 1

Introduction

1.1 Introduction to multimedia applications

The term multimedia refers to information composed of different data types including
text, image, graphics. audio and video. On-going research and development activities
have resulted in the ability to process these multiple media by computers. Hardware
and software technologies have been developed for processing. digitizing and storing
the multimedia information from various devices ke video cameras and microphones.
In the case of storing the multimedia information. the requirements vary depending
on the type of media. Advances have been made in storage technologies and archi-
tectures which allow storage of such media inforn:ation in a workstation. In parallel,
there has been considerable progress in the ares of communication technology, thereby
making it possible to build networks that can support distributed multimedia applica-
tions. A distributed multimedia application is characterized by computer controlled
generation, processing. communication, storage and presentation of different media
information [38].

Multimedia information is generated from devices like video cameras or multi-
media servers where information is stored in databases. Multimedia presentation is
carried out by bringing information from these sources and delivering them to the

multimedia workstation of the user. Presentation of multimedia information involves



managing buffer and window space in the user workstation, temporal synchronization
of the information delivered, and facilitating user interaction.

Commurication requirements [26] for transferring multimedia information over a
computer network are more stringent as compared to text files. The network hard-
ware and protocol software should be able to handle these requirements effectively.
Supporting any multimedia application over a computer network raises a number
of interesting issues to be addressed in areas like communication networks, operating
systems and modeling of multimedia systems. Operating system requirements include
device driver support for multimedia devices, file system support for handling large
multimedia files and real-time scheduling support. Modeling techniques are needed for
characterizing the different multimedia application requirements including dynamic
user behaviour. Dynamic participation of the user in a multimedia presentation may

modify the communication and operating system requirements.

1.2 Types of multimedia applications

Multimedia applications may be classified depending on the mode of generation of
information, on the time domain of information and on the nature of information
transfer.

Fig. 1 shows the classification of multimedia information. Multimedia informa-
tion can be generated either through devices like video cameras and microphones or
through accessing stored information in databases/files. A multimedia application
is termed orchestrated if the capture and/or generation of information is done by
retrieving stored information. On-demand HDTV server and multimedia database
applications fall under this category. These applications typically access stored infor-
mation in large optical disks either locally or in a remote system. If the multimedia
application processes information from devices like video camera, microphone or key-
board, then it is termed as a live application. Teleconferencing and panel discussion

type of multimedia applications fall under this category.



Multimedia Application

Generation Time Domain Transtor
ot ot ot
Information Information Information
Orchestrated Live Continuous Discrete Oistributed Local
Broadcast Point-to-point

Figure 1: Classification of multimedia information

In a stmilar manner, multimedia information can be classified into two categories
on the basis of the time domain: Discrete or time independent media and Continu-
ous or time dependent media. Discrete media such as text, graphics and image have
no real-time demands. Continuous media like audio and video include real-time re-
quirements. In the case of continuous media. the information becomes available at
different time intervals. The time intervals can be periodic or aperiodic depending on
the nature of the media. Video and audio information are mostly periodic in nature.
Orchestrated and live multimedia applications can be composed of both discrete and
continuous media.

In live applications, information is acquired live from sources (video camera, mi-
crophone, etc.) and hence the temporal relationships of the events in the media are
implied. This temporal relationship is related to the sampling rate used for the me-
dia. For video, it could be 30 frames/second (fps) and for audio, the rate at which

information is acquired varies from 16 to 64 Kbps. For an orchestrated application,



the temporal relationships for different media have to be explicitly formulated and

stored along with the media information in databases.

A multimedia application can be local or networked/distributed. A local mul-
timedia application gets information from sources present on the same worksta-
tion/system. A networked or distributed multimedia application involves usage of
a communication network to transfer multimedia information to a remote site. Com-
mercial success of multimedia depends on the ability to support networked applica-

tions. Most applications in the corporate world are now networked and corporations

expect the same functionality in regard to multimedia applications.

1.3 Issues in distributed multimedia applications

In the design and implementation of distributed multimedia applications, the follow-

ing issuer must be considered:

e Communication considerations
e Operating system considerations

e User behaviour considerations

1.3.1 Communication considerations

Communication requirements for a distributed multimedia application depend on the
type of the application and the types of media composing the application. Continu-
ous media, like video, demand high bandwidth, low end-to-end delays (latency), low
delay variations (jitter) and low packet loss for transferring the required information.
Discrete media like images do not have such stringent requirements, but they are more
sensitive tu packet loss than video. Digital video in uncompressed form needs maxi-
mum bandwidth. Different video digitization and compression techniques have been
developed to reduce the bandwidth requirements. Apart from requirements like end-

to-end throughput guarantees, distributed multimedia applications Vrequire a number



of simultaneous active network channels for transferring different media: video, audio,
image and text. There is alsc need for synchronization acress different media. For
example, the viceo information has to be synchronized with the corresponding audio
[2€]. Hence, the computer network may have to provide services such as guaranteed
end-to-end throughput, delay, Delay Jitter and inter-media synchronization to the
application. These parameters referred to as QoS parameters, have to be guaranteed

by the neiwork service provider.

Quality of Service (QoS) considerations:

The Quality of Service offered by the network to a multimedia application can be
characterized by parameters like traffic throughput, transmission delay, Delay Jitter,

transmission reliability and inter-channel relationship.

o Traffic throughput: It is the amount of data that will be sent through the
network specifying the traffic communication needs in terms of the bandwidth

required.

e Transmission delay: This is the delay that the transmitted data will suffer
through the network. It is expressed in terms of an absolute or probabilistic

bound.

¢ Delay Jitter: The variable delays incurred by packets over a network give rise

to Delay Jitter. A bound on jitter or delay variation is often specified.

¢ Transmission reliability: It is related to the buffering mechanisms involved
in data transmission along the network. Because of the limited size of these
buffers, during traffic congestion, there is buffer overflow resulting in packet
loss. A probabilistic bound on such kind of losses influence resource allocation

during connection set-up.

o Inter-channel relationship: In a multimedia application, a number of net-

work channels are required simultaneously for transferring different media ob-



jects. In some cases, inter-channel synchronization has to be provided when the
channels are to be used for transferring media like audio and video. Relationship
among channels can also be specified in terms of inter-channel bounds on QoS
parameters (bounds on Delay Jitter, in case of audio and video channels) or
multicast relationship. The process of interaction between the application and
the network service provider to determine preferred and acceptable QoS values is
termed as negotiation of the QoS parameters. The commitment by the network
service provider can be hard or soft. In case of hard guarantees, the network
commits to offer service, whose quality is precisely specified through a number
of traffic and performance parameters. In case of soft guarantees, no strong
commitment is made by the network service provider. The application should

be able to handle the dynamic modification of the offered quality of service.

Network protocol considerations:

The QoS requirements discussed above, have to be supported by the network pro-

tocol providing the communication services. Network protocols must be designed to

support the following:

¢ Transmission reliability: Retransmission of lost data may not be required
for live multimedia applications where audio and video are transmitted in real-
time. In this case, error handling aspects are left to the application. But for a
media like text, we need reliable transmission. Thus a combination of reliable

transmission and real-time transmission has to be provided by the network

protocol.

e Multicast service: Multicast service is needed by most live multimedia appli-
cations. The network service provider should offer a flexible addressing mech-
anism to allow identification of groups of related network channels. Dynamic
joining and leaving of multicast groups should also be allowed by the network

service provider.



o Flow control: The network protocol has to employ different types of flow con-
trol mechanisms for different applications. For example, for transaction based
applications like file transfer, sliding-window flow control mechanisms are suit-
able. But for continuous media like video, which have a predetermined rate of
transmission, a rate-based flow control mechanism is preferred. In this scheme,
the transmission rate is negotiated at connection set-up time and the sender
can transmit data without waiting for acknowledgements from the receiver.
The application must be able to choose the mechanism during network channel

establishment time.

 Synchronization: Synchronization is required by multimedia applications [37)
for coordinating the presentation of related media information like audio and
video. The required synchronization can be either supported by the network
service provider (e.g., Transport Layer) or be realized by the application them-
selves. If the application is to realize synchronization, then it has to be done by
enforcing strict bounds on delay ar.d Delay Jitter requirements at the Transport
Layer for the different streams. This option can reduce the complexity of the
network service provider implementation. In this thesis, we have considered
schemes for synchronization at the application level. The other alternative is to
provide synchronization as part of the nctwork service. In this case, the network

service provider must have some knowledge about the data.

» Negotiation of QoS: The offered Quality of Service must be negotiable. The
negotiation can be between the application and the network service provider
or between the source and the destination applications. In this thesis, we use
negotiation of QoS between the source and the destination applications. The
network service provider should provide for negotiation so that applications are
fully aware of the QoS parameters used. The offered QoS might degrade during
the connection time due to varying load conditions in the network. The network

service provider has to provide services for handling degradation of Quality of



Service.

Network bandwidth considerations:

The network service provider provides a Quality of Service which depends on the
network hardware platform that is available to it. The following characteristics of
the network medium have a distinct bearing on the type of support provided by a

network protocol.

o Network bandwidth
o Network access control mechanism

e Priority control schemes for network access

Throughput guarantees by the network service provider depends on the bandwidth
offered by the nei.ork hardware. The network bandwidth ranges from medium speed
(operating at a few Mbits/s) to very high speeds (operating at several hundreds of
Mbits/s). The delay guarantees depend on the medium access control methods and
the availability of priority control schemes to access the physical medium. In this
section, we look at a few commonly used networks [24] and the type of guarantees

they can offer to networked multimedia applications.

Medium speed LANs:

Ethernet, Token Ring and Token Bus fall under medium speed LANs. Ethernet (IEEE
802.3) has a bus topology which offers a maximum bandwidth of 10 Mbits/s over a
coaxial cable using CSMA /CD protocol to gain access to the bus. The disadvantage of
Ethernet is in the CSMA/CD access mechanism, which does not guarantee an upper
bound on network access delay. Also priorities cannot be assigned among stations
waiting to transmit informasion. Hence, Ethernet based networks cannot guarantee

absolute bounds on end-to-end throughputs and delays.



Token Ring ( IEEE 802.5) networks permit tokens to circulate around the network.
A station can transmit for a fixed duration when it can catch hold of a free token.
Token Ring networks permit priorities to be assigned to stations to capture a free
token. Hence, we can give more precedence to stations which transmit continuous
media information. As a result, in token-based networks, guarantees can be provided

for end-to-end throughput, delay and Delay Jitter.

Fibre Distributed Data Interface (FDDI):

An FDDI network provides a throughput of the order of 100 Mbits/s over an optical
fibre medium. The access protocol for FDDI is based on the Token Ring. providing
synchronous as well as asynchronous access to the network. As in Token Ring, we
can provide an upper bound on access delay. FDDI network offers a gnaranteed
throughput for synchronous transmission, which can be used for voice and video

information.

ATM-bascd networks:

It is felt that networks based on shared media will not be able to supply large aggregate
bandwidths needed by future multimedia applications. Switch-based digital networks
seem the most appropriate technology to meet the new multimedia challenges. Hence
the growing interest in Asyuchrenous Transfer Mode-based LANs. Asynchronous
Transfer Mode (ATM) relies on Asvnchironous Time Division Multiplexing. It is the
transfer mode for B-ISDN. Chapter Z presents an overview of ATM and the reasons
why it is particularly attractive to multimedia applications.

From the discussion presented above, we see that the QoS offered by the network
to a multimedia application depends on the network protocol software and hardware
employed. Choice of a suitable network protocol has a tremendous bearing on the

performance of networked multimedia applications.



1.3.2 Operating system considerations

The operating system has to satisfy varied requirements {o support a distributed

multimedia application. The demands exercised by multimedia applications are in:

¢ Handling large multimedia files:

The multimedia file system must be able to handle huge files (of the order
of gigabytes). Most of the existing storage architectures allow unconstrained
allocation of blocks on disks. Since there is no constraint on the separation
between disk blocks storing a chunk of digital video or audio, there is an ap-
preciable variation in the access and latency times. Contiguous allocation of
blocks can guarantee continuous access, but has the familiar disadvantage of
fragmentation of useful disk space. Constrained block allocation can help in
guaranteeing stricter bounds on access times without encountering the above
problems. For constrained allocation, factors like size of the blocks (granular-
ity) and separation between successive blocks (scattering parameter) have to be

determined for ensuring guaranteed bounds.

e Real-time scheduling:

Real-time requirements of multimedia applications arise mainly in the form of:

— Handling Network traffic

~ Handling multimedia devices

Transferring digital video and audio information over a computer network im-
plies large bandwidth and low delay requirements. To satisfy these require-
ments, the operating system should be able to handle the network traffic. Multi-
media devices like video camera and microphone generate information at regular
intervals and hence these devices have to be serviced periodically with real-time
restrictions. Overhead in the I/O mechanisms can result in timing errors and

loss of data even though the hardware is able to handle the high data rates.



¢ Device driver support:

To support multimedia applications, an operating system should provide sup-
port to handle different types of devices : video camera, microphones, speakers,
etc. The operating system should provide a uniform interface to the devices so

that multimedia applications can use them with minimum modifications.

In Chapter 4, we discuss the need for real-time scheduling for supporting

reasonable playback of a multimedia application.

1.3.3 User behaviour considerations

User in a multimedia application can participate dynamically by giving different in-
puts The nature of the user participation depends on the type of multimedia ap-
plication: orchestrated or live. User going through an orchestrated presentation can
participate by giving inputs like pause, review, forward, freeze and restart of presen-
tation. User inputs to an orchestrated multimedia presentation modify the network
Quality of Service (QoS) requirements, by modifying the temporal relationships be-
tween the objects and the size of the objects. Inputs like skip, reverse presentation
and navigate modify the presentation sequence and hence the instantaneous QoS
requirements might be modified.

In an interactive multimedia presentation. user can participate by giving inputs
like freczing and restarting the presentation. The user can dynamically join or leave
the presentation. He can also dynamically introduce new devices forcing more com-
munication chanuels to be established and thereby modifying the QoS requirements.
The change in the number of active channels will also change the operating system
requirements.

In Chapter 5, we will look into the ways in which the user can participate in our

application.
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1.4 Thesis layout

This thesis focuses on aspects in enhancing the quality of a multimedia application
involving full motion video and audio. In keeping with the various types of multi-
media applications discussed in this chapter, we have implemented an application
which can be used in various modes. It can perform as a live applicatiou, an orches-
trated application, both locally and over a network. It can opcrate in an interactive
and static mode. Distribution of multimedia information has been considered using
both unicasting and multicasting. It supports local as well as remote recording of
multimedia information. The detailed functionality of the application is presented in
Chapter 5.

The application was developed to serve as a testbed for our video codec named
SPAFLAY. This codec has been designed and implemented with focus on ATM net-
works. The rationale for our interest in ATM networks is explained in Chapter 2.
The codec uses a layering scheme to guarantee quality of a video image in the face
of loss in the ATM network. Though the full potential of the codec is tapped by
teleconferencing applications, the range of use of the codec is by no means restrictive.
The layering scheme also shows immense potential in the scenario of multicasting
video. The codec (SPAFLAY) is discussed in detail in Chapter 3.

Synchronization of audio and video schemes form an important part of the ap-
plication. We have considered techniques for media synchronization for both live
and orchestrated applications. Chapter 4 gives an account of the synchronization
schemes used in the application.

In Chapter 6, we present the simulation results of video sessions over an ATM

network.
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Chapter 2

Video over ATM

2.1 Full motion video service over narrowband

ISDN

Narrowband Integrated Services Digital Network (ISDN) cannot support full motion
video service even by means of advanced data compression and signal processing
techniques. The reasons for this is due to its limited and fixed bandwidth and the
switching protocol that it uses. Narrowband ISDN employs circuit switching 1 the
synchronous transfer mode (STM) for continuous media traffic like audio and video.
Due to the inhomogeneous nature of video sources and the inherent variations of ac-
tivity from scene to scene, the information rate after data campression tends to be
highly variable and unstable. This inhomogeneity in the compressed video data is
not exploited by STM-based fixed rate transmission. In the STM-based fixed rate
transmission environment of narrowband ISDN, this inhomogeneity and variation are
partially compensated for by buflering and matching to the characteristics of the con-
stant rate channel. This causes certain delay for video sources with low motion and
causes picture degradation for video scenes with active motion. The fixed-rate chan-
nel also puts some restriction on the capability of data compression schemes, since the

compressed data rate for the busiest video scene condition Las to be taken into ac-
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count. ATM-based B-ISDN has emerged to alleviate these limitations in narrowband

ISDN.

2.2 ATM-based B-ISDN

In Broadband Integrated services Digital Network (B-ISDN), all different types of
traffic including voice and video are packet switched operating on the cell-relayed
ATM format. The adoption of Asynchronous Transfer Mode (ATM) as the switching
protocol and the introduction of synchronous optical network (SONET) as the trans-
mission standard greatly facilitate the impleraentation and commercialization of the
B-ISDN. The flexibility and the high sperd of the ATM switch enable the B-ISDN
to efficiently transport and switch services of different characteristics like data, voice,
audio, graphics and image as well as video. The main asset of ATM is its capability
to absorb the variations of different types of traffic, and hence allow the integration
of sources with different bit-rate and statistical characteristics. The bandwidth of
a B-ISDN is greatly expanded with the standardization of the high speed transmis-
sion protocol of SONET. This gives the possibility of switching and transmitting full
motion video signals which narrowband ISDN could not achieve. An ATM-based
B-ISDN layered protocol and the corresponding functions for video transmission [40]
are illustrated in Fig. 2.

The ATM-based network consists of a user independent network core (ATM layer)
and the user dependent network interface (ATM adaptation layer). The network
core provides integrated cell multiplexing and switching services regardless of the
incoming source formats. On the other hand, the ATM Adaptation layer performs
cell assembly /disassembly and the individual protocol on each service, such as lost
cell handling for voice/video service or cell retransmission for data service. In the
User Plane Layer (UPL), video signal formatting, video encoding/decoding, high-
level signal processing and end-to-end error recovery are performed. The Control

Plane Layer (CPL) is responsible for end-to-end signalling and routing. An ATM cell
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Figure 2: Video transmission over ATM layers

is formed in the adaptation layer and is queued and multiplexed to form a SONET

frame in the physical layer.

2.2.1 VBR coding of video on ATM

ATM makes variable bit-rate (VBR) coding for video signals possible. In \ BR coding
schemes (16, 27, 39], no buffer is needed as in constant bit-rate schemes and a time-
transparent or rate-free transmission can be realized. The fixed rate coding or the
fixed-bandwidth system is controlled by the coding rate, while the quality varies
with the activity of the instantaneous scenes. In VBR coding, data rate may vary
drastically, but the picture quality is kept constant. In addition, the packetization
delay is decreased because a fixed-rate buffer is not used in VBR coding. ATM
favours VBR coding [7, 20] because it consists of a stream of small cells that are

statistically multiplexed regardless of their bit-rate and content. A statistical gain
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16
is obtained by taking advantage of the burstiness and variations of the compressed
video source traffic. From the user’s viewpoint, the advantages of VBR coding due

to the introduction of ATM include:

e Format-independent, rate-free and time-transparent transmission. This is due
to the fact that we do not need a buffer as in constant bit-rate schemes. This also

implies that we don’t have to wait for the buffer to get filled before transmission

which 1s true in constant bit-rate schemes.

o Reduction of end-to-end delay as compared to constant bit-rate schemes which

rely on the buffer to get filled before transmission.
o Consistent video quality even for the active motion area/frames.
¢ Quality control by the user instead of rate control by the channel.
From the network point of view, the advantages of ATM include:
¢ Dynamic bandwidth allocation [28].
e Easy multimedia (data/voice/image/video) integration.

e Network delay/throughput performance improvement.

