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Abstract 

We have developed a suite of dynamic frameworks for clustering, classification, and 

regression problems of knowledge-based networks using collaborative approaches. For 

solving clustering problems, we provide a formulation of the model-integration problem 

using the principles of sharing prototypes and membership-functions and describe 

iterative algorithms that converge to an optimal solution. We show that the measure of 

proximity-distance is a suitable vehicle for quantifying the consensus of collaborative 

data sites. 

For classification and regression problems, we present a new experience-

consistent framework. By extending the performance index, we show that the domain 

knowledge captured by regression and classification models plays a regularization role in 

system identification problems. We demonstrate that the achieved consistency between 

collaborative sites can be quantified through fuzzy sets related to the parameters of the 

model. 

In the development of an approach to fuzzy rule-based model identification 

realized in a collaborative framework of experiential evidence (data) and knowledge 

evidence (past experience), we demonstrate how to reconcile these two essential sources 

of guidance in the form of local regression models. 

Using a radial-basis function neural networks approach, consistency is achieved 

using a connection value framework to reconcile data with past experience by 

considering gradient-based neural networks method. 

The study provides architectural considerations, elaborates on essential 

communication mechanisms, and covers underlying algorithmic aspects of knowledge-



based networks. We explain how the collaboration mechanism gives rise to higher order 

granular constructs such as type-2 fuzzy sets that emerge in a highly legitimate manner in 

distributed fuzzy modeling. We evaluate our methods with type-2 fuzzy sets. 

The theoretical and algorithmic approaches to collaborative frameworks 

investigated in this study can be used as a foundation for further research in the area of 

distributed fuzzy modeling. 



Dedications 

I dedicate this work to my wife Vimla Devi and my children Roheet Rai, Ameet Rai, and 
Shilpa Rai. Thank you for being patient during my four long years of study. 



Acknowledgment 

I thank my supervisor Dr. Witold Pedrycz for offering me a chance to work under his 
guidance, for believing in me, and for encouraging my research efforts. I express my 
gratitude and appreciation for his active supervision throughout this research. 

Support from the Canada Research Chair (CRC) program (W. Pedrycz), the Natural 
Sciences and Engineering Research Council (NSERC), and Mehran University of 
Engineering & Technology Jamshoro is gratefully acknowledged. 

I acknowledge numerous referees whose scientific reviews have enriched my research 
contributions. 

I also thank the examination committee members: Dr. M. Reformat, Dr. P. Musilek, Dr. 
A. Robinson, and Dr. A. Braga (external examiner) for insightful suggestions to improve 
the thesis. 



Table of contents 

Chapter 1 Introduction 1 
1.1 Introduction 1 
1.2 Collaborative clustering frameworks 2 

1.2.1 Experience-consistent framework 3 
1.2.2 Consensus framework 3 

1.3 Motivations 5 
1.4 Research objectives 6 
1.5 Problem formulation 7 

1.5.1 Methodology 8 
1.6 Organization of the thesis 9 
1.7 Conclusions 10 
References 10 

Chapter 2 Literature Review 12 
2.1 Distributed computing approaches 12 
2.2 Distributed clustering models 13 

2.2.1 Consensus clustering 13 
2.2.2 Multiview clustering 13 
2.2.3 Distributed clustering 14 
2.2.4 Clustering ensemble model 14 
2.2.5 Collaborative fuzzy clustering 16 

Horizontal collaboration clustering mode 17 
Vertical clustering algorithm 17 

2.3 Distributed classification models 18 
2.3.1 Classification ensemble models 19 
2.3.2 Regression ensemble models 19 
2.3.3 Distributed fuzzy rule-based model 20 
2.3.4 Distributed neural networks model 20 

2.4 Conclusions 21 
References 21 

Chapter 3 Experimental Datasets 26 
3.1 Methodology 26 
3.2 Synthetic datasets 26 
3.3 Machine learning datasets 27 
3.4 StatLib repository dataset .29 
3.5 Canada Weather network data 29 
3.6 Other sources 30 
3.7 Conclusions 31 
References 31 

Chapter 4 Selected Fundamentals 32 
4.1 Fuzzy sets 32 

4.1.1 Triangular fuzzy sets 33 
4.2 Type-2 fuzzy sets 34 



4.2.1 Type-2 fuzzy set membership estimation 34 
4.3 Data clustering 36 
4.4 Clustering techniques 37 

4.4.1 Hierarchical clustering techniques 38 
4.4.2 Objective function-based clustering techniques 39 

4.5 Proximity measures 41 
4.6 Data classification 42 
4.7 Classification for system identification 42 

4.7.1 Linear regression and classification 44 
4.7.2 Rule-based methods 44 
4.7.3 Radial-basis function networks (RBFN) 46 

4.8 Conclusions 48 
References 48 

Chapter 5 Vertical Fuzzy Collaborative Clustering 51 
5.1 Introduction 51 
5.2 Problem statement 54 
5.3 General flow of collaborative processing 61 
5.4 Induced partition matrices as a mechanism of granular communication 62 
5.5 An augmented objective function 63 
5.6 Evaluation of the quality of collaboration 64 
5.7 Quantification of collaboration using Type-2 fuzzy sets 65 
5.8 Levels of information granularity during collaboration 66 
5.9 Experimental studies 70 
5.10 Conclusions 86 
References 87 

Chapter 6 Horizontal Fuzzy Collaborative Clustering 89 
6.1 Introduction 89 
6.2 Notations and a formulation of the problem 91 

6.2.1 Collaborative clustering as an optimization process 92 
6.2.2 The general flow of collaborative processing 100 

6.3 Evaluation of the quality of collaboration 101 
6.4 Different levels of information granularity 102 
6.5 Experimental studies 104 
6.6 Conclusions 114 
References 115 

Chapter 7 Experience-Consistent Modeling: Regression and Classification Problems 
117 

7.1 Introduction 117 
7.2 Problem statement 118 
7.3 Models through characteristics of granular parameters 121 
7.4 Experimental studies 122 
7.5 Two-Class classification problem 130 
7.6 Conclusions 133 
References 133 

Chapter 8 Experience-Consistent Fuzzy Rule-Based System Modeling 135 
8.1 Introduction 135 



8.2 Notations and a formulation of the problem 135 
8.3 Development of the rule-based model 137 

8.3.1 Construction of information granules of conditions of the rules 138 
8.3.2 Consistency-based optimization of local regression models 138 
8.3.3 Alignment of information granules 145 

8.4 Granular parameters as a characterization of experience-consistent models 145 
8.5 Experimental studies 147 
8.6 Conclusions 159 
References 160 

Chapter 9 Experience-Consistent Modeling Using Radial Basis Function Neural 
Networks 162 

9.1 Introduction 162 
9.2 Notation and a formulation of the problem 163 
9.3 Experimental studies 165 
9.4 Conclusions 173 
References 174 

Chapter 10 Conclusions and Future Directions 175 
10.1 Conclusions 175 
10.2 Future directions 177 

Appendix A 179 
Appendix B 181 
Appendix C 183 
Appendix D 184 



List of Tables 

Table 5.1 The flow of collaborative clustering showing the main optimization phases and 
underlining the mechanism of communication in the form of exchange of prototypes 
obtained at each datasite 63 

Table 5.2 Prototypes at individual datasites before and after collaboration 72 
Table 5.3 Optimal values of p for c = 3 (a) and c = 6 (b); refer also to Figure 5.8 74 
Table 6.1 The flow of collaborative clustering showing the main optimization phases and 

underlining the mechanism of communication in the form of exchange of different 
level of granulation at each datasite 103 

Table 6.2 Summary of collaboration quantified in terms of the performance index W. .107 
Table 6.3 Summary of collaboration quantified in terms of the performance index W. .107 
Table 6.4 Summary of collaboration quantified in terms of the performance index W. .109 
Table 6.5 Summary of collaboration reported in terms of the performance index W and 

optimal values of p 110 
Table 6.6 Summary of collaboration quantified in terms of the performance index W and 

optimal values of P I l l 
Table 6.7 Summary of collaboration quantified in terms of the performance index W. .112 
Table 7.1 A suite of experimental datasets (used in the design of regression models) ...122 
Table 7.2 Values of performance index obtained for optimal values of a; aopt are also 

reported here 123 
Table 7.3 Values of performance indexes for selected valued of P 126 
Table 7.4 Results of experience-based modeling for selected Machine Learning datasets: 

(a) Abalone, (b) Boston Housing, (c) Auto-mpg, (d) California Housing, (e) Fried 
Synthetic and (f) Machine-CPU activity 126 

Table 7.5 Classification data sets overview 130 
Table 8.1 Performance index W (mean and standard deviation) for a =0 and the 

optimal values of a 148 
Table 8.2 A suite of experimental data 151 
Table 9.1 Experimental data used in constructing RBFN models 166 
Table 9.2 Values of the global performance index for RBFNs: P=4, C=3 168 
Table 9.3 Values of the global performance index for RBFN: P=4, C=3 169 
Table 9.4 The values of the global performance index for RFBN: P=l-5; C=2-5 170 
Table 9.5 Values ofthe global performance index for RFBN: P=l-5; C=2-5 171 
Table 9.6 Values ofthe global performance index for RFBN: P=l, 2, 5; C=2-5 172 



List of Figures 

Figure 1.1 Collaborative knowledge-based approaches 1 
Figure 1.2 Collaborative based clustering: arrows show interactions between 

collaborating datasites (D[l], D[2],..., D[P]) 2 
Figure 1.3 Interactive links between D and Di realized indirectly through passing the 

parameters of the models available at D1,D2,..., DP 3 
Figure 1.4 Knowledge-based networks using a consensus based approach; merging 

partition matrices, where p = 4 4 
Figure 2.1 Pyramid presenting different issues handled by distributed computing 

approaches 12 
Figure 2.2 A cluster ensemble model based on consensus function r combines clustering 

X.(q) from different sources without visiting D 15 
Figure 2.3 A flow diagram of collaborative clustering: In the initial phase FCM is applied 

to all collaborating sites; in the collaboration phase datasites communicate on a basis 
of cluster labels (produced in an initial phase) to reveal global structures in datasites. 

18 
Figure 4.1 Triangular membership function: m is the modal value, a is the left bound, and 

b is the right bound of the fuzzy set 33 
Figure 4.2 Triangular fuzzy sets 34 
Figure 4.3 Computation of a membership function of a type-2 fuzzy set; note that in order 

to maximize the performance index, we rotate the linear segment of the membership 
function around the modal value of the fuzzy set. Small dark boxes denote available 
experimental data. The same estimation procedure applies to the right-hand side of 
the fuzzy set 35 

Figure 4.4 Single link algorithm: the distance between X3 and X4 (the closest patterns in 
clusters Ci and C2) is the smallest 38 

Figure 4.5 Complete link algorithm: the distance between xi and X2, the most distant 
patterns, is the maximum in clusters Ci and C2 38 

Figure 4.6 Data clustering resulting in abstract data (or knowledge) 41 
Figure 4.7 Parameter identification method 43 
Figure 4.8 Takagi-Sugeno model with local regression models; the connections of the 

output unit realize processing through the local regression models (Lj) 46 
Figure 4.9 Radial basis function neural network model 47 
Figure 5.1 Vertical collaboration between databases at a local level; in each database 

objects are located in the same data space but have different patterns 52 
Figure 5.2 The essence of collaborative clustering. The goal is to build a global 

characterization of the data by striking a balance between local findings (produced at 
the level of locally available data) and findings coming from other datasites 
(sensors). The arrows show communication links between datasite D[ii] and all other 
datasites 55 

Figure 5.3 A functional view of the processing realized in collaborative clustering 61 
Figure 5.4 Datasites and communication realized through communication of prototypes 

and the consecutive generation of the induced partition matrices U~[ii|jj] 62 
Figure 5.5 Two-dimensional synthetic datasets used in the collaboration process; the 

mean vectors vary across datasites 71 



Figure 5.6 Values of the performance index obtained in successive phases of 
collaboration for the optimal value of p (0.25). Note that the values of W have been 
substantially reduced with respect to the original value (W = 4.41) when no 
collaboration has been realized 72 

Figure 5.7 Fuzzy sets of prototypes for the datasites. The Cartesian products are 
constructed by taking the minimum of the membership functions formed for the two 
variables 73 

Figure 5.8 Values of the collaboration index reported as a function of P obtained after 20 
phases of collaboration (a) c = 3, (b) c = 6 74 

Figure 5.9 Values of the collaboration index for c = 5 (a), c = 10 (b), and c = 15 (c) 
obtained after 20 phases of collaboration and reported for selected values of the 
collaboration intensity P and selected number of datasites P 75 

Figure 5.10 Distribution of 10 datasites (weather stations) in the province of Alberta 76 
Figure 5.11 Radar plots of prototypes before collaboration (left column) and after 

collaboration (right column). Coordinates of the plots of the prototypes are 
numbered as follows: 1-maximum temperature, 2-minimum temperature, 3-average 
temperature, and 4-precipitation 77 

Figure 5.12 Fuzzy sets of granular prototypes constructed for datasite 6. The prototypes 
are reported in the space of average temperature (av. temp) and precipitation (precip). 

78 
Figure 5.13 Radar plots of prototypes before collaboration (left column) and after 

collaboration (right column). Coordinates of the plots of the prototypes are 
numbered as follows: 1-maximum temperature, 2-minimum temperature, 3-average 
temperature, and 4-precipitation 79 

Figure 5.14 Radar plots of prototypes before collaboration (left column) and after 
collaboration (right column), c = 3. Coordinates of the plots of the prototypes are 
numbered as follows: 1-maximum temperature, 2-minimum temperature, 3-average 
temperature, and 4-precipitation 81 

Figure 5.15 Radar plots of prototypes before collaboration (left column) and after 
collaboration (right column), c = 6. Coordinates of the plots of the prototypes are 
numbered as follows: 1-maximum temperature, 2-minimum temperature, 3-average 
temperature, and 4-precipitation 82 

Figure 5.16 Fuzzy sets of granular prototypes constructed for datasite 1. The prototypes 
are reported in the space of average temperature (av. temp) and precipitation (precip). 

83 
Figure 5.17 W regarded as a function of P (a), and dynamics of the collaboration process 

(b) 83 
Figure 5.18 Plots of W treated as a function of p (a), and values of W in successive 

phases of collaboration (b) 84 
Figure 5.19 Performance of collaborative clustering expressed in terms of the values of 

the performance index W: (a) W regarded as a function of p, (b) Values of W 
reported in successive phases of collaboration 84 

Figure 5.20 Performance of collaborative clustering expressed in terms of the values of 
the performance index W: (a) W regarded as a function of p, (b) Values of W 
reported in successive phases of collaboration. Clustering of higher diversity: c[l] = 



3, c[2] = 5, c[3] = 7, c[4] = 10 clustering of lower diversity: c[l] = 3, c[2] =5, c[3]= 
5, c[4] = 2 85 

Figure 5.21 Performance of collaborative clustering expressed in terms of the values of 
the performance index W: (a) W regarded as a function of P, and (b) Values of W 
reported in successive phases of collaboration. Higher diversity in the number of 
clusters: c[l] = 5, c[2] = 10; lower diversity of granularity is characterized by c[l] = 
5,c[2] = 2 85 

Figure 6.1 A general view of collaboration realized in the horizontal mode 90 
Figure 6.2 Mechanisms of collaboration realized through communication of granular 

findings (partition matrices) 92 
Figure 6.3 An overall process of collaborative clustering underlining two phases of 

clustering realized at the level of individual datasites(initial phase) and exchange of 
structural findings in the form of partition matrices(collaboration phase) 100 

Figure 6.4 Two-dimensional synthetic datasets used in the collaboration process; note 
that the mean vectors and covariance matrices vary significantly across datasites. 105 

Figure 6.5 Plot of W treated as a function of p for different values of c (a), and the 
dynamics of W reported over successive phases of collaboration—these results are 
reported for optimal values of p (b) 106 

Figure 6.6 Plot of W treated as a function of p for different values of c (a), and the 
dynamics of W reported over successive phases of collaboration—the results are 
reported for optimal values of p (b) 107 

Figure 6.7 Radar plots of prototypes obtained for datasite-1, datasite-2, and datasite-3. 
Consecutive columns refer to the results before and after collaboration,Wine dataset. 
The results for different levels of granularity c = 2, 3 , . . . , 7, are shown in successive 
rows 108 

Figure 6.8 Radar plots of prototypes obtained for datasite-1, datasite-2, and datasite-3. 
Consecutive columns refer to the results before and after collaboration, Boston 
Housing dataset. Results for different levels of granularity c = 2, 3 , . . . , 7, are shown 
in successive rows 110 

Figure 6.9 Plots of W treated as a function of P for different values of c (a), and the 
dynamics of W reported over successive phases of collaboration—the results 
reported are for optimal values of p (b) I l l 

Figure 6.10 Radar plots of prototypes obtained for datasite-1, datasite-2, and datasite-3. 
Consecutive columns refer to the results before and after collaboration. The results 
for different levels of granularity c = 2, 3, . . . ,7, are shown in successive rows 112 

Figure 6.11 Radar plots of prototypes obtained for datasite-1, datasite-2, and datasite-3. 
Consecutive columns refer to the results before and after collaboration. The results 
for different levels of granularity c = 2, 3, ..., 7 are shown in successive rows 113 

Figure 6.12 Plot of W treated as a function of p for different values of c: c[l] = 4, c[2] = 
3, c[3] = 3, c[4] = 3, c[5] = 5 (a), and the more detailed plot of W for lower range 
values of p (b) 114 

Figure 6.13 Distribution of prototypes in datasites before and after collaboration; p = 0.06. 
114 

Figure 7.1 Minimization of the performance index V - a schematic view of the 
construction of the model (a) and a way of the maximization of consistency of the 
model across all datasets (b) 119 



Figure 7.2 Plot of two-dimensional x-y synthetic data 123 
Figure 7.3 Membership functions of fuzzy sets of parameters of the regression model (a) 

fuzzy set ao and (b) Fuzzy set ai with P = 9. Dotted lines denote membership 
functions obtained before experience consistent development of the model while the 
solid lines deal with the model's parameters that has been developed when invoking 
the consistency mechanism 124 

Figure 7.4 . Membership functions of fuzzy sets of parameters of the regression model (a) 
fuzzy set a0 and (b) Fuzzy set ai with P = 6. Dotted lines denote membership 
functions obtained before experience consistent development of the model while the 
solid lines deal with the model's parameters that here been developed when 
invoking the consistency mechanism 124 

Figure 7.5 Two-dimensional synthetic datasets: Datasite, Datasite-1, ..., Datasite-5 125 
Figure 7.6 Fuzzy numbers of the regression model (ao, ai, ..., as) for the Boston housing 

with P=6. Dotted lines denote membership functions obtained before experience 
consistent development of the model, while the solid lines deal with the model's 
parameters that have been developed when invoking the consistency mechanism. 129 

Figure 7.7 Fuzzy numbers of the regression model (ao, ai, ..., as) for the Auto-mpg with 
P=6. Dotted lines denote membership functions obtained before experience 
consistent development of the model, while the solid lines deal with the model's 
parameters that have been developed when invoking the consistency mechanism. 130 

Figure 7.8 Two class normally distributed classification data 131 
Figure 7.9 Classification error versus the number of splits of data (P):The dotted line -

experience consistency- was not involved (a=0), while the solid line- optimal 
experience consistency- was established (ocopt) 131 

Figure 7.10 Classification results obtained for several Machine Learning dataset: (a) 
Breast Cancer, (b) Ionosphere, (c) Contraception, (d) Ringnorm, (e) Twonorm, 
and (f) Liver Disorder. The dotted line - experience consistency- was not involved 
(oc=0). The solid line- optimal experience consistency- was established (aopt) 132 

Figure 8.1 Communication between D and Dj realized by transferring parameters of the 
rule-based model available at individual data sites Dj 141 

Figure 8.2 A quantification of the global behaviour of the consistency - based fuzzy 
model 143 

Figure 8.3 Datasets used in the experiment 148 
Figure 8.4 Datasite (D) affected by two levels of noise: a = 0.2 (a) and CT=1.5 (b) 148 
Figure 8.5 Plot of the fuzzy model for D: for a =0 (dotted lines) and aopt (solid lines) for 

two levels of noise, a = 0.2 (a) and a=1.5 (b) 149 
Figure 8.6 Triangular fuzzy numbers of the parameters of the rule-based model for a = 

0.2 (a) and o=l .5 (b). Dotted lines represent a =0, while the solid lines are obtained 
for aopt 150 

Figure 8.7 The bounds of the output triangular fuzzy set (also shown is its modal value) 
for the model before (a) and after the completion of experience-consistent 
optimization 151 

Figure 8.8 Radar-Plot for California Housing dataset: the parameters of the first rule 
(local model of its conclusion part) 158 



Figure 8.9 Optimal values of alpha versus P indexed by c (Columnl), Optimal values of 
alpha versus c indexed by P (b) for datasets : Abalone(a), California Housing (b), 
Auto-mpg(c), and Boston Housing(d) 159 

Figure 9.1 Minimization of the performance indexes V and G—a schematic view 164 
Figure 9.2 Synthetic dataset D and D[l] through D[4] used in Experiment 1; No 

noise(a=0); all datasets consist of 200 patterns 168 
Figure 9.3 Synthetic datasets on sites Di through D4 used in Experiment 2, where in each 

datasite, N=200 169 
Figure 9.4 Plots of performance index G vs. aforP=l (a)andP=3 (b) 170 
Figure 9.5 Plots of performance index G vs. aforP=l (a)andP=3 (b) 172 
Figure 9.6 Plots of performance index Gvs. a forP=l (a) andP=2 (b) 173 



Chapter 1 

Introduction 

1.1 Introduction 

Over the last ten years the progress in data acquisition technology has resulted in the 
growth of huge distributed databases. Extracting useful knowledge from such databases is 
often challenging due to technical or nontechnical constraints related to dimensionality, 
privacy, computation, or communication. Such constraints may prevent one from directly 
integrating the distributed data into a single dataset at a central site. This has led to the 
emergence of distributed data computing techniques which are used to extract high 
quality information from distributed database sources with limited interactions among 
associated data sites. In particular, informational-privacy concerns have resulted in an 
increased focus on privacy-preserving distributed techniques. We study scenarios in 
which the data is either horizontally or vertically partitioned. Vertically partitioned sites 
are heterogeneous in that they contain different attributes of a common set of objects. 
Horizontally partitioned sites are homogeneous in that objects are distributed among 
different sites, but have the same set of features. 
Distributed computing is a problem based on the following three factors: 

• Distribution of data (horizontal or vertical partitioned), 
• Type of data analysis (supervised or unsupervised learning), and 
• Restrictions placed on information sharing. 

Acknowledging such diverse objectives of data analysis and the need for highly 
collaborative pursuits, we develop frameworks for knowledge-based networks. We 
consider such networks to be composed of highly autonomous nodes which operate at a 
certain level of abstraction. In general, a node is inherently engaged in processing 
numeric data coming from the environment, and considers the knowledge provided by 
other network nodes (communicated in the form of information granules). The three 
collaborative knowledge-based approaches explored in our studies are shown in Figure 
1.1. 

r 

Collaborative 
clustering 

Collaborative Approaches 

| 
' 

Experience- FA 
consistent Eg 

S V/////A-VA>\WSA>>WSS/SSA-VSS. 
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Figure 1.1 Collaborative knowledge-based approaches. 
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We propose new collaborative frameworks based on the concepts of knowledge-base 
networks. We also introduce methods to quantify and evaluate our collaborative 
frameworks. In a collaborative clustering framework we extend the study of Pedrycz's 
collaborative model. We also develop a new collaborative model (experience-consistent) 
for labelled data. 

1.2 Collaborative clustering frameworks 

In a collaborative clustering framework, data access is available at a certain level of 
granularity rather than in numeric values. Various communication links can be efficiently 
established among datasets if the levels of granularity are similar[3]. Fuzzy sets are one 
among several key vehicles of granular computing. 

Pedrycz[2] proposed a model of collaborative clustering over a collection of databases in 
which computing agents carry out clustering in a distributed environment. 

Collaborative clustering is a new concept in the area of data analysis in which several 
subsets of a pattern can be processed together with the objective of finding global or 
similar structures. Collaborative clustering is realized over a collection of databases when 
results of individual (local) clustering processes collaborate in a distributed environment 
[4]. A network of databases viewed in an environment of a collaborative clustering, as in 
Figure 1.2. 

Figure 1.2 Collaborative based clustering: arrows show interactions between 
collaborating datasites (D[l], D[2],..., D[P]). 

We formulate the model-integration problem using the collaborative principles of sharing 
prototypes and membership-function and describe the iterative algorithms that converge 
to an optimal solution. Next, we identify the main difficulties and show that the partitions 
proximity-distance index could be a suitable vehicle for quantifying the consensus of the 
collaboration datasites. We also elaborate on the role of the underlying optimization 
criterion and its components that both guide the development of the partition matrices and 
lead to a collaboration. 
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1.2.1 Experience-consistent framework 

The experience-consistent model interacts in the centralized mode. In this approach we 
are concerned with system modeling which involves data and reconciles the developed 
model with some previously acquired domain knowledge being captured in the format of 
some already constructed models which were based on auxiliary datasets. To emphasize 
the nature of modeling being guided by the reconciliation mechanisms, we refer to this 
mode of identification as experience-consistent modeling. A network of databases viewed 
in an experience-consistent model as in Figure 1.3. 

D, (N,) D2 (N2) DP (NP) 

Figure 1.3 Interactive links between D and Di realized indirectly through passing the 
parameters of the models available at Dl, D2,..., DP. 

For such models the assessment of consistency is realized by making use of the dataset D. 
First, the model is constructed on the basis of D. Second, the consistency is expressed on 
a basis of differences between the constructed model and those models from D; 
(i=l,2,... ,p) where the differences are assessed with the use of data D. Further details of 
the model is provided in chapters 7-9. 

1.2.2 Consensus framework 

Consensus based clustering is concerned with a reconciliation of data structures 
discovered in different feature spaces realized at the level of information granules[l]. The 
Figure 1.4 shows a consensus based clustering scenario in which a collection of fuzzy 
partition matrices U[l], U[2], ..., U[P] (each with dimension U[ii] = ci; xN,ii = 1,2,...,p 
) reconciles their knowledge to a fuzzy partition matrix U of dimensionality c x N, where 
c e {c1,c2,c3,...,c /.This requirement reflects the fundamental notion of consensus. 

3 



U[4] 

Figure 1.4 Knowledge-based networks using a consensus based approach; merging 
partition matrices, where p = 4. 

While looking at several alternatives for formulating the problem and optimal solutions 
of distributed data clustering, we observe two fundamental difficulties. 

• A lack of correspondence between rows of partition matrices; we are interested in 
the correspondence between all partition matrices. There is no guarantee that the 
rows of U[ii] correspond in a straightforward way with the rows of U[jj], that is, 
that the first row of U[ii] corresponds to the first row of U[jj]. What makes the 
problem even more difficult is that we are interested in the correspondence that 
holds for all partition matrices. 

• Different dimensionalities of the partition matrices are involved in the formation 
of the consensus outcome to find global structure in distributed clustering. 

These two challenges must be addressed as an integral part of an overall solution. A 
justifiable way of handling them would be to abstract from the partition matrices and 
move to the next level of abstraction by mapping over partition matrices so that the 
resulting constructs do not exhibit dependence over the order of clusters and the 
dimensionality does not require the number of clusters in any explicit manner. In the 
literature such correspondence between partition matrices is tackled through logic 
transformation as discussed in [3] and also by fuzzy proximity described in [1]. A fuzzy 
proximity approach is a viable alternative. 

In the existing literature, mapping of the consensus function is performed in two phases. 
In the first phase base-partitions mapping defines a new representation of the base-
partitions outputs (as the voting structure); another way is through an associated cluster 
label matching method. In [8] the cluster relabelling problem is formulated as a weighted 
bipartite matching problem and is solved using the Hungarian method[6]. In phase 2 of 
consensus clustering, all base-partitions generated in phase 1 are combined. If the cluster 
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label mismatch problem is resolved and the number of clusters in the base clustering is 
equal to the number of clusters in the combined clustering, the majority voting or 
maximum likelihood classification[8] can be readily applied. Otherwise, co-association 
based consensus functions can be used[7][5][13][15]. 

1.3 Motivations 

As the Internet is becoming a part of our daily life, we have unlimited information and 
there is a need to develop new robust tools to organize it. Dynamic distributed 
environments are in great demand for applications like e-medicine, web mining, and e-
business. 

