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ABSTRACT 

Chemical disinfectants are widely used by Canadian broiler producers for barn sanitation, 

although little is known regarding their effects on chicken performance and the gut microbiome, 

which had been well recognized to have great importance to the host health. In this thesis, studies 

were conducted in commercial barns to evaluate the impacts of barn sanitation practices on 

chicken performance, the gut microbiome, and immune responses. The significance of variations 

in early-life gut microbial structure were also assessed with regards to their effects on the 

microbial population, microbial functional capacity, as well as indices of host immune response. 

To determine the impact of barn sanitation practices on the chicken performance and the 

gut microbiome, barn cleaning with chemical disinfectants versus water-wash was conducted as 

a cross-over experiment. At the end of the production cycle, the flock mean body weight and 

mortality rate were comparable between the barn sanitation treatment groups. The barn water-

wash resulted in a modest but significant effect on the structure of broiler cecal microbiota, with 

notable reductions in cecal Campylobacter jejuni occurrence and abundance. In addition, 

chickens from the barn water-wash group had increased level of cecal acetate, butyrate and total 

short-chain fatty acids that were negatively correlated with C. jejuni abundance. 

To further assess the effects of the barn sanitation practices on chicken gut microbial 

functional capacity, particularly on microbial metabolism and antibiotic resistance, cecal content 

samples were subjected to shotgun metagenomic sequencing. At day 7, the gut microbiome of 

chickens from the chemically disinfected barns had decreased capacity of amino acid production 

with increased stringent response compared to the water-wash group. Similarly at day 30, the gut 

microbiome of chickens reared in chemically disinfected barns exhibited decreased abundance of 

the genetic pathways encoding amino acid and short-chain fatty acid biosynthesis due to 
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decreased cecal Helicobacter pullorum population. Our data suggested that the use of chemical 

disinfectants in barn cleaning were more effective in controlling persistent antibiotic resistance 

genes.  

Finally, a study was conducted to investigate distinct cecal early-life microbial structures 

identified among commercial broiler chickens in gut microbial interaction, functionality, as well 

as host immune status. Week-old commercial broiler chickens were screened and chickens with 

distinct cecal Bacteroides composition were identified. Compared to the Bacteroides-under-

representative group, the chickens with Bacteroides-over-representative cecal microbiota had 

increased microbial genetic potential of complex polysaccharide degradation and short-chain 

fatty acid production in the gut, which was supported by increased cecal short-chain fatty acid 

concentrations. In addition, chickens with high cecal Bacteroides had lower expression of 

interleukin-1β gene and higher expression interleukin-10 gene and tight-junction protein claudin-

1 gene. The results indicated that elevated cecal Bacteroides may be beneficial to commercial 

broiler chickens in suppressing gut inflammation coincided with the increment of short-chain 

fatty acid production. 

Collectively, this thesis provides insights into the role of barn sanitation practices during 

poultry production in the microbiome of commercial broiler chickens, and exhibits the 

significance of variations in early-life gut microbial community structure in microbial 

functionality and host immune status. 
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PREFACE 

This thesis is an original work by Yi Fan, of which this thesis is a part, received research 

ethics approval from the University of Alberta Research Ethics Board, Project Name “Broiler 

barn sanitation”, No. AUP00002377, 6/4/2018. 

The study in Chapter 2 has been published as Yi Fan, Andrew J Forgie, Tingting Ju, 

Camila Marcolla, Tom Inglis, Lynn M McMullen, Benjamin P Willing, Douglas R Korver. The 

Use of Disinfectant in Barn Cleaning Alters Microbial Composition and Increases Carriage of 

Campylobacter jejuni in Broiler Chickens. Appl Environ Microbiol. 2022 May 

24;88(10):e0029522. doi: 10.1128/aem.00295-22. Initial studies were designed by Douglas R 

Korver, Tom Inglis, and Lynn M McMullen. Douglas R Korver, Benjamin P Willing and Yi Fan 

designed the follow up experiments, Yi Fan conducted the experiments, collected, and analyzed 

the data, and wrote the manuscript. Andrew J Forgie, Tingting Ju, and Camila Marcolla helped 

with experiments and data analyses. All authors edited and approved for publication. Benjamin P 

Willing and Douglas R Korver supervised the study.  

The study in Chapter 3 is expected to be submitted for publishing as Yi Fan, Tingting Ju, 

Tulika Bhardwaj, Douglas R. Korver, Benjamin P. Willing. The impact of barn disinfection and 

age on the cecal microbial functional capacity and resistome of broiler chickens. 2022. Yi Fan, 

Douglas R Korver, and Benjamin P Willing designed the study and experiments, Yi Fan 

conducted the experiments, collected and analyzed the data, and wrote the manuscript. Tingting 

Ju and Tulika Bhardwaj helped with data analyses. Benjamin P Willing and Douglas R Korver 

supervised the study.  
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The study in Chapter 4 was designed by Yi Fan and Benjamin P Willing. The manuscript 

was accepted by Microbiology Spectrum as Yi Fan, Tingting Ju, Tulika Bhardwaj, Douglas R. 

Korver, Benjamin P. Willing. Microbiology Spectrum. 2022. Week-old chicks with high 

Bacteroides abundance have increased short-chain fatty acids and reduced markers of gut 

inflammation. doi:10.1128/spectrum.03616-22. Yi Fan conducted experiments, collected and 

analyzed the data, and wrote the manuscript. Tingting Ju and Tulika Bhardwa helped with the 

data analyses. All authors edited and approved for publication. Benjamin P Willing and Douglas 

R Korver supervised the study.  
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Chapter 1: INTRODUCTION 

As a major agriculture product, chicken is one of the most important high-quality protein 

sources for humans (1). Currently, the world's population is estimated to be 7.2 billion, and is 

expected to reach nearly 10 billion by 2050 (2). Modern agriculture has done well in providing 

food to nurture such a huge population. In fact the price of all meat products, relative to average 

income is currently the lowest in human history due to the success in mass production (3). The 

growth in global livestock production was largely credited to poultry industry, especially broiler 

chicken production (4). The United States Food and Drug Administration (USDA) forecasted 

that the broiler per capita consumption is expected to increase steadily, growing from 44.7 kg in 

2023 to 46.1 kg by 2031 (5). With the continued expansion of the poultry industry, factors 

affecting chicken performance, zoonotic diseases, and food safety will continue to be an 

important concern to the general public, industry, and academia, especially in the context of 

eliminating preventive usage of antibiotics in livestock farming.  

The gut microbiota, which can be beneficial to the host by maintaining gut homeostasis, has 

been identified as a potential tool to address these challenges. The gut microbiota refers to the 

totality of microorganisms associating with the host gastrointestinal tract (GIT) (6). The 

importance of the chicken gut microbiota to host health and performance had been well 

recognized. Emerging evidence has shown the importance of broiler commensal microbial 

community to nutrient metabolism, feed efficiency (7-9), competitively defending against 

pathogen infection and colonization (10, 11), and educating the host immune system (12, 13). 

Subsequently, various probiotic and prebiotic products have been developed and used in chicken 

production to help broiler chickens to establish symbiotic gut microbiota, and showed success in 

increasing chicken nutrient utilization (14), and prevent disease development (13, 15, 16). 
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Therefore, establishing healthy host-microbe interactions early in production may provide a 

possible alternative of antimicrobial growth promoters (AGPs) in production to help maintain, or 

even enhance broiler performance. 

In production, broiler chickens are delivered to the production house shortly after hatch 

(normally within 24 h) and receive feed and water on farm. Notably, in the modern poultry 

industry, commercial broiler chickens are hatched and reared without the presence of hens. The 

absence of contact with the parent flock largely affects the early-life chick microbiota by limiting 

the transmission of chicken-derived commensals (17, 18).Thus, for broiler chickens, the barn is 

one of the early microbial exposures. Early life bacterial exposure is important to the microbiota 

assembly in the animal GIT and immune system development (19). It has been reported in 

human studies and various animal models that early microbial exposure persistently affects 

future host intestinal health and disease development (20-22). Previous studies have revealed that 

oral gavage of chicken-derived microbiota at hatch reduced pathogen colonization as well as 

increasing short chain fatty acid (SCFA) production in the chicken gut (23, 24). Therefore, 

establishing healthy host-microbe interactions early in production may provide a possible 

solution to help maintain broiler health in an environment free from antimicrobial growth 

promoters. Thus, improving the barn microbial environment, which might introduce beneficial 

early commensal-host interactions to the broiler chickens, may advance the development of a 

commensal microbiota in broiler chickens, and thus help improve chicken health in production. 

1.1 The Chicken Gut Microbiota 

The gut microbiota is considered a crucial organ that plays an integral role in maintaining the 

host health by modulating physiological functions including nutrition, metabolism, and immunity 
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(25). Complex interactions between various microbial molecules (e.g. DNA and 

lipopolysaccharide), metabolites (e.g. short chain fatty acids), and the host immune system 

strongly affect the host health (26). Although information on the avian microbiome is still 

limited compared to mammalian species, in this section, we will focus on some current 

knowledge of the chicken gut microbiome and its relationships to the host. 

 

1.1.1 Chicken Intestinal Habitats and the Inhabitants 

Previous studies on chicken microbiome revealed that more than 1000 species inhabit the 

chicken intestine (27, 28). Like other animal species, the chicken GIT is partitioned according to 

digestive function. The chicken GIT consists of the crop, proventriculus, gizzard, duodenum, 

jejunum, ileum, cecum, and cloaca (29). The corresponding products of different physiological 

functions (e.g. host digestive enzymes and acid) segregate host digestive processes from most of 

the environmental microbes to ensure host priority of dietary substrate utilization (30). In 

addition, diverse environmental factors in the intestine, such as pH, digesta flow rate, dietary 

substrates, bile salts, and oxygen levels influence the assembly and development of specific 

bacterial communities. Generally, the complexity of the chicken gut microbiome increases along 

the chicken GIT from the proximal part (crop) to the distal part (cecum). The composition and 

complexity of the gut microbial communities largely increases in distal parts of the GIT, 

especially in the ceca.  

In the proximal part of the chicken GIT, the beak collects food that is swallowed whole. 

Feed goes through the esophagus to the crop where it is moistened. Physiologically, the crop of 

chickens stores and softens the feed that can aid grinding and enzymatic digestion further down 
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the digestive tract (31). The chicken crop harbors 108 – 109 CFU/g of bacteria (32). Compared to 

the distal part of the GIT, the crop microbiota has a simple composition, dominated by 

facultative anaerobes, predominantly lactobacilli (33, 34), which are believed to be responsible 

for decomposition of starch and the production of lactate and thus provides an acid barrier with 

pH of ~4.5. Diets may have an impact of the crop microbiota. Feed additives such as high 

amounts of phytic acid in plant-based diets promote the abundance of family Aeromonadaceae 

and Flavobacteriaceae while reducing the dominance of Lactobacillus in the crop (35). 

However, variations in microbiota among individual broiler chickens fed on similar diets have 

also been observed, indicating that there may also be other factors (e.g. initial microbial 

exposure, host genetics, etc.) impacting the crop microbiota (36).  

The gizzard mechanically grinds feed particles. Similar to the crop, the most predominant 

bacteria in the gizzard are reported to be lactobacilli (37). However, due to the hydrochloric acid 

in the gastric juices provided by the proventriculus, the pH of the gizzard is kept relatively low 

(pH~2.6), resulting in lower bacterial abundance and less fermentation activity in the gizzard. 

Degradable feed components are broken down to simple carbohydrates, amino acids, and 

fatty acids in the small intestine (duodenum, jejunum, and ileum) as well as at the brush border 

membrane along the small intestinal lining (38). In the small intestine, remainder of the digestion 

occurs at the duodenum, whereas the released nutrients are absorbed mainly in the jejunum and 

ileum. In the small intestine, the duodenum harbors the lowest bacterial density due to the short 

passage time and the presence of pancreatic juices and bile (37, 39). The duodenal microbiota is 

dominated by Lactobacillus species (40). Highly similar to the duodenal microbiota (41, 42), the 

jejunal microbial community is reported to nearly exclusively made up by Lactobacillus (7) but 

with increased abundance of members from the phylum Proteobacteria (e.g. Brucella, 
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Shigella/Escherichia coli) (41, 43). Compared to the duodenum and jejunum, the chicken ileum 

has increased pH and decreased oxygen level, making the microbial community of the ileum 

more diverse and higher in cell density (44), and it is also the most studied segment among the 

small intestine. Specifically, gram-positive bacteria from the phylum Firmicutes, mainly 

Lactobacillus which makes up more than 70% of the ileal microbiota, populated the ileum of 

chickens (45-47). A substantial part of the ileal digesta enters the ceca through reverse peristalsis 

for further microbial fermentation. The similar oxygen and nutrient availability between the two 

organs makes the ileal microbial communities sometimes overlap with the cecal microbiota (48). 

Thus, some bacteria often found in the chicken ceca such as members from the family 

Enterococcaceae, Peptostreptococcaceae, Erysipelotrichaceae and Clostridiaceae are also 

frequently detected in the chicken ileum (49, 50).  

The abundance and complexity of the gut microbiota considerably increases in the 

chicken ceca due to the longest feed retention time (12 to 20 h) compared to other GIT segments 

(51). The chicken ceca can harbor as high as 1011 bacteria per gram of content (52). As 

mentioned above, although differing in bacterial load, the crop, gizzard, duodenum, jejunum, and 

ileum shared similar facultative anaerobic communities (predominantly Lactobacillus). 

Conversely, in the chicken ceca the low oxygen levels favor strict anaerobes. For example, the 

relative abundance of members from the order Clostridiales progressively increase from the crop 

(almost undetectable) to the ileum (10%) and are dominant in the ceca (over 60%) (52-54). The 

chicken cecal microbiota are dominated by the phyla Firmicutes and Bacteroidetes, followed by 

Proteobacteria and Actinobacteria (55, 56). One major biological function of the chicken ceca is 

to offer a niche for the gut microbes to anaerobically recycle nitrogen and digest non-starch 

polysaccharides to produce SCFAs (57). The frequently reported genera from Firmicutes and 



 6 

Bacteroidetes in the ceca are important amino acid utilizers and SCFA producers (e.g. 

Bacteroides, Faecalibacterium, Blautia, Butyricimonas, Megamonas, Oscillibacter, members 

from the Ruminococcaceae and Lachnospiraceae family, and members from the Clostridiales 

order) (28, 45, 54, 58, 59). Large variations have been reported in specific taxa. For example, 

Lactobacillus has been reported to range from relatively dominant (~8%) (45) to undetected in 

the chicken ceca (54). This variation may be due to the fact that since Lactobacillus are 

facultative anaerobes, the prevalence may be affected by the oxidative stress in the ceca. When 

the cecal environment is under oxidative stress (e.g. the presence of reactive oxygen species 

produced by the host during inflammation), the growth of obligate anaerobes may be suppressed, 

and thus lead to the expansion of facultative anaerobes (60). The variation in colonization pattern 

between studies might also be explained by the differences in chicken breed (host genetics), 

management, or diets, but age are most likely to play an important role as well and this will be 

discussed in the next section. Following Firmicutes and Bacteroidetes, in Proteobacteria, genus 

Desulfohalobium and Shigella/Escherichia were also frequently detected in the ceca (59, 61, 62). 

 

1.1.2 Successional Change of the Chicken Microbiota  

The assembly of the chicken microbiome goes through successional stages. The age of 

the chickens is one of the most important drivers that influences GIT microbial community 

structure, cell density, and metabolic function. Previous studies revealed a series of temporal and 

successional microbial composition changes through broiler maturation (13, 45).  

The chicken gut microbiota assembles as soon as 1 day of life (63). The colonization of 

the chick is believed to be initiated as it breaks the egg shell (64). As mentioned, in poultry 
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production, newly hatched chicks from hatcheries have no contact with adult birds, and thus the 

environment they are placed in will have a strong impact on their mostly naïve intestinal 

microbiome. At day 1, the cecal microbiota of the newly hatched chicks were dominated by 

Enterobacteriaceae and to a lesser extent Enterococcus (63). While the initial ceca colonization 

begins with facultative anaerobic bacteria, obligate anaerobic bacteria soon replaces the 

facultative anaerobes and dominate the ceca (45, 65). Some pathogens, such as Clostridium 

perfringens and Campylobacter coli, were detected in the GIT as early as 3 days of age (45). 

Over the first 3 days, the cecal microbial taxa diversity and richness progressively increases, and 

by day 7 the family Ruminococcaceae outnumbers Enterobacteriaceae leading the expansion of 

Firmicutes population, which dominates the ceca by day 14 (63, 65).  

The broiler gut microbiome matures between 21 and 45 days post-hatch (13, 66-68).  The 

alpha diversity of the chicken gut microbiome continues to change after 2 weeks post-hatch (13). 

Approximately 100 low abundance genera that were not detected at 3 weeks in broiler chicken 

became detectable after 6 weeks of age (13). More recently, Jurburg et al. reported three stages 

of successional microbiota changes by monitoring broiler chicken feces from day 1 to 35 after 

hatch (69). Briefly, they found that the first stage colonization was caused by vertical or 

environmental transmission leading to the colonization of Streptococcus (from order 

Lactobacillales) and Escherichia/Shigella (from order Enterobacteriales) in the gut. The second 

stage started at day 4, Lactobacillales and Enterobacteriales were displaced by a series of taxa 

including Lachnospiraceae and Ruminococcus-like species variants from order Clostridiales. In 

the third stage starting on day 10, the relative abundance of a diverse cluster of obligate 

anaerobic bacteria slowly increased, while the Latobacillales, Enterobacteriales and 

Clostridiales remain predominant (69). The maturation of the chicken microbiota coincides with 
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the maturation of the chicken intestine and plays an important part in maintaining intestinal 

homeostasis and the provision of nutrients (which will be further discussed in 1.2.5 and 1.2.6). 

  

1.1.3 Early-life Bacterial Exposure 

Early-life bacterial exposure is important to microbial assembly in the animal GIT and 

immune system development. It has been widely reported in a variety of animals that early 

microbial exposure significantly and persistently affects future host intestinal function and 

disease development by promoting epithelial cell turnover, increasing mucus production and 

epithelium integrity, and educating host immune response (20-22, 63, 70-74). It has been well 

reviewed that the development of human microbiome is significantly influenced by early age diet 

and environmental conditions of the individual host (75, 76). One major difference between birds 

and mammals is that mammals are delivered through a microbe-diverse and abundant vaginal 

tract (77), whereas birds are hatched from eggs that are considered to be internally sterile (35). In 

addition, mammals are fed by maternal milk, which provides bioactive molecules like 

immunoglobulin (78) and oligosaccharides (79, 80) to help their young develop their immune 

system and shape gut microbiota (81). In avian species, gut microbiota development relies on 

direct contact with other birds and the environment. For example, it has been shown that there is 

a high microbial similarity between the nest of the Pied Flycatchers (Ficedula hypoleuca) and 

their builders (82). Although this study is limited to cultured-based methods, which could only 

recover a subset of the overall microbial community, it indicates an opportunity for avian 

microbiota transmission in the wild. In addition, microbial transmission is also caused by 

maternal excreta consumption. Cooper et al. reported that ostrich chicks consume adult feces to 

help prime their digestion and performance by adding useful microbes (83). Kubasova et al. 
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revealed that hen contact at hatch helped young chickens establish more obligate anaerobes in 

the ceca, which is important for intestinal homeostasis (84). These studies indicated that 

microbial transmission from the parent flock is an important source of commensal microbiota for 

chickens.  

  Modern broilers are believed to be domesticated from the wild red jungle fowl (Gallus 

gallus) (85). Chickens are precocial birds and are relatively mature and mobile at hatch, which 

makes them economically suitable and labor-friendly for domestication. In modern broiler 

production, chicks are hatched in a clean hatchery, where eggs are hatched separately from the 

hens and fumigated to avoid bacteria contamination. This reduces the opportunity of the newly 

hatched chicks to be exposed to the parent-flock-derived microbes. Soon after, chicks are 

transferred to a clean barn covered by new bedding material on the floor with sufficient feed and 

clean water supply along with closely managed temperature, humidity, and ventilation. The 

production barns are often water-washed or chemically disinfected with the intent to reduce 

disease transmission and improve food safety. However, when trying to avoid pathogen 

transmission (i.e. Salmonella spp., Campylobacter spp., infectious bronchitis virus, avian 

influenza viruses, etc.), transmission of necessary chicken-derived commensals is also limited.  

Recycled chicken litter is allowed in broiler production in many parts of the world, for 

example in the United States. Some previous studies found that exposure to used litter mimics 

the transmission from hen to chick and can impact early life broiler gut microbiota (20, 21), and 

thereby confer competitive exclusion against poultry pathogens (10, 86, 87). One study has 

shown that compared to fresh litter, used litter significantly decrease of the abundance of 

Proteobacteria in the gut microbiota of chicks over the first two weeks of life (88). More 

recently, it was reported that recycled litter increased the predominance of some potential 
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beneficial bacteria, such as Faecalibacterium, in the ceca of young chicks, and the effect 

remained as the chicken gut matured (89, 90). Research has also shown that the intestinal 

immune response of broilers reared on recycled litter is indicative of immune activation, which 

could negatively impact broiler production (91). Collectively, these studies highlight the 

importance of the initial environmental exposure to the chicken gut microbiome, which can offer 

useful information to the industry to improve management. 

 

1.1.4 Host and Environmental Factors affecting the Chicken Gut Microbiota 

 As discussed above, chicken age and initial bacterial exposure are influential to the 

chicken gut microbiota. In the last decade, many studies have also recognized that host genetics 

(chicken type and breed) (92, 93), diet composition (94-97), antibiotic usage (53, 97, 98), 

production system (cage, intensive floor farming or extensive farming system) (99-101), flock 

densities (102), and litter management (will be further discussed in 1.2.2) could affect the gut 

microbial population of chickens. 

 Breeding programs have led to distinctive genetic variance between chicken types and 

breeds, in which the most pronounced difference are between laying hens (egg type chicken) and 

broiler chickens (meat type chicken). Such great differences in genetics contribute to the 

variations observed in intestinal immune functions (103). Simon et al. reported that intestinal 

immunoglobulin secretion was higher in broilers compared to laying hens (103), which may lead 

to variations of the gut microbiota between the two chicken types. Currently, studies comparing 

the gut microbiota between laying hens and broiler chickens are limited. The cecal microbiota of 

laying hens and broiler chickens differed significantly particularly when inoculated with 
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Campylobacter (92). The authors speculated that the differing microbial compositions of laying 

hens and broiler chickens was likely due to the intestinal immune responses caused by 

Campylobacter challenge (92). In addition, within broiler chickens, differences in the gut 

microbiota between breeds were also observed (104-106).  For example, Cobb 500 and Ross 308 

broilers harbored distinct ileal microbiota in which Bacteroidetes were absent in the Ross breed 

and Actinobacteria were absent in the Cobb breed (106, 107). However, Han et al. detected 

Bacteroidetes in the ileum of the Ross breed during a study examining Campylobacter 

colonization in different chicken breeds (92). Due to variations in experimental designs, animal 

management, initial microbial exposure, sequencing techniques in different studies, it is difficult 

to determine to which degree that the broiler chicken genetic backgrounds affect the gut 

microbiome. 

 Alterations in the chicken gut microbiome can be induced by changing the diets in as 

quickly as 1 day (45). The effects of diet on the chicken gut microbiome are well recognized and 

the focus of many studies. It has been shown that the type of diet (e.g. wheat and corn) (97), the 

nutritional composition of the diet (e.g. protein level) (94, 108), as well as the presence of feed 

additives can influence the chicken gut microbiome (109-112). For instance, reduced crude 

protein in broiler chicken diets resulted in elevated cecal Lactobacillaceae over time (94). The 

cecal microbiome of chickens fed the control diet and fishmeal-supplemented diet differed 

significantly, which in the latter, strongly reduced the abundance of some butyrate producers 

(e.g. Butyrivibrio) in the ceca (108). In addition, the supplementation of feed additives such as 

phytase (109), protease (110), β-glucan (111), and xylanase (112) had been shown to influence 

the chicken gut microbiome and intestinal homeostasis.  
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 Antibiotic supplementation to the feed was also reported to have an impact on the 

chicken gut microbial population. Danzeisen et al. reported that subtherapeutic use of monensin 

depleted Roseburia, Lactobacillus and Enterococcus in the ceca, and enriched Escherichia coli 

when coupled with virginiamycin or tylosin (53). Very recently, Zou et al. studied the effects of 

AGP and diets on the chicken gut microbiome and suggested that although AGP had a relatively 

small effect on altering microbial taxonomic abundances, it disturbed interactions between 

microbes by affecting some key taxa of the microbial network, and thereby promoted the 

exclusion of other taxa (97).  

Other environmental factors such as production system and management can also impact 

the broiler gut microbiome. For example, compared to indoor ground litter-raised broiler 

chickens, broilers raised in a cage system had decreased bacterial species richness and evenness 

in the ileum at day 13 (99). Access to an outdoor area in the extensive farming systems (free-

range chickens) was demonstrated to increase the cecal microbial alpha diversity (101), and 

resulted in a higher cecal Bacteroidetes composition (100). In addition, increased flock density 

was associated with reduced crop microbiome richness (102).   

1.1.5 Effects of Chicken Gut Microbiota on Nutrient Metabolism  

Sharing a mutualistic relationship to the host, the gut microbiota contributes to host 

nutrient metabolism, particularly through the fermentation of undigestible nutrients. Commensals 

produce SCFAs (e.g. acetic acid, butyric acid, and propionic acid), organic acids (e.g. lactic 

acid), vitamins (e.g. vitamin K and vitamin B groups), and induce host basal immune responses 

with necessary metabolic costs (113-115). 



 13 

SCFAs are products of the gut microbiota fermentation from partially- or non-digestible 

polysaccharides or proteins derived from the undigested portion of the host diet. Acetate, 

propionate, and butyrate were reported to be the most abundant SCFAs in the chicken gut (116). 

Some beneficial commensals can directly utilize the indigestible nutrients in the diet for SCFA 

production, or utilize metabolic intermediates from other bacteria to make SCFA through cross-

feeding (117). SCFAs are rapidly absorbed by the intestinal epithelial cells and enhance 

intestinal integrity as direct energy sources to enterocytes (118). They also reduce the pH at the 

site of production. In addition, SCFAs are also able to bind to G protein-coupled receptors such 

as free fatty acid receptors (FFA2,3) expressed on various immune cells (e.g. monocytes and 

macrophages) and non-immune cells (e.g. intestinal epithelial cells, adipocytes and 

enteroendocrine cells) (119). By binding to these receptors, SCFAs regulate a series of host cell 

functions including gene expression, immune cell recruitment, differentiation and apoptosis (will 

be reviewed in section 1.1.6) (120). Feed intake was also found to be regulated through the 

interactions between SCFAs and FFA2/FFA3 expressed by the host enterocytes (121).  

In addition, the intestinal microbiota is an important source of vitamin production. Some 

commensals can synthesize vitamin K and B vitamins, including biotin, cobalamin, folacin, 

niacin, pyridoxine, riboflavin, and thiamine (114, 122, 123).  

In turn, the available nutrients in the GIT niches also select microbial taxa that can 

colonize the host gut. The variation in the chemical structures of undigested fibers influences 

utilization by the GIT inhabitants, as specific enzymes are required for specific fiber types. The 

gut microbiota has a wide-ranging ability to digest and utilize these complex molecules. It was 

shown that the total genome of the gut microbiota harbors different functional gene families 

including 130 glycoside hydrolases, 22 polysaccharide lyases, and 16 carbohydrate esterases 
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(124). It makes the microbiome highly adapted to different energy sources of undigested fibers. 

Successful colonization is often based on the ability to produce a specific set of enzymes that 

have a high binding efficiency and rate of reaction towards available nutrient sources, coupled 

with the ability to obtain and produce products. This is supported by the potential to colonize 

around fiber particles with greater attachment and utilization functional capacities than potential 

competitors (125). 

