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ABSTRACT

A numerical scheme for the two dimensional modelling of the
thermal interaction between a smart material and low Reynolds
number cross flow has been developed. The phase change of the
smart material is modeled by the temperature dependence of the
thermal conductivity and heat capacity of the solid. The change
in these properties with temperature is shown to have a substan-

tial effect on the temperature history of the solid.

The thermal boundary between the fluid and solid is represented
with a heat flux conserving boundary condition. This boundary
condition represents the temperature dependent physics of the

heat transfer at the surface.

Results from the two dimensional scheme were compared to a one
dimensional analysis of the average smart material temperature.
This comparison indicated that the one dimensional analysis is a
poor indicator of the two dimensional results. This is due to the
assumption in the one dimensional analysis of constant heat flux

with time.
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CHAPTER 1

INTRODUCTION

1.1 Shape Memory Alloys

Shape memory alloys (SMA'’s), or smart materials as they are also known,
were first discovered in the 1960's [7], [27], [38]. The earliest shape memory
alloys were comprised of nickel and titanium. Alloys using other materials
[18], [40] were later discovered, but nickel - titanium continues to be the most
useful for designers. This is due to the fact that nickel titanium alloys provide
the most desirable combination of material properties [20]. An additional
benefit is the biocompatibility of this alloy [32].

The usefulness of shape memory alloys is their ability to ‘remember’ a
shape. Shape memory alloys can exist in two different crystal phases in
the solid state. A specimen of shape memory alloy can have a different
physical shape for each phase. The shape of the material in both of the
phases can be controlled by designers. The material can be made to return
to a ‘remembered’ shape by either a change in temperature or stress. The

ability of a smart material specimen to change form between two trained



shapes, activated by temperature, is known as the two way shape memory
effect [26].

The shape change of a shape memory alloy is facilitated by an ability to
sustain recoverable strains of up to 8% [18]. Different alloys have different
maximum recoverable strains. The larger the recoverable strain, the more
useful the shape memory alloy is to designers.

Smart materials have been applied to a wide range of applications in re-
search. This is because of the usefulness of a material which changes shape
in response to an external temperature change or applied stress. One appli-
cation of smart materials is as actuators [2]. Commercially, shape memory
alloys have the greatest potential for application as actuators {11]. An ad-
ditional application is in aerospace engineering, where smart materials can
be used to actively change the shape of the lifting surface of an aerodynamic
body (3]. Biomedical applications are also being developed [46].

As mentioned previously the maximum recoverable strain of a shape mem-
ory alloy depends on the composition of the alloy. The temperature at which
a specimen will change shape is also dependent upon the alloy composition
(31]. Both the constituent materials and their relative quantities affect these
properties. An additional factor which affects the recoverable strain is the
process used to produce the specimen being considered [18]. Therefore it is
necessary to do testing on an alloy specimen to determine its individual mate-
rial properties and phase change capabilities . These properties are normally
supplied by the manufacturer of the sample {1]. For this reason, experimental
testing is the commonly used technique for analysis and design with shape
memory alloys, the SMART lab of Texas A&M being an example [45].



1.2 Present State of Field

Research in the field of smart materials focuses on either the area of constitu-
tive modelling or applications. Possible applications for shape memory alloys
were mentioned above. A summary with short descriptions of possible appli-
cations can be found in Birman [5]. Research into applications is primarily
concerned with developing control systems for SMA actuators, the work of
Banks et al [2] being one example. Constitutive modelling is the attempt to
develop analytical models to describe the behavior of shape memory alloys,
such as the work of Boyd and Lagoudas [6).

Development of a new constitutive model is beyond the scope of this
work. The constitutive model proposed by Bhattacharyya and Lagoudas [4]
will be used to describe the behavior of the shape memory alloy. In addition,
evaluating this model and comparing it against other available models is also
beyond the scope of the current work. A review of constitutive models for
shape memory alloys can be found in Birman [5].

As stated previously, determining the properties of a sample of shape
memory alloy requires testing of the specific sample. Material properties of
shape memory alloy are sensitive to the relative quantities of the constituent
elements. Material properties for specimens are provided by the manufac-
turer of the specimen. For these reasons design of devices with shape memory
alloys is experimentally based for the most part.

The large scale applicability of smart materials may be limited by diffi-
culty in consistently producing samples with predictable material properties.
This is a further consequence of the sensitivity of shape memory alloy prop-

erties to the constituent elements.



1.3 Convective Heat Transfer

The shape change of a shape memory alloy is driven by a temperature change
or the application of an external stress. A commonly used technique is to
increase the temperature by resistive heating with an applied voltage; the
temperature is then lowered by convective heat loss to the surrounding en-
vironment [29]. The heating stage is when the useful shape change occurs
and work is done by the shape memory alloy device. The cooling phase is
the return of the specimen to the original shape. The energy loss needed
to decrease the temperature of the alloy is shed in the form of heat to the
environment, which is normally a fluid (air or water). Therefore the ther-
mal interaction at the interface between the shape memory alloy and the
surrounding fluid is a crucial phenomenon.

From the literature, prior research in thermal interaction between a solid
immersed in a fluid has focused on either the temperature of the surrounding
fluid [10], [30], or the temperature of the solid [14], but not both at the
same time. The thermal influence of whichever portion of the domain not
being considering (fluid or solid) is modelled by a boundary condition. The
two commonly used boundary conditions are constant temperature at the
surface or constant heat flux across the surface 28], [39]. This requires an
assumption to be made for either the temperature of the interface or the heat
flux across the interface.

To accurately capture the phase of the material as it undergoes the phase
change it is necessary to know the temperature of the specimen. There-
fore the temperature distribution of the shape memory alloy specimen must

be known. To accurately model the local convective heat losses of the shape
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memory alloy it is necessary to know the temperature distribution of the sur-
rounding fluid. Therefore the temperature distribution of the shape memory
alloy and the surrounding fluid must be determined.

For the present work the temperature of the solid is of primary impor-
tance. However, using a boundary condition to model the thermal effects
of the fluid on the solid is not acceptable. An accurate representation of
the local convective heat losses from the shape memory alloy is required to
study the phase change over the specimen. A discrete element analysis will
be used to study the phase at discrete points over the specimen. A boundary
condition developed from an average over the entire surface of a specimen
would reduce the accuracy of the discrete element analysis. Boundary condi-
tions which are not averaged over the entire surface have been experimentally
determined for some geometries [12]. However these are usually for steady
state problems.

The solution is expected to evolve in time as the shape memory alloy
changes phase. As the simulation develops in time the average tempera-
ture of the smart material will change but the freestream temperature of
the surrounding fluid will remain constant. The change in the temperature
difference between the fluid and solid with time will cause the thermal inter-
action between them to change with time as well. It would not be possible
to capture this time dependence accurately with a boundary condition on
the surface of the solid which models the effects of the fluid. It is necessary
to know the temperature distribution in the surrounding fluid explicitly to
accurately model the convective heat losses.

For this work a new technique is needed at the boundary which will ac-



curately represent the physics of the heat transfer. A boundary condition
is needed which will not require an assumption to be made regarding an
interface temperature or surface heat flux amount. Thermal phenomena at
the interface between the fluid and shape memory alloy must be accurately
modelled without incorrectly affecting the solution. A new boundary condi-
tion will be described which represents the physics and allows the solution

to develop with time.



CHAPTER 2

PROBLEM DESCRIPTION

2.1 Selected Application

The capability of the completed analytical and numerical work will be demon-
strated with a specific application. The selected application is an inferior
vena cava filter (IVCF) comprised of a shape memory alloy. An example of a
currently available ‘smart’ IVCF is the Simon Nitinol Filter® developed and
manufactured by Nitinol Medical Technologies, Inc. {31], {32], [33].

IVCF’s are a surgical attempt at preventing a pulmonary embolism. A
pulmonary embolism is the possible fatal result of a blood clot reaching the
lungs through the circulation system. The majority of pulmonary embolisms
begin as deep leg thromboses which travel through the venous pathway to the
lungs [22]. IVCF’s are placed in the inferior vena cava to physically prevent
any large clots from reaching the lungs. Surgical implanting of the filter is
achieved through an angiographic introducer inserted into a large vein in one

of the extremities.



2.2 Simon Nitinol Filter®

The Simon Nitinol Filter® will be modelled in this work, it can be seen in
Figure 2.1, taken from [46].

Figure 2.1: Simon Nitinol Inferior Vena Cava Filter

As shown in Figure 2.1 the device is in the austenitic phase. In this
material phase the IVCF is in the designed filter shape. The shape of the
device in the martensitic state is a drawn out linear shape, with a smaller
cross sectional area and greater axial length. An explanation of the phase
change of a shape memory alloy will be given in Section 3.3.1.

The top curved portion of the device is intended to perform the majority
of the filtering duties. The lower straight portion of the device, consisting

of six equally spaced legs, is designed to anchor the filter to the walls of the

inferior vena cava.



2.3 Insertion of Inferior Vena Cava Filter

Following is the insertion procedure as described by Simon et al in [31]. This
information is important as it will be used for selection of values for initial
conditions and boundary conditions. Correct boundary and initial conditions
are part of an accurate and complete problem formulation. Information
regarding the phase change of the filter is included in the description. As
well, the benefit of a shape memory alloy I[VCF is explained.

The procedure begins with a bag of saline solution being chilled for half
an hour in ice. This saline is then drawn into the angiographic introducer
which will be used to implant the filter. Chilling the filter with ice resuits in
the initial phase of the material being martensite. In this phase the material
is pliable, and the initial shape is a drawn out linear form which reduces the
overall cross sectional area. The reduced cross sectional area in the marten-
sitic phase is the main benefit of the smart material filter. The reduced
cross section requires a smaller diameter of tubing to insert the filter into
place, which means a smaller incision is needed. The Simon Nitinol Filter®
requires the smallest diameter tubing for insertion of all commercially avail-
able IVCF’s [46]. This is beneficial since the incision used to implant the
filter can itself result in a thrombosis, the very problem the filter is intended
to minimize.

The angiographic introducer is inserted into the blood stream and di-
rected to the desired location in the inferior vena cava. A plunger is used
to expel the filter from the angiographic introducer. As the filter is forced
from the introducer its external environment changes from stationary saline

at 0°C to blood flow at 37°C. The higher temperature of the surrounding
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flow causes the smart material to change from martensite to austenite. This
change in phase results in a change in shape, and the filter transforms to the
designed filter shape. Hooks on the end of the filter legs sink into the veinal
walls to secure the filter in place.

The phase change of the filter is actuated differently than other appli-
cations where shape memory alloys are used as actuators. As mentioned
previously, the phase change is normally initiated by resistive heating of the
device to increase the temperature. The temperature is decreased by allowing
the additional heat to be lost convectively to the surrounding environment.
For a shape memory alloy IVCF the temperature increase is a result of con-
vective heat gained from being immersed in blood flow at body teinperature.
This is the reason the thermal interaction between the shape memory alloy
and the surrounding fluid is a key phenomenon for this work. The phase
change will occur as a result of heat gained convectively across the shape

memory alloy surface.

2.4 Computational Domain

The real three dimensional and time dependent problem would be compu-
tationally expensive and difficult to formulate analytically. Reducing the
problem to two dimensions and assuming no geometry change simplifies the
analytical formulation. This also makes the numerical solution less computa-
tionally expensive, and more importantly realistically solvable with available
resources. However these assumptions will affect the applicability of the
model to the real problem.

Assuming there is no geometry change has the greatest limiting effect on

10



the applicability of the model. The very nature of the problem is a shape
memory alloy which changes shape. As the alloy changed shape it would
influence the fluid flow around it and thus change the thermal interaction be-
tween the fluid and shape memory alloy. Not incorporating this interaction
into the simulation reduces how well the model represents the true problem.
However, a numerical solution with changing geometry would be much more
computationally expensive than a constant geometry problem. Variable ge-
ometry could be incorporated into the formulation as future work, but is
beyond the scope of this project. The geometry will be assumed constant
as an approximation. The thermal interaction between the fluid and solid is
the primary interest of this work, the shape change is secondary.

A cross-sectional plane or slice of the 3D geometry will be selected as the
two dimensional plane. Using a 2D geometry of this form instead of three
dimensions is a common technique used in numerical analysis and design of
turbomachinery.

Selection of the proper two dimensional plane is crucial to ensure accurate
representation of the true problem in a two dimensional manner. Consider
Figure 2.2, a two dimensional diagram of the inferior vena cava and filter.
This is a cross sectional view, looking down the axis of the vena cava.