2.2.2 Problems in ATM

While VBR coding in the ATM environment provides the network with a number of
advantages over fixed rate coding in STM circuit-switched networks, it also causes
problems that do not exist in STM networks. These problems are due to cell loss and
Delay Jitter. Cell loss seems to be the major drawback for VBR video coding in ATM
networks [40] due to the high bit-rate and bursty nature of the traffic. In ATM, cell
loss is basically of two types: one type occurs randomly due to transmission errors
while in the other type, cells are dropped deliberately by the network traffic control
protocol in case of network/buffer overflow.

In an ATM network, a cell can be lost due to the following reascns:



¢ Channel error: This cell loss is due to a random error during transmission.
Communication channels are subject to different impairments. If an error occurs
in the address field of an ATM cell, the cell will not be delivered to the correct

destination. This cell is considered to be lost.

e Limitation of network capacity: This cell loss is introduced deliberately by
the network control protocol [32] in case of network congestion/buffer overflow.
If the network is congested due to heavy traffic, the network congestion control

protocol will be forced to drop cells.

In ATM, cell discarding can occur on the transmitting side and on the receiving

end.

e Cell loss at the transmitting end: Cells are discarded by the sender if the
number of cells generated are in excess of transmission capacity. If the incoming
traffic exceeds the transmission capacity, the sender could be informed by the

network traffic control protocol to reduce the traffic flow or switch to a lower-

grade service mode.

o Cell loss at the receiving end: If the error occurs in the cell header [25]
especially in the address field, the cell may get misdelivered or go astray in the
network. In the receiver, if the cell is not received within the maximum time-out

window, the cell is considered to be lost.

2.2.3 Effect of cell loss on video service

ATM consists of a stream of small fixed-size cells. Each cell consists of a 5 byte header
and a 48 byte information field. The loss of a cell leads to the loss of 384 consecutive
bits, which may cause severe degradation in picture quality. Network congestion may
cause a few consecutive cells to be lost. Inter-frame coding (a video frame coded
with respect to other frames) which is used frequently in video encoding is propaga-

tive in nature. Hence, cell loss will generally affect a number of subsequent frames.
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Also, VBR coding techniques exploit temporal redundancy (that exists between video
frames) and spatial redundancy (that exists within an image). It is this propagative
nature that makes these VBX systems sensitive to channel errors. Thus cell loss is
a major problem encountered in VBR coding in the ATM environment. Cell loss
may cause direct picture quality degradation. It may also cause problems like cross
scene effect. This is due to misdelivery of mis-routed cells that are associated with
corrupted headers. If a packet is delivered to another user due to channel error, the
end user might get the wrong packet. The cell loss problem in an ATM network is a
hot issue in current research. But there seems to be no complete preventive scheme
to solve this problem as of now. Hence, we are forced to look into compensatory
measures to reduce the effects of cell loss on VBR transmission. In the next section

we lcok at the various schemes that have been proposed.

2.2.4 Compensatory measures to tackle cell loss

The cell loss which occurs due to random error in an ATM network can be controlled
by employing forward error correction (FEC) code or by improving the channel error
performance. An 8-bit error check sequence is used to reduce the possibility of cell
misdelivery and cross-scene due to channel errors. This error is of little concern to
us.

But the performance degradation due to cell dropping is more serious. It is not
possible to prevent this error as we said earlier, due to the contradiction between the
available bandwidth and the higher bandwidth requirement in peak traffic. Hence, we
have to take some compensatory measures. This motivates consideration of robust
VBR image compression algorithms capable of delivering viewable (but degraded)
pictures under occasional high cell loss conditions expected in ATM networks. In
these compensatory schemes, the purpose is to reduce the performance degradation
on the image quality and make the objective impairment subjectively imperceptible.

These schemes are also useful to compensate for the random cell losses due to channel

€rror.
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Automatic Repeat ReQuest (ARQ) scheme: The general concept of automatic
repeat request [5] is to detect frames with errors or the loss of frames and request
the transmitting module to repeat the iaformation in those erroneous or lost
frames. ARQ schemes are ill suited for video transmission although they are
adequate for data services and other non real-time communication applications.

Retransmission makes the network more congested, if the cell loss was due to

traffic overflow.

Error concealment by command refreshment: Due to the propagative nature
of VBR coding schemes, errors spread from one ATM cell to another and may
lead to an interruption in the normal transmission process. This problem can be
mitigated by sending a frame coded with respect to itself alone periodically. This
refreshes frames periodically and error propagation is restricted to certain video
segments and frames. This scheme is called the enforced command refreshment

scheme and is used in many video transmission systems.

Layered source coding: In this scheme, we classifv video information into differ-
ent classes with different priorities. The objective is to restrict cell dropping
to low priority cells and guarantee timely and error-free transmission of high
priority cells, thereby minimizing the degradation of the picture quality when
the network becomes congested. In layered video transmission, video quality
degrades gradually with the cell loss rate where only the cells in the least impor-
tant layer are discarded. Layering of compressed information into high priority
(HP) and low priority (LP) tiers [16, 18, 19, 21] makes it possible to guarantee
a minimum level of subjective performance at the decoder under conditions of
extreme congestion, and is consistent with the 2-priority link service planned
for ATM. Layered coding schemes have emerged as the most popular coding

scheme for packet video applications.



2.2.5 Layered video source coding schemes

Layered coding schemes can be broadly divided into those which operate on the spatial
domain and those which function on the frequency domain. In the spatial domain, a

technique called Feature Plane Separation is used. In the frequency domain, we use

transform coding schemes.

Feature Plane Separation (FPS): This is a subjective separation scheme depend-
ing on the information interest for specific applications. FPS is a content driven
representation of video signals. This is normally done in the spatial domain
where we separate the image into areas of varying interest. For example, in
a radiological environment, the tumor information of a chest x-ray might be
more important to the physician than the background. In that case, we can
send the cells from the region of interest with a higher priority than cells which
comprise the background. Thereby, even the loss of the low priority cells would

not significantly alter information in the decoded picture.

Transform coding: Natural image/video scenes contain a lot of redundancy iu the
spatial/temporal domain. The purpose of the transform coding approach is to
map these highly correlated image samples to another domain in which image
coefficients become statistically independent. We use transforms like Discrete
Cosine Transform (DCT) [29], Haar (HT) [6], etc. A video signal can be con-
sidered as a sequence of images. An image compression scheme can be applied
to digital video by applying it to individual video frames. As there is a lot of
rec indancy in the temporal domain (frame-to-frame), inter-frame coding makes
substantial reduction in the data rate. Inter-frame coding can be done using
conditional replenishment. Conditional replenishment is an inter-frame predic-
tive coding scheme based on coding and transmitting the differences between

the present frame and the previous frame.

In Combined Transform Coding (CTC) [14], the transform coefficients are di-
vided into two planes: The Upper Image Plane (UIP) and Low Image Plane
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(LIP). The UIP contains the most important information, and error-free and
timely delivery of UIP cells should be guaranteed. The LIP contains less im-
portant information, and the delivery of LIP cells is not always guaranteed. In
the case of congestion, the cells comprising LIP may be lost. The advantage of
this method is that even with loss of LIP cells, we will still be able to obtain a

picture of reasonable quality after decoding using solely the UIP information.

2.2.6 Our layered coding approach

In this thesis, we implement a layered coding scheme using a combination of Feature
Plane Separation and Combined Transform Coding techniques. It is called SPAFLAY
(SPAtial and Frequency LAYering). The approach is particularly suited to applica-
tions like teleconferencing and distance education.

In these applications, there exists an area (areas) which is (are) of greater interest
than the remainder of the picture. In this area (fovea) more detail is required. The
outer regions (periphery) are often of secondary importance, and thus less detail is
required. Also. motion in the video frames is clustered normally around the fovea.
We use a non uniform image subtraction scheme to detect the areas of motion. This
scheme is sensitive to areas of motion around the fovea and less to regions in the
periphery. We also use the Feature Plane Separation approach to categorize infor-
mation around the fovea as high priority (HP) and information away from the fovea
as low priority (LP). The Combined Transform Coding scheme is again used to split
the transform coefficients into two priorities. This layered coding scheme is followed
by thresholding the transform coefficients and entropy coding.

This coding strategy is intended to provide robust delivery of video under possibly
high ATM cell loss conditions by producing output codec data partitioned appropri-
ately for prioritized transport over ATM. This codec forms the subject matter of the

next chapter.
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Chapter 3

SPAFLAY
(SPAtial and Frequency

LAYering)

3.1 Video codec design issues

Multimedia applications are computationally intensive. Users have to invest in costly
studios and codecs, and must use dedicated network connectjons. However, the grow-
ing computing power of RISC workstations open possibilities of software implementa-
tions of video codecs. Hence, one of the aims of this thesis is to design and implement
a software video codec. The performance, using the processors of the day, is already
quite good. The performance of CPUs is expected to multiply in the coming years.
This will definitely result in an increase in the performance of software codecs [17].
Since our codec can be integrated in a regular software environment, it offers new
networking possibilities. We have used the codec over a UDP (User Datagram Proto-
col) transport protocol to test full motion video performance and quality. The codec
is embellished with features which make its performance particularly attractive over
ATM networks. It uses a unique layered coding algorithm suited to ATM networks.

The codec has been tested over regular internet connections to estimate the video
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image quality that we may achieve over ATM.

Our basic codec design goal is to produce a robust, VBR, compressed video stream
with HP/LP (HighPriority/LowPriority) layering, while incurring a relatively low bit-
rate overhead compared to one-layer approaches. Layering is done in the spatial and
frequency domain. Hence the name SPAFLAY (SPAtial and Frequency LAYering)
for the codec. In general, layering may involve some inefficiency in the coding algo-
rithm itself due to an increase in the redundancy of the layered structure. We need
to determine a procedure to partition the video stream into HP/LP portions with
appropriate bit-rate properties. It is desirable to produce a HP layer which is a rel-
atively low fraction of the total bit-rate (since high priority transport is expensive)
and is characterized by low bit-rate variance, but is sufficient to provide a reasonable
image quality level even during heavy cell loss. A related consideration is the quality
of the decoded image in the presence of cell loss. It should be acceptable as per the
anticipated needs of the application. This will have a bearing on determining the

partition of the HP/LP portions of the video stream.

3.2 Rationale behind a new layering scheme

The multimedia application that we have designed and implemented is intended to
be used primarily for teaching purposes and teleconferencing. In these applications,
we visualize a typical talking head scene for most part of the time. This provides an
ideal fovea location as discussed in the last chapter. The background for the talking
head scene is of little importance to us.

ATM networks have a two-level priority scheme which makes robust video coding
possible. In the event of cell loss in the ATM network, we would prefer cell loss to be
restricted to the background information of the scene. This would cause little subjec-
tive degradation in image quality. Accordingly, it would be reasonable to segment the
scene into two parts: the area of interest would be sent as high priority ATM cells,

while the background scene information would be tagged as low priority cells. Thus
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we can use the concept of Spatially Varying Sensing [3] to determine the partition of
HP/LP portions of the video stream.

Another approach which could be used for all scenes, irrespective of the presence
of an area of interest is splitting of transform coefficients. Transform coding using
Haar Wavelet has the advantage of separating compressed information into frequency
components which have graduated subjective importance, and hence are amenable
to prioritized layering for ATM. For Haar Wavelet-based compression techniques, a
natural layering method is to transmit key header information and the first few low
frequency coefficients in HP, while sending the remaining high frequency coefficients
in LP. Using only the HP (low frequency coefficients) data, we can reconstruct the
entire image with reasonable quality. Loss of high frequency components will only
result in a decrease in the details and sharpness of the image.

In our model, we use a combination of these two approaches. It is particularly
beneficial to fovea-oriented scenes. At the start of the video session, the pixel at
the centre of the video image is chosen as the fovea by default. As the video sessicn
progresses, the position of the fovea will be dynamically altered to the point of interest
in the video scene. The user is given the option to specify the neighbourhood around
the fovea which is subjectively more important in the scene. Information within this
area is always sent in HP cells. The background information is sent in two bursts:
the low frequencies are sent as HP cells and the high frequencies as LP cells. The
result of this scheme is a reduction of the subjective deterioration of the resultant
image in the event of cell loss in the ATM network. Only the LP cells comprising the
high frequency coefficients of the background information will be lost.

Thus, using this technique restricts ceil loss to regions of little interest in the
image. Using the technique of transform coding alone does not give the advantage of
specifying a spatial area of importance in the image. Also, if the Spatially Varying
Sensing concept is used all by itself, it might result in cells of the background getting
completely lost. The resultant image quality will again be poor. Hence, we have

used a combination of Spatially Varying Sensing and Combined Transform Coding
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techniques in the design of our video codec. The combination also helps to decrease
the redundancy of the layered structure, which has remained one of the drawbacks in
traditional layered coding algorithms. If the image has no centre of interest, we can

still use Combined Transform Coding alone to good effect.

3.3 Application considerations in codec design

The requirements for compressed video on digital storage media (DSM) have a nat-
ural impact on the design of the video codec. We have implemented an application
which supports playback of recorded audio and video information. The complete set
of features of this application will be described in Chapter 5. Hence, our compres-
sion algorithm must have the capability to fulfill requirements of the orchestrated
application. The following features [8] have been identified as important in order to

meet the needs of our application.

Access to specific video units: In our application, a video session is recorded
and stored as a set of small video playback units. Each unit represents an ac-
cess point from where we can start playback of the video session. To enable this
feature, we need existence of segments of information coded only with reference
to themselves. Hence, the video compression algorithm must periodically send
portions of a frame without reference to the previous frame. This is a kind
of command refreshinent scheme built into the codec to support access to spe-
cific video units. Without this command refreshment scheme, it might take an

annoyingly long time for the entire video frame to be displayed.

Now, high compression demands force us to use inter-frame coding, in which
only portions of the video frame which are different from the earlier frame
are transmitted. There is a tradeoff at this point. Quality requirements of
distributed multimedia applications demand a very high compression ratio not
achievable with intra-frame coding alone. On the other hand, the access require-

ment to specific portions of the compressed video stream can be best satisfied
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by pure intra-frame coding. Our algorithm can satisfy all the requirements only
insofar as it achieves the high compression ratio associated with inter-frame
coding, while not compromising random access for those applications that de-
mand it. This requires a delicate balance between intra and inter-frame coding.

We have resorted to the command refreshment scheme as a solution to this

problem.

Fastforward/Reverse searches: Our orchestrated application supports fastfor-
ward and reverse searches. To provide for this featu,e, we again need to have
access to video frames coded only with reference to themselves. The reason is
the same as in the previous case. Using the command refreshment scheme again

helps to build an entire video frame in a short time.

Audio-Visual synchronization: We have provided techniques to facilitate audio-
video synchronization in our multimedia application. These techniques entail
adding appropriate timing and sequence number information to compressed
video packets, which is used to time its output. Otherwise, this feature has

no bearing on the functionality of the video codec as far as the compression

algorithin is concerned.

Robustness to errors: Our layered coding scheme mainly addresses this point. It
is a compensation technique to alleviate the problems due to random errors
in the communication links and cell dropping during network congestion. The
command refreshment technique also prevents the problems due to the prop-

agative nature of VBR coding.

Coding/Decoding delay: Distributed, live, multimedia applications involving mo-
tion video need to keep the total system delay under 150 ms in order to maintain
the conversational, face-to-face nature of the application. Since quality and de-
lay can be traded-off to a certain extent, the algorithm should perform well over
the range of acceptable delays. Our choice of Haar Wavelet Transform (HT)

as against the conventional Discrete Cosine Transform (DCT) as a transform



coding algorithm was based on the need to decrease the coding delay. DCT is

computationaliy very intensive though it effects more compression than HT.

3.4 Stages in the SPAFLAY video codec

The codec has two modes of operation: prioritized mode and normal mode. The
prioritized mode is suited to applications like teleconferencing which have a distinct
area of interest. In this mode, we use a combination of layering in the spatial domain
and the frequency domain. We will mainly concentrate on the functionality of the
codec in this mode.

The normal mode of operation is suited to applications without a marked fovea.
In this mode, there is no prioritization of data either in the spatial or the frequency
domain. The codec uses a subset of the steps in the prioritized mode. We will point
out the differences in this mode of operation at appropriate places.

The coding algorithm involves the following steps:

o The first step is Block analysis. The image is split into blocks of 8x8 pixels.
For each period, a block is compared to the corresponding block in the previous
image. If there is no significant change in the block, no information will be
transmitted for this block. If the block is significantly different, it is subjected

to further compression steps and transmitted.

e The second step is Transform coding. For each block which has to be trans-
mitted, a Haar Wavelet Transform (HT) is performed. As the adjacent pixels
tend to be correlated, this transformation statistically reduces the amount of

information which will have to be transmitted.
e The third step is Layering. In the normal mode, this step is skipped. The
Haar "ransform coefficients go directly to the thresholding stage.

The Layering stage assumes significance only in the prioritized mode. Here, we

split the blocks to be transmitted into high priority and low pﬁority groups on
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the basis of their spatial position in the viueo frame.

The HT coefficients of the low priority blocks are again divided into two prior-
ity groups using frequency splitting. The low frequency coefficients are thresh-
olded, sequenced in a zig-zag fashion, RunLength encoded and transmitted as
high priority data. The other group representing high frequency coefficients
is also thresholded, sequenced in a zig-zag manner, RunLength encoded and

transmitted as low priority data.

o The fourth step is Thresholding. This step achieves further compression by

eliminating those Haar Wavelet coefficients which do not unduly affect the qual-

ity of the decoded image.

o The fifth step is Command refreshment. Here, we periodically transmit
portions of the video frame irrespective of their motion content. They are also
transmitted at high resolution by skipping the thresholding stage. Command

refreshment improves image quality.

e The sixth step is Zig-zag sequencing of Haar Transform coeflicients to facili-

tate entropy coding.

o The last step is RunLength encoding. Once the HT coeflicients have been
computed, thresholded and sequenced in a zig-zag manner, an entropy coding

scheme is applied to transform the image to a string of bits.

3.4.1 Block analysis

Block analysis is used to reduce the temporal redundancy. The current frame is
compared to the previous frame, looking for portions of the image that have changed
significantly. Only the areas which have changed in the current frame with respect
to the previous one will be retransmitted. The differencing step can be done quickly,
reducing not only the bandwidth required to send video information, but also the

total amount of work to compress the frame, since only the areas which chauge need
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to be processed by the subsequent compression steps. In a typical teleconference
scenario, this step will achieve a compression ratio of 3:1 or more.

This step is performed after dividing the frame into blocks of size 8x8 pixels. To
detect the portions of the current video frame which have changed with respect to
the previous frame, we compare the luminance components of similar blocks in the
two frames. If this difference between the two blocks exceeds a particular threshold,
the block is marked as a motion block and is subjected to further compression steps
before being transmitted. A unique feature of SPAFLAY is the scheme to detect
areas of motion. In a teleconference scenario, it is reasonable to expect more motion
in the area around the fovea. Limited motion ir the background is net particularly
important to the viewer. Hence SPAFLAY is more sensitive to motion around the
fovea. This is achieved by having a variable threshold to detect motion blocks.