The standard approach today in such distributed computing environments is centralized. 
Data which might have been collected in multiple locations are gathered to a single 
location. On the basis of this data, a model is computed. This process is easy to 
understand and constructing such an algorithm is straightforward, but there are a number 
of limitations to the centralized approach: 

• All of the data is visible at the central location, so there is no way for some or all 
of the data-collection locations to limit access to their local data; that is, privacy is 
not preserved. It may not be possible to gather data to a single location because of 
legal restrictions arising from privacy concerns, so some forms of analysis cannot 
be done in a centralized fashion. 

• There are substantial performance requirements at the central site: the centralized 
model must look at all of the data at least once, and often in an iterative fashion; 
there is little exploitable locality in the access patterns. The time performance is 
limited by the memory hierarchy, so the need to fetch records repeatedly from the 
bottom of the memory hierarchy is a substantial performance issue. 

• When data locations are geographically separate, the movement of data to a 
central location requires bandwidth and takes time. 

As the dataset at the central location grows and the model becomes more complex, it is 
important to consider replacing centralized computation approaches by distributed 
techniques. For example, business organizations collect information about their 
customers via physical stores, websites, and call centers which are typically located in 
different geographical locations. Thus we are motivated to pursue this study to assist the 
business organization: 

Knowledge reuse: 
In grouping customers for direct marketing campaigns, several legacy customer 
segmentations might already exist based on demographics, credit ratings, geographical 
regions, or purchasing history. 
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Privacy considerations: 
Real-world applications often involve databases distributed due to organizational or 
operational constraints. For example, a health department may want to use data mining to 
identify trends and patterns of a particular disease in different age groups or in ethnic 
groups. Insurance companies have considerable data that would be useful but are 
unwilling to release this due to privacy concerns. An alternative possibility is to have 
insurance companies provide abstracts of their data that cannot be traced to individuals, 
but can be utilized to identify the trends and patterns of interest to the health department. 

1.4 Research objectives 

We aim to build a suite of collaborative frameworks for a distributed computing 
environment using the concepts of knowledge-based networks. Such collaborative 
frameworks will take into account privacy restrictions and will be applicable to scenarios 
where the different sites have diverse and overlapping subsets of features. 

The intended collaborative approach is especially attractive if there is enough processing 
power and sophistication to build local models at the locations where data are collected. 
The local models can then be moved to a central location and merged to produce a 
coherent global model. It is expected that such an approach will compensate for the 
weaknesses of centralized computational models: 

• As only models leave the local sites, details of the private raw data remain hidden, 
at least in principle. Hence, such a distributed approach handles privacy issues 
effectively. 

• As processing takes place at each local site, the computational load is spread over 
many processors and data accessing is efficient. 

• Higher communication bandwidth is not required as there is no longer a need to 
move raw data from the remote sites; only models or pieces of models need to be 
moved, and these elements are of much smaller size than the data itself. 

We study the following collaborative frameworks in order to produce a global model 
from collaborating sites: 

• Design and development of multiphase collaborative clustering frameworks based 
on the horizontal and vertical clustering concepts introduced by Pedrycz[10]. 

• Introduction of a novel system modeling that utilizes a collaborative framework of 
the data-driven experience using methods like regression, classification, fuzzy 
rule-based modeling and radial basis neural networks. 
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1.5 Problem formulation 

In this section, we introduce the concept of collaborative pursuits and elaborate on 
algorithmic developments. We are given a finite collection of datasets D[l], D[2], ..., 
D[P], where each pattern is represented as a vector in n-dimensional space Rn . We also 
refer to sites to underline the distributed character of the datasets under consideration; 
hence, D[i] is located at D;. The objective is to find structure in the data using 
collaborative activities. When data cannot be freely communicated between individual 
sites, a careful analysis is performed of possible communication capabilities that could be 
established. 

We revise and update the findings obtained locally at specific datasites. Data cannot 
always be shared between sites. Reasons for this include (a) privacy and security of data. 
Each data site is treated as a separate computing entity when we are restricted from 
sharing data outside the site, and (b) technical constraints and their feasibility. Quite often 
transfer of huge masses of highly dimensional data is not allowed. For instance, in 
wireless sensor networks which are highly distributed architectures, computing is 
restricted to individual nodes (sensors), limiting potential communication overhead. 

To deal with these constraints while still allowing communication, we exchange abstract 
findings found at the individual nodes. The datasites exchange local findings and then use 
them in further development of the structures. It is necessary to implement the granularity 
scheme to establish interaction while preserving privacy and security constraints. The 
level of abstraction itself is inherently associated with the notion of granularity of 
information. In a nutshell, information granules are a manifestation and an effective 
realization of the concept of abstraction. Given these characteristics of the problem and 
its anticipated solution, we are talking about collaboration between datasites and 
collaborative clustering. 

There are two fundamental modes of interaction: 

Centralized mode: In this mode, we consider one dataset D; for which we are going to 
reconcile the findings (its local model) with the modeling results available at all 
remaining datasets Di, D2 , . . . , D;, D;+i, Dp. 

Distributed mode: Here we allow all datasites to interact and the resulting local models 
are shared. Each data site affects all other data sites when optimizing. 

It is possible to combine these two modes; that is, each data site acts as a central site but 
does not interact with other datasites when optimizing. 

In the collaborative clustering framework we concentrate on a distributive mode of 
interaction whereas in experience-consistent modeling we focus on a centralized model. 
The optimization details are explained in later chapters. 
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1.5.1 Methodology 

In the clustering problem, we introduce a new framework of collaborative fuzzy 
clustering—a conceptual and algorithmic machinery for the collective discovery of a 
common structure (relationships) within a finite family of data residing at individual data 
sites. There are two fundamental features of the proposed optimization environment. First, 
given existing constraints which prevent individual sites from exchanging detailed 
numeric data, any communication has to be realized at the level of information granules. 
The specificity of these granules impacts the effectiveness of ensuing collaborative 
activities. Second, the fuzzy clustering realized at the level of the individual datasite has 
to constructively consider the findings communicated by other sites and act upon them 
while running the optimization confined to the particular datasite. 

Following these two general guidelines, we develop a comprehensive optimization 
scheme and discuss its two-phase character in which the communication phase of the 
granular findings intertwines with the local optimization being realized at the level of the 
individual site and exploits the evidence collected from other sites. The proposed 
augmented form of the objective function is essential in the navigation of the overall 
optimization that has to be completed on a basis of the data and available information 
granules. The intensity of collaboration is optimized by choosing a suitable trade-off 
between the two components of the objective function. The objective function-based 
clustering used here concerns the well-known fuzzy c-means (FCM) algorithm. Moreover, 
in new developed collaborative framework where collaborative phases are iterated 
multiple times enabling the framework to be more suitable for applications of distributed 
spatial datasets. 

When direct access to numeric data is unavailable at individual sites, a viable alternative 
to establish meaningful collaborative links is to form communication at the level of 
information granules viz. communicate and exchange the findings at a higher level of 
abstraction, that is, prototypes and partition matrices[2][3][12][14][16]. Given the fact 
that all datasets are defined in the same feature space, exchanging prototypes becomes a 
meaningful alternative. As the equivalence of prototype-partition representation has been 
identified, we could translate the prototypes into the corresponding partition matrices. 
Once the prototypes obtained at the remote site are communicated to the active site, they 
are translated into the corresponding partition matrix. As stressed before, the 
transformation is obvious given the prototype-partition mapping. The advantage of 
having the induced partition matrix is that it is defined for the same dataset—that of the 
active central site. By forming the induced partition matrices for all sites, collaboration 
can take place. 

Collaboration relies on the knowledge of the findings (structure) revealed at the other 
sites. We can envision the following way of sharing these findings: 

a. Initial phase: At each site the FCM is run independently, forming a structure at the 
local level. Hence we arrive at the partition matrices and the prototypes. 
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b. Collaborative phases: Here we iteratively communicate the findings formed at 
each site to the remaining ones. They impact the way in which clustering at a 
specific site is developed. Notably, data at this site is combined with the induced 
structures produced at the other sites involved in the collaboration. 

In the experience-consistent approach, we partition datasets into different portions, each 
having similar attributes; this should result in regions of similar target value. Therefore, 
using the relevant features, a clustering algorithm is used to partition each dataset 
independently into "similar" regions. A clustering algorithm is applied in an unsupervised 
manner (ignoring the target attribute value). As a result a number of partitions (clusters) 
on each data site are obtained. Assuming similar data distributions of the observed 
datasets, the number of clusters on each dataset is usually the same. If this is not the case, 
by choosing appropriate clustering parameters, an identical number of clusters on each 
dataset can be easily enforced. 

The next step is to match the clusters among the distributed sites, i.e., by matching 
clusters from one dataset that are the most similar to clusters in another dataset. This is 
followed by building local regression models on identified clusters at sites with known 
target attribute values. Finally, learned models are transferred to the remaining sites 
where they are integrated and applied to estimate unknown target values at the 
appropriate clusters. 

We also evaluate collaboration approaches using a consensus clustering method. We 
compute proximity matrices of partition matrices of each base datasite and then find 
closeness between the sites by aggregating the proximity matrices' differences among all 
the collaborating sites. 

1.6 Organization of the thesis 

Chapter 1 introduces the collaborative schemes studied during the course of our research. 
Chapter 2 describes research related to distributed computing for clustering and 
classification problems similar to the ones we are dealing with. Chapter 3 introduces the 
diversity of datasets used in this thesis to illustrate and demonstrate the various 
algorithms investigated. Chapter 4 briefly reviews the fundamentals of fuzzy sets, 
proximity, and type-2 fuzzy sets. We describe classification, hierarchical clustering, and 
partition-based clustering methods. This is followed by a discussion of fuzzy rule-based 
method and the techniques of radial basis function networks. Chapter 5 describes fuzzy 
vertical collaborative clustering and Chapter 6 covers fuzzy horizontal collaborative 
clustering. Chapter 7 introduces regression and two-class experience-consistent models. 
Chapter 8 presents the experience-consistent fuzzy rule-based system. Chapter 9 
introduces the experience-consistent radial-basis neural networks model. 

For all approaches described in chapters 5-9, we first describe the general flow of 
the model, then follow with an explanation of the mechanism of communication between 
datasites. Then we evaluate the quality of collaboration and quantify the collaboration 
using type-2 fuzzy sets. Finally, we simulate the model using a series of datasets derived 
from synthetic and machine learning. 
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Chapter 10 outlines the conclusions of this research and suggests ways to expand 
it. Ideas for future research are proposed. 

Details of methods used in Chapter 7 and chapter 9 are presented in the 
Appendices. 

1.7 Conclusions 

The objectives of this research are presented in this chapter. Frameworks of collaborative 
approaches based on knowledge-based networks are described, the basic formulation of 
the problem is explained, and different interaction modes are presented. Finally, the 
organization of the thesis is described. 
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Chapter 2 

Literature Review 
In the last few years the problems of distributed computing have been studied by many 
researchers. Proposed algorithms based on problems of clustering and classification 
methods and related to the research reported in this thesis are reviewed in this chapter. 

2.1 Distributed computing approaches 

Modern computational techniques in information science are often adapted to construct 
distributed computing frameworks. Recently, researchers proposed hybrid data 
mining[l][21][42][43][46][46] in the design of effective distributed computing models. 
Computing models integrate a number of base learning models to improve the 
performance of individual base learning models. 

Several approaches were found in the literature: ensemble[47][48][49][51][54][63], 
distributed clustering[l][21][22], consensus[13][22][55], collaborative[45][51], and 
multiview[3][8][25] and classification ensemble[5][32][39]. Such computing models are 
distributed, centralized, or consensus (static) in nature. Figure 2.1 shows different levels 
of complexity handled by distributed computing approaches. 

Figure 2.1 Pyramid presenting different issues handled by distributed computing 
approaches. 

Techniques related to clustering and classification in distributed computing modeling are 
reviewed in the following sections. 
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2.2 Distributed clustering models 
Cluster coordination is closely related to consensus [40] models of clustering. It is widely 
recognized that combining multiple-classification or multiple-regression models typically 
provides superior results compared to using a single and well-tuned model; however there 
are no well known approaches to combining multiple clustering. 

The aim of combining partitions is to improve the quality and robustness of results. There 
is no single clustering algorithm which performs best for all datasets. Choosing a single 
clustering algorithm for the problem at hand requires expertise and insight, and the choice 
might be crucial to success of the study. The difficulty is that no ground truth is available 
to match the results. Instead of running the risk of choosing an unsuitable clustering 
algorithm, consensus clustering (discussed below) can be used. 

2.2.1 Consensus clustering 

One use of consensus clustering is to exploit multiple existing groupings of the data. 
Several analogous approaches exist in supervised learning scenarios where class labels 
are known, but we have not seen these applied in totally unsupervised settings. Johnson 
& Kargupta[22] proposed a feasible approach to combining distributed agglomerative 
clusterings in which dendrograms are collected generated from each local site, and then 
pairwise similarities for all objects are created. The combined clustering is then derived 
from the similarities. 

Topchy et al.[55] proposed a consensus function based on informative-theoretic 
principles. This study shows that the consensus function is related to the classical intra-
class variance criterion. The authors describe approaches for combining weak clusterings 
discuss and analyze how accurate consensus can be obtained from an unreliable 
component. 

A different consensus function was developed by Dimitriadou et. al.[13] based on a 
voting/merging method that combines clusterings pairwise and iteratively; the cluster 
mapping problem handled in this study is not unique. Generally, fuzzy-membership 
decisions are accumulated during merging. The final clustering is obtained by assigning 
each object to a derived cluster with the highest membership value. 

2.2.2 Multiview clustering 

Multiaspect or multiview clustering algorithms train two independent hypotheses which 
bootstrap by providing each other with labels for the unlabeled data. The training 
algorithms tend to maximize agreement between the two independent hypotheses. 
Yarowsky[62] proposes multiview learning in a semisupervised setting for word sense 
disambiguation. One classifier is based on the local context of a word (view one) and a 
second classifier senses other occurrences of that word in the same document (view two); 
classifiers iteratively bootstrap each other. 
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Blum and Mitchell[3] suggest a concept of co-training in which two hypotheses are 
trained on distinct views. Their co-training algorithm augments the training set of two 
classifiers with the negative and positive highest confidence examples from the unlabeled 
data in iteration for each view. The two classifiers work on different views and a new 
training example is exclusively based on the decision of unlabeled data. 

Collins and Singer[8] propose an improvement on the co-training algorithm which 
explicitly optimizes an objective function that measures the degree of agreement between 
the rules in distinct views. 

Other related clustering algorithms that work in a multiview setting include a multiview 
version of DBSCAN[33] and a reinforcement clustering[58]. 

2.2.3 Distributed clustering 

Johnson & Kargupta[22] propose a feasible approach in combining distributed 
agglomerative clusterings. First, each local site generates a dendrogram. After the 
dendrograms are collected, pairwise similarities for all objects are created from them. The 
combined clustering is then derived from the similarities. Agglomerative clusterings are 
hierarchical and is a static model; patterns assigned to a cluster are difficult to merge. 

There have been some attempts at nonapproximated distributed clustering. In literature 
Kantabutra and Couch apply a parallel version of k-means and their algorithm 
rebroadcasts the datasets to all sites on each iteration which leads to heavy network 
loading. Also, their analytical and empirical analysis estimates 50% utilization of 
processors. Such an algorithm becomes impractical in a distributed environment. 

2.2.4 Clustering ensemble model 

The objective of ensemble[55] learning is to integrate a number of base-learning models 
in an ensemble so that performance of the ensemble is better than any of the individual-
base learning models. If the base learning models are created using the same learning 
algorithms, the ensemble-learning schema is homogeneous; otherwise, it is heterogeneous. 

The idea behind an ensemble system is to exploit each constituent model's unique 
features so as to capture different patterns that exist in the dataset. Both theoretical and 
practical works indicate ensemble can be an effective and efficient way to improve 
accuracies. Bates and Granger[2] showed that a linear combination of different 
techniques gives a smaller error variance than any of the individual techniques working in 
standalone mode. Since then, many researchers have worked on ensembles. 

Several ensemble clustering algorithms do not use data summarization but attempt to 
directly restructure the clusters in order to adapt to the dynamic changes in the dataset(s). 
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Cluster ensemble methods differ in the following respects: the way the base clusterings 
are obtained and the procedure by which they are combined [55]. 

Strehl and Ghosh[53] proposed three different ensemble clustering models based on a 
consensus method. All models use various hypergraph operations to search for solutions. 
The cluster-based similarity partitioning algorithm (CSPA)[53] induces a graph from a 
coassociation matrix and clusters using the MEITS algorithm[53]. The hypergraph 
partitioning algorithm (HGPA)[53] represents each cluster with a hyperedge in a graph 
where the nodes correspond to a given set of patterns. The hyperbased metaclustering 
algorithm (MCLA)[54] uses hypercollapsing operations to determine soft cluster-
membership values for each object. The optimization details of the model are: 

The cluster ensemble (CE) is based on a consensus clustering function where in each 
component the learner tries to solve the same task heuristically. This is a multilearner 
system as illustrated in Figure 2.2. 

A clusterer consists of a particular clustering algorithm with a specific view of the data. A 
clustering is the output of a clusterer and consists of group labels for some or all objects. 
Consensus clustering provides a tool for the consolidation of results from a portfolio of 
individual clustering results. In the following section optimization of a Strehl & Ghosh 
cluster ensemble model is described and the reader can find more details in [53]. 

To better explain some efficacies of the method, we adhere to the following notations. 
Let a dataset D = {XI,X2,X3,...,XN} in Rn be divided into c clusters. This can be 
represented as a set of c sets of objects {Q | i=l, ..., c} or as a label vector X e R". A 
clusterer <D is a function that generates a label vector. A set of r labelling A.(1 r) is 

combined into a single labelling X using a consensus function r: {X,(q) | q e (l,...,r)} -» X, 
where q is an index. 

w 

O o 0 

Figure 2.2 A cluster ensemble model based on consensus function r combines 
clustering X,(q) from different sources without visiting D. 
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The main idea of CE methodology is to proceed to a combination of several clustering 
results obtained in a distributed environment from different clusters simultaneously in a 
parallel fashion; such a combination needs to take into account the label of each 
clustering. 

Objective function for cluster ensembles 

Given r groupings with the q-th grouping X^ having C(q) clusters, a consensus function r 
is defined as a function Rnxr -> Rn mapping a set of clustering to an integrated clustering: 
{X® | q e (l,...,r)} ->X . The optimal combined clustering should share the most 
information with the original clusterings. In information theory, mutual information is a 
symmetric measure to quantify the statistical information shared between two 
distributions. Suppose there are two labelings, Xw having k(a) groups and X™ having k(b) 

groups. Let n w be the number of objects in cluster Ch according to A,(a), and ni the number 
of objects in cluster Ci according to X(h\ Let n^ denote the number of objects that are in 
cluster h according to ^(a) as well as in group 1 according to A,(b), then a normalized mutual 
information criterion <b(NMI) is computed as shown below[53]: 

nfV 
nwn, ' 

0) 
Strehl and Ghosh proposed that the optimal combined clustering Ar"opt) be defined as the 
one that has maximal average mutual information with all individual labelings X(q) given 
that the number of consensus clusters desired is k. Thus, the objective function is the 
average normalized mutual information (ANMI) and is given as: 

Jl*-*>=arg^£9^(U< q >), 
A, q=] 

(2) 

where X goes through all possible k-partitions. In equation (1) the sum represents the 
ANMI. For finite populations, the trivial solution is to exhaustively search through all 
possible clusterings with k labels for the one with maximum ANMI which is 
computationally prohibitive. 

2.2.5 Collaborative fuzzy clustering 

Pedrycz[45] introduced a "Fuzzy collaborative clustering" (FCC) based on the FCM 
algorithm. The author discusses the applicability of such an approach to the privacy issue 
of data confidentiality in a collaborative framework. 

^ ( N M O ^ W ^ C b ) ^ 
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In this proposed approach, all data patterns reside on the sites processed together and the 
objective is to find structures that are common to all datasites. Clustering is carried out by 
first applying FCM on all individual sites and then by exchanging information from local 
clustering results based on partition matrices. This objective function is proposed in [45]. 
The model is able to communicate high-level information (i.e., prototypes and partition 
matrices), which makes the model more suitable for the distributed environment. There 
are two fundamental collaborative clustering modes: 

Horizontal collaboration clustering mode 

In horizontal clustering (feature based), collaboration happens at a more abstract level as 
the partition matrices are being provided to other collaborators. In such clustering we 
search the data structure with the same objects characterized by different attributes. 

Vertical clustering algorithm 

Vertical clustering is pattern based and collaboration happens at the prototype level. In 
such clustering we are faced with different objects being characterized by the same 
attributes[45]. The minimization criteria for collaboration between datasites based on the 
communicating partition matrix or on prototypes, is detailed in [45]. 

Computational flow of collaborative clustering 
Collaborative clustering generally consists of two-step scenarios. In the first referential 
scenario we search for an independent structure in all collaborating sites. In this step the 
FCM algorithm is used for all the datasets to establish some preliminary structure in the 
data that will help us proceed with the next collaboration process, where global structures 
are discovered. 

In the horizontal collaborative mode, the mechanism of collaboration is invoked by 
partition matrices U[l], U[2], ..., U[P]. In the vertical mode we are concerned with 
communication realized by passing prototypes as shown in Figure 2.3. 
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Figure 2.3 A flow diagram of collaborative clustering: In the initial phase FCM is 
applied to all collaborating sites; in the collaboration phase datasites 
communicate on a basis of cluster labels (produced in an initial phase) to 
reveal global structures in datasites. 

2.3 Distributed classification models 

Discriminant analysis was first proposed by Fisher in 1936 as a classification technique. 
To date, it has been reported as the most commonly utilized data-mining technique in 
handling classification problems[40][7][16][26][28][29][39][41][57]. Discriminant 
analysis has been utilized in a wide range of applications in areas such as medicine, 
business, education, marketing research, finance, engineering[14][38]. 

Regression is a widely used statistical modeling technique in which the probability of a 
dichotomous outcome is related to a set of potential independent variables[9]. The 
regression model does not necessarily require the assumptions of discriminant analysis; 
however, Harrell and Lee[27] found that logistic regression is as efficient and accurate as 
discriminant analysis even when the assumptions of discriminant analysis are satisfied. 
Regression models have been widely discussed in medical research, social research, 
market segmentation, and customer behaviour[17]. 

Several techniques combine multiple classifiers: sum, product, minimum, maximum, 
median, and majority [15][6][12]. The advantage of these techniques is that they are 
simple and do not require training [24]. This classifier fusion, however, requires careful 
selection of base classifiers [60] to achieve acceptable misclassification rates. 
Experience-consistent modeling requires further training for incorporating the decision of 
different classifiers [44] [61] [23]. 
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This thesis presents a suite of "experience-consistent" identification models for different 
classification problems assuming the same base classifiers for all collaborating sites. A 
review of related studies from the literature is as follows. 

2.3.1 Classification ensemble models 

The ensemble method is a natural next step to simple model averaging for class 
predictions. An ensemble uses the predictions of multiple base classifiers typically 
through majority vote or average prediction, to produce a final ensemble-based decision 
[4][20], 

Dudin and Tax[14] present ensemble architectures in three categories: (1) ensembles that 
combine classifiers of the same type trained on different types of features (parallel 
combining); (2) ensembles that combine classifiers of different types that train on the 
same set of features (stacked combination); (3) ensembles that combine classifiers of the 
same type trained on the same type of set (subset of entire set) of features (weak 
combining). 

Recently, three ensemble models of voting approaches from the third category have 
received attention: boosting[19][52], bagging[5], and random subspaces[32]. 

Boosting changes adaptively the distribution of the training set based on the performance 
of previously created classifiers. The final classifier takes a weighted majority vote of the 
predictions. The bagging algorithm uses bootstrap samples to build the base classifier. 
The final classification produced by the ensemble using base classifiers is obtained using 
equal weight voting. The random subspaces approach combines multiple classification 
trees constructed in randomly selected subspaces. The final classification is obtained by 
an equal weighting of the base trees. Breiman[6] developed a random forest by 
combining classification trees such that each tree is generated by bagging and a random 
subspace of the predictors is used at each node. 

The work in this thesis investigates the experience-consistent model using an approach 
similar to the ensemble architecture in the third category. 

2.3.2 Regression ensemble models 

Ensemble predictions can be used to provide probabilistic distributions of a future 
scenario (probabilistic predictions). They can also be used to provide best estimates of the 
future state of the atmosphere (deterministic predictions). The deterministic prediction[3 5] 
is of interest in the study of linear regression. 
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In meteorology, Kirshanamurti et al.[30] used multiple linear regressions to improve 
weather forecasts by specifying the weights for members of an ensemble of models. 

Pagowski et al.[44] used ensemble forecasts[ll][22] of surface ozone over the eastern 
USA and southern Canada to show that overall statistics of ensemble forecasts can be 
improved compared to averaging through linear regressions. 

2.3.3 Distributed fuzzy rule-based model 

Ravi and Zimmermann's[51] fuzzy rule-based classifier generates fuzzy 'if-then' rules 
from a numerical dataset in the training phase. In the test phase, these fuzzy rules make 
predictions in the test dataset as to which class they belong. In the case of the very high 
dimensional dataset, the fuzzy rule based classifier[51] cannot predict directly because of 
a large number of predictor variables. Hence they employed TreeNet[38] as a 
preprocessing module to perform feature selection. Further, after the fuzzy classifier 
generated fuzzy 'if-then' rules, a combinatorial global optimization algorithm was 
invoked to solve a multiobjective optimization problem with two objective functions, 
maximization of the classification rate and minimization of the size of the rules base. The 
result of this optimization stage is a compact set of fuzzy rules with a very high 
classification rate; but this severely affects the interpretability of the rule base. Lack of 
clear interpretation is a disadvantage of a distributed representation of fuzzy rules. 

In this study, fuzzy rules corresponding to local sites are first computed, then rule 
correspondence between central and remote sites is established. Finally, rules are 
combined using a collaborative scheme at the central site to increase their interpretability. 

2.3.4 Distributed neural networks model 

Hansen and Salaman[25] provide some of the first research results to demonstrate that the 
generalization error of a neural network[10][17][31][56][59][64] can be significantly 
reduced by using an ensemble of similar networks, all trained with the same data[25]. 
They referred to this strategy as a crossvalidation(CV)[25] ensemble. Hansen and 
Salaman explain that the CV has a performance advantage because the multitude of local 
minima encountered in the training of individual neural networks results in errors 
occurring in different regions of input space. The collective decision of the ensemble is 
therefore less likely to be in error than a decision made by an individual network[39]. 

Fish, Barnes, and Aiken[18] proposed a new methodology for industrial market 
segmentation by integrated neural networks. 
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Lee, Chiu, Lu, and Chen[37] explored the performance of credit scoring by integrating 
backpropagation neural networks with traditional discriminate analysis. 

2.4 Conclusions 

Historical fundamentals of work relevant to our research is presented. Research in this 
area is mainly related to consensus distributed computing—which is static, with no 
training required at the aggregating stage. Consensus models are standalone, knowledge-
reusable models. Collaborating models are distributed computing models in which 
standalone models integrate knowledge reusable models in an active manner. We extend 
the concepts presented in [45] to solve different collaborative clustering issues and to 
introduce a new experience-consistent collaborative model for classification problems. 
We discuss newly developed approaches in Chapters 5-9. 
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Chapter 3 
Experimental Datasets 

This chapter discusses details of the different datasets analyzed in this study. Several 
synthetic 2 dimensional datasets are used to illustrate the working of the algorithms and 
to assess their performance. In addition to synthetic datasets, a variety of datasets are also 
selected from UCI[1], StatLib[6], and Weather Canada repositories[5]. 

We evaluate a fuzzy collaborative clustering method with real-world datasets such as 
Boston, Abalone, Wine, and Weather Canada. We assess algorithms using linear 
regression methods through Abalone, Auto-mpg, Machine-CPU, Breast Cancer, Auto Car 
Price, California Housing, Friedman Synthetic and Boston Housing datasets. The linear 
classifier model is demonstrated through a suite of datasets such as Breast Cancer, 
Ionosphere, Contraception, Ringnorm, Twonorm, and Liver disorder. We demonstrate a 
fuzzy rule based model using datasets such as Abalone, Boston, Auto-mpg and California 
Housing. Finally, Radial-basis function networks model is evaluated through Auto-mpg 
and Boston Housing datasets. 