In this view the wall of the IVC and the cylindrical cut plane extend out
of the page. The cut plane is the two dimensional plane which will be used
as the coordinate axis for this work. The radial location of the cut plane has
been selected such that the anchor legs of the IVCF are intersected at the
radial midpoint between the center of the IVC and the venal wall. Only the
anchor leg portion of the filter has been included in the model to simply the

11



wall of IVC
anchor legs of IVCF

cut plane

Figure 2.2: Inferior Vena Cava Viewed Along Axis

analysis.

When the cut plane is chosen as shown in Figure 2.2 the domain be-
comes periodic. Only 1/6 of the circumference of the cut plane needs to be
considered, provided the proper periodic boundary conditions are applied.

The cut plane intersects each of the anchor legs once, and at an angle.
The circular cross section of the anchor legs results in an elliptical projection
on the cut plane. The top portion of the filter will not be included in the
model to further simplify the analysis. The domain must be extended a
suitable distance upstream and downstream of the intersection point with
the anchor legs of the IVCF. A suitable distance is one which allows the flow
phenomena to develop without extending too far upstream or downstream.
An overly large computational domain will result in extraneous calculations
being completed.

The plane can be cut longitudinally and unwrapped, as demonstrated in
Figure 2.3.

12



A B

Xegl>) ' D

Figure 2.3: Mapping of Curved Plane onto Flat Space

Once the cut plane is mapped onto a flat coordinate axis, and a suitable
upstream and downstream distance is selected, the domain of the problem is

as shown in Figure 2.4.

A /—\ c
1

N
R

L}

8 N4 D

Figure 2.4: Domain of Problem

In Figure 2.4 the distance A— B and C — D is 1/6 the distance of A’— B’
and C’ — D in Figure 2.3.

13



From Figure 2.4, region I is the fluid portion of the domain, region II is
the anchor leg of the IVCF. The inlet is along A - B, and the outlet is at C
- D, meaning the direction of fluid flow is left to right. Periodic boundary
conditions will be applied along A - C and B - D. A detailed explanation of
the applied boundary conditions will be given later.

14



CHAPTER 3

GOVERNING EQUATIONS

3.1 General Form of Equations

The equations which are relevant to this problem are the conservation of
mass, momentum and energy. They are shown below in integral form for a

volume 2 bounded by a surface W:

%///pdﬂ-i-//p(ﬁ-ﬁ)dW:O (3.1)
(] w

%///vpdn+//vp(v.ﬁ)dvv=///p7d9+//‘3dw (3.2)
Q w Q w

%/! p(e+§(v-v))dn=-vl/<ﬁ-a)dw - [[@nav
+ /// o(F -7)d (3.3)
Q

(For definitions of the variables used, please see the Nomenclature section

at the beginning of the text.)
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By applying Stokes’ Theorem and Leibnitz's Theorem [25] to the above

equations it is possible to write them in differential form.

)

Z+ V() =0 (3.4)
%=pﬁ—Vp+V-f (3.5)
p%=—V-G—pV-E+T:V’ﬁ (3.6)

Here it has been assumed that the surface force is comprised of pressure

and viscous stresses.
R = a(-pdg + 1) (3.7)

It is also assumed that only conservative body forces are present. In the
differential form it will be easier to manipulate the equations as needed to
simplify them to better match the problem being studied. Still, the equations

as written are quite general and apply to a wide range of problems.

3.2 Modification of Equations

3.2.1 Boussinesq Approximation

It was first noted by Boussinesq that for some problems it is not necessary
to solve the conservation equations as written above. There are a class of
problems where changes in material properties such as density and viscosity
are a result of only temperature changes of moderate amounts. An order of
magnitude analysis reveals some simplifications which may be made to the

governing equations [8].
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In order to be able to apply the Boussinesq approximation, changes in
density must be due only to changes in temperature. Making this assump-
tion allows us to write density as a Taylor series expansion with respect to

temperature; second order and higher terms will be neglected:

d
o(T) = po + ﬁd:r (3.8)

where p, refers to the density at some reference temperature.

Making use of:

10p
=--== 3.9
257, (39)
We can write the following since density is assumed to be only a function of
temperature:
10p 1dp
S| = ——— 3.1
poT » pdT (3.10)

Substituting Eqn.(3.10) into Eqn.(3.8), density can now be approximated

P = po(l — BAT) (3.11)

Considering that 3 is of the order O(1073%) to O(10~*) for most fluids, mod-
erate changes in temperature equate to small changes in density.

The values used for § and p, are § = 0.361(1073)K ! and p, = 1050kg/m?
[33]. As an approximation, the value of § for water at 37°C has been used
for the 3 value of blood.

Using the above expression it is possible to write any density gradients as

functions of temperature. This removes density as an independent variable,
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reducing the number of unknowns. Gradients in density can be represented

as follows:
Vp=-6p,VT (3.12)

One limitation that this places on the problem is that the Mach number
must be sufficiently small, M < 0.3, so that there are no velocity induced
density gradients. Using the speed of sound for water again as an approxima-
tion, the Mach number is of order O(10~%), which is sufficiently small. The
limitations of low Mach number and moderate temperature changes place
some restrictions on the possible applications of any solution algorithm de-
veloped. However, it is felt that the Boussinesq approximation is one which
must be made in this case. If it were not applied it would be necessary to
consider the fully compressible fluid flow problem, this would complicate the

solution process by increasing the number of independent variables.

3.2.2 Application of Assumptions to Governing Equations

In order to make the general conservation equations more applicable to this
specific problem, a few basic assumptions regarding the physics of the prob-
lem must be made. The first simplification will be to apply the Boussi-
nesq approximation to the continuity equation. Substituting Eqn.(3.11) into

Eqn.(3.4) gives the following:

Dp -

Ei‘pv-‘v-—o (3.13)
o ™ Mo T

Dlpe ~ 25811, (g, — poBATIV -5 =0 (3.14)

Dp, D(AT) - TV.5=

Dt Pol3 Dt + PoV - T — pBA v=0 (3.15)
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poV - T — Bp, D(DAtT) + ATV -5 =0 (3.16)
PV - T = (p, D(DAtT) +ATV -7 (3.17)

Variations in T and T are assumed to be of the same order. Recalling that 3
is of the order O(1073) to O(10~*), the left hand term will be three to four
orders smaller than the right hand term in the above equation.

This allows us to simplify Eqn.(3.17) as follows:
V.3=0 (3.18)

Another assumption to be made is that the fluid is Newtonian with con-
stant viscosity. Applying the Boussinesq approximation allows us to simplify

the form of the shear stress tensor, 7, in the following manner:
V-r=V(vo+ (Vo)) - yg(v - 7)0k) (3.19)
Applying Eqn.(3.18) simplifies this to:
V.-r=uVw (3.20)

It is known that this is not the most accurate model for the viscosity of blood.

A more accurate choice would be to model it as a Casson fluid [37]:
2
- VE (]2

Eeoff = Taol = ™ - (3.21)
| £

dv

dy

&

where p g is the effective viscosity, T is a shear stress, 7, is the yield stress

and p is a constant.
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However, viscosity will not be modelled in this manner since the rheology
of the fluid is not the primary interest of the current work; the thermal
interaction between the fluid and solid is the primary interest.

From Eqn.(3.21) it can be seen that when 7, is taken to be zero that
ptefs = p. Therefore assuming a Newtonian fluid is a first order approxima-
tion.

As was mentioned previously it has been assumed that only conservative
body forces are present. This assumption regarding body forces will be taken
a step further by assuming that gravity is the only body force present. The

gravity force will be written as a potential in the following manner:

F = -V(gy) (3.22)

Here g is given the scalar value of 9.8.
The energy equation will be manipulated from its previous form with e

as the independent variable to temperature as the independent.
e=c,T (3.23)

Later the energy variable will be discussed in more detail. An additional
term will be added to the right hand side of the above expression for the
energy equation in the solid. The purpose of this term will be to capture the

effects of the phase change.

Fourier’s law will be applied to the conduction term to reduce the number

of independent variables:

g=—kVT (3.24)
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It can be shown that the viscous heating term in Eqn.(3.6), V : 7, is eight
orders of magnitude smaller than the convection term. Therefore this term
will be neglected.

Once the above simplifications have been applied to the conservation

equations, they appear as follows:

V-7=0 (3.25)
Dv .

Pp; = —PVIgy) = Vp+uV'T (3.26)

p% = V(kVT) (3.27)

3.2.3 Governing Equations in Fluid Region

Now the specific form of the conservation equations applicable in the fluid
region will be considered. One additional assumption to be made in the fluid
region is that the thermal conductivity of the fluid is constant. From the lit-
erature a value of k = 0.5 W/mK will be used for blood [37]. Again, constant
thermal conductivity is a first approximation and may be revisited at a later
time. For the model problem being studied the largest contributor to varia-
tions in thermal conductivity would be temperature changes. For example,
for water between 0°C and 37°C, the expected temperature extremes, ther-
mal conductivity changes by 10%. This change is not as drastic as the order
of magnitude increase the thermal conductivity of the shape memory alloy
undergoes. The thermal conductivity of the smart material will be explained
in Section 3.3.4.

If the conservation of momentum were left as it is in Eqn.(3.26), pressure

would be an additional independent variable. By transforming the momen-
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tum equation from this form to the vorticity transport equation, we will

eliminate p completely from the equations. When completing this transfor-

mation, density will be considered as variable only in the body force term.

An order of magnitude analysis indicates that variable density has the most

substantial effects on the equation in this term. This is an additional appli-

cation of the Boussinesq approximation (8].

Transforming Eqn.(3.26) to the vorticity transport equation requires the

following steps. First density is variable only in the body force term by the

following argument:

Do
pp; = —PV(ey) = Vp+ VT

Substitute Eqn.(3.11) for the density:
Do
(o poﬂAT)b— = —(po — PBAT)V (gy) — Vp + uV*7

Simplify:

D7 Do
PoDt

Collect terms:

Dv D'U
popy = — (0o = PBAT)V(gy) = Vb + pV?0 + p,SAT -

Assume the following:

Dv

po:BAT ~ 0(0)2

|0eBATV (gy)| ~ O(0)

which is valid for low velocity flows.
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The result is the following form of the momentum equation:

Dv
Poy; = —PV(gy) = Vp+ uV’T (3.34)

Next the curl of the equation is taken:

D7
v x [poﬁ = —pV(gy) - Vp + uv%] (3.35)

Carrying the cross product inside the brackets:

po% +(w-VT—w(V-7) = —(Vpx V(gy)) — (V x Vp) + uV?w(3.36)
Applying Eqn.(3.18) to the third term on the left hand side allows this term
to be eliminated. The second term on the left hand side is zero since we are
considering a two dimensional problem. The second term on the right hand
side is zero since it is the cross product of a gradient. These simplifications
result in the following form of the equation:

Dw 2
popr = —(Vox V(gy)) + pV'w (3.37)

As stated above, pressure has been removed as an independent variable from
the formulation.

Applying the approximation for density gradients, Eqn.(3.12) to the above,
and dividing through by p, results in the following:

Dw K o2
D = Bg(VT x Vy) + poV w (3.38)

This is the form of the vorticity transport equation which will be used for
this work. The first term on the right hand side of Eqn.(3.38) generates
vorticity in the presence of z-direction temperature gradients, coupling the

temperature and velocity fields in the fluid. From the literature, this is the
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equation used to study the effects of moderate temperature changes on fluid
flow [9], [23], [24], [39].

The thermal conductivity and heat capacity will be assumed constant
for the fluid in the solution of the energy equation. This is an acceptable
assumption since the flow is a low velocity incompressible flow. Changes
to these parameters would be primarily due to thermal changes, and only
moderate variations in temperature are expected.

Starting with Eqn.(3.27):

pg(cp_T) = V(k(VT)) (3.39)
Dt
Constant & and ¢, results in the following form of the equation:
pcp% = kV?T (3.40)
Next apply Eqn.(3.11) for the density:
(b0 ~ psAT)ey oo = KVPT (3.41)
pocp% = kVT + poﬁAT% (3.42)

Recalling that 3 is of order O(1073) - O(10*) for most fluids, the last
term on the right hand side is three to four orders of magnitude smaller than
the left hand side. As a first order approximation the last term on the right
hand side will be dropped.

