
Debugging is twice as hard as writing the code in the first place. Therefore, i f you
write the code as cleverly as possible, you are, by definition, not smart enough to

debug it.

- Brian W. Kemighan

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of A lberta

M i n i m i z i n g A d d r e s s - C o m p u t a t i o n O v e r h e a d

by

Johnny Huynh

A thesis submitted to the Faculty of Graduate Studies and Research in partial ful­
fillment of the requirements for the degree of M aster of Science.

Department of Computing Science

Edmonton, Alberta
Fall 2006

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Library and
Archives Canada

Bibliotheque et
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 978-0-494-22290-4
Our file Notre reference
ISBN: 978-0-494-22290-4

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Abstract

In many digital signal processors (DSPs), variables stored in memory are accessed

using address registers and indirect addressing modes. The addressing code used to

access these variables can have a significant impact on code size and performance.

Thus, one optimization problem DSP compilers face is the problem of minimizing

address-computation overhead. This thesis identifies three problems that must be

addressed in order to minimize overhead: access-sequence generation, offset as­

signment, and address-code generation. Although these three problems have been

extensively studied individually by other researchers, this work examines all three

problems simultaneously to understand how each problem affects the overhead of

the final code. Specifically, we propose a Minimum-Cost Flow (MCF) model to

generate optimal addressing code for a fixed access sequence and memory layout. In

order to minimize address-computation overhead, we must find an access sequence

and memory layout that generates an MCF model that has minimum overhead.

By exhaustively evaluating the solution space of five small DSP benchmarks, the

results of this thesis suggest that the access-sequence generated has very little im­

pact on address-computation overhead, while the offset assignment of variables has

a significant impact. We show that current offset-assignment heuristics proposed in

the literature [15, 18, 23, 29] do not adequately address the offset assignment prob­

lem. In order for these algorithms to produce an offset assignment with minimal

overhead, a new combinatorial problem, the Memory Layout Permutation problem,

must be addressed. Alternatively, offset assignment algorithms can be designed

to produce an MCF model that produces low overhead. This thesis presents and

evaluates three such algorithms. We observe that each algorithm has an impractical

running-time or does not consistently generate low-overhead memory layouts.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Acknowledgements

First and foremost, I would like to thank my supervisor, Dr. Jose Nelson Amaral, for

making this thesis possible. His advice and guidance during my undergraduate and

graduate studies have been invaluable in my academic and personal development.

Next, I would like to thank two colleagues, Dr. Sid-Ahmed-Ali Touati and

Paul Berube, for their assistance and feedback throughout this research project.

Their knowledge and insight of the problem models and DSP architecture were

instrumental in the identification and formalization of the problems presented in

this thesis.

Last, but certainly not least, I would like to give my deepest thanks and appre­

ciation to my family. I am grateful that both, my brother, Andrew, and my fiancee,

Jennifer, are computer scientists who understand the time and effort I needed to

dedicate to this research. To my parents, Tho and Suong, I cannot express enough

gratitude for their love and support through the years.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

To my parents, fo r your never-ending support

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Table of Contents

1 Introduction 1
1.1 Processor Model .. 2
1.2 Methods to Reduce O verhead... 3

1.2.1 Offset A ss ig n m en t.. 4
1.2.2 Access-Sequence G eneration... 6
1.2.3 Address-Code G e n e ra tio n ... 7

1.3 Motivating Example .. 8
1.4 C on tribu tions... 13

2 Related Work 14
2.1 Simple Offset A ss ig n m e n t.. 14
2.2 Address-Register Assignment .. 16
2.3 Generating Access Sequences ... 18
2.4 Address Code G eneration... 20

2.4.1 Minimum-Cost C irculation...20
2.4.2 Minimum-Weight Perfect M atc h in g ...22

3 Extending Current Models 24
3.1 Memory-Layout P e rm u ta tio n s ..24
3.2 Minimum-Cost F l o w .. 26

3.2.1 Impact of Removing Redundant Edges 34
3.3 Conflict General Offset A ss ig n m e n t.. 35
3.4 S u m m a ry ..38

4 Understanding the Solution Space 39
4.1 Experimental M ethodology.. 39
4.2 Offset-Assignment Solution S p a c e ... 42
4.3 Instruction-Scheduling Solution S p a c e ...45
4.4 F e a tu re s ...49

4.4.1 Transition C o u n t ... 51
4.4.2 Path W eight... 51
4.4.3 Distance M easurem ent..52
4.4.4 In te rleav in g s .. 52
4.4.5 Live R anges... 53
4.4.6 Conflicts ...54
4.4.7 Evaluating Features.. 55

4.5 S u m m a ry ..58

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

5 Evaluating Offset Assignment Algorithms 59
5.1 Experimental M ethodology.. 60
5.2 Efficiency of Offset Assignment A lgorithm s...60
5.3 Efficiency of ARA A lg o rith m s..62
5.4 Efficiency of SOA A lg o rith m s..66
5.5 S u m m a ry ..66

6 Evaluating Alternative Algorithms 70
6.1 Best-First S e a r c h ...70
6.2 Greedy C o n stru c tio n .. 75
6.3 AIG Path C o v e r ..76

6.3.1 Variable Access P a tte rn s .. 77
6.3.2 Augmented Interference G raph.. 78
6.3.3 Minimum Path Cover for AIGs ... 82

6.4 Efficiency of Alternative A lgorithm s.. 87

7 Conclusions 90
7.1 Future W o rk .. 93

Bibliography 94

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

List of Tables

3.1 The size of the network-flow graph, produced by different access
sequences, can be significantly reduced by removing redundant edges. 35

3.2 The impact of removing redundant edges becomes more signifi­
cant as the size of the access sequence, and resulting network-flow
graph, increases...36

4.1 Size of problem and solution space for selected k e rn e ls41
4.2 Number of layouts with a specific address-computation overhead,

for the GOA and CGOA solution spaces, for the iir_arr benchmark
kernel..42

4.3 Number of layouts with a specific address-computation overhead,
for the GOA and CGOA solution spaces, for the iir^arr_swp bench­
mark kernel..43

4.4 Number of layouts with a specific address-computation overhead,
for the GOA and CGOA solution spaces, for the latnrm^arr_swp
benchmark kernel... 43

4.5 Number of layouts with a specific address-computation overhead,
for the GOA and CGOA solution spaces, for the latnrm_ptr bench­
mark kernel..44

4.6 Number of layouts with a specific address-computation overhead,
for the GOA and CGOA solution spaces, for the latnrm_ptr_swp
benchmark kernel... 44

4.7 Scheduling statistics for two benchmark k e rn e ls46

5.1 Number of layouts with a specific address-computation overhead,
for the entire solution space. The Exhaustive column shows dis­
tribution of memory layouts in the solution space. The Algorithmic
column shows the combined distribution of layouts produced by the
15 different ARA and SOA combinations.. 63

5.2 Number of memory layouts produced by each ARA algorithm, with
the specified overhead. Each column is the combined distribution
of 5 sets of layouts, each produced with 5 different SOA algorithms,
but using the same ARA algorithm. The layouts are plotted against
the full range of overhead values obtained by exhaustive search. . . 65

5.3 Number of memory layouts, produced by each SOA algorithm, with
the specified overhead. Each column is the combined distribution of
3 sets of layouts, each produced with 3 different ARA algorithms,
but using the same SOA algorithm. The layouts are plotted against
the full range of overhead values obtained by exhaustive search. . . 68

6.1 Efficiency of best-first search and random search for GOA problems
where the minimum overhead values are known....................................... 73

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

6.2 Efficiency of best-first search and random search for C-GOA prob­
lems where the minimum overhead value is known.................................. 73

6.3 Efficiency of best-first search and random search for GOA problems
where the minimum overhead value is not known.....................................74

6.4 Efficiency of best-first search and random search for C-GOA prob­
lems where the minimum overhead value is not known........................... 74

6.5 Efficiency of the greedy algorithm for generating layouts for C-
GOA problems.. 76

6.6 Efficiency of the greedy algorithm for generating layouts for GOA
problems.. 76

6.7 Efficiency of the three alternative algorithms for generating a mem­
ory layout for C-GOA problem. The minimum and maximum over­
head values are found by exhaustive evaluation of the entire offset
assignment solution space... 88

6.8 Efficiency of the three alternative algorithms for generating a mem­
ory layout for GOA problems. The minimum and maximum over­
head values are found by exhaustive evaluation of the entire offset
assignment solution space... 88

6.9 Efficiency of the three alternative algorithms for generating a mem­
ory layout for C-GOA problems... 89

6.10 Efficiency of the three alternative algorithms for generating a mem­
ory layout for GOA problems... 89

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

List of Figures

1.1 The processes involved in minimizing address-computation over­
head. Traditionally, assumptions made during offset assignment
implicitly define the final memory layout and addressing code. . . . 5

1.2 A three-address instruction can be converted into three different se­
ries of machine instructions.. 8

1.3 Several memory layouts... 9
1.4 Instructions for address registers A i and A 2, using the layouts in

Figures 1.3(a) and 1 .3 (b) .. 10
1.5 Accessing the variables in Layout 1.3(c) requires 5 cycles of overhead. 10
1.6 Accessing the variables in Layout 1.3(d) requires 6 cycles of overhead. 11
1.7 Layout 1.3(e) is optimal as the variables can be accessed with the

minimum amount of overhead — 4 cycles... 11

2.1 The relationship between access-sequence generation and offset as­
signment... 19

3.1 Performing address register assignment followed by simple offset
assignment generates memory sub-layouts that must be placed in
memory. The problem of finding a placement that minimizes over­
head is called the memory layout permutations problem..........................25

3.2 Permutations of two su b -lay o u ts ..26
3.3 A minimum-cost flow representing the optimal addressing code for

a fixed access sequence and memory layout. Only edges part of the
minimum-cost flow are shown..28

3.4 Two examples of redundant edges in the network-flow graph.................. 30
3.5 Let the grey lines be edges with no flow; and black lines be edges

with a unit flow. Removing a redundant edge with cost=JUMP in
the network-flow graph does not increase the cost of the flow 31

3.6 Let the grey lines be edges with no flow; and black lines be edges
with a unit flow. Removing a redundant edge with cost=0 in the
network-flow graph does not increase the cost of the flow................... 32

3.7 The TMS320C54X family of DSPs can encode a three-operand in­
struction in fewer machine instructions than tradition accumulator-
based architectures... 36

4.1 Methodology used to exhaustively evaluate the solution space. . . . 40
4.2 Two memory layouts that are reciprocals of each other are consid­

ered equivalent because they have the same overhead.............................. 41
4.3 Distribution of overhead values produced by three C-GOA access

sequences from the latnrm_ptr kernel that can be considered unde­
sirable...47

4.4 Distribution of overhead values produced by three C-GOA access
sequences from the latnrm_ptr kernel that can be considered desirable. 48

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

4.5 Frequency of layouts that have a specified range of possible over­
head values.. 50

4.6 Overhead vs Path Weight for iir^arr_swp..57
4.7 Overhead vs Conflicts for iir_arr_swp.. 57
4.8 Overhead vs Transitions for iir_arr_swp ... 57
4.9 Overhead vs Distance for iir_arr_swp.. 57

5.1 Procedure for evaluating offset assignment algorithms. There are
15 paths in the chart, for the 15 combinations of ARA and SOA
algorithms.. 61

5.2 Distribution of overhead values produced by each ARA algorithm
on different test cases. The number of layouts shown for each al­
gorithm is the union of 5 sets of layouts, each produced with one
of the 5 different SOA algorithms, but using the same ARA algo­
rithm. The layouts are plotted against the full range of overhead
values obtained by exhaustive search.. 64

5.3 Distribution of overhead values produced by each SOA algorithm
on different test cases. The number of layouts shown for each al­
gorithm is the union of 3 sets of layouts, each produced with one
of the 3 different ARA algorithms, but using the same SOA algo­
rithm. The layouts are plotted against the full range of overhead
values obtained by exhaustive search.. 67

6.1 An access sequence... 77
6.2 An Augmented Interference Graph (AIG) for the access sequence

in Figure 6.1.. 79
6.3 A P-path is a directed path composed of pass-through edges..................80
6.4 An R-path is a directed path composed of return edges...........................80
6.5 A PR-path is a directed path composed of a P-path, followed by an

R-path...81
6.6 A PR’-path is composed of a PR-path and R-path, using the same

root... 81
6.7 The longest path cover found for the given AIG................................... 83
6.8 An access sequence based on Figure 6.1, but with variable D split

into Di and D2.. 86
6.9 The AIG and path cover for the access sequence in Figure 6.8. . . . 86

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

List of Acronyms

AIG Augmented Interference Graph

AR Address Register

ARA Address-Register Assignment

BFS Best-First Search

C-GOA Conflict General Offset Assignment

DDG Data Dependence Graph

DSP Digital Signal Processor

GOA General Offset Assignment

M CC Minimum-Cost Circulation

M CF Minimum-Cost Flow

M LP Memory Layout Permutation

M W PC Minimum-Weight Path Cover

M W PM Minimum-Weight Perfect Matching

SOA Simple Offset Assignment

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

Chapter 1

Introduction

Digital signal processors (DSPs) are small, low-powered processors found in em­

bedded systems, such as cell phones, portable music players, and cameras. DSPs

are designed with a minimal number of functional units and instructions to keep

processor size and power consumption minimal, while maintaining enough func­

tionality to meet a specific application, such as processing audio and video data.

A common design for these processors is an accumulator-based, register-memory

architecture, where instructions can use data in memory without explicitly loading

the data into a general purpose register. Instead of storing data in general-purpose

registers, the addresses to data are stored in special registers called address registers

(ARs) and accessed through several different addressing modes. The architectural

advantages of address registers is that they only need to be large enough to hold

addresses, and can be manipulated using simplified arithmetic units called address-

generation units.

DSPs that are commonly used to process audio and video data must efficiently

access large arrays of data in memory. To facilitate the memory accesses, post­

increment and post-decrement indirect addressing modes are available in many

DSPs. These addressing modes allow the processor to access a word in memory,

specified by the address in an AR, and then modify the address in the AR by one

word without additional instructions or processor cycles. When two consecutive

memory accesses indexed by the same address register are to non-adjacent words

in memory, an extra address-computation instruction is required. This extra instruc­

tion increases code size and introduces additional latency in the program. In this

1

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

thesis, overhead refers to the extra processor cycles required to perform address

computations. Thus, the placement of data in memory, and the order in which the

data is accessed, affects how often the post-increment or post-decrement addressing

modes can be used.

Another architectural feature present in some DSPs to assist in address compu­

tations is a modify register. DSPs with modify registers can increment or decre­

ment the address in an address register by the amount specified in a modify register

without additional overhead. That is, an address register can be post-incremented

(or post-decremented) without overhead by more than one word if the appropriate

value exists in a modify register.

The overhead incurred by inefficient usage of address registers, modify regis­

ters, and addressing modes is called address-computation overhead. Specifically,

there are two specific address-computation overhead — initialization and jump. Ini­

tialization overhead is incurred when an immediate value is initially loaded into an

AR, usually requiring a double-word instruction. Jump overhead is incurred when

an explicit address-computation is required for an AR to access two non-adjacent

words in memory. The introduction of double-word instructions and additional

single-word instructions has several undesirable consequences:

• code size increases;

• address-computations have non-zero latency, possibly reducing performance;

• more processor resources are used, increasing power consumption.

In this thesis, initialization and jump overheads are parameterized by INIT and

JUMP cycles of latency, respectively.

1.1 Processor Model

The processor modeled in this thesis is based on the Texas Instruments TMS 3 2 0 C 5 4 X

family of processors [24]. These DSPs have 8 16-bit address registers. Most in­

structions are 1 word in length and have 1 cycle of overhead. Initializing an address

register requires a double-word instruction and has 2 cycles of latency. Instructions

2

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

may use a post-increment (or post-decrement) addressing mode to change the value

of an address register by one word without additional overhead. Post-incrementing

(or post-decrementing) an address register by more than one word requires an addi­

tional word to encode the explicit address-computation and results in an extra cycle

of latency to execute the instruction. Thus, I N I T = 2 cycles and JU M P — 1

cycle of overhead.

In the T M S 3 2 0 C 5 4 X family of processors, one address register A R q can be

used as a modify register. This capability introduces two problems for deciding

how to best use ARo. If A R q is used as an address register, then all eight address

registers can only be post-incremented (or post-decremented) by one word without

overhead. If ARo is used as a modify register, then only seven address registers are

available for indirect addressing, and the compiler must determine a modify value

to store in A R q. For this work, modify register optimizations are not considered,

and A R q is only used as an address register in the processor model.

Similar to many other DSP architectures, the address registers in the TMS 3 2 0 C 5 4 X

family of processors can also be used to store values other than addresses; however,

the values stored in the address registers are subject to two limitations:

1. Address registers can only hold 16-bit values, while data in memory and the

accumulator are 32-bit and 40-bit values respectively.

2. Address registers can only be manipulated by the address-generation unit,

which is limited to addition and subtraction of 16-bit values.

Thus, address registers cannot be used as general purpose registers, and the prob­

lem of minimizing address computation overheads remains a relevant problem in

relatively modem processors such as the T M S 3 2 0 C 5 4 X family of DSPs.

1.2 Methods to Reduce Overhead

Given a basic block of code, there are several optimization opportunities to reduce

address-computation overhead: access-sequence generation, offset assignment, and

address-code generation. Figure 1.1 illustrates the processes involved in minimizing

3

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

overhead. First, an access sequence must be generated to define the order in which

memory locations are accessed. Next, offset assignment is performed in two phases:

address register assignment (ARA) produces sub-sequences of accesses, and simple

offset assignment (SOA) produces a memory layout for each sub-sequence. After a

memory layout has been defined, the final addressing code can be generated.

Traditional approaches to minimizing overhead only focus on generating access

sequences and memory sub-layouts. In previous research, the problem of permut­

ing sub-layouts to form a single memory layout does not exist; and address-code

generation is implicitly defined by address-register assignment. In this thesis, the

offset assignment problem is extended to explicitly consider the memory layout

permutation problem, and the problem of minimizing overhead is examined as a

combination of three problems: offset assignment, access-sequence generation, and

address-code generation.

The problem of minimizing overhead, and its associated sub-problems, are opti­

mization problems; however, the problems can also be easily cast as decision prob­

lems. Thus, the complexity of the optimization problems discussed in this thesis

will be classified using complexity classes such as P and NP [5].

1.2.1 Offset Assignment

Minimizing address-computation overhead is most often done by addressing the

offset-assignment problem. Given a set of variables stored contiguously in memory,

a memory layout is an ordering of these variables in memory. The order of variable

accesses by the instructions in a basic block defines an access sequence. The Offset-

Assignment Problem is defined as:

Given k address registers and a basic block accessing n variables, find

a memory layout that minimizes address-computation overhead.