Accordingly, this threshold varies with the block positica. If the block is closer
to the fovea, it has a lower threshold. As we go away from the fovea, the threshold
increases. Our experiments suggest that a threshold range (difference in the luminance
components of corresponding blocks) from 50 (zy) to 120 (z') is effective to detect
motion. Let (rg,y0) be the block containing the fovea. The threshold value (z0) is
associated with this block. We designate the block which is most distant from the
fovea block as (2/,y'). The highest threshold value (=) is associated with this block.
All other blucks are assigned values between z and =, A threshold value is associated
with other blocks in a video frame as follows:

Consider the parabola
(x = 20)* + (¥ = po)* = da(z — z0) (3.1)
where (z,y) represents a block in the video frame with a threshold value z. Substi-

tuting (z,y) = (2',y’) and = = =’ in this equation, we get the value of a:

_ (2" —20)* + (¥ — yo)?
4(2" — 2o}

a

Substituting the value of @ in equation 3.1, we get

(¢ = 20)* + (' — yo)?
4(2' — zp)

(x—20)* + (y —yo)® =4 (z — z0) (3.2)
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Figure 3: Threshold for motion detection

A threshold value (z) for a block is obtained by substituting (z,y) with the coordinates
of the block.

The threshold values assigned to blocks in the video frame appear as shown in
Fig. 3. It is clear that the threshold values closer to the fovea are small and they
increase progressively as we move away from the fovea. Hence, even a little motion
close to the fovea causes the block to be interpreted as a motion block, whereas, we
need substantial motion in the background areas for the block to be classified as a
motion block. We effect more compression this way, by restricting our choice to an
area of importance. In this sense, SPAFLAY is different from other motion detection
schemes which tend to use a uniform criterion to d-' ‘ct, motion across the entire video
frame.

This suits a marked fovea application like teleconferencing. We endevour to
achieve through this step, the same advantage which we have in Variable Resolu-
tion algorithms [3, 4]. In these algorithms, compression is achieved by resorting to
controlled sub-sampling. More pixels are sampled closer to the fovea and we progres-
sively decrease the number of samples as we move away from the fovea. Also, Variable
Resolution algorithms applied to image compression typically operate in the spatial
domain. This results in constant bit-rate (CBR) traffic. As we explained earlier,

ATM favours a VBR traffic. Hence, we mimic the Variable Resolution algorithms
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only to the extent of exercising selection over certain regions of interest to us in the

video frame. We will thereafter resort to transform coding of these selected blocks

producing a VBR compressed video stream.

If the application does not have a marked fovea, the user may choose to ignore
it. We provide the normal mode of operation wherein the threshold is uniform across
the entire image. In this case, the lower threshold z, is selected as the threshold to

detect motion for all blocks in the video frame.

3.4.2 'Transtform coding

Each motion block is compressed further using transform coding. The transform is
a two-dimensional Haar Wavelet. The blocks have a high spatial redundancy. The
redundancy reduction techniques usable to this effect are many, but because of the
block-based nature of the motion compensation process, block-based techniques are
preferred. In the field of block-based spatial redundancy techniques, transform coding
techniques and vector quantization are the two likely candidates. Transform coding
techniques with a combination of visually weighted scalar quantization and run-length
encoding have been preferred to vector quantization owing to their relatively straight-
forward implementation.

The Haar Transform [2, 6] is based on a class of orthogonal matrices whose el-
ements are either 1,—1, or 0 multiplied by powers of 2. The orthonormal Haar
Transform is a computationally efficient image transform. The transform of an N-
point vector requires only 2(N — 1) additions and N multiplications. The Haar Trans-
form basis vectors for N=8 is shown in Fig. 4. The Haar matrix for N=8 is shown in
Fig. 5. It is to be noted that the product of the Haar matrix with a vector results in
rough coarse-to-fine sampling. The first element gives the mean value of the compo-
nents. The second results in an average difference of the first 1/2N components and
the second 1/2N components. The remaining elements of the product measure the

adjacent differences of data elements taken four at a time or two at a time. 1% must
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Figure 4: Haar basis vectors for N=8

be noted that the Haar Transform is locally and globally sensitive unlike transforms

like Fourier which are globally sensitive.

From the basis vectors in Fig. 4, we notice that some of the basis vectors have

finite values over only a small part of their range. This makes the wransform locally

as well as globally sensitive to image detail.

The Faar Transform of an image may be computed by
[F(u,v)] = [H][f(z,][H]". (3.3)
and the inverse transform is given by
[f(z,9)] = [H]'[F(z,y)I[H], (3.4)

where the Haar matrix is obtained by sampling the set of Haar functions. The two-
dimensional basis matrices for N=8 are schematically presented in Fig. 6 [15].
Haar Transform-based compression is essentially a compression of 8x8 blocks of

grayscale image samples. Color image compression can be approximately regarded as
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17247 har(1,1x)

1 1237 narf1,2.0)
12 har(2,1,x)
112 har(2,2.x)

4 172 har(2,3,x)
112 har(2.4.%)

XY 112 her24y)

12 har(2,3.y)
1/2 har(2,2.y)

1/2 har{2,1y}

VT har{1,2y)

UNT har(t,1y)

har{0,1.y;

har{0,0,y)

Figure 6: Two-dimensional Haar basis matrices for N=8



compression of multiple grayscale images, which are either compressed entirely one
at a time, or are compressed by alternately interleaving 8x8 sample blocks from each
in turn. For color images, we subject the luminance and chrominance components
of a block separately to Haar Transform. Input to the Forward Haar Transform is
an 8x8 sample block. Each 8x8 block of source image samples is effectively a 64-
point discrete signal which is a function of the two spatial dimensions z and y. The
Forward Haar Transform takes this signal as its input and decomposes it into 64
Haar Transform coefficients. The coefficient with zero frequency in both dimensions
is called DC coefficient and the remaining 63 coefficients are called AC coefficients.
Because the sample values typically vary slowly from point to point across an image,
the Forward Haar Transform processing step lays the foundation for achieving data
compression by concentrating most of the signal in the lower spatial frequencies. We
get a compression ratio of 6:1 or more as a result of transform coding followed by
entropy coding.

At the decoder, the Inverse Haar Transform reverses this processing step. It takes
the 64 Haar Transform coefficients (which at that point have been thresholded) and
reconstructs a 64-point output image signal.

We associate a Quality-Indez (QI) parameter with each of the 64 Haar Transform
coefficients. This index is assigned as follows: First, the Haar basis vector 2 and the
Haar basis vector 3 (Fig. 4) are treated as a single unit. Similarly, basis vectors 4, 5,
6 and 7 are treated as one unit. The other vectors are considered as separate units.
This step is necessitated to group together vectors which are only locally significant.
With this step, we can consider the 8x8 two-dimensional basis matrix (Fig. 6) as
a 4x4 matrix of basis vector units. This is shown in Fig. 7. Each HT coefficient
corresponding to an element in the 4x4 basis matrix is assigned a Quality-Indez which
is equal to the sum of the row and the column number of the element in the 4x4
matrix. Effectively, we have labelled each of the 64 HT coefficients corresponding to
elements in the 8x8 basis matrix with a Quality-Indez as in Fig. 7. The Quality-Index

of a Haar Transform coefficient gives a measure of the image detail carried by it. A
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Figure 7: Quality-Index (QI) values for Haar Transform coefficients

Haar Transform coefficient with a low index value indicates coarse sampling with finer

details being progressively added by coefficients with higher Quality-Inder values.

3.4.3 Layering in SPAFLAY

This step is significant only in the prioritized mode of operation of the codec. It is
skipped in the normal mode operation. In the normal mode, the transform coded
blocks are directly subjected to thresholding.

The ATM cell header consists of the following fields: generic flow control (GFC),
virtual path identifier (VPI), virtual channel identifier (VCI), payload type (PT), cell
loss priority (CLP) and header error control (HEC). The header format is different at
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a B-ISDN user network interface (UNI) than it is in a B-ISDN network node interface
(NNI), as illustrated in Fig. 8.

The CLP field of the ATM cell header is a 1-bit field used for cell-loss priority.
Due to the statistical multiplexing of connections, it is unavoidable that cell losses
will occur in a B-ISDN. A cell with CLP bit set may be discarded by the network
during congestion, whereas cells with the CLP bit cleared, have a higher priority and
shall not be discarded if at all possible.

The CLP bit present in the ATM cell header is used to have two levels of priority
in an ATM network. Our coding strategy is based ou a judicious usage of this field
to send prioritized information over the ATM network. A high priority is assigned to
those elements of a compressed video frame which will increase the subjective quality
of the decoded image. The choice of priority should be based on the criterion that
even if the low priority elements are completely lost in the network, it will not have
a bearing on the decoding of the video image at the receiving end. Also, the high
priority elements of the video frame alone should be able to guarantee a decoded
image of acceptable quality.

Accordingly, there are two ways of assigning priority in SPAFLAY: Spatial layering
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and Frequency layering.

Spatial layering: Our first task is to assign priority to portions of the video frame on
the basis of their spatial position. As we have stated earlier, the prioritized mode
of operation caters to applications with & marked fovea. In these applications,
the area around the fovea will be subjectively more important to the viewer

than the rest of the picture.

At the start of the video session, the centre of the image is chosen as the fovea.
The user also specifies the value for the fovea-neighbourhood parameter. lt is
input as a percentage. We determine the maximum distance which a pixel may
have from the fovea. Then. a circle with the fovea as the centre and fovea-
neighbourhood percentage of this maximum distance as the radius. determines
the Migh priority region. The blocks of the video frame which lie within this
circle are designated as high priority blocks and the blocks which lie outside

this circle are low privrity blocks. This process is illustrated in Fig. 9.

When one of these high priority blocks is marked as a motion block in the
Block analysis step, it will pass through the entire compression procedure.
This involves performing a Forward Haar Wavelet Transform over the block.

The resultant Haar Wavelet Transform coefficients are thresholded, sequenced
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in a zig-zag fashion, RunLength encoded and then transmitted in ATM cells
with the CLP bit set to zero, signifying high priority data. This is layered

coding as applied to video frame blocks on the basis of their spatial location.

We begin the video session with the fovea fixed at the centre of the image.
Thereafter, the position of the fovea will be dynamically altered. It is natural to
associate the fovea with the point of maximum motion in the video scene. This
fact is used to dynamically determine the fovea position in the video image. The
Block Analysis step keeps an account of the number of times each video frame
block is transmitted for a given time interval. At the end of the time interval,
the block which was transmitted maximum number of times is designated as the
fovea block. The pixel at the centre of the fovea block becomes th:: new fovea.
We recompute the low priority and high priority labels assigned to video blocks
with respect to this new fovea. Currently, this computation to determine the

new fovea position is done every 15 frames.

Frequency layering: The blocks which fall outside the selected neighbourhood around
the fovea are low priority blocks. Over these low priority blocks, we use another
technique of layering which is based on splitting of frequencies. This technique
is also known as Combined Transform Coding. It is based on the ratio-
nale that using just the low frequency components from the transform coded
block, we will be able to reconstruct the entire block at the decoder end. The
quality of the decoded block will be low. Presence of high frequencies enhances
the decoded block quality since these frequencies account for the sharpness and
details of an image. However, it should be clearly noted that low frequencies

alone are adequate to decode the entire block, though the resultant block will
be of inferior quality.
Our goal is to send the low frequencies of a block as high priority data over the

ATM network by packing them in ATM cells with the CLP bit set to zero. The

high frequencies of the same block will be sent as low priority data by setting



the CLP bit to one in all the cells carrying this data. We will interleave these
high priority and low priority cells while sending them over the ATM network.
At the decoder end, we merge the high and low frequencies of the block and
then decode the resultant block. If the high frequencies (low priority data for
the network) are lost, the block will be decoded using only the low frequency

components of the block.

Here, we need to quantify the values of our low frequencies and high frequencies.
We require a threshold such that all frequencies below the threshold will be
marked as low frequencies and frequencies above it will be high frequencies. As
we increase the threshold, more frequencies get classified as low frequencies.
This will increase the quality of the decoded block, but it will also increase
the volume of data sent as high priority over the network, which might result
in increased network congestion. If the threshold is fixed very low, then we
increase the volume of data sent as low priority over the network. This raises the
possibility of more cells getting dropped by the network since they were assigned
a low priority. The result might be a decoded block of poor quality. Hence, the
threshold to split low frequencies and high frequencies must be carefully chosen
by taking into account the acceptable quality level in our application and the

anticipated state of the network.

We allow the user to specify this threshold as a Quality parameter at the start
of the video session. It has a range from 0 to 6. As we saw earlier, the input to
the Forward Haar Transform is an 8x38 pixel block. The output is an 8x8 block
of Haar Transform coefficients. The Quality-Inder parameter assigned to each
Haar Transform coefficient will be used in our layered coding approach. The

layered coding now works as follows:

A low priority motion block (designated on the basis of its position iu the video
frame) is subjected to the Forward Haar Transform. The output 8x8 element
block of Haar Transform Coefficients is called HTBase-block. We save a copy of
HTBase-block in HTCopy-block. The algorithm starts by conﬁdering HTBase-
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block.

In HTBase-block, the Quality-Indez of each HT coefficient is compared with the
input Quality parameter. If the Quality-Indez of the HT coefficient is less than
or equal to the Quality parameter, then the HT coefficient is made zero. A
jittle analysis will clarify the fact that HTBase-block after the above procedure,
represents » block with its low frequencies set to zero. Only the high frequencies
of the original HT block are nonzero. The biock is then thresholded, sequenced
in a zig-zag fashion, RunLength encoded and packed into ATM cells with the
CLP bit set to one and then transmitted. With this, we have sent the high

frequencies of the original HT block as low priority data.

Next, we consider the original HT block which had been saved in HTCopy-block.
In HTCopy-block, the Quality-Indez of each HT coefficient is compared with the
input Quality value. If the Quality-Indez of each HT coefficient is greater than
the Quality parameter, then the HT coefficient is made zero. HTCopy-block
after the above computation, represents a block with its high frequencies set
to zero. The low frequencics of the original HT block are alone nouzero. The
resultant block is again thresholded, sequenced in a zig-zag manuer, RunLength
encoded and packed into ATM cells with the CLP bit set to zero and then

transmitted. With this, we have sent the low frequencies of the original HT

block as high priority data.

Thus, the HT coefficients of a block are transmitted in two bursts. In the
first burst, the high frequencies of the block are transmitted as low priority
data over the ATM network. In the second burst, the low frequencies of the
block are sent as high priority data over the ATM network. In effect, we have
divided the HT coefficients in an HT block into two groups cf high priority and
low priority coefficients on the basis of the value of the Quality parameter.
The high priority and low priority HT coefficients are thereafter transmitted

separately over the network.
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Quality | No. of HP coeffs. | No. of LP coeffs.
0 1 63
1 3 61
2 8 56
3 20 44
4 32 32
5 48 16
6 64 0

Table 3.1: Breakup of high and low priority HT coefficients
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Figure 10: Quality=0: HP and LP Haar Traunsform coefficients

Fig. 10 to 16 indicate the high priority and low priority HT coefficients in a
given HT block for different values of the Quality parameter. It is seen that,
for a Quality value of 0, one HT coefficient is sent as high priority data and
the other 63 coeflicients of the HT block are sent as low priority data. When
the Quality value is 6, all the 64 HT coefficients in the HT block are sent as
high priority data. The breakup of the number of high priority and low priority
HT cocllicients in an HT block for different values of the Quality parameter

are summaearised in Table 3.1.
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At the decoder, we try to reconstruct the HT block by merging the low fre-
quency components and the high frequency components. The resuitant block is
subjected to a Reverse Haar Transform procedure. If the high frequency compo-
nents were lost due to network congestion, the low frequency components alone
go through a Reverse Haar Transform procedure. In this case, the decoded

block will be of relatively poor quality.

3.4.4 Thresholding

The input to this step is a block of 64 HT coefficients. The purpose of thresholding
is to achieve further compression by representing HT coefficients with no greater
precision than is necessary to achieve the desired image quality. The goal of this step
is to discard information that is not visually significant. We have chosen a threshold
value on the basis of psychovisual experiments. The low energy wavelet terms are
suppressed in this step. From our experiments, it was found that HT coefficient values
between —2 and 2 can be discarded without any significant loss in the decoded image

quality.

3.4.5 Command refreshment

To improve the image quality and to prevent errors in VBR coding from propagating,
SPAFLAY uses a form of command refreshment. Portions of the frame are trans-
mitted irrespective of their motion content. These are blocks of the frame which are
detected as stationary blocks over many consecutive video frames. These blocks are
transform coded. But they are not thresholded. They are thus sent in high reso-
lution. This process results in a nearly lossless version of the original image, while
still achieving approximately 2:1 compression. With command refreshment, all the
stationary portions of the image get updated to high resolution quickly after a scene
change.

Command refreshment was introduced to improve the quality of multicast appli-

cations and orchestrated applications. In our application, we enable multicasting of
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audio and video data to a group of stations. If a client joins this multicast session
while it is in progress, it will have to wait for a considerable amount of time for the
entire video frame to be filled. This is due to the fact that motion blocks alone are
retransmitted as per the compression algorithm discussed above. The video quality
for the new client will be poor until the entire video frame is filled. With command
refreshment, the video frame for the new client will get filled faster due to the fact
that stationary portions of the video frame are also being transmitted periodically.
Another feature in our application is provision of reverse and fastforward search
during playback of stored data. Moving to a far removed point in time through a
rewind or fastforward can result in a complete scene change. Absence of history
for the current video frame will result in most parts of the video frame being void.
Absence of command refreshment can lead to very slow video frame buildup which

can be annoying to the user. Command refreshment speeds up the complete frame

buildup.

3.4.6 Zig-zag sequencing

The thresholded coefficients are ordered in a zig-zag sequence, as shown in Fig. 17.
This ordering helps to facilitate entropy coding techniques like RunLength encoding,
by placing low frequency coefficients (which are more likely to be nonzero) hefore high
frequency coefficients. It is to be noted that the zig-zag sequence is arranged such that
all the HT coefficients of a given Quality-Indez value are packed and sent together.
Also, these HT coefficients are sent in the increasing order of the Quality-Indez values.
This ordering is particularly beneficial in the prioritized mode of operation where

entire groups of HT coefficients of a particular Quality-Indez value are reduced to

Z€eros.

3.4.7 Symbol-level RunLength encoding

The HT coefficients are finally subjected to RunLergth encoding before being trans-

mitted. In this step, each nonzero coefficient is represented in combination with
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Figure 17: Zig-zag sequencing of Haar Transform coefficients

the “runlength”(consecutive number) of zero-valued coefficients which follow it in the
zig-zag sequence. Each such runlength/nonzero coefficient combination is usually rep-
resented by a pair of symbols: (symboll, symbol2). Symboll represents the runlength
while symbol2 represents the “amplitude”, which is simply the value of the nonzero

coefficient. The runlength encoded samples are transmitted over the network.