3.1 Methodology 

To use a statistical approach in designing and analyzing an experiment, it is necessary to 
have a clear idea in advance of exactly how the data are to be collected and at least a 
qualitative understanding of how these data are to be analyzed. The following are some 
considerations we exercise in conducting experiments with our collaborative approaches. 

In experimenting with vertical collaborating clustering, the entire dataset is divided into 
parts of equal size. All parts contain the same feature space. 

In horizontal collaborating clustering, the entire dataset is divided into different parts with 
features containing the same instances. 

Using a rule-based experience-consistent approach we build the model at the central site 
with 5% of instances; the balance of collaborating sites have the remaining 95% instances 
in equal sized parts. All parts contain the same feature space. 

3.2 Synthetic datasets 

The synthetic datasets generated in this study have a normal distribution with a mean 
vector and covariance matrix N(|j.,Z). Synthetic datasets with different topologies are 
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generated to demonstrate the concept of two-class classification horizontal and vertical 
clustering. The details of such synthetic datasets are described in later chapters. 

In experiments with synthetic datasets, the primary interest lies in simulating real-world 
scenarios. The challenge is to reconstruct with available methods the known structure 
from the dataset. This allows us to test the performance of the algorithms by extensive 
experimentation using different parameters, and then gathering general observations of 
their functioning. These actions will allow us to tune the algorithms to our needs. 

3.3 Machine learning datasets 

The UCI repository of machine learning databases [4] provided several datasets for this 
study and we have selected those which are widely used in the literature to benchmark 
algorithms. They are used by the machine learning community for empirical analysis of 
algorithms. The UCI repository has a large collection of datasets covering a range of 
topics from the chemical analysis of wine to biological analyses, therefore, a variety of 
classifications (linear regressions, predictions) and clustering tasks can be performed on 
them. 

Boston Housing 

Boston Housing is the dataset derived from information collected by the U.S Census 
Services concerning housing in the Boston area. The aim is to predict the median value of 
a house. The dataset contains 506 records of real estate prices and 13 related 
characteristics of the houses as described in [4]. Quinlan in [7] used this dataset to 
combine instance-based and model-based learning methods. 

Abalone 

The original owner of the Abalone database is the Marine Research Laboratories in 
Tasmania, Australia. An abalone is a marine crustacean. The age in years of an abalone 
can be obtained by adding 1.5 to the number of rings. The number of rings varies 
between 1 and 29. The dataset contains 4,177 records of marine crustaceans, 8 input 
attributes, and 1 output variable. The task is to predict the age of the abalone from 
physical measurements. This dataset was used by Waugh[9] for a cascade-correlation 
problem and Clark and Schreter[3] used it in a 3-category classification problem. 

Auto-mpg 

The Auto-mpg dataset contains a set of mileage records in miles per gallon (mpg) for 
different cars. The aim is to predict the fuel consumption of different car models in miles 
per gallon in terms of 3 multivalued discrete and 5 continuous attributes. The dataset 
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contains 398 records and a total of 9 attributes. Quinlan in [7] used this dataset to 
combine instance-based and model-based learning methods. 

Wine 

The Wine dataset contains the results of a chemical analysis of wines grown in the same 
region in Italy but derived from three different cultivars. The analysis determined the 
quantities of 13 constituents (attributes) found in each of three types of wine. In total 
there are 178 records; 59 records are of class 1, 71 belong to class 2, and 48 to class 3. 
Aeberhard et al.[l] used this dataset for a classification problem. 

Breast Cancer 

The Breast Cancer dataset contains 198 records and 34 (ID, outcome, 32 real-valued 
input features) attributes as described in [1]. Class distributions are 151 nonrecur (for 
nonrecurring disease) and 47 recur (where disease recurs). We have removed four cases 
with unknown values of the last attribute. In the problem of a classification we remove 
the dependent attribute as it is the class attribute. Wolberg[10][l 1] used the Breast Cancer 
dataset to analyze images in bioinformatics. 

Ionosphere 

The Ionosphere dataset uses data from radar sensing. It has 351 instances and all 34 
attributes are continuous. There were 17 pulse numbers for the Goose Bay system. Each 
instance is described by 2 attributes per pulse number. Each pulse number independently 
represents the instance. This radar data was collected by a system in Goose Bay, 
Labrador. "Good" radar returns are those showing evidence of some type of structure in 
the ionosphere. "Bad" returns are those that do not; their signals pass through the 
ionosphere. The 35th attribute is either "good" or "bad" and this is a binary classification 
task. Sigillito et al.[8] used this dataset for classification using a neural network model. 

Contraception 

The Contraception dataset is a subset of the National Indonesia Contraceptive Prevalence 
Survey (1987). The instances are married women who were either not pregnant or did not 
know if they were pregnant at the time of interview. The task is to predict the current 
contraceptive method of choice (no use, long-term methods, short-term methods) by a 
woman based on her socio-economic and demographic characteristics. This dataset has 
1,473 instances and 10 attributes. 

28 



Liver disorder 

BUPA Liver Disorders contains 7 attributes of 345 instances of excessive alcohol use by 
male individuals. The first 5 variables are blood tests which are thought to be sensitive to 
liver disorders that might arise from excessive alcohol consumption. The description of 
attributes is in [4]. 

Machine-CPU 

The Machine-CPU dataset is concerned with relative CPU performance. There are a total 
of 209 cases in the dataset and 7 attributes. More information can be obtained in the UCI 
Machine Learning repository[4]. 

Auto Car Price 

The original data from the UCI repository[4] for Auto Car Price has 205 instances 
described by 26 attributes: 15 continuous, 1 integer, 10 nominal. The original data has 
some missing attribute values. We have changed the original data by removing all 
unknown cases leaving 159 instances. Also, all nominal attributes (10) were removed. 

3.4 StatLib repository dataset 

California House 

We have considered a California House high dimensional dataset from the Statlib 
repository[6]. We collected information on the variables using all the block groups in 
California from the 1990 Census. In this sample a block group on average includes 
1425.5 individuals living in a geographically compact area. This dataset contains 20,640 
observations with 9 attributes. The dependent variable is in (median house value). 

3.5 Canada Weather network data 

This weather network site provides direct access to the Canadian National Climate 
Archive, operated and maintained by Environment Canada. It contains official climate 
and weather observations. In this study we collect the Alberta and British Columbia 
weather data available at this weather network site[5]. 
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Alberta 

We selected 10 data sites geographically distributed in the province of Alberta: (1) 
Beaver Mines, (2) Calgary INT A, (3) Kananaskis, (4) Bindloss East, (5) Big stone, (6) 
Alliance South, (7) Cold Lake A, (8) Athabasca-2, (9) Brule Black, and (10) Ballater. The 
collected data comprises 801 weather records collected over the winter seasons 
(December, January, and February) of 1991-2000. Each site is described by four features: 
maximum temperature, minimum temperature, average temperature, and precipitation. 

British Columbia 

Following the same scheme as discussed for the Alberta weather data, we consider 10 
data sites: (1) Chemainus, (2) Black Creek, (3) Albeni Robertson Creek, (4) Boat Bluff, 
(5) Gibson's Gower Point, (6) Langara, (7) Bella Coola A, (8) Babine Lake Pinkut Creek, 
(9) Hixon, and (10) Penticton A. Each datasite is described by four features: maximum 
temperature, minimum temperature, average temperature, and precipitation. 

3.6 Other sources 

Friedman Synthetic 

The Friedman Synthetic dataset has 40,768 cases and 10 attributes (all continuous). The 
cases are generated using the following method: the values of 10 attributes, XI, ..., XI0, 
are generated independently; each is uniformly distributed over [0,1]. The value of the 
target variable Y is then obtained. The detailed description of the dataset is in [2]. 

Ringnorm 

Leo Breiman's ringnorm example[2] is a classification of two normal distributions, one 
within the other; origin: artificial. It is a 20 dimensional, 2 class classification example. 
Each class is drawn from a multivariate normal distribution. Class 1 has a mean of zero 
and a covariance of 4 times the identity. Class 2 has a mean of (a,a,..a) and a unit 
covariance a = 2/sqrt(20). This dataset contains 7,400 observations with 21 attributes. 

Twonorm 

The Twonorm dataset contains 7,400 observations. It is a 20 dimensional, 2 class 
classification example. Each class is drawn from a multivariate normal distribution with 
unit variance. Class 1 has a mean of (a,a,..a) while class 2 has a mean of (-a,-a,..-a), where 
a = 2/sqrt(20). 
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3.7 Conclusions 

This chapter describes the datasets explored in this study. To demonstrate collaborative 
approaches, the entire dataset is splitted into several parts (P), each part becoming a 
separate datasite in a collaborative model. 
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Chapter 4 

Selected Fundamentals 
This chapter introduces the fundamental concepts and models used at each collaborating 
site. Fuzzy sets, triangular fuzzy sets, type-2 fuzzy sets, a fuzzy rule based model, and 
radial-basis function neural networks are introduced. Data analysis issues with respect to 
clustering, classifications, and prediction models are discussed. 

4.1 Fuzzy sets 

In many situations the Boolean membership of an object x to set A is too restrictive. For 
example, we can express the set of middle-aged persons as a collection of persons who 
fall in the range of 21-45 years of age. A classical set classifies a person of 44.99 years 
but not a person of 45.1 years as a middle-aged person. This sharp transition between 
inclusion and exclusion in a set is intuitively inconsistent. 

Zadeh[28] proposed a new type of set theory, the fuzzy set, that allows the representation 
of concepts that are not well defined. Fuzzy sets allow an element to belong to a set with 
a degree of membership. The membership degree of an object to a fuzzy set takes values 
between 0 and 1, where 1 means entirely in the set, 0 means fully excluded from the set, 
and other values mean partial membership in the set. The degree of membership of an 
object in a fuzzy set is defined as a function where the universe of discourse is the 
domain, and the interval [0, 1 ] is the range. The higher the membership grade the stronger 
the association of the given elements to the concept. This simple concept is more 
appropriate than the classical concept of a set for capturing semantic, linguistic, and real-
world vagueness. 

Generally, a fuzzy set A defined in the domain of X is characterised by membership. We 
can specify a fuzzy set as follows: 

A:X->[0,1]. 

(1) 
Thus, a fuzzy set A in X may be represented as a set of ordered pairs of a generic element 
x G X and its grade of membership can be represented as A = {(A(x)/x) | x e X}. 

A fuzzy set A in X is directly specified by the function A(x). This represents the value of 
the "grade of membership" of each x in A. In practice, the form of membership functions 
should reflect the problem at hand (semantics) for which we are constructing fuzzy sets. 
The functions should also reflect our perception of the concept to be represented and used 
in problem solving, the level of detail we intend to capture, and the context in which the 
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fuzzy sets are going to be used[19]. An important class of membership grade is the 
triangular as explained in the next section. References[15][19][3] provide more 
information on fuzzy sets and membership functions. 

4.1.1 Triangular fuzzy sets 

A triangular MF is specified by three parameters {a,m,b} by two piecewise linear 
segments as follows: 

[0,x<a. 

triangle(x;a,mb) = 

x - a 
m-a 
b - x 

- , a < x < m 

b - m 
0,b<x. 

, m< x < b. 

By using min and max, we have an alternative expression for the preceding equation: 
(2) 

triangle(x; a, m, b) = max(min( , ),0). 
m - a b - m 

(3) 
The meaning of parameters {a,m,b} is straightforward: m denotes a modal (typical) value 
of the fuzzy set while a and b denote lower and upper bounds, respectively. Triangular 
fuzzy sets (membership functions) are the simplest possible models of grades of 
membership as they are fully defined by only three parameters. Figure 4.1 illustrates a 
triangular membership function defined by triangle (x;0.3,0.5,0.7). 
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Figure 4.1 Triangular membership function; m is the modal value, a is the left bound, 
and b is the right bound of the fuzzy set. 

A collection of fuzzy sets, called fuzzy space, describes fuzzy classes that an object can 
belong to. In this way, fuzzy sets allow an object to belong to different classes at the same 
time with different grades of membership, as shown in Figure 4.2. 
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Figure 4.2 Triangular fuzzy sets. 

4.2 Type-2 fuzzy sets 

Type-2 fuzzy sets were introduced by Zadeh[29] as an extension of the concept of an 
ordinary, type-1 fuzzy set. Membership functions (MF) for type-2 fuzzy sets are 
characterized by more parameters than MFs for type-1 fuzzy sets. In this way type-2 
fuzzy sets[19][10] generalize the concept of fuzzy sets and are defined in the form: 

A:X-»F([0,1]) 

(4) 
This transformation means that for each element x in the domain X we have a fuzzy set of 
membership grades defined in the unit interval. In such a construct, A is treated as a 
function of two variables, that is, A(x, u), x e X, u e [0,1]. As the grades of membership 
are fuzzy sets themselves, one can view type-2 fuzzy sets as fuzzy sets with linguistic 
membership grades. For example, type-2 fuzzy set A = {young, middle-aged, senior} 
where all linguistic variables young, middle-aged, and senior are also fuzzy sets in the 
unit interval with membership functions. From this point of view type-2 fuzzy sets are 
"fuzzy fuzzy" sets and are more expressive. 

4.2.1 Type-2 fuzzy set membership estimation 

Type-2 fuzzy sets have grades of membership that are themselves fuzzy. At each value of 
a primary variable (e.g., pressure, temperature), membership is a function (not just a point 
value)—the secondary MF—whose domain—the primary membership—is in the interval 
[0, 1]. Hence, the MF of a type-2 fuzzy set is three-dimensional, and it is the third 
dimension that provides new design degrees of freedom for handling uncertainties. Thus, 
in uncertain environments type-2 fuzzy sets have the potential to outperform type-1 fuzzy 
sets. 
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The membership function in a type-2 fuzzy set is computed[3] as follows: 
In collaborative clustering we estimate the membership function on a basis of collection 
of membership grades available in different partition matrices. Consider what is known 
about cluster membership of pattern x in D[ii] given the results of collaborative clustering. 
The membership in the i-th cluster is computed using prototypes of D[ii] and is denoted 
as u = u;. The prototypes optimized for the jj-th data site, jj = 1, 2, ..., ii-1, ii+1, ..., P 
give rise to the membership of x to the same i-th cluster. Denote them by zi, Z2, ..., zp.i. 
We obtain a collection of membership grades which are now captured in the form of a 
type-2 fuzzy set. The corresponding membership function is determined by solving a 
certain optimization problem[3]. As discussed below this realizes a principle of justifiable 
granularity. 

Figure 4.3 Computation of a membership function of a type-2 fuzzy set; note that in 
order to maximize the performance index, we rotate the linear segment of 
the membership function around the modal value of the fuzzy set. Small 
dark boxes denote available experimental data. The same estimation 
procedure applies to the right-hand side of the fuzzy set. 

Two requirements guide the design of the fuzzy set, namely: 

(a) The experimental evidence of the fuzzy set is maximized to "cover" as many 
numeric data as possible, viz. the coverage has to be made as high as possible. 
In the graphically in the optimization of this requirement, we adjust the 
parameters of the membership function that makes it shrink or expand so that 

more data are embraced . The sum of the membership grades A(z;) is ^ ] A(z;), 
i 

where A is the linear membership function to be optimized with respect to its 

slope and z; is located to the left of the modal value u. ^A(Zj) has to be 
i 

maximized. 

(b) Simultaneously, we would like to make the fuzzy set as specific as possible so 
that it represents some well defined semantics. This requirement is met by 
making the support of A as small as possible, that is, mina|u -a|. 
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To accommodate the two conflicting requirements, we have to combine a and b into a 
single scalar index which in turn becomes maximized. Two alternatives are: 

l A ( Z l ) 
m a X

a * u T T> 
I u - a | 

(5) 
or 

X( l -A( Z l ) ) (u -a ) . 

We exclude a trivial solution of a = u in which case the type-2 fuzzy set collapses to a 
type-1 fuzzy set (with numeric values of membership functions). 

4.3 Data clustering 

Data clustering is used in pattern recognition, exploratory data analysis, computer vision, 
machine learning, and many other related fields[25][24]. Data clustering is the process of 
identifying natural grouping or clusters within multidimensional data based on some 
similarity measures, for instance, a cluster is usually identified by a cluster center (or 
prototype). Data clustering is a difficult problem in unsupervised pattern recognition as 
the clusters in data may have different shapes and sizes[l]. 

A pattern (or feature vector) x is a single object or data item used by the clustering 
algorithm. A feature (or attribute) is an individual component of a pattern. A cluster is a 
set of similar patterns; patterns from different clusters are not similar. Clustering 
algorithms assign each pattern to one and only one cluster. Fuzzy clustering algorithms 
assign each pattern to each cluster with some degree of membership. A distance measure 
is a metric used to evaluate the similarity of patterns as discussed below: 

Distance functions 

Clustering is the process of identifying natural groupings or clusters within 
multidimensional data based on dissimilarity or similarity measures. Hence, dissimilarity 
measures are fundamental components in most clustering algorithms[10][3]. 

The lower the distance between two patterns, the higher the level of their similarity. 
Initially, the family of Minkowski distances[30] is discussed: 

n P 

d(x,y) = p | ^ | x i - y 1 | , p > 0 , 

(7) 
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where x,yeRn; depending upon different values of p, we have different forms of the 
distance function. 

When p = 2, we compute the Euclidean distance as follows: 

n '• 

d(x,y) = J ^ | x ; - y i | . 

(8) 
n (x . - y . ) 2 

More specifically, for any two patterns x and y in X, ||x-y||2= ^ — - — ^ — > where o2 is 
j=i ° j 

the sample variance of the j-th coordinate (variable) of the feature space. 

A measure of the size is the variance, so, the variance of the distance to the prototype of 
all the elements in a cluster (a 2 ) is calculated. 

When p = 1 the measure is referred to as the Hamming distance (city block): 
n 

d(x,y) = X | x i - y i | 
i = l 

When p = oo the measure is referred to as the Tschebychev distance: 

d(x,y) = maxi = 1,2, ,n|x; - y ; | 

Another commonly used distance measure is the Mahalanobis, defined as: 

d^,y)=(x-y)T271(x-y), 

(9) 

where Ĵ ""1 is the covariance matrix of patterns. The Mahalanobis distance gives 

different features different weights based on their variances and pair-wise linear 
correlations. Thus, this metric implicitly controls the geometry of potential clusters[25]. 

4.4 Clustering techniques 

The two main categories of clustering algorithms are based on two popular techniques 
known as hierarchical and objective function-based clustering[17]. In general we think of 
clustering[20][21][22] as a vehicle of forming information granules. Fuzzy set theory 
offers an adequate framework that requires interpretation of the input and output of the 
clustering model. Fuzzy clustering has been widely studied and applied in a variety of 
substantive areas[17]. The following is an overview of hierarchical and objective 
function-based techniques. 
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4.4.1 Hierarchical clustering techniques 

The clustering techniques in this category generate a cluster tree (or graphic 
representation) by using a heuristic splitting or a merging method[8]. A cluster tree shows 
the sequence of clustering with each clustering being a partition of the dataset[21]. The 
construction of the graph is done in two ways: bottom-up and top-down. In the bottom-up 
mode known as an agglomerative approach, we treat each pattern as a single-element 
cluster and then successively merge the closet cluster. The process is repeated until we 
get a single cluster[17]. In the top-down construction the algorithms that use splitting to 
generate the cluster tree are called divisive. Divisive hierarchical algorithms start with all 
patterns assigned to a single cluster. Then splitting is applied to a cluster at each stage 
until each cluster consists of one pattern[17]. 

Several agglomerative hierarchical algorithms are proposed in the literature; these differ 
in the way the two most similar clusters are calculated. An important issue is how to 
measure the distance between two clusters [17]. The two most popular agglomerative 
hierarchical algorithms are the single link[l][25] and the complete link[2] algorithms. 
Single link algorithms merge the clusters with the smallest distance between their closest 
patterns. Complete link algorithms merge the clusters whose distance between their most 
distant patterns is the maximum[17]. In general, complete link algorithms generate 
compact clusters while single link algorithms generate elongated clusters as illustrated in 
Figure 4.5 and Figure 4.4 respectively. The results of hierarchical clustering are usually 
represented in the form of dendrograms. Hierarchical clustering techniques have the 
following advantages: 

• The number of clusters need not to be specified a priori, and 

• They are independent of the initial conditions. 

• \ 
! * \ 

• * 
\ .y 
> X, 

Figure 4.4 Single link algorithm: the distance between x3 and X4 (the closest patterns 
in clusters Ci and C2) is the smallest 

Figure 4.5 Complete link algorithm: the distance between xi and X2, the most distant 
patterns, is the maximum in clusters Ci and C2. 
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The group average link method considers the average among distances computed 
between all pairs of patterns, one from each cluster. This method is more computationally 
intensive, but reflects the general distance computed between individual pairs of patterns. 

Hierarchical clustering (HC) techniques suffer from the following drawbacks: 

• HC techniques are computationally expensive in terms of time complexity and 
space complexity[l]. Hence, they are not suitable for very large datasets. 

• HC techniques may fail to separate overlapping clusters due to a lack of 
information about the global shapes or sizes of the clusters. 

• HC techniques are static, i.e., patterns assigned to a cluster are difficult to merge. 

4.4.2 Objective function-based clustering techniques 

The second general category of clustering deals with building partitions (i.e., clusters) of 
data on the basis of objective function. 

Objective function-based clustering techniques are more frequently used than hierarchical 
techniques in pattern recognition[9]. Hence in our study, we concentrate on objective 
function-based clustering techniques. 

Fuzzy c-means (FCM) is one of the best known clustering techniques; it is based on the 
minimization of an objective function[15][19]. 

Fuzzy clustering algorithms are objective function-based, i.e., division into clusters is 
determined by optimizing an objective function. Each cluster is represented by a cluster 
prototype. This prototype consists of a cluster centre (whose name indicates its purpose) 
and may contain additional information about the sizes and the shapes of the clusters. The 
cluster centre is computed by the clustering algorithm and may or may not appear in the 
dataset. The shape and size parameters determine the extension of the cluster in different 
directions. The degrees of membership to which a given data point belongs to different 
clusters are computed from the distances of the data point to the cluster centres with 
respect to the size and shape of the cluster as stated by the additional prototype 
information. The closer a data point lies to the centre of a cluster (with respect to size and 
shape), the higher is its degree of membership to this cluster. Hence the problem of 
dividing a dataset D= {xt, x2, x3,..., xN} lying in Rn into c clusters can be stated as the task 
to minimize the distances of the data points to the cluster centers. This technique tries to 
minimize the objective function. The disadvantages of hierarchical algorithms are 
advantages of objective function-based clustering algorithms and vice versa. The design 
challenge lies in formulating an objective function capable of reflecting the nature of the 
problem and whose minimization reveals a meaningful structure in the data space [17]. 
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N c 

Q = XXu£d£,m>l, 
k=l i=l 

wherek=l,2,...,N, and i=l,2,...,c 
(10) 

N c 

N 

d , = £ ( x , - v , ) 2 

j=l °J 

where o^ is variance of the j-th feature Xkj: 

4. 
d-k 

2/(m-l) ' 

(11) 

(12) 

(13) 

Clustering algorithms use a Boolean membership function (i.e., Uik e {0, 1}) while fuzzy 
clustering algorithms use a degree of membership function (i.e., uik e [0,1]). 

Different stopping criteria can be used in an iterative clustering algorithm, for example: 

• When the change in prototype values is smaller than G (very small user-specified 
value), 

• When the changes in membership values are smaller than G (very small user-specified 
value), 

• When a maximum number of iterations have been exceeded. 

The use of fuzzy sets in the fuzzy model is normally created by categorized results (i.e., 
knowledge) from fuzzy clustering methods. We use and integrate such knowledge in 
constructing collaborative models. 
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Figure 4.6 Data clustering resulting in abstract data (or knowledge). 

4.5 Proximity measures 

For any partition matrix U = [uaj, i = 1, 2,..., c, k = 1, 2, ..., N, an induced proximity 
matrix[13], that is Prox = [prox(k, 1)], k, 1 = 1, 2,..., N, comes with entries which satisfy 
the following properties: 

(a) symmetry prox(kj,k2) =prox(k2, kx) 
(b) reflexitivity prox( k j , k x) = 1.0 

The proximity values are based on the corresponding membership degrees occurring in 
the partition matrix: 

c 

proxCkj.kj) = ^min(u lk i ,u ik2). 
i=l 

04) 
Note that the proximity matrix is more abstract than the original partition matrix it is 
based upon. It "abstracts" the clusters themselves and this is what we need in the 
construct of collaborative clustering. Given the proximity matrix, we cannot "retrieve" 
the original entries of the partition matrix from which it was generated. 
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4.6 Data classification 

Classification is the process of using the feature vector to assign the pattern to a category. 
A very basic classifier for assigning a feature vector to 1 to 2 classes is the linear 
classifier[16] in which the output is computed as follows: 

n 

y = Z a j x j +ao> a0,al,...ai e R,j = l,2,...,n, 
J=I 

(15) 
where a denotes a set of weights, a = [a0 ai a2 ... a„]T; a0 is usually referred to as bias and 
x represents the set of input features, x = [1 xi X2 ... xn]T, and the target y is a linear 
combination of the input features. We determine optimal weights through the 
pseudoinverse method found in many statistics text books. 

4.7 Classification for system identification 
The problem of determining a mathematical model for an unknown system or a target 
system by observing its input-output data pairs is generally referred to as system 
identification. The purposes of system identification are multiple: 

• To predict a system's behaviour, as in time series predictions and weather 
forecasting. 

• To explain interactions and relationships between inputs and outputs of a system. 
For example, a mathematical model can be used to examine whether demand 
varies proportionally to supply in an economic system. 

• To design a controller (ship, aircraft control) based on the model of a system. 
Also, a model is required to do a computer simulation of a system under control. 

System identification generally involves two top-down steps[14]. 

Step-1: Structure identification: 

We need to apply a priori knowledge about the target system to determine a class of 
models within which the search for the most suitable model is to be conducted. Usually 
this class of models is denoted by a parameterized function y = f(x, a), where y is the 
model's output, x is the input vector, and a is the parameter vector. Determination of the 
function f is problem dependent; the function is based on the designer's experience and 
intuition and the laws of nature governing the target system. 
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Step-2: Parameter identification: 

If the structure of the model is known, all we need to do is apply optimization techniques 
to determine the parameter vector a = a such that the resulting model y = f (x; a) can 
describe the system appropriately. 

If we do not have a priori knowledge about the target system, then structure identification 
is a difficult problem and we have to select the structure by trial and error. Fortunately, 
we know a great deal about the structures of most engineering systems and industrial 
processes. Consequently, the system identification problem is usually reduced to that of 
parameter identification. The problem of parameter identification is thus of great 
importance. 

Target System 
To be identified 

(yk) 

Mathematical 
Model 
f(x,a) 

V 
' ^ 

. + 

j 

-*yt 

Target System 
To be identified 

yk-yk 

Figure 4.7 Parameter identification method. 

Figure 4.7 is a block diagram of parameter identification, where an input Xk is applied to 
both system and model, and the difference between the target system's output and the 
model's output is used in an appropriate manner to update a parameter vector a to reduce 
this difference. Note that the dataset composed of N desired input-output pairs (x^ yk), k 
= 1, 2, ...., N is called the training dataset. 

Least squares methods are powerful and well-developed mathematical tools useful in a 
variety of areas including statistics, adaptive control, and signal processing. Nowadays 
they are essential and indispensable tools for constructing linear mathematical 
models[14]. The same fundamental concepts can be extended to nonlinear models as well. 
Thus it can be said that linear least-squares methods provide the most basic and important 
mathematical foundation for solving modeling problems. 

Linear models are linear in their parameters; but a linear model may be nonlinear in its 
inputs. By static (memory less) systems, we mean that the output of the target system 
depends on its current inputs only; it does not depend on the history of inputs. The output 
of a dynamic system can be treated as a static mapping of its current inputs and several 
previous states, assuming they are available. 
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4.7.1 Linear regression and classification 

Prediction methods[14][16] fall into two categories of statistical problems: classification 
and regression. For classification the predicted output is a discrete number, a class, and 
performance is typically measured in terms of error rates. For regression, the predicted 
output is a continuous variable, and performance is typically measured in terms of 
distance, for example, absolute distance or mean square error. The main difference is that 
regression values have a natural ordering, whereas class values are unordered in the 
classification method. This affects the measurement of error. For classification, predicting 
the wrong class is an error no matter which class is predicted. For regression, the error in 
prediction varies depending on the distance from the correct value. 