Memory layouts with minimum overhead are called optimal memory layouts. This

problem is called “offset assignment” because the address of each variable can be

obtained by adding an offset to a common base address. If k = 1, then the problem

is know as the Simple Offset Assignment (SOA). If k > 1 the problem is referred to

4

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

C!Data Dependence
Graph

Sub-Layouts

Memory Layout
Permutations

Access Sequence Generation

Instruction >/ 'm s tr u c t io n '\ Variable
Scheduling V ^ S c h e d u te / Extraction

/^ ''~A C C eS 8~~ ''N
VJjequencg_

Traditional Offset Assignment

Simple Offset
Assignment (Sub-Sequences)

Address-Register j
Assignment

Memory
_Layout,

Implicitly defines
addressing code

Address-Code
Generation

Addressing Code /
Address-Computation

Overhead

Figure 1.1: The processes involved in minimizing address-computation overhead.
Traditionally, assumptions made during offset assignment implicitly define the final
memory layout and addressing code.

as the General Offset Assignment (GOA).

In the Simple Offset-Assignment (SOA) problem, a single AR is available to

access all the variables in the memory. Liao et al. convert the access sequence to an

undirected access graph [18]. Variables are vertices in the graph, and edge weights

indicate the number of times two variables are adjacent in the access sequence.

Liao et al. show that the SOA problem can be reduced, in polynomial time, to the

problem of finding a maximum-weight path cover in the access graph. Finding a

maximum-weight path cover is an NP-complete problem; thus, the SOA problem

is also NP-complete [5]. Approximation algorithms for the SOA problem are pre­

sented in Section 2.1.

In the General Offset-Assignment (GOA) problem, each access to one of the n

variables in an access sequence must be assigned to one of k address registers. This

assignment creates multiple access sub-sequences — one for each address register.

A memory sub-layout can be found for each sub-sequence. Sub-layouts cannot be

computed independently because a variable may appear in multiple address regis­

ters, but the union of all sub-layouts must still form a contiguous layout. Liao et al.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

simplify the GOA problem by assigning variables, instead of variable accesses, to

address registers [18]. This simplification produces sub-sequences that access dis­

joint sets of variables. A sub-layout can be obtained by solving the SOA problem

for each sub-sequence, and the resulting set of sub-layouts can form a single mem­

ory layout. In this thesis, the problem of assigning variables to address registers is

called the Address-Register Assignment (ARA) problem, and the problem of form­

ing a single memory layout from a set of disjoint sub-layouts is called the Mem­

ory Layout Permutations (MLP) problem. Approximation algorithms for the ARA

problem are discussed in Section 2.2. The MLP problem has not been addressed

in the literature because each sub-layout is traditionally assumed to be indepen­

dently accessed in memory. The formulation of the MLP problem is presented in

Section 3.1.

1.2.2 Access-Sequence Generation

Each instance of the offset assignment problem is defined by the input access se­

quence; thus, changing the access sequence can potentially change the final over­

head of a given basic block of code. Generating an access sequence can be separated

into two separate processes: instruction scheduling and variable extraction. Previ­

ously proposed algorithms that attempt to optimize the two processes are discussed

in Section 2.3.

The first process involved in generating an access sequence is instruction schedul­

ing. Let G — (V , E) be a directed graph where each vertex in V represents an

instruction using three-address code. Each edge (u , v) e E represents a scheduling

dependency where instruction u must be scheduled before instruction v. Thus, G

is a data dependence graph (DDG) that defines a partial ordering of instructions,

whereas a schedule s is a fully-ordered list of instructions that also satisfies the par­

tial ordering specified by G. Let S be the set of all legal schedules of G. G O A(s)

represents the overhead of the optimal memory layout for a schedule s e S.

An instruction schedule for a basic block defines a sequence of three-address

codes but does not necessarily define an access sequence. Variable extraction is

required to identify the order in which variables in memory are accessed, thereby

6

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

defining an access sequence. Figure 1.2.2 shows how a single three-operand instruc­

tion can produce three different instruction sequences, and consequently, three dif­

ferent access sequences. Each variable in the instruction shown in Figure 1.2(a) rep­

resents a variable that must be stored, and accessed, in memory. In an accumulator-

based machine, the instruction would typically be translated to a series of instruc­

tions as shown in Figure 1.2(b). The first source operand y is loaded, followed by a

load of the second the source operand z . The newly computed result is then stored

into the target operand x. Thus, the resulting access sequence is ‘y z x ’. If the

operator used in the instruction is commutative (such as addition), then the first two

accesses in the sequence can be reversed so that the second source operand in the

instruction is accessed before the first operand, as shown in Figure 1.2(c). Another

optimization that can affect the access sequence is variable coalescing. Variable

coalescing identifies a set of variables that can be assigned to a single memory lo­

cation. In particular, if one variable is defined after the last use of another variable,

the values of the two variables can safely be stored in the same memory location.

For example, if z is never accessed after the instruction in Figure 1.2(a), then the

variables z and x can be coalesced into one memory location, and represented by

one variable w. The resultant machine instructions as shown in Figure 1.2(d), with

an access sequence of ‘y w w \ Thus, variable coalescing changes the access se­

quence by reducing the number of unique variables accessed.

This thesis does not consider the optimization opportunities related to variable

extraction. Thus, in the scope of this research, a schedule defines a unique access

sequence. Additionally, the problem of generating an access sequence that ulti­

mately results in a minimum overhead can then be defined. The problem of find­

ing a minimum-overhead access sequence is to find a schedule s £ S |G O A (s) <

G O A (s'),V s' g S.

1.2.3 Address-Code Generation

After an instruction schedule and memory layout have been formed, addressing

code must be generated. Addressing code dictates which variable accesses are

to be addressed by each address register, and ultimately determines the address-

7

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

x = y + z
ACC = y
ACC += z
x = ACC

(a) A three-operand instruction.
(b) Machine instructions for an
accumulator-based processor.

ACC = z
ACC += y
x = ACC

ACC = y
ACC += w
w = ACC

(c) An alternative series o f machine
instructions.

(d) If z is never used after the in­
struction, z and x can be coalesced
into w.

Figure 1.2: A three-address instruction can be converted into three different series
of machine instructions.

computation overhead for a basic block. Notice that the address-register assign­

ment phase during offset assignment implicitly defines addressing code, and sub­

sequently, the address-computation overhead value. However, address-register as­

signment can produce sub-optimal addressing code because it assigns variables, in­

stead of accesses, to address registers. Instead of producing addressing-code based

on address-register assignment, optimal address-code generation algorithms can be

used. An assignment of accesses to address registers that produces the minimum

overhead can be found in polynomial-time using the algorithms presented in Sec­

tion 2.4. The existence of these algorithms creates a potentially large disparity be­

tween the overhead values modeled in traditional offset assignment and the actual

overhead incurred by using optimal address-code generation.

Using the processor model described in Section 1.1, consider a basic block of code

that accesses 6 variables in memory. For illustrative purposes, assume the follow­

ing fixed access sequence:‘a d b e c f b e c f a d ’. The traditional ap­

proach to minimize overhead is to perform offset assignment by partitioning the

variables into disjoint sets. Each set is accessed exclusively by a single address reg-

1.3 Motivating Example

8

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

a I b | c

(a) Sub-layout assigned to A \

d [e I f

(b) Sub-layout assigned to A 2

a b c d e f d e f b c a

(c) A combined layout o f (a) and (b) (d) Layout using alternative sub-layouts

b c a d e f

(e) Swapping the sub-layouts

Figure 1.3: Several memory layouts.

ister. For example, variables { a , b , c} can be assigned to address register A \, and

variables {d , e , f } to address register A 2. The variables assigned to each address

register can then be independently arranged in memory to form two independent

sub-layouts, as shown in Figure 1.3. Address registers and A 2 independently

access the variables, as shown in Figures 1.4(a) and 1.4(b). In this example, the

address register assigned to each layout must each perform one initialization and

one explicit address computation. Thus, the overhead for each address register is 3

cycles, for a total of 6 cycles of overhead.

In the traditional approach to the GOA problem, the sub-layouts in Figure 1.3

are considered “optimal” for two reasons. First, no ordering exists for either vari­

able subset, { a , b , c } o r { d , e , f } , with less than 3 cycles of overhead. Second,

no partitioning of the 6 variables exists that can produce sub-layouts with a total

overhead that is less than 6 cycles. Do these sub-layouts minimize the overhead

of the input access sequence? No. The problem is the restriction that each set of

variables be accessed by a single address register.

The memory layouts in Figures 1.3(a) and 1.3(b) can be placed contiguously

in memory to form the single memory layout shown in Figure 1.3(c). Figure 1.5

shows that A x can be used for the last access of variable d (originally assigned to

A 2) without requiring additional overhead. Similarly, A 2 is used for the last access

of variable a (originally assigned to A{). This solution has an overhead of 5 cycles

instead of 6.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

variable
accessed offset

addressing
code overhead
A] = & a 2

a 0 Ai += 1
b 1 A i += 1
c 2 Ai - = 1
b 1 Ai += l
c 2 Ai -= 2 1
a 0 Ai

(a) Instructions for address register A\

variable addressing
accessed offset code overhead

A 2 = & d 2
d 0 A2 += 1
e 1 A 2 += 1
f 2 A2 — = 1
e 1

1—111+C*1

f 2 A2 - — 2 1
d 0 A2

(b) Instructions for address register A 2

Figure 1.4: Instructions for address registers A \ and A2, using the layouts in Fig­
ures 1.3(a) and 1.3(b)

variable addressing
accessed offset code overhead

Ai — & 0. 2
A2 = &d 2

a 0 Ai += 1
d 3 A2 += 1
b 1 Ai += 1
e 4 A2 += 1
c 2 A i -= 1
f 5 a 2 -= 1
b 1 A i += 1
e 4 a 2 += 1
c 2 A i += 1
f 5 A2 -= 5 1
a 0 A2

d 3 Ai

Figure 1.5: Accessing the variables in Layout 1.3(c) requires 5 cycles of overhead.

10

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

variable addressing
accessed offset code overhead

A \ — & a 2
a 2 = &b 2

a 5 A\ - = 5 1
d 0 A \ += 1
b 3 a 2 += 1
e 1 A\ += 1
c 4 a 2 - = 1
f 2 A \ - = 1
b 3 a 2 += 1
e 1 A\ += 1
c 4 a 2 += 1
f 2 A \
a 5 a 2 - = 5 1
d 0 a 2

Figure 1.6: Accessing the variables in Layout 1.3(d) requires 6 cycles of overhead.

variable addressing
accessed offset code overhead

A\ = &b
a 2 = & a

a 2 a 2 += 1
d 3 a 2 += 1
b 0 A\ += 1
e 4 a 2 += 1
c 1 A\ - = 1
f 5 a 2 - = 1
b 0 A\ += 1
e 4 a 2 += 1
c 1 A\ += 1
f 5 a 2
a 2 A\ += 1
d 3 A\

Figure 1.7: Layout 1.3(e) is optimal as the variables can be accessed with the mini­
mum amount of overhead — 4 cycles.

11

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Now, consider an alternative sub-layout to 1.3(a), with the variables ordered

as {b , c , a}. Variables { d , e , f } are kept in the same order as shown in Fig­

ure 1.3(d). Similar to Figure 1.4, if variables {d , e , f} are assigned to A x and

variables {b , c , a} are assigned to A 2, the total overhead is 6 cycles. If the two

sub-layouts are placed contiguously in memory the minimum overhead is still 6

cycles, as shown in Figure 1.6.

However, if variables { b , c , a} are placed before variables {d , e , f }, produc­

ing the memory layout shown in Figure 1.3(e), and each variable can be accessed

by more than one address register, then the address computation overhead is re­

duced to 4 cycles, as shown in Figure 1.7. Despite the similarities with memory

layouts 1.3(c) and 1.3(d), the layout in Figure 1.3(e) is the only one that allows for

the minimum amount of overhead.

Clearly, in order to minimize address-computation overhead for a basic block

of code, the offset assignment problem must be solved. Unfortunately, solving the

ARA and SOA problems alone is not sufficient to minimize overhead because of

the restriction that each variable must be accessed by a single address register. Ulti­

mately, address-computation overhead is dictated by the addressing code generated,

which allows multiple address registers to access the same variable. Thus, if it is

possible to generate optimal addressing code for a fixed access sequence and mem­

ory layout, the following questions are raised:

• Do different ARA and SOA heuristics affect the combined-layout overhead?

• How should sub-layouts be arranged to minimize address-computation costs?

• How do different access sequences (found through instruction scheduling)

affect overhead?

• What is the minimum amount of address-computation overhead required for

a given basic block of code?

This thesis addresses these questions through an exhaustive exploration of the solu­

tion space.

12

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

1.4 Contributions

The rest of this thesis is organized as follows. Previously proposed algorithms that

affect address-computation overhead are presented in Chapter 2. The problems with

previously proposed techniques are discussed in Chapter 3. Specifically, three new

contributions are presented:

• the formulation of a new optimization problem, the Memory Layout Permu­

tations problem, that has to be solved in order to minimize overhead when

generating memory layouts using the traditional approach;

• an extension of the offset assignment problem, called the Conflict General

Offset Assignment problem, that reflects the changes in address registers and

memory in modem DSP architectures;

• a minimum-cost flow (MCF) model for the generation of addressing code

for a fixed access sequence and memory layout. Let L be the number of

accesses and N be the number of variables. This MCF model has at least

j j fewer edges than Gebotys’ minimum-cost circulation (MCC) model, as

demonstrated in Section 3.2.

The rest of the thesis presents several experimental results. Chapter 4 examines

the solution space for access-sequence generation and offset assignment. Examin­

ing the solution spaces demonstrate that optimal address-code generation alone is

not sufficient to minimize address-computation overhead. Furthermore, the offset

assignment has significant impact on overhead, while access-sequence generation

does not. Chapter 5 presents an empirical evaluation of heuristic-based algorithms

published in the literature for offset assignment and demonstrates that these algo­

rithms produce poor approximations to the minimization of address-computation

overhead. Alternative algorithms for offset assignment are presented and evaluated

in Chapter 6. Lastly, conclusions on the study and future work are discussed in

Chapter 7.

13

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Chapter 2

Related Work

This chapter presents the different approaches and algorithms that can affect address-

computation overhead. As mentioned in Section 1.2, overhead is reduced by ad­

dressing three issues: offset assignment, access-sequence generation, and address-

code generation. Algorithms designed to approximate solutions for the offset as­

signment problem are presented in Sections 2.1 and 2.2. Section 2.3 presents re­

search that affect how access sequences are generated, and Section 2.4 presents two

algorithms to generate optimal addressing-code for a fixed offset assignment and

access sequence.

2.1 Simple Offset Assignment

Bartley introduced the SOA problem in 1992 and solved it as a maximum-weight

Hamiltonian-path problem [2]. A path in the access graph represents the ordering

of variables in memory. Liao et al. refine the problem formulation to a maximum-

weight path-cover problem (MWPC) [18], They improve the run-time complexity

of Bartley’s algorithm to approximate a solution to the SOA problem. This im­

proved algorithm begins by marking all edges of the access graph G as removable

and sorts them in decreasing order of weight. The algorithm then iterates the list of

removable edges and marks each edge as unremovable or removes the edge from

G. In each iteration of the algorithm, the heaviest removable edge e is marked as

unremovable. If the other unremovable edges in G form a cycle with e, then e is

removed from G. If e is incident to two other unremovable edges, then all remov-

14

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

able edges incident to e are removed. The algorithm terminates when all edges have

either been removed or marked as unremovable. The unremovable edges form an

approximate maximum-weight path cover.

Leupers proposes to extend Liao’s algorithm by using a tie-break function to

decide between edges that have equal weights [16]. This function computes the sum

of the weights of incident edges to the edge being evaluated. When a tie occurs,

the edge with the lowest sum is selected. Using this tie-break function usually

increases the weight of path cover, resulting in memory layouts with lower address-

computation overhead [16, 13].

Sugino et al. propose to approximate a MWPC by iteratively removing edges

from the access graph using a greedy heuristic [23]. Each edge e = (u, v) in the

access graph is evaluated using two metrics, the fork value of the endpoints u, v,

and the cycle value of the edge e. The fork value of a vertex v is defined as:

Using these two metrics, the benefit of each edge e = (u , v) access graph is defined

In each iteration of the algorithm, the edge with the highest benefit is removed. The

benefit of each edge is re-evaluated and the process continues until the access graph

becomes a path.

For evaluation purposes (see Chapter 5), a naive and an optimal algorithm to

find a memory layout for the SOA problem are also implemented. The naive algo­

rithm produces a memory layout based on the declaration order of variables. Two

variables, u and v, are adjacent in memory if and only if there are no other vari­

ables that are declared between the declaration of u and the declaration of v. The

algorithm is known as the Order First Use (OFU) algorithm [13, 18]

fork(v) = max{degree(v) — 2,0}

The cycle value of an edge e is defined as:

1 if e is part of a cycle
0 otherwise

as:

benefit(e)
fork(u) + fork(v) + cycle(e)

weight (e)

15

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Liao et al. propose an algorithm that finds an optimal layout for the SOA prob­

lem using the branch-and-bound technique [17]. The algorithm has an exponential

running time but can compute the MWPC for graphs with 12 vertices in a reason­

able amount of time. The algorithm is based on the observation that an access graph

with n variables has n — 1 edges in a maximum-weight path cover. Given a partial

path cover p with m < n — 1 edges, there is a set of valid edges that can be added

to p. An edge e is valid if adding e to p does not form a cycle in p and does not

cause a vertex in p to have a degree greater than two. Let p' be the partial cover

p augmented with e. An upper bound on a path cover subsuming p' is the weight

of p' plus the n — m heaviest valid edges. If the upper bound of p' is greater than

the current maximum weight path cover, the procedure is recursively called. Other­

wise, p' is discarded and another valid edge is added to p. When there are no more

valid edges to add to p, the MWPC is found, producing an optimal memory layout

for the SOA problem.

2.2 Address-Register Assignment

In the GOA problem, k > 1 address registers are used to access variables in mem­

ory. Liao et al. decompose the GOA problem into multiple instances of the SOA

problem by assigning each variable to an address register A {. Let C (A l) be the

address-computation overhead for an optimal SOA solution to variables assigned to

A i. Liao et al. define the GOA problem as follows:

Given an access sequence S, the set of variables V, and k address reg­

isters, assign each v e V to an address register A t , 1 < i < k, such that

Y,i=i C{Ai) is minimum.

Solving this problem does not produce a memory layout — it only produces an as­

signment of variables to address registers. Additionally, as shown in the example

in Section 1.3, assigning variables to address registers may not necessarily min­

imize the overall address-computation overhead. Thus, this problem should not

be considered as the real GOA problem. In this thesis, the problem is called the

Address-Register Assignment (ARA) problem. Finding an optimal solution to the

16

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

ARA problem is NP-hard because the SOA problem, which is NP-complete, is an

instance of the ARA problem [5].

Three algorithms that approximate a solution to the ARA problem are examined

in this thesis. In order to approximate the minimum overhead, an approximation of

C(Ai) is required. Any one of the SOA algorithms in Section 2.1 can be used as

a sub-routine for the following ARA algorithms to approximate the overhead of

assigning a variable to an address register.

Leupers and David propose to solve the ARA problem by using a greedy al­

gorithm based on selecting edges [16]. Given an access graph G, the algorithm

assigns the k heaviest disjoint edges of G to each address register. Each remain­

ing variable v e V is assigned to the address register A t for which v causes the

minimum increase to C(Aj).