3.4.8 Motion detection in SPAFLAY

In the Block analysis step, blocks of the video frame are compared with the cor-
responding blocks of the previous frame to detect the areas of motion in the present
video frame. In this decision phase, the previous frame serves as a reference for the
current frame to detect the areas of motion. Here, it is important to note that the
reference frame should not be a captured frame. During the compression process,
irreversible errors are introduced in the captured frame due to the lossy nature of
th - thresholding process. Hence, the decoded frame at the receiver’s end will not be
of the same quality as the captured frame. This decoded frame should serve as the
reference frame. If the previous captured frame is used as the reference frame during
the Block analysis step, then we accumulate errors due to a faulty reference frame.

Hence, we need a reconstructor in our codec to provide the correct reference frame
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in the decision making phase. The placement of this reconstructor in SPAFLAY is
shown in Fig. 18.

In the prioritized mode of operation, the codec can be made more robust by
using high priority data alone to construct a reference frame. This step ensures
that motion detection is performed taking into account the information loss that
might be incurred when the ATM network is congested. This robustness feature is at
the potential expense of prediction efficiency in the Block analysis step. However,
removal of some high frequency coeflicients from the reference frame may not seriously
impact prediction efficiency since they tend to have high variances and low inter-frame
correlation. Fig. 19 shows the resulting encoder structure for the prioritized mode of
operation.

The prediction efficiency in the Block analysis step can be increased by having
an area of spatial importance in the image. The blocks in the neighbourhood of the

fovea do nect go through the frequency splitting step. Hence, the decoded quality
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of these video blocks will be high. This prevents these blocks from being spuriously
detected as motion blocks due to the coarseness of the reference frame comprising

these blocks.

3.5 Modes of operation in SPAFLAY

3.5.1 Prioritized mode

The stages in the prioritized mode of operation of the codec are depicted in Fig. 20.

It is summarised as follow.

o At the start of ths vi: v, the ceutre of the video image is chosen as
the fovea. As the vidc  .sion progre-ses. the position of the fovea will be
dynamically altered as discised earlier. The user specifies the neighbourhood
around the fovca which is subjectively more importar: Using this information,
the blocks in the video frame are classified as high priority blocks and low
priority blocks. Each block also has a unique threshold value which is used
to detect motion between corresponding blocks of successive video frames. In
the first stage, we compare corresponding blocks of successive video frames to
detect motion blocks. These blocks could either be high priority or low priority

blocks. They are sent to the next stage.

e If the input block is a high priority block, it is subjected to Haar Transform,
thresholded, sequenced in a zig-zag fashion, RunLength encoded and transmit-
ted over the network as high priority cells. If the input block is a low priority
block, it is subjected to frequency splitting. The low frequency components are
thresholded, sequenced in a zig-zag fashion, RunLength encoded and transmit-
ted over the network as high priority cells. The high frequency components also
go through the same compression steps, but are transmitted as low priority cells

over the ATM network.
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e Only the high priority information is used to decode the frame at the encoding

end. This frame is used as the reference to detect motion for the next video

frame.

o At the decoding end, the low priority block is reconstructed by merging the
high and low frequencies which were sert in separate bursts over the netvork.

The resultant block is subjected to Reverse Haar T: insform and displayed.

3.5.2 Normal mode

The strps in the normal mode of operation of the codec is shown in Fig. 21. The

steps are summarised as follows:

e The video scene does not have a marked fovea. Hence, all the tlocks of the video
frame are treated uniformly. Each block has the same threshold value which is
used to detect motion between corresponding blocks of successive video frames.
In the first stage, the corresponding blocks of consecutive video frames are

compared to detect motion blocks. These blocks are sent to the next stage.

o Here, the blocks are transform coded using Haar Transform. The transform

coded blocks are threshoided, sequenced in a zig-zag manner, RunLength en-



coded and transmitted over the network. The information transmitted over the

network has a uniform priority unlike in the prioritized mode.

e Since there is no prioritized information in this mode, the transmitted frame is
decoded at the encoding end. It serves as the roference to detect motion for the

subsequent video frame.

e At the decoding end, the transmitted blocks are subjected to Reverse Haar

Transform and displayed.

3.6 Use of SPAFLAY in a multicast scenario

In a video conferencing application, each conference participant sends audio and video
data to other members. All the participants need not be in the same area. We can
consider a case where participants in one area are connected through a low-speed link
to the majority of the conference participants, who enjoy high-speed network access.
Instead of forcing everyone to use lower-bandwidth, reduced quality video encoding,
we could use the SPAFLAY codec to good effect.

A router placed near the low bandwidth area can pass only the high priority data
sent by SPAFLAY to these group members. Thus we not only reduce the bandwidth
to cater to these group members but also keep the quality of the image at permissible
limits. This ic due i< the inbuilt partitioning scheme used in SPAFLAY. SPAFLAY’s
high priority data stream is alone sufficient to guarantee an image of reason=ble
quality.

Both the high priority and low pricrity stream produced by SPAFLAY are deliv-
ered to group members who have high-speed network access. Hence, the video image
quality for these group members is superior. As a result, the members who are con-
nected by a high-speed network are not inconvenienced due to the presence of group
members connected to a low-speed network.

Thus, the natural partitioning scheme used in th - SFAFLAY codec can be used

to good effect in a multicast environment. This case is illustrated in Fig. 22.
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3.7 Search in parameter space for SPAFLAY

In this section, we compress an image using the various options in SPAFLAY. In each
case, we look at the decoded image quality when all the low priority cells carrying
the compressed image are lost in the network. The imag? is reconstructed using data

in the high priority cells alone.

Image quality in normal mode of operation (Case 1): The decoded image qual-
ity of a video scene is shown in Fig 23. In this case, the size of the compressed
image was 6007 bytes. Assuming that the ATM cell payload is 48 byies, it will
take 125 ATM cells to carry the compressed video image. It must be noted
that Fig. 23 depicts the quality of the image when there is no cell loss in the
network. In the event of cell loss, every part of the video image is equally sus-
ceptible to loss. The worst case is when the end-of-frame-marker is lost in the

networx due to network congestion. It results in the decoder being unable to



Figure 23: Image quality using normal mode

recensiruct the entire frame. The frame is as good as lost. Hence, the codec

has least robustness when it works in the normal mode of operation.

Image quality in frequency layered mode (Case 2): In the prioritized mode of

operation, the user can input a Quality value in the range of 0-6. If there is
no loss in the network, the quality of the decoded image is the same as that in
the normal mode of operation. The quality of the decoded image changes only

in the event of cell loss in the network.

We compare the quality of the resultant image when all the low priority cells
are lost in the network due tc congestion for various values of the Quality
parameter. Assuming that only the low priority cells are completely lost in the
network, and we can “reserve” bandwidth for all the high priority cells, the
quality of the image will be least when Quality is 0 and maximum when the
Quality value is 6. In this experiment, we do not use any spatial layering. The

image is assumed to hav' no centre of interest.

Fig 24 shows the worst case scenario when all ihe low priorit, cells are lost due
to network congestion for a Quality value of 0. In this case, the compressed
image was spread over 157 cells and 80% of the compressed image constituted

low priority cells. We see that the image reconstructed using only 20% high

613)



Figure 25: Image quality using frequency layering (Quality=1)

priority cells is blocky and lacks detail and sharpness du~ to the loss of high

frequency components in the blocks.

Fig 25 shows the scenario when all the low priority cells are lost due to retwork
congestion for a Quality value of 1. lu this case, the compressed image was
spread over 144 cells and 73% of the compressed image constituted low priority
cells. We see that the image reconstructed using 27% high priority cells has

better quality than ti.e earlier case when we selected a Quality value of 0.
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If the Quality value is 6, the decoded image will be of best quality in the event
of loss of only low priority cells in the network. The decoded image quality is
the same as in the case of normal mode of operation. This is due to the fact
that all the block frequencies are sent as high priority data wh n the Quality

value is set as 6.

The advantage of frequency layering is in limiting cell loss to high frequency
coefficients of the video blocks. This makes the video codec more robust as
compared to Case 1, where every portion of the image was equally susceptible
to cell loss. An added advantage of layering is in sending vital information like
the end-of-frame-inarker as high priority data. This ensures that a frame is not

lost due to loss of the niarker alone, as could be the case in the normal mocc ~f

operation.

Image quality in spatial and frequency layered mode (Case 3): If Spatial Lay-
ering is also used, the quality of the image in the event of cell loss is better than
in Case 2. It must again be noted that we consider network loss to be restricted
to low priority cells. Here, we are able to localire cell loss to regions of the image

which are of least subjective importance.

In this analysis, the fovea was selected at the centre of the image. 40% of
the image around the fovea was considered to be subjectively important. We
compare the quality of the decoded image when all the low priority cells are

lost in the network due to congestion.

Even in the worst case (when Quaiity is set to 0), the decoded image is of
better quality than in Case 2. For this case, the compressed image was spread
over 152 cells. Also, 71% of the compressed image comprised low priority cells.
The image reconstructed using 29% high priority cells is shown in Fig. 26. Tt is
seen that the area around the fovea does not suffer any information loss. Loss
is restricted to the high ‘requency components of the background information

alone. Hence, only the background inicrmation appears blocky.



Figure 26: Image quality (Spati=i aad 1requency layering)

If the Quality value is 6, the decoded image will be of best quality in the event
of loss of all low priority cells in the network. All the block frequencies are sent
as high priority data. Hence the decoded image quality approaches the quality

in the normal mode of operation.

3.7.1 Bit-rate-penalty in SPAFLAY’s prioritized mode

The layered coding algorithm used in SPAFLAY’s prioritized mode increases the ro-
bustness of the video codec to cell loss. However, the advantage is at the expense of
incurring a bit-rate-penalty compared to one-layer approaches like SPAFLAY’s nor-
mal mode. This is due to an increase in the redundancy of the layered structure. (n
this section, we present a quantitative measure of the extent of bit-rate-penalty that
we incir in the layered scheme used in SPAFLAY.

A typical talking head video scene is used in this analysis. The image is of size 120
x 160. 'i’his image is compressed using the various options in SPAFLAY. In each case,
we compaic the compressed image size with that in tiie normal mode of operation.
This gives an estimate of ihi penalty incurred in the prioritized mode of operation.
We alsc nnic the proportion of high priority data to the low priority data in the

compressed video image in each case.
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Case Total bytes/frame | high priority bytes | low priority bytes

Normal mode 6936

6936

0

Table 3.2: Compressed frame size: Normal mode

Legend :
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Case S :
Casad:
Cosn7:

.
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Fraction of the frame sent as low priorttly dats
Fraction of the Wems sent as Ngh priority data

Figure 27: Bit-rate-pepalty in frequeny layering

Table 3.2 gives the size of the compressed frame in bytes when the normal mode

of operation is use:d in SPAFLAY. This size (6936 bytes) serves as the reference while

comparing the bit-rate-penalty incurred in the prioritized mode. We also note that

in the normal mode, the entire frame is sent as high priority data.

Next, the initial image is compressed using frequency layering alone in SPAFLAY’s

priovitized mode. We note the size of the compressed image and the proportion of high

and low priority data for various values of the Quality parameter. As the value of the

Quality parameter increases, the proportion of high priority data in the compressed

frame also increases. Table 3.3 presents the values for these cases. It is illustrated

in Fig. 27.

The point (z = 80,y = 60) correspunding to the centre of the image, is selected as



Case Total bytes/frame | high priority bytes | low priority bytes
Quality = 0 8461 1748 6713
Quality = 1 7747 2225 5522
Quality = 2 7851 3604 4247
Quality = 3 7951 5074 2877
Quality = 4 7999 5815 2184
Quality = 5 8049 6480 1569

Table 3.3: Compressed frame sizes: Frequency layering

Case Total bytes/frame | high priority bytes | low priority bytes
Quality = 0 8416 1948 6468
Quality = 1 7729 2410 5319
Quality = 2 7830 3726 4104
Quality = 3 7921 5119 2802
Quality = 4 7968 5845 2123
Quality = 5 8015 6490 1525

Table 3.4: Compressed frame sizes: Spatial (20 %) + freq. layering

the fove.. We use spatial and frequency layering ove - the image. The area around the
fovea which is subjectively important to +he user is specified in terms of percentages-
20, 49 and 60. For each case, the Quality parameter values are again varied. These
results are shown in Table 3.4, 3.5, and 3.6. They are also graphically presented
in Figs. 28, 29 and 30 respectively.

From the results, it is clear that as the percentage of blocks subject to spatial
layering increases, we incur less bit-rate-penalty. This is because the percentage of
blocks subject to frequency splitting decreases. Hence, we approach the normal mode
of operation values. However, this also increases the proportion ¢f prioritized data in
the compressed video frame. A substantial increase in the proportion of prioritized
data jeopardizes the effectiveness of layering. If the percentage of blocks subject
to spatial layering is decreased, the bit-rate-penalty increases. But wvais decreases
the proportion of prioritized data in the compressed video frame. Thus, there is a
tradeoff associated with decreasing the bit-rate-penalty and decreasing the proportion

of prioritized data in a compressed frame.
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Case Total bytes/frame | high priority bytes | low priority bytes
Quality = 0 8242 92424 5818
Quality = 1 7632 2823 4809
Quality = 2 7717 3965 3752
Quality = 3 7796 5525 2571
Quality = 4 7838 5907 1931
Quality = 5 7881 6516 1365

Table 3.5: Compressed frame sizes: Spatial (40 %) + freq. layering

Case Total bytes,/frame | high priority bytes | low priority bytes
Duality = 0 7754 4344 3410
Quality = 1 7357 4582 2772
Quality = 2 7418 5255 2163
Quality = 3 7471 6006 1465
Quality = 4 7496 6386 1110

I Quality = 5 7521 6720 801

Table 3.6: Compressed frame sizes: Spatial (60 %) + freq. layering

B EEEEEEE
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- ] . . .
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Figure 28: Bit-rate-penalty: Spatial (20 %) + freq. layering
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Figure 29: Bit-rate-penalty: Spatial (40 %) + freq. layering

3.7.2 Image quality in SPAFLAY

Another parameter necessary to evaluate the performance cf SPAFLAY is the de-
* mpressed image quality. In particular, we are interested in the quality of the image
when all the low priority cells are lost in the network.

Quality of an image is usually measured in terms of the signal-to-noise ratio of
the image. However, = measure such as this, is inappropriate for an encoding scheme
based on spatial importance like SPAFLAY. In these schemes, more importance is
given to the area around the fovea than to the periphery. Hence, a measure such as
the signal-to-noise ratio which treats the entire image uniformly is not suitable.

In SPAFLAY, we can quantify the quality of the decompressed image using a
measure of the number of motion blocks transmitted for a video scene. At tb~ encoding
end, the high priority data component of a compressed frame is decompressed and

used as a reference frame to detect areas of motion for the next captured frame. In
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Figure 30: Bit-rate-penalty: Spatial (60 %) + freq. layering

the normal mode of operation of SPAFLAY, the entire compressed data of a video
frame has uniform priority. Hence, when this frame is decompressed and used as a
reference for the next frame, we detect only the areas of motion.

However, same is not the case in the prioritized mode of operation. Since only
high priority data of a compressed frame is used as a reference, we detect not only
blocks which constitute motion, but ais: blocks which are coarse and lower in quality
to the corresponding block of the captured ideo frame. These coarse blocks are also
spuriously accounted as motion blocks. If we increase the percentage of high priority
data in the compressed video frame by either increasing the value of the Quality
parameter or by specifying a greater area around the fovea as being subjectively
important, then the number of motion blocks transmitted decreases. This is because
the quality of the decompressed image increases. Hence, the blocks which actually
constitute motion are alone detected as motion blocks and we decrease the number

of spuriously detected motion blocks.
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Case No. of motion blocks | Avg. bpf | Peak bpf
Normal mode 22966 40400 51136
R=0, S=0% 24454 53045 62968
Q=2, S=0% 23273 46908 57504
Q=3, 5=0% 22189 45027 60016
@=35, S=0% 22163 45495 60744

Table 3.7: Compressing a sequence of images

It should be noted that this measure of the number of motion blocks transmit-
ted for a given video scene also gives an account of the redundancy incurred in the
prioritized mode of operation. Only the high pricrity data is used as a reference to
estimate motion. In effect, at the encoder’s end, we assume the worst case, wherein
all the low priority data is lost in the network. This pessimistic approach to motion
estimation gives rise to redundancy in a layered encoding scheme due to the fact that
blocks wiich do not actually constitute motion are also detected as motion blocks.

A typical teleconference video scene was filmed. Thi- seqiience of video fram~- ‘vas
compressed using the various options in SPAFLAY. In each case, we note the . :m# o1
of motion blocks transmitted as also the peak and average bit-rate in terms of bits
per frame (bpf). The results are presented in Table 3.7. We find that the number
of motion blocks transmitted decreases as the value of the Quality (Q) parameter
increases. This decrease is attributed to the increased quality of the decompressed
image which serves as the reference frame for motion detection.

The proportion of high priority daia in the compressed video siream measured
over the entire filmed sequence for the various options in SPAFLAY is shown in Figs.
31 to 54. We select a particular image from the decompressed video stream to assess
the quality of the image in each case when all the low priority cells are lost in the

network. This image is presented alongside the graphs.
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Chapter 4

Media synchronization

4.1 Temporal synchronization in multimedia ap-
plications

Synchronization of multiple data streams *: time has be<"- recognized as a significant
requirement of future mu'timedia applicarr. s utilizing -rcadband communication
technology. One of the requirements of any vs!:m supporting time dependent data
is the need to provide synchronization of data clements which experience random
delays during transmission and retrieval. In additior “5 thc synchronization of live
data streams that have an implied temporal relationship, we need syuch::, - ze. icn #.-
stored data elements of any media, including audio, video, text etc.

There are many issues involved in media synchronization for a networked multi-
media application. For supporting the transmission of time dependent multimedia
data over the network, real-time communication protocols are necessary. In our ap-
plication, we have used Real-time Transport Protoco! {RTP) [34] as the Transport
Layer protocol. The merits of using RTP will be explained in a later section. Also,
provision of a real-time vierati..z system is essential to schedule time dependent tasks
and assigning utmost priority to meetin> deadlines. The real-iime deadlines consist

of playout times for the individual data elements. The design of a multimedia system
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o this nete e rust also account for latencies in each system component used in the
delicry of ieia, from the source to the destination. We must use a smoothing mech-
anism to compensate for these latencies in order to provide synchronized playback of
multimedia data.

Multimedia applications [1] are principally of three types:

Multimedia document browser: This lets the user select portions of a multimedia
document, stored on a remote file system, for display. Each portion may consist
of several parallel streams of audio and video. Graphic controls enable the user

to pause, adjust audio volume, and so on.

Telephony and video conferencing system: This lets two or more users hold an
audio or audio/video conversation with one another. This facility could also be
integrated with group-oriented software, allowing par*i=i::nts to work together

on a document.

Mult.irack audio/video editor: it st..es audio and vide: :<:..icnts on cne or
more file servers. The segments can be played back, sequer ~+i. andjos over-

lapped, according to an editable play list. New material can be recorded and

overdubbed.

All these applications need a facility for I/O of continucus media dat« o and from
a user’s workstation. They also need synchronization of the :fferent media streams
so that data units which were captured at the same real-time are also displayed in
unison.