In linear regression for horizontally partitioned data, where participating data sites have 
databases that contain the same numerical attributes for the same sets of data patterns. We 
call them participating data sites even though in some settings they might be corporations 
or other data holders. In vertically partitioned[17] data, the database holds different 
attributes for the same set of data subjects—for example, one has employment 
information, another has health data, and a third has information about education. 
Regression methods are well suited for prediction problems. 

In the statistics literature, regression papers predominate, whereas in the machine-
learning literature, classification plays a dominant role. For classification, it is not 
unusual to apply a regression method, such as neural nets trained by minimizing squared 
error distance for zero or one outputs. In that restricted sense, classification problems 
might be considered a subset of regression methods. 

4.7.2 Rule-based methods 

A static or dynamic system that makes use of fuzzy sets or fuzzy logic and the 
corresponding mathematical framework is called a fuzzy system[25][7]. There are a 
number of ways fuzzy sets can be involved in a system. Fuzzy systems defined by means 
of "if-then" rules are known as rule-based fuzzy systems. Fuzzy systems can serve 
different purposes, such as modeling, data analysis, prediction, or control. A fuzzy rule-
based system is called a fuzzy model for simplicity, regardless of its eventual purpose. 
Fuzzy models can be seen as logical models which use "if-then" rules and logical 
operators to establish qualitative relationships among the variables in the model. Fuzzy 
sets serve as a smooth interface between qualitative variables involved in the rules and 
numerical domains of the inputs and outputs of the model[19][20][21]. 

Fuzzy rules can be defined in many different ways[4]. In general, a fuzzy conditional rule 
is made up of a premise and a conclusion. It can be written in the following form: 

IF premise THEN conclusion, 
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where premise is a complex fuzzy expression, i.e., a logic expression that uses fuzzy 
logic operators and atomic fuzzy expressions, and the conclusion is an atomic expression. 
The truth values of a fuzzy rule are given by the truth value of its premise part. Therefore, 
for a given object x, and fuzzy rule R: 

Truth value(R, x) = Truth value(premiseR, x). 
(16) 

For rule-based models the topology of the model is based upon fuzzy sets; in input and 
output variables we require well-developed interfaces[19]. The generic models in this 
category are formulated as follows: 

Rule-based fuzzy models exploit the calculus of rule-based structures and, in general, can 
be structured as a series of "IF-THEN" conditional statements of the form: 

IF xi is Aii and X2 is A;2 and ... and xn is Ain THEN y is B;, 
(17) 

where i = 1, 2, ..., c, xi, X2, ..., xn are input variables, and y is an output variable. An, 
A;2, ..., Ajn and B are fuzzy sets (linguistic labels) of corresponding systems variables 
being defined. Any logic processing carried out by the rule-based inference mechanism 
requires that any input be transformed to its numeric format. 

Rule-based models endowed with local regression models forming their conclusions are 
commonly referred to as Takagi-Sugeno fuzzy models[19]; they are regulated by the 
following formula: 

IF xi is A;i and x2 is A;2 and ... and xn is A;n THEN y is L;(x, a;), 
(18) 

where Li(x, aO represents a local regression model equipped with some vector of 
parameters a;. In particular, one can envision a linear form of the model in which the 
local model becomes a linear function of its parameters such that Li(x, ai) = a^x. 
Obviously, depending upon the specificity of the problem and the structure of available 
data, regression models could be made nonlinear[19][31]. 
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(V 

Figure 4.8 Takagi-Sugeno model with local regression models; the connections of the 
output unit realize processing through the local regression models (L;). 

4.7.3 Radial-basis function networks (RBFN) 

RBFN have increasingly been used in many practical areas such as control, signal 
processing, pattern recognition, and time series prediction. RBFN are rooted in the 
interpolation of a high dimensional space to solve the curve-fitting problem[17]. 
According to this viewpoint, learning is equivalent to finding a surface in a 
multidimensional space that provides a best fit to the training data, with the criterion for 
"best fit" being measured in some statistical sense. In the context of a neural network, the 
hidden units provide a set of "functions" that constitute an arbitrary "basis" for the input 
patterns (vectors) when they are expanded into the hidden-unit space; these functions are 
called radial-basis functions. Radial-basis functions were first introduced in the solution 
of the real multivariate interpolation problem. The early work on this subject is surveyed 
by Powell[23]. It is now one of the main fields of research in numerical analysis. 

The construction of a radial-basis function network in its most basic form involves three 
entirely different layers. The input layer is made up of source nodes (sensory units). The 
second layer is a hidden layer of high enough dimension. The output layer supplies the 
response of the network to the activation patterns applied to the input layer. The 
transformation from the input space to the hidden-unit space is nonlinear, whereas the 
transformation from the hidden-unit space to output space is linear. A justification of this 
rationale may be traced to Cover[6]. A pattern classification problem cast in a high 
dimensional space nonlinearly is more likely to be linearly separable than one cast in a 
low dimensional space—hence the reason for making the hidden dimensional space high 
in an RBFN. 

Computational methods 

Radial-basis function networks (RBFN)[20][27] are structures that use locally tuned and 
overlapping receptive field units (neurons) to perform function mappings and 

46 



approximations. Figure 4.9 shows an RBFN with three neurons in a hidden layer. The 
activation level of the i-th neuron is expressed as: 

R i =H i (x) = H i ( | |x -v i | / a i ) , i = l,2,....,C, 
(19) 

where x is a multidimensional input vector, v; is a vector with the same dimension as x, 
C is the number of radial basis functions (neurons), and Hj() is the i-th radial basis 
function, also called the kernel function. Typically, H ;() is a Gaussian function of the 
form: 

H;(x) = exp 
X - V ; 

2a.; 

(20) 

where a* is a normalization parameter that represents a measure of the spread of data 
associated with each neuron. The activation level of a radial basis function R; computed 
by the i-th hidden neuron is the largest when the input vector x is at the center \i of that 
neuron, and it decreases as the distance between the two vectors increases. 

Figure 4.9 Radial basis function neural network model. 

The output of RFBN can be computed as the weighted sum of the output values generated 
by each hidden neuron. 

=Zyi=lR. 
i=l i=l 

(21) 
To identify the receptive field parameters v; and of, and weights w; in the output layer 
of each function, a two stage training process is typically needed. Accordingly, to 
determine parameters v; and of of each neuron in a hidden layer, we use the 
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FCM[17][16] clustering technique in the first stage. To obtain weights wi for a single 
neuron in an output layer, the gradient method was employed in the second stage. 
Because parameters v; and of of the kernel functions are fixed during the second stage, 
the linear weight values w; can be trained very efficiently. 

4.8 Conclusions 

This chapter gives an overview of fuzzy sets and their generalized form type-2 fuzzy sets. 
Clustering and different clustering models are discussed. Algorithms directly applicable 
to the implementation and realization of multiphase collaborative clustering [16] and 
basics of linear regression and classification models [26] are described. A fuzzy rule-
based and radial-basis function networks models are also introduced. 
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Chapter 5 
Vertical Fuzzy Collaborative Clustering 

In this chapter the framework of vertical collaborative fuzzy clustering is introduced—a 
conceptual and algorithmic machinery for the collective discovery of a common structure 
(relationships) within a finite family of data residing at individual datasites. The proposed 
optimization environment has two fundamental features. First, given existing constraints 
which prevent individual sites from exchanging detailed numeric data, any 
communication has to be realized at the level of information granules. The specificity of 
these granules impacts the effectiveness of ensuing collaborative activities. Second, the 
fuzzy clustering realized at the level of the individual datasite has to constructively 
consider the findings communicated by other sites and act upon them while running the 
optimization confined to the particular datasite. 

Experimental studies presented include some synthetic data, selected datasets from the 
Machine Learning Repository, and weather data from Environment Canada. 

5.1 Introduction 

An important extension of clustering is the combination of several clustering results. 
Different outcomes of clustering can result from several runs of the same clustering 
algorithm, several clustering methods being applied to the same dataset, or the use of 
clustering for several datasets. These developments come under the rubric of multicluster 
combinations [1], bagging [4], collective clustering pursuits [9][10][11][16][13], and 
cluster ensembles [22][23][24][25]. The collaborative aspects of fuzzy clustering 
[2][6][7][8][10][12][22][23] were originally studied in [17][20]. There are a number of 
highly motivating factors that stand behind the developments occurring in this realm of 
investigation. In parallel to what is very much visible in supervised learning and pattern 
classifiers, we investigate ways of improving the quality of unsupervised learning, and 
clustering in particular. We encounter scenarios in which data are generated in a 
distributed manner and have to be handled separately (we are not allowed to treat the data 
together given existing restrictions of security, privacy [14] or for other technical reasons). 
In this case, the clustering results produced at the individual datasites have to be 
reconciled. 

An important feature of collaborative fuzzy clustering is the level of communication 
realized at the granular level. Information granules [3][ 19][21][27] play an active role in 
the development (clustering) of structures at the local level of individual datasites. 

Collaborative clustering [17] activities involve discovering and sharing knowledge. To 
derive global relationships common to several databases, we must allow the databases to 
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collaborate at the level of patterns. We commonly are not permitted to have access to all 
databases but eventually could be provided with some abstract information such as mean, 
median, or synthetic indexes describing the data. Two modes of collaborative clustering, 
horizontal and vertical [23][21], are implemented to deal with such abstract information. 
Horizontal clustering mode is covered in Chapter 6. This Chapter focuses on vertical 
clustering mode. 

The vertical mode of collaboration clustering is concerned with a collection of databases 
involving different patterns defined in the same feature space, where sites interact using 
prototypes, as shown in Figure 5.1. 

The algorithmic issue of collaboration dwells on the well-known fuzzy c-means (FCM) 
[17]. Generally we think of clustering [26][27] as a vehicle for forming information 
granules. As in the FCM, in collaboration clustering, we also require that the partition 
matrix satisfies standard requirements of membership grades summing to 1 unit intervals. 

Figure 5.1 Vertical collaboration between databases at a local level; in each database 
objects are located in the same data space but have different patterns. 

Clustering algorithms interact by exchanging partition matrices. In this way 
communication links are established at the level of information granules instead of at the 
data level; technical details can be found in [1][23]. The collaborative clustering 
presented in this thesis may be regarded as a special algorithmic model of knowledge 
reuse and knowledge integration. 

We encounter situations where data is inherently distributed and can be accessed and 
processed only locally. Sharing the data is not feasible considering existing constraints of 
a technical or regulatory nature. At the same time, it becomes evident that when 
searching for a structure it would be highly desirable to establish some interaction when 
running data analysis at individual datasets (datasites or databases) and to allow all 
processes to engage in communication and reconciliation of the findings. It is anticipated 
that knowledge of these relationships will help in the discovery of relationships and in 
making these dependencies more stable and general. Several points are important in the 
translation of these preliminary observations: 
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• As the data cannot be transferred between datasites and therefore cannot be 
processed explicitly, a viable alternative is to communicate the local findings at a 
higher level of abstraction such as information granules. 

• Reconciliation of findings between datasites needs to benefit all parties involved. 
In other words, our actions have to enhance the quality of the results at the global 
level of all datasites 

• When reconciling the results of data analysis between individual datasites, the 
findings must be driven by the local data. The results of communication should be 
supportive but they should not supersede the search for structure implied by the 
local data. 

• It is desirable to quantify the results of collaboration in the language of 
information granules. This is demonstrated in the study. 

This procedure is called collaborative clustering as collaboration is crucial to the globally 
developed process of searching for structure in data. 

To realize the above requirements, we consider fuzzy clustering, and fuzzy c-means as a 
vehicle of granulation of information cf. [2][10][18] for several compelling reasons. 
Fuzzy clustering is commonly used and is associated with a wealth of algorithmic 
developments and experimental evidence. The formation of clusters at each datasite is 
driven by minimization of an augmented objective function which takes into account the 
data being available locally and involves a term expressing difference between the local 
structure and data produced at other sites. Information granules in the form of type-2 
fuzzy sets are used to quantify the results of clustering in terms of the consistency and 
diversity being recognized across datasites. 

The concept of collaborative fuzzy clustering and its realization was introduced in [17]. 
This thesis adds a number of novel and essential components to the work in [17]. First, 
the effect of collaboration is quantified and an effective way of determining an optimal 
level of collaboration is provided. Second, this study brings forward an interesting and 
practically relevant generalization in which different levels of granularity (number of 
clusters) are allowed at local datasets. Third, when we are concerned with numeric results, 
findings are expressed as information granules of higher order, for instance as type-2 
fuzzy sets. Aggregation of this type is governed by the principle of justifiable granularity, 
cf. [14]. 

The chapter begins by formulating the problem which is to use collaborative clustering to 
seek structure in data (Section 5.2). In section 5.3, we elaborate on a general optimization 
scheme of collaborative clustering. Sections 5.4-5.6 focus on the optimization process; 
ways of producing interaction between datasites using prototypes and induced partition 
matrices are discussed, a form of the optimization problem (objective function) is 
presented, and a mechanism to evaluate the quality of collaboration is proposed. The 
emergence of granular prototypes becomes a result of collaboration. The quantification of 
collaboration is discussed in section 5.7. Section 5.8 discusses a significant generalization 
in which different numbers of clusters at individual datasites is considered. Numerical 
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experiments are reported in section 5.9. Concluding observations are offered in section 
5.10. Detailed derivations are covered in the text for the case of collaborative fuzzy 
clustering realized in the presence of the same and different number of clusters. 

5.2 Problem statement 

Let us consider P datasites, D[l], D[2], ..., D[P] consisting of N[l], N[2], ..., N[P] 
patterns (data) defined in the same feature space X. At each datasite we are interested in 
revealing a structure by forming c clusters; we assume in the first case same number of 
information granules (clusters) for each datasite. While for a particular datasite we are 
interested in the structure at this local level, we want to take into account the results of 
clustering reported at other datasites. 

In fuzzy clustering, and fuzzy c-means in particular, there are two fundamental facets of 
granularity: one is conveyed by prototypes while the other is captured by partition 
matrices. Given the prototypes, we can produce partition matrices. Conversely, given 
partition matrices, we can develop the corresponding prototypes. Either of these 
manifestations of granular information can be used as a communication vehicle, 
depending on the problem at hand. Here, the datasets at the datasites all reside in the 
same feature space, so communication can be realized by exchanging the prototypes 
produced at each datasite. 

The problem of collaborative clustering can be briefly defined as follows: 

Given a finite number of disjoint datasites with patterns defined in the same feature 
space, develop a scheme of collective development and reconciliation of a 
fundamental cluster structure across the sites that is based upon exchange and 
communication of local findings where the communication needs to be realized at 
some level of information granularity. The development of the structures at the 
local level exploits the communicated findings in an active manner through 
minimization of the corresponding objective function augmented by the structural 
findings developed outside the individual datasite. We also allow for retention of 
key individual (specific) findings that are essential (unique) to the corresponding 
datasite. 

The essence of collaborative clustering is presented in Figure 5.2. 
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Figure 5.2 The essence of collaborative clustering. The goal is to build a global 
characterization of the data by striking a balance between local findings 
(produced at the level of locally available data) and findings coming from 
other datasites (sensors). The arrows show communication links between 
datasite D[ii] and all other datasites. 

Alluding to Figure 5.2, we can offer another important and visible category of application 
which deals with wireless sensor networks. In such networks, we envision a collection of 
randomly scattered sensors whose communication is established on an ad hoc basis. Each 
node (sensor) collects the data available in its neighbourhood and realizes its processing. 
This leads to a determination of the local characteristics of the data (formulated as a 
collection of clusters being observed at a particular local level of the given sensor). At the 
same time it is recognized that the local processing could benefit from collective 
activities between sensors. This need for a global and collective style of processing is 
motivated by the limited amount of data available locally and the need to establish a 
global view of the data collected from the overall network. Each sensor formulates a very 
limited and localized perception of the environment that has to be augmented by local 
findings formed by other sensors. 

There are essential differences between the proposed approach and the concepts which 
have been encountered in the literature under the umbrella of distributed clustering, cf. 
[3][14][15][26]. In distributed clustering it is assumed that the clusters are the same 
across all datasites. In particular, it is assumed that at each datasite there are exactly the 
same clusters being modeled by Gaussian distributions N(mi, S;) described by mean 
vectors m, and covariance matrices S, and put together in the form of a linear 
combination, cf. [15]. More specifically, we encounter a relationship of the form 

c 

^X, j iN(m i ,2 i) , j = 1, 2, ..., P, where the values of the mixing parameters X,J; are 
i=l 

potentially unique for each datasite. In contrast, in this study no specific assumptions are 
being made. The only assumption here concerns the same granularity of the findings (viz. 
number of clusters at each datasite). As a result the structure at each datasite makes an 

D[kk] 
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attempt to reconcile differences and retains and quantifies those of particular relevance to 
the given datasite. The findings are expressed in fuzzy sets of the prototypes or in the 
case of membership degrees in type-2 fuzzy sets. 

Concepts of cluster ensemble found in the literature are based on concepts different from 
what is proposed in this thesis. Cluster ensemble methods differ in the way the generic 
clustering procedure is developed and the way in which results are combined [25]. 
Topchy et. al. [25] proposed a consensus function based on informative-theoretic 
principles and generalized mutual information. A different consensus function was 
developed in [5] based on a voting/merging method which provides a pairwise iterative 
scheme of combination. Strehl and Ghosh [24] proposed three different ensemble 
clustering models based on a consensus method, all of which use hypergraph operations 
to construct solutions. 

Here, we follow a standard notation encountered in pattern recognition. The patterns 
(data) are treated as vectors inX c R " and the distance between two elements in this 
space ||. || is realized as a weighted Euclidean distance. The standard FCM is used as a 
clustering vehicle, although any objective function-based clustering could be a sound 
alternative. All results produced at a given site are clearly identified by the index of this 
site. Thus for the ii-th datasite, the partition matrix is denoted by U[ii] = [uik[ii]], i = 1, 
2, ..., c; k = 1, 2, ..., N[ii], while the corresponding prototypes are given as vi[ii], 
v2[ii], ...,v0[ii]. 

Optimization details of vertical clustering with same level of granularity 

Here we present pertinent derivations of the collaborative scheme. D[l], D[2], ..., D[P] 
denote the datasites involved in the collaboration. The objective function guiding the 
formation of the clusters at the ii-th datasite comes as an augmented version of the one 
being used in the "standard" FCM, that is: 

N[ii] c P N[ii] o 

Q[ii] = ££ui[ii]di+p£|;Z(«ac[ii]-ui[ii | iJ])2di. 
k=l i=l jj=l k=l i=l 

j j * " 

The minimization of Q[ii] is carried out with respect to the fuzzy partition U[ii] and the 
prototypes v;[ii]. The distance d,k concerns the k-th data (pattern) in D[ii] and the i-th 
prototype d,2k =|| xk - v; ||2. U~[ii | jj] stands for a partition matrix induced by prototypes 
obtained for the datasite D[jj] which is being presented at the ii-th datasite. The partition 
matrix belongs to the family of matrices satisfying the conditions: 

U= {ulk e [0 , l ] | £uJ i i ] = l,Vk,and O ^ z ' u j i i ] < N[ii], Vi}. 
i=l k=l 

(2) 
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Given the standard identity constraint imposed on the partition matrix, viz. ]T uik[ii] = 1, 
i=l 

in the optimization of (1) we confine ourselves to the use of Lagrange multipliers. For 
any data point k, k = 1, 2, ..., N[ii], we reformulate the objective function to be in the 
form: 

V[ii] = Jufk[ii]d1l+p£X(uik[ii]-urJii|JJ])24-^(Zulk[ii]-l). 
i=l 

(3) 

i=i jj=i i=i 
jj*u 

The necessary conditions for the minimum of V[ii] are expressed as: 

dV[»]_0> gV[ii]_0 

duvs ' dk 

(4) 

After computing the derivative with respect to the elements of the partition matrix we 
obtain: 

a V 2u r s[ii]d r
2

s+2p2(uJii]-u;[ii | jj]d^)-X = 0, 
^ r s ij-l 

where r = 1, 2,. . . , c, s = 1,2,..., N[ii]. The detailed calculations are shown below: 

2urs[ii]d
2 + 2p(P n)urs[ii]dr

2
s - 2pdr

2
sf u;[ii I jj] - k = 0, 

urs[ii](2dr
2
s + 2P(P - 1 ^ ) = X+ 2 p d 2 f > ; [ i i | jj], 

(5) 

ii=l 

?i+2pd2£u;[ii|jj] 

u] = -

Finally, 
2(£[1 + P(P-1)] 

x+2pd2 |]u;[ii|jj] 

u j i i ] = — — f l f » = — h + p y u ~ [ i i | j j ] x — - — . 
2d2[l + P(P-l)] 2d2[l + p(P-l)] Wfy rsL 1 + /?(P-1) 

(6) 
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Given the constraint of the form £, Ujs[ii] = 1, we obtain: 
j - i 

In the sequel, 

X + 2pdJ s$>;[i i | j j ] 
jj=i 
jj*» 

tr 2d?p+KP-i)] 
• = i . 

2pdJ2u;[ii|ij] 
X 

fr2dip+p(p-i)]+§ ; s[i+P(p-i)] ^ 2 d ; s [ i + p ( p - i ) ] 
• = i . 

PlXtiiUj] 

-•-I-# 2 d £ [ l + P(P-l)] ^ [ 1 + P(P-1)] 

^ = X2dJs[l + P(P-l) 
j=i 

PlXtiiijj] 
ii-i 

i _'V_jm 
£ [ i + P(P-i)] 

PlXtiilJJ] 
c 

[1 + P(P--1)] 
1 

s[l + P(P--1)] 
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Hence, 

c P 

PllXthijj] 

j"l d j s 

Plugging (9) into (7) gives: 
(9) 

c P 

1 _ . jj*11 

2- " t ^ - 1 " [i.ptP-D] 

u„["] = 
j - l d j s 

2dr
2
s[l + P(P-l)] 

2pdr
2

s$>;[ii|jj] 

• + • 

jj=i 
JJ*» 

2di[i+p(p-i)] 

Further simplifications lead to: 
(10) 

u j i i ] = 
1 

c d 2 

V .IT,*?., 

idi 

PSu7[i i | j j ] 

i _ £ ^ 
H[I + P (P - I ) ] 

+ 

PSu;[ii|jj] 
j j = i 

jj*» 

[l + PCP-D] 

(11) 

In order to optimize the objective function with regard to the prototypes, the Euclidean 
distance (its weighted version is handled in the same manner) is considered. Given the 
form of the distance, the objective function is written as: 

Q[ii] = 2 l > ; L [ i i ] 2 > k j -vy[ii])2 +PZf;1Z(u l k[ i i ] -urk[ i i | j j])22(xk j -vy[ii])2. 
k=l i=l j=l jj=l k=l i=l j=l 

(12) 
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The necessary condition leading to the minimization of Q[ii] comes in the form: 

dQ[ii] = 0. 

Then we obtain: 

aQ[ii] 
N[ii] 

-2Xufjii](xkt-vrt[ii]) 
k=l 

P N[ii] 

23ZZK[ 1 1 ] - u rJ i i | J j ] ) 2Kt-v r t [ i i ] ) = 0 
ii-l k=l 

After further simplifications, 

(13) 

vrt[ii] 
N[ii" 

I 
k=l 

P N[ii] 

£ufk[ii] + pX£(u rk[ii]-u;[ii | jj])2 

jj-i k=i 

N[ii] p N[ii] 

^"rktiiKt+PZz^^rkM-uitiilJJD'xkt 
k=l ji=l k=l jj=l k=l 

jj*n 

Finally, 

N[ii] P N[ii] 

k=l jj=l k=l 
r---| _ jj*il 

V r t L n J — NJJJI P N[ii] 

ZurkM+PZZ^rkM-U^ti i l jj])2 

k=l jj-1 k=l 
jj*» 

where r = 1, 2, ..., c, t = 1, 2, ..., n. 
(14) 

In the next section it is explained how optimization activities are completed at individual 
datasites and how communication is realized in terms of the granular constructs of the 
prototypes. 
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5.3 General flow of collaborative processing 

Collaborative clustering aims to develop structures at individual datasites using 
information obtained from other datasites. Two phases occur in a fixed sequence: an 
optimization of the structures at the individual sites and an interaction between sites when 
findings are exchanged. This process is depicted in Figure 5.3. 

£ 2 

a 
•0 ii 

o-
0-

o-
0-

iterate phases 

no collaboration collaboration 

communication at the 
level of prototypes 

communication at the 
level of prototypes 

Figure 5.3 A functional view of the processing realized in collaborative clustering. 

Initially, the FCM algorithm is run independently at each datasite (this happens without 
any communication). After the FCM has terminated at each site, processing stops and the 
datasites communicate their findings. This communication needs to be realized at some 
level of information granularity. The effectiveness of the interaction depends on the way 
in which one datasite "talks" to others in terms of what has been discovered so far. Once 
communication has been established and the nodes are informed about structural findings 
at other sites, each site proceeds with optimization by focusing on the local data while at 
the same time taking into consideration the findings communicated by other datasites. 
Optimization for each site is run independently. Once all sites have declared termination 
of computing, they are ready to engage in the communication phase. Again, they 
communicate the findings and set up new conditions for the next phase of FCM 
optimization. Optimization and communication comprise the collaboration phase. The 
overall collaboration takes a finite number of collaboration phases, terminating when no 
further significant change in the revealed structure is reported. 

Two criteria must be satisfied for a successful collaboration. First, we have to specify a 
way of communicating and representing findings at some level of granularity (recall that 
we are not allowed to communicate at the level of individual data but have to establish 
communication at the higher level of abstraction by engaging the exchange of the 
granular constructs). Second, we have to create an augmented objective function whose 
minimization embraces both the structures at the local level of the individual datasites 
and reconciles them with the structures communicated by other datasites. 
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5.4 Induced partition matrices as a mechanism of granular 
communication 

The structural findings at individual datasites come in the form of prototypes and 
partition matrices. These are the two possible communication mechanisms. Since 
different datasites have datasets of possibly different cardinalities, sharing knowledge 
about partition matrices is not helpful. The prototypes, on the other hand, form a viable 
alternative. Communicating a limited number of prototypes is attractive since no 
significant communication overhead is built in this manner. As the FCM optimization 
focuses on the partition matrices as one of its components to be adjusted, we introduce a 
concept of so-called induced partition matrices. Consider the ii-th datasite. The 
prototypes produced at the jj-th datasite vi[jj], V2LJJ], ..., v0[jj] are communicated to the 
ii-th datasite. Given this collection of prototypes, we induce a partition matrix over the 
datasite D[ii] and denote it by U~[ii[jj], where the two indexes (ii and jj) emphasize 
datasites taking part in this interaction. Its entries are determined in the standard way 
encountered in FCM computing [2], that is: 

U~ik[ii[jj]= ; - J , 
KM-Villi] II 
l|xk[ii]-VjLJj] , 

(15) 
where I = 1, 2, ..., c; k = 1, 2, ..., N[ii], and Xk eD[ii]. Refer also to Figure 5.4 which 
highlights the essence of this mechanism of the collaboration. 

D[l] 

D[2] 

DUJ] 

Figure 5.4 Datasites and communication realized through communication of prototypes 
and the consecutive generation of the induced partition matrices U~[ii|jj]. 

Proceeding similarly with all other datasites, D[l], ..., D[ii-1], D[ii+1], ..., D[P], we end 
up with P - 1 induced partition matrices, U~[ii|l], U~[ii|2], ..., U~[ii|ii-1], U~[ii|ii+1], ..., 

c I 

62 



U~[ii|P]. The minimization of difference between U[ii] and U~[ii|jj] is used to establish 
collaborative activities between the datasites. 

5.5 An augmented objective function 

At the ii-th site, the clustering is guided by the augmented objective function assuming 
the following form: 

Q["]=S!Eufk[ii]|xk-Vl||
2 + pxf;1X(ulk[.i]-urk[ii|jj])2dfk) 

k=l i=l jj=l k=l i=l 

(16) 
where p is a nonnegative number. The objective function Q[ii] consists of two 
components. The first one is nothing but a standard sum of weighted distances 
between the patterns in D[ii] and their prototypes dfk =|| xk - v;[ii] ||

2. In this sense, 
it is just the objective function encountered in the standard FCM being applied to 
D[ii] with the fuzzification coefficient m = 2. The second component reflects an 
impact coming from the structures formed at all remaining datasites. The distance 
between the optimized partition matrix and the induced partition matrices is to be 
minimized—this requirement is captured by this part of the objective function (16). 
The scaling coefficient P strikes a balance between the optimization guided by the 
structure in D[ii] and the already developed structures available at the remaining 
sites. The value of P implies a certain level of intensity of collaboration; the higher 
its value, the stronger the collaboration. For p = 0 no collaboration occurs and the 
problem is reduced to the collection of P independently run clustering tasks being 
confined to the corresponding datasites. The overall scheme of the collaborative 
clustering is covered in Table 5.1. 