 

1.1.6 Effects of Chicken Gut Microbiota on Host Intestinal Health and Immunological 

Modulation  

The importance of the gut microbiota to chicken intestine development as well as in 

maintaining gut homeostasis has been well recognized for decades. Some early research revealed 

that the intestinal–bacterial interactions were established shortly after hatch or feeding (39). The 

establishment of the intestinal microbiota was essential for early intestinal development (126). 

For example, at the villus area of the small intestine significantly increased in conventional 

raised (CR) chickens compared to germ-free (GF) at 5 d post hatch (127). The absence of 

microbiota in GF chickens resulted in poorly developed lymphoid follicles and decreased T and 

B lymphocytes compared to the CR birds (128). Compared to chicks at hatch, increased pro-

inflammatory cytokines and chemokines, such as interleukin (IL)-1, IL-8, and K203, were 

observed in the gut of 2-day-old chickens after initial contact to feed and bacteria (129). The gut-

associated lymphoid tissue (GALT) of chickens consists of the cecal tonsils, the Meckel’s 

diverticulum, and the bursa of Fabricius. Bar-Shira et al. reported that the T and B cell 

maturation in the GALT is closely related to the development of the chicken gut microbiota 

(129). The initial innate immune response consists of a heterophil response in combination with 
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maternal antibodies followed by a secondary mucosal response after feeding and the presence of 

microbiota in the gut (130). Furthermore, the changes of intestinal T-cell receptors over time 

have been shown to be dependent upon the gut microbiota by comparing GF and CR chickens 

(131). Goblet cell mucin production was also impacted by the microbiota. Forder et al. compared 

the small intestinal mucin profile between CR chicken and chickens with limited microbiota, and 

found that the intestinal mucin profile of the CR birds was indicative of mature goblet cells, 

suggesting that increased microbial exposure leads to mature goblet cell formation (132).  

Correlations have been made between the relative abundance of different bacteria and a 

series of cytokine expression levels in the chicken gut. For example, Escherichia/Shigella, 

Parasutterella, and Vampirovibrio have been associated with the expression of the pro-

inflammatory cytokine gene IL-6 in the cecal tonsils (13), whereas Ruminococcus, Clostridium, 

and Lactobacillus were reported to be negatively correlated to the expression of the pro-

inflammatory cytokine gene interferon gamma (IFN-γ) and IL-6 in the cecal tonsils and small 

intestine (133, 134). These studies indicated that the gut microbiome composition is connected to 

the host intestinal immune status. 

One mechanism by which the microbiota promotes host health is through the production 

of SCFAs, particularly in modulating the host immune status. Complex interactions between 

SCFAs, gut microbes, and the host immune system have been reviewed by van der Hee & Wells 

(135). Briefly, SCFAs are imported into enterocytes and tissues via transporters and paracellular 

transport. SCFA receptors expressed on enterocytes and immune cells in the lamina propria and 

mucosal lymphoid tissue can activate signaling pathways to regulate host immune response 

according to the SCFA concentration to maintain intestinal homeostasis (135). For example, 

butyrate exhibited anti-inflammatory properties and also could be used as a source of energy for 
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enterocytes (136). Butyrate signaling through G-protein coupled receptors (e.g. FFA2, FFA3, 

and GPR109a) can confer anti-inflammatory properties in the GIT by down-regulating the 

expression of cytokines and chemokines (137). Intestinal macrophages and dendritic cells 

respond to the presence of butyrate through the niacin receptor, and thereby lead to increased 

production of the anti-inflammatory cytokines (e.g. IL-10), enhancing Treg cell differentiation to 

maintain gut homeostasis (118). Thus, SCFA producers in the gut are of great importance to the 

host health from an immunologic viewpoint. In fact, it has been shown that butyrate producers in 

the chicken gut, such as members in Lachnospiraceae family, were shown to exhibit anti-

inflammatory effects by significantly increase peripheral Treg cells and IL-10 monocytes (138).  

On the other hand, disruption of the intestinal microbial homeostasis, for example, 

pathogen or opportunistic pathogen over-growth, can result in dysbiosis and lead to altered gut 

immunological profile and even expression of diseases. With an increase in pathogens in the 

microbiota, the pathogen-associated molecular patterns (PAMP) and damage-associated 

molecular patterns (DAMP) stimulates the pattern recognition receptors such as membrane-

bound Toll-like receptors in the gut epithelium, and therefore activate myeloid differentiation 

factor 88 (MyD88). MyD88 activation will cause the nuclear translocation of nuclear factor 

kappa-B, and initiate the onset of inflammation, which decreases gut integrity for the infiltration 

of immune cells coming from the lamina propria or mucosal lymphoid tissue (139). Decreased 

gut integrity also allows pathogens, PAMP, and DAMP into the circulation, reaching other 

organs such as liver and spleen, and triggering systemic inflammation. When pathogens, PAMP, 

or DAMP reach the liver, similar to the intestine, they will trigger the onset of inflammation 

recruiting immune cells. In addition, the gut microbiota exhibits the ability to modulate bile acids 

and thereby modifies the signaling properties and subsequent actions of host bile acid receptors 
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(140, 141). It was shown that the gut microbiota influenced bile acid profile and farnesoid-X 

receptors signaling (140), which has been associated with inhibition of inflammation and 

improved gut integrity (142). In turn, bile acids can also influence the intestinal microbial 

composition (143, 144). Moreover, the host can also influence the intestinal microbes via IgA 

antibody production and secretion into the intestine through the bile duct (145), making it more 

effective in regulating the gut microbial populations. 

 

1.1.7 Effects of Chicken Gut Microbiota on Pathogen Defense 

Both poultry and zoonotic pathogens have long been a major concern to the poultry 

industry. The pathogens harbored by chickens are capable of causing severe illness in both 

humans and poultry. One prevalent pathogen is Salmonella, which makes up a small portion of 

the chicken intestinal microbial community (18). Salmonella can cause diarrhea, fever, 

abdominal pain, and can be fatal in the immunocompromised populations (e.g. infants, pregnant 

women, senior citizens, or immunosuppressed patients) (146).  

Salmonella pathogenicity in chickens were found to be age-dependent. Young chickens 

are the most susceptible to Salmonella infection, especially in first few days post-hatch, and 

pathogen susceptibility is decreased in mature chickens when their gut microbiota are more 

diverse and stable (10). In fact, the concept of commensal competitive exclusion (CE) was first 

proposed in poultry studies regarding excluding Salmonella colonization in the chicken gut (10). 

Nurmi and Rantala found that commensal members of the chicken gut microbiota inhibited 

Salmonella enterica colonization by competitive exclusion (10, 147). Subsequent studies 

reported that introducing adult chicken cecal content or the bacteria derived from the mature 
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chicken gut to young chicks could significantly reduce Salmonella infection (23, 148). These 

studies solidified that the early development of the gut microbiota in chicken plays an important 

role in pathogen defense.  

Research on the application of CE advanced from studying Salmonella exclusion, to 

other poultry-related pathogens, for example Campylobacter. Campylobacter is one of the most 

important zoonotic pathogens that is highly associated with poultry (149). Colonizing the lower 

intestinal tract of the chickens, some species of Campylobacter, namely C. jejuni and C. coli, are 

a contributor to human illness resulting in campylobacteriosis. For a long time, C. jejuni has been 

considered as a commensal of the chicken microbiota as the colonization of C. jejuni in the 

chicken gut did not seem to cause obvious clinical signs (150). However, recent studies reported 

that C. jejuni colonization could increase pro-inflammatory cytokine gene expression in the 

chicken gut (151),  and impact the gut epithelium, which led to pathogen translocation (152, 

153). Attempts to exclude Campylobacter via CE have been made. Colonizing young broiler 

chicks with a diverse set of adult chicken commensal bacterial isolates succeeded in reducing 

Campylobacter jejuni colonization (154, 155).  

In addition to the potential impact on human health by zoonotic diseases, the economic 

impact of poultry diseases is a major concern of chicken producers. Bacterial pathogens such as 

Clostridium perfringens can cause necrotic enteritis, resulting in reduced growth and feed 

efficiency, and in severe cases, increased mortality (156). The annual economic losses caused by 

necrotic enteritis was estimated to be over US$6 billion globally (157). To date, in-feed 

antimicrobial additives are used in broiler farming to control necrotic enteritis. Concerns over the 

spread of antimicrobial resistance from agriculture has led to legislation and consumer pressure 

to reduce antibiotic use in animal production globally (158). Efforts have been made to find 
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effective alternatives of antimicrobial additives to control necrotic enteritis. Previous research 

has demonstrated that using a cocktail of probiotics reduced the level of cecal C. perfringens and 

associated intestinal lesions, which showed the potential to be an alternative to antibiotics (159). 

Overall, these studies have demonstrated the importance of the microbiota in pathogen defense in 

the chicken gut, which have proven to have potential in preventing and controlling pathogens in 

chickens. 

 

1.2 The Potential Effects of the Broiler Production Environments on the Commercial 

Broiler Chicken Microbiota 

1.2.1 Current Chicken Barn Sanitation Practices in the Canadian Poultry Industry 

As discussed above, the relatively high hygiene levels of hatcheries and the absence of 

the hens at hatch have adverse effects on the development of broiler healthy microbiota (160). In 

practice, newly hatched chicks are delivered to the broiler production house shortly after hatch 

and receive feed and water on arrival. Therefore, broiler production houses are important in the 

initial assembly and development of the broiler gut microbiota. According to the current on-

farm-food safety assurance program by the Chicken Farmers of Canada for broiler production, 

all production barns must be sanitized with chemical disinfectants at least once annually, and the 

reuse of chicken litter from a previous flock is not allowed (161). Within the year, producers 

have the option to clean the barns by blower/sweep clean, water wash or using chemical 

disinfectants. Limited by the lack of scientific information comparing the effects of these 

cleaning practices on productivity, chicken health, and chicken gut microbiology, many 

producers continue to use chemical disinfectants after each flock assuming “the cleaner, the 
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better”. Currently, not much information is available to review how frequently chicken producers 

apply chemical disinfectants to sanitize the broiler barns in Canada. Course et al. surveyed 36 

broiler chicken producers in Ontario on barn cleaning procedures for a period of 10 months and 

reported that for the 696 barn cleaning observation, chemical disinfection was the most 

frequently used practices (48.3%) (162).  

Using chemical disinfectants may be efficient in removing microorganisms (163), but 

may also reduce the transmission of beneficial microbes derived from one flock to the next. As 

environmental chicken-derived bacteria were proven to be important in the early life gut 

microbiota assembly and development (84), the absence of these commensals may lead to 

decreased ability of the chicken gut microbiota to competitively exclude pathogens . Moreover, 

this may also result in selection of disinfectant-resistant pathogens that further increases the risk 

of pathogen contamination of chicken meat (164). To date, very limited information is available 

regarding how chemical disinfected barns affect chicken gut microbiota and intestinal health. 

Alternatively, to study the impact of the rearing environments on the assembly and development 

of the chicken microbiota, studies have been performed using recycled chicken litters. 

 

1.2.2 The Interactions between Recycled Litter, the Chicken Gut Microbiota, and the Host 

Responses 

Recycled chicken litter mainly consists of bedding material, chicken fecal waste, feed, 

water, and feathers (165). In most commercial poultry operations outside of Canada, the 

microbial communities in the recycled litter are carried over from one flock to the next (166). It 

was reported that recycled chicken litter contained bacteria ranging from 107 – 1010 CFU/g of dry 
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material (167, 168). In a production barn, recycled litter sampled from different locations also 

varied in microbial composition due to different temperatures, moistures, and litter depth (169). 

In addition, previous studies also reported different microbial compositions in recycled litters. 

Generally, members from phyla Firmicutes and Actinobacteria were reported to dominate the 

microbial communities of recycled litter. In addition, Bacillales, Lactobacillales, and 

Enterococcus were also often reported to be detected in the recycled chicken litter (89, 168, 169). 

Compared to the recycled litter, fresh litter was high in Acinetobacter, Pseudomonas, and 

Enterobacteria, whereas the used chicken litter contained more intestinal-type bacteria (89). 

Wang et al. compared the microbiota of fresh and recycled litter, and reported an increase of 

halotolerant/alkaliphilic bacteria in recycled litter indicating increased urea utilization (90).  

As discussed, exposure to recycled chicken litter had an impact on the chicken gut 

microbiota and increased pathogen defense (10, 86, 87). Particularly, the recycled litter increased 

the microbial densities in the broiler gut microbiota of chicks over the first two weeks of life, 

resulting in an increased predominance of Clostridiales and Lactobacillus spp. in the chicken gut 

in later life (89). More recently, recycled litter was reported to increase the predominance of 

some potentially beneficial bacteria, such as Faecalibacterium, a SCFA producer whose 

increased abundance in young broiler ceca continued as the chicken matured (90). As mentioned 

previously, recycled chicken litter could effectively suppress pathogen colonization in the 

chicken gut. Early studies reported significant reduction of zoonotic pathogen Salmonella 

Typhimurium and Salmonella Enteritidis in the intestine of the chickens raised on recycled litter 

comparing to sterilized recycled litter group, which suggested that the pathogen exclusion effects 

were exerted by the viable bacteria presented in the recycled litter (23, 170). Very recently, 

Valeris-Chacin et al. used 16S rRNA sequencing to study the microbiome of the chicken litter. 
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They reported that isolation frequencies of Campylobacter from the chicken litter was negatively 

associated with Bifidobacterium, Anaerosporobacter, and Stenotrophomonas relative abundance 

in the recycled litter (171).  

The chicken immune system was also found to be affected by recycled litter. Lee et al. 

compared the immune responses from chickens reared on clean litter, recycled litter from a 

previously healthy flock and recycled litter from a farm with history of a gangrenous dermatitis 

(GD) outbreak. Their results indicated that the GD litter stimulated the chicken humoral immune 

responses. Particularly, higher serum antibodies against Eimeria or C. perfringens were observed 

in chickens raised on GD litter compared with those on the fresh or used litter. In addition, 

recycled litter also decreased the expression of cecal tonsil pro-inflammatory cytokines (165). 

However, the study done by Shanmugasundaram et al. reported that compared with broiler 

chickens raised on fresh litter, those raised on used litter had increased expression of pro-

inflammatory cytokine IL-1β and IL-4 with a decrease expression of anti-inflammatory cytokine 

IL-10 in cecal tonsils (91). Reasons behind these distinct results were not further explored. It 

may be caused by the differences of the chicken age, litter microbiome, and the gut microbiota 

between these studies, or variations of environmental factors such as diets and litter 

contaminants. However, to date, there is still no consensus on whether using recycled litter 

confers beneficial or harmful effects on the chicken immune response. 
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1.2.3 Current Knowledge of Barn Disinfections and its Effects on the Barn Environmental 

Microbiology, the Chicken Gut Microbiota, and Host Health 

Currently, limited information is known regarding the effects of barn disinfections on the 

barn environmental microbiology, chicken gut microbial communities and the chicken 

performance. Recently, one study by Course et al. examined chicken barn sanitation procedures 

(i.e. dry cleaning, water cleaning, and chemical disinfection), and evaluated the effects on the 

pathogen detection odds in the barn environments (162). By comparing these cleaning methods 

on wood-floor and cement-floor broiler production barns, they found that the odds of detecting S. 

enterica were higher on water cleaning wooden floors compared to dry cleaned concrete floors; 

whereas E. coli concentration was lower in chemically disinfected barns compared to dry cleaned 

barns (162). Interestingly, they also found that the odds of having quaternary ammonium 

compound-resistant E. coli isolates were lower in full disinfected barns compared to the dry 

cleaned barns.  

To investigate the effects of rearing environment cleaning in pathogen incidences on the 

chicken gut, de Castro Burbarelli et al. examined the effects of chicken pen cleaning using 

neutral detergent versus a protocol using acidic and alkaline detergents with chemical 

disinfectants and found that the protocol resulted in increased chicken body weight at 42 days of 

age with little impact on the Campylobacter incidence at the same age (163). However, this 

study only focused on the absence/presence of Campylobacter on research-pen level without 

examining the gut microbiota or the gut nutrient metabolites, making it difficult to explain the 

increased chicken performance observed in the protocol. 
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1.3 The Effects of Distinct Microbial Communities on the Chicken Host 

In microbiome research, studying variations in microbial structure and composition can 

offer insight into complex host-microbe-metabolite interactions. Arumugam et al. first described 

three clusters in the human gut microbiota, and suggested that population-level analysis of the 

gut microbiome variation could help understand host–microbial symbiotic states, which might 

respond differently to diet and drug intake (172). Human studies revealed that the distinct 

microbial communities were correlated with long-term dietary patterns but independent of host 

phenotypes such as gender, age or body mass index (173). Compared to other animal models, 

such as mice, limited information is known regarding distinct chicken gut microbial communities 

and their effects on the host. Previously, some distinct microbial communities in the chicken gut 

microbiome had been identified (174, 175). However, in chicken studies the causes of these 

distinct microbial populations have yet to be determined.  

Kaakoush et al. reported that the chicken fecal microbiomes could be separated into 4 

robust enterotypes, namely the 1) Firmicutes-dominant, 2) the Firmicutes- and Proteobacteria-

dominant group, 3) the Firmicutes- and Actinobacteria-dominant group, and 4) the Firmicutes- 

and Bacteroidetes-dominant group (174). Particularlly, the dominant Firmicutes were 

Lactobacillus and Peptostreptococcaceae were the first 3 groups; whereas the Firmicutes from 

group 4 were dominated by Ruminococcaceae. Sharing dominance with Firmicutes, the 

dominant Proteobacteria were Escherichia-Shigella and Enterobacter; the dominant 

Actinobacteria were Corynebacterium and Brevibacterium; and the dominant Bacteroidetes were 

Alistipes and Bacteroides (174). Kaakoush and colleagues speculated one possible factor that led 

these distinct microbial communities was the rearing environment (the conventional indoor farm 

vs. free range farm). Chickens reared on the conventional indoor farm had more gram-negative 
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bacteria (e.g. Proteobacteria) in their gut, as compared to free-range chickens, highlighting that 

the rearing environments greatly influence the chicken gut microbial composition (174). 

However, the authors did not explore changes in metabolite profile or host responses, leaving the 

question of how different microbial composisions affect host health unexplained (174).  

A subsequent study of duodenum digesta using 16S rRNA sequencing and metabolomic 

techniques reported 3 distinct duodenal microbial communities, namely 1) the Bacteroides and 

Escherichia/Shigella-dominant group, 2) the Ochrobactrum- and Rhodococcus- dominant group, 

and 3) the Bacillus and Akkermansia group (175). In this study, associations between duodenal 

metabolites and the distinct microbial communities were drawn. Cellobiose, α -D-glucose, D-

mannose, and D-allose were positively correlated to the group 2 microbial communities with β-

hydroxybutyric acid being negatively correlated (175). Furthermore, the authors examined how 

these distinct microbial communities affect the host. Their results revealed that chickens 

harboring the group 2 duodenal microbiota had higher serum triglyceride level and fat deposition 

compared to the chickens with group 1 microbiota at 77 days of age (175).  

Recently, studies trying to link distinct microbial communities to specific host diseases or 

phenotypes were criticized by some researchers. They have suggested that grouping the 

microbiota of individual subjects based on the dominance of certain genera may have 

oversimplified a complex situation. However, studies on distinct microbial communities are very 

informative if they include assays measuring biomarker signatures (e.g. antibiotic resistance 

genes, functional genes, and metabolites) and robust bioinformatics to establish possible 

relationships. 

 



 26 

1.4 Gut Microbiota and Antibiotic Resistance  

In 1951, the United States Food and Drug Administration approved the use of 

antimicrobial agents without veterinary prescription. However, emerging diseases caused by 

antibiotic-resistant bacteria had caused continuously expending concern of antibiotic usage in 

livestock production. Annual global deaths linked to antimicrobial resistance (AMR) was 

projected to reach 10 million by 2025 with cumulative medical expenses and economic loss 

reaching $100 trillion dollars (176). Livestock farming accounts for over 50% of all antibiotic 

usage globally (177). Concerns over the spread of antimicrobial resistance from agriculture has 

led to legislation and consumer pressure to reduce antibiotic use in animal production globally. 

In 2003, the European Union gradually banned all in-feed administration of non-therapeutic 

concentration of antibiotic agents in the livestock industry, whilst the World Health Organization 

called for the eliminating the use of livestock growth-promoting antibiotics in the near future 

(178). In Canada, the Chicken Farmers of Canada has put great effort to progressively phase out 

prophylactic antimicrobial use in chicken farming. According to the Chicken Farmers of Canada, 

by the end of 2018 preventive usage of antibiotics that are of very high (category I) and high 

(category II) medical importance (e.g. Aminoglycosides, Carbapenems, Cephalosporins, 

Fluoroquinolones, Fusidic acid, Glycopeptides, Polymyxins, Lincosamides, Macrolides, 

Penicillins, Quinolones, Streptogramins, sulfamethoxazole)  were banned in chicken production 

(179). However, subsequent data following the antibiotics ban in the EU showed significantly 

increased broiler mortality rate correlating with decreased disease resistance (180). Therefore, 

effective alternatives of prophylactic antibiotics are highly warranted to reduce antibiotic usage 

whilst maintaining livestock productivity.  
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1.4.1 Usage of Antibiotics and Antimicrobial Resistance in Poultry Farming 

As mentioned, livestock farming was reported to account for more than 50% of the global 

usage of antibiotics, which was projected to exceed 200,000 tones by 2030 (177). AGPs were 

defined as antibiotics added as feed additives at low subtherapeutic levels for the purpose of 

improving growth and feed efficiency (181). As a consequence, AGPs apply selective pressure to 

the microbial communities in the livestock GIT, which stimulates the mutation and transmission 

of antibiotic resistance genes (ARGs) among the microbes and thus foster the increase in the 

relative abundance of resistant populations (182). Microbes carrying ARGs can be excreted 

together with animal feces to the environments causing contaminations (183). Once ARGs 

disseminate into environments such as soil and water, it increases the likelihood of human 

exposure (183). This limits the number of antibiotics that are effective for therapeutic treatments 

conducting higher incidence of disease. In this sense, livestock waste can put pressure to the 

public health system (184).  

Generally, the most frequently detected ARG classes in livestock waste include resistance 

to β-lactams (e.g. bla), macrolide-lincosamide-streptogramin (MLS) B (e.g. erm), FCA 

(fluoroquinolone, quinolone, florfenicol, chloramphenicol, and amphenicol) (e.g. fca), 

sulfonamides (e.g. sul), and tetracyclines (e.g. tet); whereas aminoglycosides (e.g. aac), 

vancomycin (e.g. van) and multidrug (e.g. mdr) have also been detected (185-187).  

In intensive broiler chicken production, antibiotics such as bacitracin, bambermycin, 

salinomycin, tetracycline, tylosin, and virginiamycin are often used (188, 189). Likely due to the 

high stocking density during production and short production cycle, the chicken gut microbiome 

were reported to have higher densities of ARGs compared to other livestock species (186). One 

important ARG reservoir in chicken production is the chicken litter. It accumulates ARG inputs 
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from the excreta and other residues like spilled feed containing ARGs during production. 

Previously, it was reported that poultry litter harbored high densities of AMR bacteria, mobile 

genetic elements (MGEs) and antibiotic residuals (190-192), and AMR bacteria were even still 

detectable in broiler production houses after removal of the used litter and after disinfection 

treatment (162).  

The commercial chicken gut microbial communities were also known to be a reservoir of 

ARGs and MGEs (the complete collection of ARGs and MGEs in a given microbial community 

were also termed as “resistome”)  (193, 194). Studies profiling human, swine and poultry 

resistomes showed that the human gut shared the highest similarities in mobile ARGs with the 

chicken gut, indicating high-possibilities of horizontal ARG transfer between humans and 

poultry  (195, 196). In particular, the poultry gut microbiota was reported to carry more than 500 

ARGs that can be classified into over 200 types, being the highest in ARG numbers and 

abundance compared to humans and swine (195).  

Currently, compared to the swine and ruminant resistome, information on the chicken gut 

resistome is still limited (197). Previously, a study across 9 European countries focusing on the 

chicken, swine and human fecal resistome revealed that the majority of ARGs found in chicken 

feces were tetracycline-, aminoglycoside-, and MLS- resistant genes (198). One recent study 

studied the fecal resistome of chickens at farms and the ones at live poultry markets in China 

(195). Generally, AMR against aminoglycoside, tetracycline, MLS, and β-lactam were more 

abundant than those associated with other classes (195). However, due to variations in chicken 

feed composition and antibiotic management between countries, it was hard to determine the 

factors affecting the chicken fecal resistome. Some previous studies have explored the effects of 

different classes of antibiotic administration on the chicken fecal resistome (199, 200). It was 
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reported that ampicillin was positively associated with the abundance of most β-lactam and 

bacitracin ARGs, and negatively correlated to the abundance of tetracycline ARGs in chicken 

feces (199). Xiong et al. reported that increased abundance of tetracycline ARGs were detected 

in chicken fecal resistome when therapeutic dosages of chlortetracyclines were added in the feed. 

Interestingly, the increased abundance of tetracycline ARGs coincided with decreased abundance 

of multi-drug resistant genes, indicating, not surprisingly, the classes and dosage of antibiotics 

involved in poultry production influence the chicken microbial resistome (200).  

 

1.4.2 Mutation and Transmission of ARGs and Antibiotic Resistant Mechanisms 

As an ancient survival strategy, microorganisms had developed antibiotic resistance to 

overcome environmental threats. The emerge of resistance to antimicrobial agents reflects an 

aspect of microbial evolution, which can be acquired by genetic mutations or horizontal gene 

transfer (e.g. transformation, conjugation and transduction) (201). Under the stress of 

antimicrobial agents (e.g. adverse growth conditions), genetic errors can occur to bacterial genes 

that lead to reduced or loss of antibiotic affinity to their targets, and therefore confer survival 

advantage to the microorganisms (202). Surviving bacteria then pass these ARGs to their 

progeny cells causing the spread of antibiotic resistance. In addition, horizontal gene transfer 

(interspecies and/or intraspecies) is also another important route for bacteria to acquire ARGs. 

Bacteria are known to transmit genes including ARGs via the acquisition of mobile genetic 

elements (e.g.  plasmid, transposons, integrons, bacteriophage, and retroviruses, etc.) naturally or 

under environmental pressure (203, 204). In this sense, misuse of antibiotics may accelerate the 

emerge of antibiotic resistance through mutation and transmission through vertical and 

horizontal gene transfer, which consequently leads to the spread of ARGs. 
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 The molecular basis of how different types of antibiotics inhibit the growth of bacteria 

were well studied and reviewed (205). Antibiotics can inhibit 1) bacterial cell wall synthesis (e.g. 

β-lactams and vancomycin), 2) protein synthesis by targeting bacterial ribosome (e.g. 

aminoglycosides, tetracyclines, and MLS), 3) DNA replication by targeting DNA gyrase (e.g. 

quinolones), 4) RNA translation by targeting RNA polymerase (rifamycin), or 4) inhibit folic 

acid metabolism (e.g. sulfonamides) (205). To survive, bacteria have developed a series of 

resistance mechanisms. The resistance mechanism details are as follows. 

To prevent accumulation of antibiotic in the bacterial cell, some bacteria alter membrane 

permeability (i.e. increasing efflux and decreasing uptake). Bacterial efflux pumps actively 

transport antibiotics out of the bacterial cells. Efflux pumps widely contribute to antibiotic 

resistance among both Gram-positive and Gram-negative bacteria. A variety of genes encode 

wide-range efflux pumps (e.g. the resistant nodulation division family and the major facilitator 

superfamily) and substrate-specific efflux pumps (e.g. tetracycline efflux pumps) (206-209).  