A parameter which assumes significance in temporal synchronization is skew. Skew
is defined as the ditference in the presentation times of two related objects (i.e., video
stream and audio stream). Coarse skew represents gross delays between an image
and its accompanying voice, whereas fine skew represents the time delays between lip

motion and voice. Skew objectives of various multimedia applications are given in

Table 4.8 [33].
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Application

Skew objective

Audio + text or still image (one-way session)

Coarse skew < 1 sec

Audio + video (multipoint-to-multipoint sessions)

Coarse skew < 200 ms

Fine skew:

Audio in advance of video < 20 ms
Video in advance of audio < 120 ms

Complex teleconferency Coarse skew < 200 ms

Audio + video + still image + text Fine skew:
Audio in advance of video < 20 ms

Video in advance of audio < 120 ms

Table 4.8: Skew objectives in multimedia applications
Skew arises due to the following reasons:

® The transmission start times and the network delays (Delay Jitter) may differ.

This would skew the display of the data streams.

Due to the pipelined decompression architecture, the video device might not
start displaying until data for an entire frame is received (i.e., a frame represents
a synchronization unit for video). On the other hand, an audio device might
start playing out audio after a fixed number of audio samnles representing a
talkspurt is received. If an audio talkspurt is available at the destination, before
an entire video frame can be reconstructed, the stirting times for audio and

video might be different and this could skew the output.

The actual rates at which each physical device displays data are typically de-
termined by separate quartz crystal oscillators. If the oscillator frequencies do
not exactly match. audic and video output will not stay in synchronism over

long periods.

Scarcity of system resources (for example, network bandwidth and CPU time)
may cause a stream to starve. If I/O continues on the other streams, the skew
in the output will increase.

While skew applies primarily to related media objects, samples of a single

medium object are also affected by Delay Jitter. Delay Jitter causes these




medium samples to be delayed by variable amounts over the network. Hence,

playback of a single medium object must also account for Delay Jitter.

4.2 Accounting for Delay Jitter

Though there are numerous reasons for skewed output between data streams, delay
variance in the network or jitter is the single most prominent reason in distributed
multimedia applications.

In ATM networks, the end-to-end delay of the ith ceil is given as D + W;, where
D is a constant that includes the . pa_ation, transmission plus the switching delays
and :V; is the randum delay component that arises aut of buffzring within the network.

'The interarrival time of cells at the receiver is given by ( 4.1).
(D+ W) - (D+Wy) =4 (4.1)

Ideaily, interarrival times of cells at the receiver is equal to the time interval by vhich
the cells - re separated at the sender. This is the case if Wiy, = W;. However, due
to the ranvornness in the network, VW; is a random variable and is nc * a constant. §
represents the Delay Jitter.

Hence, for temporal synchronization of data streams, we need some form of
smoothing mechanism at the destination to accouni for Delay Jitter [23]. The goal
of this technique is to reshape the distribution of arriving cells of a data stream to
‘educe delay variance. This process is shown schematically in Fig. 55, where p(t) is
vae delay density function aird w(t) is the reconstructed playout distrib:ition.

Jitter can be controlled at the receiver at the expense of large buffers and delaying
cells. We could temporarily store the arriving cells in a jitter removal butfer so that
the departure rates of the cells from the buffer are close to the interexit times of czlls
at the sender as illustrated in Fig. 56. In our application, we use this technique of
buffering media data before play™ack to smoothen out the effect of Delay Jitter [22].

This will be explained in detzil in the section on Intra-medium synchronization.
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4.3 Synchrouization options

Synchronization can be divided into two categories: intra-medium synchronization
and inter-media synchronization. Continuous med:a data streams are defined as
a sequence of uruts (video frames or audio samples). Intra-medium synchronizaticn
[35] refers to playing out these data units within a medium stream at appropriate
times. Inter-media synchronizatior. [1] is related to correlating data units belonging
to different media streams and playing out these data units in unison.

Our temporal synchronization model allows clients to specify how to synchronize
output. We previde two models for intra-medium synchronization: Blind- Tin:ing and
Absolute-Timing. The client has to specify one of these two techniques at the start
of a multimedia session. Both Blind-Timing and Absolute-Timing models for intra-
medium synchronization have their merits and drawbacks. In a later section, we will
examine the suitability of selection of one of these models depending on the nature
of the application at hand. Inter-media synchronization in our application is bared
on a master-slave synchronization model. In this model, one of the media streams is

designated as the master and the data units of other media streams are correlated
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Figure 57: Classification of temporal synchronization techniques

and synchronized with the master stream’s data units. This synchronization model is
used for playback of orchestrated applications and for live applications. The temporal

synchronization techniques in our multimedia application are classified in Fig 57.

4.4 Intra-medium synchronization

In multimedia playback applications, the source takes some signal, packetizes it, and
then transmits the packets over the network. Jitter is introduced by the network due
to variable queuing delays. The receiver depacketizes the data and then attempts to
faithfully playback the signal. This is done by buffering the incoming data to remove
the network induced jitter and replaying the signal at some fixed offset delay from
the original departure time. The term playback point refers to the point in time which
is offset from the original departure time by this fixed delay. Any data that arrives
before its associated playback point can be used to reconstruct the signal. Data which
arrives after the playback point is essentially useless in reconstructing the real-time
signal.

In order to choose a reasonable value for the offset delay, an application needs
some a priori characterization of the maximum delay its packets will experience.

This @ priori characterization could either be provided by the network in a quantita-
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tive service commitment to a delay bound, or through the observation of the delays
experienced by the previously arrived packets. The application needs to know what
delays to expect, but this expectation need not be constant for the entire duration of
the flow.

The performance of a playback application is measured along two dimensions:
latency and fidelity [36]. In general, latency is the delay between the two ends of a
distributed application; for playback applications, latency is the delay between the
time the signal is generated at the source and the time the signal is played back at
the receiver. Applications greatly vary in their sensitivity to latency. Some playback
applications, in particular, those that involve interaction between the two ends of a
connection are more sensitive to latency. Playback applications like transmitting a
movie or lecture are not sensitive to this parameter to the same extent.

Fidelity is the measure of how faithful the playback signal is to the original signal.
The playback signal is incomplete when packets arrive after the playback point and
are dropped rather than played back. The playback signal becomes distorted when
the offset delay is missed. Therefore, there is a decrease in fidclity when packets miss
their playback point. Also, if the offset delay is varied, there is again a decrease in
fidelity.

Delay can affect the performance of playback applications in two ways. First,
the value of the offset delay, which depends on predicting the future packet delays,
determines the latency of the application. Second, the delays of individual packets can
decrease the fidelity of the playback by exceeding the offset delay; the application then
can either change the offset delay in order to playback packets late (which introduccs
distortion) or merely discard the late packets (which creates an incomplete signal).
These two ways of coping with late packets offer a choice between an incomplete
signal and a distorted one, and the optimal choice often depends on the details of the
application. But we must note that late packets necessarily decrease fidelity.

Applications which are intolerant to even some loss of fidelity (intolerant appli-

cations) must use a fixed offset delay, since any variation in the offset delay will
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introduce some distoition in the playback, For a given distribution of packet delays,
this fixed offset delay i..ust be larger than the ahsolute maximum delay in the net-
work, to aviid the possibility of late packets. On the other hand, applications which
are less sensitive to a litflc loss of fidelity (¢olerant applications) need not set their
offset delay greater than the absolute maximum delay, since they can tolerate some
late packets. These applications can also vary the offset delay to some extent while a
session is in progress, as long as it doesn’t create tco much distortion.

Thus, tolerant applications have a much greater degree of flexibility in how they
set and adjust their offset delay. These applications need not use a single fixed delay
for the offset delay. They can try to reduce their latency by " arying their offset delays
in response to actnal packet delays experienced in the recent past. These applications
are called delay-adaptive playback applications. This adaptation is optimistic since it
relie; on past packet delays to account for future packet delays. When the application
loses the gamble, there is a momentary loss of data as packets miss their playback
points, but since the application is tolerant of such losses, the decreased offset delay
may be advantageous. However, there is a complicated tradeoff between the advantage
of decreased offset delay and the disadvantage of reduced fidelity due to the variations
of the offset. In our application, we have used a fixed maximum offset delay. It
decreases the chances of a medium packet missing its playback point and thus offers
greater fidelity. But this technique increases the latency as also the buffering at the
application.

Increase in the latency poses no serious drawback for the playback of orchestrated
applications. There is also reason to believe that most piayback applications will have
sufficient buffering to store packets until their playback point. This is based on the
fact that the storage needed is a function of the queuing delays, not the total end-to-
end delay. Queuing delays for playback applications will not increase as the networks
get faster. Also, since memory is getting cheaper, providing sufficient buffering before

playback at the receiver’s cnd will become increasingly practical.
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4.4.1 Blind-Timing and Absolute-Timing

Before discussing the details of Blind-Timing and Absolute-Timing, we need to define

the following terms:

Playout unit: A playout unit iz a group of packets sharing a common timestamp.
For voice, the playout unit would typically be a single voice segment {comprising
of voice packets which were all grabbed at the same time instant), while for
video, a frame could be broken into subframes, each consisting of packets sharing

the same timestamp and ordered by some form of sequence number.

Synchronization unit: A synchronization unit consists of one or more playout units
that, as a group, which share a cominon delay between generation and playout
of each part of the group. The delay may change at the beginning of such
a synchronization unit. The common synchrenization units are talkspurts for

voice and frames for video transmission.

Absolute and Relative timing: 'T'wo concepts related to synchronization and play-
out units are ebsolute and relative timing. Absolute timing maintains a fixed
timing relationship between the sender and the receiver, while relative timing

ensures that the local spacing between the packets at the sender and the receiver

1s the same.

Timestamp: Most proposed synchronization methods require a timestamp. The
timestamp has to have a sufficient range so that wrap arounds are infrequent.
A 32-bit timestamp is expected to serve all anticipated needs, even if the times-
tamp is expressed in units of samples or other sub-packet entities. A timestamp
may be useful not only at the Transport, but also at the Network Layer, to

schedule packets based on urgency.

The following variables also have to be defined to describe our synchronization
model. A subscript n represents the nth packet in a synchronization unit, n = 1,2, ....

Let a,, d,, p» and i, be the arrival time, variable delay, playout time and generation

85



P - PA *— £ » SENDER
P &>— . 2 Py «~ RECEIVER
Fixed delay

+
variable delay
between sender
and receiver

Figure 58: Playout synchronization variables

time of the nth packet. respectively. Let 7 denote the fixed delay from the sender to
the receiver. Let d,., denote the estimated maximum variable delay (jitter) within
the network. The estimate is typically chosen in such a way that only a very small
fraction (on the order of 1%) of the packets take more than 7 + d,., time units.
For best performance under changing network conditions. the estimate should be
refined based on the actual delays experienced. The variable delays in a network
consist of queuing and medium access delays, while the propagation and processing
dclays make up the fixed delay. An additional end-to-end fixed delay is introduced
by packetization; the non real-time nature of most operating systems adds a variable
delay both at the transmitting and the receiving end. The sender and the receiver
clocks are assumed to run at the same speed for simplicity. The relationship between
these variables is depicted in Fig. 58.

From the above definitions, we get the relationship:
pn =t +d, +71 (4.2)

This equation holds for every packet. We also define [,, as the lazity of packet n, i.e.,
the time (p, — a,) between arrival and playout. Synchronization techniques differ

only in how much they delay playback of the first synchronization unit of a medium

86



stream.

We have incorporated two methods of intra-medium synchronization in our ap-
plication: Blind-Timing and Absolute-Timing. In each technique, we compute the

playback time for the first synchronization unit of a medium stream on the basis of

the delay estimate dq,.

Blind-Timing : In this method, we assume that the first packet in a talkspurt
experiences only the fixed delay, so that the full d,,., value has to be added to

allow other packets within the talkspurt experiencing more delay.
P=a + dma:r (43)

Blind-Timing does not require timestamps to determine p,. It only needs an
indication of the receipt of the first packet in a playback sessicn. Subsequent
packets are played out on the basis of the generation time interval of the packets.
Theoretically, ¢ = (¢, — t,-1) should be a known constant. It represents the
generation time interval between two samples of a medium. This is the case
for a medium like audio, where the generation time interval between successive
samples is a constant and known in advance. Hence, the medium samples are

played out at times given by 4.4.
Pn =pn-1+¢C (4.4)
The playout times are also depicted in Fig. 59.

Absolute-Timing: Absolute-Timing is the playback technique that we should use
when the generation time interval between samples of a medium is not a con-
stant. In VBR video encoding, this is normally the case. A sudden increase in
the motion content of a scene results in more video frame blocks having to be
compressed and transmitted. In this case, the time interval between successive

samples generated may vary.

Therefore, in Absolute-Timing, we calculate the exact generation time interval

between successive packets of a medium. This interval is used to schedule the
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Figure 60: Absolute-Timing intra-medium synchronization

playout times of all samples. The first packet is played out as per Eq. 4.4 in the
Blind-Timing case. Subsequent packets are played out based on the position of

the first packet as follows:
Pn = pn-1+(tn —ta_y) for n>1 (4.5)

The playout times are also depicted in Fig. 60. Both these techniques are
available in our the application. The user 1s given a choice at the beginning of

a session to select one of these playout techniques.

The dp.; delay is also input as a parameter at the start of the video session.
It signifies the amount of time that must elapse after the receipt of the first

medium sample before the sample is played out.

Due to the nen real-time nature of the operating system, in reality, the medium

packets cannot be played out at exact intervals as desired. Absolute-Timing,
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by the very nature of the technique, imposes more demands on the operat-
ing system than Blind-Timing. In our implementation, it was observed that
Absolute-Timing results in playback points being more widely separated from
each other than required, because of the non real-time nature of the operat-
ing system. The conservative estimate used in Blind-Timing offers a better

performance.

4.5 Inter-media synchronization

Inter-media synchronization is the temporal coordination of multiple streams (e.g.,
voice, video, graphics and text) relative to one another, and requires concurrent
streams to be played out at identical synchronization times. During delivery of such
data at the user’s end, maintaining the required temporal association between points
in the data across various streams is necessary in the presence of transport delays
in the network. Data streams are split into application perceivable distinct units of
data along the real-time axis and temporal presentation control is exercised on these
data units at user’s end. The temporal presentation involves extracting the timing
relationship between the various data units collected at the source and determining
the real-time interval and order in which these data units may be delivered to the
destination for processing.

Inter-media synchronization can be done by the network or by the application.
The idea of the network synchronizing the various data streams is not advisable
since it reduces data transport flexibility and scalability. We would need to maintain
extensive state information in the network about the various streams, particularly
when the streams flow through different parts of the network. Hence, it is desirable
to transmit streams independently even if the playout times of data units in the two
streams may be identical. In our inter-media synchronization model, the onus is with
the application in enforcing synchronization using the services of the lower layer.

Data streams possessing the same schedule in terms of playout times may not
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necessarily require identical offset delays. The streams can represent different classes
of data in the network, and can have different fixed delay components due to differing
data size. To maintain inter-media synchronization, each stream must experience the
same overall delay to avoid skewing. For inter-media synchronization, the variable
delays of each stream must be accommodated, i.e., each stream must be delayed as
long as the largest anticipated variable delay.

The synchronization problem has two parts: framing of data streams which refers
to identifying the various points in the data streams which need to be synchronized
and temporal presentation control {31] which refers to ordering of various points in the
data streams over real-time for delivery at users, as required in the application. In
our solution approach, the temporal axis of an application is segmented into distinct
intervals corresponding to the playout times of samples of one medium designated as
the master. The playout times of the master stream are decided in accordance with
one of the intra-medium synchronization techniques. The other media are sleves and
are dependent on the master for their playback.

Framing of data streams and temporal presentation control are based on a master-
slave relationship between the media streams. One of the media streams is desig-
nated as the master. The choice of the master stream [1] is based on the following

considerations:

e The medium with the smallest interval between successive playout units is des-

ignated as the master.

e Some applications are more intolerant to loss in fidelity of a particular medium
than others. This medium is chosen as the master. The overall effectiveness
of the application depends on the quality of this medium. In an application
involving video and audio, an occasional lapse in the quality of video is permis-
sible. The application is more sensitive to lapses in the quality of audio. Hence,

it is appropriate to select the audio stream as the master.
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4.5.1 Framing of data streams

In our application, we need a synchronized playback of full motion video and audio.
Points of synchronization between audio and video streams are identified at capture
time. This framing informaiion is stored in the headers of the video and audio data
units. At the receiver’s end, the framing information is extracted and is used to

playout audio and video data in synchronism.

Framing information in video: Video is compressed using the SPAFLAY codec
discussed in Chapter 3. In SPAFLAY, a video frame is initially subjected to
Block analysis to detect the motion blocks. These blocks alone go through
the complete compression procedure and are transported to the receiver’s end.
To increase the throughput of the video channel, more than one motion block
is compressed and sent in a single video date unit. In our experiments, it was
found that video data units of size 1 Kbytes was a good choice. Depending
on the compression achieved on each video block, a video data unit normally
contains about 4-5 compressed motion video blocks. As we increase the size
of the video data unit, the throughput of the video channel increases, but the
end-to-end delay also increases. Hence, there is a tradeoff between increasing

the throughput of the video channel and decreasing the end-to-end delay.
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Each video data unit has a Leader of the following structure:

struct rtphdr

{

uint8 rh_chanid:6; /* channel id */

uint8 rh_vers:2; /* version */

uint8 rh_content:6; /¥ content id */

uint8 rh_sync:1; /* end of synchronization unit */

uint8 rh_opts:1; /* options present */

uint16 rh_seq; /* sequence number */

uint32 rh_ts; /* time stamp (middle of NTP timestamp) */
}

Presently, only the fields rh_seq and rh_sync are of releva:.ce in framing of
data streams. The other fields will be explained in a later section on RTP. The
flag rh_sync is set in the header of the last video data unit which is sent for
a video frame. It is used as an end-of-frame marker. In all other video data
units, this flag is unset. The field rh_seq in the header of a video data unit
contains the sequence number of the video frame. All the video data units for
a video frame have the same sequence number. The sequence number indicates
the position of the current video frame with respect to others in this session.

This field is also used in framing of video and audio streams.

At the decoding end, these video data units are received. The compressed
motion blocks from the video data units are extracted and decoded. The entire
video frame is reconstructed using these decoded blocks. If the flag rh_sync in
the received video data unit is set, it is an indication to the decoder that the
reconstructed frame is ready for display. Thus, the unit of synchronization for
video is a frame. Typically, video frames have a maximum display rate of 30

frames/s.
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Framing information in audio: If audio is sampled at 8Khz, it accounts for 8000
samples/s. Audio samples are also played out at this rate. Since the number
of audio samples to be piayed out is greater than the number of video frames
to be displayed in any given time interval, the audio stream is designated as
the master. A captured video frame is associated/bound with the nearest audio
sample in time. In this case, the synchronization between audio and video data

streams will be fine.

To increase the network throughput for the audio channel, 1t is reasonable to
group a set of audio samples as one data unit. Now, the video frame will be
associated with an audio data unit rather than a single audio sample. It should
be noted that as the size of the audio data unit increases, the synchronization

between audio and video streams will become more coarse.

Hence, there is a tradeoff between increasing the throughput of the audio chan-
nel and decreasing the coarseness in synchronization between audio and video
data streams. In our experiments, it was found that audio data units of size 300
bytes was a reasonable choice. The audio data unit contains 300 audio samples.