Table 5.1 The flow of collaborative clustering showing the main optimization phases and 
underlining the mechanism of communication in the form of exchange of 
prototypes obtained at each datasite. 

Given: datasites Df 1 ], D[2] D[P]. 
Choose the number of clusters c to be looked for in the collaborative clustering; set 
up a termination criterion of the FCM and establish a level of collaboration 
(interaction) by choosing a nonnegative value of p. 

Initial phase: Carry out clustering (FCM) for each datasite producing a collection of 
prototypes {v;[ii]}, i = 1, 2, ..., c for each datasite. 

Collaboration 
Iterate {successive phases of collaboration} 

Communicate the results about the structure determined at each datasite. 
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For each datasite (ii) 
{ . 
Minimize (2) at each datasite by iteratively proceeding with the iterative 
calculations of the partition matrix (urs[ii]) and the prototypes (vrt[ii]), using 
respectively (11) and (14). 

r = l , 2 , . . . , c ; t = l , 2 , . . . , n ; s = l , 2 , . . . , N [ i i ] 
} for datasite 

until termination condition of the collaboration activities has been satisfied. 

5.6 Evaluation of the quality of collaboration 

Evaluation of the quality of results of collaboration between datasites requires careful 
assessment. The distance between partition matrices associated with each of the D[ii]'s 
could be computed and treated as a measure of the quality of the ongoing process. 
However, a direct comparison of two partition matrices is not feasible if there is no direct 
correspondence between rows (respective clusters). This is a well-known problem 
identified in the literature, cf. [13]. We use the concept of proximity and a proximity 
matrix induced by a given partition matrix to avoid this problem. 

Consider the ii-th datasite with its partition matrix U[ii] and the induced partition 
matrices U~ [ii| j j] , jj = 1, 2, ..., ii-1, ii + 1,..., P. Structure revealed at the ii-th datasite is 
compared with structures at remaining sites by computing the following expression: 

W[ii] = —r-J Y ItPr ox(U[ii]) - Pr ox(U~[ii[jj])|. 
(N2[ii]/2)fr» |! 

(17) 

More specifically, the distance between the corresponding proximity matrices is realized 
in the form of the Hamming distance. In other words, 

N[ii] N[ii] 

||Prox(U[ii])-Prox(U-[ii|jj])||= Z Z | prox(k1,k2)[ii]-prox(k1,k2)~[ii| j j] | , 
kj=l k2>k1 

(18) 

where prox(ki,k2)[ii] denotes the (ki, k2) entry of the proximity matrix U[ii]. Similarly, 
prox(ki,k2)~[ii[jj] is the corresponding (ki, k2) entry of the proximity matrix produced by 
the induced partition matrix U~[ii|jj]. In a nutshell, rather than working at the level of 
comparing the individual partition matrices (which requires knowledge of the explicit 
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correspondence between rows of the partition matrices), we generate their corresponding 
proximity matrices. This allows us to carry out comparison at this more abstract level. 
Summing up the values of W[ii] over all datasites, we arrive at the global level of 
consistency of the structure discovered collectively through the collaboration: 

W = W[l]+W[2]+. . . + W[P]. 
(19) 

The lower the value of W, the higher is the consistency between P structures. Likewise, 
the value of W being reported during successive phases of the collaboration can indicate 
the progress and quality of the collaborative process and serve as a suitable termination 
criterion (refer to Table 5.1), that is, one could stop the collaboration once no further 
change in the value of W is reported. Use of the above consistency measure is essential 
when gauging the intensity of collaboration and adjusting its level through changes of p. 
This parameter shows up in the minimized objective function and shows how much other 
datasites impact the formation of the clusters at the given site. Higher values of P imply 
stronger collaborative linkages established between the sites. By reporting W as a 
function of p, that is W = W(p), we can experimentally optimize the intensity of 
collaboration. One may anticipate that while for low values of P no collaboration occurs 
and the values of W tend to be high, large values of p might lead to competition and 
subsequently the values of W(P) may tend to be high. Under some conditions, no 
convergence of the collaboration process is reported. There might be some regions of 
optimal values of p. Obviously, the optimal level (intensity) of collaboration depends 
upon a number of parameters, in particular, the number of clusters and the number of 
datasites involved in the collaboration. It could also depend on the data. 

5.7 Quantification of collaboration using Type-2 fuzzy sets 

It is advantageous to assess the quality of the results by evaluating their consistency and 
expressing a level of differences. Here, the quantification of results constitutes an 
interesting alternative—that of prototypes being treated as granular constructs. In the 
experiments reported here, results are computed in terms of type-2 fuzzy sets rather than 
numeric entities. Type-2 fuzzy sets are granular constructs; they are fuzzy sets whose 
membership functions do not assume numeric membership grades but instead are defined 
in a unit interval. Interestingly, type-2 fuzzy sets are discussed in various settings, but 
very little has been said about determination of their membership functions. 

We estimate the membership of the i-th cluster using prototypes of D[ii] denoted by u = 
u;. The prototypes optimized for the jj-th datasite, jj = 1, 2, ..., ii-1, ii+1, ..., P, give rise 
to the membership of x to the same i-th cluster. They are denoted by z\, za, •••, zp-i. We 
obtain a collection of membership grades captured in a type-2 fuzzy set. The 
corresponding membership function is determined by solving a certain optimization 
problem [18] which realizes a principle of'justifiable granularity. 
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We consider a triangular fuzzy set to be one of the simpler versions of a membership 
function. Its use is legitimate when limited experimental evidence is available. The modal 
value u of the fuzzy set is the membership value obtained with the use of the prototypes 
present at D. The values of z; that are lower than u, z; < u, are used in the formation of the 
left-hand side of the linear portion of the membership function. The linearly decreasing 
portion of the membership function positioned at the right-hand side of the modal value u 
is optimized in the same manner. Computation of a type-2 fuzzy set membership function 
is already covered in Chapter 4 (Section 4.2.1). 

5.8 Levels of information granularity during collaboration 

So far we have assumed that the number of clusters at each of collaborating datasites is 
the same. In general this assumption is quite restrictive and not realistic. A more flexible 
scenario is one in which each party considers its own number of clusters (this could be 
quite legitimate considering that data structure could vary from site to site). This situation 
is well covered in existing literature and is supported by various algorithmic means 
including an extensive suite of cluster validity indexes. 

Given this, the algorithmic settings in the present study have to be augmented. The major 
step is to present information granules at each datasite at the level of granularity that has 
been accepted before collaboration. There are several possible ways of doing this. Here 
we consider the one which uses clusters of prototypes. Consider the ii-th datasite. Before 
each phase of collaboration, we cluster the prototypes of this datasite {v;[ii]}, i = 1, 2, ..., 
c[ii], and the prototypes from all remaining datasites are communicated, {v;[jj]}, i = 1, 
2, .., c[jj], jj = 1, 2, ii-1, ii+1, ..., P. In such phase of clusters of prototypes.the number 
of clusters is kept the same as the number of clusters at this datasite. The results are 
denoted by v~, I = 1, 2, ..., c[ii]. The new prototypes are used in the next steps of 
collaborative clustering. More specifically, the minimized objective function is in the 
form: 

Q[ii] = J X [ i i ] | x k _ V i[iif + p £ ufk[ii]||Vi[ii] - vrti if . 
i,k i=l 

The optimization of (20) is described in the following section. 

Optimization details of vertical clustering with different levels of granularity 

We present all pertinent derivations of the collaborative scheme that pertains when 
participating datasites come with a different number of clusters. As before, datasites 
involved in the collaboration process are denoted by D[l], D[2], ..., D[P]. The objective 
function guiding the formation of the clusters at the central datasite comes as an 
augmented version of the one being used in the "standard" FCM, that is: 
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qui 
i|2 

i,k i=l 

(21) 

Given the standard identity constraint imposed on the partition matrix, the optimization of 
(21), we confine ourselves to the use of the technique of Lagrange multipliers. For any 
data point k, k = 1, 2, . . . , N, we expand the objective function to include the constraints: 

V[ii] = Xufk[n]||xk-v1[ii]|| + pfju2Jiij|v1[ii]-vr[iif -X{f> i k[i i]-1). 
i,k i=l i=l 

(22) 
The necessary conditions for the minimum of V[ii] are expressed as: 

dV[ii]_0 dV[ii]_Q 

durs ' dk 
(23) 

After computing the derivative with respect to the elements of the partition matrix we 
obtain: 

9 7 1 1 , 1 - 2urs[ii]||xs - v r[i if + 2P(ur
2
s[ii]||vr[ii] - v ^ i i f ) - X = 0, 

da. 

where r = 1, 2, ..., c; s = 1, 2, ..., N. 

The detailed calculations are shown below: 

u„[ii](2|x, - vr[ii]f + 2p|vr[ii] - v;m() = *. 

i 

urs[ii]
: 

(24) 

2||xs - vr[ii]||
2 + 2(3||vr[ii] - v7[ii]f 

(25) 

c[ii] 

Given the constraint of the form ^ ujs[ii] = 1 , we obtain: 
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c[ii] ^ 
^ - i A-

j=>2|xs-v j[ii]|2+2|3|v j[ii]-v~[ii]| 
= 1. 

In the sequel, 

c[iil 

X = X 2|xs - Vj[ii]|
2 + £ 2p|Vj[ii] - v~[ii]|| 

Plugging (27) into (25) gives: 

u j i i ] = 

X ^ - V j t i i l 4-£2p|Vj[ii]-v:[ii] | 

2|xs - vr[ii]f + 2p|vr[ii] - v-[i if 

Further simplifications lead us to the following expression: 

1 
u Jii] 

xs-v r[ii]| | + P vr[ii] - v~[ii]| 

j=i x , -Vj[ii]| +P|vJ[ii]-v:[ii]| 

(26) 

(27) 

(28) 

(29) 
Proceeding with the optimization of the objective function (21) with regard to the 
prototypes, we consider now the Euclidean distance (its weighted version is handled in 
the same manner). Given the form of the distance, the objective function is written as: 

i,k j=l 

2 g, 
i=l j=l 

Q[ii] = Z u 2
k [ i i£( x

k J - vJ i i ] ) + P£uaJiiE(vs[ii]-vg[ii]) 

The necessary condition leading to the minimization of Q comes in the form: 
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5Q[ii]_Q 

5vrt 

Then we obtain: 

c[ii] 

^ M = - 2 f X [ i i ] ( x k t -vrt[ii])+ 2pXufk[ii](vrt[ii]- v;[ii])=0. 
k=l i=l 

After further simplifications we derive: 

N N N N 

Z Urk [ii]Xkt = Z Urk ["K ["] + PZ " ^ " K M " PZ U dc^KI"! • 
k=l k=l k=l k=l 

Finally, we arrive at the expression: 

N N 

Z u * [ " K + P Z u * [ i i K [ " ] 

(31) 

k=l k=l vrt[ii] = 
ZurkM(l + P) 
k=l 

where r = 1, 2, ..., c; t = 1, 2, ..., n. 

The overall flow of processing can be presented as follows: 

Given: datasites D[l ], D[2], ..., D[P] with different structures, 
Select a number of clusters (c[ii]) for each datasite, set up some termination criterion, 
and establish a level of collaboration (interaction) by choosing some nonnegative 
value of p. 

Initial phase 
Carry out clustering (FCM) for each datasite producing a collection of prototypes 
{vi[ii]}, i = 1, 2, ..., c[ii] for each datasite. 

Collaboration 
Iterate {successive phases of collaboration} 

Communicate the results about the structure determined at each datasite. 

For each datasite (ii) 
{ 

(32) 
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Collect all prototypes from other sites at datasite (ii) and run FCM on that 
collection by selecting the same number clusters at that site to generate new 
prototypes v~[ii]. Minimize (20) at each datasite by iteratively proceeding with 
the iterative calculations of the partition matrix (urs[ii]) and the prototypes 
(vrt[ii]) using respectively (29) and (32). 

r = l , 2 , . . . , c [ i i ] ; t = l , 2 , . . . , n ; s = l , 2 , . . . , N 
} for the datasite 

until termination condition of the collaboration activities has been satisfied. 

The quality of collaboration is optimized by choosing a suitable value of P (which 
minimizes the performance index W given by (19)). 

5.9 Experimental studies 

The collaborative clustering mechanisms presented in this chapter are illustrated through 
a series of experimental studies. Here we use synthetic datasets and datasets from the 
Machine Learning Repository and the Canada Weather network. By experimenting with 
essential parameters of the environment, we gain a better sense of the impact of the 
granularity (number of clusters), the number of collaborating datasites, and the intensity 
of collaboration on the dynamics of interaction and the quality of results. The 
performance of the collaborative discovery of structure in datasites is expressed through 
the values of the sum of distances between the proximity matrices induced by the 
partition matrices obtained at the individual datasites. As discussed, meaningful 
collaboration is reflected by the reduction of differences between these partition matrices 
(and their proximity matrices). 

Synthetic two-dimensional data. We consider two-dimensional synthetic datasets with 
five datasites (datasite-1, datasite-2, ..., datasite-5) as shown in Figure 5.5. Each datasite 
is comprised of 600 patterns. These data were generated using a mixture of three 
Gaussian distributions with following mean vectors: 

Datasitel: vi= [4.0 4.5] v2= [8.5 10.0] v3 = [10.0 4.0] 
Datasite2: vi= [4.5 4.5] v2= [10.5 4.0] v3 = [10.5 10.0] 
Datasite3:vi= [4.5 6.0] v2= [7.0 9.0] v3 = [10.0 6.0] 
Datasite4: vx= [6.0 4.0] v2= [6.0 10.0] v3 = [10.0 10.0] 
Datasite5: vi= [4.0 8.0] v2= [8.0 8.0] v3 = [10.0 5.0] 

n.o o.o] 
The covariance matrix is equal to and is the same for all groups across the [o.o l.oj 
datasites. Different mean vectors resulted in quite different topology of data. 
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Figure 5.5 Two-dimensional synthetic datasets used in the collaboration process; the 
mean vectors vary across datasites. 

We consider the number of clusters to be equal to 3. Running the collaborative clustering 
for different values of P and reporting the values of W in successive numbers of phases, 
we have determined an optimal combination where the lowest value of the performance 
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index W equal to 2.05 was achieved after 17 phases of collaboration. The initial value of 
W was equal to 4.41 so the collaboration has led to a substantial reduction of the values 
of W and in this way demonstrates the effectiveness of the collaboration process. The 
optimal value of p was found to be equal to 0.25. Figure 5.6 displays the convergence 
process of the values of W. 

w 

10 15 20 

Phase no. 

Figure 5.6 Values of the performance index obtained in successive phases of 
collaboration for the optimal value of P (0.25). Note that the values of W 
have been substantially reduced with respect to the original value (W = 4.41) 
when no collaboration has been realized. 

The tangible and visually appealing outcome of collaboration comes in the form of the 
prototypes of the clusters. Table 5.2 shows these results obtained for the optimal value of 
P (0.25). 

Table 5.2 Prototypes at individual datasites before and after collaboration. 

Before collaboration 
Datasite-1 
vi=[8.40 10.02] 
v2=[3.94 4.43] 
v3=[10.00 3.94] 
Datasite-2 
vi=[4.50 4.41] 
v2=[10.64 4.09] 
v3=[10.48 9.97] 
Datasite-3 
vi=[9.97 5.91] 
v2=[4.47 5.93] 
v3=[7.07 9.18] 
Datasite-4 
vi=[5.93 4.09] 
v2=[10.09 10.01] 
v3=[5.89 10.05] 
Datasite-5 
vi=[7.96 8.06] 
v2=[9.94 4.94] 
v3=[4.01 8.21] 

After collaboration 

vi=[9.85 4.63] 
V2=[4.46 4.55] 
v3=[ 8.24 9.72] 

vi=[ 10.47 5.21] 

V2=[4.97 4.59] 
v3=[ 10.08 9.65] 

vi=[9.65 6.03] 
v2=[4.78 5.85] 
v3=[7.28 9.15] 

vi=[9.09 7.97] 
v3=[5.58 5.18] 
v3=[8.14 9.97] 

vi=[9.38 5.79] 
v2=[ 5.46 6.73] 
v3=[6.89 8.66] 
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Collaboration can also be quantified in the form of granular prototypes emerging through 
the collaboration process. Prototypes produced when datasites are processed are 
individually numeric; it is the collaborative reconciliation of the findings that gives rise to 
the granular character of the prototypes. The form of the resulting triangular fuzzy sets 
(the result of optimization of (19) reflects the level of consistency obtained between 
various structures in the datasites. For instance, in the case of datasite-4, the prototype of 
the first cluster exhibits a substantial spread for the second variable. A similar effect is 
observed in the case of the second cluster. Computing the Cartesian product of the 
corresponding membership functions, we obtain the fuzzy sets of the prototypes shown in 
Figure 5.7. 

*'<) \ i 
/ -*' 

»j > j 
t 

* 

Figure 5.7 Fuzzy sets of prototypes for the datasites. The Cartesian products are 
constructed by taking the minimum of the membership functions formed for 
the two variables. 

The series of plots in Figure 5.7 shows how much the granularity of the prototypes 
reflects the diversity of the prototypes produced locally at individual datasites. For 
instance, the fuzzy set of the prototype in datasite-2 (see the second graph in Figure 5.7), 
exhibits a substantial spread along the first variable which becomes reflective when 
considering the corresponding prototypes obtained for the remaining datasites. 

Selected Machine Learning data. The datasets discussed in this section come from the 
Machine Learning Repository, see http://www.ics.uci.edu/~mlearn/MLRepository.html. 
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Abalone. The experiments are arranged in the same manner as the experiment with 
synthetic data discussed previously. Our primary interest is in the assessment of the 
effectiveness of the collaboration vis-a-vis the main parameters of the algorithm and the 
details of the setup of the environment. In particular, the results are reported for a 
different number of the datasites involved in the collaboration, see Figure 5.8. In general, 
the collaboration led to a significant improvement in the consistency results reflected in 
lower values of W. The effectiveness of collaboration depends on the values of p. Here a 
clear tendency is observed: with more datasites engaged in collaboration, the optimal 
intensity of collaboration becomes lower. The choice of a suitable value of P is not overly 
critical; we encounter regions of P over which the values of W remain quite similar. The 
results are reported in Table 5.3. 

(a) 

(b) 
Figure 5.8 Values of the collaboration index reported as a function of p obtained after 20 

phases of collaboration (a) c = 3, (b) c = 6. 

p 
Optimal p 

2 
1 

3 
0.55 

4 
0.40 

5 
0.30 

6 
0.25 

7 
0.20 

8 
0.15 

9 
0.15 

10 
0.15 

(a) 

Table 5.3 Optimal va 
P 

Optimal P 
2 
1 

ues of P 
3 

0.55 

for c = 3 
4 

0.35 

(a) and < 
5 

0.30 

3 = 6 (b); 
6 

0.25 

refer also to Figure 5.8. 
7 

0.20 
8 

0.20 
9 

0.15 
10 

0.15 

(b) 
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Boston Housing The results are organized in a series of graphs, Figure 5.9, in the same 
way as the previous dataset. The experimental evidence suggests several conclusions. 
First, a higher number of datasites leads to lower values of p; this indicates that the 
collaboration needs to be established in a less intensive manner. This is not surprising: 
when a large number of parties (datasites) are involved in a collaboration, individual 
interactions may be weak, leading to breakdown of data exchange. This effect is quite 
visible in several plots in Figure 5.9: for higher values of p, the values of W increase 
quite rapidly for high values of P. On the other hand, in the neighborhood of the optimal 
value of p, slight deviations from the optimum value are not highly detrimental. 
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Figure 5.9 Values of the collaboration index for c = 5 (a), c = 10 (b), and c = 15 (c) 
obtained after 20 phases of collaboration and reported for selected values of 
the collaboration intensity P and selected number of datasites P. 
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Canada Weather Network data. Datasets for Alberta and British Columbia weather 
were selected to test our theories of collaborative clustering. The data is available at: 
http ://www. climate, weatheroffice.ee. gc. ca/prods_servs/cdcd_iso_e. html. 

This dataset is attractive as it captures a distributed (spatial) phenomenon; that is, data are 
collected at different sites. While structures could be analyzed individually (locally), 
development of a holistic view would be informative and could reveal the power of 
collaborative clustering. Ten datasites are considered for each province. 

Alberta. Ten geographically distributed datasites were selected in the province of Alberta: 
1. Beaver Mines, 2. Calgary INT A, 3. Kananaskis, 4. Bindloss East, 5. Big stone, 6. 
Alliance South, 7. Cold Lake A, 8. Athabasca-2, 9. Brule Black, and 10. Ballater. The 
distribution of these locations is illustrated in Figure 5.10. 

Figure 5.10 Distribution of 10 datasites (weather stations) in the province of Alberta. 

These 10 datasites comprises 801 weather records collected over the winter seasons 
(December, January, February) of 1991-2000. Each data item is described by four 
features: maximum temperature, minimum temperature, average temperature, and 
precipitation. Experiments were run for c = 3 and c = 6 clusters. The collaboration was 
optimized by running the experiment for different values of p. The lowest value of W 
was obtained during the 11th phase of collaboration for p = 0.85. Values of the 
prototypes were obtained before and after collaboration. Figure 5.11 shows the 
reconciliation of the findings obtained locally at each datasite. We observe that the 
prototypes obtained after collaboration (right-hand column of plots) get closer to each 
other compared with prototypes obtained without collaboration (left-hand column of 
plots). 
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Figure 5.11 Radar plots of prototypes before collaboration (left column) and after 
collaboration (right column). Coordinates of the plots of the prototypes are 
numbered as follows: 1-maximum temperature, 2-minimum temperature, 
3-average temperature, and 4-precipitation. 

77 



Granular prototypes offer another useful insight into the effects of collaboration (see 
Figure 5.12). We note that the fuzzy sets of prototypes exhibit higher variability with 
respect to precipitation while the variability with respect to average temperature remains 
quite limited (the support of the fuzzy set along this coordinate is very narrow). 

* V 
a v t e m o ' " " P r e c i P 

Figure 5.12 Fuzzy sets of granular prototypes constructed for datasite 6. The prototypes 
are reported in the space of average temperature (av. temp) and precipitation 
(precip). 

The radar plots of the prototypes for c = 6 are shown in Figure 5.13. Here the optimal 
value of p is equal to 0.7 at the 20th phase of collaboration. Through the collaboration, 
the values of the performance index W were reduced from 11.60 (no collaboration) to 
3.79. 
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Figure 5.13 Radar plots of prototypes before collaboration (left column) and after 
collaboration (right column). Coordinates of the plots of the prototypes are 
numbered as follows: 1-maximum temperature, 2-minimum temperature, 
3-average temperature, and 4-precipitation. 
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British Columbia Following the same scheme as discussed for the Alberta weather data, 
we consider 10 datasites in British Columbia: Chemainus (1), Black Creek (2), Alberni 
Robertson Creek (3), Boat Bluff (4), Gibsons Gower Point (5), Langara (6), Bella Coola 
A (7). Babine Lake Pinkut Creek (8), Hixon (9), and Penticton A (10). Radar plots for c = 
3 and c = 6 are presented in Figure 5.14 and 5.15, respectively. For c = 3, the optimal 
value of P was 0.3 and the collaboration was realized in two phases resulting in the 
reduction of W from 22.34 (prior to collaboration) to 7.52 (after collaboration). For c = 6 
the optimal value of p was 0.55 and the collaboration took 20 phases resulting in the 
reduction of the values of W from 22.82 to 7.01. For both c = 3 and c = 6 the prototypes 
reported at each datasite become close to each other after collaboration; note that the 
radar plots in the right-hand column start resembling each other. An even more profound 
effect is reported for c = 6; in this case the prototypes get close to each other. 
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Figure 5.14 Radar plots of prototypes before collaboration (left column) and after 
collaboration (right column), c = 3. Coordinates of the plots of the 
prototypes are numbered as follows: 1-maximum temperature, 2-minimum 
temperature, 3-average temperature, and 4-precipitation. 
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prototypes are numbered as follows: 1-maximum temperature, 2-minimum 
temperature, 3-average temperature, and 4-precipitation. 

For c = 3, the plots of the fuzzy sets of prototypes at datasite 1 are shown in Figure 5.16. 

av temp precip 

82.El.g3 
Figure 5.16 Fuzzy sets of granular prototypes constructed for datasite 1. The prototypes 

are reported in the space of average temperature (av. temp) and precipitation 
(precip). 

We compare the results obtained so far with those obtained for collaborations realized in 
the presence of different information granularity used at the datasites. 
We start with the synthetic dataset and consider a different number of clusters at each 
datasite, that is, c[l] = 3, c[2] = 3, c[3] = 4, c[4] = 2, and c[5] = 5. The results are reported 
in terms of the optimal value of p and the dynamics of collaboration quantified in terms 
of the values of W reported in consecutive phases of collaboration (see Figure 5.17). 

20 Phase no. 

(a) (b) 

Figure 5.17 W regarded as a function of p (a), and dynamics of the collaboration process 
(b) 

For comparison, Figure 5.18 includes the results for the case where the granularity is the 
same across all datasites; in this case we have c[ii] = 3. Interestingly, while the optimal 
value of P remains the same (popt= 0.075), the dynamics of collaboration has changes— 
we observe a number of ripples (oscillations) in the values of W produced in the phases 
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which might be reflective of the heterogeneous character of information granules present 
at each datasite. 

0 0.05 0.1 0.15 0.2 0.25 0.3 fi 2o Phase no. 

(a) (b) 
Figure 5.18 Plots of W treated as a function of P (a), and values of W in successive 

phases of collaboration (b) 

When the granularity of information becomes more diversified, the dynamics of the 
collaboration reflect this effect. Figure 5.19 shows that less diversified datasites come 
with the following numbers of clusters: c[l] = 3, c[2] = 3, c[3] = 4, c[4] = 2, c[5] = 5 and 
more diversified datasites have c[l] = 3, c[2] = 3, c[3] = 4, c[4] = 7, c[5] = 5. 
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Figure 5.19 Performance of collaborative clustering expressed in terms of the values of 
the performance index W: (a) W regarded as a function of P, (b) Values of 
W reported in successive phases of collaboration. 

Effect of the number of information granules across datasites was tested with Boston 
housing (Figure 5.20) and Wine (Figure 5.21) datasets. 
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Figure 5.20 Performance of collaborative clustering expressed in terms of the values of 
the performance index W: (a) W regarded as a function of p, (b) Values of 
W reported in successive phases of collaboration. Clustering of higher 
diversity: c[l] = 3, c[2] = 5, c[3] = 7, c[4] = 10 clustering of lower diversity: 
c[l] = 3,c[2]=5,c[3]=5,c[4] = 2. 
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Figure 5.21 Performance of collaborative clustering expressed in terms of the values of 

the performance index W: (a) W regarded as a function of P, and (b) Values 
of W reported in successive phases of collaboration. Higher diversity in the 
number of clusters: c [ l ] = 5, c[2] = 10; lower diversity of granularity is 
characterized byc[l] = 5,c[2] = 2. 
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5.10 Conclusions 

We have introduced a concept of a multiple phases vertical collaborative mode of fuzzy 
clustering. While the FCM has been used as a generic vehicle of fuzzy clustering, the 
framework of collaboration presented here could be easily applicable to other objective 
function-based techniques of fuzzy clustering leading to the generation of prototypes and 
partition matrices. The crux of the collaboration concerns granular communication 
(exchange) of prototypes generated at different datasites and generation of induced 
partition matrices that are formed on a basis of data locally available at the given datasite. 

The augmented objective function with a series of additional terms involving the effect of 
collaborative development of the clusters is used to guide the overall optimization 
activities. The optimal level of collaboration is calibrated by using a single numeric 
parameter. The collected experimental evidence demonstrates that properly selected 
values of P help to establish meaningful collaborative activities whose effectiveness is 
measured in terms of the proposed consistency measure. 

We establish the framework of collaborative clustering in presence of a different number 
of clusters at each datasite. The underlying algorithm is augmented with a phase during 
which we arrive at a homogeneous form of results produced by an intermediate clustering 
phase where prototypes are grouped. The dynamics of the collaboration process is more 
complex and exhibits more oscillations in the values of the performance index W 
reported in consecutive phases of the collaboration. 