Sugino et al. use an heuristic-based algorithm for the ARA problem [23]. Their

algorithm requires two disjoint partitions of all the variables. They claim that start­

ing with one partition with all variables and one partition with no variables works

best. Each variable is initialized as not-yet-moved. The algorithm moves one vari­

able at a time from one partition to the other. The gain of moving a variable from

Ai to Aj is the reduction of C(A,) + C(Aj). At each iteration, the algorithm moves

the not-yet-moved variable that yields the highest gain. The algorithm saves all the

intermediate partitions and their costs. When all the variables have been moved,

the intermediate partition configuration that has the lowest total cost is selected. If

there are k > 2 address registers available, the procedure is repeated on each pair

of address registers until no movement occurs.

Zhuang et al. propose a technique to simplify offset assignment problems using

variable coalescing [29]. They propose an algorithm to assign variables to address

registers that is independent of the variable coalescing technique. The algorithm

assigns a single variable to a single address register at a time. Each unassigned

variable v G V is added to each address register A { and the increase in C(Ai) is

computed. The assignment that results in the lowest increase is committed. If there

is a tie, a weighted access graph G is used. Let weight(v, u) be the weight of the

edge connecting v and u in G. Let O',A,) be an assignment of v to A t. For each

17

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

(v ,A{) that is tied, the following score is computed:

w \(v , Ai) = ^ 2 w eight(v ,u)

The assignment with the maximum w l score is selected. This process continues

until all variables are assigned to an address register.

Although many approaches to the GOA problem address the ARA and SOA

problems separately, some researchers have proposed algorithms that address both

problems simultaneously using iterative approaches. Atri et al. propose an SOA

algorithm that iteratively improves a given memory layout [1]. Similarly, Wess and

Zeitlhofer propose to approximate a solution to the GOA problem by iteratively

modifying offset assignments and address register assignments [26]. Leupers and

David propose to find a memory layout for the GOA problem using a genetic algo­

rithm [15], while Wess and Gotschlich propose to generate memory layouts using

simulated annealing [15, 27]. These algorithms are excluded from the experiments

in Chapter 5 because their performance is dependent on the initial memory layout

produced. Additionally, simulation-based algorithms can be run for an unspecified

number of iterations, making it difficult to compare to heuristic-based algorithms.

Despite the large number of algorithms proposed by researchers to generate an

offset assignment and address-register assignment, only two comprehensive com­

parisons of the algorithms exist. Leupers presents the OjfsetStone benchmark suite

and application to evaluate algorithms for the SOA problem [13]. Huynh et al.

use a minimum-cost circulation technique (discussed in Section 2.4) to accurately

evaluate a combination of SOA and ARA heuristic-based algorithms [8].

2.3 Generating Access Sequences

As mentioned in Section 1.2, instruction scheduling and variable extraction can

affect the access sequence used in the offset assignment problem. Many algo­

rithms have been proposed to improve overhead through instruction scheduling or

re-ordering variable accesses. Rao and Pande apply algebraic transformations (such

as commutativity) on expression trees to produce a least-cost access sequence [22];

Lim et al. manipulate the entire instruction schedule [19]. Kandemir et al. propose

18

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Data Dependence
Graph

Estimated
Overhead

Access Sequence Memory LayoutOffset Assignment

Access Sequence
Generation

Figure 2.1: The relationship between access-sequence generation and offset assign­
ment.

an algorithm to change the access sequence after a memory layout is formed for

each basic block [9]. Unfortunately, these algorithms share two major drawbacks.

First, the objective of the algorithms is to produce an access sequence that can be

accessed with minimal cost by a single address register. That is, the algorithms are

primarily designed to produce access sequences for the SOA problem. Second, the

algorithms rely on an effective offset assignment algorithm to generate the access

sequence, as shown in Figure 2.1. An offset assignment algorithm is used to de­

termine the overhead of potential access sequences. Once an access sequence is

generated, the offset assignment algorithm is invoked again to produce a memory

layout. A unified algorithm for scheduling and offset assignment by Choi and Kim

avoids both drawbacks. Choi and Kim observe that small changes in the instruc­

tion schedule produces localized changes in the access graph. Thus, it is possible

to incrementally compute the overhead associated with each change in the access

sequence. The main drawback to this technique is its iterative nature, which may

not always be a feasible approach in a compiler, especially if each iteration is com­

putationally intensive.

After an instruction schedule is found, there is another opportunity to decrease

address-computation overhead through variable coalescing. Ottoni et al. coalesce

variables and simultaneously find a memory layout for instances of the SOA prob­

lem [21], Similarly, Zhuang et al. propose algorithms that coalesce variables for

both SOA and GOA problems [29], Although the coalescing algorithms in both

works simultaneously find memory layouts, it is still possible to perform an addi-

19

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

tional offset assignment pass to further reduce address-computation overhead.

The majority of studies related to minimizing address-computation overhead

have traditionally focused on offset assignment for scalar variables in straight line

code. Few studies treat array accesses in loops. Leupers and David propose both

a branch-and-bound and heuristic-based algorithm to improve AR usage for array

accesses in loop bodies [14]. Cheng and Lin propose a graph-based address register

allocation and data re-ordering algorithm to reduce overhead for loop execution [4].

Chen and Kandemir present a scheme to transform arrays and reschedule array

accesses to reduce overhead using minimum cost traversals of reference graphs [3].

Zhang and Yang propose a procedure-level method of offset assignment that uses

an access graph with information from a control-flow graph [28].

2.4 Address Code Generation

After an instruction schedule and a memory layout have been found, the final ad­

dressing code must be generated. Traditionally, the address-register assignment

produced during offset assignment defines the addressing code. That is, if each

variable in an access sequence has already been assigned an address register to ac­

cess it, then no additional work is required. However, address-register assignment

during offset assignment only assigns variables to address registers. As depicted

in Figure 1.1 and demonstrated in Section 1.3, the address-computation overhead

for a basic block of code is ultimately determined by the addressing code gen­

erated. Specifically, overhead for a given access sequence and memory layout

is minimized by assigning variable accesses to address registers. There are two

known techniques to generate optimal addressing code: minimum-cost circulation

and minimum-weight perfect matching.

2.4.1 Minimum-Cost Circulation

An algorithm to find the optimal addressing code is proposed by Gebotys [6]. Gebo-

tys shows that the assignment of accesses to address registers can be found in poly­

nomial time by transforming S and M into a directed cyclic network-flow graph.

20

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

The minimum cost circulation (MCC) of the graph represents the optimal address­

ing code, and the cost of the circulation represents the minimum overhead for the

given memory layout. The MCC for a fixed memory layout can be computed using

integer linear programming where the constraint matrix is totally unimodular, and

thus, can be solved in polynomial time. All memory layouts in this paper evaluate

the quality of a memory layout using this technique. Gebotys’ MCC technique is

reproduced here for the reader’s convenience.

Let G = (V, E) be a network-flow graph with vertices V and edges E. V is

composed of the accesses a, E 5, and two special vertices, source as and sink ak.

Let (a,, af) represent an access to at, immediately followed by an access to aj. E

is composed of directed edges (a*, af), for all at that are accessed before aj. The

cost, d j , associated with each edge, (a{, a f , represents the overhead for a single

address register to consecutively access aj then aj. E also contains special edges

that connect the source and sink vertices, (as, aj) and (a,, a(), Va* E S. These edges

do not represent actual accesses in S, thus their cost is zero. E also has a special

edge connecting the sink to the source, (at, as). Each unit-flow through this edge

represents an address register initialization, thus its cost is ct<s = I N I T .

To find the minimum cost circulation of G, a set of linear constraints are placed

on the flow through each edge in E. Let eitj represent the amount of flow through

edge (aj, a f E E.

(at ,a s) represents address register initialization, so the flow through this edge

cannot exceed the number of available address registers, r:

0 < etjS < r

All other edges represent an access by a single address register, thus the flow

through these edges must be non-negative and not greater than 1.

0 < ejj < 1

The minimum cost circulation must also satisfy the conservation o f flow prop­

erty [11], thus the total flow into a vertex must equal the total flow out of the vertex:

y . e i , j ~ e j , k = 0
j

21

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Finally, the model must ensure that each access, aj G S, is executed exactly once.

This condition can be expressed by adding a constraint on each directed edge ending

at aj.

for each j ^ s,k, ehJ = 1

Thus, the minimum cost circulation of G is found by minimizing the total cost of

the flows:

2 = Cij e iJ
€ i tj

subject to the constraints described above.

The flows through the graph are guaranteed to be integers because variables

eitj have non-negative, integer bounds [6, 11]. Thus, the MCC of a given memory

layout can be solved in polynomial time with a linear programming library or solver.

2.4.2 Minimum-Weight Perfect Matching

An alternative technique to generate optimal addressing code is to use the minimum-

weight perfect matching (MWPM) technique proposed by Udayanarayanan [25].

Given an access sequence S and a memory layout M , the MWPM technique builds

a bipartite graph as follows:

Let G = (V ,E) be a bipartite graph with vertices V and edges E. V is com­

posed of pairs of vertices, x, and representing each access at E S. V also con­

tains pairs of vertices, sr and t r, 1 < r < k, representing the k address registers. E

is composed of four types of undirected edges:

• (yi,Xj), i < j . These edges model an AR accessing at followed by aj, thus

the edge cost is citj.

• (V i , sr)■ These edges model an AR accessing a, first.

• (Xi, tr). These edges model an AR accessing at last.

• (sr , tr). These edges model unused ARs in addressing code.

The MWPM of G represents addressing code, for the given S and M , with

minimum overhead. The advantage to using the minimum-weight perfect matching

22

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

technique is a faster running time. Let I be the number of accesses in S. The

complexity of finding a minimum-weight perfect matching is 0 ((l + A;)3), while

the running time to find a minimum-cost circulation is 0(14 log I) [25]; however, k

is small and bounded, so the MWPM can be found in less time.

23

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Chapter 3

Extending Current Models

Chapter 2 clearly shows that there has been a significant amount of research on

problems that involve reducing address-computation overhead; however, there are

still more opportunities to further reduce overhead in DSP codes and to do so us­

ing more precise and more efficient models and algorithms. This chapter presents

three improvements in current problem models in order to more accurately model

the problem of minimizing address-computation overhead. Specifically, Section 3.1

presents a new problem called the memory-layout permutation problem that arises

from the separation of offset assignment and address-code generation. In Sec­

tion 3.2, an alternative model for address-code generation is proposed. The new

model is based on the minimum-cost flow technique presented in Section 2.4. This

new model is more efficient and easier to implement. Lastly, in Section 3.3, a new

variant of the offset assignment problem is introduced to reflect advancements in

modern DSP architectures.

3.1 Memory-Layout Permutations

Figure 3.1 illustrates the traditional process of generating a memory layout. ARA

produces a set of disjoint access sub-sequences that are solved as independent SOA

problems. Solving each SOA instance produces a memory layout called an ARA

sub-layout. Each ARA sub-layout is accessed independently through a single ad­

dress register, thus, each sub-layout can be placed independently in memory. Addi­

tionally, each ARA sub-layout is a set of disjoint paths that cover an access graph

24

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Address Register A ssignm ent

Disjoint
Sub-Sequence

Disjoint
Sub-Sequence

Simple Offset
A ssignm ent

Simple Offset
Assignm ent

ARA Sub-Layout
(SOA Memory layout)

ARA Sub-Layout
(SOA Memory layout)

SOA Sub-Layout
(Disjoint Path)

SOA Sub-Layout
(Disjoint Path)

SOA Sub-Layout
(Disjoint Path)

SOA Sub-Layout
(Disjoint Path)

Memory Layout Perm utations

Memory Layout

Figure 3.1: Performing address register assignment followed by simple offset as­
signment generates memory sub-layouts that must be placed in memory. The prob­
lem of finding a placement that minimizes overhead is called the memory layout
permutations problem.

for an SOA problem. Each disjoint path is called an SOA sub-layout and defines a

contiguous ordering of variables in memory. The SOA sub-layouts are disjoint and

accessed by a single address register, so it is not possible to use a post-increment

(or post-decrement) addressing mode to consecutively access two variables in two

different sub-layouts. Thus, SOA sub-layouts can also be placed independently in

memory. Unless otherwise stated, the term sub-layout refers to an SOA sub-layout.

However, Section 1.3 demonstrates that if a variable can be accessed by multiple

ARs, address-computation overhead may be reduced by placing the sub-layouts

contiguously in memory. The MCC technique allows variables to be accessed by

multiple ARs; thus, the sub-layouts should no longer be placed independently in

memory. Let Mi be a sub-layout and M f be a sub-layout with the variables of M x

in reverse order in memory. Let stand for an instance of either Mj or M [.

The memory layout permutations (MLP) problem is introduced as follows:

25

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

a b c d e f a b c f e d c b a d e f

(a) (b) (c)

c b a f e d f e d c b a d e f c b a

(d) (e) (f)

f e d a b c d e f a b c

(g) (h)

Figure 3.2: Permutations of two sub-layouts

Given an access sequence S and a set of m disjoint memory sub­

layouts, find an ordering of the sub-layouts {(M i | M [) , . . . , (Mm|M ^)}

such that address-computation overhead is minimum when the sub­

layouts are placed contiguously in memory.

The MLP solution space is extremely large. Given m sub-layouts, there are m!

permutations of sub-layouts. For each permutation, each sub-layout can be placed

in memory as either or M[. Thus, m sub-layouts originate (m!)(2m) layouts.

However, an ordering of layouts M i , . . . , M m is equivalent to its reciprocal layout,

. . . , M [, because all variables have the same relative offset to each other. Thus,

the MLP solution space is (m!K2m) memory layouts. Figure 3.2 shows how 2 sub­

layouts can form 8 possible layouts, half of which are reciprocals of another.

When reciprocals are considered, an offset assignment problem with n variables

has a solution space of y memory layouts. In the degenerate case, each sub-layout

can be a single variable, m = n, and the MLP problem is reduced to the offset

assignment problem. This reduction implies that if an algorithm solves the MLP

problem, the same algorithm solves the offset assignment problem.

3.2 Minimum-Cost Flow

Although the MCC and MWPM techniques (see Section 2.4) can generate optimal

addressing code in polynomial time, it is possible to further reduce the running time

26

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

to find optimal addressing code. This thesis proposes to use a minimum-cost flow

(MCF) model to generate optimal addressing code. The MCF model has two prac­

tical advantages over the MCC and MWPM techniques. First, the MCF problem

is a well-known problem with many algorithms and solvers implemented, such as

LED A [20]. The experiments performed in this thesis use Goldberg’s efficient im­

plementation of a scaling algorithm [7]. Second, the proposed MCF model uses a

smaller network flow graph than the MCC and MWPM models, further reducing

the execution time requirements for generating optimal addressing code.

The network-flow graph used in the MCF technique is very similar to the graph

used by Gebotys, and can be constructed as follows. Let G = (V, E) be a network-

flow graph with vertices V and edges E. V is composed of the accesses a, e S,

and two special vertices, source as and sink at. as has an excess supply equal

to the number of address registers, and at has a demand equal to the number of

address registers. All other vertices in V have a minimum and maximum flow

capacity of 1. That is, each vertex must have one unit of flow through it. Let (a*, a,)

represent an access to a*, immediately followed by an access to aj. E is composed

of directed edges (a*, a ,), for all accesses a; 6 S that are accessed before access

aj e S. The cost, Cjj, associated with each edge, (a*, ay), represents the overhead

for a single address register to consecutively access a* then aj. E also contains

edges that connect the source and sink vertices, (as, a*) and (a*, a t), Va, € S. The

edges (as,ai),V aj e S represent an address register initialization, and have cost

cSj = I N I T . Edges connected to the sink at have cost = 0. The final edge

(as, at) in E connects the source to the sink and represents unused address-registers.

It has cost cSj = 0 and infinite capacity. All other edges in E have a capacity of

1. Each unit flow through G represents an assignment of a single address register

to a set of variable accesses; thus, a minimum-cost flow through G represents an

assignment of address registers to variable accesses with minimal overhead. In

other words, the minimum-cost flow through G represents an optimal addressing

code for the given access sequence S and memory layout M . An example of a

minimum-cost flow graph for the example in Section 1.3 is shown in Figure 3.3.

The network flow graph is built using the following access sequence

27

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

8
Cd)3Cd>
<0

 AR1

 AR2

Outbound edges from S
Cost = initialization overhead
Supply = number of ARs

. _ t .

i• ~t •
- 5)i

Edge costs {
Dependent on distance
Between variable^ accessed

i

■ i
I

! ̂
Inbound edgep to T
t o s t = 0 j
^Demand = number of ARs'

B

All vertices require
one unit of flow

Capacity = number <|f ARs
Cost ^ 0

Memory Layout

Figure 3.3: A minimum-cost flow representing the optimal addressing code for a
fixed access sequence and memory layout. Only edges part of the minimum-cost
flow are shown.

‘a d b e c f b e c f a d ’

and memory layout

[b c a d e f]

The network flow graph G models all possible addressing codes for an input

sequence S and layout M . However, to produce optimal addressing code, only one

minimum-cost flow in G is required. Thus, this thesis proposes to reduce the size

of the network flow graph, and subsequently improve the time required to produce

optimal addressing code, by identifying and removing edges in G that are not nec­

essary to find a minimum-cost flow that flows through all variables. In particular,

an edge (a*, ak) in G is classified as redundant if and only if it has the following

properties:

28

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

• there exists an access aj that occurs between at and ak in the access sequence,

and forms edges (au aj) and (aj,ak) in G;

• al) aj , and ak do not all access the same variable in memory;

• either, a, and aj, or aj and ak, are accesses to the same variable in memory.

Examples of redundant edges are shown in Figure 3.4.

Let M C F (G) represent the cost of the minimum-cost flow in G. Let graph G'

be G — (at, ak). This thesis shows that for any redundant edge (ai} ak), M C F (G ') =

M C F (G). In other words, a redundant edge in G is an edge that can be removed

without affecting the cost of the minimum-cost flow in G. Observe that G ’ is a

subgraph of G, and contains the same vertices and flow requirements as G. Any

minimum-cost flow in G' must also be a flow in G. Thus, it must always be the case

that M G F (G ') > M C F (G). Therefore, to show that M C F (G ') = M C F (G), it

is sufficient to show that M C F (G ') < M C F [G).

A redundant edge (a,, ak) in G can appear in a minimum-cost flow of G under

three different situations: thus, three cases must be examined:

1. (a*, ak) is not used in any minimum-cost flows of G;

2. (ai,ak) is used in a minimum-cost flow flow of G and has a cost c^k —

J U M P ;

3. (a,, ak) is used in a minimum-cost flow flow of G and has a cost chk = 0.

When (a,, ak) is not a part of any minimum-cost flows, it is trivial to demonstrate

that M C F (G ') — M C F (G). Figures 3.5 and 3.6 illustrate the cases where (ai,ak)

is used in a minimum-cost flow and has cost cijk = J U M P , and ciife = 0, respec­

tively. The figures illustrate that for every minimum-cost flow that uses a redundant

edge, there exists another flow, with equal cost, that does not use a redundant edge;

thus, the redundant edge can be removed from G.