The final form of the energy equation in the fluid is the following:

T
p,,c,,% = kV2T (3.43)

with ¢, = 3.85(10%)J/kgK, k = 0.5W/mK and p, = 1050kg/m?®.
Eqn.’s (3.38) and (3.43) are the ones which will be solved in the fluid

region of the domain.
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3.3 Modeling of Shape Memory Alloy Properties

3.3.1 Property Model

Shape memory alloys in the solid state can exist at two different phases,
martensite and austenite. It is possible for the material to change between
the two phases as a result of either external stress or heat addition/removal.
The phase names refer to the type of transformation which occurs and are
not references to the different phases of steel, where their use originated [40].
A martensitic transformation is one in which heat is removed. The trans-
formation is governed by temperature and not time. Martensite is the cold
temperature phase and austenite is the high temperature phase, sometimes
referred to as the parent phase. In each of the two phases the molecules of
the material are arranged in two different ways in a crystal structure.

When changing phases the crystal structure undergoes what is known
as a displacive transformation. The arrangement of the molecules in the
structure relative to each other does not change, they uniformly rearrange
into a new formation. Consider the two dimensional representation of a
displacive transformation shown in Figure 3.1.

In Figure 3.1 a direction of travel for the phase boundary has not been
shown. If the matrix structure were cooling down the phase boundary would
travel towards the bottom of the page as the temperature dropped and more
martensite would be formed. If the matrix structure were being heated the
phase boundary would travel towards the top of the page as the temperature
increased and more austenite would be formed. This represents a single

crystal sample of smart material since the entire crystal matrix is oriented
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Figure 3.1: Displacive Phase Transformation between Austenite and Marten-

site

in the same direction.

Polycrystal samples of smart material are comprised of many grains each
having their own orientation direction. When a phase change is initiated, a
phase boundary forms within in each crystal, and then travels outward to
the grain boundary as the phase change progresses. The shape memory alloy
device being studied for this work is a polycrystal.

For a numerical solution the domain is discretized into small divisions
called grid cells. There is no guarantee that a grid will be generated such
that the grid lines will coincide with all phase boundaries. The possibility
also exists for multiple grains to be contained in a single grid cell, unless the
grid in the solid area is adaptively regridded to ensure only one grain exists
in one cell, or only one phase exists within one cell. The smallest geometric

level to which a numerical solution can accurately resolve an independent
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variable is the size of a grid cell. For these reasons it would be difficult to
accurately track multiple phase boundaries in a grid cell. A property model
is needed which will functionally describe the state of the material of a grid
cell. This will average the effects over a grid cell of multiple grains being
composed of different quantities of the two phases.

By using a cell averaged property model to describe the phase of the smart
material we need not track the travelling phase boundary. If a travelling
phase boundary were to be captured numerically it would be necessary to
solve Eqn.’s (3.4) and (3.5) for the velocity field in the solid. It would also
be necessary to solve for the material phase of each individual grain within
the solid. Instead of having multiple grains composed of varying amounts of
both phases, an entire grid cell as a whole will be assumed to be uniformly
at some point in the phase change. The material property models are then
constructed using this cell averaged concept.

Using a cell averaged approach to the material phase limits the possible
applications of the material model. This model may only be applied to
problems where the shape memory alloy being studied is a polycrystal. A
single crystal sample of shape memory alloy could not be represented using
this model. Individual crystals of shape memory alloy exist in one of two
states, martensite and austenite. The cell averaged material phase model
allows for the state of the material to exist in combinations of martensite
and austenite. As explained previously, this is done to represent the fact
that some grains within a grid cell could be martensite and simultaneously
some grains within the same grid cell could be austenite.
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3.3.2 Mathematical Representation of Phase

Shape memory alloys are materials which undergo a change in crystal struc-
ture in response to an applied stress or temperature change. The SMA may
have different material properties for the two phases, and may have varying
material properties during the phase change. To properly model the changing
properties of the SMA, it is necessary to model the phase change. Material
properties which can change as a result of the phase are density, thermal
conductivity, electrical resistivity, and heat capacity.

To simplify the problem a zero stress state, & = 0, will be assumed. This
makes the phase of the SMA a function of temperature only. By removing
stress from the phase model formulation we reduce the number of indepen-
dent variables and the number of equations which would have to be solved.
Consider the following formulation for the state of a smart material including

both temperature and stress:

T
&T.0)=1+ [ P(f,0)df (3.44)
Mz+5

where D is a measure of how the transformation temperature is affected by
the stress level. In addition, a thermoelastic coupling term would have to be
added to the energy equation being solved in the solid.

This assumption limits the possible applications of the phase model to
zero stress conditions only. This is an important limitation since one appli-
cation for smart materials is as actuators where they are required to carry
a load. For this work the phase change of the material will be driven by
temperature change and therefore there is no need for stress in the phase

model.



The thermal conductivity will be modeled as a function of the phase, while
the product of density and specific heat capacity of the solid will be assumed
constant. This is a reasonable approximation since thermal conductivity
changes by an order of magnitude, while the heat capacity changes no more
than 11% [1].

In nature, it is the state of the material which determines the material
properties. To reduce the number of independent variables which need to be
solved for numerically, the material properties will be written as functions of
temperature. An analytical expression will be used which expresses the state
as a function of temperature.

&(T) is the austenite volume fraction of the SMA. £ ranges between 0
and 1, when £ = 0 the material is martensite, when £ = 1 the material
is austenite. This expression tracks the phase of the material within the
transformation process. The two functional forms of £(T) are given below

for austenite and martensite respectively [1]:

T
E4(T) =1+ / P(T)dT (3.45)
Me
T - -
en(T) = [ G(T)df (3.46)
Ao

where T is a dummy integration variable, T is the temperature at which
the state is being determined, M? is the temperature at which the marten-
site transformation starts and A? is the temperature at which the austenite

transformation starts. The subscripts on § refer to the material phase.

29



The two functions P and G are taken to be normal distributions [19]:

1 1 [T - L(Me + M2)]?
P(T) = —— - 22 s ! i
1 [ 1T - LA+ 49)7°
G(T) = ST P El S (3.48)

where S = 1.5 is the standard deviation of the normal distributions P and
G, M; is the temperature at which the martensite transformation finishes
and Aj% is the temperature at which the austenite transformation finishes.

As stated by Bhattacharyya and Lagoudas [4], the selection of the nor-
mal distribution for the form of Eqn.’s (3.47) and (3.48) is not a unique
one. There are several possible functions which could have been used; such
as the Gaussian, Poisson and Weibull functions. The normal distribution
was selected by Bhattacharyya and Lagoudas to represent the physics of a
polycrystal. Slight variations in composition between individual crystals in
a polycrystal sample are expected to result in the distribution of the trans-
formation temperatures around some mean value.

Eqn.’s (3.47) and (3.48) are fitted to experimental data with S, A, A},
M and M} being manipulated to match the data. Values of these parameters
are valid for only the sample of smart material for which they are experimen-
tally determined. Material properties used for this work are taken from the
paper by Amalraj et al [1].

The following are the temperature values used for start and finish tem-

peratures of the phase changes:

A = 288K
A3 = 298K (3.49)
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M? = 275K
M? = 265K

These values were chosen to reside between the initial temperatures of the
fluid and solid.

The integral of P is normalized so that over the martensite transformation
temperatures it equates to -1. The integral of G is normalized so that over
the austenite transformation temperatures it equates to 1.

It is now possible to write expressions for the material properties of the

SMA as functions of temperature.

3.3.3 Functional Fit to Phase Equation

The phase equations described by Eqn.’s (3.47) and (3.48) require an inte-
gration of the normal distribution functions, Eqn.’s (3.45) and (3.46). Un-
fortunately, there are no analytical solutions for these integrals, hence an
alternative solution to analytical integration is required.

Possible options are a numerical integration to the equation, an approxi-
mate function, or tabulated values with interpolation. A numerical integra-
tion would be computationally expensive since it would need to be computed
at each grid cell for all time steps. Interpolating tabulated values would also
be computationally expensive since it would require sorting data at each grid
cell for all time steps. If a suitable approximate function could be found it
would be the least computationally expensive of the three options, requiring
only the evaluation of a single function at each grid cell for all time steps.

To aid in finding a functional approximation, a numerical integration

was completed over the austenite to martensite transformation temperature
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range. The numerical integration had a maximum error of 4.92(107%) [34]
over the transformation temperature range, relative to the maximum value
of 1 for Eqn.(3.45). The numerical integration was only completed for the
austenite to martensite transformation temperature range. Any function
used for this transformation could be translated along the temperature axis
to be used for the martensite to austenite transformation.

The numerical integration was then used to develop an approximate func-
tion which has an average error of 0.63% and a maximum error of 1.05%,
relative to the numerical integration. Both of these errors are normalized by
the maximum value of 1 for Eqn.(3.45). The maximum error occurs near a
minimum slope so its’ effects are minimized because an error in the indepen-
dent variable does not lead to a larger error in the approximated variable.
It is believed that a maximum error of 1.05% is tolerable when the savings
in computation time are considered; because a substantial savings in compu-
tational time has been realized with the introduction of an error two orders
magnitude smaller than the variable being approximated.

The approximate function developed for the austenite to martensite phase

change is the following:

£T) =5 (1 + tanh (C (T - (%)))) (3.50)

where f denotes the phase when formulated with the approximate function,
the subscript on £ refers to the phase. Similar to €, therangeof £is0 < £ < 1.

The tanh function was prescribed to match the shape of the numerical
integration. The scalar constant ‘C = 0.56' was found using an iterative
search with the program MATLAB. This quantity is a shape factor which
controls the spread of the tanh function in the direction of the independent

32



variable, T. This value was chosen to minimize the average and maximum
error relative to the numerical integration. The term ((M7 + M?)/2) centers
the tanh function at the average of M? and M$, translating the function
along the independent variable axis.

Figure 3.2 shows both the numerical integration and the approximate
function, Eqn.(3.50), for the austenite to martensite transformation.

A second equation is needed for the state of the material when it trans-
forms from austenite to martensite. The only difference between Eqn.(3.50)
and the approximate function for the martensite to austenite transformation
is the start and finish temperatures. A7 replaces M7, and A$ replaces M3.

The equation for the martensite to austenite transformation is as follows:

(T = % (1 + tanh (0,56 (T - (i;—“”)))) (3.51)

In Eqn.’s (3.50) and (3.51) T is the temperature at which the state vari-
able, £(T), is being determined.
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3.3.4 Numerical Modeling of Thermal Conductivity

The thermal conductivity of the SMA varies by an order of magnitude be-
tween the two material phases. This variation in k will be incorporated in
the numerical model since it will have a affect on the temperature field in
the solid. An assumption will be made that the thermal conductivity of the
SMA is a linear function of £ of the following form [1]:

k(§) = knm +&(ka — kur) (3.52)

where the subscripts refer to the phase, ky; = 1.8 W/mK, k4 = 18 W/mK
(1], and again 0 < £ < 1.

Eqn.’s (3.45) - (3.48) for the martensitic volume fraction, £(T"), are applied
to Eqn.(3.52). This makes k a function of temperature, shown below for

austenite and martensite respectively:

T-1 M2+M¢
T exp |:_% [Ls_.[_)

/]
ST = dT'| | (ka—kar)(3.53)

kam(T) =kpm+| 1 +

Me

T-5(A3+A3)
T exp [_% [___5_L

3
kma(T) = ku +
jdse

2
] ] dT| (ks —ky)  (3.54)

where the subscripts on k(T') refer to the starting phase, first subscript, and
the finish phase, second subscript.

Since the approximate functions, Eqn.’s (3.50) and (3.51), have been used
in the solution for this work, the thermal conductivity is written for marten-

site and austenite as follows:
i 1 A3+ Aj
kya(T) = kM+§ 1+tanh {056 (T — —5 (ka—kar)(3.55)
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kau(T) = kmé (1 + tanh (0.56 (T - (@)))) (ka—kar)(3.56)

where the subscripts on k refer to the starting phase, first subscript, and
finish phase, second subscript.

A plot of k(T) using the approximate function is shown in Figure 3.3.
With this plot it is important to note that the properties are determined

from the curve corresponding to which ever phase the material is in.
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3.3.5 Latent Energy of Transformation

When the SMA undergoes a phase change the crystal structure of the mate-
rial is rearranged and energy is either absorbed or released. Over the trans-
formation temperature range the latent energy of the phase change is signif-
icantly greater than the sensible energy of the temperature change. For the
material used in this work, the latent energy of phase change is seven times
larger than the sensible heat over the transformation temperature range.
Therefore, to completely describe the internal energy in the smart material

it is necessary to incorporate a latent energy term:

e(T) = p(c,T + HE(T)) (3.57)

where ¢, is the specific heat capacity of the material, and H is the latent
heat of transformation. pe, = 2.12(107%) J/mm3K and pH = 0.148 J/mm3.
These values are valid only for the sample of nitinol being investigated for
the current research.