The quality of collaboration can be concisely quantified in terms of granular prototypes 
that reflect the way in which collaboration led to similar results throughout the datasites. 
The series of experiments shows that the values of this index were significantly reduced 
in comparison with cases where no collaboration was established. 

The concepts and algorithms presented here constitute a radical departure from the 
collaborative and cluster ensemble pursuits available in the literature. There are two 
striking differences: (a) the development of clusters is a proactive development in which 
we actively engage in the construction of the clusters by exchanging the findings in 
consecutive phases of collaboration. Other models are static and operate in a.post-mortem 
manner; namely, they try to reconcile the clusters once they have been constructed, and 
(b) the approach provides quantification of the results of collaboration in terms of higher 
order granular constructs. There are some similarities in the sense that in both scenarios 
we are concerned with knowledge reuse and knowledge integration. 

Collaborative clustering realized in the framework presented in this chapter exhibits a 
significant level of generality. Given this, it could be used when solving other tasks of 
collaboration such as, e.g., a collaborative development of regression models, fuzzy rule-
based systems, binary classification, and neural networks. 
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Chapter 6 
Horizontal Fuzzy Collaborative 

Clustering 

The previous chapter was concerned with a collaborative scheme involving intelligent 
agents carrying out collaboration in a so-called vertical mode. 

In this chapter, we focus on a broad category of problems of collaborative data analysis 
realized by a collection of agents having access to their individual data and exchanging 
findings through their collaboration activities in a so-called horizontal mode. Such 
problems of data analysis arise in the context of building a global view at a certain 
phenomenon (process) by viewing it from different perspectives (and thus engaging 
various collections of attributes by various agents). To effectively arrive at meaningful 
solutions in a vast array of problem solving, it becomes imperative to establish a sound 
machinery to reconcile findings which might form partial solutions to an overall problem. 
We develop a comprehensive optimization scheme and discuss its two-phase character in 
which the communication phase of the granular findings intertwines with the local 
optimization being realized by the agents at the level of the individual site and exploits 
the evidence collected from other sites. We show how the mechanism of fuzzy 
granulation realized in the form of a well-known fuzzy c-means (FCM) algorithm can be 
augmented to support collaborative activities required by the agents. We illustrate the 
performance of our approach by conducting experiments over synthetically generated 
data and several selected data sets obtained from the Machine Learning Repository. 

6.1 Introduction 

When traversing a path from data to knowledge, we encounter various information 
processing tasks in which knowledge is being effectively formed from multifaceted and 
multicriteria perspectives. Knowledge formation pursuits of practical relevance 
commonly rely on distributed data sources. On this basis we determine the underlying 
structure in data, construct main relationships between variables, analyze trends, etc. In 
this regard the role of agent systems or multiagent systems has become highly visible, cf. 
[2][3][4][14][16][17]. 

In spite of the diversity of existing methods, some important features manifest themselves 
throughout a number of developments. First, while a local analysis could be completed by 
an agent on the basis of data available there, it is desirable to share and reconcile views 
and findings available from other agents. Second, effective collaborations are better 
established by communicating findings (knowledge sharing) rather than by sharing data. 

89 



Data sharing might not be viable due to limited bandwidth, low energy (which is critical 
in wireless sensor networks), temporal constraints, or security issues. An alternative is to 
realize collaboration at the level of entities more abstract than numeric data, that is, 
information granules. Information granules arise through the application of a fuzzy c-
means algorithm, an important abstraction process: we bring individual numeric entities 
under the same rubric with respect to their closeness, resemblance, spatial ties, and alike 
[12][18]. Interestingly, communication between humans is predominantly carried out at 
the level of information granules [12]. We may contemplate information granules (once 
they are cast in some formal structure) to serve as a generic vehicle to establish 
communication between individual agents. There is a great deal of literature on 
information granules and granular computing in general [18], and many approaches have 
been undertaken to address interactions between agents in problem solving. Intelligent 
agents and granular computing are concepts concerned with collaborative clustering [6][8] 
and its variant experience-based modeling. These techniques overlap with distributed 
modeling [9][13] and fuzzy modeling [10]. 

This study concentrates on a collaborative scheme involving intelligent agents carrying 
out collaboration in a so-called horizontal mode. The scheme is outlined in Figure 6.1. 

phenomenon 

collaborative links 

Figure 6.1 A general view of collaboration realized in the horizontal mode 

In order to model complex phenomena such as economic processes, societal systems, 
ecosystems, or biological architectures, we need to look at them from different points of 
view. The horizontal mode of collaboration is an example of such a perspective. To 
develop a model of a particular phenomenon, we begin by collecting features or attributes 
into datasets: data-1, D[l], data-2, D[2], ..., data-P, D[P]. These sets of attributes could 
be common or disjoint. For instance, if our interest is in a description of the 
socioeconomic structure of a certain region of the world, we would collect various sets of 
descriptors (features) which offer different views of the country. Note that each view is 
established in a unique fashion by choosing some attributes. Obviously, we do not know 
what the most suitable descriptors could be. Bearing in mind the complexity of the 
phenomenon, it is very likely that various perspectives are quite legitimate and when 
discovering the structure in the data it would be advantageous to "compare the notes," 
viz., reconcile the structures being formed from different standpoints. In another example, 
suppose we want to model a general concept of human health, a phenomenon that is 
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multifaceted and difficult to capture. Individuals could be characterized by the outcomes 
of medical tests or psychological tests or some other such identifier. The categories of 
tests (medical, psychological) form spaces of attributes and the entities (individuals) 
described by these tests constitute the corresponding datasets: data-1, data-2, ..., data-P. 
In contrast to the previous example, here we are not allowed to share raw data as there are 
strongly reinforced privacy requirements. Nevertheless, we can engage in collaboration 
by communicating findings in the form of information granules. 

The chapter is arranged in the following manner. The formulation of the problem along 
with its representation as a certain optimization task is provided in section 6.2. Section 
6.3 is devoted to optimizing levels of collaboration; we show that the intensity of 
interactions significantly affects the quality of collaborative findings. In section 6.4, we 
present the experimental results and provide additional observations. Conclusions are 
included in section 6.6. 

6.2 Notations and a formulation of the problem 

Before presenting a concise statement of the problem, the notation used in the derivations 
and methods is described. 

The notation used in this chapter adheres to literature standards. We use boldface to 
denote vectors in n-dimensional space, for instance, x, y, z eRn, where x, y, z, are 
vectors in space R. The distance function used in the clustering is the standard Euclidean 
in which the corresponding features are normalized by including the corresponding 

variance, that is. ||x - y||2 = I—-—j1—, where o^is the variance of the j-th attribute 
j=l C j 

(feature) of the data. We consider a finite number of datasites, denoted by D[l], D[2],..., 
D[P] composed of the same patterns (data) described in different feature spaces Fi, F2, 
Fp. Their dimensionality is equal to n[l], n[2], ..., n[P], respectively. For disjoint spaces: 
F; o Fj = 0 for i * j . Overlapping spaces are not necessarily excluded from 
investigations. While we can reveal the structure of each datasite through fuzzy clustering, 
we are also interested in a collaborative discovery of structure across all data. If we 
cannot access certain datasites, findings at a higher conceptual level of information 
granules will be shared between sites engaged in the collaboration. 

Information granules are constructed through fuzzy clustering, and the fuzzy c-means 
(FCM) algorithm [1][5][7][8]10][12] in particular. In terms of the FCM algorithm for the 
ii-th dataset D[ii], the resulting structural information is conveyed in the form of the 
partition matrix U[ii] with c[ii] clusters formed there. The standard objective function 
minimized by the FCM takes on the form: 

Q["]=£fl4[ii]|K-vi[ii]f. 
k=l i=l 

(1) 
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Along with the partition matrices, fuzzy clustering produces a collection of prototypes. 
For the ii-th datasite we have vi[ii], v2[ii], ..., v0[ii] with prototypes located in F .̂ 
Note that the numbers of clusters need not to be the same for all datasites. Once 
optimization has been completed resulting in the partition matrix and the prototypes, one 
notes that these two descriptors of the data structure are highly complementary: given the 
data, we can determine the prototypes on a basis of the partition matrix. Conversely, for 
the given data and the prototypes provided, we can produce a complete partition matrix. 

This situation is portrayed in Figure 6.2 which illustrates that all communication and 
collaboration occurs at the level of information granules. 

U[l] 

FCM 

Vi[l] U[ii] Vi[ii] U[P] Vi[P] 

I FCM 

D[l] 

««.\\\\\'*&»: 

& 
FCM 

1 D[ii] D[P] 

Figure 6.2 Mechanisms of collaboration realized through communication of granular 
findings (partition matrices). 

Having established the methodology, we move on to algorithmic development of the 
optimization process. 

6.2.1 Collaborative clustering as an optimization process 

We optimize the collaborative formation of information granules by starting with an 
augmented objective function and deriving detailed formulas for the partition matrix and 
the prototypes. For now we assume that the granularity of findings at all datasites is the 
same, that is, c[l ] = c[2] =... = c[P] = c. There are two fundamental ways to communicate 
findings between datasites; which one is used depends on the format of the objective 
function. 

(a) scheme-1. Communication of obtained information is realized in terms of partition 
matrices. The objective function to be minimized at the ii-th datasite involves these 
matricies in the overall minimization process: 

N c P N c 

Q[ii] = Z I ^ [ i i ] | x k -v,[ii]|f + P Z Z 2 > , k [ i i ] - u l k [ j j ] ) 2 ||xk -V l[ i i ] | | 2 , 
k=l i=l jj=l k=l i=l 

(2) 
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where U[jj] = [ujk[jj]] is the partition matrix obtained at the jj-th datasite and made 
available at the ii-th datasite when searching for the structure in D[ii]. The positive 
coefficient P is used to establish a tradeoff between forming the structure on the basis of 
the data being locally available and the structure available at collaborating datasites. 
Optimization of the collaboration level is discussed in section 6.3. 

Optimization details 

Mnimization of the objective function Q[ii] is carried out with respect to the fuzzy 
partition U[ii] and the family of prototypes Vi[ii]. U[jj] is a partition matrix obtained for 
datasite D[jj]. The partition matrix satisfies the following conditions. 

c 

Given the standard identity constraint imposed on the partition matrix, viz. £ uik[ii] = 1, 
i=l 

in the optimization of (2) we use the Lagrange multipliers. For any data point k, k = 1, 
2,.. . , N, we reformulate the objective function as: 

V[ii] = 2 X [ i i ] d £ +P i i (u l k [n ] -u l k [ j j ] ) 2 d^ - M Z u l k [ u ] - l ) 

(3) 
The necessary conditions for the minimum of V[ii] are expressed as: 

dV[ii]^0 aV[ii]_Q 

durs ' a 

After computing the derivative with respect to the elements of the partition matrix we 
obtain: 

| ^ = 2urs[ii]dr
2

s+2PX(uJii]-urs[ii]dr
2

s)-?, = 0, 

i=l jj=l i=l i=l 
jjiii 

(4) 
where r = 1, 2, ..., c; s = 1, 2, ..., N. 

The detailed calculations are shown below: 

2u„[ii]d* + 2P(P-l)uJii]d2 - 2 p d 2 £ u B | j j ] - > . = 0 

uJii](2d2
s+2P(P-l)d2

s)=X + 2pd2
sXursUJ]J 
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X + 2Pd^uB[iJ] 

u j « ] : 
jj=i 
jj*U 

2d*[l + p(P-l)] 

Finally, 

x+^diJXljj] 

urs[ii] 
jj=i 
jj*« 

• + 

2dip+p(p-i)] 2dip+KP-i)] •£, 

Given the constraint of the form 2, U:s[ii] = 1, we obtain: 

*. + 2pd?.$>j,[jj] 

£ 2dJ.[l + PCP-D] 
= i, 

2pd^u JS[jj] 

^•2dJ[l + P(P-

c jj=l 

—+y 2
 jj*n =i . 

l)] tT2d<;[l + p(P-l)] 

In the sequel we have: 

PZUJSUJ] 
it). 
JJ"» 

£2d£[l + P(P-l)] ^ [ 1 + P(P-1)] 

A. = £ 2 d i P + P(P-l)] 
j=i 

PEUJSUJ] 

i - Z 
jj-i 

^?[1 + P(P-1)] 
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Hence, 

P£U,.[JJ] 

•-I ^ [ 1 + P(P-1)] 
1 

2£dJs[l + p(P-l)] 
j=l 

(7) 

c P 

PlEuJSDJ] 
.11*11 

x-2 [ i : p f - l ) ] ( i + P(p- i ) ) . 

j-l d j : 

Plugging (8) into (5) gives: 
(8) 

c P 

Pl2>JSQj] 

2 [i :Pff-i)1 ^pq,-!) ] , 
1 2pd£Xu„[D] 

u„[ii] = 
2 * 
2d*[l + P(P-l)] 

- + • 
2d*[l + P(P-l)] 

Further simplifications lead to: 
(9) 

u j i i ] : 

x . - v . 

j=l X„ - V : 

PSu js[jj] 
j j i i i 

H[I + P(P-I)] 
+ -

P2X 

[i + P(P-i)] 

(10) 
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In optimizing the objective function with regard to the prototypes, we consider the 
Euclidean distance (its weighted version is handled in the same manner). Given the form 
of the distance, the objective function is written: 

N c nfii] P N c 

Q[ii] = Z I u , U i i £ ( x k j - v l J [ i i ] ) 2 + P 2 : Z Z ( u
l k [ l i ] - u i k L i j ] ) 2 I ( x k j - v l J [ i i ] ) 2 . 

k=l i=l j=l jj=l k=l i=l j=l jj=l k=l i=l 
jj*ii 

(11) 

The necessary condition leading to the minimization of Q[ii] comes in the form: 

5Q[ii] 

fr«[ii] 
= 0. 

Then we obtain: 

^ l = -2ju2
k[1i](xkt-vrt[ii]) 

P N 

•2PXZK[ii]-urkLiJ])2(xkt-vrt[ii]) = o 
ii-1 k=l 

After further simplifications: 
(12) 

Finally, 

vrt[ii} 
P N 

JXfiil + PXXKJnl-u^j])2 

jj=i k=i 

P N 

= ZUrk[ i i]Xkt+PZZ(Urk[ i i]-Urk[JJ])2Xkt 
k=l ii=l k=l 

jj*ii 

P N 

^ " ^ [ " ^ k t + P S S ^ r k M - U r k l j J ] ) ^ ^ 
k=l 

v„[ii] = 
jj-1 k=l 
jj*n 

P N 

Z ^ M + P Z I K M - ^ U J ] ) 2 

k=l jj=l k=l 

(13) 

where r = 1, 2, ..., c; t = 1, 2, ..., n[ii]. 
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(b) scheme-2. Communication of the structural findings is again realized in terms of the 
partition matrix U[jj]. However, once it becomes available at D[ii], we compute the 
induced prototypes, denoted here by v;[ii[jj], i = 1, 2, . . . , c. Then the objective function to 
be minimized takes on the form: 

N c P N c 
II2 Q[ii] = E S u * N l x k - v i [ i i ] | r + P l I I u J i i ] 2 | | v i [ i i ] - v i [ i i | j j ] | | 2 . 

(14) 

k=l i=l jj=l k=l i=l 

The minimization of (2) and (14) is realized with respect to the partition matrix U[ii] and 
the prototypes vi[ii]. 

Optimization Details 

Given the standard identity constraint imposed on the partition matrix, the optimization of 
(14), we confine ourselves to the use of Lagrange multipliers. For any data point k, k =1, 
2, ..., N, we expand the objective function to include the constraints: 

N C P N C r-
II2 , r , ' ^ ^ ^ - ' 2r---.ll r - - , r -,l|2 v[n] = xZu*[ii]|K -vi[n]|r+ pXZZ^lMhN-^ijjf-MZ^M-1)-

(15) 

k=l i=l jj=l k=l i=l i=l 

The necessary conditions for the minimum V[ii] are expressed as: 

gV[ii]_Q ^V[ in = Q 

duIS ' a 

After computing the derivative with respect to the elements of the partition matrix we 
obtain: 

^ i l l = 2urs[ii]||xs - v r[iif + 2 p f > 2 [ii]||vr[ii] - vr[ii | j j f ) - X = 0, 

(16) 
where r = 1, 2, ..., c; s = 1, 2, ..., N. 
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The detailed calculations are shown below: 

uj i i ] 2 |x s-v r[ i i] | f+2(3X|v r[ i i]-v r[ i i | j j f X 

urs[ii] = 
2[x s-v r[ii] |2+2|; |3|v r[ii]-v r[ii | j j] 

Given the constraint of the form ^]ujs[ii] = 1, we obtain: 
j=i 

c[ii] 

j=l 2|xs - vj[ii]|2 + 2$£ ||vj[ii] - vj [ii | jj]| 

jj*n 

= 1. 

In the sequel, 

c P 

x=Y2\k - *m + Z 2 P Z bw - Vj[ii I jj] 
j=l 

11*11 

Plugging (19) into (18) gives: 

X2|k -VjEiif +X2:2I3||vj[ii]-vj[ii| jj]| 
j=i 

u„[ii] = -
jj=i j=i 
jj*U 

2|xs -v r[ii]f +2pX|v r[ i i]-v r[ i i | jj]| 
jj=i 
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Further simplifications lead us to: 

uji i] = 
„2 P 

xs-v r[ii] | | + PZfv r[i i]-v r[i i | j j] 

ii n2 ii u2 
=1p.-Vj[ii]| | + P2jv j[ i i ] -v j[ i i | j j ] | 

(21) 

ii=i 
jj*« 

In optimizing the objective function (14) with regard to the prototypes, we consider the 
Euclidean distance (its weighted version is handled in the same manner). Given the form 
of the distance, the necessary condition leading to the minimization of Q[ii] is: 

3Q[ii] = Q 
5vrt 

Then we obtain: 

^ = -2 fX[ i i ] (x k t -vrt[ii])+ 2pXliu?k[ i i ] (v r t[ i i ] -v r t[ i1 | jj])=0. 
C ^ r t k=l jj=l k=l i=l 

j j * " 

(22) 
After further simplifications: 

P N P N 

X u ^ i n x ^ X ^ J i i K M + P X Z ^ ^ K M - P l I u ^ M v J i i l J J ] -
k=l k=l jj=l k=l jj=l k=l 

Finally, 

N P N 

ZU*MX* + P£5X[ii]vrt[ii| JJ] 
k=l jj=l k=l 

v r t M = jj , 
2 X [ i i ] ( i + p ( p - i ) ) 
k=l 

(23) 
where r = 1, 2, ..., c; t = 1, 2, ..., n[ii]. 
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6.2.2 The general flow of collaborative processing 

The algorithmic derivations presented so far are now embedded in the organization of the 
overall collaboration process (refer to Figure 6.3). Two underlying processes are run 
consecutively. Fuzzy clustering is first run independently at each datasite for a certain 
number iterations. The stopping criterion is the one typically used in the FCM algorithm, 
namely, we monitor the changes in the values of the partition matrices obtained in the 
consecutive iterations and terminate the process when the Tchebyshev distance between 
the partition matrices does not exceed a certain predefined threshold e; say, max;,k 
|u;k(iter+l) - u;k(iter)| < s with u;k(iter) being the (i, k)th entry of the partition matrix 
obtained at the iteration "iter." 

Initial Phase 
(FCM) 

Q>mj (*>ra) TiW) 

Collaboration Phase 
(FCC) 

Figure 6.3 An overall process of collaborative clustering underlining two phases of 
clustering realized at the level of individual datasites(initial phase) and 
exchange of structural findings in the form of partition matrices(collaboration 
phase). 
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At this point datasites exchange findings by transferring partition matrices (illustrated in 
Figure 6.3). Afterward an iterative process realizes the minimization of (2) or (14). Again 
when convergence is reported, the results (partition matrices) are exchanged 
(communicated) between the datasites and the iterative computing of the partition 
matrices and the prototypes resumes. 

6.3 Evaluation of the quality of collaboration 

The quality of the results of the collaboration between datasites requires careful 
assessment. As there are partition matrices associated with each of the D[ii]s, one could 
think of treating the distances between them as a measure of the quality of the ongoing 
process of structural reconciliation. However, there may not be direct correspondence 
between the rows (respective clusters) of these matrices [6]; therefore, a direct 
comparison of two partition matrices may not be feasible. In a more general setting we 
might have different numbers of clusters at individual datasites and this could also thwart 
attempts to form a correspondence between partition matrices. Instead, to test the quality 
of our collaboration results, we test how the structure revealed at one datasite performs on 
the remaining ones. Consider the following expression: 

Q["lij] = Z Z u M h - v i [ i j ] | , 
i=l k=l 

(24) 

where ViQj] is induced by the fuzzy partition matrix U[jj] using data at D[ii]. Similarly Xk 
eD[ii]. In a nutshell, Q[ii[jj] expresses how well the structure revealed at D[jj] performs 
for D[ii]. By using the structure revealed at D[l], D[2], ..., D[ii-1], D[ii+1], ..., D[P] we 
compute the following expression: 

W[ii] = XQ[i i | j j ] , 
jj*n 

(25) 
which aggregates the performance of all other structures on the datasite D[ii]. Finally, we 
sum W[ii]s, 

W=W[l]+W[2]+...+W[P]. 
(26) 

This index can be regarded as an overall measure of effectiveness of collaboration. The 
smaller the value of W, the higher the effectiveness of collaboration. As this index is a 
function of p, and W = W(P), we are provided with a vehicle to optimize the strength of 
collaboration. Intuitively, we may observe that higher values of p imply stronger 
interactions between datasites. While this is helpful in reconciling the differences, too 
high values of p might not be suitable if there is significant structural variability between 
datasites leading to high values of W. 
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6.4 Different levels of information granularity 

The collaboration procedures presented so far are quite restrictive in the sense that we 
have assumed that the number of clusters at each of the collaborating datasites is the same. 
While this is a viable alternative if all collaborating parties agree in advance on the level 
of granularity to be realized, in general, this assumption is quite restrictive and unrealistic. 
A far more flexible scenario is the one in which each party considers its own number of 
clusters (which could be quite legitimate considering that data structure could vary from 
site to site). Given this, the algorithmic settings have to be augmented. The major step 
would be to present information granules at each datasite at the level of granularity which 
has been accepted before collaboration. A viable alternative is to construct prototypes on 
a basis of the available partition matrices, cluster them, and use the prototypes obtained in 
this manner in the minimization of the associated objective functions. Proceeding with 
the details, let us consider the ii-th datasite. The partition matrices available at all other 
datasites U[l], U[2], ..., U[P] are used in the formation of the prototypes using the 
patterns atD[ii]. We obtain: 
vi[l],v2[l], ..., v0[i][l] for the partition matrix U[l], 
vi[2], V2[2], ..., vo[2][2] for the partition matrix U[2], 

vi[P], v2[P], ..., vo[P][P] for the partition matrix U[P]. 

Overall, the number of induced prototypes along with the original prototypes available at 
D[ii] is equal to c[l] + c[2] +...+c[P]. We cluster them into c[ii] clusters so the level of 
granularity applied here is consistent with the number of clusters formed for D[ii]. 
Denote the resulting prototypes by vi~[ii], V2~[ii], ...., v0[iif[ii]. These new prototypes are 
used in the following augmented objective function: 

N c[ii] N c[ii] 

Q[ii] = Z I^MlK-vJi i l l +PS £u?Jii]||Vi[ii]-v~[ii] 
k=l i=l k=l i=l 

(27) 

We follow the optimization scheme of different levels of information granularity for 
eq(27) as discussed in Chapter 5 ; section 5.8, where we reported the following partition 
matrix and prototypes: 

r-i l 

urs[n] = Xs-vr[ii]ir+pvr[ii]-v;[ii] 
H|x s - V j [ i i ] | +P|vj[ii]-v-[ii]|| 

(28) 
where r = 1, 2,. . . , c; s = 1, 2, ..., N. 

And 

102 



N N 

Vrt [n] = *-' & , 

2>*[»XI+P) 
k=l 

(29) 
whereas, r= 1,2, ..., c; t= 1,2, ...,n[ii]. 

The overall flow of processing can be outlined as Table 6.1 . 

Table 6.1 The flow of collaborative clustering showing the main optimization phases 
and underlining the mechanism of communication in the form of 
exchange of different level of granulation at each datasite. 

Given: datasites D[l], D[2], ..., D[P] with different structures, viz., levels of 
granularity. Select a number of clusters (c[ii]) for each datasite; set up some 
termination criterion and establish a level of collaboration (interaction) by choosing 
a nonnegative value of P (it could be optimized as discussed in section 6.3). 

Initial phase 
Carry out clustering (FCM) for each datasite producing a collection of prototypes 
{v;[ii]}, i = 1,2, ..., c[ii] for each datasite. 

Collaboration 
Iterate {successive phases of collaboration} 

Communicate the results about the structure determined at each datasite. 

For each datasite (ii) 
{ 

Collect all prototypes from other sites at datasite (ii) and run FCM on that 
collection of all prototypes by selecting the same number clusters at that site to 
generate new prototypes v~[ii]. Minimize (27) at each datasite by iteratively 
proceeding with the iterative calculations of the partition matrix (urs[ii]) and 
the prototypes ( vrt [ii]) using (28) and (29), respectively. 

r= 1, 2, ..., c[ii]; t = 1, 2, ..., n[ii]; s = 1, 2, ...,N 

} for the datasite 

until termination condition of the collaboration activities has been satisfied. 
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The quality of collaboration is optimized by choosing a suitable value of p (which 
minimizes the performance index W given by (26)). 

6.5 Experimental studies 

In this section, we report experimental findings for synthetic and machine learning 
datasets (http://mlearn.ics.uci.edu/MLRepository.html). 

Synthetic data,. For illustrative purposes we consider two-dimensional synthetic datasets 
with five datasites (denoted here as datasite-1, datasite-2, ..., datasite-5) as shown in 
Figure 6.4. Each datasite consists of 600 patterns. These data form a mixture of several 
Gaussian distributions with the following mean vectors: 

datasite-1: 

datasite-2: 

datasite-3 
datasite-4 
datasite-5 

vi=[4.5 9.2] 
v4=[12 4.5] 
vi=[4.0 4.2] 
v4=[11.5 8] 
vi=[4.5 6.0] 
vi=[6.0 4.0] 
vi=[4.3 10.0] 
v5=[2.0 6.5] 

v2=[11.0 9.0] 

v2=[6.0 6] 

v2= [7.0 9.0] 
V2= [6.0 10.0] 
V2=[11.0 9] 

v3 = [5.0 4] 

v3 = [4 10.2] 

v3 = [10.0 6.0] 
v3 = [10.0 10.0] 
v3 = [5 3.5] v4=[11.2 4.0] 

The covariance matrix of all Gaussian components is equal to and it is the 
1.0 0.0 

0.0 1.0 
same for the groups of all datasites. Different distribution of the centers of the groups 
results in quite different topologies of the datasites. Let us stress that at each datasite the 
individual data points are described by the variables specific to the given datasite as 
visualized in Figure 6.4. This underlines the multifaceted view of the data, a part of 
which is captured by each datasite. 

10 12 U 

datasite-1 
10 12 H 

datasite-2 
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Figure 6.4 Two-dimensional synthetic datasets used in the collaboration process; note 

that the mean vectors and covariance matrices vary significantly across 
datasites. 

Machine learning datasets. Here we consider the Wine and Boston Housing datasites. 
The Wine dataset consists of 178 data items described by 13 features (attributes). For the 
Boston Housing dataset we have 506 13-dimensional data. We form some datasites in 
which there are groups of the original features which allow us to assume a certain point 
of view of the data. For the Wine data: 

datasite-1: data are described from the standpoint of strong/acidic compounds: alcohol, 
malic acid, ash, and proline. 

datasite-2: data are concerned with healthy compounds: magnesium, total phenols, 
flavanoids, nonflavanoid phenols, proanthocyanins. 

datasite-3: the attributes used here pertain to color intensity, hue, OD280/OD315 of 
diluted wines, proline, and proanthocyanins. 