First, consider the case where (a i5afc) has cost ci}k = J U M P , as shown in

Figure 3.5. If (a,, a/-) is used in the minimum-cost flow, then there must exist a

second flow to access aj. Let ah be an access that occurs before aj, and let {ah, aj)

29

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

0)oc
03
CT
<D
CO
CO
COa>oo<

R edundant
Edge

M em ory Layout

(a) An example o f a redundant edge when a* and
aj access the same memory location

0Oc03
CT0
CO
CO
CO
0OO<

M em ory Layout

(b) An example o f a redundant edge when aj and
a t access the same memory location

Figure 3.4: Two examples of redundant edges in the network-flow graph.

30

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

<DOC0)3cra>w
u>ina)oo<

Flow through
redundant edge
with oost = JUMP

Memory Layout

(a) The four accesses require at least JUMP cycles
of overhead.

<Doca>3(Ta>tn
tnina>oo<

\ Redundant edge
\ is removed

Memory Layout

(b) After removing the redundant edge, the four ac­
cesses incur a cost of, at most, one JUMP.

Figure 3.5: Let the grey lines be edges with no flow; and black lines be edges with a
unit flow. Removing a redundant edge with cost=JUMP in the network-flow graph
does not increase the cost of the flow.

31

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Flow through
redundant edge

cr

Memory Layout

(a) The five accesses incur a cost of zero, one or
two JUMPs.

<DocQ)3
CTd)
C/>

(0</>ooo<

Redundant
Edge is removedcost = 0

Memory Layout

(b) After removing the redundant edge, the five ac­
cesses incur a cost of, at most, one JUMP.

Figure 3.6: Let the grey lines be edges with no flow; and black lines be edges with a
unit flow. Removing a redundant edge with cost=0 in the network-flow graph does
not increase the cost of the flow.

32

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

be the edge used to access a3, as shown in Figure 3.5(a). Regardless of the cost

of edge (ah, aj), at least JUMP cycles of overhead is required to perform the four

accesses. If (a,, ak) is removed, an alternative flow, consisting of two edges, can be

used to perform the four variable accesses, as shown in in Figure 3.5(b). Given that

a, and aj access the same memory location, the flow through (a*, aj) has a cost of 0,

and the flow through (ah, ak) has a cost of, at most, JUMP cycles. Thus, removing

(a,, ak) does not increase the cost of the minimum-cost flow.

Second, consider the case where (a*, ak) has cost chk — 0, as show in Figure 3.6.

If (at , ak) is used in the minimum-cost flow, then there must exist a second flow to

access aj. Let ah and ai be the accesses that occur before and after aj, respectively.

Let edges (ah,aj) and (aj,ai) be the edges that carry flow through aj, as shown

in Figure 3.6(a). Recall that a, and aj access the same memory location, while at

and ak access adjacent memory locations (because citk = 0). Thus, after removing

(ai, ak), a zero-cost flow can be used to access a,, a3 and ak. A second flow is then

used to access ah and a; through (ah, a{), as depicted in Figure 3.6(b). The cost of

the flow through (ah, a{) depends on the cost of edges (ah, «j) and (aj,ai):

• If edges (ah,aj) and (a3, ai) have a total cost of zero, then ah and ai must both

access the same memory location (adjacent to the memory location accessed

by aj). Thus, the flow through (ah, a{) has zero cost and the total cost of the

flow in Figure 3.6(b) is zero;

• Alternatively, if ah and a ; do not access the same memory location, either

(ah, aj) or (a3, ak) (or both) have a cost of one JUMP. Thus, the total cost

of the original flow (Figure 3.6(a)) is at least one JUMP. After removing the

redundant edge, the flow through (ah, a{) incurs, at most, a cost of one JUMP.

Thus, for all occurrences in the network flow graph where at and aj access the same

memory location, edge (a*, ak) can be removed. Similarly, the same arguments can

be used to show that if aj and ak access the same memory location, (aj, ak) can be

removed without increasing the cost of the minimum-cost flow.

Instead of removing all redundant edges from G, it is also possible to construct

G' directly. Specifically, for each access at, only the first subsequent access to all

33

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

other memory locations are used to form an edge. Algorithm 1 shows how the edges

of the network flow graph can be found.

Algorithm 1 Construct Network-Row Edges
Input: AccessSequence S
EdgeArray Edges <— ()
for each V e S do

BooleanArray Flags <— ()
for each V ’ e S, V’ occurs after V do

if Rags.get(V’) == false then
Edges.add(V,V’)
Rags.set(V’) <— True

else
continue

end if
end for

end for
return Edges

3.2.1 Impact of Removing Redundant Edges

The removal of redundant edges from G significantly reduces the size of the net­

work flow graph. Let I be the length of the access sequence, and n be the number of

variables. In the original graph G, there is one edge between all pairs of accesses,

resulting in edges between the accesses. In this new MCF model, each

access has, at most, n out-going edges (one for every possible memory location).

Thus, the total number of edges is, at most, In. Thus, the new model has 0 (£)

fewer edges in the network-flow graph. A reduction in the number edges results in

a lower running time to compute the overhead.

Table 3.1 presents the size of the network-flow graph for the access sequences

used in the experimental evaluation of this thesis (see Chapters 4 and 5). For these

testcases, at least 39% of the edges are identified as redundant and can be removed

from the network flow graph; however, due to the relatively small sizes of graphs,

the running-time improvements to find a minimum-cost are not detectable.

To better demonstrate the advantages of removing redundant edges, Algorithm 2

is used to generate large access sequences. Each of the access sequences generated

34

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Testcase
Number of

Vertices
Number of Edges

(with redundant edges)
Number of Edges

(no redudant edges)
iir_arr 21 253 153
iir_arr_swp 33 595 356
latnrm_arr_swp 30 496 288
latnrm_ptr 30 496 276
latnrm_ptr_swp 30 496 287

Table 3.1: The size of the network-flow graph, produced by different access se­
quences, can be significantly reduced by removing redundant edges.

has between 25 and 125 variables, with each variable accessed an average of 4

times. Thus, each access sequence contains between 100 and 500 accesses. The

resulting network-flow graphs have hundreds of vertices and thousands of edges,

as listed in Table 3.2. To find the minimum-cost flost for each network-flow graph,

each problem is modeled as a linear programming problem and solved using the

GNU linear-programming solver, g l p s o l .

Algorithm 2 Generate Random Access Sequence
Input: Integer NumVariables, Integer NumAccesses
Integer I
AccessSequence A
for I <— 0 to NumAccesses do

Access V <— rand() mod Num Variables
A.add(V)

end for
return A

Table 3.2 shows how removing redundant edges can significantly reduce the

size of the graphs and improve the time required to find the minimum-cost flow.

As the problem size increases, the benefits of removing redundant edges becomes

more apparent. In the largest network-flow graph, removing the redundant edges

reduces both, the size of the graph, and the execution time, by over 60%.

3.3 Conflict General Offset Assignment

The processor model used in this thesis, the TMS320C54X family of DSPs, has

an additional architectural feature that affects the problem of minimizing address-

computation overhead. The processor has a dual memory bus that allows it to access

35

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

Random Number of With Redundant Edges No Redudant Edges
Testcase Vertices Edges Time (s) Edges Time (s)
Testcase 1 100 5,151 5.7 2,223 2.6
Testcase 2 200 20,301 38.8 8,101 18.1
Testcase 3 300 45,451 129.3 18,846 49.7
Testcase 4 400 80,601 294.3 31,909 127.3
Testcase 5 500 125,751 575.4 48,477 227.4

Table 3.2: The impact of removing redundant edges becomes more significant as
the size of the access sequence, and resulting network-flow graph, increases.

x = y + z ACC = y ACC = y + z
ACC += z x = ACC
x = ACC

‘y z x ’ ‘{z y} x ’

(a) A 3-operand instruc- (b) Instance of GOA (c) Instance of C-GOA
tion

Figure 3 .7 : The TMS320C54X family of DSPs can encode a three-operand instruc­
tion in fewer machine instructions than tradition accumulator-based architectures.

two memory locations indexed by two distinct address registers simultaneously.

Specifically, the processor has instructions that can use two different addressing

modes on two different address registers to access two memory locations, perform

an arithmetic operation and store the result to an accumulator. Figure 3.3 demon­

strates that the dual-operand instructions create another opportunity to further re­

duce address-computation overhead. Traditionally, when converting three-address

codes into accumulator-based assembly instructions, two instructions are required

to read and operate on the two source operands, and a third instruction is required to

write the result to memory, as shown in Figure 3.7(b). In the TMS320C54X family

of DSPs, if two address registers are available to store the addresses of both source

operands, only two instructions are required: one instruction to read and operate

on the both source operands, and one instruction to store the result to memory, as

shown in Figure 3.7(c).

In order to effectively use the dual-memory bus and associated dual-operand

instructions, current models for address-computation must be revised. The in-

36

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

troduction of dual-operand instructions affects three processes when minimizing

address-computations: access-sequence generation, address-register assignment,

and address-code generation.

Given an instruction schedule of three-address codes that use commutative op­

erations, it is possible to generate many valid access sequences (see Section 1.2).

With dual-operand instructions, the access sequence can be augmented with addi­

tional information to represent opportunities in the instruction schedule where two

variables can be simultaneously loaded from memory. The Augmented Access Se­

quence (AAS) uses matching pairs of delimiters, such as { }, to denote when two

variables can be accessed simultaneously. For example, the augmented access se­

quence for the instructions in Figure 3.7(c) is denoted as ‘{z y} x ’. However,

dual accesses to the same variable in an instruction, such as z = x op x, use a

single address register, thus, can be represented by a single access to x in the access

sequence.

Augmented access sequences impose additional constraints on the offset assign­

ment problem. In particular, during address-register assignment, two variables that

are accessed simultaneously are said to be in conflict because they cannot be as­

signed to the same address register, and will not appear in the same sub-layout.

This new variant of the offset assignment problem is called the Conflict General

Offset Assignment (C-GOA) problem.

The third process affected by dual-operand instructions is address-code genera­

tion. The models for generating addressing code must ensure that if two different

variables are accessed, two different address registers will be used. Fortunately,

the three models for address-code generation (MCF, MCC, MWPM) already en­

sure two simultaneous accesses will be accessed by two different address registers.

Let (ii and 6* represent two accesses to different memory locations that occur si­

multaneously in the i th instruction of a schedule. The current models do not create

any edges between a, and bt because i = i, implying that a single address register

cannot consecutively access a* and then bt, or vice versa. Moreover, in all models,

there are no paths connecting a* and 6,, implying that the two accesses must be done

through two different address registers.

37

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

The ability to generate optimal addressing code in the presence of dual-operand

instructions creates an interesting problem. To use existing offset assignment algo­

rithms (or variants of it), one must consider that certain pairs of variables cannot be

accessed by the same address register; however, there is no actual constraint on the

placement of variables in memory.

3.4 Summary

The three contributions presented in this chapter can be used to more accurately

model the problem of minimzing address-computation overhead. First, the minimum-

cost flow technique can efficiently produce optimal addressing code. Second, us­

ing optimal addressing code in conjunction with traditional offset assignment al­

gorithms introduces a new problem, the Memory Layout Permutations problem,

that must be considered when generating memory layouts. Third, the MCF tech­

nique can model addressing overhead in DSP architectures with a dual memory bus.

Thus, in order to effectively minimize address-computation overhead, memory lay­

outs must be evaluated using the models presented in this chapter.

38

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Chapter 4

Understanding the Solution Space

With the introduction of optimal address-code generation, as presented in Sec­

tions 2.4 and 3.2, the problem of minimizing overhead becomes difficult to model

and solve. The only method to accurately evaluate the overhead of an access se­

quence and memory layout is to generate and solve a network-flow problem. To

better understand the effects of access-sequence generation and offset assignment

on overhead, the solution space for several problem instances are exhaustively eval­

uated. That is, for a given basic block, all valid access sequences and memory lay­

outs are generated, and their overheads are evaluated using the previously presented

network-flow techniques. Section 4.2 presents the impact of offset assignment on

overhead, and Section 4.3 reveals how different access sequences make a negligible

impact on address-computation overhead. Section 4.4 presents how the topology

and characteristics of the solution space can be evaluated and used to guide future

algorithms to generate low-overhead memory layouts. The results of the exhaustive

evaluation is the only known method to find an accesses sequence and memory lay­

out with minimum overhead, and is used in in Chapter 5 to determine the efficiency

of current algorithms.

4.1 Experimental Methodology

As presented thus far, the minimization of address-register computation overhead

is a difficult problem. Although the problem of generating addressing code has

been solved, the impact of scheduling and offset assignment on the final overhead

39

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Data Dependence
Graph

Access
Sequence

Generate All Valid
Access Sequences

Access
Sequence

Compute Overhead of All Layouts using
Minimum-Cost Flow

1 *------------------
Distribution of Overheads Distribution of Overheads

1000000

~ 100000

10000

1000

100

10

5 6 7 8 9 10 11 12 13

1000000

100000

1 10000

1000

100

5 6 7 8 9 10 11 12 13
Overhead (Cycles) Overhead (Cycles)

Figure 4.1: Methodology used to exhaustively evaluate the solution space.

is not clear. The problem formulations proposed by other researchers use assump­

tions that are invalidated by the introduction of optimal address-code generation.

To determine the significance of the instruction scheduling and offset assignment

problems in the presence of optimal address-code generation, several experiments

were conducted to obtain the solution space for some DSP benchmark kernels. Fig­

ure 4.1 depicts the methodology used to exhaustively evaluate the solution space.

Given n variables, there are n! possible memory layouts. However, there are

pairs of memory layouts that are guaranteed to have equivalent overheads. Specifi­

cally, for every memory layout M , there is a reciprocal layout M ', with variables in

reverse order, that has the same overhead. For a fixed access sequence, each post­

increment used to access a variable in M can be replaced with a post-decrement to

access the same variable in M '. Figure 4.1 shows how two memory layouts can be

accessed with the same overhead.

The testcases used for the experiments are obtained by compiling kernels in the

UTDSP benchmark suite [12]. Each kernel is compiled with g c c version 3.3.2

40

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

access instruction access instruction
AR = &x AR = &x

X AR += 1 X AR -= 1
x y z y x ’ y AR += 1 y AR -= 1

z AR -= 1 z AR += 1
(a) An access sequence y AR -= 1 y AR += 1

X AR X AR

(b) Layout [x y z] (c) Layout [z y x]

Figure 4.2: Two memory layouts that are reciprocals of each other are considered
equivalent because they have the same overhead.

Kernel
Number of
Accesses

Number of
Variables

Dual-Operand
Accesses

Possible
Memory Layouts

iir_arr 21 8 2 20,160
iir_arr_swp 33 12 6 239,500,800
latnrm_arr_swp 30 10 6 1,824,400
latnrm_ptr 30 10 6 1,824,400
latnrm_ptr_swp 30 10 6 1,824,400

Table 4.1: Size of problem and solution space for selected kernels

using -0 2 optimization. The most frequently executed basic block (usually from

the inner-most loop) is identified, and the block’s DDG and the default instruction

schedule prior to register allocation are extracted. In order for exhaustive evalua­

tions of the solution spaces to be feasible, only basic blocks with 12 variables or

less were examined. The kernels are presented in Table 4.1.

The results of these experiments support the following conclusions:

• Instruction scheduling has a very minor impact on overhead. For the two

testcases examined, all valid schedules produce similar distributions of over­

head values. Specifically, 99% of all distributions have the exact same range

of possible overhead values. Conversely, for any given memory layout, us­

ing all valid schedules usually produce a smaller range of possible overhead

values.

• Contrary to the conjectures of other authors [6], the selection of memory

layout has a significant impact on address-computation overhead. Less than

41

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

GOA C-GOA
Access overhead Number of % of Number of % o f
Sequence (cycles) Layouts Layouts Layouts Layouts

4 5 0.02% 0 0.00%
5 281 1.39% 134 0.66%

iir_arr 6 5707 28.31% 3928 19.48%
7 10526 52.21% 10346 51.32%
8 3641 18.06% 5390 26.74%
9 0 0.00% 362 1.80%

Average overhead 6.87 7.09

Table 4.2: Number of layouts with a specific address-computation overhead, for the
GOA and CGOA solution spaces, for the iir_arr benchmark kernel.

0.1% of all memory layouts for any given access sequences have the mini­

mum overhead; and more than 98% of all memory layouts have an overhead

that is 50% higher than minimum. Thus, using optimal address-code genera­

tion alone is not sufficient to minimize overhead.

4.2 Offset-Assignment Solution Space

The distribution of overhead values for each benchmark kernel are shown in Ta­

bles 4.2 through 4.6. The access sequences are obtained using the schedule pro­

duced by g c c before register allocation using -0 2 optimization. The schedule of

three-address codes is translated into two access sequences. One sequence contains

parallel variable accesses, representing a C-GOA problem instance. To generate

GOA problem instances, each operand in a parallel access is separated into two

distinct accesses (as described in Section 1.2).

The most notable observation is that despite the ability to generate optimal ad­

dressing code, offset assignment has a significant impact on the address-computation

overhead. In the GOA version of the access sequences, some memory layouts have

twice as much overhead as the optimal layouts. In the C-GOA problem instances,

some layouts have 2.5 times the overhead of the optimal layouts. The significance

of offset assignment also increases with the problem size.

The wider range of possible overhead values in the C-GOA problem instances

is due to the constraints caused by dual-operand accesses. Although the potentially

42

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Access overhead
Sequence (cycles)

GOA C-GOA
Number of

Layouts
% o f

Layouts
Number of

Layouts
% o f

Layouts
6 144 0.00% 56 0.00%
7 19557 0.01% 7117 0.00%
8 1514918 0.63% 551740 0.23%
9 21757157 9.08% 10228196 4.27%

10 90478895 37.78% 59796598 24.97%nr_arr_swp ̂^ 104101226 43.47% 109480502 45.71%
12 21628904 9.03% 52373319 21.87%
13 0 0.00% 6818622 2.85%
14 0 0.00% 243532 0.10%
15 0 0.00% 1118 0.00%

Average overhead 10.51 10.94

Table 4.3: Number of layouts with a specific address-computation overhead, for the
GOA and CGOA solution spaces, for the iir_arr_swp benchmark kernel.

Access overhead
Sequence (cycles)

GOA C-GOA
Number of

Layouts
% o f

Layouts
Number of

Layouts
% o f

Layouts
6
7
8
9latnrm_arr_swp ^

11
12
13

323
10785

253379
918134
631779

0
0
0

0.02%
0.59%

13.96%
50.60%
34.82%

0.00%
0.00%
0.00%

19
1671

112718
561629
890592
229645

17974
152

0.00%
0.09%
6.21%

30.95%
49.08%
12.66%
0.99%
0.01%

Average overhead 9.2() 9.7

Table 4.4: Number of layouts with a specific address-computation overhead, for the
GOA and CGOA solution spaces, for the latnrm_arr_swp benchmark kernel.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Access
Sequence

overhead
(cycles)

GOA C-GOA
Number of

Layouts
% o f

Layouts
Number of

Layouts
% o f

Layouts
6 1449 0.08% 494 0.03%
7 29682 1.64% 10349 0.57%
8 456647 25.17% 241667 13.32%

latnrm_ptr 9 929244 51.21% 721325 39.76%
10 397378 21.90% 690065 38.03%
11 0 0.00% 138406 7.63%
12 0 0.00% 11950 0.66%
13 0 0.00% 144 0.01%

Average overhead 8.93 9.4

Table 4.5: Number of layouts with a specific address-computation overhead, for the
GOA and CGOA solution spaces, for the latnrm_ptr benchmark kernel.