The pHE(T) term models the latent heat of transformation for the phase
change. Similar to the method for the thermal conductivity, Eqn.’s (3.45) -
(3.48) are applied to the phase term, £(t). The result is shown below:

. exp[ [T_-(Mawo] ]

ealT)=p(c, T+ H |1+ (3.58)
* M2 S\/—_
T exp [—% [T-—%(;=+A°)] 2] _
es(T) = (T +H | [ ST dT|) (3.50)

A2
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Again there are two functions for the internal energy dependent upon the
material’s state.

Also as before the approximate functions, Eqn.’s (3.50) and (3.51), will be
employed. When written with the approximate function, the internal energy
€, for the martensite and austenite phases are as follows, respectively:

a(T) =p [c,,T + H% (1 + tanh (0.56 (T - (f-“;—’lf))))] (3.60)

éu(T) =p lc,,T + H% (1 + tanh (0.56 (T - (fj—;ffi))))] (3.61)

A plot of the specific internal energy for both material phases as a function

of temperature can be seen in Figure 3.4.
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3.3.6 Governing Equations in Solid Region

Since grid cell averaged properties are being used in the phase model for the
smart material, the need to track travelling phase boundaries in the solid
has been removed. The phase of the material transitions smoothly between
martensite and austenite, there is no discontinuous boundary between the two
phases. This model does not have any velocities as independent variables.
Therefore it is not necessary to solve Eqn.’s (3.4) and (3.5) for the velocity
field in this region of the domain. This also means the material derivative in

Eqn.(3.27) becomes a time derivative since the velocities are nonexistent:

%=%+u%+v§-§=% (u,v = 0) (362)
In order to capture the effects of the phase change on the material prop-
erties, there will be variable thermal conductivity for the solid when solving
Eqn.(3.27). In addition, a term to model the latent energy of the phase
change, pHE&(T), has been added. The conservation equation to be solved in
the solid region of the domain is the following:
8(pc,T + pHE(T)) _ 0 (ka(T)) N (k@ )

ot "9z \ 9z ) ay\ &y
where & is defined in Eqn.’s (3.55) and (3.56), and £(T") is defined in Eqn.’s

(3.50) and (3.51).

(3.63)

3.4 Flow Decomposition

This work has been based on existing research which was completed to study

the effects of starting vortices on the vortex roll-up on a turbine blade [43].
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The original research was isothermal and did not consider the interior of the
blade as part of the solution domain.

A complex-lamellar decomposition of the flow field is used in the solution
of the velocity field in the original research. This decomposition allows for
shear velocities to be supplied as input. This feature was not used in the
current work, but the potential exists to take advantage of this capability.
The decomposition used for the current investigation involved separating the

flow into an inviscid potential and a viscous correction.
T=Uc+Vo+Vxy (3.64)

The ¢ potential is an irrotational potential, ¢ is the viscous correction
stream function.
With the velocity written in this manner, the continuity equation for the

fluid becomes the following:

V=0 (3.65)

3.5 Coordinate Transformation

Before the governing equations are solved, the coordinate system is trans-
formed from the physical space, (z,y), to the computational space, (§,7),
where z = z(£€,7n) and y = y(&,71). The (z,y) coordinates are mapped onto
the (&,7n) coordinates in a simply connected manner [35]. That is, each point
in the physical space is represented by only one point in the computational

space.
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L L

Figure 3.5: Transformation from (z,y) to (§,n) Coordinate System

The computational domain is constructed such that A§ = An = 1. The
computational domain is a generalized orthogonal curvilinear coordinate sys-
tem.

To demonstrate the effect this transformation has on the governing equa-

tions, the coordinate transformation will be done on the following equation:

ow Ow Ow Pw  Pw
S tUuz—t+tVvg =V

o Yz ey Ve Vo

where the first order differential terms are convection quantities and the

(3.66)

second order differentials are conduction quantities.

This is a two dimensional convection/diffusion equation, representing
Eqn.’s (3.38) and (3.43). Eqn.(3.63) would be transformed in a similar man-
ner, without the convection terms present.

First Eqn.(3.66) is written in conservative form by making use of Eqn.(3.18).

The result is as follows:

ow Buw) d(vw) Fw Pw
ot + =v

5t " oz oy Vo TVag

(3.67)
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By invoking the continuity equation, Eqn.(3.18) , the convection speeds u
and v can be moved to the inside of the spatial derivatives.

With (z,y) both functions of (£,7), derivatives in (z,y) must then be
expanded using the chain rule:

] asa+ana and: o _oa ana
0z 9z d¢ ' Bz dn " By @% 8y on

Derivatives of (§,n) with respect to (z,y) can be rewritten making use of

(3.68)

the Jacobian of the transformation, where subscripts refer to partial deriva-

tives:
J=| % Tn (3.69)
Y¢ UYn
with:
Jr=|E S| 2Lt T (3.70)
e My M| —ye  ze

and the determinant of the Jacobian is:

”J” = rey,, - :r,,yg (371)

The partial derivatives are now written as:

i--—1—( i—yi) and: i ! (xa-i-z a)(372)
gz~ U \""5€ ~ %an Gy N\ e T e )
Applying Eqn.(3.72) to Eqn.(3.66) can be shown to result in the following

transformed equation:

(I Jllw) | o(lJ||Uw) , o(lJIVw) _ 8 [ Ow Ow
& T o€ o "6_6( +a28n)+(3'73)

‘o€
3 (5 3n)



where U and V are the contravariant velocities and are defined in the follow-

ing manner:
U u
= J! (3.74)
|4 v
and:
4 - y,2, + :1:,2,
' 71l
—Yeln — TeIy
a = Jn — SEtn 3.75
: 171 (3.75)
b - TETYE
' Il
—YeUn — TeZy
by = ST
Il

Eqn.(3.75) are known as the transformation geometrics, they must be
calculated numerically for each cell.
The transformation requires that the Jacobian terms be constructed nu-
merically so that the following is true:
Py Py Pz Pz
o6 ~ o€ " Bgdn ~ e
This is enforced through the application of the finite volume formulation.

(3.76)

3.6 Dimensional Analysis

The final modification to be made to the governing equations is to put them
into dimensionless form. The first step is to select reference values of velocity,
length and temperature. The axial length of the solid, L, will be used as the
reference length. The freestream velocity of the fluid, U, will be used as the
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reference velocity. The initial temperature of the solid, T((,;"f:i)l), will be used

as the reference temperature value. Using the reference values the variables

z,y, T, t, u, v and w are nondimensionalized as follows:

« i . __ y a_tUOO - T
rr = A y =T " = 7 T‘_T}(iﬂ:i),)’ (3.77)
o= o, v = e, W wl

U’ = Usx' Uso

where the * indicates a dimensionless quantity.

In this format, one dimensionless unit of time refers to the time needed
for a particle in the free stream to travel a distance equivalent to the axial
length of the solid.

Using the dimensionless variables from Eqn.(3.77) it is possible to nondi-
mensionalize the vorticity transport equation in the fluid, Eqn.(3.38), and
the energy equation in the fluid, Eqn.(3.43). The energy equation in the
solid, Eqn.(3.63), requires two additional variables, e and k, to be nondimen-

sionalized. This is done as follows:

. LU S (3.78)
kM pCPT((xmtml)

where the martensitic thermal conductivity value, ks, has been used to
nondimensionalize the temperature dependent thermal conductivity. Again
the dimensionless quantities are represented with a superscript *.

The nondimensionalization of the vorticity transport equation proceeds

as follows; begin with the equation in dimensional form:

0w Ow Ow T o 62w %w
+uz—+v c')y"’

Tty T S, (3.79)
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Substituting the values for the dimensionless variables from Eqn.(3.77) and

simplifying results in the following:

. . . _ . 2, =
dw +u,6w LOw*  Bg(Ty — To)L T 7 (g:‘"z + g;_}z)(B.SO)

o e Uy . UL 0z pULL
The Reynolds number, Prantl number and Grashof number are defined

as follows:
Re = ’p°U°°L]
| M
- '&E]
Pr W (3.81)
-gﬂT((,-ﬁ[::,),)L:’pi
Gr = e

Since these -pa.ra.meters are for the fluid flow, all properties in Eqn.(3.81)
are for the fluid in the freestream. This means that the values for p, u, ¢,, &
and 3 will be chosen based on the inlet conditions.

Substituting the Reynolds number and Grashof number into Eqn.(3.80)
results in the dimensionless form of the vorticity transport equation:

Duw* GryoT 1
Dt [Re2] gz [E
The process for the energy equation in the fluid is the same. Start with

] V-2 (3.82)

the dimensional form, substitute for the dimensionless variables and simplify.

Making use of the Prantl number and Reynolds number, the result is as

follows:
DTt 1 .2
Dt~ [RePr}v r (3:83)

To nondimensionalize the energy equation in the solid begin with the

following form of the equation:

de 0 aT 0 aT
T = 3 (k(T)E) + 5‘_!/- (k(T)%) (3.84)
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Substitute the dimensionless variables from Eqn.’s (3.77) and (3.78) then
simplify to get the following:

g 1 8 (., 0"\ 1 38 orT*
8t pcUnLldz \" Moz*) " pe,UnL By oy

Since k) is constant it can moved to the exterior of the spatial derivatives:

(k‘kM ) (3.85)

Oe* _ kar d LoT™ knm d oT*
at*  pc,UsL Oz (" 8:1:‘) pc,Uso L By* (" 6y‘) (3.:86)
The Peclet number is defined as follows:
Pe= [P_CrifiL_] (3.87)
kat

Note that the Peclet number has been defined based on the martensitic ther-
mal conductivity, k.
Substituting for the Peclet number, the energy equation to be solved in

the solid region of the domain in nondimensional form is as follows:

der [171( 8 (.0T"\ & [ .oT
% = |7a) (31" (" 5?)*37'(’“ 3y‘)) (3.88)




CHAPTER 4

NUMERICAL FORMULATION

4.1 Solution Sequence

To unify the ideas of the previous chapter, the sequence of steps needed to

solve the various equations will now be explained.

1: An initial condition for the flow is developed by solving the inviscid

potential equation:

92 ?
3_1‘(2 + a—y(g =0 (4.1)

This equation only needs to be solved once since the velocity decompo-
sition, Eqn.(3.64), satisfies the continuity equation, Eqn.(3.18), at all times.
Eqn.(4.1) is solved using an approximate LU factorization scheme. The con-

vergence to steady state is accelerated by the application of multigrid.

2: The next item in the sequence is to begin the time stepping. This is done

by solving the energy equation in the solid, the viscous vorticity transport
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equation and the energy equation in the fluid at the same time. This entails
solving Eqn.’s (3.82), (3.83) and (3.88).

The time stepping of Eqn.’s (3.82) and (3.83) is accomplished through
a two stage, second order accurate, explicit Runge Kutta technique. Linear
interpolation will be used to construct second order spatial derivatives. A
nonoscillatory quadratic interpolation will be used to construct first order
spatial derivatives.

Time advancement of Eqn.(3.88) is achieved through a semi-implicit, sec-
ond order accurate single step technique. Jameson’s four level multistage
scheme is used to iterate the semi-implicit formulation to convergence at
each time step. Again linear interpolation will be used to construct the

second order derivatives.

3: Eqn.(3.88) solves for the energy and not the temperature in the solid.

Therefore the following must be solved for the temperature of the solid:
e = plcT + HE(T)) (4.2)

Eqn.(4.2) is a decomposition of the internal energy in the smart material
into two components. The first is a sensible component, ¢,T’, and the second
component represents the phase change latent energy, H§(T). This second
term represents the increased energy requirements as the material undergoes
a solid state phase change. T cannot be directly solved from Eqn.(4.2) be-
cause the formulation of £(T') is nonlinear. Therefore a Newton Iteration will

be used to converge to a solution for T corresponding to e.
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4: In order to construct the viscous velocity field it is necessary to obtain
the viscous correction stream function. The relation between the stream

function and the vorticity is the following:
g% + %zy—zf = ~w (4.3)
Eqn.(4.3) represents the viscous correction to the inviscid potential flow
obtained from Eqn.(4.1). Therefore, only regions of the flow field experienc-
ing viscous effects will have nonzero values for the viscous correction stream
function. The viscous effects will mainly be present in the boundary layer
along the solid surface and the wake behind the shape memory alloy. This
will increase the numerical efficiency of the solution process since large por-
tions of the domain will have no viscous correction to the potential flow.
Eqn.(4.3) will be solved using an approximate LU factorization scheme.
Again multigrid is applied to accelerate the convergence to steady state. This
is the same technique used to solve the potential equation, Eqn.(4.1). An
explanation of the technique will be given for Eqn.(4.3), with the differences

in the solution process for Eqn.(4.1) being pointed out.