For the Boston Housing data we consider 3 datasites formed by the following attributes: 
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datasite-1: It is concerned with a general characterization of surroundings and uses the 
following attributes: 
1. per capita crime rate by town 
2. proportion of residential land zoned for lots over 25,000 sq.ft. 
3. proportion of nonretail business acres per town. 
4. concentration of nitric oxides (parts per 10 million) 
5. median value of owner-occupied homes in $ 1000s 

datasite-2: Here the focus is on convenience aspects related to the following attributes: 
1. average number of rooms per dwelling 
2. proportion of owner-occupied units built prior to 1940 
3. weighted distances to five Boston employment centers 
4. index of accessibility to radial highways 
5. median value of owner-occupied homes in $ 1000s 

datasite-3: The attributes available at this datasite deal with economic aspects: 
1. full-value property-tax rate per $10,000 
2. pupil-teacher ratio by town 
3. 1000 (Bk - 0.63)A2 where Bk is the proportion of blacks by town 
4. percent lower status of the population 
5. median value of owner-occupied homes in $ 1000s 

The collaboration was completed for a suite of parameters. We varied the granularity of 
information granules by changing the number of clusters from 2 to 7. There were 20 
phases of collaboration (exchange of findings), while in-between these exchanges the 
clustering algorithm was run for 80 iterations. Two aspects of the collaboration are of 
particular interest: the optimal values of P and the values of W in successive phases of 
collaboration which reflect the dynamics of the collaboration. The pertinent experimental 
findings are plotted in Figure 6.5. In this case we have implemented scheme 1 of 
collaboration as described by (2). 
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Figure 6.5 Plot of W treated as a function of P for different values of c (a), and the 
dynamics of W reported over successive phases of collaboration—these 
results are reported for optimal values of p (b). 
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We note that when dealing with different levels of information granularity, the optimal 
values of P are around 1. Furthermore, the values of W do not change substantially with 
an increase in the value of p. In all cases the collaboration was beneficial as the values of 
W for p = 0, W(0), were higher than those reported for nonzero values of p. The 
dynamics of the collaboration process are depicted in Figure 6.5 (b). The figure shows 
that for the optimal value of p the values of W were reduced monotonically with the most 
substantial drop reported in the first few phases of the collaboration. Slight oscillations in 
the value of W are noticeable at the beginning of the collaboration. The findings are 
summarized in Table 6.2. 

Table 6.2 Summary of co 

P°PI 

W(0) 

W(20) 

llaboration quantified in terms of the performance index W. 

0.8 
29.267 
19.992 

0.8 
29.996 
13.372 

0.9 
28.449 
10.090 

0.85 
26.586 
8.038 

1.05 
24.583 

6.748 

1.05 
22.950 
5.783 

For the Wine data we report the values of W treated as a function of p and show the 
dynamics of W in successive phases of collaboration. As reported for the Boston Housing 
analysis, W does not seem to be very dependent on P; however, the collaboration is 
beneficial (Table 6.3). The dynamics of the Wine dataset collaboration experiment are 
similar to those of the Boston Housing dataset. 

Figure 6.6 Plot of W treated as a function of P for different values of c (a), and the 
dynamics of W reported over successive phases of collaboration—the results 
are reported for optimal values of p (b). 

Table 6.3 Summary of collaboration quantified in terms of the performance index W. 

c 

Poet 

W(0) 

W(20) 

2 

2.2 
16.370 
14.465 

3 

6 
11.422 
9.370 

4 

4.45 
8.985 
7.081 

5 

2.85 
7.632 
5.705 

6 

4.1 
6.550 
4.760 

7 

3.65 
5.834 
4.091 

It is interesting to see how much the collaboration became reflected in the results of 
clustering itself, such as prototypes. To visualize this effect, Figure 6.7 provides a radar 
plot of the prototypes before and after collaboration. 

107 



c 

2 

3 

4 

5 

6 

7 

Datasite -1 

~'k 
A 

"4-" 

j^r 

':k 
k 

i t 
i 

4 / ^3 

1 

4 / \ 3 

1 

4 / ^3 

1 

:k 
1 

A 

Datasite -2 

- * 

i ^ ^ ^ MM 

X, 
v\ .^ i^ ! 

* 

8 

^•3 

\ - ^ ! 

^C 

1 
i 

8 

V 

B 

4 / 

1 

4 / 

1 

* • 

^3 

^ 

1 

\ ^ 2 

^ 3 

Datasite -3 

" * 

- ^ f 

• ^ 

'̂ Hr 

(L ^ f c * 

^ 

^ 3 

••Bhk'2 

" ^ • j 

^ ^ ^ J ^ J ! 

* 

4 / 

1 

4 ^ 

1 

3 

4/ 

1 

4 / 

^ 3 

^ 3 

S^2 

^ 3 

k 
1 

^ ^ 3 

1 

Figure 6.7 Radar plots of prototypes obtained for datasite-1, datasite-2, and datasite-3. 
Consecutive columns refer to the results before and after collaboration,Wine 
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dataset. The results for different levels of granularity c = 2, 3, ..., 7, are 
shown in successive rows. 

The qualitative aspects of the Boston Housing data collaboration are similar to the results 
for the Wine data. However, the optimal values of p are higher and located in the range of 
3-12 for Boston Housing. The dynamics of collaboration exhibits a quick and smooth 
convergence. In all cases, we note that there is a reduction of the performance index W 
which points to a positive effect of collaboration established by the sites. In all cases, the 
reduction in the values of W (comparing W(20) with W(0)) is in the range of 8% to 34%. 
The resulting radar plots are shown in Figure 6.8. 

Table 6.4 Summary of collaboration quantified in terms of the performance index W. 

c 

Pop! 

W(0) 

W(20) 

2 

12 

14.964 

13.733 

3 

9 

10.767 

8.969 

4 

4.5 

8.625 

6.783 

5 

3.4 

7.576 

5.483 

6 

2.95 

6.606 

4.584 

7 

4.35 

5.955 

3.915 
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Figure 6.8 Radar plots of prototypes obtained for datasite-1, datasite-2, and datasite-3. 

Consecutive columns refer to the results before and after collaboration, 
Boston Housing dataset. Results for different levels of granularity c = 2, 3 , . . . , 
7, are shown in successive rows. 

We proceed now with the scheme 2 of collaboration. Starting with the synthetic data, 
there is a substantial reduction in the value of the performance index W as reported in 
Table 6.5. The dynamics of collaboration are the same as reported in scheme 1. The 
optimal value of P is 0.4 and the quality of collaboration is quite insensitive to P as 
visualized in Figure 6.9 (a). 

Table 6.5 Summary of collaboration reported in terms of the performance index W and 
optimal values of p. 

c 

Popt 

W(0) 

W(20) 

2 

0.4 

29.26 

19.97 

3 

0.4 

30.00 

13.31 

4 

0.4 

28.45 

9.98 

5 

0.4 

26.62 

7.99 

6 

0.4 

24.58 

6.66 

7 

0.4 

22.93 

5.70 
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Figure 6.9 Plots of W treated as a function of p for different values of c (a), and the 
dynamics of W reported over successive phases of collaboration—the results 
reported are for optimal values of p (b). 

Results of the Wine data analysis are presented in the same way as the results of the 
Boston Housing data analysis. We report the values of W treated as a function of P and 
show the dynamics of W in successive phases of collaboration. The main trend for the 
Wine data is similar to that of the Boston Housing data; i.e., W does not seem to be very 
dependent on p. The collaboration effect is beneficial and its effect is quantified in Table 
6.6. 

Table 6.6 Summary of collaboration quantified in terms of the performance index W and 
optimal v< 

c 

Popt 

W(0) 

W(20) 

ilues of 
2 

0.85 
16.37 
14.92 

P-
3 

2.7 
11.42 
10.39 

4 

2.3 
9.02 
7.72 

5 

3.85 
7.63 
6.50 

6 

0.05 
6.57 
5.45 

7 

0.5 
5.85 
4.50 

Datasite -1 Datasite -2 Datasite -3 
l 

4 ' v3 
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Figure 6.10 Radar plots of prototypes obtained for datasite-1, datasite-2, and datasite-3. 
Consecutive columns refer to the results before and after collaboration. The 
results for different levels of granularity c = 2, 3, ...,7, are shown in 
successive rows. 

For the Boston Housing data, the qualitative aspect of the collaboration is the same as for 
the Wine data. However, the optimal values of P for Boston Housing data are higher, 
located in the range of 0-6. 

Table 6.7 Summary of collaboration quantified in terms of the performance index W. 

c 

Pop! 

W(0) 

W(20) 

2 

0 

14.96 

14.96 

3 

3.85 

10.77 

10.67 

4 

6 

8.63 

7.66 

5 

5 

7.58 

6.05 

6 

0.55 

6.62 

5.07 

7 

2.9 

6.01 

4.34 
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Consecutive columns refer to the results before and after collaboration. The 
results for different levels of granularity c = 2, 3 , . . . , 7 are shown in 
successive rows. 

For the synthetic data (Figure 6.4), where we consider a scenario in which the level of 
granularity varies between datasites. More specifically, we consider that c[l] = 4, c[2] = 3, 
c[3] = 3, c[4] = 3, c[5] = 5. Variation in levels of granularity produces qualitative changes 
in the nature of W. We note some oscillations in the values of W with respect to p. 
Furthermore, the optimal value of (3 is substantially lower (P = 0.06). 
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3, c[3] = 3, c[4] = 3, c[5] = 5 (a), and the more detailed plot of W for lower 
range values of p (b). 

The distribution of prototypes is illustrated in Figure 6.13. Given the low level of optimal 
collaboration, we note that the most significant changes in the location of the prototypes 
are visible in datasite-5 where one prototype is significantly moved around to become 
consistent with the structure revealed from the perspective of other datasites. 
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Figure 6.13 Distribution of prototypes in datasites before and after collaboration; p = 0.06. 

6.6 Conclusions 

Building a global and coherent view of complex systems (phenomena) has always been 
an ongoing challenge. This study offers an approach to this problem by presenting a way 
of reconciling local findings through collaborative clustering in which information 
granules are exchanged and actively engaged in further structuralization of data by means 
of fuzzy clustering. While the FCM algorithm, commonly used in information 
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granulation, has been used to demonstrate detailed algorithmic aspects, the proposed 
framework can be adopted to deal with any objective function-based fuzzy clustering. 

In all cases tested, experiments revealed that collaboration leads to a higher consistency 
of results (quantified in terms of the performance index), however, there are differences 
in terms of the intensity of collaboration. Interestingly, in a number of cases the choice of 
the intensity parameter p does not seem to be overly critical and the performance of the 
collaborative environment is retained over a relatively large range of values of p. 

Two open design aspects deserve further attention. One is concerned with more levels of 
collaboration—this reflects the willingness of agents to collaborate (e.g., by accepting 
findings coming from others and taking them into consideration when running clustering 
for the agent's local data). This means that instead of a single scalar quantity p we may 
envision individual coefficient Pij for each pair of agents. Note that no symmetry is 
required so one might have different values of py and PJ;. The optimization of these 
coefficients needs further investigation. Coefficients could also be made time dependent 
allowing a variable collaboration in consecutive phases. The other issue is related to the 
aggregation of findings at different datasites when the collaboration has been completed. 
This may result in higher order granular constructs such as type-2 fuzzy sets. Fuzzy 
partition matrices are comprised of fuzzy set entries rather than the single numeric 
membership grades employed in this study. 
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Chapter 7 

Experience-Consistent Modeling: 
Regression and Classification Problems 

This chapter develops an extension of two traditional statistical method of modeling and 
pattern classification. With regard to the usage of data, we encounter several fundamental 
problems that require careful attention. The previously available datasets could be 
substantially larger, meaning that relying on the models formed in the past could be 
beneficial for the development of the current model. 

The experimental studies presented include some synthetic data, selected datasets from 
the Machine Learning Repository and census housing data from the Statistical Library. 

7.1 Introduction 

System modeling is inherently associated with an intensive and prudent usage of 
experimental data. In spite of the evident diversity of available models, all of them 
exploit the existing data in order to establish a structure of the respective model and 
estimate its parameters. This general observation applies equally well to regression 
models [5][6][8][10][14][15], neural networks, cognitive maps, rule-based systems, fuzzy 
systems [2][9][12][13][17] and alike. Generalization capabilities of the models rely in a 
direct manner on the characteristics of data (in particular their representative capabilities 
with respect to the problem at hand) and the nature of the model itself. The characteristics 
of data deserve particular attention in case we encounter small data sets that could be also 
biased by some noise. The models developed on a basis of the limited and noisy dataset 
typically exhibit low prediction capabilities. A certain alleviation of the problem of this 
nature could be realized by contemplating reliance on other sources of knowledge about 
the system to be modeled, especially where they might have been acquired in the past. 
They are not necessarily data themselves (whose accessibility could be limited to various 
reasons) but could be available in the format of the parameters of the models. In the 
anticipated modeling scenario, it becomes advantageous not only to consider currently 
available data but also to actively exploit previously obtained findings. Such 
observations bring us to the following formulation of the problem: 

Given some experimental data, construct a model which is consistent with the 
findings (models) produced for some previously available data. Owing to the 
existing requirements, such as privacy or security of data, as well as some other 
technical limitations in the construction of the model an access to these previous 
data is not available. However, we can take advantage of the knowledge of the 
parameters of the existing models. 
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Considering the need to achieve a certain desired consistency of the proposed model with 
the previous findings, we refer to the development of such models as experience-based or 
experience-consistent modeling. Depending on the nature of the model, we distinguish 
between regression models (in which the output variable is continuous) and classification 
problems (classifiers), where we encounter a small number of discrete class labels 
[3][4][11][16][18][17]. 

In the experience-consistent models we may encounter a number of essential constraints 
that imply a way in which the underlying processing can be realized. For instance, it is 
common that the currently available data is quite limited in terms of its size (which 
implies limited evidence of the dataset), while the previously available datasets could be 
substantially larger, meaning that relying on the models formed in the past could be 
beneficial for the development of the current model. 

In this chapter, we are concerned with system modeling that involves data and reconciles 
the developed model with some previously acquired domain knowledge being captured in 
the format of already constructed models that were based on auxiliary datasets. To 
emphasize the nature of modeling guided by the reconciliation mechanisms, we refer to 
this mode of identification as experience -consistent modeling. The chapter presents the 
conceptual and algorithmic framework by considering regression models. By forming a 
certain extended form of the performance index, we can show that the domain knowledge 
captured by regression models can play a similar role as a regularization component used 
in identification problems. It will be shown that a level of achieved consistency can be 
quantified through fuzzy sets (fuzzy numbers) of the parameters of the model, 
subsequently leading to the concept of fuzzy linear regression. Experimental results 
involve both synthetic low-dimensional data and selected data from the Machine 
Learning Repository. Furthermore, the data used in the experiments give rise to 
regression models as well classification problems. 

7.2 Problem statement 

We consider a regression model formed on a basis of some data D and influenced by the 
models formed with the use of other data Di, D2, ..., and Dp. To realize a mechanism of 
experience consistency, we introduce several pertinent performance indexes that help 
quantify interaction between the models. 

The optimization process starts from the optimal estimation of the parameters of the 
linear regression model for D, which assumes the form aTx +ao. As usual, the optimal 
parameters of the model minimize the standard sum of squared errors 

Q = ^X( a T * k
+ a o-y k ) 2 

JX xkeD 
ykeD 

(1) 
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With each datasite (dataset) Di, D2,... .Dp we associate its local linear regression model 
described by the vector of parameters a[ii] and ao[ii], ii=l ,2,... P. The indexes in squared 
brackets point at the specific dataset. The crux of the consistency-driven modeling is to 
form the regression model on a basis of D while making the model perform consistently 
close to the individual models formed for the respective Djs. Using the following 
performance index, we strike a balance between the model formed exclusively on a basis 
of data D and the consistency of the model with the results produced by the models 
formed on a basis of some other datasites D;s 

V= 2> T x k +a 0 
xkeD 
y keD 

yk)2 +<*X X ( a T x k + ao -aTLj]xk 
j=l x k sD 

ykeD 

-a0LJ])2 

(2) 
The minimization of V for some predefined value of a leads to the optimal vector of 
parameter relies on the constraints of consistency(detail derivation is in Appendix-A) 
denote the vector of these parameters by aopt. An overall balance captured by (2) is 
achieved for a certain value of a. Here a certain tendency becomes clearly visible: higher 
values of a stress higher relevance of other models and their more profound impact on 
the constructed model. The essence of the minimized performance index is schematically 
illustrated in Figure 7.1 (a). Observe that the assessment of consistency is realized by 
making use of the dataset D. First, the model is constructed on the basis of D. Second, the 
consistency is expressed on a basis of differences between the constructed model and 
those models coming from D;s where the differences are assessed with the use of data D. 
There is yet another interesting view of the format of the minimized performance index. 
The second component in V plays a role that is similar to a regularization term being 
typically used in estimation problems. However, its origin here has a substantially 
different format from the one encountered in the literature. In other words, we consider 
other data (and models) rather than focusing on the complexity of the model expressed in 
terms of its parameters. 

D (N) 

o-=> M n . V F.. »i[p] 

D (N) 

O 
aopt 

Min„ VV 

ai [ i ] .• : 
: ai[2] 

o' 6 -o 
Dp (NP) 

aopt aopt 

D , (N,) D 2 (N2) 

1 C 
D, (N,) D* (N,) 

a o -*o 
Dp(N P ) 

(a) (b) 

Figure 7.1 Minimization of the performance index V - a schematic view of the 
construction of the model (a) and a way of the maximization of consistency 
of the model across all data sets (b). 
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While the semantics of the above performance index (2) is straightforward, a choice of 
the value of a requires some attention. To optimize the level of contribution coming from 
the datasets, we may adhere to the following evaluation process that consists of two 
fundamental components. The quality of the optimal model is evaluated with respect to 
data D. The same optimized model is transferred to each Dj (viz. the parameters of the 
model are made available at Dj) and its quality is evaluated there. We combine the results 
(viz. the corresponding squared errors) by adding their normalized values. Given these 
observations, the index quantifying a global behaviour of the optimal model arises in the 
following form 

1 p 1 
w = M 2>oPtxk + aooPt -yk)2 + Z T T - Z K A + a 0 o p t - yk)

2 

N x K eD j=l JXj x„eDj 
y k e D y k 6 D j 

(3) 
Apparently the expression of W is a function of a and the optimized level of 
consistency is such for which W attains its minimal value, namely 
«oPt = arg Min W(ot). 

The optimization scheme (2) along with its evaluation mechanisms governed by (3) can 
be generalized by admitting the various levels of impact that each data D; could have in 
the process of achieving consistency. We introduce some positive weights w;, i=l, 3, ...p 
which are used in the performance index 

p 

V= Z(aTx k
 + a o -Yk)2 + <*Zwj £ (a T x k +a0 - a T U K -a0[j])2 

x k e D j=l x k eD 
y k eD 

(4) 
Lower values of w; indicate lower influence of the model formed on a basis of data D; 
when constructing the model for data D. The role of such weights is particularly apparent 
when dealing with data D;, which are in some temporal or spatial relationships with 
respect to D. In these circumstances, the values of the weights are reflective of how far 
(in terms of time or distance) the sources of the individual data are from D. For instance, 
if Dj denotes a collection of data gathered some time ago in comparison to the currently 
collected data Dj, then it is intuitively clear that the value of weight Wj should be lower 
than Wj. 

As an auxiliary performance index that expresses a quality of the model for which (2) has 
been minimized with a being selected with regard to (3), we consider the following 
expression 

Q~ = — Z(aoPtxk +aooPt - y k ) 2 

•N xkeD 
ykeD 

(5) 
The values of Q~ considered vis-a-vis the results expressed by (1) are helpful in assessing 
the extent the regression model optimized with regard to data D while achieving 
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consistency with Di, D2, ..., Dp deteriorates when applied to D over the optimal 
regression model being optimized exclusively on a basis of D. 

The same way of incorporating experiential consistency is realized in case of linear 
classifiers [7]. Considering a two-class problem {©1, ©2}, we use the following labeling 
scheme of the form: if Xk belongs to class ©1, the output yk is taken as +1. Otherwise (for 
class ©2) we assign value yk equal to -1. Given this dataset, we run a standard regression 
procedure. The pattern Xk is said to be correctly classified when one of the following 
conditions is satisfied 

aTxk + a0 > 0 and Xk belongs to class 001, viz. yk = +1 

aTxk +ao < 0 and xk belongs to class co2, namely yk = -1 
(6) 

Otherwise a classification error occurs. The classification error rate (classification error) 
is taken as a ratio of the number of misclassified patterns (n) and all patterns (N), that is e 
= n/N. An error (expressed in %) produced for all datasites (D, and D;) is computed in the 
form 

' n[l] + n[2] + ... + n[P] + n 
E = 100 

(7) 
N[l] + N[2] + ... + N[P] + N 

The above formula is a certain analog of the expression provided by (3). 

7.3 Models through characteristics of granular parameters 

Once the mechanism of experience consistency has been invoked, the determined 
parameters of the optimized model can be further evaluated. In particular, we are 
interested in quantifying the nature of the parameters of the model so that they reflect 
upon their reliance on several models formed for the previous data. The essence of the 
problem is in a representation of a collection of numeric values of the same parameter of 
the models in a form of some aggregate. A certain alternative is to form a fuzzy set whose 
membership function captures individual numeric values. The idea introduced in [7] 
follows this observation. Let us consider a finite number of numeric values {zi, Z2, ..., 
zP}. 

We intend to span a unimodal fuzzy set A[13] over data z; in such a way that it represents 
these data to the highest possible extent. The form of the membership is also defined in 
advance. For instance, we could consider triangular membership functions, such as 
Gaussian, parabolic, etc. Furthermore we consider that a modal value of A, say "u", is 
given. Let us look at the values of z; that are lower than u, z, < u. We use them to estimate 
the parameters of the left-hand side of the membership function. The determination of the 
right-hand side of the membership function is realized in an analogous manner. The 
method for computation of a membership function of fuzzy set of type-2 is covered in in 
Chapter 4 (Section 4.2.1). 
The procedure is applied to the formation of fuzzy sets of the parameters of the regression 
model in D. As an example, consider the i-th parameter of the regression model at D, say 
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ai. The corresponding values of the same parameter of the same coefficient of the 
regression model available at Di, D2, ..., Dp are ai[l], ai[2], ..., a;[P]. The resulting fuzzy 
set A; has ai as its modal value and its parameters are determined on the basis of the 
numeric evidence available in this manner, viz. zi = a;[l], Z2=ai[2],..., zp=a;[P]. A 
particular form of the fuzzy set could come with its triangular membership function. This 
fuzzy set is fully characterized by its three parameters, such as Uj, ai, bi, with a* and bi 
denoting its lower and upper bound. We also use the concise notation Ai(ai, UJ, bi) to 
describe this fuzzy set. In addition to their evident simplicity and good interpretability, 
fuzzy numbers of this nature are easy to compute with, especially when dealing with 
linear models. The extension of the linear model y =ao + aix to its fuzzy counterpart reads 
as Y = Ao © Ai 0 x where Ao= <c, n, d> and Ai =<a, m, b> are abbreviated descriptors 
of triangular fuzzy numbers of the parameters. The symbols © and ® are used to 
underline the nonnumeric nature of the arguments being used in the model over which the 
multiplication and addition are carried out. The resulting output Y of this regression 
model is again a triangular fuzzy number Y = <w, y, z> where their parameters are 
computed as follows 

Modal value n + mx 
Lower bound c + ax if x>0 and d + bx otherwise 
Upper bound d+ bx if x> 0 and c+ax otherwise 

The spread of the output Y reflectes of the consistency of the sources of data and 
knowledge being used in the formation of the regression model. 

7.4 Experimental studies 

In the ensuing series of experiments, we consider a suite of synthetic and real-world data 
that involve both regression and classification nature of problems. The characteristics of 
data used along with their origin are summarized in Table 7.1. 

Table 7.1 A suite of experimental datasets (used in the design of regression models) 
No. 

1 
2 
3 
4 
5 

6 
7 
8 

Dataset 

Machine-CPU 
Auto-mpg 
Breast Cancer 
Auto Car Price 
California House 

Friedman Synthetic 
Abalone 
Boston Housing 

Source 

UCI- Web* 
UCI 
UCI 
UCI 
StatLib 
Repository -
Web& 
[1] 
UCI 
UCI 

Number 
of data 
(N) 

209 
398 
194 
159 

20,640 

40,768 
4177 
506 

Number of 
features 
(attributes) (n) 

7 
8 

33 
17 
9 

11 
9 
14 

Note: Web*: http://www.ics.uci.edu/'-
Web&: http://lib.stat.cmu.edu/ 

mlearn/MLRepository .html. 
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We start with several two-dimensional synthetic datasets that are helpful in illustrating 
the very nature of the problem and quantify the effect of forming consistency under 
various circumstances. 

Synthetic data-1 We consider a two-dimensional synthetic data shown in Figure 7.2. The 
300 data points are linearly distributed with a strong linear tendency between "x" and "y". 
In the series of completed experiments, we distribute the data among "P" subsets of equal 
size. The value of "P" varied in-between 1 and 9. The obtained results are reported in 
Table 7.2 in which we summarize the values of all performance indexes discussed in 
Section 7.2. 

2000 

500 1000 1500 2000 

Figure 7.2 Plot of two-dimensional x-y synthetic data 

Table 7.2 Values of performance index obtained for optimal values of a; aopt are also 
reported here. 

p 

Q 
aopt 

VV (a=0) 

W ( a v l ) 

Q~ 

1 

37.24 

0.89 

72.04 

71.20 

37.69 

2 

33.73 

1.18 

108.91 

106.81 

34.35 

3 

33.06 

0.73 

151.22 

142.46 

35.36 

4 

39.71 

1.66 

182.26 

178.08 

40.51 

5 

35.85 

0.83 

221.98 

213.60 

37.11 

6 

33.11 

2.34 

251.42 

249.82 

33.31 

7 

26.30 

1.45 

306.40 

284.25 

29.35 

8 

33.10 

1.59 

332.03 

320.05 

34.38 

9 

37.10 

0.72 

377.97 

356 

39.84 

The results are very similar for different splits. The model constructed on a basis of data 
D exhibits a very similar performance to the individual models formed on a basis of DiS. 
This result is not surprising at all given the nature of the data, which in essence leads to 
very homogeneous subsets of data generated in this manner. In essence, we encountered 
some very minor differences when sampling the data shown in Figure 7.2. Subsequently 
the values of Q and Q~ (which pertain to the optimal value of a) become very similar. 
There is no noticeable differences in the values of W obtained for a =0 and a^ . 
Quantification effect of collaboration: 

The effect of consistency enhancement is quantified in terms of fuzzy sets of parameters 
of the regression model. Following the construction discussed in Section 7.3, we arrive at 
fuzzy numbers describing granular parameters of the linear model. The obtained results 
for selected values of P are shown in Figure 7.3 and 7.4. It is noticeable that the spreads 
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of the fuzzy numbers obtained after experience-consistent adjustment become more 
confined (viz. the support of the corresponding fuzzy numbers gets smaller). There is also 
some shift in the location of the support of the resulting fuzzy numbers. 

Figure 7.3 Membership functions of fuzzy sets of parameters of the regression model (a) 
fuzzy set ao and ( b) Fuzzy set ai with P = 9. Dotted lines denote 
membership functions obtained before experience consistent development of 
the model while the solid lines deal with the model's parameters that has been 
developed when invoking the consistency mechanism. 
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Figure 7.4 . Membership functions of fuzzy sets of parameters of the regression model 
(a) fuzzy set ao and ( b) Fuzzy set ai with P = 6. Dotted lines denote 
membership functions obtained before experience consistent development of 
the model while the solid lines deal with the model's parameters that here 
been developed when invoking the consistency mechanism. 

Synthetic data-2. Here we consider D, Di, D2,..., D5 as shown in Figure 7.5. These 
datasets (each of them consists of 100 elements) exhibit some diversity as to the 
corresponding relationships between input and output variables. Furthermore each of 
them is contaminated by some noise. 
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Figure 7.5 Two-dimensional synthetic datasets: Datasite, Datasite-1,..., Datasite-5 
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Table 7.3 Values of performance indexes for selected valued of P. 

p 

Q 
CCopt 

W (<x=0) 
W(ao p t) 
Q~ 

1 

16.62 

0.98 

125.71 

78.98 

40.05 

2 

16.62 

0.67 

2,878 

2,024 

383.93 

3 

16.62 

1.08 

3,280 

2,558 

216.84 

4 

16.62 

0.79 

11,895 

8,516 

945.70 

5 

16.62 

0.95 

16,042 

13,554 

447.27 

As revealed in Table 7.3, the higher number of datasets lead to the growing role of the 
consistency based modeling that becomes reflected in higher values of differences 
between W obtained for a equal to zero and its optimized value (aopt). There is no 
strong relationship between an optimal value of a and P; it has been found, however, that 
these optimal values are located around 1. 