Access
Sequence

overhead
(cycles)

GOA C-GOA
Number of

Layouts
% o f

Layouts
Number of

Layouts
% o f

Layouts
6 323 0.02% 2 0.00%
7 7706 0.42% 1359 0.07%
8 225109 12.41% 113103 6.23%

latnrm_ptr_swp 9 905303 49.90% 581575 32.05%
10 675959 37.26% 889366 49.02%
11 0 0.00% 212410 11.71%
12 0 0.00% 16399 0.90%
13 0 0.00% 186 0.01%

Average overhead 9.24 9.69

Table 4.6: Number of layouts with a specific address-computation overhead, for the
GOA and CGOA solution spaces, for the latnrm_ptr-swp benchmark kernel.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

higher overhead can negate the benefits of using dual-operand instructions, a net im­

provement in overhead is still expected by using dual-operand instructions instead

of the traditional register-memory instructions. In all kernels, using dual operand

instructions increases the worst-case overhead; however, using dual operand in­

structions still reduces the overall number of instructions. For example, in four of

the kernels, using dual-operand instructions to access the C-GOA access sequence

can require up to 13 cycles of overhead, while using single-operand instructions

to access the GOA access sequence requires no more than 10 cycles of overhead.

However, all of the kernels have 6 dual-operand accesses (see Table 4.1), thus, there

are 6 fewer instructions to encode when using the C-GOA access sequence.

4.3 Instruction-Scheduling Solution Space

In order to understand how instruction scheduling affects overhead, the solution

space of two kernels were examined. The methodology for examining the solution

space is shown in Figure 4.1. Two kernels are selected and compiled with -0 2

optimization in g c c . Before the compiler’s register allocation phase, a DDG of the

most frequently executed basic block is extracted. All possible schedules for the

DDG are found using a listing algorithm [10]. As mentioned in Section 2.3, each

instruction in a schedule of three-address codes can potentially double the number

of possible access sequences. If there are n instructions that use a commutable oper­

ator on two variables in memory, then there are 2n possible GOA access sequences

for each possible schedule. Conversely, a schedule of three-address codes precisely

translates to a single augmented access sequence, and hence, a single C-GOA prob­

lem instance. To keep the computational requirements of this experiment feasible,

only the C-GOA problem space is examined. Thus, for this section, schedules and

access sequences can be used interchangeably. For each access sequence, all possi­

ble memory layouts are found and the overhead is computed. The final result of the

experiment is a distribution of possible overhead values for each access sequence.

In the rest of this thesis, an access sequence S is said to “admit” an overhead of

c cycles, if there exists a memory layout with c cycles of overhead when optimal

45

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Number of Number of Layouts per Range of
kernel Instructions Schedules Schedule Overheads
iir_arr 11 864 20,160 4-9
latnrm_ptr 14 3120 1,814,400 5-13

Table 4.7: Scheduling statistics for two benchmark kernels

addressing code is generated.

The two DDGs used in the experiments are presented in Table 4.7. Due to

the large number of access sequences evaluated, it is impractical to present the

distribution of overhead values for each sequence; however, the distributions can be

summarized quite succinctly. In the iir^arr benchmark, all access sequences admit

overheads between 5 and 9 cycles. Additionally, 540 out of 864 sequences also

admit the minimum overhead of 4 cycles. In the latnrm_ptr kernel, all sequences

admit overheads between 6 and 13 cycles, and 19 out of 3120 sequences admit the

minimum overhead of 5 cycles. That is, for the two kernels examined, all schedules

admit an overhead value that is within 1 cycle of the minimum possible overhead,

suggesting that the scheduling has a negligible impact on overhead.

To better understand how an access sequence affects overhead, metrics for eval­

uating the distribution of overheads are presented. Specifically, a method for classi­

fying desirable and undesirable access sequences is required. An access sequence

can be classified as undesirable in three ways:

• it has the highest average overhead value;

• it has the most number of layouts with the maximum overhead;

• it has the fewest number of layouts with the minimum overhead.

Similarly, a desirable access sequence can be identified in the following three ways:

• it has the lowest average overhead value;

• it has the most number of layouts with the minimum overhead;

• it has the fewest number of layouts with the maximum overhead.

46

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

£E

le+06

100000

10000

1000
100
10
I 1 I

8 9 10 11 12 13
Overhead (Cycles)

(a) Distribution with highest average over­
head

£e

le+06

100000

10000

1000
100
10
1 1

8 9 10 11 12 13
Overhead (Cycles)

(b) Distribution with most number o f high-
overhead layouts

£e

le+06

100000

10000

1000
100
10
1

10 11 12 13
Overhead (Cycles)

(c) Distribution with least number o f low-
overhead layouts

Figure 4.3: Distribution of overhead values produced by three C-GOA access se­
quences from the latnrm_ptr kernel that can be considered undesirable.

The distribution of overheads in three undesirable and three desirable access se­

quences for the latnrm_ptr kernel are shown in Figures 4.3 and 4.4 respectively.

The distribution of overheads between all of the layouts are very similar, indicating

that the difference between a desirable and undesirable sequence is negligible. Ad­

ditionally, many schedules can be classified in both categories. In particular, many

schedules that admit a high overhead for many layouts also admit a low overhead

for many other layouts. The difficulties in classifying access sequences as desirable

or undesirable further suggest that scheduling has a minimal impact on the final

overhead.

A complementary analysis of the schedules is to examine the impact of schedul-

47

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

le+06

100000

10000
1000
100
10
1

8 9 10 11 12 13
Overhead (Cycles)

le+06

100000

10000
1000
100
10
1

5 6 7 8 9 10 11 12 13
Overhead (Cycles)

(a) Distribution with lowest average over­
head

(b) Distribution with most number o f low-
overhead layouts

le+06

100000

10000

1000
100
10
1 1

10 II 12 13
Overhead (Cycles)

(c) Distribution with least number o f high-
overhead layouts

Figure 4.4: Distribution of overhead values produced by three C-GOA access se­
quences from the latnrm_ptr kernel that can be considered desirable.

48

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

ing for a fixed memory layout. For each memory layout M , the overhead of access­

ing M using all valid access sequences is recorded. For the iir^arr benchmark, there

are over 20,000 distributions of overhead values to examine. For the latnrm_ptr

benchmark, there are over 1.8 million distributions to examine. Thus, it is im­

practical to present all distributions; however, Figure 4.5 presents the number of

layouts that have a particular range of overhead values. For example, in the iir_arr

benchmark (shown in Figure 4.5(a)), over 10,000 memory layouts (out of a possible

20.160 layouts) have a range of one overhead; that is, the overhead for each of the

10,000 layouts has a fixed overhead value regardless of the schedule used to access

the layout. Thus, a memory layout that is optimal for any particular access sequence

is optimal or near-optimal for all other valid access sequences for the given DDG.

The range of overhead values for different memory layouts in the latnrm_ptr

benchmark is presented in Figure 4.5(b). Due to technical limitations, it is not

easy to obtain and summarize 1.8 million distributions of overhead values. Instead,

20.160 memory layouts were randomly selected and their range of overheads were

obtained. Unlike the iir_arr benchmark, there are memory layouts that are heavily

influenced by scheduling. There exist memory layouts where changing the schedule

affects overhead by up to 7 cycles, while the entire solution space has a range of

8 cycles. However, the overhead for a majority of layouts is less influenced by

overhead. In 89% of the layouts examined, scheduling can only affect the overhead

of any particular layout by, at most, 4 cycles.

The conclusion from these analyses is that scheduling has a less significant im­

pact on overhead than offset assignment. In particular, if an optimal offset assign­

ment can be found for any given schedule, an improved schedule can only reduce

overhead by, at most, one additional cycle.

4.4 Features

After evaluating the overhead for all memory layouts for a fixed access sequence,

the data can be used to attempt to characterize the solution space. In particular, iden­

tifying features in the access graph and memory layout that correlate to overhead

49

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

I
1000

1 2 3 4
Range of Overhead

(a) Distribution o f overhead ranges for
iir_arr

10000

1000

I I
1 2 3 4 5 6 7

Range of Overhead

(b) Distribution o f overhead ranges for lat-
nrm_ptr

Figure 4.5: Frequency of layouts that have a specified range of possible overhead
values.

values may assist in producing a heuristic to generate a memory layout with low

overhead quickly. A feature / defines a function 4>f, that maps an access sequence

S and memory layout M to a single value. Ideally, a feature is computationally

inexpensive to compute and is used to guide a compiler’s search for an optimal

memory layout. Algorithm 3 shows a simple method to record the correlation be­

tween features and overhead. Given a fixed access sequence, every memory layout

is evaluated using two metrics:

1. the overhead is computed using the minimum-cost flow technique;

2. the expressiveness of a feature / is computed using the function 0 /.

The two values are used to index into a matrix to increase a counter. After all mem­

ory layouts are evaluated, the matrix reveals the number of layouts for each pos­

sible feature-overhead value-pair. The amount of correlation between feature and

overhead values can help characterize the solution space for the offset assignment

problem, and identify possible ways to find low-overhead memory layouts.

The rest of this section will present several different features, and the motivation

for evaluating each feature. The feature and overhead values for each of the the five

C-GOA access sequences shown in Table 4.1 are evaluated to look for correlations.

50

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Algorithm 3 Feature-Search Framework
Input: AccessSequence S
Integer x,y
Integer[][] count
for each memory layout M do

x <— overhead(S, M)
y <— feature(S, M)
count[x,y]++

end for

4.4.1 Transition Count

For each pair of adjacent variables in M , the transitions feature measures the num­

ber of times an address register would have to move between two memory locations.

The algorithm for measuring transitions is given in Algorithm 4. A high number

of transitions is expected to be detrimental to overhead values because an address

register may have to move between two memory locations often, thus reducing the

opportunities for the address register to access other variables.

Algorithm 4 Transitions
Input: AccessSequence S, MemoryLayout M
AccessSequence S’
Integer T <— 0
for each pair of adjacent variables u,v in M do

S’ <— S composed with only u and v
T <— T + number of times ‘u v ’ or ‘v u ’ occurs in S’

end for
return total

4.4.2 Path Weight

The traditional approaches for generating memory layouts rely on finding path cov­

ers on an access graph. The path-weight feature measures the weight of a path

(representing a given memory layout) in the access graph. Algorithm 5 is used to

measure this feature. If this feature was evaluated on SOA problem instances, there

would be a perfect correlation between the weight of the path cover and the over­

head of a layout, as the SOA problem has been reduced to the maximum-weight

path cover problem [18]. However, the usefulness of this feature for finding general

51

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

offset assignments is unclear because the GOA and C-GOA problems cannot be

reduced to the maximum-weight path cover problem,

Algorithm 5 Path Weight
Input: AccessSequence S, MemoryLayout M
AccessGraph G <— AccessGraph(S)
Integer T <— 0
for each pair of adjacent variables u,v in M do

T <— T + weight of (u,v) in G
end for
return T

4.4.3 Distance Measurement

The distance feature measures the number of words between two consecutively

accessed memory locations. That is, for each consecutive pair of accesses x and

y in the access sequence, the distance is the number of words between x and y in

memory. Algorithm 6 is used to measure distance. Although the overhead incurred

by accessing two non-adjacent variables is fixed, regardless of distance, smaller

jump distance can potentially keep an address register pointing to a more confined

region of memory. Memory layouts with more spatial locality can potentially have

lower overhead values.

Algorithm 6 Distance Measurement
Input: AccessSequence S, MemoryLayout M
Integer T <— 0
for each pair of consecutive variables u,v in S do

T <— T + distance(u,v) in M
end for
return T

4.4.4 Interleavings

Given two variables in an access sequence, there are many possible interleavings

of accesses to the two variables. The interleavings feature reveals which types

of interleavings of accesses are prevalent between pairs of adjacent variables in

52

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

memory. Given two variables in memory, x and y, three types of variable access

interleavings are identified:

• No interleavings. Accesses to one variable are not interleaved with accesses

to another. That is, multiple consecutive accesses to one variable occurs be­

fore any accesses to the second variable, i.e. the access sequence contains the

pattern ‘x x y y ’.

• Full interleavings. One variable is accessed multiple times between two

accesses of another variable, i.e. the access sequence contains the pattern

‘x y y x \

• Partial interleavings. Accesses alternate between the two variables under con­

sideration, i.e. the access sequence contains the pattern ‘x y x y ’.

Note that pairs of variables are not restricted to one classification of interleavings;

if both variables are accessed many times, multiple types of interleavings may ap­

pear several times. This feature is similar to counting transitions', no interleavings

(one transition) is preferred over full interleavings (two transitions), and both are

preferred over partial interleavings (three transitions). The advantage of using the

interleavings feature over transitions is the ability to differentiate between specific

types of variable access interleavings. The general methodology for identifying

interleavings is presented in Algorithm 7.

4.4.5 Live Ranges

A generalization of the interleavings feature is to categorize two variables x and y

based on interference between their live ranges. Let birth(x) represent the point in

the access sequence when x is defined; let death(x) represent the last use of x in

the access sequence; and let e\ < e2 denote an ordering of events where event ex

occurs before event e2. Similar to the interleavings feature, the interference of live

ranges for two variables can fall into three categories.

• No Interference. No live-range interference occurs if x and y are never live

simultaneously, i.e. the order of births and deaths for x and y is birth(x) <

death(x) < b irth(y) < death{y).

53

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Algorithm 7 Interleavings
Input: AccessSequence S, MemoryLayout M
Integer N,F,P <— 0
AccessSequence S’,S”
for each pair of adjacent variables u,v in M do

S’ <— S composed with only u and v
for each occurrence of ‘u u v v ’ in S’ do

N <— N + 1
end for
for each occurrence of ‘u v v u ’ in S’ do

F <— F + 1
end for
for each occurrence of ‘u v u v ’ in S ’ do

P ^ - P + 1
end for

end for
return N,F,P

• Full Interference. The live-range of one variable occurs within the live-

range of another variable, i.e. the order of births and deaths is birth(x) <

birth (y) < death(y) < death(x).

• Partial Interference. The live-range of the two variables partially overlap.

That is, one variable’s birth, but not its death, occurs during the live-range

of another, i.e. the order of events is b irth (x) < birth(y) < death(x) <

death(y).

In access sequences where variables and defined and used exactly once, the live-

range feature is equivalent to the interleavings feature. As such, layouts with higher

occurrences of non-interfering live-ranges are expected to have lower overhead val­

ues. Algorithm 8 is used to empirically evaluate the live-range feature.

4.4.6 Conflicts

The last feature examined in this thesis is only applicable to C-GOA problem in­

stances. Recall from Section 3.3 that two variables are conflicting if they are ac­

cessed simultaneously in an instruction and cannot be accessed by the same address

register. The conflict feature reveals the number of times two adjacent variables in

54

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Algorithm 8 Live Ranges
Input: AccessSequence S, MemoryLayout M
Integer N,F,P <— 0
for each pair of adjacent variables u,v in M do

if birth(u) < death(u) < birth(v) < death(v) then
N <— N + 1

end if
if birth(u) < birth(v) < death(v) < death(u) then

F <— F + 1
end if
if birth(u) < birth(v) < death(u) < death(v) then

P ^ - P + 1
end if

end for
return N,F,P

memory are accessed simultaneously in the access sequence. The function used

to evaluate the conflict feature is shown in Algorithm 9. Two variables accessed

simultaneously likely do not need to be adjacent in memory because the two vari­

ables must be accessed by two separate address registers at some point in the access

sequence. Thus, layouts with low overhead are expected to have fewer pairs of

adjacent variables that are accessed in simultaneously.

Algorithm 9 Conflicts
Input: AccessSequence S, MemoryLayout M
Integer T <— 0
for each pair of adjacent variables u,v in M do

T <— T + no. of times u and v accessed in parallel in S
end for
return T

4.4.7 Evaluating Features

All of the features presented are evaluated for each of the C-GOA problem instances

in Table 4.1. For each access sequence, the overhead value was plotted against the

feature value, as shown in Algorithm 3. Examples of these plots can be seen in

Figures 4.6 and 4.8. Fifty matrices were generated because each of the five access

sequences has ten features to correlate with the overhead.

55

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

For readability, the number of layouts in each cell have been converted to a

percentage of the total number of layouts. For example, when reading the plot for

the path weights feature for the iir_arr_swp kernel in Figure 4.6, row 11, column

4 has the value 12. This means that 12% of all memory layouts have an overhead

of 11 cycles and a path weight of 4. Entries with ’O’ mean that less than 1% of

layouts satisfy an [overhead,feature] value-pair; entries with have zero layouts

satisfying the value-pair. For features with larger matrices, a graphical version (such

as Figure 4.8) is easier to read. White represents zero layouts, and darker shades of

gray represent higher percentages of layouts satisfying a value-pair.

An ideal feature is one that has perfect correlation with overhead values. That

is, all layouts that fully express some feature have a very low overhead value. Con­

versely, all layouts with very low overhead values have high feature values. Thus,

ideal plots of the correlation matrices will form lines with a defined, non-zero slope.

Non-useful features will have a wide range of overhead values that overlap for each

value of a feature.

Unfortunately, none of the features examined have a perfect (or even strong)

correlation to overhead values. Figure 4.6 shows the correlation between overhead

and path weights for the iir_arr_swp kernel. Layouts with low path weights gener­

ally have a lower range of overhead values than layouts with a high path weight. For

example, layouts with a path weight of 1 have overhead values between 8 and 15

(maximum) cycles, while layouts with path weight of 10 have overhead values be­

tween 6 (minimum) and 13 cycles. Although there is a general trend, the wide range

of possible overhead values for a particular path weight means that this feature can­

not be used to accurately predict a layout’s overhead. Also notice that layouts with

the minimum overhead (6 cycles) do not have the maximum path weight (12), fur­

ther indicating that generating a memory layout by maximizing the path weight of

an access graph cover is not optimal.

Another feature with a weak correlation is the conflicts feature. Figure 4.7

shows the relationship between overhead values and conflicts for the iir^arr_swp

kernel. Layouts with the minimum overhead have a low, but not necessarily min­

imal, number of adjacent variables that are accessed simultaneously. Additionally,

56

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

15 0 0 0 0 0 0 IS 0 0 0 0
14 | 0 0 0 0 0 0 0 0 0 14 0 0 0 0 0 0
13 I 0 0 0 0 0 0 0 0 0 0 0 13 0 1 0 0 0 0
12 j 0 0 2 5 5 4 1 0 0 0 0 0 12 3 8 6 2 0 0 0
U 1 0 0 3 8 12 11 8 2 0 0 0 0 0 11 IS 19 8 1 0 0 0
10 | 0 0 0 2 5 6 5 2 1 0 0 0 0 10 11 9 2 0 0 0

t> 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 o 9 2 1 0 0 0 0
15 0 1 0 0 0 0 0 0 0 0 0 0 0 0 13 8 0 0 0 0 0
U ^ 1 . 0 0 0 0 0 0 0 0 o 7 0 0 0
TJ«g 5 1 0 0 0 3 e 0 0«
JZ 5 V

JZ 5
e> 4 e> 4
O 3 o 3

3 2
1 1
0 1 0

0 1 2 3 4 5 6 7 8 9 10 11 12

P a th W e ig h t

Figure 4.6: Overhead vs Path
Weight for iir_arr_swp

Transitions

Figure 4.8: Overhead vs Tran­
sitions for iir_arr_swp

0 1 2 3 4 S 6

C o n flic ts

Figure 4.7: Overhead vs Con­
flicts for iir_arr_swp

max

"ST©-C
o

1
1IlllilH ©
o

0
Distance

Figure 4.9: Overhead vs Dis­
tance for iir_arr_swp

minimizing the number of adjacent variables that are accessed simultaneously does

not guarantee a minimum overhead. This result agrees with the original hypothe­

sis that variables accessed simultaneously do not need to be adjacent in memory;

however, generating a memory layout using this feature alone does not minimize

overhead.