This sequence is one that will develop a time accurate solution of the in-
dependent variables that will progress forward in time. To maintain time
accuracy the above three steps of the solution sequence, 2 - 4, must be com-

pleted for each time increment.
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4.2 Convergence of Viscous Stream Function

At each time step the viscous correction stream function corresponding to the
new vorticity must be found. The new stream function is used to construct
the velocity at the new time step. The stream function is obtained from
vorticity as follows:

2 2
ng + g—y-f =— (4.4)
The method used to solve this equation is an approximate LU factor-
ization scheme. The convergence of the solution is accelerated by applying
multigrid.
An approximate LU factorization is also used for the first solution of the
potential field for the flow, Eqn. (4.1). An explanation of the solution scheme
will be given for the viscous stream function equation. The process would

be the same for the potential equation, the only difference being there is no

source term on the right hand side of Eqn.(4.1).

4.2.1 Approximate LU Factorization

The first step is to rewrite the equation as a time dependent partial differ-

ential equation.
—-=——+T+w=0 (4.5)

The time variable, £, is a pseudo time variable that differs from the global
time variable. Solving Eqn.(4.5) means driving the pseudo time derivative

to zero to produce a steady state solution.
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Written with an implicit parameter, A, this equation becomes:

% (10 (B Ly 220227 wo
When A = 0 the equation is explicit, when A = 1 the equation is fully
implicit. The time derivative and counter, k, refer to the sequential steps of
the pseudo time integration.

Approximating the time derivative as finite changes, and converting the

values at iteration k + 1 to iteration k, the above can be shown to reduce to:

[1 - AtA (53% + %)] Ay = AL [?;Tf + %2!;‘23 + w] (4.7)

The term on the right hand side in square brackets is the residual, explained

in Section 4.5. At is the time step of the pseudo integration. Ay* is the
change in ¢ with each pseudo time integration.

The approximate factorization is applied to the term on the left hand side

in square brackets [44].
[ - AENSF +6)] [I + AIAG; +6;)] Ap* = rAT Res® (4.8)

where r is a relaxation factor.

This is solved in two steps:
(1) [I+aiE; + 5;)] AW = rAf Res* (4.9)
(2)  [I- AN +6))]) Av* = Ay’
The unknown in step (1) is A¢’. It is solved for by directly inverting
the lower diagonal matrix constructed from the term in square brackets in

step (1) of Eqn.(4.10). The unknown in step (2) is the change in the stream
function, Ay, It is solved for by directly inverting the upper diagonal matrix

53



constructed from the term in square brackets in step two of Eqn.(4.10). The
implicit parameter and relaxation factor are both given values of 1.

The technique described above is also used to solve the potential equation,
Eqn.(4.1). For this equation the implicit parameter is 0.5 and the relaxation

factor is 1.

4.2.2 Multigrid Convergence Acceleration

Eqn.(4.3) is a steady state elliptic equation which must be iterated to con-
vergence for each time step. Steady state equations have their solutions
governed by the boundary conditions. The quicker that information on the
boundaries can influence the interior of the domain the quicker the solution
will converge. In addition, the approximate LU factorization scheme being
used can be shown to have excellent high frequency error damping perfor-
mance [42]. Both of these factors make multigrid useful for this problem.

A multigrid cycle begins by calculating a solution correction on the fine
grid and the new solution after this correction is applied [41]. This is shown

below in operator form.

LULAw, = —AtResy, (4.10)
wit! = wf + Awf (4.11)

where L and U are lower and upper operators respectively, Res, is the residual
on the h grid level and Awy, is the correction to w on the h grid level.

This new solution is passed down to the next coarsest grid by an area
weighted accumulation method, denoted by the operator 7.

wh_y = Th_ wa (4.12)
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The residual is passed down to the next coarsest grid by a direct summation,
denoted by the operator T

ResS_; = T ,Resy (4.13)
A new coarse grid residual is developed at this grid level.
Res;,_, = Res(w}_,)a-1 (4.14)
= Res(TP,wn)n-1

The difference between the calculated residual on the coarse grid and the
residual passed down from the fine grid is calculated. It is known as the
forcing function, FF.

FF,., = Res;_, —Res}_, (4.15)
= T,('_IRes;, - Res(T,',‘_lwh)h..l
The new solution residual on the coarse grid is the sum of the residual cal-
culated with the solution at the coarse grid, and the forcing function.
LU 1Awp_y = —At(Res;H + FF},_I) (4.16)
= —At(Resp-; + T Resy — Res(TP_,wh)a—1)
This manner of calculating on the present grid and passing information to
coarser grids continues until the lowest grid level is reached.
At this point the process of passing the coarse grid correction values
upwards to the finer grids begins. At each up-pass the difference between

the fine grid solution and the interpolated coarse grid solution is applied to
the fine grid.

wh = wh + I~ (Whey — TR wh) (4.17)
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Passing the solution corrections up to the finer meshes continues until the
uppermost mesh is reached.

The operators T and I are transfer and interpolation operators used to
pass information down and up, respectively, between the grid levels. They
are not inverses of each other.

A five level W cycle is the multigrid scheme used for this work. At each
time step the maximum residual is reduced to the order of O(10~°) before the
equation is considered to be converged. Convergence of the viscous stream
function equation is normally achieved within no more than 10 multigrid
cycles. One complete multigrid cycle is shown in Figure 4.1.

finest meSh e

R A i Tt T g ) G UG g g

decreasing ‘h'[ ., .\ ... N .

coarsestmesh , ... . M. . N...... N ... NM_____..N__N_____.. .

Figure 4.1: Schematic of Six Level ‘W’ Cycle used in Multigrid Scheme

4.3 Model Equation

The following sections will describe the numerical techniques used to solve the
governing conservation equations. To demonstrate the numerical techniques

a model equation will be used which represents both the viscous momentum
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equation, and the energy equation. This model equation has both the con-
vection and conduction terms present. The model equation is shown below.
ow + caw _ u32w
ot 0r  Ox2

where the first order derivative term is a convection quantity and the second

(4.18)

order differential term is a conduction (diffusion) quantity.
Note that the model equation has been reduced from two dimensions
to one, and the velocity has been assumed to be constant along with all

properties.

4.4 Time Integration of Equations in Fluid Region

The numerical technique used to approximate the time integration in Eqn.’s
(3.82) and (3.83) is a two stage, explicit, time accurate, Runge Kutta method.
An algebraic representation of one complete time step for this technique is

shown below:

w® = M
w) = w® 4+ a;At Res(w®) (4.19)
w?® = w® + ayAt Res(w?)

oV = @)

The o4 terms are Runge Kutta stage coefficients. They affect both the nu-
merical stability and time accuracy of the solution. The At term is the time
step used to time advance Eqn.’s (3.82),(3.83) and (3.88). The superscript
terms in round brackets refer to the Runge Kutta stage, the superscript terms

in square brackets refer to the time step.
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An explanation of how to construct the Res(w")) terms, known as resid-
uals, will be described in Section 4.5. They are a method of calculating the

spatial derivatives on a grid cell:

F?w®  Guw®
0y = -
Res(w') = v preaia

(4.20)

By rewriting the original differential equation, Eqn.(4.18), it is possible
to recover the Taylor series expansion for the time derivative. This is done
by making it resemble Eqn.(4.20), putting the result into Eqn.(4.19) and
simplifying:

(V] 24N
wiV+1 = M + o At ?—wat— + a2 (At)2 661:2

(4.21)

Eqn.(4.21) has been written to show the result for a two stage Runge
Kutta. If desired, additional stages can be added to the Runge Kutta time
integration to increase the accuracy level or aid in stability. The values of oy
are selected to satisfy time accuracy and guarantee numerical stability. For
this work a; = 0.5 and a, = 1.0 to ensure a solution which is second order

accurate in time, O(At?), and numerically stable.

4.5 Spatial Integration Scheme

This section will deal with the construction of the residuals from Eqn.(4.19).
As was previously stated, the residuals are a method of calculating the spatial
derivatives, shown in Eqn.(4.20). For this work they are solved for using a

finite volume method.
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To illustrate the technique consider the following example equation writ-

ten in the computational coordinates:

0 3}
Res = B_E(A) + 517-(3) (4.22)

where A and B are known as fluxes.

The A and B fluxes can be comprised of convection terms, conduction
terms, material properties, transformation geometrics or any combination of
these. The key is that transformed equations can be rewritten to resemble
the conservative form of Eqn.(4.22).

The differential in the £ direction in Eqn.(4.22) represents change across
the cell of the A flux in the £ direction. Similarly, the differential in the
n direction in Eqn.(4.22) represents change across the cell of the B flux in
the n direction. To calculate the change of A across the cell, the value of A
on the right and left cell faces is determined. The difference between these
two amounts represents the £ differential in Eqn.(4.22), since A§ = 1. To
construct the 7 differential values of B at the top and bottom cell faces are
calculated and differenced from each other. The residual is the result of

constructing these differences over the cell:
Res;; = (Ai+§.j - Ai—%.j) + (Bi.j-l-% - Bi‘j—-z‘-) (4.23)

The difficulty lies in obtaining values for the possible components of the
A and B terms on the cell faces. The independent variables and material
properties are assumed to reside at the cell center, and the geometric terms
reside along the cell faces. For the diffusion term in the model equation linear

interpolation is used to construct values at the cell face. For the convection
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term in the model equation the UNO2 interpolation method is used to obtain
values at the faces. UNO2 will be explained in Section 4.6.

The viscous correction stream function, Eqn.(4.3) and potential equation,
Eqn.(4.1), are elliptic equations. As such they have smooth solutions where
information is transmitted equally in all directions. Therefore in the con-
struction of the residuals for elliptic equations, it is acceptable to use a linear

interpolation of the independent variables at the cell faces.

4.6 Interpolation of Convection Term

The viscous stream function, Eqn.(4.3), and potential equation, Eqn.(4.1),
are elliptic equations. Conversely, the vorticity transport equation, Eqn.(3.82),
and energy equation in the fluid, Eqn.(3.83) are hyperbolic. Hyperbolic equa-
tions contain convection terms that do not have smooth solutions, and in-
formation is not transferred equally in all directions. There is a convection
velocity which governs the direction in which information travels. As a re-
sult linear interpolation is not acceptable for interpolation of the independent
variables to the cell faces for convection terms.

The interpolation technique used for the convection term is a nonoscilla-
tory quadratic interpolation scheme known as the Uniformly Nonoscillatory
Second Order Accurate method (UNO2). This method was developed by
Harten and Osher [13]. The explanation here is the one given by Yokota
[42], [44].

Interpolations of the independent variables are completed in the following
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manner, with S7 representing the slope of w in the z direction.
w=w; + S;(z — ;) (4.24)

The repeated indices do not imply summation.
This interpolation is used to construct values for the independent vari-
ables at the cell faces, w;;1/9, for construction of the differences.

The UNO2 scheme uses the following selection process to determine the

value of the slope.
median(0, w¢,, /o — wi, w; — ws_, ;)
SF = Y Y 4.2
The wf,,/, values are constructed using a quadratic interpolation:
. 1 1

Wipy2 = §(wi + Wip1) — ZDi+I/2 (4.26)
where:

Di+l/2 = minmod(wi.,.[ = 2w; + wiy), Wips — 2wip + w,-) (4.27)
and:

minmod(a, b) = sign(a)max(0, sign(ab)min(|a|, |b})) (4.28)

The Di,1/2 term represents the extension of the w§,,, term from a linear
interpolation in van Leer’s Minmod [36] to the quadratic interpolation in
UNO2.

The face centered values, w;iy1/2, must be constructed for the convection

term at both stages of the Runge Kutta time stepping scheme.
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4.7 Time Integration of Energy Equation in Solid

The numerical technique used to approximate the time integration of Eqn.(3.88)
is a semi-implicit, second order accurate single step technique. The finite dif-

ference approximation of Eqn.(3.88) using this time advancement technique

is:

N+ _ gV vkvT)\ ™ V(EvT) )N+
e (TR () e

where A is an implicit parameter.

The implicit parameter is set to 1/2 to ensure second order accuracy
in time. The time step, At, in Eqn.(4.29) is the same time step used in
the Runge Kutta time advancement of the vorticity transport and energy
equations in the fluid region of the domain.

Due to the nonlinear relation between e and T given by Eqn.(4.2), and
the semi-implicit formulation, an iterative solution is needed for Eqn.(4.29).
The iteration technique used is the four level multistage scheme developed
by Jameson.

To apply this method, Eqn.(4.29) must be rewritten in a pseudo time
dependent form. The first step is to move all of the terms to the same side

of the equality.