One other mechanism to alter the bacterial cell membrane permeability is through decreasing 

uptake. For example, Pseudomonas can decrease the membrane permeability by down-regulating 

the expression of outer membrane porin protein or by replacing porin protein with more selective 

channels to limit the diffusion of hydrophilic antibiotics (210).  

ARGs can also confer resistance through modification (protect, alter, or replace) of the 

antibiotic target sites. For example, antibiotic target protection proteins can bind to the functional 

protein, such as the bacterial ribosomal proteins, thereby help bacteria to gain resistance against 

antibiotics (211, 212). Ribosomal protection proteins (RPPs) are good examples for this 

resistance mechanism. RPPs are a group of proteins that can competitively bind to the bacterial 

ribosome subunits resulting in the protection of the targets of specific antibiotics (e.g. 
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tetracyclines, macrolides, lincosamides and streptogramin) (211). Notably, genes encoding RPPs 

were often located on mobile genetic elements (213, 214) indicating a high capability of being 

horizontally transferred. In recent years, RPP gene families encoding tetracycline-resistance 

RPPs and the erythromycin ribosome methylases (erm, MLS-resistant) were frequently identified 

in a great variety of bacteria in livestock farming-related niches  (215-222), urging a re-

evaluation of the current guideline of antibiotic usage in agriculture.  

Inactivation of antibiotics is another major mechanism of antibiotic resistance. A large 

group of ARGs can encode enzymes that can inactivate antibiotics by chemically them (223) or 

by destroying them (224). For instance, tetracycline destructases can destroy the chemical 

structure of tetracycline by oxidizing the covalent bonds of the antibiotic molecule (224). Unlike 

the alteration of permeability or change of the antibiotic targets, the ability to eliminates the 

intracellular and/or extracellular antibiotic challenge permanently by inactivation enzymes and 

destructases were considered to have a huge clinical impact (224). In fact, some recently 

developed antibiotics (e.g. tigecycline and omadacycline) had overcome resistant conferred by 

efflux pumps (225)  and RPPs (226), yet currently limited measures were available in controlling 

drug resistance by antibiotic inactivation enzymes.  

 

1.4.3 Resistance to Antibiotics Related to Poultry Production 

Aminoglycosides were used for treating enteric infection in poultry (227), and are of high 

importance in treating serious human infections (category II antibiotics) (179). Bacterial 

resistance against aminoglycosides is mainly driven by modification of target of 

aminoglycosides (the bacterial ribosome). Genes encoding either acetyltransferases (AAC(2), 
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AAC(3), and AAC(6)), nucleotidyl transferases (ANT(2), ANT(3), ANT(4), ANT(6), and ANT(9)), 

and phosphotransferases (APH(2), APH(3), APH(3), APH(4), APH(6), APH(7), and APH(9)) 

were often detected in poultry farming. 

β-lactams are one of the most important antibiotic classes in human bacterial infection 

treatments (category I). As an important member of β-lactams, penicillin was once approved as 

feed additives in Canada (189). Currently, it is highly restricted in Canadian poultry farming 

(179). Multiple resistant mechanisms against β-lactams have been documented. The major 

bacterial resistance against β-lactam, which has been well reviewed by Paterson & Bonomo, is 

exerted via the production of β-lactamases (e.g. blaTEM gene encoding extended-spectrum β-

lactamases) (228). In addition, some gram-positive bacteria showed resistance by the acquisition 

of mutated penicillin binding proteins (229). The mechanism through decreasing outer 

membrane permeability and increasing expression of efflux pumps were widely reported (230, 

231).  

The macrolide, lincosamide and streptogramin antibiotics are category II antibiotics 

(179), which are often used to treat infections caused by Gram-positive bacteria. Interestingly, 

although macrolide, lincosamide and streptogramin are completely different in molecular 

structures, they are often studied as a group (termed as “MLS”) due to the similarity in the 

inhibition of bacterial protein synthesis targeting the bacterial ribosome (232). Historically, some 

antibiotics in this group (e.g. lincomycin and virginamycin) were used as growth promoters in 

broiler chicken production (189, 233), and thus MLS-resistant genes were frequently detected in 

samples related to poultry production. The most frequently found ARGs conferring MLS-

resistance in poultry farming belongs to the erm gene family (e.g. ermB, ermC, ermG, ermF, 
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ermX), which encode rRNA methylases that modifies the bacterial ribosome environments (220-

222). 

Tetracycline antibiotics were categorized as medium importance to human use in Canada 

(category III) (179), and they were also once used as feed additives by Canadian poultry 

producers (189). Likely due to the extensive use of tetracycline for decades, high frequency and 

diversity of tetracycline resistant genes were detected in poultry (192, 198, 234, 235). 

Tetracycline antibiotics target the bacterial ribosome and inhibit protein synthesis (236). The 

mechanisms of resistance against tetracycline include antibiotic target alteration by RPPs (e.g. 

tet(W), tet(M), tet(O), tet(32), etc.), tetracycline efflux pumps (e.g. tet(40), tet(42), tet(K), etc.), 

and tetracycline inactivation enzymes (e.g. tet(X)).  

 

1.4.4 The Use of Chemical Disinfectants and its Effects on ARGs 

Biocidal agents such as benzalkonium chloride (BAC), hydrogen peroxide, 

glutaraldehyde, ethanol, sodium hypochlorite, were widely used in agriculture for disinfecting 

purposes (237). On one hand, chemical disinfectants demobilize antibiotic-resistant bacteria 

and/or destruct ARGs by applying oxidation stresses (e.g. chorine, ozone). Conversely, they 

stress bacteria to adapt; a behavior that can promote antibiotic resistance through co-selection 

(238). Currently there is no consensus on whether chemical disinfectants induce ARG 

proliferation, or if they are beneficial in controlling antibiotic resistance. Some studies indicated 

that chemical disinfectants could stimulate microbial ARG proliferation and transfer in the 

environment as a stressor (239-241). Benzalkonium chloride, a widely used quaternary 

ammonium compound for controlling bacteria, fungi and viruses, was found to increase the 
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resistance to ampicillin, cetotaxime, and sulfamethoxazole among a series of food-related 

bacterial isolates (239, 242), and co-selected ARGs (243). Sodium hypochlorite (also referred as 

liquid bleach) is widely used in hospital, agriculture, and other industries as a chemical 

disinfectant. It was shown that adapted to sodium hypochlorite, some Salmonella species also 

developed associated resistance to some antibiotics (e.g. gentamicin, chloramphenicol, and 

tetracycline, etc.) (244). Notably, some bacteria such as E. coli can enter the viable but non-

culturable state to persist from sodium hypochlorite and potentially various antibiotics (245).  

Some studies have also indicated that the use of chemical disinfectants could control 

antibiotic resistance by decreasing ARG abundance. It has been showed that quaternary 

ammonium compounds and sodium hypochlorite treatment of swine manure significantly 

decreased the abundance of selected ARGs (i.e. erm(B), erm(C), erm(F), intI1, tet(Q), and tet(X)) 

(246). It was also reported that oxidants such as chlorine and hydroxyl radical exhibited the 

potential to destroy ARG located both in E. coli cells and on plasmids (247). However currently, 

limited information is available regarding chemical disinfectant-treated rearing environments and 

their effects on the animal gut resistomes. 

 

1.6 Research Objectives and Hypotheses 

The production barn acts as an important microbial source for the chickens. Cleaning/ 

disinfection practices impact the microbial abundance and diversity of the rearing environment, 

which may influence the assembly and development of the chicken gut microbiome.  
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Objectives: This thesis was designed to evaluate the effects of barn cleaning practices at the 

production level to provide scientific evidence for the Canadian poultry industry to make rational 

decisions regarding the most appropriate barn cleaning method.  

Specifically our aims were to:  

1) assess how barn cleaning practices influence the chicken productivity, the chicken gut 

microbiota and pathogen load, as well as cecal SCFA concentrations  

2) evaluate the gut microbial functional consequences that result from the different barn cleaning 

practices, particularly with respect to the genetic potential of microbial metabolism and the ARG 

incidence of the gut microbiota; and  

3) explore how early-life distinct cecal microbial populations affect microbe-microbe 

interactions, the gut microbial functionality and the subsequent effects on host immune 

activation. 

Hypotheses:  

1) Compared to barn water-wash, the application of chemical disinfectants during barn cleaning 

will alter the composition of the chicken gut microbiota resulting in increased pathogen carriage. 

2) The use of disinfectants in barn cleaning will impact the cecal microbial functional capacities 

of nutrient metabolism and increased incidence of ARGs in the chicken gut. 

3) Distinct cecal Bacteroides composition in week-old broiler chickens results in different 

microbial functionalities that altered the cecal SCFA production and host immune status. 
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Chapter 2: THE USE OF DISINFECTANT IN BARN CLEANING ALTERS MICROBIAL 

COMPOSITION AND INCREASES CARRIAGE OF CAMPYLOBACTER JEJUNI IN 

BROILER CHICKENS* 

2.1 Introduction 

In broiler chicken production, biosecurity measures are important to maintain flock health 

and food safety. Regulations of the current on-farm-food safety assurance program require 

Canadian broiler chicken producers to clean barns with disinfectants at least annually (1). Barn 

cleanouts within the year using water wash (WW) can be done without disinfectants; however, in 

practice many producers continue to perform full disinfection (FD) using chemical disinfectants 

after each flock. Using chemical disinfectants removes a high proportion of microbes (2), but may 

also reduce the transmission of beneficial microbes between flocks. This could lead to a potential 

loss in the microbes that can out-compete pathogens in the environment. It may also result in 

selection of disinfectant-resistant pathogens that further increases the risk of pathogen 

contamination of animal products (3). To date, little information is available regarding how these 

cleaning measures affect chicken health and zoonotic pathogen colonization. Furthermore, 

emerging evidence has shown the importance of broiler commensal microbial community to 

nutrient metabolism, feed efficiency (4-6), host resistance to pathogens (7), and immune system 

development (8, 9). In chicken production, the establishment of a symbiotic microbiota has been 

shown to increase nutrient utilization (10), and prevent disease development (11). Therefore, 

establishing healthy host-microbe interactions early in production may provide a possible solution 

 
* This chapter has been published as Yi Fan, Andrew J Forgie, Tingting Ju, Camila Marcolla, Tom Inglis, Lynn M 
McMullen, Benjamin P Willing, Douglas R Korver. The use of disinfectant in barn cleaning alters microbial 
composition and increases carriage of Campylobacter jejuni in broiler chickens. Applied and Environmental 
Microbiology. 2022 May 24;88(10):e0029522. doi: 10.1128/aem.00295-22. 
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to help maintain, or even enhance broiler performance in an environment free from antimicrobial 

growth promoters. Broiler gut microbiota assembly and development is significantly influenced 

by the initial environment to which they are exposed (12). Thus, placing newly hatched broilers in 

an environment with microbiota from a previous healthy flock may advance the development of a 

commensal microbiota in broiler chickens. 

Previous work has shown that exposure to reused broiler litter altered early-life gut 

microbiota and increased infection resistance to pathogens in broiler chickens (13-15). Reused 

litter induced changes in the broiler gut microbiota of chicks over the first two weeks of life, 

resulting in an increased predominance of Clostridiales in the gut (16). More recently, the 

application of reused litter was reported to increase the predominance of some potentially 

beneficial bacteria, such as Faecalibacterium, a short-chain fatty acid (SCFA) producer whose 

increased abundance in young broiler ceca continued as the chicken matured (17). Commensal 

microbes and SCFAs are important in maintaining gut homeostasis. For example, butyrate 

increases intestinal epithelial oxygen consumption, which helps to maintain an anaerobic 

environment (18). SCFAs also modulate host immune responses by suppressing pro-inflammatory 

cytokine expression to achieve homeostasis (19).  

Both poultry and zoonotic pathogens have long been a major concern to the poultry 

industry. The poultry gut microbiota plays an important role in pathogen exclusion. For example, 

commensal members of the chicken gut microbiota inhibited Salmonella enterica colonization by 

competitive exclusion (15, 20). Colonizing broiler chicks with a diverse set of adult chicken 

commensal bacterial isolates reduced Campylobacter jejuni colonization (21). In addition to the 

potential impact on human health by zoonotic diseases, the economic impact of poultry diseases 

is a major concern of chicken producers. Bacterial pathogens such as Clostridium perfringens can 
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cause necrotic enteritis, resulting in reduced growth and feed efficiency, and in severe cases, 

increased mortality (22). To date, in-feed antimicrobial additives are used in broiler farming to 

control necrotic enteritis. Efforts have been made to find effective alternatives to control necrotic 

enteritis. Concerns over the spread of antimicrobial resistance from agriculture has led to 

legislation and consumer pressure to reduce antibiotic use in animal production globally. Previous 

research has demonstrated that using a cocktail of probiotics reduced the level of cecal C. 

perfringens and associated intestinal lesions, which showed the potential to be an alternative to 

antibiotics (23). However, antibiotics remain the most effective and widely used approach to keep 

the prevalence of C. perfringens infections low in the poultry industry (24).   

To date, limited information is available on how WW and FD affect pathogen prevalence, 

gut microbial communities, nutrient metabolism, and host responses in chickens. In this study, a 

cross-over experiment was designed using seven similar commercial chicken barns to compare 

WW and FD over the course of four production cycles at two locations. We evaluated the effects 

of barn cleaning method on the commercial broiler intestinal microbiota, occurrence of 

Campylobacter and Salmonella, abundance of C. jejuni and C. perfringens, as well as SCFA 

profile in 30-day-old broiler ceca.  

 

2.2 Materials and methods 

2.2.1 Broiler production house and barn cleaning 

A commercial broiler company in Alberta, Canada provided all the chickens and facilities 

including a total of seven similarly engineered single-storey, cement-floored production houses at 

two locations for this study. The broiler facilities were environmentally-controlled metal houses 
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with solid sidewall ventilation. Four alternating water and feed lines ran the entire length of each 

house.  

For FD, chicken manure, used litter, and organic matter were completely removed from 

the chicken house after depopulation followed by a two-step disinfection: 1) All surfaces were 

thoroughly covered with foam containing 7% sodium hydroxide, 7% 2-(2-2-butoxyethoxy) 

ethanol, 6% sodium laureth sulfate, 5% sodium N-lauroyl sarcosinate, and 5% 

tetrasodium ethylenediaminetetraacetic acid for 60 mins, and subsequently rinsed with high-

pressure followed by low-pressure water-wash with the water temperature set at 35℃; 2) after the 

broiler house was air-dried, all surfaces were covered with foam containing 10% glutaraldehyde, 

10% benzalkonium chloride, and 5% formic acid for 60 mins followed by high-pressure water 

rinse. After the two-step disinfection, broiler houses were left to air-dry overnight followed by 

placement of fresh wood shavings (~10 to 15 cm deep). For WW, manure and used litter were 

removed, followed by low-pressure water rinse with the water temperature set at 35℃ of the 

facility surfaces, air dried, and placement of fresh wood shavings (~10 to 15 cm deep). The current 

study was performed on 28 production flocks, and the FD and WW treatments were each applied 

on 14 production flocks. For each chicken barn, two flocks of each treatment were assigned 

according to the schedule shown in Table 2.1. 

 

2.2.2 Chicken management and sample collection  

Animal use for this experiment was approved by the Animal Care and Use Committee: 

Livestock of the University of Alberta following the Canadian Council on Animal Care guidelines 

(25). For each flock, 14,000 Ross 308 broiler chicks were placed at 1 day of age and confined to 
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half of the house, then allowed access to the entire house at 7 days of age. All chickens were fed 

ad libitum and reared from 1 day of age through processing at about 32-35 days of age when the 

average target live weight of 1.8 kg is reached. Each flock had a placement based on a maximum 

stocking density of 30 kg/m2. Overall mortality rate and body weight of broilers at day 32 were 

recorded for each barn.  

To investigate if Campylobacter and Salmonella were present after barn cleaning, 

environmental samples including litter samples, feeding pan and drinkers, as well as shoe-cover 

samples were collected 3-6 hours before chicken placement of each flock. For litter samples, 

approximately 50 g subsamples of bedding material were collected from distinct areas in the barn: 

along water and feeder lines; between water and feed lines; near the wall corners; near the barn 

entrance and near the ventilation fans. From each of these areas, litter samples were collected from 

the surface to the cement floor with sterile gloves and Whirl-Pak sample bags (Whirl-pak, 

Madison, WI, USA). Subsamples were sealed and transported to the laboratory on ice. 

Immediately after arriving the laboratory, samples from the same barn were pooled (resulting in ~ 

200 g of litter/barn) in a sterile sampling bag containing 250 ml of 0.1% buffered peptone water 

and homogenized by a Seward Stomacher 400 (Seward, Worthing, West Sussex, UK) for 1 min. 

To collect feeding pan and drinker swabs, Whirl-Pak Speci-Sponge® Sampling Bag (Whirl-

pak) were used. For feeding pan swabs, 10 ml of 0.1% buffered peptone water (Oxoid, 

Basingstoke, Hampshire, UK) was added to the sampling bag to re-hydrate the sampling sponge. 

About 50 cm2 of the feeding pan surfaces were carefully swabbed using the re-hydrated sampling 

sponge. For drinker swabs, ~ 5 ml of the water coming from the drinking nipple was collected 

using the de-hydrated sponge followed by swabbing approximately 15 cm of the waterline on both 

sides of the drinking nipple. In each barn, 10 feeding pans and 10 drinkers in multiple locations 
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were randomly selected to subsample. Each sampling bag was used to swab 1 drinking nipple or 

1 feeding pan. Sterile gloves were changed before each swab. Subsamples were sealed and 

transported to the laboratory on ice. Immediately after arriving at the laboratory, the 10 subsamples 

of drinker/feeding pan from the same barn were pooled together in a sterile stomacher bag 

aseptically.  Buffered peptone water (0.1%) was added to a 1 in 10 dilution. Pooled samples were 

homogenized for 1 min at 260 using a Seward Stomacher 400 before processing for 

Campylobacter and Salmonella detection. 

To collect shoe-cover samples, sterile DuPont Tyvek® shoe covers (Wilmington, DE, 

USA) were used. Briefly, three layers of sterile shoe-covers were put on at the entrance of the 

barns before environmental sampling. Shoe-covers were used to walk through the barn following 

the feeder and water lines. After walking through the whole barn, the outer layers of the shoe-

covers were collected using a Whirl-Pak sample bag (Whirl-pak). Sample bags were sealed and 

put on ice before arriving at the laboratory. In the laboratory, the shoe-cover sample was 

transferred to a sterile stomacher bag with 100 ml of 0.1% buffered peptone water, followed by 

homogenization for 1 min using a Seward Stomacher 400 before processing for Campylobacter 

and Salmonella detection. 

At broiler placement day and day 30, five broilers per flock were euthanized using cervical 

dislocation for sampling. To ensure representative sampling, the five broilers were each randomly 

selected from different areas within each barn.  

Broiler cecal content collections were conducted aseptically. Briefly, the sampling table 

was cleaned with 70% ethanol before and between every broiler dissection. Tools and collection 

tubes were autoclaved and tubes were sealed until samples were added. Approximately 100 mg (at 
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placement) and 300 mg (day 30) of cecal contents were collected and placed in sterile 2 ml 

Eppendorf tubes containing 1 ml of 0.1% buffered peptone water (Oxoid) for detection of cecal 

Campylobacter and Salmonella by enrichment. In addition, approximately 500 mg of cecal 

contents were frozen on dry ice immediately until transported to the lab, and stored at -80 ℃ for 

subsequent DNA extraction. 

 

2.2.3 Campylobacter and Salmonella enrichment  

For genus Campylobacter enrichment and detection, ~50 mg of cecal contents were 

homogenized with 950 μl sterile peptone water. Homogenized cecal contents, litter samples, 

feeding pan and drinker swabs, as well as shoe-cover samples were incubated at 37°C overnight 

followed by inoculation in Bolton Campylobacter selective broth in 1:10 ratio (Oxoid) at 42°C for 

24 h under microaerobic conditions (5% O2, 10% CO2, 85% N2). Aliquots (100 μl) were serially 

diluted and spread onto Preston Campylobacter selective agar (Oxoid,). For Salmonella 

enrichment, universal pre-enrichment broth (Sigma-Aldrich, Oakville, ON, Canada) was used to 

homogenized cecal contents and the environmental samples in 1:10 ratio. All homogenized 

samples were incubated aerobically at 35°C for 24 h. The cultured broth was transferred to 10 ml 

of tetrathionate broth (Difco, Becton, Dickinson and Company Sparks, MD, USA) and to 10 ml of 

selenite cystine broth (Difco). The tetrathionate broth and selenite cystine broth were incubated 

for 24 h at 42°C and 35°C, respectively. After incubation, tetrathionate and selenite cystine broths 

were streaked onto xylose-lysine-tergitol 4 agar (XLT-4; Difco) and brilliant green sulfa agar 

(BGS; Difco) plates, respectively. Plates of XLT-4 and BGS agar were incubated at 35°C for 24 

h.  
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Occurrence score for detected pathogens was calculated to evaluate the effect of cleaning 

method on pathogen occurrence in the chicken ceca. Occurrence score was defined as the number 

of positive broilers divided by the total number of broilers sampled from the same flock within 

each barn.  

 

2.2.4 DNA extraction and microbiome analyses 

Total DNA was extracted from homogenized litter samples and cecal contents using the 

QIAamp Fast DNA Stool Mini Kit (Qiagen, Valencia, CA, USA) with an additional bead-beating 

step with ~200 mg of garnet beads at 6.0 m/s for 60 s (FastPrep-24 5G instrument; MP Biomedicals 

Inc., Santa Ana, CA, USA). Amplicon libraries were constructed according to the manufacture 

protocol from Illumina (16S Metagenomic Sequencing Library Preparation) targeting V3-V4 

region of the 16S rRNA gene (primers: Forward: 5′-TCGTCGG 

CAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG-3′; Reverse: 5′-

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACT ACHVGGGTATCTAATCC-

3′). An Illumina MiSeq Platform (2×300 cycles; Illumina Inc., San Diego, CA, USA) was used for 

a paired-end sequencing run. All sequences were submitted to NCBI Sequence Read Archive 

under BioProject ID: PRJNA767330. The quality of sequencing reads was assessed using FastQC. 

Sequenced reads were processed using Quantitative Insight into Microbial Ecology2 (QIIME2) -

2020.6 (26). Divisive Amplicon Denoising Algorithm 2 was used to denoise and generate paired-

end representative read with truncation lengths of 280 bp forward and 260 bp reverse reads (27). 

Amplicon sequence variant (ASV) feature table was created based on the denoised results. 

Qiime2’s q2-feature-classifier was used to assign taxonomy (28) with a pretrained classifier 

“Greengenes 13_8” (99% identity) (29). Analyses of diversity were done by the ‘diversity core-
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metrics-phylogenetic’ command normalizing to a sampling depth set by the sample with the lowest 

number of reads (17,309). Chao1 and Shannon diversity indices were calculated with ‘diversity 

alpha-phylogenetic’. Significance of alpha diversity was determined by ‘diversity alpha-group-

significance’. Beta diversity was determined in QIIME2 using the unweighted- and weighted- 

Unifrac distance metric and a principal coordinate analysis (PcoA) was plotted using phyloseq 

package in R (version 3.6.1). Permutational Multivariate Analysis of Variance (PERMANOVA) 

based on the unweighted- and weighted-UniFrac distance matric was used to determine whether 

there were significant differences in community structures between treatments (adonis function). 

Differentiate taxa relative abundance between treatments was determined by the analysis of 

composition of microbiome (ANCOM) in QIIME2 (26).  

 

2.2.5 Quantitative PCR (qPCR) 

A qPCR assay was used to quantify C. jejuni, C. perfringens as well as total cecal bacteria 

using hippurate hydrolase (HipO), necrotic enteritis B-like toxin (NetB) and the targeted 16s rRNA 

gene, respectively (Table 2.2). Total genomic DNA was extracted from cecal contents as described 

above. The concentration of DNA was determined by a NanoDrop 2000c spectrophotometer 

(Thermo Fisher Scientific, Waltham, MA, USA). PerfeCTa SYBR Green Supermix (Quantabio, 

Beverly, MA, USA) was used for qPCR assays which were conducted on an ABI StepOne real-

time System (Applied Biosystems, Foster City, CA, USA) following the setup of 95°C for 3 min 

and 40 cycles of 95°C for 10 s, 60°C for 30 s. To generate targeted gene standards, the 16s rRNA 

gene, HipO and NetB were amplified by PCR with primers as listed. Concentrations of the 

amplified gene fragments were determined by a Quant-iT™ PicoGreen™ dsDNA Assay Kit 

(Invitrogen, Waltham, MA, USA) and used for standard curve. Gene copy numbers were 
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determined using the Relative Standard Curve Method, and normalized to the weight of cecal 

content used for bacterial DNA extraction. 

 

2.2.6 Short chain fatty acid (SCFA) analysis 

Approximately 30 mg per sample of snap frozen cecal content was weighed, followed by 

homogenization with 25% phosphoric acid. Samples were centrifuged at 21,130 x g for 10 min 

and the supernatant was collected and filtered using a 0.45 μm filter. Isocaproic acid (23 μmol/ml) 

was added at a 1:4 ratio to samples as an internal standard. Samples were analyzed on a Bruker 

Scion 456-Gas Chromatography instrument (Bruker, Billerica, MA, USA). 

 

2.2.7 Statistical analyses 

Unless otherwise stated, statistical analyses were conducted using GraphPad Prism 8 

(Graphpad Software, San Diego, CA, USA). Because no location effects were observed for any 

measurements (i.e. chicken performance and gut microbial structure), all data were analyzed based 

on treatment across location. Statistically significant differences were determined (p < 0.05) by an 

unpaired student’s t-test for parametric data (i.e., analyses of performance, qPCR and SCFAs). 

The Kruskal–Wallis test was used to determine the significance of non-parametric data (i.e., 

microbiome alpha diversity indices). The Spearman correlation was used to correlate SCFA 

concentration and bacterial relative abundance. Correlation significance was determined by psych 

package and visualized using corrplot package in R (version 3.6.1). 
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2.3. Results 

2.3.1 Chicken 32-day body weight and mortality were not affected by the cleaning methods 

The 32-day average body weight in the WW group was comparable to the FD group (Figure 

2.1a, p = 0.22). In addition, no difference in 30-day mortality was observed between the two barn 

cleaning treatments (Figure 2.1b, p = 0.91), suggesting that the cleaning method had a minimal 

impact on the flock performance. 

 

2.3.2 Chicken barn FD resulted in increased Campylobacter occurrence in the 30-day-old 

chicken ceca  

Salmonella was not detected through enrichment in any of the samples collected through 

the study, therefore, the impact of treatment on Salmonella shedding could not be assessed. To 

evaluate the effect of cleaning method on the pathogen occurrence, an occurrence scoring method 

was used. In the Campylobacter enrichment assay, no Campylobacter were detected from the litter 

samples, feeding pan and drinker swabs, or the shoe-cover samples before broiler placement. At 

the broiler placement day, the Campylobacter occurrence scores were not different between the 

two treatments (Figure S1). However, at day 30, the WW group exhibited a significantly lower 

Campylobacter occurrence score compared to the FD group (p < 0.05) (Figure 2.2). 

Campylobacter was detected in at least one sample from each FD flock. Therefore, the WW rearing 

environment reduced the occurrence of Campylobacter colonization in the 30-day-old broiler ceca.  
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2.3.3 Chicken barn FD increased C. jejuni abundance 

The quantification of cecal microbial load using qPCR showed that the WW group did not 

differ from the FD group in cecal C. perfringens load (5.81 and 6.06 log10 copies/g of netB for 

WW and FD group, respectively, p = 0.20) (Figure 2.3a). Consistent with the Campylobacter 

enrichment assay results, the WW group exhibited approximately 0.9-log10 lower hipO copy 

numbers compared to the FD group (Figure 2.3b, 8.13 and 9.03 log10 copies/g of hipO for the WW 

and FD group, respectively, p < 0.05), indicating that the decreased sanitation stringency reduced 

C. jejuni colonization in the mature chicken ceca. Furthermore, the barn cleaning method did not 

affect the total bacterial load in the chicken ceca (Figure 2.3c, p = 0.15).  