Two other features of the iir_arr_swp kernel, transitions and distance, are shown

graphically in Figures 4.8 and 4.9. All other features evaluated for all of the kernels

exhibit similarly shaped plots. The plots indicate that the features have very little

correlation to overhead values. In all cases, optimal layouts express feature values

that are also found in a large number of non-optimal memory layouts. In some

cases, the feature value is exhibited in layouts with the maximum overhead as well.

A common trend observed is that layouts that exhibit a maximum or minimum

57

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

feature value usually have a small range of overhead values that are neither max­

imum or minimum. Thus, for these test cases, finding a layout that maximizes or

minimizes a particular feature does not give a good indication to the actual overhead

of the layout. More specifically, the experiments indicate that it is not possible to

generate layouts with minimum overhead simply by minimizing or maximizing the

features presented in this thesis.

4.5 Summary

The exhaustive evaluation of the search space for several test cases show that the

offset assignment problem still has a significant impact on address-computation

overhead. Surprisingly, the results also suggest that access-sequence generation

has a very insignificant impact on overhead. For the test cases examined, there al­

ways exists a memory layout with an overhead within one cycle of the minimum

overhead, for all valid access sequences. Additionally, the solution space of the

offst assignment problem is difficult to characterize. Ten different features of mem­

ory layouts were evaluated; however, none of the features had any correlation to

overhead values.

The exhaustive evaluation of the offset assignment search space also reveals the

minimum and maximum overhead values possible. This data enables us to evaluate

the efficiency of current offset assignment algorithms.

58

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Chapter 5

Evaluating Offset Assignment
Algorithms

The results of the exhaustive evaluation of the search space from Chapter 4 re­

veals that address-computation overhead is best addressed through offset assign­

ment. Although many algorithms have been proposed (see Sections 2.1 and 2.2),

the generated memory layouts have never been evaluated using optimal address-

code generation. Additionally, using the network-flow techniques to evaluate over­

head introduces a new problem, the memory layout permutations problem, which

has never been considered. This chapter presents an empirical evaluation of avail­

able heuristics for offset assignment and presents the impact of the MLP problem.

The results of these experiments support the following conclusions:

• Current offset assignment algorithms seldom produce memory sub-layouts

that admit MLP solutions with the minimum possible overhead. For some

access sequences, none of the algorithms produce sub-layouts that can form

an optimal solution.

• Using different ARA algorithms greatly impacts the quantity and quality of

memory layout permutations. Conversely, using different SOA algorithms

has little impact.

59

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

5.1 Experimental Methodology

Figure 5.1 outlines the experimental methodology to evaluate current offset assign­

ment algorithms. Each of the five benchmark kernels in Table 4.1 is compiled

with g c c and -0 2 optimizations to obtain five access sequences. For each ac­

cess sequence, heuristic solutions to the offset assignment problem are found by

using all combinations of three ARA and five SOA algorithms presented in Sec­

tions 2.2 and 2.1 respectively. Each combination produces a set of memory sub­

layouts (see Figure 3.1). Recall that if m sub-layouts are produced, then there are

p = possible memory layouts. The overhead of each memory layout is

computed using the minimum-cost flow technique (see Section 3.2). The results

of this empirical evaluation are examined in terms of the distribution of overhead

values for the layouts produced by each combination of ARA and SOA algorithms.

5.2 Efficiency of Offset Assignment Algorithms

Table 5.1 shows a summary of the address-computation overhead for all memory

layouts evaluated in this study. The Exhaustive column shows the number of mem­

ory layouts with a particular overhead in the solution space for each GOA problem.

The average overhead of all layouts in each GOA problem ranges from 49% to 75%

higher than minimum. Additionally, at least 98% of all layouts have an overhead

33% to 100% higher than minimum. Thus, even when the MCC technique is used

to find optimal addressing code, the selection of memory layout has a significant

impact on address-computation overhead.

The Algorithmic column of Table 5.1 shows the combined distribution and aver­

age address-computation overhead for memory layouts produced by all 15 combi­

nations of the ARA and SOA algorithms. The distribution of the overheads obtained

using the heuristic-based algorithms presented in Sections 2.2 and 2.1 indicates that,

in general, the algorithms are not very effective at minimizing overhead. The av­

erage overhead of layouts produced by the algorithms for each access sequence

ranges from 40% to 60% higher than minimum and is only slightly lower than the

average overhead of all layouts in the solution space. Moreover, the layouts formed

60

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Access Sequence

Address Register
Assignm entSuginoLeu pens Zhuang

Disjoint
Access S equences

Simple Offset
Assignm entLiao Leupers ALOMA Branch & BoundOFU

"m" Disjoint
Memory Sub-Layouts

Memory Layout Perm utations

"p" Possible
Memory Layouts

Com pute O verhead
for each Layout via

Minimum Cost Circulation

Distribution of O verhead
Values

Figure 5.1: Procedure for evaluating offset assignment algorithms. There are 15
paths in the chart, for the 15 combinations of ARA and SOA algorithms.

61

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithou t p erm issio n .

by combining sub-layouts produced by these heuristic-based algorithms have over­

heads that can range from the best (minimum) to worst (maximum) possible values

in the entire solution space.

5.3 Efficiency of ARA Algorithms

Each of the three ARA algorithms — Leupers, Sugino, and Zhuang — can be com­

bined with five SOA algorithms (Figure 5.1) to produce a memory layout. All of the

layouts produced by an ARA algorithm are combined into a set. The distribution

of overhead values for the possible layouts produced by each ARA algorithm are

shown in Figure 5.2. For instance, Figure 5.2(a) shows that Leupers’ ARA algo­

rithm can admit over 100 layouts with 6 cycles of overhead and 5 layouts with 5

cycles of overhead. Each of these layouts are obtained by using different SOA and

MLP solutions, but all use Leupers’ ARA algorithm.

For each access sequence, the total number of layouts varies between each ARA

algorithm because each algorithm may use a different number of ARs, yielding a

different number of permutations (see Section 3.1). Figure 5.2 indicates that ARA

algorithms producing fewer layouts, such as Sugino’s, tend to produce better lay­

outs. This result indicates that it is frequently disadvantageous to use all available

ARs. For instance, in Figure 5.2(b), Leupers and Marwedel’s ARA algorithm yields

a total of 9600 possible layouts, 2 of which have a 7-cycle overhead. Alternatively,

the ARA algorithm proposed by Sugino et al. generates a total of 2688 possible

layouts, with 61 7-cycle-overhead layouts. Similar distributions occur for the other

access sequences.

The results also suggest that locally optimal sub-layouts do not lead to glob­

ally optimal memory layouts. An ARA algorithm using more ARs assigns fewer

variables to each register. In the case of Leupers and Marwedel’s algorithm, and

occasionally Zhuang’s algorithm, as few as two variables may be assigned to an

AR. Two variables can be trivially accessed without incurring JUMP overhead and

are locally optimal. However, if the two variables are not adjacent in the optimal

memory layouts, then the MLP solution space will never contain an optimal layout.

62

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Exhaustive Algorithmic
Access overhead Number of % o f Number of % o f
Sequence (cycles) Layouts Layouts Layouts Layouts

4 5 0.02% 0 0.00%
5 281 1.39% 125 34.72%

iir_arr 6 5707 28.31% 235 65.28%
7 10526 52.21% 0 0.00%
8 3641 18.06% 0 0.00%

Average overhead 6.87 5.65
6 144 0.00% 0 0.00%
7 19557 0.01% 72 0.33%
8 1514917 0.63% 2240 10.23%

iir_arr_swp 9 21757157 9.08% 6515 29.77%
10 90478895 37.78% 10496 47.95%
11 104101226 43.47% 2565 11.72%
12 21628904 9.03% 0 0.00%

Average overhead 10.51 9.6()
6 323 0.02% 117 0.60%
7 10785 0.59% 303 1.55%

latnrm_arr_swp 8 253379 13.96% 7067 36.26%
9 918134 50.60% 8198 42.07%

10 631779 34.82% 3803 19.51%
Average overhead 9.2() oo 3

6 1449 0.08% 28 0.21%
7 29682 1.64% 481 3.68%

latnrm_ptr 8 456647 25.17% 6093 46.58%
9 929244 51.21% 6268 47.92%

10 397378 21.90% 210 1.61%
Average overhead 8.93 8.47

6 323 0.02% 5 0.04%
7 7706 0.42% 138 1.04%

latnrm_ptr_swp 8 225109 12.41% 3734 28.19%
9 905303 49.90% 5881 44.39%

10 675959 37.26% 3490 26.34%
Average overhead 9.24 8.96

Table 5.1: Number of layouts with a specific address-computation overhead, for the
entire solution space. The Exhaustive column shows distribution of memory layouts
in the solution space. The Algorithmic column shows the combined distribution of
layouts produced by the 15 different ARA and SOA combinations.

63

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

1000
L e u p e r s i . i

S u g in o G333E3
Z h u a n g tS&SS&S

100

©
i
E
3

Z

5 6 7 84

10000
L e u p e r s CH
S u g in o K ?

Z h u a n g SB?

1000

>»

100

6 7 8 9 10 11 12

O v e r h e a d (C y c le s) O v e rh e a d (C y c le s)

(a) iir_arr (b) iir_arr_swp

10000
L e u p e r s i. . i

S u g in o KST£S53
Z h u a n g KSSSSiK:

1000

100

10

9 106 7 8 11

10000
L e u p e r s l . i

S u g in o K JffiSa
Z h u a n g KSSSSKi

1000

100

6 6 7 8 9 10

O v e rh e a d (C y c le s) O v e rh e a d (C y c le s)

(c) latnrm_arr_swp (d) latnrm_ptr

10000
L e u p e r s i i

S u g in o ESTuSEJ
Z h u a n g ssfflsms

1000

100

10

m .i
6 7 8 9 10

O v e rh e a d (C y c le s)

(e) latnrm_ptr-swp

Figure 5.2: Distribution of overhead values produced by each ARA algorithm on
different test cases. The number of layouts shown for each algorithm is the union
of 5 sets of layouts, each produced with one of the 5 different SOA algorithms, but
using the same ARA algorithm. The layouts are plotted against the full range of
overhead values obtained by exhaustive search.

64

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

No. of Memory Layouts
Access overhead
Sequence (cycles) Leupers Sugino Zhuang

iir_arr 4 0 0 0
5 5 0 120
6 115 120 0
7 0 0 0
8 0 0 0

Average overhead 5.96 6.00 5.00
6 0 0 0
7 2 61 9

iir_arr_swp 8 204 1483 553
9 2089 1018 3408

10 4740 126 5630
11 2565 0 0
12 0 0 0

Average overhead 10.01 8.45 9.53
6 5 112 0
7 205 80 18

latnrm_arr_swp 8 2455 96 4516
9 4990 0 3208

10 1945 0 1858
Average overhead 8.90 6.94 8.72

6 0 24 4
7 220 198 63

latnrm_ptr 8 4350 850 893
9 5030 1238 0

10 0 210 0
Average overhead 8.50 8.56 7.93

6 0 5 0
7 15 115 8

latnrm_ptr_swp 8 1230 840 1664
9 4865 0 1016

10 3490 0 0
Average overhead 9.23 7.87 8.38

Table 5.2: Number of memory layouts produced by each ARA algorithm, with the
specified overhead. Each column is the combined distribution of 5 sets of layouts,
each produced with 5 different SOA algorithms, but using the same ARA algo­
rithm. The layouts are plotted against the full range of overhead values obtained by
exhaustive search.

65

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

5.4 Efficiency of SOA Algorithms

The distributions in Figure 5.3 are complementary to those in Figure 5.2, but fo­

cused on the layouts produced by each of the five SOA algorithms. For instance,

Figure 5.3(b) shows that the SOA algorithm designed by Sugino et al. can admit

over 1000 layouts with 9 cycles of overhead. Each of these layouts are obtained by

combining Sugino et al. ’s ARA algorithm with one of the three SOA algorithms.

SOA algorithms are used to estimate increases in overhead when variables are

assigned to ARs; which, in turn, affects the number of sub-layouts produced by the

ARA algorithms. Consequently, the total number of layouts varies between each

SOA algorithm for each access sequence in Figure 5.3. Low variability between the

algorithms can be partly attributed to the problem sizes. The access sequences only

access 8 to 12 variables, and the ARA algorithms assign at most 6 variables to each

address register. Thus, each SOA sub-problem is very small and the algorithms

are likely to produce similar, and possibly optimal, sub-layouts. Specifically, no

SOA algorithm consistently produces sub-layouts that admit the greatest number of

optimal or near-optimal layouts. In two access sequences, OFU admits the most

number of low-overhead layouts, while in one other sequence, Sugino et al. ’s SOA

algorithm admits the most number of optimal layouts.

Figure 5.3 also further supports previous suggestions that combining optimal

sub-layouts does not result in optimal layouts. For instance, in Figure 5.3(e),

the OFU algorithm generates sub-layouts that can be combined to form optimal

memory layouts, while the Branch-and-Bound algorithm, which finds optimal sub­

layouts, does not allow for the creation of any optimal memory layouts.

5.5 Summary

The results presented in this chapter indicate that current offset assignment algo­

rithms are not effective at minimizing address-computation overhead. For the ac­

cess sequences evaluated, changing the ARA and SOA algorithm does not make

a significant impact on overhead. Furthermore, in order for current algorithms to

consistently generate low-overhead memory layouts, the Memory Layout Permuta-

66

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

100
Liao i .

Leupers k ss s
Sugino ss3SS

bnb a m
OFU BS5S3o

n
0
1
Ea
Z

6 7 104 5 8

10000
Liao i . i

Leupers G5S3333
Sugino SSSSSKS

bnb
OFU K SSS3

1000

100

6 97 8 10 11

Overhead (Cycles) Overhead (Cycles)

(a) iir_arr (b) iir_arr_swp

10000
Liao i_____

Leupers K2232
Sugino sssssss

bnb h h
OFU KSSSS

1000

100

10

6 7 8 9 10 11

10000
Liao i i

Leupers k s s x i
Sugino RSSKSS

bnb
OFU CS5SSJ

1000

100

6 7 8 9 10 11

Overhead (Cycles) Overhead (Cycles)

(c) latnrm_arr-swp (d) latnrm_ptr

10000
Liao t i

Leupers GC3353
Sugino S33SSS2S

bnb
OFU tSSSSSJ

100

10

1
6 8 9 107

Overhead (Cycles)

(e) latnrm_ptr_swp

Figure 5.3: Distribution of overhead values produced by each SOA algorithm on
different test cases. The number of layouts shown for each algorithm is the union
of 3 sets of layouts, each produced with one of the 3 different ARA algorithms, but
using the same SOA algorithm. The layouts are plotted against the full range of
overhead values obtained by exhaustive search.

67

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

No. of Memory Layouts
Access overhead
Sequence (cycles) Liao Leupers Sugino B&B OFU

4 0 0 0 0 0nr_arr
5 25 25 25 25 25
6 47 47 47 47 47
7 0 0 0 0 0
8 0 0 0 0 0

Average overhead 5.65 5.65 5.65 5.65 5.65
6 0 0 0 0 0
7 6 6 10 6 44

iir_arr_swp 8 293 293 357 293 1004
9 960 960 1187 960 2448

10 2154 2154 2124 2154 1910
11 619 619 354 619 354

Average overhead 9.77 9.77 9.61 9.77 9.26
6 25 25 25 25 17
7 45 45 45 45 123

latnrm_arr_swp 8 1523 1523 1523 1523 975
9 1598 1598 1598 1598 1806

10 673 673 673 673 1111
Average overhead 8.74 8.74 8.74 8.74 8.96

6 1 1 25 1 0
7 124 110 54 110 83

latnrm_ptr 8 1173 1187 1051 1187 1495
9 1006 1006 1006 1006 2244

10 0 0 0 0 210
Average overhead 8.38 8.39 8.42 8.39 8.64

6 0 0 0 0 5
7 28 28 28 28 26

latnrm_ptr_swp 8 605 605 605 605 1314
9 973 973 973 973 1989

10 698 698 698 698 698
Average overhead 9.02 9.02 9.02 9.02 8.83

Table 5.3: Number of memory layouts, produced by each SOA algorithm, with the
specified overhead. Each column is the combined distribution of 3 sets of layouts,
each produced with 3 different ARA algorithms, but using the same SOA algo­
rithm. The layouts are plotted against the full range of overhead values obtained by
exhaustive search.

68

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

tions problem must be addressed. Most importantly, the experiments show that even

if the MLP problem can be solved, the traditional approach to generating memory

layouts is not sufficient to find optimal memory layouts. Thus, alternative methods

to generating memory layouts should be explored.

69

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Chapter 6

Evaluating Alternative Algorithms

Current offset assignment algorithms are ineffective at minimizing overhead. It

may be possible to improve current algorithms if the MLP problem can be ad­

dressed. However, as stated in Section 3.1, the MLP problem can be reduced to

the GOA problem, and any algorithm used to solve the MLP problem can be used

to directly solve the GOA problem itself. Due to the complex relation between

offset assignment, address-code generation, and overhead, the real GOA problem

is largely unsolved. In this chapter, alternative approaches and algorithms are pre­

sented. All of the approaches attempt to generate a memory layout with the consid­

eration for the layout’s overhead value as computed by the network-flow techniques.

Section 6.1 presents a best-first search approach to finding a memory layout; Sec­

tion 6.2 presents an algorithm that iteratively builds a memory layout using a greedy

heuristic; and the last algorithm, presented in Section 6.3, uses a path cover on an

Augmented Interference Graph. An experimental evaluation of the three approaches

reveals that the simple, greedy-based algorithm consistently produces layouts with

below-average overheads without excessive computations.

6.1 Best-First Search

One method of generating a memory layout is to systematically search the solution

space by evaluating one layout at a time. Algorithm 10 describes a best-first search

(BFS) algorithm used to find low-overhead memory layouts as well as to explore

the topology of the offset-assignment solution space. During each iteration of the

70

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

search, the layout L with the lowest known overhead is selected. Transformations

are applied to L to obtain a set of successor layouts. The overhead of each successor

layout is evaluated and added to the queue of layouts to be transformed in future

iterations of the algorithm.