V] [N+1]
o=-elN+1l+elN1+(1-,\)At(V(WT)) +AAL (LVT)) (4.30)

Pe Pe
The variables e, T and k, at [N+1] are written as the iteration variables
é, T and k. The expression is then set equal to the rate of change of the
energy variable with respect to a pseudo time variable:

de _ .. oum, Ot (V(kVT))[NI Y (V(icvf'))

dar Pe 2 Pe (4.31)

des 2
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The energy variable will be iterated with this technique, temperature will
be updated using a Newton Iteration described in the following section. The
thermal conductivity is then updated using Eqn’s (3.55) and (3.56), which
are the expressions for k(T).

The term on the right hand side of Eqn.(4.31) is known as the residual.
The goal of the iteration process is to drive the residual to zero. When
the residual is zero Eqn.(4.30) is satisfied and the iteration variables are the
desired quantities at time level [N-+1].

Written in residual form Eqn.(4.31) is as follows:

de
dt*

= Res (4.32)
One cycle of the four level multistage scheme is shown below:

gV = &Ml + o, At*Resl!

&2 = &b 4 gy At*Restt (4.33)
é® = é@ 4 a;At*Res?
ekl = &3 4 o, At*Res®

where the superscript terms in round brackets refer to the stage level, and
the superscript terms in square brackets refer to the pseudo time level.
After each of the four stages the Newton Iteration is applied to determine
the new value of T from the new é. Using this T value the new £ is directly
determined. The updated values of T and k are needed for calculation of the
residual in the following stage.
This scheme is similar to a four stage Runge Kutta scheme. A few modifi-

cations are present which accelerate the convergence rate and reduce storage
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requirements. The stage coefficients ; are not constrained by time accuracy
requirements since this is a pseudo time integration to steady state. They
can be chosen to best accelerate convergence and aid in stability. The values
used are a; = 0.25, as = 0.5, a3 =0.75 and oy = 1.

At the completion of one multistage cycle the maximum residual is de-
termined and compared to the specified convergence criteria of 10~°%. If the

convergence criteria is not met, additional multistage cycles are applied as
needed.

4.8 Newton Iteration Solution of Energy Equation

The time marching solution described in Eqn.(4.19) is for a model equation
of the form shown in Eqn.(4.18). However, a model equation which more

accurately represents the energy equation being solved in the solid is the

following:
de 8T
i k_8z2 (4.34)

Here the independent variables in the time and spatial derivatives are not
the same. The spatial derivative is written in terms of temperature, and the
time derivative is written in terms of energy.

As Eqn.(4.34) is time advanced from time level [N] to time level [N+1] it
is the energy variable which is updated at the new time level. However, it
is the temperature variable which is used to solve for the residuals. It is the
residuals which are used to update the energy variable. So the temperature is
needed at the new time level, [N+1], before the solution can be time advanced

further. An equation which relates energy and temperature is needed.
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The specific internal energy is a function of temperature as follows:
e(T) = ple,T + HE(T)) (4.35)

where Eqn.(4.35) is formulated as in Eqn.’s (3.60) and (3.61).
The Newton Iteration scheme is written as:

e®(T) —e
e/[k] (T)

The superscript [k] refers to the iteration number, it is a local counter and

T+l — i _ (4.36)

does not correspond in any manner to the global time step. The derivative
¢’ refers to change of Eqn.(4.35) with the independent variable T

k]
I(T) = 5% = o plesT + HE(T))] = pley + HET)

The approximate function, Eqn.’s (3.50) and (3.51), will be used for e(T)

) (4.37)

and in determining e'(T).
Substituting Eqn.’s (4.35) and 4.37) into the Newton Iteration results in
the following:

T[k+1] - T[kl _ (pCpT[k] -+ pH&(T["]) - e)
ple + HEG)

where e is the energy variable obtained from the multistage scheme.

(4.38)

Eqn. (4.38) is solved iteratively until the difference between two succes-

sive solutions satisfies some predetermined error criteria.
|TE+ — TH| < error (4.39)

The error criteria has been chosen as: error = 10~!2, where T is of the order
0(10%).
The Newton Iteration must be completed to convergence for each grid

cell in the solid, at each time step and within all multistage levels.

65



4.9 Numerical Stability

The time stepping method being used to time advance Eqn.’s (3.82) and
(3.83) is an explicit technique; the method being used to time advance
Eqn.(3.88) is a semi-implicit technique. Therefore the numerical stability
of the solution is an issue. As mentioned previously, the numerical compo-
nent of the current work is based on previously existing research, discussed
in the paper by Yokota [43]. The previous work solves an equation similar in
form to Eqn.’s (3.82) and (3.83) with the same numerical techniques. There-
fore a stability analysis will be completed on Eqn.(3.88), which is of a form
not solved by the original research and is solved using a different numerical
technique for time stepping.

A stability analysis will be done to verify Eqn.(3.88) has a stable numeri-
cal solution when solved using the aforementioned techniques. This includes
the semi-implicit single step time advancement as well as the multistage
method used to iterate to convergence at each time step. The stability anal-
ysis will be used to determine the maximum allowable time step which can
be used to advance the solution in time.

A linearized one dimensional stability analysis will be performed on the
following equation:

pc,%r = k%i—f (4.40)
Note that the variable in the time derivative has been written as T instead
of energy. Also the thermal conductivity has been assumed to be constant.

These assumptions change the equation from the form which is being

solved. They are acceptable though since the results of the stability analysis
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will only be used as a rough guideline for selection of the time step. The
results of the analysis will be a necessary condition for local stability, not a
sufficient condition [15]. In fact, it may be necessary to reduce the time step
below the amount determined as a result of the analysis.

A von Neumann analysis involves writing the error in the solution as a
Fourier decomposition [15]:

€(z,t) = 'iz a{M eV=1it: (4.41)
i=0

where 6 is the phase angle of the decomposed error. The range of 6; is
0 <6, <. 8, =0 refers to low frequency errors which act over the entire
domain, 6, =  refers to high frequency errors which act over only two grid
cells. aEN) is a time dependent amplitude factor. i refers to the location in
the grid. The sum will be assumed in further steps.

The numerical solution, T, is then written as the sum of the exact solu-

tion, T, and any error, €.
T(z,t) = T(z,t) + e(z, t) (4.42)

Since the numerical solution satisfies the original equation, Eqn.(4.40),
the error must also satisfy this equation. This allows us to write an equation
for the error by applying the specified differencing techniques to the space

and time derivatives of the original equation.

4.9.1 Single Step Semi-Implicit Time Advancing

A stability analysis will first be completed on Eqn.(4.40) using the single step

semi-implicit method. To reiterate, the finite difference approximation for
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this expression is:

TWHI TN (T, — 2T, + Tit)™ | (Ticy — 2T; + TV HY
At B 2PeAx? 2PeAzx?

(4.43)

where At and Az refer to the time step and grid spacing respectively.

A finite difference equation can be written for the error by making use of
Eqn.(4.42), which allows substitution of Eqn.(4.41) into the finite difference
approximation, Eqn.(4.43). The result is the following:

aWN+D) (VDb — (N} (V=T)ib:
ez [aWMelVTDET0 _ 9g(MelV=THe: . q(N) (V=D 1e:] (4 44)

+ 2Pf£: [a(N-H)e(\/—)-l (=182 _ gg(N+1)o(vV=Diz a(N+l)e(\/:f)(i+l)0,]

Eqn.(4.44) must be simplified into an expression to get the error at time
level [N+1] as a function of the error at time level [N]. The following substi-
tution can be made to simplify Eqn.(4.44):

V=18 = cosf + (vV=1)siné (4.45)

The following trigonometric identity must also be applied:

1 —cos26
9

sin?g = (4.46)

An error amplification factor, G, is defined as the ratio between the error

from two successive time steps.

_errorat (N+1)  a¥*D
"~ errorat (N) =~ o™

(4.47)

The amplification factor is a function of the differencing techniques used, the

material properties, any velocities present, the time step and the mesh size.
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Since the time step is the only one of these parameters not yet specified, the
stability analysis is used to determine the allowable step size.

If the error grows with time the solution will be unstable, if the error does
not grow with time the solution is stable. This requirement for stability is

written as follows:
G<l1 (4.48)

Once Eqn.’s (4.45) - (4.47) are applied to Eqn.(4.44), the finite difference
approximation shown in Eqn.(4.40) can be shown to have an error amplifi-

cation factor given by the following equation:

G=1-2G [ AA2P ] sin? (6,/2) — 2 [ Affpe] sin? (6, /2) (4.49)

Further algebraic manipulation results in the final form of the expression

for the error amplification factor:

1- [m] sin? (6,/2)

G =
142 [KBT'E] sin® (0 /2)

(4.50)

Recall that the range of the 6, is: 0 < 8, < 7. Over this range sin® (6,/2)
takes on the following values: 0 < sin?(8./2) < 1. Therefore Eqn.(4.50)
satisfies the stability requirement of G < 1 for all positive values of At, Az?
and Pe. Eqn.(4.40) is unconditionally stable when solved using a single step
semi-implicit time integration with central differencing of the spatial deriva-
tive. Numerical stability requirements place no limitations on the allowable

time step for the time advancement of the energy equation in the solid.
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4.9.2 Multistage Convergence Iteration

Next the stability of the four level multistage technique which is used to
iterate the energy equation in the solid to convergence at each time level will
be considered. To reiterate, the equation being solved with this technique is
the following:

é (M =
€ _ LMy % (V(IcVT)) Y (V(kVT))

Pe 2 Pe (4.51)

To simplify the stability analysis, the energy variable will be replaced
with temperature, and the thermal conductivity, k, will be assumed constant.
The variables at time level N are constants and do not have any effect on the
stability of the solution. After the above simplifications, the equation which

will be analyzed for numerical stability is the following:

dT ALY
S =T+ (éﬁ) V2T (4.52)

Eqn.(4.52) is solved with the 4 level multistage scheme, the solution se-

quence proceeds as follows:

o
T = T 4 025A8 [-T + (ﬁ) VQT]

2Pe
T® - TO 405A¢" [—T+ (ﬁ) v%*]m (4.53)
2Pe
(3) — (@2 * At 2 ®
T = T +0.75A8 | -T + 2_Pe ver
3
Th+1 = @) 4 Ap* [-T + (.ét_) V2T]
2Pe

where the second order differential will be approximated with second order
accurate central differencing. Again At® is the pseudo time step of the iter-

ation and At is the global time step.
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Applying the same techniques as the previous stability analysis it is pos-
sible to write an expression for the error amplification factor of each stage.

They are:
At
| . _ . s 2
G' = 1-0.25At [1+4[—2Pe]sm (0,,/2)]
At
2 _ g1 - . 2 |2
G* = G (1 0.5At [1+4[ zzPe} sin (0:/2)]) (4.54)

At
3 2 _ - 2
G =G (1 0.75At [1 +4 [—xQPe] sin (0,/2)])

G? (1 — At [1 +4 [ A.’::Athe] sin? (9,/2)])

The expression for the error amplification factor of a complete cycle is

G

a fourth order polynomial in the unknown At*. This polynomial must be
compared to the stability requirement of G < 1. From this comparison
it can be determined if the scheme is conditionally stable, and then limits
may be set on At* to ensure the scheme is numerically stable. Ideally an
analytical expression for the limiting values of At* is preferred. However due
to the complexity of the expression for G, the error amplification factor will
be plotted with selected values of the parameters Az2, At, Pe and At*.

A complication exists in that although Pe and At are constant, Az? varies
over the domain in the solid. However it is known that At is of order O(1074),
Pe is of order O(10%) and Az? varies between O(1073)< Az? <O(107%).
Therefore the following is true:

At
-3 - < -1
o1 ™) <¥= "2 Pe = 0o(10™%) (4.55)

Following in Figure 4.2 is a plot of the error amplification factor with ¥
varying from O(10~3) to O(10°) with the selected value of A¢t* = 0.1. This
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is the value of At* used in the simulations which will be presented in the
results.
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Equation
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4.10 Boundary Conditions

4.10.1 Fluid Field Boundary Conditions

Referring to Figure (2.4), there are four different boundary conditions which
must be considered in the fluid field: the inflow, outflow, periodic, and solid
boundaries. The flow variables which require boundary conditions are the
potential, ¢, the viscous correction stream function, v, the vorticity, w, and
the temperature T'. Since the periodic boundary is exactly what it implies,

specific details of the application will not be given.