 

2.3.4 Barn cleaning methods had subtle impacts on the 30-day-old chicken microbiome  

On average, 42,943.3 ± 2,757.8 (mean ± SEM) reads per cecal sample were generated and 

processed by QIIME2 pipeline, resulting in a total of 3,845 ASVs. For litter samples, an average 

of 7,847.8 ± 1,209.2 (mean ± SEM) reads per sample were generated and processed, resulting in 

1,780 ASVs. When focusing on the effect of different cleaning methods, the cecal microbiomes of 

broilers from the WW group and FD group had comparable richness and evenness indicated by 

alpha diversity indices (chao1, p = 0.71; and Shannon, p = 0.25) (Figure 2.4). Beta diversity 

analyses based on both weighted- and unweighted-Unifrac matrices suggested that cecal microbial 

communities in WW group differed from the FD group (adonis p = 0.05, R2 = 0.012 and adonis p 

< 0.01, R2 = 0.013 for weighted-Unifrac and unweighted-Unifrac matrix, respectively) (Figure 

2.5). Differences in abundances of two bacterial taxa were also suggested by ANCOM (Figure 

2.6). The genus Helicobacter was more predominant in the WW group (W = 85), whereas the 

family Bacillaceae was more predominant in the FD group (W = 66). These results suggested that 
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the barn cleaning treatments influenced the relative abundance of two bacterial taxa, and in turn 

led to a modest but significant impact on overall structure of the chicken gut microbiota. However, 

the cleaning method did not lead to changes in microbial structures of the litter samples (Figure 

S2, Figure S3).  

 

2.3.5 Cecal SCFA profile differed by cleaning methods 

Cecal contents were subjected to gas chromatography to measure cecal SCFA 

concentration. The WW group showed significantly greater total SCFAs than the FD group (p < 

0.01) (Figure 2.7a). Specifically, acetate (Figure 2.7b), propionate (Figure 2.7c) and butyrate 

(Figure 2.7d) concentration in the WW group were higher than that in the FD group. A trend for 

higher valerate concentration (Figure 2.7e, p=0.06) was also observed in WW broilers. Spearman 

correlation between SCFA concentration and bacterial relative abundance suggested a series of 

microbes that are correlated to the altered SCFA profile between treatments (Figure 2.8). Total 

SCFAs and acetate concentration were negatively correlated with the genus Campylobacter, and 

members from orders RF32 and YS2 (p < 0.05). On the other hand, an unclassified genus 

belonging to the order of Clostridiales was positively associated to total SCFAs, acetate and 

butyrate concentrations (p < 0.05). Propionate concentration was negatively associated to the 

genus Lachnospira (p < 0.01) and an unclassified genus of the family Enterobacteriaceae (p < 

0.05), whereas positively associated to the genus Odoribacter (p < 0.05), and an undetermined 

genus of the family Clostridiaceae (p < 0.05).  
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2.4 Discussion 

This study was the first to characterize the impact of FD and WW on chicken gut 

microbiota in a commercial setting. Previously, de Castro Burbarelli et al. examined the effects of 

poultry barn cleaning using neutral detergent versus a protocol using acidic and alkaline detergent 

with chemical disinfectants (2). In accordance with their results, we found that compared to FD, 

the WW did not have compromised flock mean body weight or increased mortality rate at day 32 

in production. Unfortunately, we were not able to collect feed consumption data and are therefore 

not able to comment on any potential impacts on feed conversion.  

Although limited research has explored how barn cleaning practices affect the development 

of chicken intestinal microbial communities, especially in the context of commercial production, 

efforts have been made to study the effect of reused litter on chicken gut microbiota. Some 

laboratory-scale research suggested that reused litter mainly influences broiler gut microbiota at 

early ages. Cressman et al. reported that compared to the reused litter group, broilers provided 

fresh litter had greater bacterial alpha diversity in ceca at 7 days of age (16). However, no treatment 

effects on the gut microbiota were observed in the later timepoints. In addition, broilers reared on 

fresh litter were colonized by microbes identified in fresh litter including Lactobacillus, 

unclassified Lachnospiraceae and Enterococcus, whereas broilers reared on reused litter were 

colonized by typical poultry intestinal bacteria, such as members from the order Clostridiales (16). 

Similarly, Wang et al. reported that at both day 10 and day 35 of age, broiler gut microbiota was 

altered by the reused litter treatment with increased predominance of Faecalibacterium prausnitzii 

in ceca (17). In the current study, no treatment effect on alpha diversity of the 30-day-old broiler 

gut microbiota was observed, and only a modest effect was shown on the beta diversity between 

FD and WW treatments. This may be explained by the fact that fresh litter, which acts as a physical 
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barrier, was placed in both WW and FD barns. In the current study, we did not observe differences 

of the litter microbiota between treatments. In addition, reused litter may provide a more functional 

ecological niche compared clean litter. Generally, reused chicken litter is a mixture of bedding 

material and excreta, which offers more surfaces and available nutrients for microbes to attach and 

survive on. In addition, as chickens are coprophagic, the consumption of litter material likely 

increases the opportunity for successful microbial transmission from one flock to the next (30). In 

the current study, only 5 broilers per flock were selected for 16S rRNA gene amplicon sequencing 

and Campylobacter and Salmonella enrichment. While a larger sample size would strengthen the 

conclusions, previous microbiome studies report that individuals housed together, particularly 

coprophagic animals, show less variation in the intestinal microbiota with strong co-housing 

effects (31, 32). A clear flock effect was also observed in the current study (data not shown). Rather 

than sampling more broilers from each barn, we chose to sample more barns. In addition, the cross-

over design of the animal trial can also help eliminate bias brought by management and/or housing 

facilities. 

Helicobacter was found to be less abundant in the FD group at day 30 compared to the 

WW group. Interestingly, Helicobacter is a genus identified as a disappearing member of the 

human gut microbiome, and may also be associated with increased use of disinfectants (33). In 

avian species, members in genus Helicobacter have been detected in wild birds (34). Studies on 

the relationship between Helicobacter spp. and chicken host are highly variable. Some members 

of genus Helicobacter are considered opportunistic pathogens in chickens. For example, 

Helicobacter pullorum infection was found to cause mild lesion in the chicken ceca (35). However, 

the effects of Helicobacter on host health can vary between different bacterial strains within 

species (36). Yin et al. reported that Helicobacter abundance increased in response to α-amylase, 
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amylopectase and glucoamylase supplementation in a corn-based diet, and was associated with 

increased starch digestibility and higher mature bodyweight (37). In the current study, 

Helicobacter positively correlated to branched-chain fatty acids (BCFAs) isobutyrate and 

isovalerate (Figure 2.7). BCFAs are often used as indicators of protein catabolism (38). Currently, 

the direct relationship between BCFAs and their impact on host health is still unclear (39). It is 

reported that BCFAs modulate adipocyte lipid and glucose metabolism, and contribute to increased 

insulin sensitivity (40). With 16S rRNA gene amplicon sequencing, it is difficult to discriminate 

bacteria to the species or strain level. Therefore, our identification of Helicobacter as the genus of 

increased predominance in the WW group needs to be further studied. In addition, information on 

metabolic functionality is also warranted to understand the role of Helicobacter in the chicken gut. 

Interestingly the FD broilers showed increases in the relative abundance of the family 

Bacillaceae. Members of the Bacillaceae family, such as Bacillus are Gram-positive, rod-shaped 

bacteria that can form endospores to survive in harsh physical and chemical environments (41). It 

is possible that the chemical conditions given by FD treatment provided a selective pressure that 

led to the increased level of Bacillaceae. Some members in this order have the ability to produce 

antimicrobial peptides, and are recognized as potential beneficial bacteria (42). Some Bacillus 

species, such as Bacillus licheniformis and Bacillus subtilis, have been commercially added into 

poultry feed as probiotics (43). However, not all Bacillus species are beneficial. Bacillus cereus is 

a food-borne pathogen that causes diarrhea (44). Recently, the prevalence of the B. cereus group 

made up 50% of Bacillus spp. isolates from retail chicken products (45). In addition, some non-B. 

cereus species were found to carry virulence genes and exhibited the same phenotypic virulence 

characteristics as B. cereus (46). Furthermore, tests of antimicrobial resistance have identified 

multi-drug resistant isolates regardless of virulence factors, indicating that further evaluation of 
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the impact of Bacillus on food safety and public health is needed (45). In this sense, the effect of 

barn disinfection on increasing Bacillaceae may need to be carefully assessed. 

The reduced Campylobacter load in the current study with WW treatment is consistent 

with previous studies showing that reused litter has the potential to reduce gut pathogen abundance 

in broiler chickens. It has been reported that reused litter reduced the colonization of Salmonella 

enterica serovar Typhimurium and Salmonella enterica serovar Enteritidis in infected chickens 

(13, 47). In the current study, although Salmonella was not detected in any of samples by the 

enrichment assay, our results supported that the WW treatment did not increase Salmonella 

occurrence in the chicken intestine. Changing from FD to WW for within-year washing would be 

associated with lower labor and material costs for cleaning. To date, limited data is available 

regarding the effects of cleaning treatments and disinfectants on Campylobacter occurrence and 

abundance in the chicken intestine. De Castro Burbarelli et al. reported a trend that Campylobacter 

was more frequently detected in the intestine of the stronger disinfection group (2), although the 

study was conducted in a controlled research setting. Furthermore, it has been shown that 

colonization of young chicks with bacterial cocktails of mature chicken commensal isolates 

reduced colonization by C. jejuni (48). Therefore, the FD treatment in the current study may have 

eliminated some microbes from the previous flock which can potentially compete with 

Campylobacter. 

While the effects of cleaning method on the gut microbial composition were relatively 

modest, changes in concentrations of microbial metabolites, SCFAs, were observed. SCFAs 

enhance intestinal integrity as direct energy sources to enterocytes (49). Moreover, complex 

interactions between SCFAs, gut microbes, and the host immune system have been well 

documented (50). Briefly, SCFAs from intestinal microbe fermentation are imported into 
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enterocytes and tissues via transporters and paracellular transport. SCFA receptors expressed on 

enterocytes and immune cells in the lamina propria and mucosal lymphoid tissue can activate 

signaling pathways to regulate host immune response according to the SCFA concentration to 

maintain intestinal homeostasis (50). Butyrate signaling through G-protein coupled receptors can 

confer anti-inflammatory properties in colonic dendritic cells by down-regulating the expression 

of cytokines and chemokines (19). In the present study, there were negative correlations between 

the relative abundance of Campylobacter and total SCFAs, acetate, and butyrate concentrations in 

the ceca. It has been suggested that SCFAs, especially butyrate, had shown bactericidal effect on 

Campylobacter in vitro (51). More recently, Awad et al. reported that C. jejuni infection led to 

reduced acetate and butyrate concentration in the chicken ceca (52). Adding microencapsulated 

butyrate to feed was also found to reduce Campylobacter colonization in the chicken intestine (53). 

Together with our results, it is reasonable to suggest that the FD treatment discriminated against 

beneficial commensals in the gut environment, which could compete with or inhibit 

Campylobacter by producing SCFAs. 

 

2.5 Conclusion 

Compared to FD, we found that WW can be beneficial to broiler chicken production by 

inhibiting Campylobacter jejuni colonization in the chicken gut with reduced cleaning costs. 

Further studies examining other barn disinfection practices and testing for other pathogens are 

warranted to identify the best practices to minimize pathogen load and maintain animal 

performance. 
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Table 0.1 Production cycles, barns and cleaning treatment schedule. 

  Barn A Barn B Barn C Barn D Barn E Barn F Barn G 

Cycle 1 FD FD FD FD FD WW WW 

Cycle 2 FD FD WW WW FD WW WW 

Cycle 3 WW WW WW WW WW FD FD 

Cycle 4 WW WW FD FD WW FD FD 

WW, water-wash; FD, full disinfection 
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Table 0.2 Primers used for qPCR assay of broiler chicken cecal samples collected at 30 days of 

age. 

Target gene Primer 

orientation 

Primer Sequence Reference 

Total bacteria 16S 

rRNA gene 

Forward 5′-CGGYCCAGACTCCTACGGG-3′ (54) 

Reverse 5′-TTACCGCGGCTGCTGGCAC-3′ 

HipO 

(124bp) 

Forward 5′-TCCAAAATCCTCACTTGCCATT-3′ (55) 

Reverse 5′-TGCACCAGTGACTATGAATAACGA -3′ 

NetB 

(196bp) 

Forward 5′-TGATACCGCTTCACATAAAGGTTGG-3′ (56) 

Reverse 5′-ATAAGTTTCAGGCCATTTCATTTTTCCG-3′ 
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Figure 0.1 Broiler chicken flock performance at 32 d of age.  

(a) Flock mean body weight at day 30, 1782 ± 30.09 and 1780 ± 20.59 g for FD and WW, 

respectively (n=12 flocks/treatment, mean ± SEM; FD, full disinfection; WW, water-wash); (b) 

Flock mean mortality rate at day 30, 0.061 ± 0.0074 and 0.059 ± 0.0071 for FD and WW, 

respectively (n=14 flocks/treatment, mean ± SEM; FD, full disinfection; WW, water-wash). 
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Figure 0.2 Broiler chicken cecal Campylobacter occurrence score at 30 d of age.  

Results showed the mean flock score ± SEM (n = 14/treatment, *, p < 0.05). Campylobacter 

occurrence score = number of pathogen positive broilers/total number of broilers sampled per barn. 

WW, water-wash; FD, full disinfection.  
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Figure 0.3 Cecal bacteria qPCR quantification.  

Broiler chicken (30 d of age) cecal qPCR targeting C. perfringens netB gene (a), C. jejuni hipO 

gene (b), and bacterial 16S rRNA gene (c). Results are the average copy number of each target 

gene (mean ± SEM, n=70/treatment, **, p < 0.01, n.s., p > 0.05). WW, water-wash; FD, full 

disinfection. 
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Figure 0.4 Alpha diversity of broiler chicken cecal microbiome at 30 d of age. 

Box-plots showing alpha diversity in samples using Chao1 index and Shannon index 

(n=70/treatment, n.s., p > 0.05). WW, water-wash; FD, full disinfection. 
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Figure 0.5 Principal coordinate analysis plots based on weighted- and unweighted- Unifrac 

distance matrices. 

Barn cleaning treatments had modest but significant effects on microbial community structure in 

the chicken ceca at 30 d of age (n=70/treatment). WW, water-wash; FD, full disinfection. 
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Figure 0.6 Relative abundance of genus Helicobacter and family Bacillaceae. 

The bar plot shows the relative abundance of taxa of interests of each treatment with individual 

values (n=70/treatment, mean ± SEM). G__, genus; f__, family  
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Figure 0.7 Cecal short chain fatty acid production in broiler chickens at 30 d of age. 

Results were shown as the average of (a) total SCFA concentration, (b) acetate, (c) propionate, (d) 

butyrate, and (e) valerate (mean ± SEM, n = 20/treatment, *, p <0.05, **, p < 0.01, n.s., p > 0.05). 

FD, full disinfection; WW, water-wash; Conc., Concentration. 



 104 

 

Figure 0.8 Spearman correlation heatmap 

Heatmap showing Spearman correlations between cecal bacterial abundance and short chain fatty 

acid concentrations in broiler chickens at 30 d of age. *, p < 0.05; **, p < 0.01; Conc., 

Concentration. 
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CHAPTER 3. THE IMPACT OF BARN DISINFECTION AND AGE ON THE 

CECAL MICROBIAL FUNCTIONAL CAPACITY AND RESISTOME OF 

BROILER CHICKENS 

3.1 Introduction 

Barn disinfection between flocks has been used as a strategy to prevent the transmission 

of disease from one flock to the next in broiler chicken production. In practice, both barn full 

sanitation with chemical disinfectants (FD) and water-wash (WW) are widely employed in 

poultry production in many parts of the world. We have recently shown that the use of 

disinfectants in cleaning barns between broiler chicken flocks can result in increased carriage of 

Campylobacter jejunii, impacts the composition of the cecal microbiota, and results in reduced 

cecal SCFA levels (1). Changes in community composition were determined by 16S rRNA gene 

amplicon sequencing, therefore, provided limited ability to understand functional changes the 

microbiome induced by barn disinfection. It has been reported that chemical disinfectants can 

trigger the proliferation of antibiotic resistant genes (ARGs) (2), which may pose a threat to 

public health. Therefore, examining the effects of barn cleaning practices on the chicken gut 

microbial metabolic functionality and the ARG profile (also termed as resistome) can offer 

insightful information to both the poultry industry and the general public.  

Livestock farming accounts for over 50% of all antibiotic usage globally (3). Due to the 

high stocking density during production as well as the short production cycle, chickens were 

reported to have the highest densities of ARGs compared to other livestock species (4). 

Presently, there is no data available evaluating how barn cleaning practices affect the intestinal 

ARG profiles of the broiler chickens. As well, no consensus had been reached regarding the 
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effect of chemical disinfectants on ARG abundance. Previous studies looked at the chemical 

disinfectant-treated facility/device surfaces, soil, or livestock manure, and reported very different 

results. In some studies, chemical disinfectants were reported to stimulate microbial ARG 

proliferation in the environment, because some disinfectants share similar modes of actions with 

antibiotics (5-7). For example, benzalkonium chloride (BAC), a widely used quaternary 

ammonium compound, was shown to select bacterial taxa in the waste-water bioreactors that 

were multi-drug resistant by stimulating the expression of ARGs encoding multi-drug efflux 

pumps (7). Zeng et al. studied agricultural soils amended with BAC and reported that exposure 

to BAC led to increased incidence of ARGs in the agricultural soil (8). However, after assessing 

the effect of a series of chemical disinfectants on inhibiting ARG abundances in swine manure 

storage, Hall et al. reported that disinfectants such as BAC and sodium hypochlorite significantly 

reduced the abundance of some ARGs (e.g. ermB, ermC, and tetX) in the swine manure (8). 

Consequently, from the perspective of food safety and environmental sustainability, it is 

important to explore the influence of chemical disinfectants usage in barn cleaning, particularly 

the gut microbial resistome of the broiler chickens raised in these barns. 

This study was designed to explore the functional capacities of the chicken cecal 

microbiota derived from FD and WW. Shotgun metagenomic sequencing was used to 

characterize the response of the cecal microbiome, microbial metabolic functionalities and ARG 

profiles to different barn cleaning practices. We aimed to gain further insight into changes in 

microbial functionality that led to higher SCFA levels. Furthermore, we predicted that the use of 

chemical disinfectant in barn cleaning would increase ARG carriage in the cecal microbiome. 
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3.2 Materials and methods 

3.2.1 Broiler production facilities and barn cleaning practices 

As a follow-up study of the previous chapter, a subset of broiler chicken cecal samples 

collected previously were used. Broiler chicken management and barn cleaning practices were 

previously described (1). Briefly, broiler chicken samples were collected from a commercial 

broiler company in Alberta, Canada. To focus on the effects of cleaning methods without 

introducing other confounding factors and bias, production cycles 2 and 4 were chosen (Table. 2.1 

from chapter 2), in which most barns had been through 2 consecutive repeated cleaning practices 

with both barn cleaning treatment applied on each barn. The cross-over design resulted in a total 

of 14 production flocks (sampled at day 7 and day 30), which 7 flocks were assigned to each 

treatment. In detail, the sample set of this study included a total of 140 chickens (70 chickens from 

each age), and 35 chickens were sampled from each treatment (FD or WW) at each age (day 7 or 

day 30).   

For FD, manure and litter were completely removed from the barn after chickens were sent 

for slaughter. Subsequently, chemical disinfection were performed using foam containing 7% 

sodium hydroxide, 7% 2-(2-2-butoxyethoxy) ethanol, 6% sodium laureth sulfate, 5% sodium N-

lauroyl sarcosinate, and 5% tetrasodium ethylenediaminetetraacetic acid (EDTA) on all surfaces 

of the facilities, followed by high-pressure and low-pressure water rinse with the water temperature 

set at 35℃; after the facilities were air-dried, foam containing 10% glutaraldehyde, 10% 

benzalkonium chloride (BAC), and 5% formic acid were applied to the surfaces of the facilities 

for 60 mins followed by high-pressure water rinse, overnight air-dry and fresh litter placement.  
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For WW, manure and used litter were removed, followed by low-pressure water rinse with 

the water temperature set at 35℃ for all facility surfaces, air-dry overnight, and fresh litter 

placement.  

 

3.2.2 Chicken management and sample collection  

The current study was performed according to the guidelines of the Canadian Council on 

Animal Care (9) with approval of the University of Alberta Animal Care and Use Committee 

(AUP00002377). In each production flock, Ross 308 broiler chicks were placed within 12 h post-

hatch and confined to half of the house, then allowed access to the entire house starting at D7. 

Flock size was 14,000, with a final stocking density of 30 kg/m2. All chickens were fed ad libitum 

without antibiotics and from placement through processing at about 32-35 days of age when the 

average target live weight of 1.8 kg was reached.  

To collect cecal digesta, at D7 and D30, five broilers per flock were each randomly selected 

from different areas within each barn and euthanized using cervical dislocation. Tools and 

collection tubes were pre-autoclaved and kept sealed before sampling. To collect cecal contents 

aseptically, sampling table was cleaned with 70% ethanol before and between every broiler 

dissection. Approximately 300 mg of cecal contents were collected into sterile 2 ml Eppendorf 

tubes, and were frozen on dry ice immediately after collection until transported to the lab, and 

stored at -80 ℃ for subsequent DNA extraction. 
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3.2.3 Shotgun metagenomic sequencing and microbiome analyses 

Total DNA extraction was as previously described (1).  Library preparation and shotgun 

sequencing were performed at the Genome Quebec Innovation Centre (Montreal, Canada) using 

the NovaSeq 6000 S4 PE150 system (Illumina Inc., San Diego, CA, USA). FastP v0.23.2. was 

used for quality control. Low quality reads, sliding windows, adaptors, polyG and duplicated 

sequences were removed (10). Kneaddata v0.10.0 was used to remove host DNA contaminants 

(https://github.com/biobakery/kneaddata). Briefly, a chicken host reference database was built 

using bowtie2 v2.4.1 with genome Gallus_gallus 105 release from Ensembl (11), followed by 

subsequent removal of reads aligned to the host. Cecal microbiota taxonomic classification was 

performed profiled using kraken2 (v2.1.2) (12), followed by subsequent relative abundance 

estimation using Bracken2 (v2.6) (13) Bacterial taxa appeared less than 5% of the samples were 

filtered out for subsequent analyses. Assembly was performed via megahit (v1.2.9) with default 

parameters (14). The abundance of functional genes and enriched pathways were estimated using 

HuMAnN3 (v3.0.1) based on the UniProt 90 database followed by subsequent annotation using 

the Metacyc database (15, 16). The relative abundance of aligned genes and pathways were 

normalized to copy numbers per million reads using the HuMAnN3 utility scripts (16). 

Antibiotic resistance-encoding genes were annotated by the Comprehensive Antibiotic 

Resistance Database (CARD, version 3.1.4) via Resistance Gene Identifier (RGI, version 5.1.0) 

with cut-off set at 95% identity (17). To reveal the distributions of microbial taxa, functional 

genes, and ARGs across samples, principal coordinate analysis (PCoA) based on Bray-curtis 

distance metric was calculated via vegan package in R (version 3.6.1). To evaluate dispersion, 

the R package “betadisper” was used to calculate distance to centroid. Two-way ANOVA was 

used to assess total ARG reads between different barn sanitations practices and different 
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sampling timepoints. Because no differences were suggested between different barn sanitation 

practices or sampling timepoints (details shown in 3.3.2), to avoid bias introduced by variations 

of the relative abundance of bacterial taxa, variations of 16S rRNA copy numbers harbored by 

different bacterial species as well as fluctuation caused by ARGs located on mobile genetic 

elements, identified ARGs were normalized to reads per million total ARG reads for subsequent 

comparisons. Permutational Multivariate Analysis of Variance (PERMANOVA) tests were used 

to determine clustering significance using the adonis function in the vegan package in R (version 

3.6.1). Significance of PERMANOVA and betadisperse were set to FDR P < 0.05. Differentially 

abundant microbial taxa, gene pathways and ARGs associating with treatments or sampling 

timepoint were identified using LDA effect size (LEfSe) implemented in the lefser R package 

(Bioconductor version 3.15) with significant cut off set at LDA score > 2 and FDR P < 0.05. 

Differentiate abundant analysis of profiled gene pathways and ARGs for pairwise comparisons 

was performed using R package DESeq2 (Bioconductor version 3.15) (18). Significance of 

differential abundance was determined with FDR P < 0.05 and log2 fold change > 1. 

 

3.2.4 Statistical Analyses 

Except for the statistical analyses mentioned above, GraphPad Prism 8 (Graphpad 

Software, San Diego, CA, USA) was used to conduct statistical analyses. To determine 

significance of the microbiome alpha diversity indices, the Kruskal–Wallis test was used with 

significance set at P < 0.05. The Spearman correlation was used to correlate ARG abundance and 

the abundance of bacterial species. Correlation significance was determined by the corr.test 

function (false-discover-rate adjusted P > 0.05), and a moderate association was determined by 

∣R∣ > 0.4. Correlation was visualized using the corrplot package in R (version 3.6.1). 
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3.3 Results and discussion 

3.3.1 The cecal microbial structures and functional capacities were impacted by barn 

cleaning methods and sampling timepoints 

Shotgun metagenomic sequencing was used to provide a more comprehensive profile the 

cecal microbial structures to further assess the effects of barn cleaning methods on the cecal 

microbiota. Overall, an average of 52,133,725.06 ± 1,265,988.36 quality-controlled reads per 

sample (mean ± SEM) were processed by kraken2 for cecal microbial structure profiling, 

resulting in 34,252,401.09 ± 6,541,062.17 reads per sample aligned to the RefSeq bacteria 

database by Kraken2. The overall day 7 and 30 cecal microbiota in this study is consisted of 

43.36% Firmicutes, 39.42% Bacteroidetes, 11.90% Proteobacteria, 3.34% Actinobacteria, and 

1.98% of other phyla with relative abundance lower than 0.1% (D7: 62.14% Firmicutes, 25.57% 

Bacteroidetes, 8.21% Proteobacteria, 0.76% Actinobacteria, 0.48% Tenericutes, and 2.84% of 

other phyla; D30: 24.59% Firmicutes, 53.27% Bacteroidetes, 15.59% Proteobacteria, 5.92% 

Actinobacteria and 0.63% other phyla). Generally, Bray-Curtis distance metric revealed that 

sampling timepoints had a major impact on the beta diversity of the chicken cecal microbiota 

(Figure 3.1a, R2 = 0.15, adonis P < 0.001); whereas the cleaning methods had limited impact (R2 

= 0.02, adonis P = 0.23) on the D7 microbiota and a modest impact (R2 = 0.03, adonis P = 0.005) 

on D30 beta diversity  (Figure 3.1b and 3.1c for D7 and D30, respectively). Betadisper analysis 

showed that the cecal microbiotas of D7 chickens had greater distance to centroid compared to 

D30 (distance to centroid = 0.56 and 0.48 for D7 and D30, respectively, FDR P < 0.01), 

indicating that the 30-day cecal microbiota had greater homogeneity. In addition, microbial alpha 

diversity was impacted by the sampling timepoints, but not cleaning methods. Species richness 

and evenness, indicated by Shannon diversity index, increased with age (P < 0.05) (Figure 3.1 d-
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f).  Shotgun metagenomics offered better resolution of changes at the species level than 

previously reported by 16S rRNA gene sequencing (1). At D7, LEfSe analysis did not indicate 

any taxa associating with treatment (FDR P > 0.05, Figure 3.2). However, at D30, the relative 

abundance of Ruminococcus torques, Faecalibacterium prausnizii, Barnesiella viscericola, and 

Helicobacter pullorum were enriched in the WW group, whereas the relative abundance of 

Megamonas funiformis was higher in the FD group (FDR P < 0.05, LDA >2, Figure 3.2). 