Algorithm 10 Best-First Search
Input: AccessSequence S
Layout L,L’
PriorityQueue Q <— {}
Overhead M <— oo
while L <— Q.popO do

if L.overhead() > M then
return M

else
M <— L.overheadO

end if
while L’ <— L.successorO do

Q.push (L’)
end while

end while

In order to generate successor layouts, a transformation is required. The trans­

formation must be defined such that there is a series of transformations that can

transform any given layout into any other valid layout in the solution space. In par­

ticular, the transformation used in this thesis transforms a layout by moving a single

variable to any other valid position in the layout, as shown in Algorithm 11.

Algorithm 11 Transformation (Successor) Function
Input: Layout L
Layouts et S
Layout T1,T2
Variable V
for each V in L do

T1 <— L.remove(V)
for each position in T1 do

T2 <- Tl.insert(V)
S ^ T 2

end for
end for
return S

71

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

A potential problem with using best-first search to find a memory layout is the

problem of defining a terminating condition for the search. That is, during the

search, how is an optimal memory layout recognized? If the minimum overhead

value is somehow known in advance, then the search can simply terminate when a

layout with the minimum overhead value is found. Alternatively, if the minimum

overhead value is not known, then the search may only find layouts with locally

minimal overhead values, as shown in Algorithm 10. A locally minimal overhead

is identified during the search when the minimal overhead among all queued layouts

is larger than the lowest overhead value previously found.

Two sets of experiments are conducted to evaluate the efficiency of best-first

search — one where the minimum overhead value, found through exhaustive search,

is made known to the BFS algorithm, and one where the minimum overhead is not

made known. Each set of experiments is conducted on C-GOA and GOA problem

instances for the kernels described in Table 4.1. For each access sequence, 100

random initial layouts are generated, and 100 best-first searches are performed. To

ensure that the results can be attributed to the best-first search, the experiments are

compared to randomly generated layouts. Specifically, for each best-first search

that terminates after evaluating x number of layouts, two random searches are per­

formed. One random search determines the number of layouts evaluated before a

layout with the minimum overhead is found; a second random search determines

the lowest overhead found while evaluating x random layouts.

Tables 6.1 and 6.2 present the search results for the GOA and C-GOA problems,

respectively, where the minimum overhead value is known in advance. In these

experiments, BFS can identify an optimal layout by evaluating, on average, less

than 1% of the solution space. Additionally, over 94% of the optimal layouts are

found by a series of layouts that has monotonically decreasing overhead values.

This observation suggests that it is possible for locally minimal overhead values

to also be globally minimum, and that Algorithm 10 should be effective at finding

optimal or near-optimal memory layouts. As additional evidence that using best-

first search is effective, the BFS results are compared against a random search of the

solution space. If layouts are generated randomly, as much as 49% of the solution

72

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

GOA Access Minimum BFS Random Average
Sequence Overhead Expansions Expansions Random Overhead
iir_arr 4 1178 3,602 4.73
iir_arr_swp 6 4027 1,613,950 7.71
latnrm_arr_swp 6 521 6,371 6.89
latnrm_ptr 6 327 1,088 6.73
latnrm_ptr_swp 6 428 5,180 7.01

Table 6.1: Efficiency of best-first search and random search for GOA problems
where the minimum overhead values are known.

C-GOA Access Minimum BFS Random Average
Sequence Overhead Expansions Expansions Random Overhead
iir_arr 5 110 133 5.41
iir_arr_swp 6 3929 5,201,400 7.90
latnrm_arr_swp 6 2005 89,149 7.13
latnrm_ptr 6 463 3,819 6.91
latnrm_ptr_swp 6 9988 898,250 6.99

Table 6.2: Efficiency of best-first search and random search for C-GOA problems
where the minimum overhead value is known.

space needs to be evaluated before an optimal layout is identified. Similarly, if the

random search is restricted to evaluating the same number of layouts as BFS, the

average overhead of the best layout found is between 8.2% and 31.7% higher than

the minimum overhead.

Tables 6.3 and 6.4 present the search results for the GOA and C-GOA problems,

respectively, where the minimum overhead value is not known in advance, and

thus, the algorithm searches for layouts with locally minimal overheads. In six

of the access sequences, using best-first search to find locally minimal overhead

values often produced optimal layouts; however, the search is required to evaluate

more layouts that necessary in order to detect the locally minimal overhead. When

the local minima is also globally minimum, more layouts are evaluated because

the search must continue until the minimum value in the search queue increases.

Conversely, in the remaining four access sequences, using best-first search to find

layouts with locally minimal overheads requires evaluating few er layouts than the

searches executed when the minimum overhead value was already known. Fewer

layouts are evaluated because many layouts with locally minimal overheads are

73

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

GOA Access
Sequence

Average
Overhead

Average BFS
Expansions

Average
Random Overhead

iir_arr 4.06 1334 4.72
iir_arr_swp 6.17 3683 7.72
latnrm_arr_swp 6.01 1360 6.76
latnrm_ptr 6.00 5041 6.02
latnrm_ptr_swp 6.00 2284 6.63

Table 6.3: Efficiency of best-first search and random search for GOA problems
where the minimum overhead value is not known.

C-GOA Access
Sequence

Average
Overhead

Average BFS
Expansions

Average
Random Overhead

iir_arr 5.00 1131 5.00
iir_arr_swp 6.11 3673 7.90
latnrm_arr_swp 6.29 1428 7.31
latnrm_ptr 6.02 3737 6.36
latnrm_ptr_swp 6.54 3923 7.03

Table 6.4: Efficiency of best-first search and random search for C-GOA problems
where the minimum overhead value is not known.

not optimal layouts and simply require less effort to identify. However, this also

results in an increase in the average overhead of the layouts found. For comparison

purposes, if a random search is restricted to evaluating the same number of layouts

as BFS in these experiments, the average overhead of the best layout found is up to

25.1% higher than the minimum overhead.

The results of the best-first searches indicate that the transformation described

in Algorithm 11 describes a potentially viable search. The observation that Al­

gorithm 10 consistently evaluates fewer layouts and finds lower overheads than a

random search suggests that the search space has a topology that can be exploited.

Specifically, the search space contains locally optimal solutions that are often also

globally optimal or near-optimal. Although using BFS requires evaluating signifi­

cantly fewer layouts than an exhaustive search, the overhead for thousands of lay­

outs are still evaluated, which may not be practical for a compiler.

74

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

6.2 Greedy Construction

The results from the best-first search shows that many memory layouts can be im­

proved incrementally and greedily, to find a memory layout with an overhead within

one cycle of the minimum. Thus, it may be possible to also build a low-overhead

memory layout greedily. Let m be the number of variables currently in a memory

layout M . Let n be the number of variables in the access sequence S. A memory

layout can be built as shown in Algorithm 12. M is initially empty, and each iter­

ation of the algorithm selects a variable v that appears in S, but not in M . v can

be inserted in m + 1 locations in M . The overhead of inserting v at each location

is evaluated and the insertion with the lowest overhead is committed. The process

continues until all variables are inserted into M exactly once. There are m vari­

ables to be inserted, and each insertion requires up to m overhead evaluations, so

the algorithm has a running time of 0 (m 2).

Algorithm 12 Greedy Layout Construction
Input: AccessSequence S
Variable V
Memory Layout L,Ltemp,Lmin
Index I
for all V e S do

if L.contains (V) then
continue

end if
Lmin <- NULL
for 1 : 0 —► L.length() do

Ltemp <— L
Ltemp.insertAt (V, I)
if Ltemp.overhead() < Lmin.overhead() then

L m in«— Ltemp
end if

end for
L <— Lmin

end for
return L

As with many greedy algorithms, the problem with Algorithm 12 is that greedy

decisions are locally optimal and not necessarily globally optimal. For example,

75

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

Access
Sequence

Minimum Greedy
Overhead Overhead

iir_arr
iir_arr_swp
latnrm_arr_swp
latnrm_ptr
latnrm_ptr_swp

5 5
6 8
6 8
6 6
6 7

Table 6.5: Efficiency of the greedy algorithm for generating layouts for C-GOA
problems.

Access
Sequence

Minimum Greedy
Overhead Overhead

iir_arr
iir_arr_swp
latnrm_arr_swp
latnrm_ptr
latnrm_ptr_swp

4 5
6 9
6 7
6 6
6 6

Table 6.6: Efficiency of the greedy algorithm for generating layouts for GOA prob­
lems.

suppose the optimal layout does not have variable y between variables x and z. At

some point in the algorithm before y is inserted, the layout [x z] may have mini­

mal overhead. It is possible that inserting y to generate [x y z] also has a minimal

overhead at this point. However, regardless of how variables are subsequently in­

serted in the layout, the final layout will be sub-optimal because y appears between

x and z.

Regardless of the inherent drawbacks of a greedy algorithm, Algorithm 12 is

used to generate layouts for the access sequences in Table 4.1. The resulting layouts

have an overhead ranging from minimum to 50% higher than minimum, as shown

in Tables 6.5 and 6.6.

6.3 AIG Path Cover

Current algorithms used to reduce address-computation overhead fail to be effective

because they are designed using assumptions that are not true in the network-flow

models. In this section, a new algorithm and data structure are presented to generate

a memory layout. The algorithm and data structure are motivated by the network-

76

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

‘A B A C D C D E E E D E D ’

Figure 6.1: An access sequence.

flow graph presented in Section 3.2. A memory layout is built by finding a path

cover on a data structure called an Augmented Interference Graph (AIG), which

captures information about how pairs of variables are accessed in relation to one

another. For the rest of the section, the access sequence shown in Figure 6.1 will

be used to demonstrate how the AIG is constructed and used to generate a memory

layout.

6.3.1 Variable Access Patterns

Recall that in the network-flow graph, an edge represents the potential for an ad­

dress register to access two variables in memory. Every pair of variables in the

memory layouts has a set of directed edges between them in the network-flow graph

that dictate how a single address register would access the two variables. Four dif­

ferent patterns to access two variables are identified and used in the algorithm to

identify which pairs of variables should be adjacent in memory. Let x and y rep­

resent two variables in memory. The four classifications of access patterns to the

variables are:

• Strong pass-through (SP). All accesses to one variable occur before all ac­

cesses to the second variable, i.e. ‘x x y y ’. Such a sequence of accesses

allows an address register to “pass through” memory locations by performing

all required accesses to one location and then permanently moving to the next

memory location.

• Weak pass-through (WP). The lifetimes of two variables partially interfere

with each other; if one variable x is accessed first in the sequence, then the

other variable y is accessed last, i.e. ‘x y x y \

• Strong return (SR). All accesses to one variable occur between two consecu­

tive accesses to the second variable, i.e. ‘x y y x ’. In this access sequence,

77

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

an address register can access one variable in memory, move to another vari­

able, but eventually “return” to the original memory location.

• Weak return (WR). An access to one variable x is followed by accesses to

both variables x and y. Eventually, the address register accessing to the two

variables must return to, and access, x ,i .e .‘x y x y x \

The strong pass-through and strong return relationships are particularly inter­

esting. If multiple variables all have SP relationships with each other, then there is

an ordering of variables in memory that allows an address register to access all vari­

ables without incurring overhead. Moreover, if adjacent variables in memory have

an SP relationship, assumptions can be made about the pattern of accesses made

by an address register. In particular, an address register can access one variable,

continue to the next and never have to access the first variable again. Similarly,

if adjacent variables in memory have an SR relationship, the address register can

access one variable, move to the next, and will eventually access the first again.

6.3.2 Augmented Interference Graph

The relationships between all variables can be represented as an Augmented Inter­

ference Graph (AIG) G = (V. E). Each vertex in V represents a variable and each

directed edge (u , v) in E represents a pair of variables where u occurs before v in

the access sequence. Each edge is also augmented with type information (u , v) t

to denote one of the four identified relationships. Figure 6.2 shows an example of

an AIG for the access sequence shown in Figure 6.1. Each of the five variables

represent a vertex in the AIG. There are four types of edges representing the four

possible access patterns between each pair of variables.

Although any path in G can represent a memory layout, certain paths can repre­

sent variables accessed by a single address register without overhead. Specifically,

there are four types of paths that represent memory layouts that can be traversed in

memory in a predictable pattern:

• P-paths. Paths that are only composed of pass-through edges, with no two

consecutive edges being WP edges. An address register can access all vari-

78

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

=► Weak Pass-Through
" "► Strong Return
“ ̂ Weak Return

Strong Pass-Through

Figure 6.2: An Augmented Interference Graph (AIG) for the access sequence in
Figure 6.1.

ables in the path by making one sweep through the memory layout, using

only single-word post-increment (or post-decrement) addressing modes. An

example of a P-path, formed by ‘A C E \ is highlighted in Figure 6.3.

• R-paths. Paths that are only composed of SR edges. The last edge in the

path can be an edge of type WR. An address register can access all variables

in the path by stepping over the memory layout twice. Post-increment (or

post-decrement) addressing can be used to access the first half of all accesses

to each variable, followed by using post-decrement (or post-increment) ad­

dressing to access the second half of accesses to each variable. An example

of an R-path, formed by ‘A B’, is highlighted in Figure 6.4.

• PR-paths. Paths that are composed of a P-path appended with an R-path.

After an address register steps through a memory layout formed by a P-path,

the same register can be used to access a layout formed by an R-path. An

example of a PR-path is highlighted in Figure 6.5. Variables ‘A D’ form a

P-path and variables ‘D E’ form an R-path. The R-path is appended to the

end of the P-path to form the PR-path.

• PR’-paths. Paths that are composed of a P or PR path, sharing the same root

vertex with an R-path. After an address register accesses a memory layout

79

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Figure 6.3: A P-path is a directed path composed of pass-through edges.

 ► Strong Pass-Through
► Weak Pass-Through

 ► Strong Return
^ Weak Return

Figure 6.4: An R-path is a directed path composed of return edges.

formed by an R-path, the register will return to the first memory location

where it can begin accessing the memory layout formed by a P or PR-path.

An example of a PR’-path is highlighted in Figure 6.6. Variables ‘A E’ form

a P-path and variables ‘A B ’ form an R-path. Both paths start from the same

variable and are combined to form a PR’-path.

Additionally, when combining paths to form a PR-path or PR’-path, the newly

formed path must not have two incident edges that are both weak-type edges, such

as the p a th ‘C D E’.

In order to facilitate variables being accessed by two address registers, the con-

80

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Figure 6.5: A PR-path is a directed path composed of a P-path, followed by an
R-path.

— Strong Pass-Through
^ Weak Pass-Through
■ ♦ Strong Return
“ ̂ Weak Return

Figure 6.6: A PR’-path is composed of a PR-path and R-path, using the same root.

81

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

cept of splitting is introduced. A sequence of accesses to a variable can be concep­

tually divided such that the first half of accesses to a variable is performed through

one address register, while the second half of accesses can be performed by another.

As a result, all accesses to variable v, are replaced by two split-variables Vi and v2.

When generating an AIG, split-variables can be treated as regular variables; how­

ever, in order for an AIG path cover to represent a memory layout, the two halves of

a variable that has been split can only appear at the endpoint of two disjoint paths,

or only one of the two halves can be in a path cover.

Additionally, the AIG can accommodate C-GOA problem instances. In the C-

GOA problem, two variables cannot be accessed simultaneously by the same ad­

dress register. Two simultaneously accessed variables cannot appear in the same

path because each path in a AIG represents an access sequence for a single address

register. To ensure that two simultaneously accessed variables are not in the same

path, edges between simultaneously accessed variables are simply removed from

the AIG.

6.3.3 Minimum Path Cover for AIGs

A path in an AIG G represents a sequence of zero-overhead variable accesses by

a single address register, as well as a memory layout. Thus, one method to find

a memory layout with minimal overhead, is to find a minimum path cover on G.

That is, to find the minimum number of paths (as described in Sub-section 6.3.2)

that covers the vertices of G. In general, the minimum path cover problem is NP-

complete (as it is reducible to the Hamiltonian Path problem) [5]; however, the

problem is solvable in polynomial time for directed, acyclic graphs [5]. Unfortu­

nately, due to the additional constraints imposed by path types and split-variables,

traditional minimum path cover algorithms are not applicable to the AIG.

One algorithm to generate a path cover of G is to iteratively cover the vertices of

G using greedily selected paths, as presented in Algorithm 13. On each iteration of

the algorithm, the longest path (as defined by the rules in Sub-section 6.3.2) from a

given variable is found using a depth-first search. The order in which variables are

picked to start a path cover is based on the order the variables appear in the access

82

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

► Weak Pass-Through
Strong Return

' ^ Weak Return

> Strong Pass-Through

Figure 6.7: The longest path cover found for the given AIG.

sequence.

The algorithm used to find a path using depth-first searches is presented in Algo­

rithm 14. Given a variable v, the algorithm recursively finds and traverses all valid

outbound edges. When no more edges can be followed, the current path and its

length are noted. The algorithm returns the longest P-path found. A second version

of the algorithm identifies the longest R-path. The algorithm to find an R-path is

executed on two different starting variables: one execution of the algorithm is used

to find the longest R-path starting from v. The second execution finds the longest

R-path starting from the last variable in the P-path, to extend the P-path (forming a

PR-path). In Figure 6.2, the longest P-path, among others, is ‘A C E’; while the

longest R-path is ‘A B’.

After both paths are identified, they can be combined to form a single PR’-path

if they have only the variable v in common. Otherwise, the longer of the two paths

is selected to form a path cover. Figure 6.7 shows how the longest P-path (‘A C

E’) and longest R-path (‘A B’) can be combined to form a single path.

The algorithm continues to find longest paths and add them to the AIG path

cover until there are two or fewer unselected variables remaining. Two variables

can always be accessed by a single address register without jump overhead, but

using an additional address register requires initialization overhead. Instead, the

algorithm attempts to insert the remaining variables into existing path covers. For

83

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Algorithm 13 AIG Path Cover
Input: AccessSequence S, AIG G
Variable V
Path P,R
Cover C
for each V e S, V ^ C do

P <- AIG-DFS-P (G, V)
R <- AIG-DFS-R (G, P.LastVariable)
if P,R share exactly 1 variable then

P <— P U R
end if
R <- AIG-DFS-R (G, V)
if P,R share exactly 1 variable then

C.add (P U R)
else if P is longer than R then

C.add (P)
else

C.add (R)
end if
if |G - C| < 2 then

break
end if

end for
Boolean B <— false
for each V e S, V g C do

Split-Nodes V I, V2
if can-split(V) then

B <— true
VI,V2 <— split(V)
G.remove(V)
G.add(V I, V 2)

end if
end for
if B then

restart algorithm
end if
C.add(remaining-variables)
C.merge-all-paths()
return C

84

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

Algorithm 14 AIG Depth-First Search
Input: AIG G, Variable V
(Global) Path P,T
(Global) LastEdgeType E
T.append (V)
if |T| > |P| then

P <— T
end if
for each SP-edge or WP-edge (V,U) G G do

if E = WP then
continue

end if
E <- TypeOf(V, U)
G.remove (V)
AIG-DFS-P (G, U)

end for
return P

example, in Figure 6.7, instead of simply assigning D to another address register,

the algorithm attempts to find a new cover by modifying the access sequence and

AIG.

If an incomplete path cover is found, the unassigned variables are considered

for splitting. All accesses to a variable v are split into two non-empty sequences

of accesses, v\ and v2, such that all accesses in v\ occur before the accesses in v2.