Each audio data unit has a header structure as follows:

struct Audio_rtphdr

{
short video_frame; /* whether there is a video frame associated with
this audio data unit */
uint16 rh_seq; /* sequence number of the audio data unit */
float rh_ts; /* audio time stamp */
b

The field rh_seq indicates the position of the current audio data unit with
respect to other audio data units in the session. The flag video.frame is used
to associate slave medium samples (video frames) with the master stream’s

samples (audio data units). If the flag is set, it indicates the presence of a video
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frame to be played out simultaneously with this audio data unit. The flag is
cleared in all audio data units which do not have a video frame associated with
them. The flag is of type short. In fact, a single bit is suflicient to indicate the
presence of a video frame which is to be associated with the audio data unit.
By having an entire field dedicated to this purpose, we allow the possibility
of more than one medium being associated with the audio data unit. We can
visualize other media like text, slow motion video etc. being also a part of this
application. In this event, it will be very simple to associate the synchronization

points of other media with an audio data unit.

The points of synchre .iization in our application are identified by binding a video
frame to an audio data unit. This is done at capture time. By binding, we mean
associating a common sequence number for a video frame and an audio data
unit. Also, the audio data unit has a flag which is set to indicate the presence
of a video frame which has to be played out in unison with this audio data unit

at the receiver’s end.

Binding audio and video framing information: Our application is based on a
Client-Server model. The server also called the sender, captures audio and
video data. It compresses and transmits this multimedia data over the network
to connected clients. The clients decompress this data and playback the audio
and video material. The server is associated with the task of framing of data
streams while the client uses temporal presentation control to playback the

audio and video streams in synchronism.

There are two modules at the sender/server which are associated with the task
of capturing, compressing and transmitting data: the Server-Audio-Module
and the Server-Video-Module. The framing of data streams is also managed
entirely by these two modules. For the purpose of framing of data streams,
the audio and video modules share a 16-bit unsigned integer variable named

current-audio-sequence-number. The video module gets access to the sequence



number of the last captured audio data unit through the value of current-audio-

sequence—number.

At capture time, the Server-Audio-Module grabs audio samples of number
equivalent to that in an audio data unit. A sequence number is associated
with the audio data unit by incrementiiig the value of current-audio-sequence-
number. This value is placed in the header of the audio data unit in the rh_seq

field. This header is added to the audio data and sent over the network.

The video module grabs video frames and compresses it using the SPAFLAY
codec. When a video frame is captured, it has to be bound to the nearest audio
data unit. We associate the video frame with the next audio data unit to be
captured. This is done by setting the rh_seq field in a video data unit header
to the value current-audio-sequence-number + 1. With this, the video frame
has the same sequence number as the next audio data unit to be grabbed. This
value is replicated in all the video data units for the grabbed frame. The video

module also signals to the audio module that a video frame has been captured.

When the next audio data unit is grabbed, all that needs to be done is to set
the flag video_frame in the header. It indicates the presence of a video frame

which shares the same sequence number as this audio data unit.

The functionality of the audio module is summed up in the block diagram shown in
Fig. 61. The Sender-video-process functionality is presented in Fig. 62. The framing
of data streams is carried out by associating a common sequence number for an audio
data unit and a video frame. The audio data units which are bound to video frames
also have the flag video_frame set. If there are no video frames associated with the
audio data unit, then this flag is cleared. Binding of audio data units with video

frames is shown in Fig. 63.
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4.5.2 Temporal presentation control

Our scheme for presentation is also based on the master-slave model. In this model,
the master stream (ax..io) controls the playback of slave medium (video). We use one
of the intra-medium synchronization techniques to play out the samples of the master
stream. Samples of the master stream contain information regarding the presence of
slave medium samples which need to be played in unison with the master stream. The
samples of the slave medium are played out as and when indicated by the samples of
the master stream.

As indicated in our model of intra-medium synchronization, samples of a medium
are buffered for a period equal to the maximum variable delay anticipated in the
network before playback. Two separate FIFO queues are maintained to buffer audio
data units and video frames. Here, it must be noted that audio data units are available
directly to the receiver/client from the nctwork. However, the same is not the case
for video frames. As per our SPAFLAY coding algorithm, only motion blocks of each
frame are transmitted. Hence, the receiver has to reconstruct the entire frame before
buffering it in the video frame queue.

The receiver/client application has two separate modules to receive audio and
video data units. The Client-Audio-Module receives audio data units and buffers
them in the FIFO audio queue. The Client-Video-Module receives video data units,
decodes them and stores the reconstructed frames in the FIFO video queue. When
the audio module gets the first audio data unit, it is buffered in the audio queue.
A timer named playback-timer, equivalent to the maximum variable delay, is also
started with the receipt of the first audio data unit. When a video data unit is
received, the receiver video process decodes the video blocks in this data unit. The
decoded blocks are used to reconstruct the entire video frame. If the rh_sync bit in
the header of a received video data unit is set, it is an indication to the recejver that
the reconstructed frame is now complete. This frame is then stored in the FIFO video
queue. The sequence number associated with each video data unit of this frame is

also stored in the queue along with the video frame. The operations in this step are
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Stage1: Buffering of data units before playback
1) Receiver audio process gets the first audio dala unit
and staris the timer playback-timer.
2) The audio data units are placed in the FIFO  audio queue
3) Receiver video process gets the video dala units.
The blocks in the video data units are decoded and the
reconstructed frame is stored in the FIFO  video queue

|
i
| /_]
-
! )

audio datauns |, Receiver™ |[seqno=0 [seqno=i |
: - [ Audio video_frame=0 || video_frame = 1 :
! \ process ;
| N
| audio queue Y
! storcs audio data units; . Units
I ( ) . N 1o ba playsd
i out In unison
!
]
| o, | T i
video data units | ' |
____;.—< Video ) seq no=1 |
process / i

video queue
( stores video frames)

RECEIVER APPLICATION

|
f
!
|
|
l
!
!
|
!
|

Figure 64: Playback: Stage 1

summarized in Fig. 64.

Playback begins when the playback-timer expires. Playback is handled by the
playbackhandler process. The samples of the audio stream are removed from the
FIFO audio queue and played out using one of the intra-medium synchronization
techniques discussed earlier. It must be noted here that the master stream alone is
played out by the playbackhandler process using the intra-medium synchronization
technique. The header of the master medium playout units (audio) indicates whether
there is a slave medium playout unit (video frame) bound to this master medium unit.
If there is a slave playout unit associated with the current master medium playout
unit, then the playbackhandler process plays out the slave medium unit along with
the master medium playout unit.

Thus, playout of the slave medium is dependent on the master medium. There is
a possibility of a slave medium unit bound to a master medium unit being absent.

In the event of network ccngestion, a video frame could be lost. When an audio data
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unit bound to this video frame is played cut, the playbackhandler process checks the
FIFO video queue to see if the corresponding video frame is present. In the absence
of th¢ tight video frame, the playbackhandler process plays the audio data unit alone.
Thus the audio data units are played out irrespective of the presence of matching
video frames. We must also note that as per this master-slave scheme, if a master
medium data unit is lost and there exists a slave medium unit bound to this master
medium unit, which has successfully reached the receiver, the slave medium unit will
not be played out. Thus the master stream has complete control on the playback of

slave medium units.

Playback of master medium units using Blind-Timing: Before playing out an
audio data unit, the playbackhandler process checks tne header of the audio data
unit. If the video_frame flag is set, it indicates that there is a video frame
which needs to be played out with this audio data unit. Accordingly, the play-
backhandler process removes the video frame from the head of the FIFO video
queue. A check is also made to determine whether the sequence number of
the video frame matches the current audio data unit. If the sequence numbers
match, the playbackhandler process displays the video frame and also plays out
the audio data unit. The playbackhandler process then sleeps for a constant
period. This constant period in the Blind-Timing scheme is equal to the time
interval between the capture of successive samples of audio data units at the
sender. The playbackhandler process wakes up after this period to play out the

next audio data unit and repeats the procedure discussed above.

Playback of master medium units using Absolute-Timing: The sequence of
steps is similar to the Blind-Timing case. The difference is only in the dura-
tion of time for which the playbackhandler process sleeps between playout of
audio data units. In this scheme, the audio data unit header contains the ex-
act duration of time betw.n the capture of the previous audio data unit and
the present one. The playbackhandler process removes an audio data unit for

playback from the FIFO audio queue. It also looks at the header of next audio
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Stage2 : Playout the audio data units and » ‘deo frames

1) playbackhandler process is crcated when the timer playback~timer
expires

2) This process removes audio data units and video frames from
the queues and piays them out

3) The receiver audio process and the receiver video process continue
to receive audio data units and video data units respectively.

The respective queues are also updated.
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Figure 65: Playback: Stage 2

data unit in th2 queue. From this, the process determines the exact duration
of time for which it must sleep after playback of the current audio data unit.
The playbackhandler process plays out the audio data unit with possibly a video
frame as well and then sleeps for the prescribed duration. It wakes up to access
the next audio data unit for playback and repeats the above procedure. The

playback operations are depicted in Fig. 65.

The functionality of the receiver audio process is shown in Fig. 66. The receiver video
process algorithm is shown in Fig. 67. The playbackhandler process can operate in
two modes depending on whether Blind-Timing or Absolute-Timing is chosen as the
intra-medium synchronization technique. When Blind-Timing is used, the playback-
handler process follows the algorithm presented in Fig. 68. When Absolute-Timing
is used, the playbackhandler process follows the algorithm shown in Fig. 69.
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4.6 Real-time Transport Protocol (RTP)

In the networked multimedia scenario, we have used RTP as the real-time protocol
over UDP for transporting audio and video data. In this section, we provide an
overview of RTP.

RTP is a transport protocol for real-time applications. It aims to provide services
commonly required by interactive multimedia conferences, such as playout synchro-
nization, media identification and active party identification. RTP itself does not
provide any mechanism to ensure timely delivery or provide other quality-of-service
guarantees, but relies on lower-layer services to do so. The sequence numbers included
in RTP allow the end system to reconstruct the sender’s packet sequence. RTP is
designed to run on a variety of network and transport protocols, for example, IP,
TCP and UDP.

RTP uses the services of an end-to-end transport protocol such as UDP and TCP.
The services used are: end-to-end delivery, framing, demultiplexing and multicast.
As an alternative, RTP could be used as a transport protocol layered directly on top
of IP, potentially increasing performance and reducing header overhead. This may
be attractive as the services provided by UDP, like calculating the checksum and
demultiplexing, may not be needed for multicast real-time conferencing applications.

In this context, we need to look at two protocols:

o The Real-time Transport Protocol (RTP), for exchanging data that has real-
time properties. The RTP header consists of a fixed-length portion plus optional

control fields.

e The RTP Control Protocol (RTCP), for conveying information about the partic-
ipants in an on-going session. RTCP consists of additional header options that
may be ignored without affecting the ability to receive data correctly. RTCP is
used for loosely controlled sessions, i.e., where there is no explicit membership

control and set-up.
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4.6.1 Use of RTP

In a multicast audio conference environment, RTP provides the following services. In
an audio conferencing application, each conference participant sends audic data in
small chunks of, say, 20 ms duration. Each chunk of audio data is preceded by an
RTP header. The RTP header and data are in turn contained in a UDP packet. The
Internet, akin to other packet networks, at times loses and reorders packets and delays
them by a variable amount. To cope with these problems, the RTP header contains
timing information and a sequence number that enable the receivers to reconstruct
the timing as seen by the source, so that, in our example, a chunk of audio is delivered
to the speaker every 20 ms. The sequen.e number can also be used by the receiver
to estimate how many packets are being lost. Each RTP packet also indicates the
audio encoding type being used, so that senders can change the encoding during
a conference, to accommodate a new participant that is connected through a low-
bandwidth link.

During the course of the conference, it might be useful to know the members
who are participating at any moment. For this purpose, each instance of the audio
application in the conference periodically multicasts the name, email address and
other information of its user. This control information is carried as RTCP SDES

(Real-time Control Protocol Source Descriptor) options within RTP messages, with

or without audio data.

4.6.2 RTP Definitions

Payload is the data following the RTP fixed header and any RTP/RTCP options.

Examples of payload are audio samples and video data.

RTP packet consists of the encapsulation specific to a particular underlying proto-

col, the fixed RTP header, RTP and RTCP options, if any, and the payload, if

any.

(Protocol) port is an abstraction that transport protocols use to distinguish among
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multiple destinations within a given host computer. TCP/IP protocols identify

ports using small positive integers.

Transport address denotes the combination of network address, e.g., the 4-octet
IP version 4 address, and the transport protocol port, e.g., the UDP port. The

destination transport address may be a unicast or multicast address.

Content source is the actual source of the data carried in an RTP packet, for

example, the application that initially generated audio data.

Synchronization unit consists of one or more packets that are emitted contigu-
ously by the sender. The most common synchronization units are talkspurts for
voice and frames for video transmission. During playout synchronization, the
receiver must reconstruct exactly the time difference between packets within a
synchronization unit. In case of video, all the packets of a frame are given the
same timestamp so there is no time difference. The time difference between
synchronization units may be changed by the receiver to adjust to the network

jitter.
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4.6.3 RTP Fixed Header Fields

The first eight octets are present in every RTP packet. They represent the fixed

header fields and have the following structure:

struct rtphdr

{

uint8 rh_chanid:6; /* channel id */

uint8 rh_vers:2; /* version */

uint8 rh_content:6; /% content id */

uint8 rh_sync:1; /* end of synchronization unit */

uint8 rh_opts:1; /* options present */

uinti6 rh_seq; /* sequence number */

uint32 rh_ts; /* time stamp (middle of NTP timestamp) */
}

protocol version: 2 bits

Identifies the protocol version. The version number of the protocol defined is 1.

channel ID: 6 bits
The channel identifier field forms part of the tuple identifying a channel to

provide an additional level of multiplexing at the RTP layer. The channel field
is convenient if several different channels are to receive the same treatment by
the underlying layers or if a profile allows for the concatenation of several RTP

packets on different channels into a single packet of the underlying protocol

layer.

option present bit (P): 1 bit
This flag has a value of one if the fixed RTP header is followed by one or more

options and a value of zero otherwise.

end-of-synchronization-unit (S): 1 bit

This flag has a value of one in the last packet of a synchronization unit and a
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value of zero otherwise.

format: 6 bits
It identifies the RTP payload and determines its interpretation by the applica-

tion.

sequence number: 16 bits
The sequence number counts the RTP packets. The sequence number incre-
ments hy one for each packet sent. The sequence number may be used by the
receiver to detect packet loss, to restore packet sequence and to identify packets

to the application.

timestamp: 32 bits
The timestamp reflects the wall clock time when the RTP packet was generated.
Several consecutive RTP packets may have equal timestamps if they were gen-
crated at once. The timestamp consists of the middle 32 bits of a 64-bit NTP
timestamp. That is, it counts time since 0 hours UTC, January 1, 1900, with a
resolution of 65536 per second. (UTC is Coordinated Universal Time, approx-
imately equal to the historical Greenwich Mean Time.) The RTP timestamp

wraps around approximately every 18 hours.

The RTP optional fields are currently not being used in the application.



Chapter 5

Application functionality

Advances in networking have made it feasible for digital computer networks to support
multimedia communication. With advancement in the field of storage technologies,
they can be used to build multimedia on-demand services over metropolitan-area-
networks such as the Broadband Integrated Services Digital Network (B-ISDN), which
are expected to permeate residential, organizational, and educational premises in
a manner similar to existing telephone networks. In this chapter, we discuss the
design and implementation of a multimedia server capable of servicing a number
of on-demand retrieval requests. The server also supports multicasting multimedia
information to a group of clients.

The application was developed to test the performance and effectiveness of the
SPAFLAY video codec and synchronization techniques elaborated in the previous
chapters. The application provides a range of features. Local recording, remote
recording, interactive playback of orchestrated applications present locally and over a
network are enabled by the application. It can also disseminate live audio and video
information to a group of stations. We will study the functionality of the application

under three main headers:
e Multimedia on-demand service

o Multimedia live multicast service
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e Multimedia local playback service

5.1 Multimedia on-demand service

A multimedia on-demand server provides services similar to those of a neighbourhood
videotape rental store. It digitally stores multimedia information consisting of audio
and video data in secondary storage devices. Subscribers can connect to this server
and request for transmitting the chosen media segments over the network to their
respective sites. The retrieval can be interactive, in the sense that subscribers can
stop, pause, resume, record, rewind and fastforward the media information. Thus,
the multimedia server subsumes the function of VCRs, videotapes, audio recorders,
etc., and can serve varied needs of clientele.

The development of a multimedia on-demand service is guided by three require-

ments of media playback:

Time continuum of each medium sample: A medium stream consists of a se-
quence of medium quanta such as video frames or audio samples, which convey
meaning only when presented continuously in time. This is different from a
textual object, where spatial continuity is sufficient. A multimedia server must
ensure that playback of each medium proceeds at its real-time rate. Whereas
ensuring the continuity of an isolated medium stream is relatively straightfor-
ward, a multimedia server’s functionality is more complex since it has .o cater
to multiple subscriber requests without violating the playback rates of any of

their requested media streams.

Synchronization between media streams: Playback of multiple media streams
constituting a multimedia object should not only be continuous but also tem-
porally coordinated. In the event of jitter delays in the network, the playback

of media streams can go out of synchronization.

Different subscriber states: Unlike a video conferencing session where the same
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information is sent to all subscribers, a multimedia on-demand service is char-
acterized by the server having to cater to diverse requests from clientele. Sub-
scribers could connect to the multimedia server with requests for different mul-
timedia segments. Even within the same segment, each client could potentially
be in a different state with respect to other clients due to the availability of in-
teractive retrieval facility. A client could rewind, fastforward and pause within
a multimedia segment. Hence, the multimedia server cannot multicast the same
information to all the clients because the media information could be different
for each client. The server must receive commands from each subscriber and

respond to these requests individually.

In the next section, we discuss the on-demand information service functionality

provided by our application.

5.1.1 On-demand service system architecture

The system architecture of a multimedia on-demand service comprises of a multimedia
server. Clients can connect to this server via a network (LAN/MAN). The multimedia
server needs to have access to storage disks, while the clients must have simple media
capture-and-display subsystems (e.g., camera, speakers). The system architecture
will be presented considering the client and the server separately. We will also look

into the protocols used to transfer information between the client and the server.

Client architecture: We begin this description of the client architecture by looking
at the various modules [30] which constitute the client. The client entity consists
of four modules:

o Client-Control-Module
o Client-Audio-Module
e Client-Video-Module

¢ Client-Playback-Module
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Figure 70: Basic modules in the client and the server

These client modules are shown in Fig. 70.

Client-Control-Module: The user interacts with the Client-Control-Module
via the user-interface panel. We look at the various user options avail-
able to access and interact with the on-demand service provided by the
remote multimedia server. When the options are selected by the user, the
Client-Control-Module sends these client requests as control messages to
the server. These messages are sent using a TCP/IP connection to the
multimedia server. Likewise, control messages sent by the server to the
client are also received by this module. The control messages are sent by
the client to the server to communicate subscriber retrieval requests. The
TCP/IP protocol suite is used over the control channel to send messages

reliably to the server.
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Figure 71: Client panel

The client user-interface for the multimedia session is shown in Fig. 71.