To date, very limited information is available regarding how cleaning methods affected 

chicken cecal microbiota. Using 16S rRNA sequencing technique, we previously reported that at 

D30, genus Helicobacter was enriched in the WW group (1). Shotgun metagenomic sequencing 

was able to provide taxonomic information to the species level with confidence. In accordance 

with the last chapter, shotgun metagenomics results revealed that the cecal composition of H. 

pullorum was increased by the WW treatment at D30. Although some researchers suggested that 

H. pullorum may be an opportunistic pathogen (19), the role of H. pullorum in poultry and its 

pathogenicity to human and chickens remains unclear. In fact, to date, no concrete evidence has 

shown that it is related to either human or poultry diseases (20, 21). Previously, it was reported 

that the prevalence of Faecalibacterium increased in the chicken ceca of the recycled litter group 

compared to the fresh litter group, which was concluded as a beneficial effect using recycled 

litter (22). As a commensal member also found enriched in the conventionally grown chickens 

(23), F. prausnizii was previously identified as a promoter of epithelial health for its strong 

metabolite production, such as butyrate (24). Moreover, it was found to have anti-inflammatory 

activity in broilers (25). In line with previous study (22), we found that the predominance of F. 

prausnizii was found increased by WW, indicating that WW may confer potential beneficial 

effects to the chickens. B. viscericola has been characterized as an important representative 
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commensal of barn-raised chickens (26), that could be considered as a potential propiogenic 

probiotics (27-29). Whereas Ruminococcus are important butyrate producers in the gut that 

degrades mucins (24, 30). Mucolytic bacteria were widely found in the gut microbiota (31). 

Some studies had reported that mucolytic bacteria, such as Clostridium perfringens could be 

pathogenic as degradation of the mucous layer might be detrimental by impairing gut barrier 

function (32, 33). However, mucolytic bacteria (e.g. Akkermansia spp.) may provide beneficial 

metabolites (e.g. SCFAs) to stimulate goblet cells to secrete more mucus, and thus contribute to 

the development of a healthy mucus-associated microbiota (33, 34). In this case, the effect of 

increased R. torques in the chicken gut needs to be further studied.  

Amongst the D30 FD chickens, M. funiformis was recognized as a strong biomarker of 

the cecal microbiota. Previously, genus Megamonas was identified as an important producer of 

acetate and propionate in avian species (35), and M. funiformis was characterized as one of the 

most efficient colonizers in early life of chickens (36). Clavijo et al. and Roth et al. assessed the 

chicken microbiota and reported that Megamonas accounted to the core microbiota (Clavijo et al. 

defined taxa presenting in more than 50% of samples and Roth et al. set the coverage to 97% of 

samples) (37, 38). Interestingly, Clavijo et al. found that Megamonas mainly appeared in the 

broiler ceca (37), whereas Roth et al. studied the microbiome of laying hens and reported that 

Megamonas colonizes the upper intestinal tract, but could not be detected in the ceca, where 

other SCFA producers normally inhabit (38). Although reasons behind the differences reported 

needs to be further explored (e.g. host determinant and diet compositions), it indicated that 

Megamonas can adapt to multiple sections of the chicken gut and may colonize niches with less 

competition.  
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To investigate the impact of barn sanitation practices on the cecal microbial functional 

consequences, gene families were profiled using HUMAnN3 and annotated according to the 

Enzyme Commission (EC) number annotations. An average of 64.63% ± 1.18% of the total 

reads per sample (mean ± SEM) were mapped to the UniProt 90 database by HUMAnN3, and 

were further annotated based on the MetaCyc database. The cecal microbial communities of 

broiler chickens harbored 449 metabolic pathways. Chicken age significantly impacted the cecal 

microbial functional capacities. DESeq2 revealed that the abundance of a total of 89 pathways 

that were different between D7 and D30 (Table S1, log2 fold-change > 1, FDR P < 0.05). 

However, surprisingly, LefSe did not identify associations between functional pathways and age 

(FDR P > 0.05 or LDA < 2).  

The effects of the barn cleaning methods on the cecal microbial functional capacities 

were relatively modest compared to the age-effect. At D7, DESeq2 suggested that the abundance 

of 6 pathways were altered by the barn cleaning treatments (Figure 3.3a, log2 fold-change > 1, 

FDR P < 0.05), namely the sucrose degradation pathway IV (PWY-5384), the L-cysteine 

biosynthesis pathway VI (PWY-I9), the super-pathway of UDP-glucose-derived O-antigen 

building blocks biosynthesis (PWY-7328), the UDP-N-acetyl-D-glucosamine biosynthesis 

pathway (UDPNAGSYN-PWY), the phospholipase pathway (LIPASYN-PWY), and the 

stringent response guanosine 3'-diphosphate 5'-diphosphate metabolism pathway (PPGPPMET-

PWY).  

PWY-5384 is linked to polysaccharide utilization (sucrose degradation), and it was 

enriched in the D7 WW microbiome (FDR P < 0.05, log2 fold change >1). When assigned to the 

different bacteria, PWY-5384 was harbored by Escherichia coli, Lactobacillus spp., 

Bifidobacterium spp., and unclassified bacteria. In the cecal microbiome of the D7 FD group, it 
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was mainly harbored by E. coli and unclassified bacteria, whereas in the D7 WW group, it was 

contributed by E. coli, Lactobacillus spp., Bifidobacterium pullorum and the unclassified 

bacteria together (data not shown). This resulted in the overall increased abundance of PWY-

5384 observed in the WW group. A similar effect was observed in the amino acid synthesis 

pathway (PWY-I9), which in the FD group microbiota was mainly harbored by E. coli, but 

possessed together by E. coli, Bifidobacterium spp., and Lactobacillus spp. in the WW 

counterparts.  

The stringent response pathway was enriched in the cecal microbiome of the D7 FD 

group (FDR P < 0.05), and it was primarily harbored by E. coli. Interestingly, the stringent 

response regulates gene expression in response to nutrient starvation or environmental stresses 

(39), the enriched stringent response pathway in the FD group may be a sign of that the FD 

treatment had put stress to the barn environment and therefore impacted the assembly and 

development of the cecal microbiota of young chickens. Previously, it was reported that stringent 

response was important for bacterial virulence and persistence in the environment (e.g. resistance 

to antimicrobials) for a variety of taxa (39). Intestinal microbes such as Bacteroides shift from 

growth to stasis via the regulation of the stringent response (40). In addition, it was also reported 

that the stringent response can induce microbes to the viable but nonculturable state, which have 

strong tolerance to environmental stresses with minimum nutrient requirement (41). Thus, the 

enriched of the PPGPPMET-PWY may indicate that the chemical disinfection may select for 

tolerance to harsh environmental conditions.  

At day 30, DESeq2 suggested the abundance of a series of pathways that were altered by 

cleaning method (Figure 3.3b). Specifically, the WW group had increased the relative abundance 

of 12 pathways, namely the pyruvate fermentation to acetate and lactate pathway II (PWY-
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5100), the L-lysine biosynthesis pathway I (DAPLYSINESYN-PWY), the L-lysine biosynthesis 

pathway II (PWY-2941), the L-isoleucine biosynthesis pathway I (ILEUSYN-PWY), the L-

methionine biosynthesis pathway III (HSERMETANA-PWY), the L-isoleucine biosynthesis 

pathway III (PWY-5103), the phosphatidylglycerol biosynthesis pathway I (PWY4FS-7), the 

phosphatidylglycerol biosynthesis pathway II (PWY4FS-8), the ADP-L-glycero- and β-D-

manno-heptose biosynthesis pathway (PWY0-1241), the CMP-3-deoxy-D-manno-octulosonate 

biosynthesis pathway (PWY-1269), the super-pathway of phospholipid biosynthesis I 

(PHOSLIPSYN-PWY), and the super-pathway of branched chain amino acid biosynthesis 

(BRANCHED-CHAIN-AA-SYN-PWY). Whereas the FD group had enriched abundance of the 

hexitol fermentation to lactate, formate, ethanol and acetate pathway (P461-PWY).  

At day 30, pathways linked to SCFA production (acetate and lactate) and amino acid 

biosynthesis (i.e. L-methionine, L-lysine, L-isoleucine, branched-chain amino acids) were 

enriched in the WW group indicating that the WW treatment had impacted the D30 microbiota 

that led to the increased nutrient utilization functionality of the gut microbial communities.  

The pathway encoding production of acetate and lactate (PWY-5100) were increased by 

the WW treatments at D30. Previously, Gong et al. reported that chickens infected by 

Clostridium perfringens had significant drop of PWY-5100 in the cecal microbial functional 

capacities, and that was restored by the supplementation of probiotic L. plantarum (42). In the 

current study, PWY-5100 was mainly harbored by H. pullorum in both the FD and WW group, 

and to a lesser extent, Lachnoclostridium sp. An76 and Lactobacillus salivarius. To further 

assess effect size of each microbial species and their contribution to the altered microbial 

functionality at D30, pathways were stratified to the strain level, and LEfSe was used to discover 

species contribution. As a result, the 13 altered pathways were attributed by 62 different bacteria 
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species. LEfSe results indicated that the enriched PWY-5100 in the D30 WW cecal microbial 

community could be considered as a direct consequence of the increased H. pullorum (Figure 

3.4, FDR P < 0.05, LDA >2) by the WW treatment, whereas the contribution of 

Lachnoclostridium sp. An76 was relatively smaller (FDR P <0.05, LDA = 1.36). Similarly, the 

observed increased abundance of pathways linked to amino acid syntheses at the D30 WW group 

were all mainly attributed to H. pullorum. In addition, PWY-1269 encodes genes that produce 

acid sugar 3-deoxy-α-D-manno-2-octulosonate, which is a component of bacterial 

lipopolysaccharides (LPS). A wide variety of bacteria including Campylobacter and 

Helicobacter are able to synthesize 3-deoxy- D-manno-2-octulosonate and produce LPS as final 

products (43-45). At D30, PWY-1269 was shown to be mainly harbored by H. pullorum and C. 

jejuni in the chicken gut microbiome of the WW and FD, respectively (Figure 3.4). In the 

previous chapter, we reported that Campylobacter jejuni was decreased in the D30 WW group 

using qPCR techniques. In line with that, functional analyses showing that the WW-derived 

chicken cecal microbiome had decreased functionality of C. jejuni-derived LPS production. 

Overall, functional genetics analyses suggested that the barn cleaning methods had 

altered the functional capacities of the chicken gut microbiota. Exposure to the FD barn at 1 day 

of life may impact the assembly of the early cecal microbiota of the chicks, and thereby led to 

altered microbial functionalities observed in later life, which possess decreased genetic potential 

for amino acid and SCFA synthesis. In addition, we reported that the relative abundance of 

Helicobacter was increased in the WW group at D30 compared to the D30 FD group, and it was 

positively correlated to cecal branched-chain fatty acid (BCFA) concentration (1). In accordance 

with that, in the current study, we confirmed that chicken cecal H. pullorum was significantly 

increased by the WW treatment. In particular, results suggested that the genetic potential to 
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synthesize amino acids were mainly harbored by H. pullorum, which may partially explained the 

increased the association of BCFA and the abundance of Helicobacter observed previously (1). 

In chapter 2, we also found that the cecal SCFA production was increased by WW, which may 

also be a consequent of the increased cecal H. pullorum in the D30 WW group. 

 

3.3.2 The effect of barn cleaning practices and sampling timepoint on the chicken gut 

microbial resistome 

An average of 0.133% ± 0.012% of the total reads per sample (mean ± SEM) were 

mapped to the CARD database. Overall, both the barn cleaning methods and the sampling 

timepoint had impacted the chicken cecal microbial resistome. Two-way ANOVA analyses 

revealed that, in relative to total reads, ARG read count percentage were higher at D7 compared 

to D30 (Figure 3.5a). The Bray-Curtis distance metric revealed that the cecal microbial resistome 

clustered significantly by treatment and age (Figure 3.5b, FDR P <0.05). Beta-dispersion 

analyses revealed that the cecal resistomes of the 7-day old broiler chickens had greater distance 

to centroid compared to the D30 broiler chickens (P < 0.01), indicating more diverse resistomes 

between individuals at D7 (Figure 3.5c). A total of 496 ARGs from 60 gene families and 386 

ARGs from 52 gene families were identified from the D7 chickens and D30 chickens, 

respectively. A similar result was reported in chicken litter and cattle studies where fecal 

resistome diversity decreased with increasing age (46, 47).  

At the single gene level, the tetracycline-resistant gene (tet) tetW was the most abundant 

ARG, followed by lincosamide nucleotidyltransferase (lnu) lnuC, tet(44), tet(W/N/W), tetQ, the 

erythromycin ribosomal methylation 23S ribosomal RNA methyltransferase (erm) ermB, 
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aminoglycoside resistance gene (APH) APH(3)-IIIa, tetO, and tet32. Gene families encoding 

tetracycline-resistant ribosomal protection proteins (RPPs) were the most abundant in the broiler 

chicken resistomes followed by the lincosamide nucleotidyltransferase (LNU, lincosamide-

resistant) family, and the major facilitator superfamily (MFS) antibiotic efflux pump (multi-drug 

resistant) family. These ARG families collectively accounted over 90% of the broiler chicken 

cecal resistome (92.08% ± 11.03% mean ± SEM). 

Previously, Munk et al. studied chicken fecal samples collected from multiple European 

countries and reported that the majority of ARGs were tetracycline-, aminoglycoside-, and 

macrolide-, lincosamide- and streptogramin- (MLS-) resistant genes (48). Similarly, chicken 

fecal samples collected from China were high in aminoglycoside, tetracycline, MLS, and β-

lactam resistance (49). In the current study, the most abundant ARGs detected conferred 

resistance to tetracycline (tetW, tet(44), tet(W/N/W), tetQ, tetO and tet(32)), MLS (lnuC, ermB), 

and aminoglocoside (APH(3)-IIIa); whereas β-lactam resistance was found in relatively low 

prevalence in the chicken cecal resistome. The low abundance of β-lactam resistant genes 

observed in this study may link to the prohibition of prophylactic use of β-lactam in poultry 

farming since 2018 (50), whereas β-lactam was reported to be one of the most commonly used 

antibiotic in poultry production in China (51).  

Many of the most abundant ARGs detected in the current study confer resistance to 

tetracycline through ribosomal protection proteins (i.e. tetW, tet(44), tet(W/N/W), tetQ, tetO and 

tet(32)). Tetracycline inhibits bacterial protein synthesis by binding to the 16S rRNA preventing 

the attachment of aminoacyl-tRNA to the ribosomal acceptor (52). Ribosomal protection 

mediated by RPPs is an ubiquitous mechanism conferring resistance against tetracycline in both 

Gram-positive and Gram-negative bacteria (53). Genes encoding tetracycline-resistant RPPs 
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were often found on transmissible elements (e.g. plasmids and conjugative transposons) (52). In 

addition, tetracycline-resistant genes, particularly tetW, were frequently detected in environments 

related to livestock farming (54-58) as well as bacteria isolated from the chicken gut (59) making 

it difficult to chase the sources of these genes. Thus, future studies are warranted to investigate 

the origins of the tetracycline-resistant RPP genes detected in the current study.  

 
3.3.2.1 Barn cleaning methods had a modest impact on the chicken gut resistome 

PERMANOVA analyses indicated modest differences of the microbial resistomes 

between treatments at the same-age group (D7 FD vs. D7 WW, D30 FD vs. D30WW, Figure 

3.5b). However, LEfSe did not show significant association between AMR gene families and 

treatments between treatment groups at the same age (FDR P > 0.05 or LDA < 2).  

To evaluate the barn cleaning treatment effects, DESeq2 was used to compare the 

abundance of AMR genes between FD and WW within timepoint. Interestingly, contrary to our 

hypothesis, WW increased the abundance of some ARGs in the chicken cecal resistomes. 

Specifically, five AMR gene families (i.e. the erm gene family, rifamycin resistant beta-subunit 

of RNA polymerase (rpoB), streptogramin vat acetyltransferase, ATP-binding cassette (ABC) - F 

subfamily RPPs (macrolide- and lincosamide- resistant), and vanR glycopeptide resistance gene 

cluster were found more abundant in the D7 WW treatment (Figure 3.6, FDR P < 0.05).  

We expected that disinfection may increase selection of ARG, however, these data 

suggests that disinfection is associated with reduced ARG abundance, suggesting that it should 

be evaluated further for its ability to help control transmission of ARG between flocks. 

Previously, it was reported that poultry litter harbored high densities of AMR bacteria and 

antibiotic residuals (60-62). Although poultry litter was removed in the current study, without 
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chemical disinfectants, WW might preserve bacteria carrying ARGs in the barn. Therefore, it is 

reasonable to assume that compared to WW, the chemical disinfectants used in the current study, 

which destroys both bacteria cells and DNA structures, may be more effective in controlling 

ARGs like erm genes and the glycopeptide resistance gene clusters. 

At the gene level, cprR (peptide antibiotic- resistant), ermB (MLS-resistant), lnuA and 

lnuB (lincosamide-resistant), lsaE (pleuromutilin-, streptogramin-, and lincosamide- resistant), 

oleB (macrolide-resistant), tet(L) and tetM (tetracycline-resistant), vatE (streptogramin-resistant), 

Vibrio anguillarum chloramphenicol acetyltransferase gene (phenicol-resistant), the 

Bifidobacterium bifidum ileS (mupirocin-resistant), the Bifidobacterium adolescentis rpoB 

(rifampicin-resistant), and vanR variants in the vanA, vanG, and vanL clusters (vancomycin-

resistant) were more abundant in the WW group.  

By D30, the impacts of cleaning methods on the chicken gut microbiome were subtle. No 

differentially abundant ARG gene families were identified by DESeq2. However, single genes 

including ermG (MLS-resistant) and vanR variant in vanI cluster (vancomycin-resistant) were 

enriched in the D30 WW group (Figure 3.7). Compared to the ARGs affected by the barn 

cleaning practices at D7 (e.g. ermB, 82,227.45 ± 8,067.27 reads per million total ARG reads, 

mean ± SEM), the ARGs affected by the treatments at D30 were the ones with low abundance 

indicating that the barn cleaning practices had greater impacts in younger chickens.  

Notably, in both D7 and D30, ARGs from the erm gene family with high relative 

abundance (over 100,000 reads/million total ARG reads) and the glycopeptide resistant gene 

cluster (vanR) with lower relative abundance (less than 5,000 reads/million total ARG reads) 

were depleted with disinfection. More than 30 erm genes have been characterized, and a number 
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of them (e.g. ermB, ermC, ermG, ermF, ermX) frequently detected in livestock farming related 

environments (63-65). Frequent horizontal transfer of erm genes through mobile genetic 

elements has been reported within the gut microbiota (66, 67) and between intestinal bacteria and 

environmental bacteria (68, 69), accounting for their distribution among diverse taxa. 

Additionally, erm genes were found to persist stably both in the gut and in the environment 2-3 

years after the removal of antibiotic selection pressure (65, 70). Furthermore, erm genes were 

also known to spread through poultry dust (58, 71). Transmission of persistent erm residues from 

the previous production cycles is therefore likely. 

Vancomycin and other glycopeptide antibiotics inhibit bacterial cell wall biosynthesis by 

interfering with the formation of peptidoglycan (72). The vanS/vanR - two-component regulatory 

system is important in activating and regulating transcription of the glycopeptide gene cluster. As 

part of the two-component system, vanR can be activated by vanS and subsequently promote the 

cotranscription of other genes in the glycopeptide gene cluster (e.g. vanI) (73). Previously, 

vancomycin resistant genes were detected in poultry farms (74) and products (75). Similar to erm 

genes, a recent study revealed a glycopeptide resistant gene cluster persisting in the environment 

for 20 years (76). In addition, glycopeptide resistance gene clusters are also highly transferable 

via plasmids (75, 77) making it difficult to identify the main carriers.  

 

3.3.2.2 The cecal microbial composition and resistome of broiler chickens were significantly 

affected by the sampling timepoint 

At D7, the most abundant ARG families in the cecal resistomes were the tetracycline-

resistant RPP family, the MFS antibiotic efflux pump family, the resistance-nodulation-cell 



 123 

division (RND) antibiotic efflux pump (multi-drug resistant), the erm gene family and the LNU 

family. Whereas at D30, the 5 most abundant gene families were the tetracycline-resistant RPP 

followed by the LNU family, the MFS antibiotic efflux pump family, the aminoglycoside 

nucleotidyltransferase (ant) family ant(6) (aminoglycoside-resistant), and the erm gene family. 

When characterizing the resistant mechanism and distribution of the ARGs, we discovered that 

antibiotic target protection, which mainly consisted of tetracycline resistance via tetracycline-

resistant RPPs, was the most common mechanism of antibiotic resistance. In addition, antibiotic 

efflux and antibiotic inactivation were the second most common resistance mechanism found at 

D7 and D30, respectively (Figure 3.8). LEfSe results supported the successional change of the 

chicken cecal resistome (Figure 3.9, FDR P < 0.05, LDA > 2). In accordance with the different 

antibiotic mechanisms between D7 and D30, LefSe analysis identified that 11 ARG gene 

families were associated with the age of the broiler chickens (Figure 3.7). Particularly, the MFS 

antibiotic efflux pumps and the RND antibiotic efflux pump showed highest LDA score at D7, 

indicating that antibiotic efflux plays a key role in the early life cecal resistomes. Whereas on 

D30, AMR gene families conferring antibiotic inactivation, such as the LNU family and the 

tetracycline inactivation enzyme, had increased predominance. 

In the current study, the D7 and D30 cecal microbial compositions differed significantly 

as indicated by Bray-Curtis distance metric (adonis P < 0.001). Previously, successional changes 

of the chicken gut microbiota were recognized (78-80). Although it was speculated that the 

change of microbial composition would lead to alteration of the ARG profile (59), limited 

information was available on how the chicken gut resistome change as chickens grow. The 

relative abundance of total ARGs was higher in the ceca of D7 chickens compared to D30. 

Previously, Lebeaux et al reported similar results in human infants showing that the overall 
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relative abundance of ARGs was significantly higher at 6 weeks than 1 year (81). In addition, the 

change of antibiotic resistant mechanism associated with age was surprisingly similar to the 

current study. Antibiotic efflux pump (particularly RND antibiotic efflux pump) and tetracycline-

resistant RPP, were reported in 6-week and 1-year infant fecal samples respectively (81). 

Antibiotic efflux pumps were also a strong biomarker of the D7 chicken cecal resistome (Figure 

3.7).  

Efflux pumps are ubiquitous transmembrane proteins conferring antibiotic resistance by 

transporting a wide spectrum of antibiotics (82). At D7, the MFS antibiotic efflux pump family 

were mainly consisted with tetracycline-resistant gene tet(40). Microbial community 

composition may have contributed to the composition of cecal ARGs. Particularly, LefSe 

analysis suggested the family Lachnospiraceae and Enterobacteriaceae were strong biomarkers 

of the chicken cecal microbiota at D7 (Figure 3.10, FDR P < 0.05, LDA >3). In addition, 

spearman correlation (Figure 3.11, FDR P < 0.01) revealed that the relative abundance of the 

MFS antibiotic efflux pump family was positively correlated to Lachnospiraceae 

(Lachnoclostridium sp An76), which further supported that members in Lachnospiraceae play 

important role in the gut microbial resistome. Previously, using bacteria isolates from chickens, 

Juricova et al. compared ARG sequences and bacteria genomes and reported that the family 

Lachnospiraceae was an important reservoirs for tet(40) (59). Thus, the predominance of the 

MFS antibiotic efflux pumps in the D7 cecal resistome may be partially explained by the 

predominace of Lachnocpiraceae in the early life chicken microbiota.  

RND antibiotic efflux pumps are mainly encoded by gram-negative bacteria (83), and 

Enterobacteriaceae were well known to harbor the RND antibiotic efflux pumps (84, 85). In the 

current study, Enterobacteriaceae (E. coli and E. albertii) was positively correlated with the 
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abundance of the RND antibiotic efflux pumps (Figure 3.11). Recently, Gupta et al. reported 

genes encoding RND antibiotic efflux pumps (e.g. mdtF, mdtC, mdtB, mdtE, mdtA, and sdiA) 

were enriched with Enterobacteriaceae in chicken litter and cloacal samples (47). Thus, the 

enriched RND antibiotic efflux pump family at D7 may be a consequence of the early 

colonization of Enterobacteriaceae in the chicken ceca. In addition, among all taxa in the 

chicken ceca, E. coli was significantly associated with the highest number of ARG families 

(positively correlated to 20 different gene families, Figure 3.11, FDR P < 0.05) indicating great 

impact on the cecal resistome. Similarly, in the human infant resistome study, Lebeaux et al. 

concluded that the human early-life resistome composition was primarily driven by E. coli (81) 

indicating that Enterobacteriaceae, particularly genus Escherichia, is of great importance in 

shaping the early life resistome of the host. 

Antibiotic inactivation genes, particularly genes encoding LNUs (mainly lnuC gene) and 

tetracycline inactivation enzymes (mainly tetX gene and its variants), were strongly associated 

with the D30 resistome (Figure 3.9). Previously, Noyes et al. reported that LNUs were more 

predominant in adult cattle fecal resistome compared to calves (46), however reasons behind still 

remained unclear. Lincosamide resistant gene lnuC, which is a transposon-mediated, was first 

found in genus Streptococcus (86), and was shared extensively between different phyla (87). 

Recently, emerging evidence showing that C. jejuni and C. coli also harbor lnuC (88-91). 

Particularly, examining Campylobacter isolates in broiler farms and slaughter plants, Tang et al. 

reported that lunC gene was detected in 19/20 sequenced C. jejuni isolates (91). In the current 

study, LEfSe results revealed that Streptococcaceae and Campylobacteraceae were representative 

of the D30 microbiome (Figure 3.10). In this case, the increased composition of Streptococcaceae 

and Campylopbacteraceae at D30 may partially explain the enriched LNU family observed in the 
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older chickens. Interestingly, Bacillus subtilis was positively correlated to the LNU gene family 

(Figure 3.11). Previously, B. subtilis exhibited ability to naturally activate the competence state 

and uptake foreign DNA (92), and this may make it to become an ideal host of LNUs. The degree 

to which microbial compositions affect ARG composition is still unclear (93), especially in the 

case of highly mobile ARGs like lnuC. Therefore, further research is highly warranted to reveal 

the reason behind the increment of LNUs in later life.  

Tetracycline resistance conferred by inactivation enzymes were executed through the 

enzymatic modification or destruction of the tetracycline molecule (94, 95). In the current study, 

the detected genes encoding tetracycline inactivation enzymes were tetX and its variants (i.e. 

tet(X1), tet(X3), tet(X4), tet(X5), tet(X6)), with tetX being dominant. Spearman correlation 

showed a wide range of bacteria species that were positively correlated to the tetracycline 

inactivation enzyme genes (Figure 3.11). Coincides with that, many of these microbes were also 

associated with the D30 cecal microbiome (i.e. Rikenellaceae Barnesiellaceae, 

Odoribacteraceae, Campylobacteraceae, Tannerellaceae, Helicobacteraceae, and 

Streptococcaceae). It supports the fact that chicken cecal microbiota successional change leads 

to alteration of the microbial resistome. 

 

3.4 Conclusion: 

This is the first study to report that the impact of disinfectants in broiler production on 

microbial functional capacities and the resistome. We showed that the barn chemical disinfection 

may alter the composition of the chicken gut microbiota and thereby lead to decreased microbial 

functional capacity on nutrient production. In addition, compared to WW, FD was associated 
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with lower abundance and diversity of ARGs between flocks, potentially by destroying both 

bacteria carrying ARGs. 
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Figure 0.1 Broiler chicken cecal microbial structure affected by the barn cleaning practices and 

sampling timepoints. 