Inflow Boundary The flow field boundary conditions at the inlet are all
set to model a uniform flow. Referring to the decomposition, Eqn.(3.64), a
uniform flow across the inlet requires that there be no change in any of the
flow variables across the inlet. The temperature at the inlet is set to the

desired value of the flow. Since an inlet shear is not desired vorticity is set

to zero.
9¢
== =0 4.56
a§ inlet ( )
oy
== =0 4.57
a£ inlet ( )
Wintet =0 (458)
Tinter = constant (4.59)

where the value of T;n,: will be specified to match the physical characteristics
of the selected problem.
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Outflow Boundary The conditions applied at the outlet are chosen to

allow whatever phenomena may be present to convect out of the domain.

Boutler = 0 (4.60)
% = 0 (4.61)
‘g—‘g =0 (4.62)
% = 0 (4.63)

On the inlet, outlet and solid boundaries the derivative of ¢ has been
specified. Laplace’s equation, Eqn.(4.1), gives solutions unique to a constant.
Therefore it is necessary to prescribe a value for ¢ at the outlet to aid in

convergence of the continuity equation.

Solid Boundary It is important to note that there are two different com-
ponents to the boundary conditions applied at the solid surface. First there
are the analytical conditions applied to the variables used in construction of
the flow field. The second stage is in applying the no-flux condition at the
surface, in the actual calculation of the residuals mentioned previously. The
flux across the solid surface is set to be zero to ensure the solid surface is
accurately represented.

The analytical condition applied to the flow potential is the following:

0¢ .
r-and = —Ux ‘n (4;64)
617 wall
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which comes from:

9¢ 3

[ﬁ-ﬁ,w =0— — +Uxp-7=0 (4.65)
all a‘r’um.ll
where:
., 00 O
=Up i+ + 57 4.66
“ an " (40

The final term is not needed since:

Ywayl = constant (4.67)

For the vorticity correction stream function the boundary condition at
the wall comes from a second order Taylor series expansion of the stream

function at the wall:

oY 1 8%
Vwalt+1 = Ywan + n » An + o]

Recalling the relation between w and ¥, Eqn.(4.3), and making use of Eqn.(4.67)

An? +0(An®)...  (4.68)
1

wal

this can be reduced to:

1
Vwall+1 = Ywall + % An + §wwallAn2 (469)
wall

Rearranging this gives an expression for the vorticity at the wall:

v
2(Ywatt+1 = Ywalt — glw o An)
An?

Wyall =

(4.70)

Due to the importance and complexity of the thermal boundary condition
along the wall, it will be treated separately in the following section.
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4.10.2 Thermal Interaction Boundary Condition

For this work the most important physical phenomenon to capture is the
thermal interaction between the fluid flow and the smart material. Numeri-
cally this is the boundary condition linking the energy equations in the two
regions of the domain, Eqn.’s (3.83) and (3.88). Since it is the temperature
of the smart material which determines the state, any heat loss or gain to
the surrounding fluid is of extreme interest.

The requirement of this boundary condition is to accurately capture the
physics at the boundary without affecting the solution in any way. A simpli-
fied schematic in Figure 4.3 diagrams the problem at the boundary.

q”( , ) ﬁUid.
u(z,y) [I ’ Ty(z,y) /boundary (f(z.9))

Ty(z,
yl l (z,y) |
< solid

Figure 4.3: Diagram of Fluid and Smart Material Boundary

Complexities of the problem lie in the fact that the velocity and temper-
ature fields are functions of two dimensions. The boundary itself is also a
function of two dimensions.

From the literature, there are two standard methods used to handle this
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thermal boundary condition between a solid and a surrounding fluid. Ei-
ther specify the surface temperature of the solid to be a given constant
[9].[16],(17],[28],[39], or specify the heat flux at the surface [28},{39]. For
the current work both of these options are unacceptable. They govern the
temperature field solution in the solid either directly (specified surface tem-
perature), or indirectly (specified surface heat flux).

Numerically the solution is simplified in that the domain is discretized
along the boundary into discrete cells. At an individual cell level this re-
duces the problem to one dimension. A numerical boundary condition is still
required for the boundary cells which captures the physics. A diagram of a
typical boundary cell is shown in Figure 4.4.

fluid
g
Vi
n q _g;f
| = #
I Ang
Je—|
solid

Figure 4.4: Boundary Cell

The thermal boundary condition which occurs in nature is that any heat

which flows out of the solid must flow into the fluid. This is written as



follows:

Uftuid = Qantid (4.71)

The heat flux in the solid is due only to conduction, since there is no con-
vective velocities present internally. It is desired to write the heat flux in the
fluid as a function of only conduction at the surface. Therefore it will be as-
sumed that temperature gradients are linear in the fluid perpendicular to the
surface. For this to be true the grid at the surface must be sufficiently fine so
as to resolve the viscous boundary layer at the wall. In the viscous boundary
layer the y direction velocities are small compared to the z direction veloc-
ities. Therefore any variations in T in the y direction would be primarily
due to conduction. A flat plate boundary layer assumption may be made to
calculate the approximate expected thickness of the viscous boundary layer
[25]. Based on this calculation it can be shown that on the solid surface the
viscous boundary layer is contained in more than one grid level. The nu-
merical grid is fine enough to resolve the viscous boundary layer. Therefore
the assumption of a linear temperature gradient at the surface is valid. This

allows us to write Eqn.(4.71) as :

)™ ()
k— = |k+—
( an' fluid an solid

A first order discretization of the differentials has been used over the half

(4.72)

of the boundary cells nearest the interface, as shown below:

Ty -T,\ _ Tw—T,
ks ( Ang ) =k ( An, ) (4.73)
Rearranging for the temperature at the wall ,T,,, gives the following:
T+ (8) ()T

1+ (&) (o)

T, = (4.74)
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An alternative would have been to use a convective heat transfer coeffi-

cient, h, at the boundary. The equation for the boundary condition would

have been as follows:

h (Ty — Twatt)| pryig = (k 6T) (4.75)

an

solid

The parameter h is an approximation made when it is not possible to study
the thermal interaction between the fluid and solid on a small scale. For
this work the domain is resolved into finite divisions small enough to discern
boundary layers. Therefore it is possible to resolve the linear temperature

distribution region of the fluid, and it is not necessary to use h values at the

boundary.
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CHAPTER 5

RESULTS

5.1 Values of Dimensionless Groups

Before any simulations can be completed, values of the dimensionless groups
present in the nondimensional form of the governing equations must be pre-
scribed. To do this quantities are needed for the specific fluid properties,
solid properties and reference variables.

Table 5.1 contains values of the fluid properties used for this work [37}.

Property Symbol Value
Thermal conductivity k 0.5W/mK
Density Po 1050kg/m3
Volumetric thermal expansion coefficient J¢] 0.361(107%)
Specific heat capacity Cp 3.85(10%)J/kgK
Viscosity b 2.09(1073)kg/ms?

Table 5.1: Fluid Material Properties

As an approximation the volumetric thermal expansion coefficient for
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water at the freestream temperature of 37°C has been used.

Table 5.2 contains the property values used for the smart material [1].

Property Symbol Value
Martensitic thermal conductivity | kys 1L.8W/mK
Austenitic thermal conductivity ka 18W/mK
Volume specific heat capacity pc | 2.12(108)J/miK
Latent energy of phase change pH 0.148(10%)J/m3

Table 5.2: Solid Material Properties

Values of the reference parameters used for length, velocity and temper-
ature mentioned in Section 3.6 must be prescribed. The axial length of the
smart material is lmm [32], this is the reference length L. The freestream
velocity of the fluid is 0.1m/s [33], this is the reference velocity Uy. The
reference temperature is the initial temperature of the solid, T((i’n",.‘::l),) = 273K.

The values from Tables 5.1 and 5.2 along with the reference quantities
can be substituted into the equations for the dimensionless groups, Eqn.’s
(3.81) and (3.87). Following in Table 5.3 are the values of the dimensionless

groups for this work.

5.1.1 Freestream Fluid Velocity

Isothermal test cases resulted in vortices being shed from the solid at a fre-
quency of approximately 50Hz. Blood flow cycles at frequencies of approxi-
mately of 1Hz [21]. Clinical experience has shown the phase transformation
of the smart material IVCF to occur very quickly, being described as “instan-
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Dimensionless Group | Symbol | Value
Reynolds number Re 50
Prantl number Pr |25 37]
Grashof number Gr 245
Peclet number Pe 118

Table 5.3: Dimensionless Groups

taneous” [31]. Therefore it is expected that the smart material will change
phase in a period of time which is less than one complete heartbeat. For the
time lengths that will be simulated the shedding vortices will be of greater
influence to the flow field than the oscillatory nature of the freestream ve-
locity. Therefore all of the test cases presented have a constant free stream

velocity in the fluid region.

5.2 Numerical Domain

Shown in Figure 5.1 is the supplied numerical grid used in the fluid region
of the domain. The domain in the fluid region consists 128 x 32 cells with
48 cells over the solid region. Since the formulation is viscous, the grid is
packed towards the leading and trailing edges and over the surface of the
solid. Figure 5.2 is the developed numerical grid used in the solid portion of
the domain. The domain in the solid region consists of 48 x 24 cells.

Due to the blunt leading and trailing edges present in the geometry there
is a grid discontinuity around the leading and trailing edges. This skewing

of the grid alters the truncation error in these localized regions. If large
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gradients in the flow variables occur in these regions, it is possible that large
truncation errors could develop and influence other regions of the domain.
A temperature limiter has been applied to prevent these truncation errors
from affecting the solution in other areas of the domain. This is similar in

concept to the flux limiter applied in the UNO2 convection scheme.
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5.3 Development of Flow Field Periodic Solution

The initial condition used for the flow field is an impulsive acceleration. The
solution which eventually develops in the flow field is the periodic shedding
of vortices from the ellipse. It takes time for the periodic solution to develop
as the effects from the impulsive start must convect out of the domain. Pe-
riodic shedding of vortices begins after a time equivalent to approximately
four shedding cycles. An additional three vortex shedding cycles were then
computed to ensure that any transients occurring during startup were no
longer present, and the flow was fully periodic. Vorticity contours through
one full cycle of vortex shedding are shown in Figures 5.3(a) - 5.3(e).
Figure 5.4 is the average vorticity in the fluid over approximately fifteen
shedding cycles. This is for an isothermal simulation. The presence of tem-
perature gradients in the flow field does not alter the vorticity an appreciable
amount. Differences between the flow field kinetic energy from isothermal
and nonisothermal test cases are less than 0.1%, relative to the isothermal
amount. This is due to the weighting value used for the term which generates
vorticity as a result of temperature gradients. A value of 0.1 has been used

for the generation term, relative to the convective term weighting of 1.

Text resumes on page 93
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Figure 5.3(a): Vorticity Contours in Fluid Region, t = 0.004
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Figure 5.3(b): Vorticity Contours in Fluid Region, t = 0.008
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Figure 5.3(c): Vorticity Contours in Fluid Region, t = 0.012
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Figure 5.3(d): Vorticity Contours in Fluid Region, t = 0.016
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Figure 5.3(e): Vorticity Contours in Fluid Region, t = 0.020
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5.4 Constant Material Properties in Solid Region

5.4.1 Results from Two Dimensional Simulation

The first test case to be presented is a solid material with constant properties
at an initial temperature of 273K, surrounded by fluid flow with a freestream
temperature of 310K. The flow field initial condition used for this case
is the periodic solution from the isothermal simulation. The values of the
dimensionless parameters used are listed in Table 5.3.

As the simulation advances in time the average temperature of the solid
is expected to asymptotically approach the freestream temperature of the
fluid. Figure 5.5 is the average temperature of the solid with time.

From the temperature distributions in the fluid and the solid it is possible
to compute the average heat transfer coefficient on the surface of the solid.
A plot of the heat transfer coefficient time history is shown in Figure 5.6.

The average heat transfer coefficient on the surface is determined from:

k&L
i (5.1)
(Too - Tsurface)

where the overline refers to quantities averaged over the surface.

h=

The average temperature in the solid is making a slow asymptotic ap-
proach to the freestream temperature. This is explained by the oscillation
around a near zero value for the average surface heat transfer coefficient. As
the surface temperature of the solid nears the freestream temperature of the

fluid, the rate of heat transfer into the solid is decreasing.
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5.4.2 Comparison to One Dimensional Analysis

A one dimensional analysis can be used to approximate the heat transfer
between an object and a fluid [1]. The assumptions of a one dimensional
analysis are that the temperature of the object is uniform over the cross
section, and that the heat transfer rate is constant with time. A measure of
whether or not a one dimensional analysis is valid is the Biot number:

. hL
Bi = -I—C: (52)

where h is the convective heat transfer coefficient, L is a characteristic length
of the solid, and k, is the thermal conductivity of the solid. The Biot number
is the ratio of the internal thermal resistance of the solid to the boundary
layer thermal resistance. A one dimensional analysis is expected to give
acceptable results for |Bi] < 0.1.