The user is presented with the following options:

¢ Remoteplay:Start

Localplay:Start

e Rewind
o Cue
e Quit
To establish a multimedia on-demand session with a remote server, the
client must choose the option Remoteplay:Start. When the Remoteplay:Start
option is selected, the user is prompted to input the address of the server
as also the parameters to configure the multimedia session. Specifically,

the user must enter values for the following list of options:

e server-name: The multimedia server machine name.

e server-port-number: The port which the multimedia server adver-
tises to clients which may want to connect to it.

e record-enable: The user is given the option to record the contents
of the present session. If the user wishes to record the session, he is
prompted to input the name of the audio file and the video file in
which compressed media data will be stored.

e intra-medium-synchronization-protocol: There are two intra-medium

synchronization techniques which the user may use. An input of 0 sig-
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nifies the Blind-Timing scheme, while ai input of 1 means Absolute-
Timing.

e orchestrated-application: An input of 1 signifies request for play-
back of an orchestrated application. The user is prompted to input
the name of the media streams that he wishes to play. This is typically

made up of an audio file and a video file.

The following control messages are sent by the Client-Control-Module to

the server:

Connect-request: This message is sent when the RemotePlay:Start
option is selected by the client. When the RemotePlay:Start button
is pressed at the start of the session, it is a request by the client
to connect to a remote multimedia server to access the on-demand
service. The subscriber selects options for this playback session as
indicated earlier. These options are sent to the server in the Connect-
request message.

Session-pause: When a Connect-request message is sent by selecting
the RemotePlay:Start option, the multimedia session is assumed to
have begun. The RemotePlay:Start option is replaced by the option
RemotePlay:Stop. If the user presses this button during the course
of the multimedia session, it is an indication to the server to pause.
In this case, a Session-pause control message is sent by the client to
the server. The multimedia session is stopped for the time being. The
option RemotePlay:Stop is again replaced by RemotePlay:Start.
Selecting this option now results in the Session-Resume message
being sent to the server. The playback session is resumed.

Connect-release: During the playout of a multimedia session, the user
may choose to terminate the session. The user selects the Quit option
to abort the session. When this option is selected, a Connect-release

message is sent by the Client-Control-Module to the server. The server
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discontinues the on-going multimedia session.

Session-fastforward: An interactive orchestrated application should en-
able the user to scroll through the presented multimedia material.
Specifically, the user should be able to playback multimedia material
from a point which is ahead in time to the m.terial which is currently
being piayed. The user selects the Cue button to enable this feature.
The Client-Control-Module sends the Session-fastforward message
to the server. Both the audio and video streams are synchronized to a
point which is ahead in time by the server. The extent of this displace-
ment of the present session to a future point in time is configurable
by the user. It is given by the parameter fastforward-stepsize. The
parameter fastfoward-stepsize is added to the sequence number of the
audio data unit which was played out last. The resultant audio data
unit sequence number represents the point in the audio stream from
where the session will again commence after the Cue button has been
released. The server must synchronize the video stream to coincide
with this point in the audio stream.

Session-rewind: Akin to the fastforward feature presented earlier, we
also have a session rewind option. The user presses the Rewind but-
ton to playback session (audio-video) material from an earlier point in
time. The extent of the displacement of the session material in time
is expressed in terms of the parameter rewind-stepsize. The parame-
ter rewind-stepsize is subtracted from the sequence number of the last
played out audio data unit. The resultant audio data unit sequence
number represents the point in the audio stream from where the ses-
sion will again commence, after the Rewind button has been released.
The server must also synchronize the video stream to coincide with this

point in the audio stream.
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Client- Audio-Module: The Client-Audio-Module receives audio data units
from the server. The audio data units are received as RTP (Real-time
Transport Protocol) packets by the module. We have used RTP as the
real time protocol over UDP for transporting audio and video data. The
audio data units are buffered in a FIFO audio queue. As was explained
in Chapter 4, the first audio data unit is buffered for a time equal to
the maximum variable delay over the network. The audio data units are
removed from the head of the audio queue by the Client-Playback-Module

and played out.

Client-Video-Module: The Client-Video-Module receives video data units
from the server. The video data units are received as RTP (Real-time
Transport Protocol) packets. The video blocks in the video data units are
decoded using the SPAFLAY codec and a frame is reconstructed. When
the end-of-frame marker is set in the header of a video data unit, the
reconstruction of the frame is complete. The decoded frame is stored in
a FIFO video queue. The frames are picked up by the Client-Playback-
Module and played out.

Client-Playback-Module: The Client-Playback-Module is responsible for
the synchronized playback of audio and video at the client’s end. The
module picks up audio and video data from head of the audio and video
queues respectively and plays them out. The Client-Playback-Module uses
one of the two modes of intra-medium synchronization techniques: Blind-
Timing and Absolute-Timing. Selection of the mode depends on the value
of the intra-medium-synchronization-protocol parameter input by the user
at the start of the multimedia session. Depending on selection of the intra-
medium synchronization technique, the Client-Playback-Module schedules
itself to remove audio data units from the head of the FIFO audio queue.
The audio data units are decoded and played out. Video frames are dis-

played in accordance with the master-slave inter-media synchronization
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technique elucidated in Chapter 4.

Server architecture: Different subscribers may request retrieval of different media
streams. There may also be phase differences among their requests even if
the request be for different portions of the same medium stream. Hence, the
possibility of multicasting information from the server to the client is ruled out.
The server creates a separate process to handle each client request. The server
receives the Connect-request message and spawns a child medium process.
The child medium process services the client requests throughout the session,
enabling the parent process to listen to other subscriber requests. We illustrate

this in Fig. 72. Each child medium process has three distinct modules:

e Server-Control-Module
o Server-Audio-Module
o Server-Video-Module
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It is illustrated in Fig. 70.

Server-Control-Module: The Server-Control-Module receives control mes-
sages from the client. The action taken on receipt of each control message

sent by the Client-Control-Module is as follows:

o Connect-release: When the Server-Control-Module receives this mes-
sage, it is a request from the client to terminate the multimedia ses-
sion. The Server-Control-Module accordingly terminates the process
servicing the client.

¢ Session-pause: Receipt of this message is an indication to the server
to temporarily stop sending audio and video data to the client till
a Session-resume message is again received from the client. The
Server-Control-Module sends a message to the Server-Audio-Module

and Server-Video-Module to suspend their functions.

e Session-resume: The multimedia session which had been temporar-
ily stopped due to the receipt of a Session-pause message is restarted
when a Session-resume message is received. The Server-Control-
Module sends a message to the Server- Audio-Module and Server-Video-

Module to start sending audio and video data units again.

o Session-fastforward: The message is a request by the client to play-
back audio and video informa‘ion from a point which is ahead in time
to the information which is currently played at the client’s end.

The Session-fastforward message contains as one of its fields, the
audio sequence number to be played out next. On receiving this
message, the Server-Control-Module sends a message to the Server-
Audio-Module and Server-Video-Module to suspend their functions.
The control module at the sender, the Server-Control-Module, there-
after adjusts the pointer in the audio file to point to the audio data

unit with sequence number equal to the value specified in the message.
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The video file pointer is also changed to synchronize it with the point
in the audio stream. It means changing the video file pointer to the
video data unit with a sequence number equal to the value specified in
the message. The Server-Control-Module then sends a message to the
Server-Audio-Module and Server-Video-Module to resume their func-
tions. The modules start sending audio and video data units from the
new point in their media streams.

e Session-rewind: The message is a request by the client to playback
audio and video information from a point in time which is prior to the
information which is currently played at the client’s end.

The Session-rewind message contains as one of its fields, the au-
dio sequence number to be played out next. On receiving this mes-
sage, the Server-Control-Module sends a message to the Server-Audio-
Module and Server-Video-Module to suspend their functions. The
Server-Control-Module thereafter adjusts the pointer in the audio file
to point to the audio data unit with sequence number equal to the
value specified in the message. The video file pointer is also changed
to synchronize it with the point in the audio stream. It means changing
the video file pointer to the video data unit with a sequence number
equal to that specified in the message. The Server-Control-Module
then sends a message to the Server-Audio-Module and Server-Video-
Module to resume their functions. The modules start sending audio

and video data units from the new point in their media streams.

Server-Audio-Module: At the start of the multimedia session, the user spec-
ifies the name of the audio file which contains audio data to be played
out. The Server-Control-Module gets this specification in the Connect-

request message. It is passed to the Server-Audio-Module.

For playback of an orchestrated application, the Server-Audio-Module has

to read audio data units repeatedly from the audio file. The module sends
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these audio data units using the Real-time Transport Protocol to the client.

Server-Video-Module: At the start of the multimedia session, the user also
specifies the name of the video file which contains video data to be played
out. The Server-Con*rol-Module gets this specification in the Connect-
request message. It is passed to the Server-Video-Module.

For playback of an orchestrated application, the Server-Video-Module has
to read video data units repeatedly from the video file. The video data
units contain video data in a compressed form. The video data units are

sent using the Real-time Transport Protocol to the client.

5.2 Multimedia live multicast service

Orchestrated applications which need to be played back in an interactive manner
to the clients cannot be serviced by a server operating in a multicast mode. The
clients could potentially be in various states playing out material from different parts
of the same data stream. Hence, at the expense of inefficient multimedia informa-
tion distribution, we resort to unicasting multimedia information individually to the
clients.

On the other hand, some applications demand multimedia information to be mul-
ticast to a group of stations. A conference session might have to be relayed to people
sitting at geographically separated sites. In this case, there is little interaction be-
tween the client and the server multicasting this information, restricted only to clients
joining or leaving the session. In this case, we could resort to multicasting.

A multicast service can offer two benefits [11] to network applications :

Efficient multi-destination delivery: When au application must send the same
informatien to more than one destination, multicasting is more efficient than
unicasting separate copies to each destination. It reduces the transmission over-
head at the server and, depending on how it is implemented, it can reduce the

overhead on the network and the time taken for all destinations to receive
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the information. Examples of applications that can take advantage of multi-

destination delivery are:

e updating all copies of a replicated file or database.

¢ sending voice, video. or data packets to all participants in a computer
mediated conference.

e disseminating intermediate results to a set of processors supporting a dis-

tributed computation.

Robust unknown-destination delivery: If a set of stations can be identified by
a single group address (rather than a list of individual addresses), such a group
address can be used to reach one or more destinations whose individual ad-
dresses are unknown to the sender, or whose addresses may change over time.
Sometimes called logical addressing or location-independent addressing, the use
of multicast serves as a simp:e, robust alternative to configuration files, directory

swrvers, or other binding mechanisms.

Becausc of these benefits, multicasting has seen widespread use in those networks
that support it, primarily local-area networks. Hence, we provide an option fer the
multimedia server to operate in a multicast mode. Accordingly, our architecture for
the client-server combine undergoes a little change when operating in the multicast
mode. It is illustrated in Fig. 73. We use IP multicast datagrams to disseminate

audio-video data to all the clients.

5.2.1 Sending IP multicast datagrams

To send a multicast datagram [10], an IP address is specified in the range 224.0.0.0
to 239.255.255.255. This destination addr>ss is used in a sendto() call.

By default, IP multicast datagrams are sent with a time-to-live (TTL) of 1 (see
below), which prevents them from being forwarded beyond a single subnetwork. A
new socket option allows the TTL for subsequent multicast datagrams to be set to

any value from 0 to 255, in order to control the scope of the multicasts:
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Figure 73: Multimedia multicast service for multiple clients

u_char ttl1;

setsockopt(sock, IPPROTO_IP, IP_MULTICAST_TTL, &ttl, sizeof(ttl));

Multicast datagrams with a TTL value of 0 will not be transmitted on any subnet,
but may be delivered locally if the sending host belongs to the destination group and
if the multicast loopback has not been disabled on the sending socket. Multicast
datagrams with a TTL greater than one may be delivered to more than one subnet if
there are one or more multicast routers attached to the first-hop subnet. To provide
meaningful scope control, the multicast routers support the notion of thresholds which
prevents the datagrams with a certain TTL from traversing certain subnets. The

thresholds enforce the {ollowing convention:

e multicast datagrams with initial TTL 0 are restricted to the same host.
e multicast datagrams with initial TTL 1 are restricted to the same subnet.

e multicast datagrams with initial TTL 32 are restricted to the same site.
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e multicast datagrams with initial TTL 64 are restricted to the same region.
e multicast datagrams with initial TTL 128 are restricted to the same continent.

o multicast datagrams with initial TTL 255 are unrestricted in scope.

Sites and Regions are not strictly defined, and sites mey be further subdivided

into smaller administrative units, as a local matter.

5.2.2 Receiving IP multicast datagrams

Before a host can receive IP multicast datagrams, it must become a member of one

or more IP multicast groups. A process can ask the host to join a multicast group by
using the following socket option:

struct ip_mreq mregq;

setsockopt (sock, IPPROTO_IP, IP_ADD_MEMBERSHIP, &mreq, sizeof(mreq));
where mreq is the following structure:

struct ip_mreq {

struct in_addr imr_multiaddr; /* multicast group to join */
struct in_addr imr_interface; /* interface to join on */

}

Every membership is associated with a single interface, and it is possible to join
the same group or more than one interface. The field imr_interface should be
INADDR_ANY to choose the default multicast interface, or one of the host’s local
addresses to chcose a particular (multicast-capable) interface.

To drop a membership, we use:

struct ip_mreq mreq;
setsockopt(sock, IPPROTO_IP, IP_DROP_MEMBERSHIP, &mreq, sizeof (mreq))

where mreq contains the same values as used to add a membership. The memberships

associated with a socket are also dropped when a socket is closed or when a socket is

killed.
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5.2.3 Client options

The client panel for the live, multicast, multimedia session is the same as that shown
in Fig. 71. Among the options presented to the user, Remoteplay:Start and
Quit alone assume significance for a multicast service. The options: Rewind, Cue
and LocalPlay:Start have no significance in a multicast session which is not an
interactive service. The user has control only to join or leave a multimedia session.
To join an audio-video multicast session, the user must choose the option Re-
moteplay:Start. When this option is selected, the user is prompted to input values
for parameters to be used in the present session. The user must enter values for the

following list of options:

e server-name: The multimedia server machine name.

¢ server-port-number: The port which the multimedia server advertises to

clients which may want to connect to it.

¢ record-enable: The user is given the option to record the contents of the
present session. If the user wishes to record the session, he is prompted to
input the name of the audio file and the video file in which compressed media

data will be stored.

¢ cchestrated-application: An input of 0 indicates request for a live multi-
media session. The user has to select a multicast or unicast option for this live

session. The user has to choose the multicast option to be in multicast mode.

e intra-medium-synchronization-protocol: There are two intra-medium syn-
chronization techniques which the user may use. An input of 0 signifies the

Blind-Timing scheme, while an input of 1 means Absolute-Timing.

These options are sent in a Connect-request message over a control channel to

the server using the TCP/IP protocol suite to the server.
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5.2.4 Client-server architecture

The Client modules remain the same as in the Multimedia on-demand service:
e Client-Control-Module
e Client-Audio-Module
e Client-Video-Module
e Client-Playback-Module

Their functions are almost the same as in the earlier service. The Client-Control-
Module is used only to join and leave the multicast session. The Client-Audio-Module
is concerned with the task of initializing the host to receive IP multicast audio data-
grams. The received audio datagrams are buffered in a FIFO audio queue. The
Client-Video-Module must also perform initializations to receive IP multicast video
datagrams. The received video data units are used to reconstruct the video frames
which are stored in a FIFO video queue. The Client-Playback-Module removes audio
data units and video data units from the head of the queues and plays them out
in keeping with the intra-medium synchronization technique and the master-slave
inter-media playback technique.

The server receives the Connect-request message from each client. One child
medium process alone caters to multicasting audio-video data to all clients. The
modules in the child medium process remain the same as in the on-demand service

case. Their functionality is slightly different for a multicast session.

Server-Control-Module: For a multicast session, the Server-Control-Module has

no messages to receive from the clients.

Server-Audio-Module: The Server-Audio-Module grabs audio samples from the
microphone in units of audio data units. The audio data units are multicast

over the subnet as multicast datagrams with appropriate TTL value.
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Server-Video-Module: The Server-Video-Module grabs video frames using the video
camera mounted on the multimedia server. The video frames are compressed
using the SPAFLAY codec and the resulting video data units 2 ¢ sent in mul-

ticast datagrams with appropriaie TTL value.

5.3 Multimedia local playback service

While the earlier two service options were for a networked multimedia service, this
service caters to playback of an orchestrated application which is present on the same
site or workstation. Hence, there is no client-server paradigm while operating in this

mode.

5.3.1 Client options

The options presented to the user are the same as in Fig. 71. The following options

are significant for a local playback service.
o Localplay:Start
e Rewind
o Cue
o Quit

Localplay:Start: To start a local playback service, the user must choose the option
Localplay:Start. When the option is chosen, the user is prompted to input
values for parameters which are essential for this session. Specifically, the user

must input values for the following options :

¢ audio-file: The name of the audio file which the user wishes to play out.

¢ video-file: The video file which has to be played out with the audio file.
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¢ intra-medium-synchronization-protocol: There are two intra-medium
synchronization techniques which the user may use. An input of 0 signifies

the Blind-Timing scheme, while an input of 1 means Absolute-Timing.

On selecting Localplay:Start button, it is replaced by Localplay:Stop op-
tion. During the course of the session, the user can cause playback to stop
temporarily by choosing the option Localplay:Stop. The button is used as a

toggle to start and pause playback of the session.

Rewind: The user presses the Rewind button to playback session material from an

earlier point in time.

Cue: The user chooses this option to playback session material from a point which

is ahead in time to the material which is currently being played out.

Quit: The user chooses this option to terminate the session.

5.3.2 Playback modules

There are four modules to facilitate local playback:
o Local-Control-Module
¢ Local-Audio-Module
o Local-Video-Module

e Local-Playback-Module

Local-Control-Module: The Local-Control-Module sends messages to the audio
and video modules and exercises control over the session. These messages
are issued when the user chooses one of the panel options. When the Lo-
calplay:Start option is selected and the parameter values are input, the Local-
Control-Module opens the media files for playback. If the Localplay:Stop

option is chosen, the Local-Control-Module sends a message to the audio and
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video modules to suspend their functions. This causes playback to stop tem-
porarily.

When the user selects the Rewind option, the Local-Control-Module sends a
message to the audio and video modules to suspend their operation. The Local-
Control-Module adjusts the audio and video pointers to a point which is earlier
in time in the media streams. The audio and video modules thereafter resume

their function.

If the Cue option is selected, the control module sends a message to the audio
and video modules to suspend their functions. The control module adjusts the
audio and video file pointers to a point which is ahead in time to the material
which is currently being played. The control module sends messages to the

audio and video modules to resume their function.

Local-Audio-Module: The Local-Audio-Module reads audio data units repeatedly

from the audio file. The audio data units are buffered in a FIFO audio queue.

Local-Video-Module: The Local-Video-Module reads video data units from the
video file. The video blocks in the video data units are decc-ied and the recon-

structed frames are stored in a FIFO video queue.

Local-Playback-Module: The Local-Playback-Module removes audio and video
data from the queues and plays them out in accordance with the intra-medium
synchronization technique chosen and the master-slave inter-media synchroniza-

tion technique.