Figure a-c show factors impacting the cecal microbial beta-diversity. Sampling timepoint had a 

major impact on the microbial compositions, where the cleaning methods had a modest effect on 

the D30 microbiota. Figure d-f show factors affecting the cecal microbial alpha-diversity 

(Shannon index). At D30, the richness and evenness of the cecal microbial spices significantly 

increased compared to D7. FD, full disinfection; WW, water-wash; ***, P < 0.001. 
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Figure 0.2 Differential abundant bacterial species between barn cleaning practices at day 30 

suggested by LEfSe analysis. 

At day 30, Ruminococcus torques, Barnesiella viscericola, Helicobacter pullorum, 

Faecalibacterium prausnitzii were more abundant in the ceca of the chickens from the water-

washed treatment group, whereas Megamonas funiformis was more abundant in the chicken 

cecal microbiota of full disinfection group. 

 

 

g__Barnesiella;s__viscericola

g__Helicobacter;s__pullorum

g__Faecalibacterium;s__prausnitzii

g__[Ruminococcus];s__ torques

g__Megamonas;s__funiformis

-2 -1 0 1 2
LDA score

Fe
at

ur
es Class

FD
WW



 143 

 

Figure 0.3 The microbial functional pathways that were significantly impacted by the barn 

cleaning treatments at day 7 (a) and day 30 (b) revealed by DESeq2. 

The graph shows differentially abundant genetic pathways at harbored by the chicken cecal 

microbial communities at day 7 and day 30 suggested by DESeq2 (FDR P < 0.05, log2 fold-

change >1). a) At day 7, the FD-derived chicken gut microbiome had enriched stringent response 

pathway coupled with decreased abundance of pathways linked to amino acid synthesis, 

saccharide degradation, and bacterial cell wall synthesis. b) At day 30, the FD-derived chicken 

gut microbial functional capacity had decreased abundance of genetic pathways linked to 

multiple amino acid syntheses. D7, day7; D30, day 30; FD, full disinfection; WW, water-wash 

**, FDR P < 0.01; ***, FDR P < 0.001.  
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Figure 0.4 LEfSe results of metabolic pathways harbored by specific bacteria species and the 

association with treatments at day 30. 

LEfSe result suggested that the increased abundant pathways in the WW group were mainly 

contributed by Helicobacter pullorum. FD, full disinfection; WW, water-wash. 
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Figure 0.5 The chicken cecal resistome was affected by the barn sanitation practices and 

sampling timepoints. 

a) ARG read counts in relative to total read counts after quality control. Generally, at D7, higher 

percentage of ARG read counts were detected in the chicken cecal microbiota compared to D30. 

b) Bray-Curtis distance matric showing resistome clusters of treatments and age. Bray-Curtis 

distance matric revealed that cleaning methods had modest effect on the microbial resistome. 

Sampling timepoint was the main factor impacting the resistome. c) The average distance to 

centroid based on beta-disperse showed that the variation between resistomes was greater among 

the D7 chickens in comparison to the D30 ones. ARG, andibiotic resistant genes; D7, day7; D30, 

day 30; FD, full disinfection; WW, water-wash. 



 146 

 

Figure 0.6 Differentially abundant antibiotic resistant gene families between FD and WW at D7 

suggested by DESeq2. 

Graph shows differentially abundant antibiotic resistant gene families between barn sanitation 

practices at day 7 suggested by DESeq2 (FDR P < 0.05, Log2 fold change > 1). Some persistent 

ARG gene families (e.g. erm gene family) were enriched in the WW-derived chicken cecal 

microbiome at day 7. ARG, antibiotic resistant gene; vanR, vancomycin resistant gene R 

component; rpoB, gene encoding β-subunit of bacterial RNA polymerase; erm, 23S ribosomal 

RNA methyltransferase; ABC-F subfamily ABC RPPs, ABC-F ATP-binding cassette ribosomal 

protection protein genes; SAT, Streptogramin A acetyltransferase genes, FD, Full disinfection; 

WW, Water-wash, ***, P < 0.001; **, P < 0.01.  
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Figure 0.7 Differentially abundant antibiotic resistant gene between FD and WW at D30 

suggested by DESeq2. 

Graph shows differentially abundant antibiotic resistant genes between barn sanitation practices 

at day 30 suggested by DESeq2 (FDR P < 0.05, Log2 fold change > 1). Compared to the barn 

cleaning pracitces effects at day 7, the effects of the barn cleaning practices on the 30-day 

chicken gut microbial resistome was relatively smaller. Little treatment effect was observed on 

the gene family level, whereas on the gene level, ermG and vanR gene in the vanI cluster were 

enriched by the WW treatment. ARG, antibiotic resistant gene; vanR, vancomycin resistant gene; 

erm, 23S ribosomal RNA methyltransferase genes; FD, Full disinfection; WW, Water-wash, *, P 

< 0.05.  
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Figure 0.8 Antibiotic resistance mechanism conferred by detected ARGs in the cecal microbial 

resistomes of D7 and D30 chickens. 

Differences on the major antibiotic resistant mechanisms harbored by the 7-day and 30-day 

chicken cecal microbial resistomes were observed. With the mechanism of antibiotic target 

alteration being dominant on both ages, genes conferring antibiotic efflux and antibiotic 

inactivation were representative of the day 7 and day 30 chicken cecal resistome, respectively. 
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Figure 0.9 Differential abundant cecal microbial antibiotic resistant gene families between day 7 

and day 30 suggested by LEfSe. 

Graph showing antibiotic gene families associated with different chicken sampling timepoints 

(FDR P < 0.05, LDA > 2). At day 7, genes encoding antibiotic efflux pumps were representative 

to the chicken cecal microbial resistome. At day 30, antibiotic resistant genes conferring 

antibiotic inactivation (e.g. the lincosamide nucleotidyltransferases and tetracycline inactivation 

enzymes) were more predominant. RND, resistance-nodulation-cell division; APH, 

aminoglycoside resistance gene; pmr, polymyxin resistance; msr, macrolide resistance; ABC, 

ATP binding cassette. 
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Figure 0.10 LEfSe results of differentially abundant bacterial taxa (on the family level) between 

the cecal microbiota of day 7 and day 30 chickens. 
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Result suggested 11 and 8 bacteria families associated with D7 and D30 chicken cecal 

microbiota, respectively. f__, family.  

 

 

Figure 0.11 Spearman correlation between the relative abundance of bacterial taxa (species 

level) and ARG families. 

Graph shows bacteria species that were correlated to antibiotic resistant gene families. Notably, 

among all bacteria species in the chicken gut microbiota, Escherichia coli was significantly 

positively correlated to the most families of antibiotic resistant genes. It indicates that 

Escherichia coli plays an important role in antibiotic gene proliferation and transmission.  s__, 

species; *, FDR P < 0.05; **, FDR P < 0.01.    
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Chapter 4: WEEK-OLD CHICKS WITH HIGH BACTEROIDES ABUNDANCE 

HAVE INCREASED SHORT-CHAIN FATTY ACIDS AND REDUCED GUT 

INFLAMMATION† 

4.1 Introduction 

In the ceca of matured chickens, Firmicutes and Bacteroidetes are reported to be the most 

dominant phyla, where together these two phyla represent more than 90% of total cecal 

microbiota (1-3). It has been shown that Bacteroides have relatively low abundance in the ceca 

of newly hatched chicks (4), and become the predominant taxa at day 7 reaching the peak (40 - 

45%) at 3 weeks of age (5). Great variation of Bacteroides abundance was reported in the ceca of 

young chickens ranging from 2 to 40% (6, 7). Members belonging to the genus Bacteroides are 

Gram-negative, rod-shape bacteria, which are highly adapted to the gut environment, especially 

the lower gastrointestinal tract. Encoding a high number of genes for polysaccharide and 

monosaccharide metabolism, Bacteroides are important complex carbohydrates degraders in the 

host gut (8). However, limited information is available regarding how differential abundance of 

this taxa affects gut immune state or functional capacity of the gut microbiota in broiler chickens. 

In microbiome research, studying variations in microbial structure and composition can 

offer insight into complex host-microbe-metabolite interactions. Arumugam et al. (2011) first 

described 3 robust clusters in the human gut microbiota, indicating the importance of the 

population-level analysis of the gut microbiome variation (9). In chicken research, studies have 

also suggested the existence of distinct gut microbiomes among individuals (10, 11). Kaakoush 

 
† This chapter has been accepted by Microbiology Spectrum as Yi Fan, Tingting Ju, Tulika Bhardwaj, Douglas R. 
Korver, Benjamin P. Willing. Microbiology Spectrum. 2022. Week-old chicks with high Bacteroides abundance 
have increased short-chain fatty acids and reduced markers of gut inflammation. 
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et al. (2014) reported that chicken fecal microbiomes could be seperated into four enterotypes, 

including elevated Bacteroides, and that microbial composition could be associated with 

pathogen carriage, however, the authors did not explore changes in metabolite profile or host 

responses (10). A more recent study identified high Bacteroides in the duodenum of mature 

chickens with less fat deposition and lower serum triglyceride levels (11).  

The aim of the study was to understand how high and low Bacteroides abundance are 

associated with early life chicken gut microbial functional capacity and immune response. This 

was achieved by sampling and characterizing week-old broiler chickens from commercial 

production flocks with distinct cecal Bacteroides abundance. 

 

4.2 Materials and methods 

4.2.1 Chicken management and sample collection 

Following the Canadian Council on Animal Care guidelines (12), the animal usage of this 

experiment was approved by the Animal Care and Use Committee administered by the 

University of Alberta (AUP00002377). A commercial broiler farm in Alberta, Canada provided 

facilities and all the chickens for this study.  A total of 14 broiler flocks reared under the same 

feed and water, light exposure, and immunization condition in similarly engineered broiler 

production houses were sampled. Animal management and sample collection procedure was 

performed as descried previously (13). Briefly, for each flock, 14,000 Ross 308 broiler chicks 

were placed at 1 day of age and were fed ad libitum until the end of the production cycle. At day 

7, five broiler chickens from each flock randomly selected from different areas in the barn were 
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euthanized by cervical dislocation for sampling. Approximately 300 mg of cecal contents and 

cecal tonsil tissue were collected, snap frozen, and stored at -80 ℃ for further analyses. 

 

4.2.2 Bacteroides over-/under- representing sample identification 

Total DNA was extracted from cecal contents using the QIAamp Fast DNA Stool Mini Kit 

(Qiagen, Valencia, CA) with an additional bead-beading step with ~200 mg of garnet rock at 6.0 

m/s for 60 s (FastPrep-24 5G instrument, MP Biomedicals). Amplicon libraries were constructed 

according to the manufacturing protocol from Illumina (16S Metagenomic Sequencing Library 

Preparation) targeting V3-V4 region of the 16S rRNA gene (primers: Forward: 5′-TCGTCGG 

CAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG-3′; Reverse: 5′-

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC-

3′). An Illumina MiSeq Platform (2 × 300 cycles; Illumina Inc. San Diego, CA) was used for a 

paired-end sequencing run. The 16S rRNA sequences in the current study were submitted to NCBI 

Sequence Read Archive under BioProject PRJNA876288. 

The quality of the reads was assessed using FastQC. Quantitative Insight into Microbial 

Ecology (QIIME2)-2020.6 was used to process the sequenced reads (14). DADA2 was used to 

denoise and generate paired-end representative reads (15), and samples with reads less than 14,000 

reads were removed. An amplicon sequence variant (ASV) feature table was subsequently created. 

To assign taxonomy, the q2-feature-classifier in QIIME2 was used with a pretrained classifier 

"SILVA 132 99%" (16). The command “qiime feature-table relative-frequency” on taxa collapse 

level 6 was used to calculate genus relative abundance in QIIME2. The mean value and standard 

deviation of Bacteroides relative abundance was calculated. Based on the data distribution, to 
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screen for distinct cecal Bacteroides samples, cecal content with Bacteroides relative abundance 

falling inside one standard deviation were considered as non-assigned (n/a) samples, whereas the 

ones falling outside of a standard deviation was considered as LB or HB samples.  

The 'diversity core-metrics-phylogenetic' command was used for diversity analyses on the 

screened samples. The Chao1 and Shannon diversity indices were computed using “diversity 

alpha-phylogenetic” and the significance was determined using “diversity alpha-group-

significance”. The beta diversity was analyzed in QIIME2 using the Bray-Curtis distance metric, 

and a principal coordinate analysis (PCoA) was plotted in R utilizing phyloseq package. Pairwise 

Permutational Multivariate Analysis of Variance Using Distance Matrices (pairwise Adonis) based 

on the Bray-Curtis distance matrices was used to identify significant differences in community 

structures between treatments.  

Microbial co-occurrence network was calculated using the NetCoMi package (version 

1.0.2) in R with the Sparse Correlations for Compositional data (SparCC) as the sparsification 

method. The algorithm estimated pairwise association after 20 iterations, assuming an absence of 

a large number of co-occurring taxa with strong correlations. The taxa count data was resampled 

100 times before being used to generate randomized correlation tables. For each pairwise 

correlation, the randomized correlation matrix was used to calculate bootstrapped P values. The 

resulting correlation matrix was utilized in network models to define links between taxa. If the 

absolute pairwise correlation between two taxa was greater than 0.25 and there was strong 

evidence for the association (P < 0.001), correlations between the two taxa were considered during 

network construction. Network features including degree, betweenness, closeness centrality and 

modularity computation enable identification of hubs (quantile set at 0.9). The community 

structure was constructed based on the fast greedy algorithm (17). 
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The extracted genomic DNA was also used to measure the abundance of Bacteroides-

Prevotella group in the cecal content using quantitative PCR (qPCR) targeting the 16s rRNA gene 

(Table 1). PerfeCTa SYBR Green Supermix (Quantabio, Beverly, MA, USA) was used for qPCR 

assays which were conducted on an ABI StepOne real-time system (Applied Biosystems, Foster 

City, CA, USA) following the setup of 95 °C for 3 min and 40 cycles of 95 °C for 10 s, 68 °C for 

30 s. A 10-log-fold standard curve for quantification of the target gene was created using PCR 

amplicon which concentration was determined by a Quant-iT™ PicoGreen™ dsDNA Assay Kit 

(Invitrogen, Waltham, MA, USA). Bacteroides-Prevotella 16S rRNA gene copy numbers were 

determined using the relative standard curve method and normalized to the weight of cecal content 

used for DNA extraction.   

4.2.3 Shotgun metagenomic sequencing and functional genomics analyses 

Total genomic DNA extracted from the cecal contents as described above were used for 

Shotgun metagenomics sequencing. Library preparation and shotgun sequencing were performed 

at the Genome Quebec Innovation Centre (Montreal, Canada). Libraries were generated using 

NEBNext Ultra II DNA Library Prep Kit (New England Biolabs). Shotgun metagenomic 

sequencing was performed using the NovaSeq 6000 S4 PE150 system (Illumina Inc., San Diego, 

CA, USA). The shotgun metagenomic sequences in the current study were submitted to NCBI 

Sequence Read Archive under BioProject PRJNA902117. 

FastP v0.23.2. was used for quality control. Low quality reads, adaptors, polyG and 

duplicated sequences were removed (18). To remove host DNA contamination, a chicken host 

reference database was built using bowtie2 v2.4.1 with genome Gallus_gallus 105 release from 

Ensembl (19). Kneaddata v0.10.0 were used to remove host contaminants with the built reference 

database (https://github.com/biobakery/kneaddata). Gene abundance and pathway analyses were 
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conducted using HuMAnN3 with default settings (20). Gene and pathway abundance were 

annotated by the Metacyc database and normalized to copy numbers per million reads using the 

HuMAnN3 utility scripts. Differentiate gene and pathway abundance were identified using LDA 

effect size (LEfSe) implemented in the Galaxy online tool (LDA score > 2). Differentiate gene 

network was constructed using the NetCoMi v1.0.2 package in R (17). Briefly, filter parameters 

were set to the 50 most frequent genes. Gene network was clustered based on the fast greedy 

algorithm. Gene association was determined by the SPRING method with correlation coefficient 

set at 0.3 (21). The corresponding similarities were used as edge weights. Eigenvector centrality 

was used to define hubs and scale node sizes. Properties of the constructed network were calculated 

based on the highest degree, betweenness and closeness centrality at the same time with hub 

quantile set at 0.9. The Jaccard index was used to assess the differences of the most central nodes 

between groups. Similarity between networks were assessed based on the adjusted Rand index. 

4.2.4 Reverse-transcription (RT) - qPCR assay 

To examine host response to different Bacteroides relative abundance, cecal tonsils were 

subjected to RNA extraction followed by cDNA synthesis and qPCR assay. Primers targeting 

selected genes were used to assess host responses between chickens with high and low cecal 

Bacteroides. Specifically, the expression of the pro-inflammatory cytokine genes interleukin 

(IL)-1β,  IL-6, and the anti-inflammatory cytokine gene IL-10 in the cecal tonsil was measured to 

evaluate the immune status of the young chickens. To assess gut integrity, the expression of the 

tight junction protein genes claudin-1 (CLDN1) and zonula occludens 1 (ZO1) was measured. In 

addition, to investigate how the chicken ceca respond to the SCFA production of the high and 

low Bacteroides groups, the expression of the sodium coupled monocarboxylate transporter gene 

(SMCT), which facilitates transcellular transfer of fatty acids from the lumen into lamina propria, 
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was measured. Primers targeting the selected genes are as listed in Table 4.1. To extract RNA, 

approximately 30-50 mg of snap-frozen cecal tonsil tissue was cut and weighted. Tissue was 

ground by pre-chilled RNAse-free mortar and pestle in liquid nitrogen. RNA was extracted using 

the GeneJET RNA Purification Kit (Thermo Scientific) with modifications. Specifically, ground 

tissues were homogenized in 600 μl of lysis buffer followed by bead beating in nuclease-free 

tubes with three metal beads at 4 m/s for 20 s (MP Biomedicals, Solon, OH, USA). Prior to 

elution, DNase I (Qiagen) was used to treat samples for 15 min to remove DNA. RNA 

concentration was determined by a NanoDrop 2000c spectrophotometer (Thermo Scientific) and 

were normalized to 1 μg of RNA for reverse transcription. QScript Flex cDNA Synthesis Kit 

(Quanta Biosciences) was used for RNA reverse-transcription following the random primer and 

oligo (dt) protocol. qPCR was performed using PercfeCTa SYBR Green Supermix (Quantabio) 

and conducted on an ABI StepOne real-time system following the cycles: 95 °C for 3 min and 40 

cycles of 95 °C for 10 s, 60 °C for 30 s. Glyceraldhyde-3-phosphate dehydrogenase (GAPDH) 

was used as the housekeeping gene for calculating the fold change of gene expression relative to 

LB birds using the 2-ΔΔCt method. 

4.2.5 Short-chain fatty acids (SCFAs) analysis 

Cecal contents used for 16S rRNA gene amplicon sequencing and shotgun metagenomic 

sequencing were also used for SCFA analysis. Approximately 30 mg per sample of snap-frozen 

cecal content was weighed, followed by homogenization with 25% phosphoric acid. Samples were 

centrifuged at 21,130 x g for 10 min and supernatant was collected and filtered using 0.45 μm 

filter. Isocaproic acid (23 μmol/ml) was added at a 1:4 ratio to samples as an internal standard. To 

measure SCFA concentrations in samples, a standard solution containing acetate, propionate, 

isobutyrate, butyrate, isovalerate, valerate, and caproic acid mixed with 25% phosphoric acid was 
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prepared. Samples were analyzed on a Scion 456-GC instrument. Final concentrations of SCFAs 

were normalized to sample weights. 

4.2.6 Statistical analyses 

If not otherwise stated, statistical analyses were conducted using GraphPad Prism 8 

(Graphpad Software, CA, USA), and mean values were presented as mean ± the standard 

deviation. Statistically significant differences were determined (P < 0.05) by an unpaired student’s 

t-test for parametric data (i.e., gene expression and SCFA concentrations). The Kruskal–Wallis 

test was used to determine the significance of non-parametric data (i.e., microbiome alpha-

diversity indices). The Spearman’s correlation was used to correlate SCFA concentration and 

bacterial relative abundance as well as to determine correlations between cecal microbial taxa. 

Correlation significance was determined by psych package and visualized using corrplot package 

in R (version 3.6.1). 

 

4.3 Results 

4.3.1 Bacterial composition of early life chicken cecal microbiome 

On average, 24,647.56 ± 7632.78 reads per sample were generated and processed by the 

QIIME2 pipeline, resulting in 1,798 ASVs. Filtered reads were taxonomically classified to 

represent 4 major phyla (Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria) and 106 

genera. The 3 most abundant phyla made up over 98% of the population and included Firmicutes 

(76.16 ± 15.72 %), Bacteroidetes (17.54 ± 16.59 %), and Proteobacteria (5.07 ± 6.83 %)). 
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4.3.2 Bacteroides over-/under- representing sample identification 

On the genus level, various levels of Bacteroides relative abundance were observed (16.3 

± 15.6%; range, 0 - 52.2%). Low Bacteroides samples were defined as samples with Bacteroides 

relative abundance lower than 0.7% (mean - SD); whereas high Bacteroides samples were defined 

as samples with Bacteroides relative abundance higher than 31.9% (mean + SD). As a result, 

chickens from 11 different flocks were assigned to either the LB or HB group. Specifically, 18 

birds with low Bacteroides levels from 6 flocks and 15 birds with high Bacteroides from 6 flocks 

were identified. Chickens that were not assigned to either group were marked as not assigned (n/a) 

(Table 4.2). Bodyweights were not collected at day 7 terminations; however, the average 32-day 

flock bodyweight (P = 0.91) and mortality rate (P = 0.93) were similar between flocks that had the 

majority of birds identified as LB, HB, or n/a (Table 4.2). 

Beta diversity analyses revealed that LB, HB, and n/a groups were significantly separated 

based on Bray-Curtis distance metric (P < 0.05 for HB vs. LB, HB vs. n/a, and LB vs. n/a, as 

shown in Figure 1). Observed ASV index revealed that the richness of observed taxa between the 

HB, LB and n/a group was comparable. However, the Shannon index showed that the HB had 

decreased evenness due to the high relative abundance of Bacteroides in the cecal microbiota. 

qPCR assay using primers targeting the Bacteroides-Prevotella group showed that the LB group 

had a lower absolute abundance of Bacteroides-Prevotella group (5.96 and 9.04 log10 copies/g 

cecal contents of Bacteroides-Prevotella 16S rRNA gene for LB and HB group, respectively, P < 

0.01). 

The generated cecal microbiome network (Figure 2) included taxa that were involved either 

in coabundance (positive associations represented by green line) or coexclusion (negative 

associations represented by pink line) based on a threshold of P < 0.05 and an absolute pairwise 
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correlation of > 0.30. Nodes were categorized as hubs or non-hubs based on the within-module 

degree and eigenvector centrality. Eigenvector considers both the importance of the node and the 

degree of connectivity of its neighbors. The hub nodes were further classified as network hubs 

(modularity > 0.63) and module hubs (modularity between 0.60 and 0.63) based on the degree of 

connectivity. Based on both eigenvector centrality and modularity, 5 centered genera 

(Lactobacillus, [Clostridium]_methylpentosum_group, Acinetobacter, Phascolarctobacterium 

and an uncultured member from the family Erysipelatoclostridiaceae) were identified as hubs. 

This rendered the potential of identified hubs in diverse species interactions. Possible competition 

interactions were identified in Figure 2, where Bacteroides relative abundance was negatively 

correlated with Lactobacillus, the [Clostridium] methylpentosum group, and an uncultured 

member of the Erysipelatoclostridiaceae family.  In addition, genera Alistipes showed a positive 

correlation to Bacteroides indicating mutualism between these genera. 

Spearman correlation between cecal microbial taxa also revealed positive association 

between Bacteroides and the genera Faecalibacterium, Anaerofilum, Anaeroplasma, Alistipes, and 

an undetermined genus from the order Oscillospirales; whereas negative correlations between 

Bacteroides and the genera Lactobacillus, Escherichia-Shigella, Blautia, Subdoligranulum, 

Anaerostipes, Negativibacillus, the [Ruminococcus]-torques-group, and an uncultured genus 

belonging to the family Ruminococcaceaea were also suggested (Figure S4). 

 

4.3.3 HB individuals have higher SCFA concentrations in cecal contents 

Gas chromatography was used to measure SCFA concentrations in broiler cecal contents. 

The HB group had increased concentrations of total SCFAs (P < 0.01), acetate (P < 0.01), 

propionate (P < 0.05), butyrate (P < 0.05), and valerate (P < 0.05) compared with the LB group 
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(Figure 4.3). Spearman correlation between SCFA concentrations and bacterial relative abundance 

suggested a series of microbes that were correlated with the altered SCFA profile between HB and 

LB (Figure 4.4). Notably, an uncultured member belonging to the family Lachnospiraceae and 

Faecalibacterium were found positively associated with most of the detected SCFAs. In addition, 

acetate concentration was positively correlated with Clostridia vadinBB60 group and negatively 

correlated with Tyzzerella. Butyrate was positively correlated with Bacteroides and negatively 

correlated with Blautia. Anaeroplasma, a member from the order Oscillospirales, and an 

undetermined genus from the family Ruminococcaceae were associated with propionate 

concentration, whereas [Ruminococcus] torques group showed a negatively correlation with 

propionate levels. Branched-chain fatty acid, isobutyrate and isovalerate, were associated with 

Merdibacter and an undetermined member of Ruminococcaeae. 

4.3.4 Shotgun metagenomics sequencing suggested differentiated functional capacities 

between the HB and LB group 

To investigate functional capacities of the HB and LB gut microbiome, we performed 

shotgun metagenomics sequencing. Briefly, a total of 1,860 genes were annotated based on the 

Metacyc database (22). Gene networks were constructed based on the annotated genes from 

shotgun metagenomics sequencing. Genes that represented characteristics of the HB group and 

the LB group were predicted based on eigenvector centrality (Figure 4.5). The properties of the 

networks can be found in Table 4.3 (a-c) and Table S2. The Jaccard index was significantly close 

to 0 for betweenness centrality, closeness centrality, and eigenvector centrality (Table 3c), 

suggesting that the sets of most central were considerably different between the HB and LB 

group (Jaccard index ranging from 0-1, where 0 being two completely different sets and 1 being 

exactly equal sets). Different hub nodes were identified between HB and LB group based on 
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eigenvector centrality (Figure 4.5) that indicated nodes not only important by itself but also 

sharing high connectivity with important neighbors. Specifically, in the HB network the 

acetylxylan esterase (EC3.1.1.72), the type I arylsulfatase (EC3.1.6.1), the non-reducing end 

beta-L-arabinofuranosidase (EC3.2.1.185), and the licheninase (EC3.2.1.73) were identified as 

hubs, whereas only the histidine kinase (EC2.7.13.3) was identified as a hub in the LB group. 