Let Vidie be the set of accesses to other variables between the last access in tq and

the first access in v2. The accesses to v are split such that \vidie\ is maximal. The

purpose of splitting is to present an opportunity for v to be accessed by two different

address registers. If the maximum \v i(ue\ value is small, the address register used

to access v\ can simply be used to access v2, defeating the purpose of splitting.

Thus, variables with vidie < 2 are considered unsplittable. To keep the running­

time complexity of the algorithm low, variables are only split once. That is, after

splitting variable v into v x and v 2, both v i and v 2 are marked as unsplittable for the

remainder of the algorithm. For the access sequence in Figure 6.1, the unassigned

variable D is split into two groups of accesses, D i and D 2 to produce Figure 6.8.

After splitting variable D , a new AIG can be generated, as shown in Figure 6.9.

After variables are split, the path cover algorithm is restarted. For all successive

85

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

‘A B A C D C Di E E E D2 E D2’

Figure 6.8: An access sequence based on Figure 6.1, but with variable D split into
Dx and D2.

Figure 6.9: The AIG and path cover for the access sequence in Figure 6.8.

iterations of the algorithm, the constraints related to split-variables in paths must be

observed, as mentioned in Sub-section 6.3.2. Specifically, two halves of a variable

that has been split cannot appear in the middle of two different paths. However,

the variables may appear at the endpoints of two different paths. The algorithm

continues to split variables until either, a path cover on the entire graph is found, or

there are no splittable variables remaining. If there are no more variables that can

be split, any variables not assigned to the path cover form a separate path. When

the algorithm is restarted for Figure 6.9, a new path is found using variable D r,

but variable Z)2 remains unassigned. Z)2 is marked unsplittable and cannot be split

again because variable D 2 was generated by splitting D. With all variables assigned

to a path cover, or marked as unsplittable, the algorithm proceeds to construct the

final memory layout.

To construct the final memory layout, two paths that have split nodes from the

same variable are joined. All other paths can be considered independent. However,

the network-flow techniques for address-code generation ultimately determine the

code’s overhead, and may assign accesses to address registers in a much different

fashion than intended by the AIG path cover. Thus each path in the path cover is

Strong Return
^ Weak Return

Strong Pass-Through
Weak Pass-Through

86

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

connected to form a single path, representing a memory layout. Paths that have

endpoints with SP or SR edges between them are connected first. Remaining paths

are connected arbitrarily. For the example in Figure 6.9, only one path was formed

and all variables are used in the path; thus the algorithm terminates with the memory

layout [B A C D E].

6.4 Efficiency of Alternative Algorithms

Tables 6.7 and 6.8 present a comparison of overhead values for the different ap­

proaches presented in this chapter. The minimum overhead value for the C-GOA

and GOA problem instances for each kernel in Table 4.1 is obtained by the exhaus­

tive evaluation in Chapter 4. For these problem instances, using a best-first search

to find a memory layout with a locally minimum overhead frequently produces

a memory layout that has a globally minimum overhead. However, finding such

layouts requires computing the overhead of thousands of memory layouts. Alterna­

tively, finding a path cover for an AIG requires multiple iterations of Algorithm 13,

but only requires computing the overhead once. Unfortunately, the memory lay­

outs produced by this approach have an overhead value near the median value for

the entire solution space. The greedy-based algorithm from Section 6.2 appears to

be a good compromise between the number of overhead evaluations and quality of

memory layouts. As mentioned in Section 6.2, generating a memory layout of m

variables using the greedy algorithms requires 0 (m 2) overhead computations. The

greedy algorithm consistently produces layouts that have lower overhead than the

AIG path cover, although rarely produces a memory layout with minimum over­

head.

For larger access sequences and memory layouts, an exhaustive evaluation is

not possible, even in an academic study. However, layouts with locally minimal

overhead values found by best-first search are often optimal or near-optimal. Thus,

best-first search can be used to approximate the minimum and maximum overhead

values for larger access sequences. Four additional GOA and four additional C-

GOA problem instances from the UTDSP benchmark suite are identified and eval-

87

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Overhead
Access AIG Greedy Best-First
Sequence min max cover Construction Search
iir_arr 5 9 5 5 5
iir_arr_swp 6 15 9 8 6
latnrm_arr_swp 6 13 8 8 6
latnrm_ptr 6 13 9 6 6
latnrm_ptr_swp 6 13 11 7 6

Table 6.7: Efficiency of the three alternative algorithms for generating a memory
layout for C-GOA problem. The minimum and maximum overhead values are
found by exhaustive evaluation of the entire offset assignment solution space.

Access
Sequence

Overhead
AIG Greedy Best-First

min max cover Construction Search
iir_arr
iir_arr_swp
latnrm_arr_swp
latnrm_ptr
latnrm_ptr_swp

4 8 5 5 4
6 12 9 9 6
6 10 10 7 6
6 10 8 6 6
6 10 9 6 6

Table 6.8: Efficiency of the three alternative algorithms for generating a memory
layout for GOA problems. The minimum and maximum overhead values are found
by exhaustive evaluation of the entire offset assignment solution space.

88

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Access
Sequence

Number of
Variables

Overhead

AIG
Greedy

Construction
BFS

(Min)
BFS

(Max)
fft_arr (C-GOA) 24 12 12 8 23
fft_ptr (C-GOA) 16 9 9 6 18
iir_ptr (C-GOA) 14 11 8 7 16
iir_ptr_swp (C-GOA) 14 9 9 7 16

Table 6.9: Efficiency of the three alternative algorithms for generating a memory
layout for C-GOA problems.

Access
Sequence

Number of
Variables

Overhead

AIG
Greedy

Construction
BFS

(Min)
BFS

(Max)
fft_arr (GOA) 24 12 11 10 22
fft_ptr (GOA) 16 8 9 6 16
iir.ptr (GOA) 14 9 8 7 14
iir_ptr_swp (GOA) 14 11 10 7 14

Table 6.10: Efficiency of the three alternative algorithms for generating a memory
layout for GOA problems.

uated in Tables 6.9 and 6.10, respectively. In these access sequences, the AIG path

cover produces layouts with an overhead that is between 29% and 50% higher than

the minimum overhead found by best-first search. Although the memory layouts

have overheads that are significantly lower than the worst-case overhead, the qual­

ity of memory layouts can be further improved by constructing a memory layout

using a greedy-based algorithm. With the exception of the GOA version of the

fft_ptr access sequence, constructing a layout greedily (see Algorithm 12) produced

memory layouts with overhead values equal to, or less than, the overhead of layouts

produced by the AIG path cover.

89

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Chapter 7

Conclusions

Traditionally, the problem of minimizing address-computation overhead has been

approached by approximating solutions to several problems independently. Of par­

ticular importance is the fact that access sequence generation and offset assignment

are not formulated or solved with consideration for optimal address-code genera­

tion. Algorithms generate access sequences and offset assignments under the as­

sumption that variables are assigned to address registers while optimal address-

code generation removes this assumption and assigns accesses to address registers.

Thus, the relationship between access sequence generation, offset assignment, and

address-computation overhead has never been accurately explored.

This thesis shows that, despite the availability of algorithms to optimally solve

the address-code generation problem, memory layouts still have a significant im­

pact on address-computation overhead. Conversely, changing the access sequence

through instruction scheduling appears to have a negligible impact on the final over­

head. Specifically, for the benchmark kernels examined, it is always possible to

produce memory layouts with very low and very high overhead values, regardless

of the instruction schedule. Additionally, the experiments performed in this thesis

indicate that current offset assignment algorithms can produce layouts with over­

head values that span the full range of possible values in the solution space itself.

Thus, in order for current algorithms to generate only low-overhead layouts, a new

combinatorial problem, the memory layout permutations problem, must be solved.

The efficiency of current offset assignemtn algorithms are evaluated using five

small access sequences. The access sequences were restricted to 12 variables or less

90

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

because larger problem instances cannot be exhaustively evaluated in a reasonable

amount of time. Although the number of test cases were limited, it is important to

note that the access sequences were obtained from the inner loops of commonly run

DSP programs, so it is reasonable to assume that the results can be extrapolated to

other similar DSP programs.

Layouts generated by different ARA algorithms have different distributions of

overhead values. Distributions with fewer memory layouts (due to ARA using

fewer ARs) consistently produce more low-overhead layouts. Thus, the average

overhead of memory layouts produced by Sugino’s ARA algorithm is usually the

lowest. When an ARA algorithm uses more address registers, optimal sub-layouts

are more easily found. However, locally optimal sub-layouts do not necessarily pro­

duce globally optimal memory layouts. For example, there are instances where the

naive OFU algorithm produces sub-layouts that can be combined to form optimal

layouts, while the branch-and-bound algorithm produces optimal sub-layouts that

cannot be combined into optimal layouts.

Conversely, heuristic-based SOA algorithms have very little impact on either

layout quantity or quality. However, the minimal differences between the SOA

algorithms in this study may be attributed to the small problem sizes. The SOA

algorithms are given problem instances with 6 variables or less, and the same path

cover is usually found regardless of the algorithm. For GOA problems with 12

variables or fewer, the results of this thesis suggest that an ARA algorithm that

generates fewer sub-layouts combined with any SOA algorithm has the greatest

chance of producing sub-layouts that combine to form memory layouts with low or

minimum overhead.

This thesis shows that regardless of the ARA and SOA algorithms used, plac­

ing the resulting sub-layouts contiguously in memory is a necessary optimization

problem that must be solved in order to minimize address-computation overhead in

a basic block. This new problem is called the memory layout permutations (MLP)

problem. The order of sub-layouts in memory has a significant impact on overhead,

especially when the number of sub-layouts is high. Additionally, as more variables

are assigned to individual sub-layouts, the MLP problem is reduced to the GOA

91

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

problem itself. Thus, if an algorithm can be found to address the MLP problem, the

same algorithm can be used to solve the GOA problem.

The MLP problem only arises because of the inherent disconnect between tra­

ditional offset assignment and address-code generation. An alternative approach to

the offset assignment problem is to generate layouts with consideration for the over­

head values produced by optimal address-code generation techniques. This thesis

explores three alternative algorithms to generate memory layouts. First, a best-first

search algorithm is presented to find layouts with locally minimal overhead values

in the search space. For small access sequences, these layouts are also optimal lay­

outs. In larger access sequences, these layouts are more often near-optimal layouts.

However, the drawback of the best-first search is that executing the search requires

evaluating the overhead for several thousands of memory layouts, which may not

be feasible in a compiler. The second algorithm presented incrementally builds an

access sequence by adding variables in a greedy fashion. To generate a layout of

size n, the algorithm evaluates the overhead 0 (n 2) times. Although the algorithm

requires significantly less computational time, the algorithm only produced an op­

timal layout in the two smallest access sequences evaluated. The third algorithm

presented generates a memory layout by finding a minimum path cover on an aug­

mented interference graph. The graph is used to summarize how pairs of variables

can be accessed by an address register, and the minimum path cover represents how

multiple address registers can access variables in memory without incurring jump

overheads. Unlike the other two alternative algorithms, the path cover approach

does explicitly require evaluating the overhead value of any layouts; however, the

algorithm also produces the layouts with the highest overhead values among the

three alternative algorithms.

In conclusion, there is a large disconnect between the different optimizations

used to minimize address-computation overhead. Ultimately, address-computation

overhead is dictated by the final addressing code; unfortunately, current algorithms

simply do not generate access sequences or memory layouts with consideration

for address-code generation. This thesis shows that access sequence generation

has a minor impact on the final overhead, while offset assignment is a significant,

92

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

but largely unsolved problem. In order for current offset assignment algorithms

to be effective, the MLP problem must be solved. Ironically, the MLP problem

can be reduced to the GOA problem itself, indicating the ineffectiveness of current

approaches. Alternative approaches presented in this thesis are either impractical

to implement in a compiler, or only produce layouts with moderately low overhead

values.

7.1 Future Work

The results presented in this thesis suggest that the offset assignment problem re­

mains largely unsolved. Although current algorithms could be used to generate a

memory layout, a solution to the MLP problem is required. Alternatively, memory

layouts should be generated to minimize the overhead introduced by address-code

generation. One reason the offset assignment problem is so difficult is that the im­

pact of offset assignment on address-computation overhead is not well understood.

After an offset assignment algorithm can be found to reduce overhead for a sin­

gle basic block, there are two logical extensions to the offset assignment problem.

One direction for future work is to examine the impact of offset assignment and

optimal address-code generation in loop bodies. This is a particularly important

problem because many DSP programs contain loops to continuously iterate and

process large amounts of data. The second future direction for this work is to ex­

amine the impact of offset assignment and optimal address-code generation at the

procedure level; that is, across basic blocks. Although there have been previous re­

search studies to minimize overhead in loop bodies and across basic blocks [3, 28],

these studies do not consider the existence of optimal address-code generation. This

thesis has already shown that at the basic-block level, optimal address-code genera­

tion significantly alters how address-computation overhead can be minimized; thus,

further research is required to understand the impact of optimal address-code gen­

eration on overhead in loops and procedures.

93

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Bibliography

[1] Sunil Atri, J. Ramanujam, and Mahmut Kandemir. Improving offset as­
signment for embedded processors. Lecture Notes in Computer Science,
2017:158-172, 2001.

[2] D. H. Bartley. Optimizing stack frame accesses for processors with restricted
addressing modes. Software - Practice & Experience, 22(2): 101-110, Febru­
ary 1992.

[3] Guilin Chen and Mahmut Kandemir. Optimizing address code generation
for array-intensive dsp applications. In CGO ’05: Proceedings o f the inter­
national symposium on code generation and optimization, pages 141-152,
Washington, DC, USA, 2005. IEEE Computer Society.

[4] Wei-Kai Cheng and Youn-Long Lin. Addressing optimization for loop exe­
cution targeting dsp with auto-increment/decrement architecture. In ISSS ’98:
Proceedings o f the 11th international symposium on system synthesis, pages
15-20, Washington, DC, USA, 1998. IEEE Computer Society.

[5] Thomas H. Cormen, E. Leiserson, Charles, and Ronald L. Rivest. Introduction
to Algorithms. MIT Press, 1990.

[6] Catherine Gebotys. DSP address optimization using a minimum cost circu­
lation technique. In ICC AD ’97: Proceedings o f the 1997 IEEE/ACM inter­
national conference on Computer-aided design, pages 100-103, Washington,
DC, USA, 1997. IEEE Computer Society.

[7] Andrew V. Goldberg. An efficient implementation of a scaling minimum-cost
flow algorithm. J. Algorithms, 2 2 (l):l-2 9 , 1997.

[8] Johnny Huynh, Jose Nelson Amaral, Paul Berube, and Sid-Ahmed-Ali Touati.
Evaluation of offset assignment heuristics. In HiPEAC ’07: Proceedings o f the
3rd International Conference on High Performance Embedded Architectures
and Compilers, Ghent, Belgium, January 2007. Springer-Verlag.

[9] Mahmut T. Kandemir, Mary Jane Irwin, Guilin Chen, and J. Ramanujam. Ad­
dress register assignment for reducing code size. In CC ’03: Proceedings o f
the 12th international conference on Compiler Construction, pages 273-289,
2003.

[10] Ken Kennedy and John R. Allen. Optimizing Compilers fo r M odem Archi­
tectures: a Dependence-Based Approach. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 2002.

[11] Eugene Lawler. Combinatorial Optimization: Networks and Matroids. Dover
Publications, 1976.

94

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

[12] Corinna Lee and Mark Stoodley. UTDSP benchmark suite.
http://www.eecg.toronto.edur corinna/DSP/infrastructure/UTDSP.html,
1992.

[13] Rainer Leupers. Offset assignment showdown: Evaluation of dsp address code
optimization algorithms. In CC ’03: Proceedings o f the 12th international
conference on Compiler Construction, pages 290-302, 2003.

[14] Rainer Leupers, Anupam Basu, and Peter Marwedel. Optimized array index
computation in DSP programs. In Asia and South Pacific Design Automation
Conference, pages 87-92, 1998.

[15] Rainer Leupers and Fabian David. A uniform optimization technique for offset
assignment problems. In ISSS ’98: Proceedings o f the 11th international
symposium on System synthesis, pages 3-8, Washington, DC, USA, 1998.
IEEE Computer Society.

[16] Rainer Leupers and Peter Marwedel. Algorithms for address assignment in
DSP code generation. In Proceedings o f the 1996 IEEE/ACM international
conference on Computer-aided design, pages 109-112, 1996.

[17] Stan Liao. Code Generation and Optimization fo r Embedded Digital Signal
Processors. PhD thesis, Massachusetts Institute of Technology, 1996.

[18] Stan Liao, Srinivas Devadas, Kurt Keutzer, Steven Tjiang, and Albert Wang.
Storage assignment to decrease code size. ACM Transactions on Program­
ming Languages and Systems, 18(3):235-253, 1996.

[19] Sungtaek Lim, Jihong Kim, and Kiyoung Choi. Scheduling-based code size
reduction in processors with indirect addressing mode. In CODES ’01: Pro­
ceedings o f the 9th international symposium on Hardware/software codesign,
pages 165-169, New York, NY, USA, 2001. ACM Press.

[20] Kurt Mehlhom, Stefan Naher, and Christian Uhrig. The LEDA platform of
combinatorial and geometric computing. In Automata, Languages and Pro­
gramming, pages 7-16, 1997.

[21] Desiree Ottoni, Guilherme Ottoni, Guido Araujo, and Rainer Leupers. Im­
proving offset assignment through simultaneous variable coalescing. In 7th
International Workshop on Software and Compilers fo r Embedded Systems,
pages 285-297, 2003.

[22] Amit Rao and Santosh Pande. Storage assignment optimizations to generate
compact and efficient code on embedded DSPs. In PLDI ’99: Proceedings o f
the ACM SIGPLAN 1999 conference on Programming language design and
implementation, pages 128-138, New York, NY, USA, 1999. ACM Press.

[23] Nobuhiko Sugino, Satoshi Iimuro, Akinori Nishihara, and Nobuo Jujii. DSP
code optimization utilizing memory addressing operation. 1EICE Trans Fun­
damentals, (8): 1217—1223, Aug 1996.

[24] Texas Instruments. TMS320C54X DSP Reference Set: CPU and Peripherals,
1991.

[25] Sathishkumar Udayanarayanan. Energy efficient code generation for DSPs.
Master’s thesis, Arizona State University, 2000.

95

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

http://www.eecg.toronto.edur

[26] Bernhard Wess and Thomas Zeitlhofer. On the phase coupling problem be­
tween data memory layout generation and address pointer assignment. In
SCOPES, pages 152-166, 2004.

[27] Bernhard R Wess and Martin Gotschlich. Minimization of data address com­
putation overhead in dsp programs. In Proc. ICASSP98, pages 3093-3096,
1998.

[28] Youtao Zhang and Jun Yang. Procedural level address offset assignment of
dsp applications with loops. 32nd International Conference on Parallel Pro­
cessing, 00:21, 2003.

[29] Xiaotong Zhuang, ChokSheak Lau, and Santosh Pande. Storage assign­
ment optimizations through variable coalescence for embedded processors.
In LCTES ’03: Proceedings o f the 2003 ACM SIGPLAN conference on Lan­
guage, compiler, and tool fo r embedded systems, pages 220-231, New York,
NY, USA, 2003. ACM Press.

96

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