The one dimensional analysis uses the following expression:

—Vpcp% = hA,(T — Ty) (5.3)
where V is the volume of the solid, A, is the surface area of the solid, T is
the average temperature of the solid, T, is the freestream temperature of
the fluid and h is the convective heat transfer coefficient.

The difficulty in using Eqn.(5.3) is the selection of a suitable value for
h. As can be seen in Figure 5.6, the convective heat transfer coefficient
changes with time. For comparison with the results from the two dimen-
sional analysis, three different values of h have been selected: the average,
a value towards the lower end of the range of h’s calculated, and a value
towards the higher end of the range of h's calculated. Figure 5.7 shows the
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average temperature history from both the 2D and 1D analyses. As this plot
indicates, it is difficult to select a single value of h which can reproduce the
results of the 2D simulation in a 1D analysis.

One reason for this is the variation of the heat transfer coefficient with
time in the two dimensional analysis. An additional reason is the range of
Biot numbers that occur during the simulation. Shown in Figure 5.8 is the
calculated Biot number from the two dimensional analysis. The Biot number
is rarely below the required level for an accurate one dimensional analysis.
Therefore a one dimensional analysis is not expected to give accurate results
for this application. There is little which designers could do to improve this
situation, since for a specific material and application the Biot number is a

set quantity.
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5.5 Comparison between Smart Material and Constant

Property Material

5.5.1 Results from Two Dimensional Simulation

The next test case to be presented is a smart material with variable material
properties at an initial temperature of 273K, surrounded by a fluid with a
freestream temperature of 310K. The flow field initial condition used for this
case is again the periodic solution from the isothermal test case. The values of
the dimensionless parameters used are the same ones in Table 5.3. The smart
material will initially be martensite. The temperature at which the austenite
transformation will start is 275K, and the transition finish temperature is
285K. As the simulation proceeds in time the material is expected to change
phase to austenite as the average solid temperature approaches the freestream
fluid temperature.

Figure 5.5 shows the change in average temperature of the solid with time,
for both the constant property test case and the smart material test case. The
reduced rate of temperature increase for the smart material during the first
tenth of a second is due to the increased energy requirements during the phase
change. This is supported by Figure 5.10, which shows the time history of the
average internal energy for both the constant property material and the smart
material. Although the average temperature of the smart material is lower
than that of the constant property material, its’ internal energy is greater
due to the phase change. Once the phase change is completed the smart
material temperature increases at a greater rate due to the higher thermal

conductivity of the austenitic phase. The martensitic material properties
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were used for the constant property test case.

Convective heat transfer coefficients on the surface were calculated using
Eqn.(5.3). The time history of the convective heat transfer coefficient for the
smart material is shown in Figure 5.11. Again the convective heat transfer
coefficient varies greatly with time. The heat transfer coefficient for the
smart material is different from the values obtained for the constant property
material. This is shown in Figure 5.12, which is the heat transfer coefficients
for these test cases averaged over the vortex shedding cycles.

The average temperature of the smart material is again making a slow
asymptotic approach to the eventual steady state value. This is a result of
the average surface heat transfer coefficient oscillating around a near zero
value. The heat transfer across the surface of the solid reduces as the surface

temperature approaches the freestream temperature.

Text resumes on page 106
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5.5.2 Comparison to One Dimensional Analysis

The results of the simulation for the temperature of the smart material may
again be compared to a one dimensional analysis. In addition, it is possible
to calculate the average phase of the smart material over the cross section
using the one dimensional analysis.

The difficulty of selecting a suitable value for the convective heat trans-
fer coefficient is encountered again. For the purpose of comparison three
choices are used: the average, a value towards the low end of the range of h'’s
calculated, and a value towards the high end of the range of h's calculated.

Figure 5.13 shows the average temperature time history for both the 1D
and 2D analyses. Figure 5.14 shows the average smart material phase time
history for the 1D and 2D analyses. The result is the same as the constant
property test case, it is difficult to reproduce the average results of the 2D
analysis using a 1D assumption. This is true for both the average temperature
history and the average phase history.

For this test case the Biot number is closer to the limiting value of 0.1, as
shown in Figure 5.15. However the results from the one dimensional analysis
are still not comparable to the two dimensional averages. The difference is
most likely due to the decaying with time of the average heat transfer coeffi-
cient in the two dimensional analysis. A single heat transfer coefficient cannot
mimic the effects of a large initial heat transfer rate which then decreases

over the course of the simulation.
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5.6 Comparison of Smart Materials with Different Ma-

terial Properties

The selected example problem is an inferior vena cava filter comprised of
a smart material. For this application there is a temperature difference of
37K between the initial temperature of the smart material and the eventual
steady state temperature. This means there is a range of 37K in which the
material may change phase from martensite to austenite. From the literature
the temperature at which smart materials change phase is dependent upon
the composition of the material [31]. Therefore this is a characteristic which
designers have some control over.

Shown in Figure 5.16 is the average phase history for three smart materials
with different phase transition temperatures. The austenite transformation
start temperatures of these test cases are 275K, 288K and 299K. The cor-
responding transformation finish temperatures are 285K, 298K and 309K
respectively. It is apparent from Figure 5.16 that is is beneficial to have
the transformation start temperature as far as possible from the external
temperature which is driving the phase change.

The other material property of the smart material which affects the rate
of phase change is the latent energy of transformation. This is the energy
needed to complete the phase change from martensite to austenite, as well
as the reverse. Shown in Figure 5.17 is the phase time history for two test
cases both having the same transition temperatures, however one case has a
latent energy of transformation which is one third the value of the other case.

The test case having the smaller latent energy of transformation completes
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the phase change to austenite quickest. This is also evident in the average
temperature history for these two cases shown in Figure 5.18. The test case
with the larger latent energy of transformation experiences a reduced rate of
temperature increase due to the increased energy requirements of the phase
change.

The influence of the transition temperatures and latent energy of trans-
formation combine to effect the rate at which a smart material device will
change phase. A combination of the two which leads to incomplete or slow
phase change could result in improper actuation or failure of a device.

Consider Figures 5.19(a) - 5.19(e), a sequence of phase contour plots
through one cycle of vortex shedding. These are for smart material ‘A’,
which has a transformation start temperature of 288K’; the average phase
time history is shown in Figure 5.16. This material is slowly changing phase
and is experiencing a decreasing rate of transformation. As a result there is
a region near the trailing edge of the ellipse which is oscillating through the
middle region of the phase change. Given the suspect fatigue life of some
smart materials [5], the situation illustrated in Figures 5.19(a) - 5.19(e) is
one best avoided.

Alternatively, Figures 5.20(a) - 5.20(e) show the phase contours over a
vortex shedding cycle for a more desirable outcome. This smart material, ‘B’,
has a lower transition start temperature of 275K (further from the driving
temperature). It also has a lower latent energy of transformation of H =
0.0493J/mm?®, compared to H = 0.148J/mm3 for the previous case. The
phase time history for this simulation is shown in Figure 5.17. This smart
material transitions quickly through the phase change. No regions of the
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ellipse are going through large oscillations in phase as a result of the vortex
shedding influence.

Text resumes on page 126
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Figure 5.19(a): Phase Contours in Smart Material ‘A’ for one Period of

Vortex Shedding, t = 0.800
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Figure 5.19(b): Phase Contours in Smart Material ‘A’ for one Period of
Vortex Shedding, t = 0.804
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Figure 5.19(d): Phase Contours in Smart Material ‘A’ for one Period of
Vortex Shedding, t = 0.812
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Figure 5.19(e): Phase Contours in Smart Material ‘A’ for one Period of
Vortex Shedding, t = 0.816
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Figure 5.20(a): Phase Contours in Smart Material ‘B’ for one Period of
Vortex Shedding, t = 0.020
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Figure 5.20(b): Phase Contours in Smart Material ‘B’ for one Period of
Vortex Shedding, t = 0.024
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Figure 5.20(c): Phase Contours in Smart Material ‘B’ for one Period of
Vortex Shedding, t = 0.028
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Figure 5.20(d): Phase Contours in Smart Material ‘B’ for one Period of
Vortex Shedding, t = 0.032
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CHAPTER 6

CONCLUSIONS

A numerical scheme has been developed to model the thermal interaction
of a solid object with variable material properties in low Reynolds number
crossflow. The variable material properties of the solid model the property
changes of a smart material as it undergoes a solid state change in phase. The
change in phase of the smart material occurs as a result of the temperature
change of the material.

The temperature change which results in phase change can be facilitated
by heat gain or loss through the surface of the material. A boundary con-
dition has been developed to model the physics of the thermal boundary
between the solid and a surrounding fluid. This boundary condition does
not require a surface temperature or surface heat flux amount to be pre-
scribed. Instead the heat flux between the fluid and solid is calculated based
on the temperatures near the surface, and this is used as the boundary condi-
tion. This is beneficial since setting either a surface temperature or heat flux
would govern the thermal interaction at the surface. The heat flux across

the interface is an important component of this work as the phase change of
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the material is dependent upon this convective heat gain.

The state of a smart material is expressed as a function of the temperature
and stress, if any is present. An approximate function was fitted to the state
function of the smart material to facilitate the solution of the material phase
of the solid. The supplied state function has no analytical solution and so
a numerical approximation was developed. Use of an approximate function
decreased computation times through direction solution of the phase given a
temperature value. Alternatives to an approximate function would have been
either numerical integration or sorting tabulated values with interpolation.

Five test cases were presented to demonstrate the effects of varying ma-
terial properties, different phase transformation start temperatures, and dif-
ferent latent energies of transformation.

The first conclusion to be drawn is regarding the effects of variable mate-
rial properties during phase change on the temperature history of the smart
material. This was illustrated by a comparison between a constant material
property simulation and a smart material simulation. Differences between
these two indicate that the variable material properties of the smart mate-
rial have a substantial effect on the average temperature history of the solid.
Therefore, when modeling the thermal behavior of a smart material, it is
necessary to incorporate the changing material properties.

The second conclusion to be drawn is that the transition temperatures
of the smart material have a noticeable effect on the rate of phase change
of the material. This was illustrated by comparison of the phase history
of three smart materials with different transition temperatures. The further

the transition start temperature is from the external temperature driving the
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phase change, the faster the phase change will occur.

Decreasing the latent energy of transformation was shown to be an ad-
ditional method of accelerating the rate at which the phase change occurs.
Two test cases with the same transition temperatures were compared, one
test case had one third the latent energy of transformation of the other test
case. The test case with the lower latent energy of transformation changed
phase at a quicker rate.

The possibly detrimental effects of incorrectly chosen transition temper-
atures and latent energy of transformation were demonstrated with a worst
case scenario. A test case was presented in which the smart material had a
slow rate of phase change and required a substantial amount of time for the
phase transition. A region of the solid was shown to undergo large changes in
phase composition as a result of the vortex shedding influence of the fluid. In
comparison, a test case was presented in which the material quickly changes
phase and no large oscillations in phase composition occurred.

Two thermal test cases were compared with results from a one dimen-
sional analysis. It was shown that a one dimensional assumption would result
in poor estimations of the average temperature history in the solid. This was
true for both the smart material and the constant property material. How-
ever it was demonstrated that the one dimensional analysis is not expected to
give accurate results for this application. This is due to the large magnitudes
of the Biot number calculated from the two dimensional analysis. In addi-
tion, the 1D analysis assumes constant heat transfer between the fluid and
solid for all time. The time dependent nature of the heat transfer between

the solid and fluid demonstrated in the 2D model is not incorporated in a
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1D model. A one dimensional analysis applied to the problem studied in this
work would result in an incorrect estimation of the transformation time of
the smart material. In addition, the small scale effects of the vortex shedding
in the two dimensional model are not present in the one dimensional model.

A possibility for future work would be to incorporate the shape change
of the smart material during the phase change. The current work assumes
constant geometry, however a useful change in shape during the phase change
is the main benefit of smart materials. Variable geometry would require
addition of a grid generator which could redevelop the numerical grid as the
shape of the smart material changed with time. This would also affect the
coordinate transformation as (z,y) become functions of time as well as the
computational coordinates (£, ).

An additional consideration for future work is the incorporation of resis-
tive heating of the smart material into the model. Resistive heating is the
technique most commonly used to initiate the phase change of a smart mate-
rial device. This would require addition of a heat source term to the energy
equation in the solid, and possibly a model for variation of the electrical

resistance with phase.
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