4.3.5 Shotgun metagenomic sequencing suggested enriched pathways related to complex 

carbohydrate degradation and SCFA production in the HB group 

Shotgun metagenomics sequencing and functional genomics analyses identified 12 

pathways that were different between the HB group and the LB group (LefSe LDA score > 2, 

Figure 4.6). The gut microbiota of the HB group harbored more abundant pathways including the 

Stickland reaction pathways (PWY-8190), the superpathway of UDP-N-acetylglucosamine-

derived O-antigen building blocks biosynthesis (PWY-7332), the dTDP-β-L-rhamnose 

biosynthesis (DTDPRHAMSYN-PWY), the 1,5-anhydrofructose degradation pathway (PWY-

6992), the β-(1,4)-mannan degradation pathway (PWY-7456), and the γ-aminobutyric acid 

degradation pathway (PWY-5022). The LB microbiota were more abundant in the L-carnitine 

respiration pathway (CARNMET-PWY), the superpathway of glycerol degradation to 1,3-

propanediol (GOLPDLCAT-PWY), the heterolactic fermentation pathway (P122-PWY), the 

oleate β-oxidation pathway (PWY0-1337), the D-erythronate degradation II pathway (PWY-

7873), and the superpathway of pyrimidine ribonucleosides degradation pathway (PWY-7209), 

which exerts reductive pyrimidine degradation in bacteria.  
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4.3.6 HB and LB cecal tonsil exhibited different expression levels of genes involved in 

immune tolerance and gut integrity 

To investigate how different levels of Bacteroides population affected host responses, cecal 

tonsil RNA was extracted from the HB and LB group and subjected to RT-qPCR assay to examine 

immune-related genes including IL-1β, IL-6 and IL-10, as well as tight junction protein gene 

CLDN1 and ZO1, and the fatty acid transporter SMCT. The cecal tonsils of the HB group showed 

a decreased IL-1β with an increased IL-10 compared with the LB group (Figure 4.7). In addition, 

CLDN1, which has previously been associated with improved barrier function (23), was also 

higher in the cecal tonsil tissues of the HB group (P < 0.05; Figure 4.7). SMCT expression was not 

different between groups (P = 0.103; Figure 4.7). 

 

4.4 Discussion 

While several studies have shown significant variations in Bacteroides populations in the 

chicken gut microbiome in early life (6, 7), this is the first study to investigate how distinct 

Bacteroides compositions associate with cecal SCFA profiles, host responses, as well as 

microbial functional capacity. Bodyweight of day-7 chickens were not collected, limiting a 

connection to growth performance, however, 32-day bodyweight and flock mortality rate were 

similar between flocks where the majority of birds were identified as LB, n/a, or HB. With 

regards to the cecal microbial composition of chickens close to the end of production, the 

variability of Bacteroides was much less pronounced (data not shown), therefore the LB/HB 

phenotype was only explored in day-7 chickens. Moreover, in the current study, only 5 young 

broilers per flock were sampled. Previously, microbiome studies showed that individuals housed 
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together, particularly coprophagic animals like mice and chicken, exhibited high similarity in the 

intestinal microbiota (24, 25). Therefore, to better explore the variability of the cecal microbiome 

among commercial broiler chickens, instead of sampling more broilers from each flock, we 

chose to increase the number of flocks sampled. 

What caused the distinct Bacteroides levels was not investigated in the current study. 

Previous studies showed that cecal Bacteroides abundance in young broiler chickens could be 

increased by exposure to cecal contents from 40-week-old healthy chickens via oral gavage (26), 

the use of recycled litter (27) or hen contact at hatch (4). The absence of contact with the parent 

flock in modern broiler production likely limits the transmission of mature chicken-derived 

commensals (2, 28). In this sense, the alternate initial exposures (e.g. parent flock, hatching 

environments, or handling crew) may play an important role in shaping the early-life broiler 

microbiota. It has been reported that the relative abundance of Bacteroides was positively 

correlated with chicken cecal SCFA profiles (29). In accordance with previous findings, our 

results showed that the over-representation of Bacteroides in ceca was associated with increased 

concentrations of SCFAs, particularly acetate, propionate, butyrate, and valerate. In the chicken 

intestine, SCFAs are products of the gut microbiota fermentation from partially- or non-

digestible polysaccharides mainly derived from plant biomass. Functional gene network analyses 

showed that the microbial functional capacity of the HB group was centered by a series of 

complex carbohydrate degradation enzymes. Specifically, acetylxylan esterase (EC3.1.1.72) 

contributes to xylan utilization (30) and β-L-arabinofuranosidase (EC3.2.1.185) helps digest 

glycoproteins that are widely found in plant cell wall fractions (31). The licheninase 

(EC3.2.1.73) can degrade β-glucans which have been used as chicken feed additives (32), and 

were found to modulate the host gut microbiota and thus decrease intestinal inflammation (33, 
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34). In the current study, Spearman correlation analyses showed that the abundance of the 

microbe-encoded acetylxylan esterase, β-L-arabinofuranosidase and licheninase were 

significantly associated with cecal total SCFA, acetate, propionate, butyrate, and valerate 

concentrations (Figure S5). Therefore, harboring microbial functional capacity centred by these 

key enzymes, the microbiota of the HB group showed potential for increased utilization of plant-

derived biomass to promote SCFA production and thereby improve gut health. 

Van der Hee and Wells (2021) recently reviewed the complex interactions between 

SCFAs, gut microbes, and the host immune system (35). Briefly, enterocytes can absorb SCFAs 

via passive diffusion or protein-mediated transport, and elevated levels of lumen SCFAs enhance 

associated transporter and receptor expression (35). Nastasi et al. (2015) reported that butyrate 

can confer anti-inflammatory properties in colonic dendritic cells via G-protein coupled 

receptors pathway, which inhibits the expression of cytokine and chemokine genes (36). In the 

current study, the elevated butyrate in HB birds coincided with lower IL-1β and higher IL-10 

expression in the cecal tonsil. In addition, tight junction protein levels are important indicators of 

gut integrity as they contribute to epithelial cell adhesions and act as a barrier. Generally, 

decreased expression of tight junction proteins may lead to diffusion of antigens or bacterial 

macromolecular (e.g. endotoxin) from the intestinal lumen into circulation (37). Decreased level 

of tight junction protein claudin 1 was reported in chronically stressed and repeatedly 

corticosterone-injected rats (38). In addition, gut inflammation caused by Salmonella enterica 

serovar Typhimurium challenge was also found to decrease the expression of chicken intestinal 

claudin 1 (23). Therefore, in the current study, the decreased expression of CLDN1 mRNA level 

found in the LB group may indicate decreased gut integrity and may have contributed to the 

increased expression of IL-1β. 
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Microbial co-occurrence networks provided an opportunity to explore the impact of 

elevated Bacteroides on cecal microbial communities and types of interactions with other 

connected microorganisms. The analysis included both positive and negative links, considering 

the possibility that both types of associations could influence network stability. To circumvent 

the limitations of sparsity and high dimensionality of microbial data, the correlation principle 

was utilized to understand the pairwise associations among microbes and interactions. Further, 

network features were computed to identify biologically significant patterns and community 

keystone taxa. In the current study, the SparCC correlation method evaluated the variance of the 

log-ratio for modified data to infer pairwise relations. Lactobacillus was negatively associated 

with Bacteroides in the cecal microbial community. Similarly, previous human studies have 

demonstrated that Lactobacillus can competitively exclude commensals including Bacteroides 

(39). Competition is often observed between taxa sharing similar nutrient sources (e.g. nitrogen 

and carbon source). It might partially explain the negative correlations between Bacteroides and 

Lactobacillus in the current study since members from these two genera are efficient and 

important complex carbohydrate degraders. Particularly, our results of functional genetic 

analyses indicated that the 1,5-anhydrofructose degradation pathway (PWY-6992) and the β-

(1,4)-mannan degradation pathway (PWY-7456) were more abundant in the HB cecal 

microbiota. The 1,5-anhydrofructose degradation pathway catalyzes the degradation of glycogen 

(40), whereas the β-(1,4)-mannan degradation pathway is involved in the hydrolysis of mannans, 

a major group of hemicellulose (41). The enriched pathway PWY-7456 in the HB cecal 

microbiota indicated that the microbial members harbored greater genetic potential in utilizing 

complex carbohydrates derived from plant cell wall which were contained in chicken feed. In the 

LB group, the heterolactic fermentation pathway (P122-PWY) was more abundant in the gut 
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microbiome. Possessed mainly by lactic acid bacteria, the heterolactic fermentation pathway 

ferments starch to lactates. The difference in the predominant carbohydrate utilization pathways 

between LB and HB groups further identified nutrient competition between Bacteroides and 

Lactobacillus, particularly regarding complex carbohydrate fermentation. Currently, a good 

number of studies have considered Lactobacillus as probiotics in poultry and reported potential 

beneficial effects. However, many of these studies also found that the abundance of 

Lactobacillus in the chicken ceca was not affected by Lactobacillus supplementation suggesting 

that the potential beneficial effects conferred by Lactobacillus may not be a consequence of cecal 

colonization (42, 43). In fact, Chen et al. (2016) studied the effect of the supplementation of 

Lactobacillus spp. and/or yeast with bacteriocin on broiler performance and reported that 

supplementation with Lactobacillus culture alone (without bacteriocin) was the only treatment 

group that increased cecal Lactobacillus colonization (44). Consistent with our study, the 

increase in Lactobacillus coincided with decreased SCFA production with no improvement on 

performance compared to the control (44). Thus, although supplementing Lactobacillus had been 

shown to exert beneficial effects on poultry, the effects of Lactobacillus colonization in the 

chicken ceca needs to be carefully assessed in the future. 

In addition, results from the current study indicated that Alistipes may share a mutualistic 

relationship with Bacteroides. To date, little is known about the genus Alistipes, which is a sub-

branch genus of the phylum Bacteroidetes (45). Alistipes are bile-resistant microorganisms with 

an ability to produce acetic acid by digesting gelatin and fermenting carbohydrates (46). 

Correlations between health outcomes and Alistipes indicated that Alistipes may exert protective 

effects against diseases such as liver fibrosis and colitis (47, 48). However, the causal effect of 

the microbial taxa in diseases and its prevalence remains unclear. Studies have shown that 
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Alistipes are more abundant in host gut with an anti-inflammatory background (49, 50). In the 

current study, the lower IL-1β expression in the ceca of HB broilers may have favored Alistipes 

growth. 

The higher Bacteroides abundance in ceca may reflect a further progression of microbial 

succession, with the transition from facultative anaerobes, such as Lactobacilli, to strict 

anaerobes, such as Bacteroides, Ruminococcaceae and Lachnospiraceae. An anaerobic gut 

environment and undigested carbohydrates entering ceca are essential for the production of 

SCFAs (51), in turn, increased SCFAs help make the gut more anaerobic (52). In congruence, 

our results showed that obligate anaerobes from the families Ruminococcaceae and 

Lachnospiraceae were positively correlated with SCFA production. On the other hand, more 

inflammation could provide reactive oxygen species that could delay colonization of strict 

anaerobes (53). Although previously both in vitro (54) and in vivo (55) studies have shown the 

immunomodulatory effects of Bacteroides strains, the direction of causality between high 

Bacteroides/SCFA levels and inflammation has yet to be determined. Therefore, future studies 

assessing how the host intestine respond to increased SCFA (e.g. via histone deacetylation) is 

warranted. Further, while this study points to a beneficial impact of high Bacteroides 

colonization, future research with the introduction of Bacteroides strains to chickens in 

microbially controlled conditions will be needed to demonstrate causal contributions of 

Bacteroides in improving health outcomes and to support their development as potential 

probiotics.  

To conclude, the current study identified distinct Bacteroides populations in the ceca of 

commercial broiler chickens in early life. Our results revealed that elevated level of cecal 
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Bacteroides in young chickens had led to altered microbial functional capacity of the gut 

microbiome, which promoted the production of SCFA. Coincided with that, compared to the LB 

group, chickens from the HB group had lower expression of pro-inflammatory cytokines coupled 

with and higher expression anti-inflammatory cytokine and tight-junction protein gene. 

Consequently, it indicated that elevated cecal Bacteroides may be beneficial to commercial 

broiler chickens in suppressing gut inflammation through the increment of short-chain fatty acid 

production. 

 

4.5 Conclusion 

The current study for the first time illustrated the effects of Bacteroides under-/over- 

represented gut microbiota to the broiler chickens in early life, particularly in the aspects of 

microbial compositions, the microbial functionality, and host immune responses. Our results 

indicated that the genus Bacteroides are important in maintaining chicken gut homeostasis in 

early life by promoting SCFA production. While this study points to a beneficial impact of high 

Bacteroides colonization, future research with the introduction of Bacteroides strains to chickens 

in microbially controlled conditions will be needed to demonstrate causal contributions of 

Bacteroides in improving health outcomes and to support their development as potential 

probiotics. 
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Table 0.1 Primers used to quantify cecal Bacteroides and the expression of selected gene 

markers. 

†: IL, interleukin; SMCT, sodium coupled monocarboxylate transporter; CLDN, claudin; ZO, 

zonula occludens; GAPDH, Glyceraldehyde 3-phosphate dehydrogenase. 

Primer† Sequence  Product 
size (bp) 

Reference 

Bacteroides-
Prevotella Forward 

GGTGTCGGCTTAAGTGCCAT 140 (56) 

Bacteroides-
Prevotella Reverse 

CGGACGTAAGGGCCGTGC 

IL-1b Forward GGGCATCAAGGGCTACAA 88 (57) 

IL-1b Reverse CTGTCCAGGCGGTAGAAGAT 

IL-6 Forward GAGGGCCGTTCGCTATTTG 67 (58) 

IL-6 Reverse ATTGTGCCCGAACTAAAACATTC 

IL-10 Forward GCTGAGGGTGAAGTTTGAGG 121 (59) 

IL-10 Reverse AGACTGGCAGCCAAAGGTC 

SMCT Forward GGCTTCAGCGTTTGGGACTA  235 (60) 

SMCT Reverse TGCAGAAGATGGCACCGTAG  

CLDN1 Forward CCAGGTGAAGAAGATGCGGA 129 

 CLDN1 Reverse GGTGTGAAAGGGTCATAGAAGGC 

ZO1 Forward CAACTGGTGTGGGTTTCTGAA 101 

ZO1 Reverse TCACTACCAGGAGCTGAGAGGTA A 

GAPDH Forward CTACACACGGACACTTCAAG 244 (61) 

GAPDH Reverse ACAAACATGGGGGCATCAG 
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Table 0.2 Distribution of chickens assigned to high Bacteroides (HB) group, low Bacteroides 

(LB) group, or unassigned (n/a) † 

Chicken distribution Flock mean bodyweight 
(gram) 

Flock mean mortality rate 
(%) 

HB (1) + n/a (4) 1,793 4.8 

LB (5) 1,746 4.7 

LB (4) + n/a (1)  1,810 3.3 

LB (4) + HB (1) 1,836 5.7 

LB (2) + n/a (3) 1,790 6.5 

LB (1) + n/a (4) 1,850 3.1 

HB (1) + n/a (4) 1,793 4.8 

n/a (5)  1,744 5.2 

HB (1) + n/a (4) 1,750 5.1 

HB (3) + n/a (2) 1,762 7.0 

n/a (5) 1,850 6.1 

HB (3) + n/a (2)  1,886 3.7 

HB (3) + n/a (2) 1,790 3.5 

n/a (5)  1,744 5.2 

†: Each row represents a single production flock. In each production flock, 5 young broiler 

chickens were randomly sampled. Numbers in the brackets refers to the number of broiler chickens 

assigned to each specific group. 
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Table 0.3 Properties of networks constructed for the HB group and LB group. 

a) Jaccard index† 

 Jacc P ( ≤ Jacc) P ( ≥ Jacc) 

degree 0.048     0.002 **    1.000 

betweenness centrality 0.000 < 0.001 *** 1.000   

closeness centrality 0.091     0.009 **    0.998    

eigenvector centrality 0.050     0.003 **    1.000    

hub taxa            0.000 0.296 1.000 

Adjusted rand index = 0.109 (ARI, measuring similarity between clusterings ranging from 0 - 

1. ARI =1, perfect agreement between clusterings; ARI=0, two random clusterings; P <0.001) 

 

b) Hub nodes 

HB LB 

3.1.1.72: Acetylxylan esterase 2.7.13.3: Histidine kinase 

3.1.6.1: Arylsulfatase (type I)  

3.2.1.185: Non-reducing end beta-L-arabinofuranosidase  

3.2.1.73: Licheninase  
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c) Eigenvector centrality 

Gene HB LB 

Highest values in the HB group 

3.2.1.185: Non-reducing end beta-L-arabinofuranosidase    1.000 0.267 

3.2.1.73: Licheninase    0.949 0 

3.1.1.72: Acetylxylan esterase    0.866  0.558 

3.1.6.1: Arylsulfatase (type I)     0.839 0 

3.2.1.52: Beta-N-acetylhexosaminidase 0.665   0.132 

Highest values in the LB group 

2.7.13.3 histidine kinase 0 1.000 

2.7.7.7: DNA-directed DNA polymerase 0 0.912 

6.3.5.5: Carbamoyl-phosphate synthase (glutamine-hydrolyzing) 0 0.752 

2.7.7.6: DNA-directed RNA polymerase 0 0.737 

 

†, Jaccard index measured the similarity between sets of most central nodes. Jaccard index 

ranged from 0 (completely different) to 1 (sets equal), **, P <0.01; ***, P <0.001. 
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Figure 0.1 Diversity of the gut microbiota of the 7-day-old commercial broiler chickens 

(a) Principal coordinate analysis plot based on Bray-Curtis distance metric. Distinct pattern of 

Bacteroides populations resulted in significantly different clusters between LB , HB and 

chickens not assigned to either HB or LB groups (n/a) (adonis P < 0.05). (b) The HB group had 

decreased bacterial species evenness compared with the LB group and the n/a group (Shannon 

index, P < 0.01). (c) Comparable bacterial species richness was observed between groups 

(observed ASV, P > 0.05). LB: low Bacteroides, n = 18; HB: high Bacteroides, n = 15; n/a: not 

assigned, n = 37. *, P <0.05; **, P < 0.01. 
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Figure 0.2 Cecal microbiome co-occurrence network based on SparCC correlation on the genus 

level. 

Only significantly correlated (P < 0.05) taxa in the cecal microbiome with coefficient greater 

than 0.3 are shown. Estimated correlations were transformed to dissimilarities via the “signed” 

distance metric and corresponding similarities were used as edge weights. Node sizes were 

scaled based on eigenvector centrality. Hubs were defined using eigenvector centrality with a 

centrality value above the empirical 90% quantile. To increase visibility, hubs were highlighted 

by bold text and borders and marked as ○1 ,○2 , ○3 ,○4 and ○5 . Node colors represented phyla. ○1 , 

Lactobacillus; ○2 , [Clostridium]_methylpentosum_group; ○3 , Acinetobacter; ○4 , 

Phascolarctobacterium; ○5 , an uncultured member from the family Erysipelatoclostridiacea. 
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Figure 0.3 Cecal short-chain fatty acid (SCFA) concentrations in LB and HB groups. 

Results were shown as (a) total SCFA concentrations, (b) acetate, (c) propionate, (d) butyrate, 

and (e) valerate (mean ± standard error of the mean, LB: n = 18, HB: n =15, *, P <0.05, **, P < 

0.01). LB: low Bacteroides; HB: high Bacteroides; Conc., Concentration. 
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Figure 0.4  Spearman correlation heatmap 

Heatmap showing Spearman correlations between cecal bacterial abundance and short-chain 

fatty acid (SCFA) concentrations in broiler chickens from low- and high-Bacteroides groups. *, 

P < 0.05; **, P < 0.01; Conc., Concentration. 
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Figure 0.5 The comparison of the functional network harbored by cecal microbial communities. 

Green edges corresponded to positive associations and red edges to negative associations. Colors 

of nodes represented clusters determined by the fast greedy modularity optimization. Node sizes 

were scaled according to eigenvector centrality. Nodes with bold text were identified hubs in the 

networks. Hubs were nodes with eigenvector centrality greater than 90% quantile of the 

empirical centrality distribution (LB: low Bacteroides; HB: high Bacteroides, LB: n = 18; HB: n 

= 15). 
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Figure 0.6 Differentially abundant pathways of the cecal microbiota 

Linear discriminant analysis (LDA) effect size (LEfSe) showing differentially abundant 

pathways of the cecal microbiota (LDA score ≥ 2.0; P < 0.05; LB: low Bacteroides; HB: high 

Bacteroides, LB: n = 18; HB: n = 15). 
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Figure 0.7 Gene expression in chicken cecal tonsil. 

 (a) Pro-inflammatory cytokine IL-1β showed lower expression levels in the HB group compared 

to LB broiler chickens. (b) IL-6 expression was not differed between groups. (c) Increased anti-

inflammatory cytokine IL-10 was observed in the HB group. (d) The expression of the tight-

junction protein CLDN1 was slightly increased in the HB group. (e) Compared to the LB group, 

a trend of increased expression of short-chain fatty acid transporter SMCT was seen in the ceca 

of HB chickens (LB: n = 18; HB: n = 15, mean ± standard deviation, *, P < 0.05; **, P < 0.01, 

n.s., not significant; LB: low Bacteroides; HB: high Bacteroides). 
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Chapter 5: GENERAL DISCUSSION AND FUTURE WORK 

5.1 Conclusions and General Discussions 

This thesis had shed light on how barn cleaning practices in poultry production affecting 

the chicken gut microbiome and pathogen abundance. Our study also provided new insights into 

understanding the effects of possessing a microbiome with elevated Bacteroides in early life on 

the chicken gut microbiology and intestinal immune status. 

In the past few decades, the poultry industry has relied on antibiotics to keep the 

prevalence of pathogens low during production. With the global goal of eliminating growth 

promotion using medically important antimicrobials and reducing prophylactic antimicrobial use, 

it is foreseeable that in the future, biosecurity measures such as barn chemical disinfection will 

be continuously applied frequently in production. As discussed, in the setting of the modern 

broiler production, the barn is one of the most important microbial sources for chickens that can 

shape the development of the gut microbiome. With the intent to control pathogen transmission, 

barn chemical disinfection also removes commensals from the previous flocks, leading to 

drastically reduced diversity and density of microbes for the chicks to be exposed to. Without 

competitive exclusion offered by a diverse gut microbiota, one possible consequence of this is 

that the commercial chickens are sensitive to pathogens (1). In this sense, using chemical 

disinfectants in barn sanitation may run contrary to its intent. Currently, the effects of the 

chemically disinfected barns on the chicken gut microbiome (e.g. the microbial composition, the 

microbial functionality, the resistome) as well as the related host responses were poorly 

understood. In addition, distinct early-life microbial compositions in the chicken gut were 

previously reported (2, 3). Perhaps it may also be a consequence of the lack of exposure to a 

stable, parental-flock-derived microbial community caused by the production mode, because 
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chickens could develop mature microbiome in less than a week if provided adult-chicken-derived 

microbes (4). Bacteroides is an important chicken commensal to have distinct colonization speed 

in young chicks with/without contact with adult hens (5). Therefore, understanding the effects of 

chicken early-life distinct Bacteroides compositions and the functional consequences can offer 

important scientific insights to the poultry industry, particularly with respect to establishing 

intestinal homeostasis in commercial broiler chickens early in their lives. 

In chapter 2, we conducted studies to exam the effects of using chemical disinfectants in 

barn cleaning on the chicken gut microbiome and the host responses in production. Our results 

suggested that the barn cleaning methods did not affect chicken bodyweight or flock mortality 

rate. Using 16S rRNA amplicon sequencing technique and qPCR assays, for the first time, we 

reported that the chemically disinfected barns had modest but significant effects on the chicken 

cecal microbial communities. Decreased Helicobacter, which was further identified as 

Helicobacter pullorum in chapter 3, was observed in the chicken ceca at day 30 in response to 

the chemically disinfection barn treatment (FD).  

In addition, compared to water-washed barn treatment (WW), the chickens from the FD 

group had decreased cecal short-chain fatty acid (SCFA) concentration associating with almost 1 

log increased Campylobacter jejuni hipO copy numbers at the end of the production cycle. 

Previously, de Castro Burbarelli et al. conducted a study in research facility to examine the 

effects of poultry pen cleaning using neutral detergent versus acidic and alkaline detergent with 

chemical disinfectants (6). They assessed the effects the cleaning practices on chicken 

performance as well as the abundance of selected pathogens in the chicken ceca. Their results 

indicated no treatment effects on the Campylobacter occurrence frequency in the chicken gut at 

the end of the production cycle. However, they observed a trend (P = 0.076) that Campylobacter 
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were more frequently detected in the intestine of the stronger disinfection group at slaughter (6). 

In this thesis, the animal trial was performed in commercial broiler production facilities, with 28 

flocks from 7 barns, whereas the previous study by de Castro Burbarelli et al. focused on a 

laboratory-scale setting and drew conclusions examining only 2 flocks. The increased power in 

the current study likely decreased the probability a false negative. In addition, instead of using an 

enrichment assay, the study by de Castro Burbarelli et al. used PCR techniques to test the 

presence and absence the selected Campylobacter, regardless of whether bacteria were dead or 

alive. Moreover, without assessing the composition of other bacteria and/or nutrients such as 

SCFAs, it is difficult to further address the reasons led to the observed trend of the different 

Campylobacter detection frequencies (6). Over the years, numerous efforts had been made by the 

poultry industry to control C. jejuni. One promising strategy reducing Campylobacter in the 

chicken gut could be altering the chicken cecal microbiome toward a composition that has 

increased microbial competition. Our study showed that after a previously healthy flock, WW 

helped chickens to develop cecal microbiota that did not favor C. jejuni growth, which could be 

made immediate practical by the industry during production. In addition to C. jejuni, this thesis 

also assessed the effects of barn sanitation practices on other pathogens in the chicken gut, such 

as Salmonella and Clostridium perfringens, and showed no differences on detection frequency or 

abundance between treatments. In fact, during the study period for almost 1 year, Salmonella 

was not detectable in both the barns and the chicken gut while cecal C. perfringens was at a very 

low level. These results can provide confidence to the industry that using WW can assure food 

safety while maintaining productivity.  

Further in Chapter 3, with the help of shotgun metagenomic sequencing techniques, we 

were able to gain bacterial taxonomic information to the species level and assess the cecal 
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microbial functional consequences affected by the barn cleaning treatments. We found that both 

the cecal microbial composition and functionality were significantly altered by the barn cleaning 

methods. At day 7, the cecal microbial functionality of the FD chickens had enriched stringent 

response pathway with decreased amino acid synthesis capacities. At day 30, WW had increased 

the relative abundance of H. pullorum, Barnesiella viscericola, Faecalibacterium prausnitzii and 

Ruminococcus torques in the cecal microbiota at D30 compared to FD. The increased H. 

pullorum composition directly resulted in the increased functional compacity of SCFA and 

amino acid synthesis in the cecal microbiome of the D30 WW chickens. In line with that, it has 

been shown that H. pullorum was associated with increased starch digestibility and mature 

bodyweight in chicken (7). It supported that WW could benefit broiler production by increasing 

some important commensals in the chicken gut and thereby improve the microbial functional 

capacity of nutrient utilization and decrease pathogen colonization. H. pullorum has been 

frequently detected in poultry world-wide (8). Although being frequently detected in poultry 

worldwide and considered as opportunistic pathogens by some researchers, very few disease 

cases were reported directly linked to H. pullorum infection (8, 9). Therefore, the role of H. 

pullorum in poultry and human health needs to be further assessed. Regarding the chicken gut 

microbial functional capacity, to date, little is known about how it was affected by chemical 

disinfectants in barn cleaning. Previous studies on chemical exposure reported that disinfectants 

modulate environmental microbes by affecting their functions through directly inducing 

metabolic change (such as activation of the stringent response) (10), or by triggering bacteria to 

enter competent state to acquire foreign DNA to overcome the harsh environment (11). 

Therefore, to animals exposed to these environments, their gut microbial functionality will also 

be altered in response to the change of the environmental microbial functionality (10, 12).   
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Surprisingly, data on the cecal microbial resistome did not support our original 

hypothesis; instead of increasing antibiotics resistant gene (ARG) incidence in the chicken gut. 

FD decreased the abundance of some persistent ARGs in the chicken ceca, such as the erm gene 

family and glycopeptide resistance gene clusters. Although some chemical disinfectants 

exhibited selection stress to stimulate ARG proliferation and/or transmission (13-17), these 

studies assessed the effects of single chemical disinfecting agent. In this thesis, the chemical 

disinfectants included sodium hydroxide, 2-(2-2-butoxyethoxy) ethanol, sodium laureth sulfate, 

sodium N-lauroyl sarcosinate, tetrasodium EDTA, glutaraldehyde, benzalkonium chloride 

(BAC), and formic acid. The combination of these chemicals may have worked together as a 

broader spectrum antimicrobial agent, which was more effective in removing bacterial genetic 

elements carrying ARGs.  