5.4 Recording a multimedia session

An orchestrated multimedia session s stored as a series of playback units. Each
playback unit is made up of an audio and video file. Dividing a session into a series

of units is necessitated due to two reasons:
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¢ Sequence numbers used to identify audio and video data units have a wraparound.
If medium information is stored in a single file, then due to the presence of a
wraparound in the sequence numbers, there could be a conflict in uniquely iden-
tifying a playback point on the basis of the sequence numbers in the media §les.

It is especially true when a Rewind or Cue option is chosen.

e By dividing a session into a series of units, the multimedia session is stored in a
structured manner. It is possible for the user to identify a particular unit and

start playback of the session from that point.

The user is not concerned with the process of recording a multimedia session into
separate playback units. At the start of the session, the user specifies the name of
an audio and video file in which media information is to be recorded. An index
value of zero is appended to the name of the audio and video files. For example,
if the user specifies record-audio-file and record-video-file as the names of the audio
and video files in which the data is to be recorded, then the resultant file names
become record-audio-fileO and record-video-file0. This combination of an audio and
video file constitutes the first playback unit. The files contain audio and video data
respectively, with no wraparound in the sequence numbers identifying the data units.

Sequence numbers are two bytes long. This gives a range of values from 0 to 65535.
Since the audio stream is the master medium stream (Chapter 4), the sequence
numbers will wraparound after about 40 minutes. When there is a wraparound in
the sequence numbers of a medium stream, the corresponding medium file is closed.
The index value is incremented and is appended to the name of the medium file name
specified initially. For the above example, the second playback unit is made up of the
files record-audio-file! and record-video-filel. Thus each time there is a wraparound
in the sequence numbers, a new playback unit is created.

Thus, a multimedia session is recorded in a series of units, each of which is identi-
fied by an index value which is appended to the names of the initially specified files.

The concept of playback units is illustrated in Fig. 74.
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Figure 74: Recording a multimedia session
5.5 Rewind and fastforward feature implementa-
tion

Rewind and fastforward requests are used to playback orchestrated material from a
different point in time. This feature is provided in both networked and local playback
of orchestrated applications. In our application, rewind and fastforward are used to
move within the same playback unit, as also between playback units.

Providing Rewind and Fastforward features in two tiers helps to achieve fine and
coarsescrolling within the recorded media material. By fine scrolling, we mean moving
within the same playback unit. Using coarse scrolling, we can move between playback
units.

In keeping with the master-slave inter-media synchronization technique, where the
audio stream is the master, the rewind and fastforward feature also involve adjustment

of the playback pointer in the audio stream. The position of the video stream playback
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pointer is thereafter changed to synchronize it with the audio stream.
The rewind and fastforward features depend on the parameters rewind-stepsize
and fastforward-stepsize respectively. These parameters give the magnitude of the
displacement (in terms of audio data unit sequence numbers) from the audio data

unit which was played out last, when the rewind or fastforward option is chosen.

5.5.1 The Rewind feature

Let the sequence number of the last played out audio data unit in a playback unit
be a. This sequence number represents the playback point in the playback unit. If a
rewind option is selected now, we subtract the value rewind-stepsize from a.

If the resultant sequence value is greater than zero, then it represents a valid audio
data unit in the playback unit. The audio file pointer is moved to the data unit with
this sequence number. This sequence number becomes the new playback point. The
video file pointer is also moved to a video data unit with the same sequence number.
This is fine scrolling as applied to the rewind feature. For example, let audio-file0 and
video-file0 constitute the the present playback unit. Let the sequence number 560 be
the playback point. It means that the last audio data unit which was played out had
a sequence number of 560. In terms of time units, this corresponds to 21 scconds
of audio playback time from the start of the current playback unit. Let the rewind-
stepsize parameter have a value of 400. In terms of time units, this corresponds to
15 seconds of audio playback time. If a rewind option is selected at this stage, we
will shift to a playback point in the audio stream which was 15 seconds prior to the
information which was played out last. To do this, we subtract the rewind-step-size
value of 400 from 560. The resultant value, equal to 160, represents a valid sequence
number in the playback unit. Both the audio and video file pointers are shifted to
coincide with a data unit with this sequence number of 160. The sequence number
160 becomes the new playback point. It cerresponds to 6 seconds of audio playback
time from the start of the current playback unit. In effect, we have rewound the

media streams to a playback point which was 15 seconds prior to the last samples
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Figure 75: Rewinding in a multimedia session
g

played out. This is illustrated in Fig. 75.

On the other hand, if the resultant value after the subtraction of sequence numbers
is less than zero, it means that we wish to rewind to a point which is earlier than the
first playback point in the present playback unit. Here, we resort to coarse scrolling.
The current playback unit is skipped and we move to the start of the previous playback
unit. For example, let audio-file! and video-file ! constitute the present playback unit.
Let the sequence number 240 be the playback point. It means that the last audio
data unit which was played out had a sequence number of 240. Expressed in time
units, it corresponds to 9 seconds of audio playback time from the start of the current
playback unit. Let the rewind-stepsize parameter have a value of 400. [t corresponds
to 15 seconds of audio playback time. If a rewind option is selected at this stage, it
means that we wish to move to a point which is 15 seconds prior to the last media
samples played out. To do this, we will subtract 400 from 240. The resultant value is

less than zero. It is an invalid playback point in the current playback unit. Hence, we



135

Betore Rewind After Rowind

Seq. No. Seq. No
I' 0 : Playbackpoim | 0 :
Playb. Int ! !
ybackpol | 240 | 1240 |
| ' | I
| ! | I
| ! ] |
| : i :

| |
Hzaoh : 1280 :
: Audio-tile1 | : Audio-tiie0
5 | |

| ol S

: 10 : : 10 }
| : [ :

[ I
-——,l 240 : : 240 :
| | | I
| ! | f
| I [ '
| ! | [
| ' | !
[ ' | [
| [ | l
i : | :

| i
| Video-filet | ! Video-tiled |
e ___ b

Playbackunit Playbackunit

Figure 76: Rewinding in a multimedia session (case 2)

move to the start of the previous playback unit. In this case, the files audio-file0 and
video-fileO represent the new playback unit. The playback point in this new playback
unit is zero, i.e, we move to the start of the playback unit. Both the audio and video

file pointers are adjusted to coincide with this point. This case is illustrated in Fig.

76.

5.5.2 The Fastforward feature

Let the sequence number of the last played out audio data unit in a playhack unit be
a. This sequence number represents the playback point in the playback unit. If the
fastforward option is selected now, we add the value fastforward-stepsize to a.

If the resultant value is less or equal to the maximum sequence number value
before wraparound, then it represents a valid audio data unit in the playback unit.

The audio file pointer is moved to the data unit with this sequence number. This
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sequence number becomes the new playback point. The video file pointer is also moved
to a video data unit with the sare sequence number. This is fine scrolling as applied
to the fastforward feature. For example, let audio-file0 and video-file0 constitute the
the present playback unit. Let the sequence number 560 be the playback point. It
means that the last audio data unit which was played out had a sequence number
of 560. In terms of time units, this corresponds to 21 seconds of playback time from
the start of the current playback unit. Let the fastforward-stepsize parameter be 400
(corresponding to 15 seconds of playback time) and the maximum sequence number
value before wraparound be 1280 (corresponding to 48 seconds of playback time). If
a fastforward option is selected at this stage, it means that we want to move to a
playback point which is 15 seconds ahead of the last samples which were played out.
To do this, we will add the stepsize value of 400 to the current playback point value
of 560. The resultant value 960 (< 1280) represents a valid sequence number in the
playback unit. Both the audio and video file pointers are shifted to coincide with a
data nnit with a sequence number of 960. The sequence number 960 becomies the
new playback point. In effect, we have shifted the playback point 15 seconds ahead
of the last media samples played out. This is illustrated in fig. 77.

On the other hand, if the resultant value is greater than the maximnum secquence
number value, it means that we wish to fastforward to a point which is later than
the last playback point in the present playback unit. Here, we resort to coarse
scrolling. The playback unit itself is skipped and we move to the next playback
unit. For example, let audio-file! and video-file! constitute the present playback
unit. Let the sequence number 1120 (corresponding to 42 seconds of playback time)
be the playback point and the maximum sequence number value before wraparound
be 1280 (corresponding to 48 scconds of playback time). Let the fastforward-stepsize
parameter have a value of 400 which corresponds to 15 seconds of audio playback
time. If a fastforward option is selected at this stage, it means that we wish to move
15 seconds ahead of the last media samples which were played out. To enable this, we

will add the stepsize value of 400 to the playback point value of 1120. The resultant
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Figure 77: Fastforwarding in a multimedia session

value is greater than 1280. It is an invalid playback point in the current playback
unit. Hence, we move to the start of the next playback unit. In this case, the files
audio-file2 and vidco-file? represent the new playback unit. The playback point in
this playback uait is zero, i.e., we are at the start of the new playback unit. Both
the audio and video file pointers are adjusted to coincide with this point. This case

is illustrated in Fig. 78.
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Chapter 6

Simulating video sessions over

ATM

6.1 Performance of SPAFLAY over an ATM net-

work

In this section, we present the simulation results of video sessions over a network of
ATM switches. The simulations were done using SMURPH [9]. We are intcrested
in the Quality of Service offered by an ATM network to full motion video sessions.
In keceping with the issues discussed in the preceding chapters, parameters like cell
loss in the network, end-to-end delay (latency of the application) and jitier are of
particular concern to us. SPAFLAY is used as the traffic generator for these video
sessions. The network topology, switch architecture and traffic pattern [12] used in

these simulations are as follows:

Network topology: The network consists of end-nodes and switches. The switch
is characterized by its connectivity, which renresents the number of input and
output ports (assumed to be the same), connection set-up and call admission
policy, and buffering/policing scheme which describes how cells are buffered

and the action taken when the switch runs out of buffer space. Each output

139
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port of the switch is assigned a definite transmission rate. This rate is assumed
to be an attribute of the (unidirectional) channel (link) connecting the output
port to the corresponding input port of another switch. Each ATM channel is
represented by a pair of unidirectional links connecting the same pair of switches

but in opposite directions.

The end-nodes represent hosts interfaced to the communication subnet. Each
end-node is connected via an ATM channel to one switch. The network topology
does not change during simulation. The structure of the virtual paths (VP’)
is assumed to be static over the simulated time interval. Hence, the model
does not handle VPI switching. For every end-node reachable from a given
switch, the switch maintains a number of routes via which the destination can
be reached. The exact route which is to be taken is decided during call-set-up

processing, based on the call admission algorithm assoriated with the switch.

Both data traffic and call-set-up messages originate at the end-nodes and are
addressed to end-nodes. The call-set-up messages are processed at intermedijate
switches. In our simulations, a call-set-up message is never rejected by the
switches. This assumption was made so as to enable as many simultaneous
video sessions in the network as possible. Call-set-up messages in this SMURPH

implementation are single-cell messages.

Another simplification in the implementation is the elimination of explicit VCI
switching. For each connection, the VCI (virtual circuit identifier) is selected
globally from a central pool of available identifiers and used to tag all cell= which
carry traffic related to the connection. When the connection is set "p, every
switch along its path sets up an entry in its internal table, which associates
ports with the VCI. As this VCI is global, there is no change in the VCI value

when a cell is transferred from one switch to another.

Switch architecture: The switch has a pool of buffers associated with every output

port. A data cell arriving at the switch is stored at the end of the FIFO list of
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cells destined for a given output port. If no buffer space is available at the port,
the last cell from the list is dropped. The buffering strategy deals with two
types of cells called red and green. Red cells have the CLP bit set to 1, while
the green cells have the CLP bit set to 0. Consequently, red cells are considered
less critical than green cells and, if there is no room to accommodate a new
outgoing cell into a port queue, the switch will try to drop a red cell first. Only

if no such cell is available will the switch consider dropping a green cell.

Video traffic generator: Video traffic is generated at the end-nodes. These end-
nodes represent hosts, and have only one pair of ports each and do no switch-
ing. A typical video teleconference scene was filmed and encoded using the
SPAFLAY codec. The prioritized mode of operation of SPAFLAY was used
with the Quality parameter set to 1. The output of the codec (in terms of bits
per frame) is used as the VBR video traffic. The peak rate and the average rate

of the traffic is calculated and used to drive the simulations.

6.2 Simulation parameters

o The network topology considered for simulation is depicted in Fig. 79. There

are 24 end-nodes and 36 4x4¢ ATM switches arranged in the form of a grid.
e The output port of each switch is assigned a transmission rate of 6.5 Mbps.
o The length of all links is the same: about 10 km.

e Policing of video traffic from the end-nodes is carried out by restricting the
traffic rate to either the peak rate or to one half of the sum of the average and
the peak rate. In the prioritized mode of operation of SPAFLAY (Quality=1),
the peak rate was found to be 2.9 Mbps, while the average rate was found to

be 1.14 Mbps for the session filmed.
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Figure 79: Topology of the network

® 24 video sessions are run simultaneously. End-nodes (0,12), (1,13), (2,14),
(3,15). (4.16)......(11,23), (12,0), (13,1), (14,2), (15,3), (16,4)....(23,11) form

video source-destination pairs.

6.3 Simulation results

In keeping with the prioritized mode of operation in SPAFLAY, the encoded video
information is sent in cells which are assigned either a high or low priority value.
We vary two parameters in this experiment: the policing policy and the buffer size
associated with each ATM switch port. The policing policy either enables peak rate
access traffic (Casel) or one half of the sum of the peak and the average rate (Case2).
In each case, we note the cell loss in the network, the end-to-end delay and the effect
of Delay Jitter.

From Fig. 80, we find that the cell loss in the network decreases as the buffer size in
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the switches is increased. This decrease in the cell loss percentage is quite appreciable
for the first few buffer size values. We also find that the percentage of high priority
cells lost is a fraction of the total cells lost for any given switch buffer value. It
reduces to zero when the buffer value is about 300. This figure gives us a measure of
the buffer size that we must have at the switches so that we can “guarantee” at least
no loss of high priority cells.

If one half of the sum of the average and the peak rate is allocated in the access
network (Case 2), there is less cell loss for a given ATM switch buffer value as
compared to Case 1 where peak rate is allocated in the access network. This is due
to the smoothing of the traffic that is achieved by restricting the traffic in the subnet
to less than the peak rate. This smoothing is typically done by buffering cells at the
UNI (User-Network Intesface). It helps to lower the percentage of cell loss in the ATM
network at the expense of increasing the end-to-end delay. This is seen from Fig. 81
which shows the average end-to-end frame delay values for the 24 active sessions.

The effect of Delay Jitter is studied as follows: We assume every end-node which
effects playback of these video frames to have a finite buffer called “playback buffer”.
Cells which arrive at the receiver’s end-node via the network are stored in the playback
buffer.

Playback of the first frame begins when the playback buffer is half full. Subsequent
frames are played out every 1/15 seconds which is the same as the generation time
interval of video frames. At a playback point, we play out a complete video frame
present in the playback buffer or portions of the frame if the entire frame has not
arrived. Every frame is identified uniquely on the basis of the sequence number
which it carries. At each playback point, the receiver plays out the next expected
video frame in the sequence.

Jitter can affect this playback schedule in two ways: Cells (corresponding to a
particular frame) may miss their playback point because they are “late”. These cells

are as good as lost and cannot be played out. This constitutes one form of “playback

loss”.
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Network jitter may also cause frames to get “clumped” in the network due to the
variable delays incurred in the switch buffers. In this case, the cells corresponding
to these frames arrive at the receiver separated by smaller time intervals than their
generation time intervals. This causes the playback buffer tc overflow leading again
to “playback loss”.

As the playback buffer size is increased, we minimize the playback loss due to
“late” frames and “clumped” frames. Hence, our study of Delay Jitter essentially
reduces to the problem of identifying a playback buffer size of adequate capacity.

For each policing strategy and network switch buffer size, we vary the size of the
playback buffer. We measure the percentage of playback loss in each case. Fig. 82
shows the playback cell loss percentage for increasing values of playback buffer size.
The access traffic is kept at the peak value in these experiments. As anticipated, the
playback cell loss percentage decreases as the playback buffer size is increased. The
cell loss percentage is almost 0% when the playback buffer size is about 600 cells.
Another observation is that the playback cell loss for a given value of the playback
buffer is more when the size of the switch buffers in the network is increased. As we
increase the switch buffer size in the network, we increase the possibility of queuing
delays in the network. This causes more jitter and hence an increase in the playback
cell loss.

Fig. 83 shows the playback cell loss percentage for increasing values of playback
buffer size. Here, the access traffic is kept at one half of the sum of the average and
the peak value. The playback cell loss percentage again decreases as the playback
buffer size is increased. The cell loss percentage is almost 0% when the playback
buffer size is about 600 cells. We again find the trend of increased playback cell loss
when the size of the switch buffers in the network is increased.

Fig. 84 compares the effect on playback cell loss when the two access traffic
policies are used. The switch buffer size is kept constant at 25 cells. We varyv the
playback buffer size and the access traffic rate. We notice that dedicating peak ‘{raffic

in the access network decreases the jitter and hence the playback cell loss. This effect
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is also observed for different values of the switch buffer size as shown in Figs. 85 to

89.
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Chapter 7
Conclusion and future directions

We have discussed the design of a video codec suited to ATM networks in this the-
sis.  SPAFLAY uses a combination of spatial and frequency domain compression
techniques. We also use layering in the spatial and frequency domain to categorize
information into high priority and low priority groups. Using this scheme helps to re-
duce the subjective deterioration of the resultant image quality in the event of cell loss
in the ATM network. The inbuilt prioritization scheme in SPAFLAY is particularly
st'ted to teleconferencing applications and in a multicast scenario.

The layered coding algorithm used in SPAFLAY increascs the robustness of the
video codec to cell loss. However, the advantage is at the expense of incurring a high
bit-rate-penalty compared to one-layer approaches. We have provided a quantitative
measure of the extent of bit-rate-penalty by comparing SPAFLAY s prioritized mode
of operation against. the normal mode of operation.

Synchronization of multiple data streams in time has been recognized as a signif-
icant requirement of future multimedia applications utilizing broadband communica-
tion technology. We have considered synchronization of audio and video streams at
the applicaticn level in this thesis. Two intra-medium synchronization techniques:
Blind-Timing and Absolute-Timing have been used. A master-slave-based scheme is
used for inter-media synchronization.

We have discussed the functionality of the application which uses the SPAFLAY
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video codec and the media synchronization techniques. This application can be used
to playback live as well as stored audio and video data. The application can be used
to playback sessions in a unicast as well as in a multicast mode. Simulation results

are used to arrive at a reasonable playback buffer size to compensate for jitter over

the network.

7.1 Future directions

¢ Extending the SPAFLAY video codec to support multiple, moving foveae in-

stead of a single fovea.

o Using multiple priority levels instead of a two-level priority scheme to compart-

mentalize video information.

o Extending SPAFLAY to work in an adaptive mode, where the area of spa-
tial importance 121 a video frame is dynamically varied depending on network

conditions.

¢ Using a combination of DCT and Haar-based Combined Transform Coding
techniques instead of using Haar alone. DCT effects more compression but is
computationally more expense than Haar. It might be advantageous to switch

between these two transform coding techniques in a dynamic fashion.

e Associating more slave media (images, text, etc.) with the master medium

audio stream.
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