Chapter 2 and 3 represent the first studies in Canada, and amongst a few globally, 

directly comparing WW and FD and evaluating their effects on the chicken gut microbiome. 

These studies provide important information to the poultry industry. In the context of helping 

chickens to develop a gut microbiome with improved pathogen defense and microbial nutrient 

utilization, in barns without a previous diseases outbreak, WW should be considered with 

priority in production. In the context of controlling antibiotic resistance, especially the persistent 

ARGs,  FD were more effective.  

Interestingly, we observed drastic differences between the cecal microbial resistomes of 

the day 7 and day 30 chickens. Comparing the effect size of the barn cleaning practices on the 

chicken resistome, we found that the treatments had greater impact at day 7 than day 30. Further 

focusing just on the age differences, the antibiotic efflux pumps were identified as strong 

biomarkers of the 7-day chicken resistome, whereas ARGs with higher specificity on targets (e.g. 
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tetracycline inactive enzymes) became more predominant at day 30. In addition, the day 7 

chicken resistome showed higher abundance and diversity in comparison to day 30. Previously, 

similar age-dependent pattern was reported in a human study (18). In poultry, far less is known 

about the effect of age on the gut microbial resistome. Thus, our results form a basis for future 

studies investigating chicken gut microbial resistome that chicken age should be taken into 

consideration when assessing treatment effects. 

 In chapter 4, we identified cecal microbiota with distinct Bacteroides compositions 

among the 7-day-old commercial chickens, namely the Bacteroides-under-represented (LB) and 

Bacteroides-over-represented (HB). Interestingly, we found that the cecal abundance of 

Lactobacillus was negatively correlated to Bacteroides, whereas an obligate anaerobe Alistipes 

was associated with Bacteroides. While numerous studies have considered Lactobacillus as 

probiotics, many of these studies also reported that the cecal Lactobacillus abundance was not 

affected by their treatment (19, 20) indicating that the beneficial effects by Lactobacillus may 

not be a consequence of cecal colonization. Chen et al. studied the effect of the supplementation 

of Lactobacillus spp. and/or yeast with bacteriocin on broiler performance and looked at the 

cecal microbiota (21). They reported that supplemented Lactobacillus culture alone (without 

bacteriocin) was the only treatment group that increased the level of cecal Lactobacillus, but it 

also led to decreased SCFA production with no improvement on performance. Thus, although 

supplementing Lactobacillus had been shown to exert beneficial effects on poultry, the effects of 

cecal Lactobacillus colonization needs to be carefully assessed in the future.  

In addition, chicken cecal tonsil gene expression revealed that the HB group had altered 

cecal tonsil immune profile, which showed decreased of pro-inflammatory cytokine expression 

and increased anti-inflammatory expression. Perhaps due to the fact that using 16S rRNA 
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amplicon sequencing was sufficient to comprehensively study microbial functionality, although 

great variation of the cecal Bacteroides composition was observed previously, very little 

information is available about how distinct Bacteroides population influence the gut microbial 

functional capacities. In our study, we found that the functionality of the HB cecal microbiota, 

which was centered by a series of enzymes linked to poly-saccharide utilization, were 

significantly different from the LB counterparts that had a histidine kinase centre. In addition, 

microbiota of the HB chickens exhibited a pronounced increase in capacity for mono- and poly-

saccharide utilization, which was further reflected by the increased cecal SCFAs. By far, high 

variations of Bacteroides had been reported from some studies without being further assessed 

(22, 23). Without investigation on the microbial functional consequences and host responses, it 

was difficult to have a comprehensive understanding of what this variation in the gut microbiota 

means to the commercial broiler chickens. Our results compared and characterized HB- and LB- 

microbiotas that exist in early life of the commercial broiler chickens. Given all the positive 

outcome exhibited by the HB-microbiota, it suggested that early colonization of Bacteroides in 

the chicken gut may be a sign of the advanced development of a more mature chicken 

microbiota, which favors other obligate anaerobic co-colonizers, such as Alistipes.  

Modern broiler chickens are believed to be domesticated from the red jungle fowls 

thousands of years ago (24). Over 70 years of commercial practices in poultry breeding, humans 

have greatly changed and improved their genetic potential for meat production (25). The modern 

broiler industry also changed the ways that chickens have been living for millions of years by 

hatching eggs separately without hens in clean hatcheries and housing chickens in barns with 

limited contact to the wild. The change of both host genetics and living environments may have 

resulted in interruptions of the chicken gut microbiota, which have co-evolved with chicken for 
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millennia. In fact, the lack of contact with adult chickens raised concern over narrowing the 

microbial exposure for commercial broiler chickens to assemble and develop a balanced 

microbiota (5, 26).  

 

5.2 Limitations and Future Work 

Studies included in the thesis are based on commercial broiler chickens obtained from a 

mass-production system. Although most findings supported the hypothesis that the barn cleaning 

practices drives changes in the chicken gut microbiome and subsequent host physiology, there 

are still some limitations that should be acknowledged. 

In these studies, individual chicken performance data, such as individual body weight, 

feed conversion ratio were not measured. Particularly in Chapter 4 studying early-life microbial 

structure and related host responses, the lack of individual performance limited our ability to 

interpret the positive outcomes brought by the elevated cecal Bacteroides population. In 

production, chicken producers focus mainly on chicken performance at the flock level. When 

assessing the effects of barn cleaning methods, barns were considered as experimental units, 

therefore chicken performance data in these studies were presented as the average body weight 

and mortality of the production flock. Although other individual host-related data, such as 

individual cecal SCFA concentration and cecal tonsil gene expression were measured, individual 

performance data are still of great importance, especially with respect to understand the host-

related consequences in response of altered microbial community and functionality and nutrient 

metabolism. 
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Although the chickens sampled in these studies were treated with the same diet 

management, detailed diet information could not be provided by the chicken producers. It is 

noteworthy to mention diets play an influential role in shaping the chicken gut microbiota and is 

an important piece of information in gut microbiome studies (27-30). To improve our ability to 

interpret the observed effects of the barn cleaning practices on the chicken gut microbiome, 

future studies examining the effects barn cleaning practices in combination with different diet 

compositions are highly expected. Similarly, although these studies were performed within the 

same production system as a crossover design trying to eliminate bias, it was still difficult to 

strictly control animal management between flocks (e.g. handling crew, flock density, barn 

temperature, and feed/water quality) during production. Therefore, it was hard to comment on 

the effects of these confounding factors on the chicken gut microbiome. For example, we found 

that the cecal resistome of chickens sampled from the two timepoints (day 7 and day 30) had 

significant differences. However, we were not able to make conclusion that what is the main 

driver of the observed differences. Factors such as the chicken diets, the physiological changes of 

the chicken gut, the stoking densities, the feed/water quality differences, and even the 

temperature of the chicken barn might each/collectively contribute to the alteration of the gut 

resistome between the two sampling timepoints. Therefore, future studies in controlled 

environments and control diets to assess how these factors affect the chicken gut resistome 

should be conducted. 

Limited by logistics, in these studies, only 5 chickens were sampled in each flock. As 

discussed in chapter 2 that to avoid “co-housing effect”, we decided to increase replicates of the 

treatment barns in our studies instead of sampling more chickens from the same barn. In addition, 

in the studies of the barn cleaning practices, the animal trial was designed as a cross-over 
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experiment to help further eliminate bias brought by the housing facilities. However, since 

increased sample size can increase statistical power (31), future studies with more samples are 

warranted.   

In chapter 4, selected host immune-related genes were measured. Although the altered 

expression of a couple of immune-related genes can be indicative of the host immune status, to 

more comprehensively understand the host-immune response, transcriptomic analyses using 

RNA-seq on the chicken cecal tonsils may be necessary in the future. In addition, what this 

immune status truly means in the context of pathogen defense was not studied. Therefore, future 

studies using a pathogen to challenge young chickens with distinct cecal Bacteroides will be of 

great value. 

In these studies, microbial functional characteristics of the transcriptomic and proteomic 

levels remain to be investigated. High throughput metagenomic sequencing used in these studies 

offered valuable information about the microbial taxonomic compositions and their genetic 

potentials. However, it is not possible to identify the expression of these genes. Since not all 

encoded genes lead to the translation as functional proteins, our results were not able to identify 

if the enriched functional pathways were actively being expressed. Therefore, in the future, 

microbial transcriptomic and proteomic analyses should be performed. 

In chapter 3, we have used the Comprehensive Antibiotic Resistance Database (CARD) 

to annotate ARG genes. However, other databases such as the Antibiotic Resistance Genes 

Database (32), the Antibiotic Resistance Gene-ANNOTation (33), the MEGARes database (34), 

National Database of Antibiotic Resistant Organisms (NDARO) (35) and ResFinder (36) are also 

available for ARG annotation. Very recently, Papp and Solymosi comprehensively reviewed and 
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compared multiple databases and concluded that both NDARO and CARD are prominent among 

other databases tested (37). With comparable numbers of ARGs, NDARO focuses more on 

acquired resistance genes whereas CARD focuses more on mutation conferring resistnace (37). 

Although in general, Papp and Solymosi suggested that CARD should be the first choice for 

ARG studies, they also suggested that differences could be observed in ARG nomenclature due 

to the differences of the databases and thereby using only one database may introduce bias. 

Therefore, to comprehensively understand the chicken gut resistomes in our studies, data 

analyses using other ARG databases (e.g. NDARO) is necessary in the future. 

In addition, although the concentrations of selected cecal SCFA were measured, other 

metabolites such as cecal amino acids and saccharide concentrations remains unknown. While 

increased genetic potential of amino acids and saccharide utilizations were shown accompanying 

changes of cecal SCFAs, it would be more insightful if the concentrations of the related 

saccharides were unveiled. In future studies these could be measured by metabolomic methods 

such as high-performance liquid chromatography or hydrophilic interaction liquid 

chromatography coupled tandem mass spectrometry (HILIC-tandem MS) (38). Thus, future 

metabolic analyses on the cecal contents are warranted. 

In chapter 4, we identified distinct Bacteroides compositions in the chicken cecal 

microbiota and suggested that the Bacteroides colonization may be of great importance to the gut 

homeostasis. However, what caused the distinct Bacteroides levels was not investigated in the 

thesis. Previously, it was reported that early exposure to chicken-derived microbes increased the 

cecal colonization of Bacteroides (5, 39, 40). Thus, we speculated that the chicks with elevated 

Bacteroides observed in the current study may be a consequence of being in contact with these 

microbes fortuitously in the hatchery and/or during transportation. Thus, in the future, using 
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germ-free chickens to mimic chicken-derived microbial exposure may be able to answer this 

question. In addition, the causal effect of Bacteroides in observed SCFA and host immunity 

remains unclear. To further address this, defined amount of known Bacteroides species could be 

introduced to broiler chicks at different timepoints using a germ-free chicken model. In addition, 

a pathogen challenge and/or a subclinical necrotic enteritis disease model could be used with 

defined Bacteroides as a treatment to investigate if Bacteroides confer anti-inflammatory effects. 
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APPENDICES: SUPPLEMENTARY TABLES AND FIGURES 
Table S1: Genetic pathways harbored by the gut microbial community associated with chicken 

age. – log2 fold-change and + log2 fold-change values indicate associations with D7 and D30 

microbial functional capacities, respectively. 

Age-related differentiate abundant pathways 
log2 fold-

change P-value FDR P value 

GALACTARDEG-PWY: D-galactarate degradation I -2.2687 1.77E-28 3.07E-27 

GLUCARGALACTSUPER-PWY: super-pathway of D-
glucarate and D-galactarate degradation -2.2687 1.77E-28 3.07E-27 

PWY0-1477: ethanolamine utilization -2.2306 7.78E-57 2.43E-54 

PWY-6588: pyruvate fermentation to acetone -2.227 3.61E-33 1.03E-31 

PWY66-409: super-pathway of purine nucleotide salvage -2.0384 1.78E-22 2.22E-21 

GLUCARDEG-PWY: D-glucarate degradation I -2.0347 2.28E-28 3.74E-27 

PWY-6961: L-ascorbate degradation II (bacterial, 
aerobic) -1.9453 1.30E-19 1.45E-18 

PWY0-301: L-ascorbate degradation I (bacterial, 
anaerobic) -1.833 9.25E-18 8.74E-17 

PWY0-1297: super-pathway of purine 
deoxyribonucleosides degradation -1.7944 1.41E-29 3.14E-28 

P161-PWY: acetylene degradation (anaerobic) -1.792 5.50E-39 3.43E-37 

GALACTITOLCAT-PWY: galactitol degradation -1.7755 3.57E-20 4.28E-19 

PWY0-1277: 3-phenylpropanoate and 3-(3-
hydroxyphenyl) propanoate degradation -1.7474 4.10E-16 3.12E-15 

FAO-PWY: fatty acid &beta;-oxidation I (generic) -1.7348 3.13E-14 1.88E-13 

PWY-7013: (S)-propane-1,2-diol degradation -1.709 1.40E-10 6.31E-10 

PWY-5723: Rubisco shunt -1.7071 2.08E-14 1.27E-13 

SALVADEHYPOX-PWY: adenosine nucleotides 
degradation II -1.7038 6.61E-34 2.58E-32 
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HCAMHPDEG-PWY: 3-phenylpropanoate and 3-(3-
hydroxyphenyl) propanoate degradation to 2-

hydroxypentadienoate 
-1.6991 3.57E-16 2.86E-15 

PWY-6690: cinnamate and 3-hydroxycinnamate 
degradation to 2-hydroxypentadienoate -1.6991 3.69E-16 2.88E-15 

PRPP-PWY: super-pathway of histidine, purine, and 
pyrimidine biosynthesis -1.6672 5.68E-10 2.33E-09 

AST-PWY: L-arginine degradation II (AST pathway) -1.6357 1.97E-16 1.62E-15 

PWY-5676: acetyl-CoA fermentation to butanoate II -1.6081 4.02E-40 3.13E-38 

PWY-6606: guanosine nucleotides degradation II -1.6023 8.56E-29 1.67E-27 

PWY-5136: fatty acid &beta;-oxidation II (plant 
peroxisome) -1.5914 1.14E-25 1.61E-24 

PWY0-1338: polymyxin resistance -1.5642 1.21E-14 8.05E-14 

PWY-7242: D-fructuronate degradation -1.56 9.25E-23 1.20E-21 

PWY-7858: (5Z)-dodecenoate biosynthesis II -1.5501 3.57E-13 1.95E-12 

PWY0-1298: super-pathway of pyrimidine 
deoxyribonucleosides degradation -1.5497 1.58E-23 2.14E-22 

ORNDEG-PWY: super-pathway of ornithine degradation -1.546 7.28E-13 3.92E-12 

PWY-5138: fatty acid &beta;-oxidation IV (unsaturated, 
even number) -1.5453 8.38E-16 6.22E-15 

PWY-5367: petroselinate biosynthesis -1.4997 6.20E-15 4.20E-14 

HEXITOLDEGSUPER-PWY: super-pathway of hexitol 
degradation (bacteria) -1.4995 4.86E-14 2.81E-13 

PWY-7942: 5-oxo-L-proline metabolism -1.4813 8.78E-13 4.64E-12 

PWY4LZ-257: super-pathway of fermentation 
(Chlamydomonas reinhardtii) -1.4774 1.09E-33 3.79E-32 

PWY-5675: nitrate reduction V (assimilatory) -1.4423 7.83E-10 3.13E-09 

PWY-6507: 4-deoxy-L-threo-hex-4-enopyranuronate 
degradation -1.4276 2.23E-17 2.05E-16 

PWY-6608: guanosine nucleotides degradation III -1.4213 3.07E-28 4.79E-27 
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PWY-7111: pyruvate fermentation to isobutanol 
(engineered) -1.3935 5.58E-35 2.90E-33 

PWY0-42: 2-methylcitrate cycle I -1.3784 2.57E-11 1.23E-10 

PWY0-1415: super-pathway of heme b biosynthesis from 
uroporphyrinogen-III -1.372 8.12E-11 3.72E-10 

PWY-6353: purine nucleotides degradation II (aerobic) -1.3545 2.71E-27 4.02E-26 

ECASYN-PWY: enterobacterial common antigen 
biosynthesis -1.353 3.50E-14 2.06E-13 

PWY-6284: super-pathway of unsaturated fatty acids 
biosynthesis (E. coli) -1.3379 2.01E-09 7.74E-09 

PWY-5860: super-pathway of demethylmenaquinol-6 
biosynthesis I -1.3299 4.62E-09 1.70E-08 

PWY-5100: pyruvate fermentation to acetate and lactate 
II -1.3127 2.39E-17 2.13E-16 

PWY-6936: seleno-amino acid biosynthesis (plants) -1.3024 3.64E-33 1.03E-31 

PWY-7118: chitin deacetylation -1.291 1.76E-09 6.87E-09 

PWY-I9: L-cysteine biosynthesis VI (from L-methionine) -1.289 1.15E-18 1.16E-17 

PWY-7237: myo-, chiro- and scyllo-inositol degradation -1.2788 4.93E-19 5.31E-18 

PWY-5850: super-pathway of menaquinol-6 biosynthesis -1.2775 2.13E-07 6.21E-07 

PWY0-781: aspartate super-pathway -1.2458 4.30E-09 1.60E-08 

P41-PWY: pyruvate fermentation to acetate and (S)-
lactate I -1.2414 2.77E-18 2.70E-17 

P4-PWY: super-pathway of L-lysine, L-threonine and L-
methionine biosynthesis I -1.2388 5.20E-09 1.84E-08 

PWY-5384: sucrose degradation IV (sucrose 
phosphorylase) -1.2329 1.08E-11 5.33E-11 

GLYCOLYSIS-TCA-GLYOX-BYPASS: super-pathway 
of glycolysis, pyruvate dehydrogenase, TCA, and 

glyoxylate bypass 
-1.2268 3.14E-08 1.01E-07 

GLYOXYLATE-BYPASS: glyoxylate cycle -1.2197 5.20E-10 2.18E-09 
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HEME-BIOSYNTHESIS-II-1: heme b biosynthesis V 
(aerobic) -1.218 4.96E-09 1.79E-08 

KETOGLUCONMET-PWY: ketogluconate metabolism -1.2137 4.41E-08 1.39E-07 

PWY-6285: super-pathway of fatty acids biosynthesis (E. 
coli) -1.14 7.36E-06 1.74E-05 

PWY-561: super-pathway of glyoxylate cycle and fatty 
acid degradation -1.1355 1.40E-07 4.24E-07 

TCA-GLYOX-BYPASS: super-pathway of glyoxylate 
bypass and TCA -1.0869 4.48E-07 1.24E-06 

PWY-7385: 1,3-propanediol biosynthesis (engineered) -1.0835 2.85E-07 8.17E-07 

PWY-5920: super-pathway of heme b biosynthesis from 
glycine -1.062 1.85E-08 6.19E-08 

PWY-8004: Entner-Doudoroff pathway I -1.0498 1.65E-13 9.18E-13 

PWY-7211: super-pathway of pyrimidine 
deoxyribonucleotides de novo biosynthesis -1.0478 3.45E-12 1.79E-11 

HOMOSER-METSYN-PWY: L-methionine biosynthesis 
I -1.0376 1.64E-07 4.88E-07 

P108-PWY: pyruvate fermentation to propanoate I -1.0221 1.14E-05 2.59E-05 

PWY66-389: phytol degradation -1.0002 3.90E-05 8.51E-05 

PPGPPMET-PWY: ppGpp metabolism 1.1234 4.56E-06 1.12E-05 

PWY-8073: lipid IVA biosynthesis (P. putida) 1.1533 1.32E-14 8.55E-14 

NAGLIPASYN-PWY: lipid IVA biosynthesis (E. coli) 1.1533 1.34E-14 8.55E-14 

P42-PWY: incomplete reductive TCA cycle 1.1623 7.09E-10 2.87E-09 

PWY-1269: CMP-3-deoxy-D-manno-octulosonate 
biosynthesis 1.1729 1.60E-16 1.35E-15 

PWY-5121: super-pathway of geranylgeranyl 
diphosphate biosynthesis II (via MEP) 1.2348 5.25E-10 2.18E-09 

PWY-6969: TCA cycle V (2-oxoglutarate synthase) 1.3108 3.84E-15 2.66E-14 

PWY-6902: chitin degradation II (Vibrio) 1.3415 4.09E-08 1.30E-07 
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PWY-7388: octanoyl-[acyl-carrier protein] biosynthesis 
(mitochondria, yeast) 1.4459 5.00E-09 1.79E-08 

CITRULBIO-PWY: L-citrulline biosynthesis 1.4899 9.41E-19 9.79E-18 

PWY-7254: TCA cycle VII (acetate-producers) 1.579 1.43E-14 8.92E-14 

PWY0-1241: ADP-L-glycero-&beta;-D-manno-heptose 
biosynthesis 1.6134 6.43E-12 3.24E-11 

PWY-6834: spermidine biosynthesis III 1.6637 6.04E-09 2.12E-08 

PWY-7371: 1,4-dihydroxy-6-naphthoate biosynthesis II 2.4597 5.28E-12 2.70E-11 

PWY-7392: taxadiene biosynthesis (engineered) 2.4911 1.14E-30 2.97E-29 

PWY-6922: L-N&delta;-acetylornithine biosynthesis 2.5988 2.77E-29 5.77E-28 

PWY-4984: urea cycle 2.6001 4.86E-17 4.21E-16 

PWY-7992: super-pathway of menaquinol-8 biosynthesis 
III 2.7342 5.23E-14 2.97E-13 

PWY-5030: L-histidine degradation III 2.9661 7.08E-30 1.70E-28 

POLYAMINSYN3-PWY: super-pathway of polyamine 
biosynthesis II 2.9832 8.84E-49 9.19E-47 

PWY-5005: biotin biosynthesis II 3.8625 2.64E-34 1.18E-32 

PWY-6906: chitin derivatives degradation 4.0059 1.29E-49 2.01E-47 
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Table S2: Functional network properties*.  

a) Cluster at HB 

Name Frequency 

0 1 

1 8 

2 8 

3 7 

4 11 

5 5 

6 4 

7 3 

8 3 

 

b) Cluster at LB 

Name Frequency 

0 1 

1 8 

2 10 

3 9 

4 8 

5 8 

6 4 

7 2 

c) Degree (Normalized) 

Gene  HB LB 

Highest values in the HB group 

3.4.16.4: Serine-type D-Ala-D-Ala carboxypeptidase  0.12245 0.04082 

3.1.6.1: Arylsulfatase (type I)  0.08163 0 

7.2.1.1: NADH:ubiquinone reductase (Na(+)-transporting) 0.08163 0 

3.2.1.185: Non-reducing end beta-L-arabinofuranosidase 0.08163 0.04082 

5.1.3.13: dTDP-4-dehydrorhamnose 3,5-epimerase 0.08163 0.06122 

Highest values in the LB group 

2.7.13.3: Histidine kinase 0 0.12245 

5.2.1.8: Peptidylprolyl isomerase    0.06122    0.10204 

2.1.1.37: DNA (cytosine-5-)-methyltransferase    0.02041    0.10204 

6.3.5.5: Carbamoyl-phosphate synthase (glutamine-hydrolyzing 0 0.10204 
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3.6.4.12: DNA helicase 0 0.08163 

 

d) Betweenness centrality 

Gene HB LB 

Highest values in the HB group 

3.4.16.4: Serine-type D-Ala-D-Ala carboxypeptidase        0.36538    0.06117 

3.1.6.1: Arylsulfatase (type I)        0.35897 0 

1.1.1.133: dTDP-4-dehydrorhamnose reductase        0.30256 0.0256 

1.4.1.13: Glutamate synthase (NADPH 0.25128     0.1138 

3.1.1.72: Acetylxylan esterase        0.23462    0.11095 

Highest values in the LB group 

6.3.5.5: Carbamoyl-phosphate synthase (glutamine-hydrolyzing) 0 0.3101 

3.2.1.23: Beta-galactosidase 0 0.23471 

2.7.13.3: Histidine kinase          0 0.23186 

3.4.14.12: Xaa-Xaa-Pro tripeptidyl-peptidase   40 0.17212 

2.7.7.7: DNA-directed DNA polymerase 0 0.1707 

 

e) Closeness centrality 

Gene HB LB 

Highest values in the HB group 

3.4.16.4: Serine-type D-Ala-D-Ala carboxypeptidase        0.6044    0.42686 

3.1.6.1: Arylsulfatase (type I)        0.55322    0 

1.4.1.13: Glutamate synthase (NADPH) 0.54411    0.52069 

1.1.1.133: dTDP-4-dehydrorhamnose reductase        0.52886    0.43419 

5.1.3.3: Aldose 1-epimerase 0.52224    0.46572 

Highest values in the LB group 
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2.7.13.3 histidine kinase 0 0.67076 

6.3.5.5: Carbamoyl-phosphate synthase (glutamine-hydrolyzing) 0 0.64418 

2.7.7.7: DNA-directed DNA polymerase 0 0.62537 

3.6.4.12: DNA helicase 0 0.61005 

5.2.1.8: Peptidylprolyl isomerase 0.44302 0.60121 

* a) Frequency table of clusters in the HB group network. b) Frequency table of clusters in the 
LB group network. c-e) Centrality values of the encoded enzyme with the highest centrality in 
decreasing order. The upper part of the table contains the 5 genes with the highest centrality in 
HB and the lower part those with the highest centrality in LB, respectively 
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Figure S1. Broiler chicken cecal Campylobacter occurrence score at placement. Results showed 

the mean flock score ± SEM (n = 14/treatment, n.s. : p > 0.05). Campylobacter occurrence score 

= number of pathogen positive broilers/total number of broilers sampled per barn. WW, water-

wash; FD, full disinfection 

 

Figure S2. Alpha diversity of the microbiome of the litter samples collected before the broiler 

placement. Box-plots showing alpha diversity in samples using Chao1 index and Shannon index 

(n=12/treatment, n.s., p >0.05). WW, water-wash; FD, full disinfection. 
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Figure S3. Principal coordinate analysis plots based on weighted- and unweighted- Unifrac 

distance metrics. Barn cleaning treatments did not influence the microbial community structure 

in the barn litter samples before broiler placement (n=12/treatment). WW, water-wash; FD, full 

disinfection. 
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Figure S4. Spearman’s correlation between cecal microbial taxa. Only significantly correlated 

taxa (P < 0.05) were shown. Spearman correlations between microbes revealed that Bacteroides 

was negatively correlated with the genera Lactobacillus, Escherichia-Shigella, Blautia, 

Subdoligranulum, Anaerostipes, Negativibacillus, the [Ruminococcus]-torques-group, and an 

uncultured genus belonging to the family Ruminococcaceaea. In addition, the genera 

Faecalibacterium, Anaerofilum, Anaeroplasma, Alistpes, as well as an undetermined genus from 

the order Oscillospirales showed positive correlations to Bacteroides. 
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taxa (P < 0.05) were shown. Spearman correlations between microbes revealed that Bacteroides 
was negatively correlated with the genera Lactobacillus, Escherichia-Shigella, Blautia, 
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uncultured genus belonging to the family Ruminococcaceaea. In addition, the genera 

Faecalibacterium, Anaerofilum, Anaeroplasma, Alistpe, as well as an undetermined genus from 
the order Oscillospirales showed positive correlations to Bacteroides. 
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Figure S5. Spearman’s correlation between the key enzymes of the chicken cecal microbial 

functional network and cecal SCFA concentrations. Key enzymes identified in the microbial 

functional network of the microbiome with elevated Bacteroides (i.e. acetylxylan esterase, 

arylsulfatase, β-L-arabinofuranosidase and licheninase) were significantly associated with the 

chicken cecal SCFA concentrations at day 7. 

 