Real-world data/The series of experiments was carried out by making use of the 
Machine Learning repository datasets as well as others included in Table 7.1. We 
considered a series of splits (p). For any scenario, we repeated an experiment 10 times to 
achieve higher confidence in the obtained results. For example, for a certain number of 
datasets (p), the split was repeated 10 times and the results are reported in terms of their 
mean values and standard deviations. The results are reported in a tabular format, Table 
7.4. 

In spite of some differences, several general observations can be made. The experience -
consistent model contributes to the lower values of the performance index (W) and the 
differences between its values for a =0.0 and aopt are higher when the number of data 
sets is higher, demonstrating that experience consistency contributes to the models of 
enhanced quality. The optimal values of a depend on data and the number of datasets. 
However, a range of their values lies between 1 and 5. 

Table 7.4 Results of experience-based modeling for selected Machine Learning datasets: 
(a) Abalone, (b) Boston Housing, (c) Auto-mpg, (d) California Housing, (e) 

p 
Q 

Otopt 

w 
(a=0) 
W 
(a-opt) 

Q~ 

Fried Synthetic 
1 

4.80 
±0.15 
1.29 
±0.84 
9.75 
±0.06 

9.66 
±0.002 

4.84 
±0.15 

2 

4.88 
±0.21 
1.29 
±0.84 
9.75 
±0.06 

9.66 
±0.002 

4.84 
±0.15 

and(f) 
3 

4.93 
±0.22 
2.52 
±3.13 
19.76 
±0.30 

19.38 
±0.04 

5.03 
±0.21 

Machine-CPU activity. 
4 

4.78 
±0.32 
4.43 
±4.81 
24.74 
±0.40 

24.26 
±0.05 

4.86 
±0.30 

5 

4.74 
±0.39 
3.27 
±4.19 
30.01 
±0.57 

29.16 
±0.09 

4.90 
±0.45 

6 

4.77 
±0.38 
3.52 
±4.50 
34.78 
±0.56 

34.00 
±0.06 

4.91 
±0.38 

7 

4.82 
±0.48 
2.68 
±4.03 
39.97 
±0.76 

38.89 
±0.06 

4.98 
±0.54 

8 

4.89 
±0.27 
2.05 
±3.23 
44.69 
±0.39 

43.81 
±0.09 

4.98 
±0.24 

9 

4.73 
±0.24 
3.18 
±4.71 
50.19 
±1.44 

48.69 
±0.12 

4.87 
±0.27 
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(a) 

p 
Q 

Copt 

w 
(o-0) 
w 
(OCopt) 

Q~ 

1 

22.23 
±2.69 
0.918 
±0.12 
45.74 
±0.66 
43.85 
±0.03 

23.22 
±2.79 

2 

18.72 
±3.83 
1.008 
±0.30 
71.02 
±3.51 
65.60 
±1.45 

20.28 
±3.82 

3 

17.98 
±4.74 
1.403 
±0.68 
102.75 
±11.59 
87.91 
±0.63 

20.66 
±3.81 

4 

18.80 
±3.10 

0.90 
±0.44 
126.32 
±12.73 
110.27 
±1.10 

21.49 
±4.18 

5 

17.74 
±5.68 
0.967 
±0.62 
164.39 
±10.18 
133.15 
±1.30 

22.56 
±6.96 

6 

17.60 
±6.04 
1.81 
±1.81 

215.07 
+72.98 
155.64 
±3.36 

22.23 
±6.16 

7 

12.75 
±5.46 
1.94 
±2.88 
233.55 
±26.79 
180.47 
±3.91 

17.73 
±5.66 

8 

13.71 
+5.23 
1.94 
±2.25 
335.80 
116.70 
202.05 
±2.17 

20.50 
±4.73 

9 

16.09 
±8.98 
1.745 
±2.97 
366.94 
±149.29 
229.75 
±10.39 

23.85 
±10.04 

(b) 

p 
Q 

°topt 

w 
(<x=0) 
W 
(Otopt) 

Q~ 

1 

10.68 
±1.07 
1.00 
±0.14 
22.34 
±0.30 
21.84 
+0.01 
10.93 
±1.12 

2 

10.74 
+0.87 
0.96 
±0.19 
34.54 
±0.96 
32.71 
+0.32 
11.33 
±0.94 

3 

10.28 
+1.94 
1.17 
±0.29 
48.34 
±1.53 
43.78 
±0.16 
11.31 
±1.88 

4 

11.31 
±1.88 
0.95 
±0.38 
60.53 
±2.88 
54.64 
±0.64 
10.92 
+1.47 

5 

7.99 
±1.29 
1.12 
±1.18 
71.65 
±3.28 
65.44 
±0.82 
8.94 
±1.32 

6 

8.58 
±1.35 
1.06 
+0.24 
91.71 
±9.61 
76.01 
±0.99 
10.44 
±0.91 

7 

8.30 
±2.19 
2.20 
±2.99 
105.24 
±11.12 
87.56 
±0.91 
10.06 
±2.74 

8 

9.61 
±2.37 
2.01 
±2.89 
119.71 
±7.86 
98.75 
±0.51 
11.43 
±2.39 

9 

9.98 
+3.20 
1.82 
±2.90 
139.13 
±23.58 
109.24 
±1.80 
12.50 
±4.44 

(c) 

p 
Q 

aopt 

w 
(a=0) 
W 
(«opt) 

Q~ 

1 
4.84e+9 
±8.76e+7 
1.062 
±0.20 

9.68e+9 
±9.03e+6 

9.66e+9 
±69.7 

4.85e+9 
±8.73e+7 

2 
4.75e+9 
±1.49e+8 
1.22 
±0.44 
1.45e+10 
±l.lle+7 

1.45e+10 
±164128 

4.76e+9 
±1.51e+8 

3 
4.80e+9 
±1.22e+8 
2.53 
±2.81 
1.94e+10 
±5.45e+7 

1.93e+10 
±1.21e+6 

4.82e+9 
±1.27e+8 

4 
4.76e+9 
±1.43e+8 
1.45 
±1.31 
2.43e+10 
±7.12e+7 

2.42e+10 
±3.11e+6 

4.79e+9 
±1.42e+8 

(c 

P 

Q 

aopt 

w 
(a=0) 
W 
(Otopt) 

1 

6.90 
+0.05 
1.002 
±0.01 
13.84 
±0.003 
13.84 
±5.02e-7 

2 

6.88 
±0.08 
1 
±0.02 
20.77 
±0.006 
20.76 
±0.0002 

3 

6.84 
±0.12 
0.99 
±0.019 
27.70 
±0.005 
27.679 
±1.83e-6 

4 

6.86 
±0.13 
1.01 
±0.02 
34.64 
±0.01 
34.60 
±0.001 

5 
4.73e+9 
1.36e±8 
3.81 
4.40 
2.93e+10 
±2.60e+8 

2.90e+10 
±2.07e+6 

4.77e+9 
±1.54e+8 

6 
4.86e±9 
±1.65e+8 
4.41 
±3.58 
3.41e+10 
±1.34e+8 

3.38e+10 
±5.58e+6 

4.89e+9 
±1.71e+8 

7 
4.87e+9 
±2.16e+8 
4.45 
±4.78 
3.90e+10 
±2.42e+8 

3.87e+10 
±5.36e+6 

4.91 e+9 
±2.30e+8 

8 
4.69e+9 
±2.596+8 
3.21 
±4.00 
4.41e+10 
±3.93e+8 

4.35e+10 
±1.07e+7 

4.77e+9 
±2.78e+8 

9 
4.76e+9 
±7.02e+7 
6.74 
±4.40 
4.87e+10 
±2.59e+8 

4.83 e+10 
±8.29e+6 

4.80e+9 
±8.34e+7 

I) 

5 

6.94 
±0.123 
1.001 
±0.031 
41.57 
±0.016 
41.52 
±0.003 

6 

6.88 
±0.203 

0.993 
±0.04 
48.54 
±0.036 
48.44 
±9.11e-6 

7 

6.83 
±0.131 
0.984 
±0.03 
55.47 
±0.038 
55.36 
±1.02e-5 

8 

6.83 
±0.129 
1 
±0.05 
62.39 
±0.040 
62.28 
±0.003 

9 

6.901 
±0.194 
1.001 
±0.067 
69.37 
±0.055 
69.2 
±0.006 
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Q~ 6.90 
±0.05 

6.89 
±0.08 

6.84675 
±0.115 

6.87 
±0.13 

6.95 
±0.124 

6.89 
±0201 

6.84 
±0.131 

6.84 
±0.130 

6.92 
±0.195 

(e) 

p 
Q 

aopt 

w 
(cc-0) 
W 
(OCopt) 

or 

I 
1772.84 
±733.67 
2.23 
±2.59 
17220.8 
±3576.26 
11199 
±437.90 
3229.45 
±1096.85 

2 

1533.12 
±1019.79 
4.008 
±4.09 
24237.3 
±5403.05 
15857.4 
±1389.58 
3050.02 
+1734.26 

3 

1231.58 
±645.81 
6.22 
±4.69 
31183.3 
±7643.06 
19775.5 
±1320.46 
2784.65 
±1159.20 

4 

2595.66 
±1785.79 
1.97 
±3.16 
42424.4 
±15353.5 
25034.9 
±2827.43 
5166.55 
±3292 

5 

856.969 
±403.87 

5.55 
±4.81 
45970.9 
±17708.6 
29331.5 
±4881.99 
2844.94 
±3171.75 

6 

1164.67 
±1318.84 
6.43 
±4.48 
72711.6 
±30750.9 
32931.3 
±1614.58 
3941.63 
±3771.08 

(f) 

The fuzzy numbers of the parameters of the regression models are included in Figures 
7.6- 7.7. It is noticeable how the parameters of the models are affected by the experience 
consistency component. 
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Figure 7.6 Fuzzy numbers of the regression model (ao, ai, ..., as) for the Boston housing 
with P=6. Dotted lines denote membership functions obtained before 
experience consistent development of the model, while the solid lines deal with 
the model's parameters that have been developed when invoking the 
consistency mechanism. 
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Figure 7.7 Fuzzy numbers of the regression model (ao, ai, ..., as) for the Auto-mpg with 
P=6. Dotted lines denote membership functions obtained before experience 
consistent development of the model, while the solid lines deal with the 
model's parameters that have been developed when invoking the 
consistency mechanism. 

7.5 Two-Class classification problem 

Moving on with the classification problems, we consider a collection of datasets shown in 
Table 7.5. Furthermore we experiment with a two-dimensional Gaussian dataset 
illustrated in Figure 7.8. In all cases, the development of the classifiers follows the same 
scheme as presented in Section 7.2. 

Table 7.5 Classification data sets overview. 

S.N 
1 
2 
3 

4 
5 
6 

Dataset 
Breast Cancer 
Ionosphere 
Contraception 
Choice 
Liver Disorder 
Ringnorm 
Twonorm 

Source 
UCI 
UCI 
UCI 

UCI 
Web* 
Web& 

Observations(N) 
569 
351 
1473 

345 
7400 
7400 

Features(n) 
31 
34 
10 

7 
21 
21 

Web*: http://www.cs.toronto.edu/~delve/data/ringnorm/desc.html 
Web&: http://www.es.toronto.edu/~delve/data/twonorm/desc.html 

The synthetic data are Gaussian with the following characteristics mi=[4.5 5.0] 

ni2 = [7.5 6.5] and the covariance matrices equal to Zi= 
1.0 0.0 

[o.o i.o_ 
and T,2= 

1.0 0.0 

[0.0 l.oj 

130 

http://www.cs.toronto.edu/~delve/data/ringnorm/desc.html
http://www.es
http://toronto.edu/~delve/data/twonorm/desc


10 

8 

6 

1 

"1 2 I i 1 10 I ! 
XI 

Figure 7.8 Two class normally distributed classification data. 

The obtained classification errors (along with their standard deviations) are included in 
Figure 7.9. The dotted line shows the error for the classifier that was built when using 
only data in D. The solid line shows the classification error for the experience -consistent 
classifier. It is apparent that for higher values of "P" the experience consistency plays an 
important role. 

classification error 

no. of splitsfp) 

Figure 7.9 Classification error versus the number of splits of data (P):The dotted line -
experience consistency- was not involved (cc=0), while the solid line-
optimal experience consistency- was established (aopt). 

The results for Machine Learning datasets are shown in Figure 7.10. The results are 
reported in the same manner as for the synthetic data. In all cases, we acknowledge an 
essential role of experience consistency, which becomes even more profound in the case 
of the higher values of "P". 
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Figure 7.10 Classification results obtained for several Machine Learning dataset: (a) 

Breast Cancer, (b) Ionosphere, (c) Contraception, (d) Ringnorm, (e) 
Twonorm, and (f) Liver Disorder. The dotted line - experience consistency-
was not involved (a=0). The solid line- optimal experience consistency-
was established (a^t). 
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7.6 Conclusions 

In this chapter, we have discussed an approach of system identification realized in a 
collaborative framework of data (experimental evidence) and past experience (knowledge 
evidence). We demonstrated how to reconcile these two essential sources of guidance in 
the form of a single regression model. In particular, one could note that the knowledge-
based component (previously constructed models) can serve as a certain form of the 
regularization mechanism encountered in various modeling platforms. A level of 
achieved consistency is modeled in terms of fuzzy sets and quantified by fuzzy numbers 
of their parameters, giving rise to so-called fuzzy linear regression models. The 
introduced optimization procedure helps us strike a sound balance between the data-
driven and knowledge-driven evidence. 

The proposed concept has broader ramifications than discussed in this chapter. It does 
not relate to a specific category of models. While the regression models have been used 
to focus our discussion on a relatively simple identification scheme, one can consider any 
other architectures such as neural networks or fuzzy rule-based systems. Furthermore, 
one could envision a variety of models coming from different data sites (say, neural 
networks, fuzzy models, nonlinear polynomials) that could be used effectively in the 
build up of the high level of consistency. More flexibility could be achieved by 
differentiating the contribution of the individual models in the development of the 
knowledge- and data-navigated model. 
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Chapter 8 
Experience-Consistent Fuzzy Rule-Based 

System Modeling 

In this chapter, we develop an approach to fuzzy rule-based model identification realized 
in a collaborative framework of data (experiential evidence) and past experience 
(knowledge evidence). We demonstrated how to reconcile these two essential sources of 
guidance in the form of local regression models. We further elaborate as to how the 
collaboration mechanism gives rise to higher order granular constructs such as type-2 
fuzzy sets in distributed fuzzy modeling. 

The experimental studies presented include some synthetic data and selected datasets 
coming from the Machine Learning Repository. 

8.1 Introduction 

We introduce an experience-consistent development of fuzzy rule-based systems, which 
expand the notions and applicability of fuzzy sets introduced previously. The design of 
such fuzzy models involves some locally available data and reconciles the constructed 
model with some previously acquired domain knowledge. This type of domain 
knowledge is captured in the format of some other rule-based models constructed on a 
basis of some auxiliary data sets. By forming a certain extended form of the optimized 
performance index, we show that the domain knowledge captured by the individual rule-
based models plays a similar role as a regularization component typically encountered in 
identification problems. We will show that a level of achieved experience-driven 
consistency can be quantified through fuzzy sets of the parameters of the local models 
standing in the conclusion parts of the rules. Experimental study involves both synthetic 
low-dimensional data and selected datasets from Machine Learning Repository. 

8.2 Notations and a formulation of the problem 
Fuzzy rule-based models [9][13] and fuzzy modeling play a predominant role in system 
modeling realized in the context of fuzzy sets. The most recent studies, cf. 
[1][3][4][6][7][8][10][14], are a genuine testimony to the wealth of approaches and new 
computational pursuits in this area. As usual in system modeling [2][5], including the 
development of fuzzy rule-based systems, we rely on an intensive and prudent usage of 
experimental data. We exploit the existing data in order to establish a structure of the 
respective model and estimate its parameters. With regard to the character of the usage of 
data, we encounter several fundamental problems that require careful attention. 
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Generalization capabilities of the models rely in a direct manner on the characteristics of 
data (in particular their representative capabilities with respect to the problem at hand) 
and the nature of the model itself. The characteristics of data deserve particular attention 
in case we encounter small datasets that could be also biased by some noise. The models 
developed on a basis of the limited and noisy dataset typically exhibit low prediction 
capabilities. 

When dealing with experience-consistent models, we may encounter a number of 
essential constraints that imply a way in which the underlying processing can be realized. 
For instance, it is common that the currently available data is quite limited in terms of its 
size (which implies limited evidence of the data set, while the previously available 
datasets could be substantially larger, meaning that relying on the models formed in the 
past could be beneficial for the development of the current model. There is also another 
reason in which the experience -driven component plays a pivotal role. The dataset D 
could be quite small and affected by a high level of noise - in this case it becomes highly 
legitimate to seriously consider any additional experimental evidence available around. 

In the realization of the consistent-oriented modeling, we consider the following scenario. 
Given is a dataset D, using which we intend to construct a fuzzy rule-based model. There 
is a collection of datasets Di, D2, ..., Dp. For each of them, an individual fuzzy model is 
developed. Those local models are available when seeking consistency with the fuzzy 
models formed for Da, ii=l, 2, ..., P. At the same time, it is worth stressing that the 
datasets themselves are not available to any processing and modeling realized at the level 
ofD. 

The underlying architectural details of the rule-based model considered in this study are 
as follows. For each datasite D and D„, we consider the rules with local regression 
models assuming the form 

DataD 
-if x is B; then y - a;Tx 

0) 
where x e Rn+1 and B; are fuzzy sets defined in the n-dimensional input space, i=l, 2,..., 
c. The local regression model standing in the i-th rule is a linear regression function 
described by a certain vector of parameters ai. More specifically, the n-dimensional 
vector of the original input variables is augmented by a constant input so we have x =[xi 
X2 ... x„ 1]T and a =.[ai a2 ... a„ ao]T where ao stands for a bias term that translates the 
original hyperplane. 

The same number of rules (c) is encountered at all other datasites, Di, D2, ..., Dp. The 
format of the rules is the same as for D, that is, for the ii-th datasite D„ we have 

-if x is B,[ii] then y = ai[ii]Tx 
(2) 
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As before, the fuzzy sets in the condition part of the i-th rule are denoted by B;[ii], while 
the parameters of the local model are denoted by a;[ii]. The index in the square brackets 
refers to the specific datasite, that is, DH for a;[ii]. 

The format of the data at D, comes in the form of input - output pairs (xk, yk), k=l, 2,..., 
N which are used to carry out learning in a supervised mode. The previously collected 
datasets denoted by Di, D2, ..., Dp consist of Ni, N2, and Np data points. We assume that 
due to some technical and non-technical reasons, the data available at Dj cannot be shared 
with D. However, the communication between the datasites can be realized at the higher 
conceptual level such as those involved in the parameters of the fuzzy models. 

8.3 Development of the rule-based model 
Alluding to the formulation of the problem, we consider a rule-based model constructed 
on a basis of data D where in the construction of the model we are influenced by the 
models formed with the use of Di, D2, ..., and DP. To realize a mechanism of experience 
consistency, we introduce several pertinent performance indexes that are crucial in the 
quantification of this mechanism. 

Given the architecture of the rule-based system, it is well known that we encounter here 
two fundamental design phases, that is (a) a formation of the fuzzy sets appearing in the 
conditions of the rules and (b) the estimation of the corresponding conclusion parts. 
There are numerous ways of carrying out this construction. Typically, when it comes to 
the condition parts of the rules, the essence of the design is to granulate data by forming a 
collection of fuzzy sets. The common technique relates to fuzzy clustering when the 
condition part of the rule involves a fuzzy set defined in Rn or a Cartesian product of 
fuzzy sets defined in R. The conclusion part where we encounter local regression models 
is formed by estimating the parameters a*. Such an estimation process is standard to a 
high extent as it is nothing but a global minimization of the well-known squared error 
criterion. 

The organization of the consistency-driven optimization relies on the reconciliation of 
the conclusion parts of the rules. We assume that the condition parts, viz. fuzzy sets, are 
developed independently from each other. In other words, we cluster data in the input 
space of D, Di, ... , DP assuming the same number of clusters (c) results in the same 
collection of rules. Then the mechanism of experience consistency is realized for the 
conclusions of the rules. Given the independence of the construction process of the 
clusters at the individual sites, before moving on with the quantification of the obtained 
consistency of the conclusion parts of the rules, it becomes necessary to align the 
information granules obtained at D and the individual datasites D;. 
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8.3.1 Construction of information granules of conditions of the rules 

Information granules in the input space can be developed in many different ways, cf 
[3][6][11][12[17], We are of the opinion that they need to directly reflect of the nature of 
data available, which makes fuzzy clustering an intuitively appealing alternative. More 
specifically, an FCM algorithm [12] comes as a suitable algorithmic vehicle. For the 
given number of clusters (c), we minimize a standard objective function and as a result 
obtain a collection of prototypes and a partition matrix. In the ensuing communication 
schemes of consistency development, we will be relying on the exchange of the 
prototypes. 

8.3.2 Consistency-based optimization of local regression models 

To make the ensuing formulas concise, we use a shorthand notation FM, FM[1], 
FM[2], ..., FM[P] to denote rule-based models pertaining to data D, D[l],... etc. 

As usual the optimal parameters of the local models occurring in the conclusions of the 
rules are chosen in such a way so that they minimize the sum of squared errors 

Q4E(FMK)-yJ2 

y t eD 

(3) 
For given fuzzy sets of conditions, the determination of the parameters of the linear 
models is standard and well documented in the literature, cf. [13][15[16]. When we 
consider the form of the rule-based system, the output of the fuzzy model is determined 
as a weighted combination of the local models with the weights being the levels of 
activation of the individual rules. More specifically, we have 

c 

i=l 

(4) 
where Uik= Ui(xk) is a membership degree of the k-th data Xk to the i-th cluster being 
computed on a basis of the already determined prototypes in the input space. In a nutshell, 
(4) comes as a convex combination of the local models that aggregates the local models 
by taking advantage of the weight factors, expressing a contribution of each model based 
upon the activation reported in the input space. The detailed computations of the optimal 
parameters of the local models standing in the conclusion part of the rules are covered in 
the next section. 
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Optimization Details of the local models standing in the rules-based model 

In the development of the Takagi-Sugeno rule-based model, we consider some finite data 
n+l set of the form of input - output pairs, (xi, yi), (X2, V2),...., (XN, VN) where XkeR and y 

e R. 

Assuming a given number of rules (c) (which is the number of clusters), we apply the 
FCM for the input data xi, X2, ..., xN. The clustering method returns a collection of 
prototypes vi, V2, ..., v0 and a partition matrix U whose rows Ui, U2, ..., U0 can be 
regarded as fuzzy sets forming a condition part of the rules. Thus the i-th rule reads as 

-if x is U; then yi =aT;x , i=l ,2,... ,c, 

(5) 
The estimation of the parameters ai, a2, ..., a0 follows a standard least-square error 
minimization problem in which the performance index comes in the form 

Q = S(yk-yk) 2 

k=l 

(6) 
The output of the model comes as a weighted sum of each of the local models 

c 

i=l 

where uik= Ui(xk) is a membership degree of the k-th data Xk to the i-th cluster being 
computed on a basis of the already determined prototypes. More specifically, we compute 
this membership degree to be 

1 
u , t = • 

Z 
. 2 / 

1 \ / m - l 

VJI x k V j \\ J 

(8) 

To arrive at the optimal parameters of the local linear models, we introduce some 
notation which makes the formulation of the problem more concise and readable. First, 
each input data is weighted by the membership degree of the individual cluster thus 
yielding an (n+l) vector xik =u i kx k . The above fuzzy model (7) can be written in a 
matrix format as 

Yk LXlk X2k-"XckJ 

(9) 
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where all parameters of the models are collected in the form of a single c(n+l)-
dimensional vector such that 

r«.i 

(10) 
The input data transformed through the fuzzy sets (clusters) are organized in a single 
matrix X with N rows and c(n+l) columns. 

Furthermore, collect all outputs in a single vector y with the entries 

fy.l 

LyNj 
( i i ) 

The minimization problem reads as 

MinaQ, 
(12) 

where 
QH|y-Xa| | 2 = (y-Xa)T(y-Xa). 

(13) 
The global solution is straightforward and could be easily encountered in many standard 
references. It reads as 

a0pt=(XTX)-1XTy=X#y, 
(14) 

A JJ A 

where X is a pseudoinverse of X. 

The essence of the consistency-driven modeling is to form local regression models 
occurring in the conclusions of the rules on a basis of data D, while at the same time 
making the model perform in a consistent manner (viz. close enough) to the rule-based 
model formed for the respective DjS. The following performance index strikes a sound 
balance between the model formed exclusively on a basis of data D and the consistency 
of the model with the results produced by the models formed on a basis of some other 
datasites D;s, that is FM[)](xk). 

V = X(FM(x k ) -y k ) 2
 + a X £(FM(xk)-FM[j](xk))2 . 

x keD j=l xkeD 
ykeD ykeD 

(15) 

140 



The calculations of FM[j](xk) for some Xk in D require some words of explanation. The 
model is communicated to D by transferring the prototypes of the clusters (fuzzy sets) 
and the coefficients of the linear models standing in the conclusions of the rules refer to 
Figure 8.1. 

Figure 8.1 Communication between D and Dj realized by transferring parameters of the 
rule-based model available at individual data sites Dj 

When used at D, the prototypes v;[j], i=l, 2,...,c give rise to an induced partition matrix 
in which the k-th column (for data Xk) assumes the following membership values w,(xk) 
computed in the standard manner as being encountered when running the FCM algorithm, 
that is, 

Wi (xk )[j] = — -T7—. 

(16) 
The transferred parameters of the local models obtained at the j-th datasite produce the 
output of the model FM[j](xk) obtained at D as a weighted sum of the form 

FM[j](xk)= J w i W U K O K , 
i=l 

(17) 
where Xk eD. 

The minimization of the performance index V for some predefined value of a leads to the 
optimal vectors of the parameters of the linear models ai(opt), i=l, 2,..., c which reflects 
the process of satisfying the consistency constraints. The following section shows the 
details of optimization. 
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Optimization details 

Considering the form of the performance index, we rewrite it as follows 

Q = | | y - X a f + a | |y i-Xa|r +a| |y2-Xa| |2+.. . .+a ||yp-Xair-
OS) 

In the above expression, we have used the same notation as already introduced in 
optimization section of local models. Furthermore, the vectors yi, y2, ..., yp denote the 
outputs produced by the consecutive fuzzy models developed for Di, D2, .., and Dp. 
Taking the gradient of Q with respect to a, we obtain 

dQ 
da 

= -XTy - XTy + 2(XTX)a - a(XT
yi + XTy,) + 2a(XTX)a - a(XTy2 + XTy2) + 

2a(XTX)a.... - a(XTyP + XTyP) + 2«(XTX)a. 

By setting — = 0, we arrive at the solution, giving a global solution to (18) 
da 

(19) 

a°pt aP + 1 
1 

aP + 1 

(X7X)-1X\y + ayl+ay2+.... + ayP) = 

X (y + ay, + ay2 +.... + ayP), 

(20) 

where yi is a vector of the outputs of the i-th fuzzy model (formed on a basis of Di) where 
the corresponding coordinate of this vector produced the output obtained for the 
corresponding input, that is, 

~FM[i](x,)" 
FM[i](x2) 

FM[i](xN) 

and where X* is a pseudo in verse of the data matrix. 

An overall balance captured by (15) is achieved for a certain value of a. An evident 
tendency of increased impact becomes clearly visible: higher values of a stress higher 
relevance of other models and their more profound impact on the constructed model. First, 
the model is constructed on the basis of D. Second, the consistency is expressed on a 
basis of differences between the constructed model and those models coming from D;s 
where the differences are assessed with the use of data D. There is another interesting 
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view of the format of this performance index under minimization. The second 
component in V plays a role that is similar to a regularization term typically used in 
estimation problems. However, its origin here has a substantially different format from 
the one encountered in the literature. Here, we consider other data (and models) rather 
than focusing on the complexity of the model expressed in terms of its parameters to 
evaluate the performance of the model. 

While the semantics of the above performance index (15) is straightforward, a choice of 
the value of a requires some attention. To optimize the level of contribution coming from 
the datasets, we may adhere to the following evaluation process, which invokes two 
fundamental components. As usual, the quality of the optimal model is evaluated with 
respect to data D. The same optimized model (viz. its prototypes and the parameters of 
the local regression models) is made available at D; and the quality of the model is 
evaluated there with the use of the local data present there. We combine the results (viz. 
the corresponding squared errors) by adding their normalized values. Given these 
motivating notes, an index quantifying a global behaviour of the optimal model arises in 
the following form 

W = ̂ Z(FM(x
k)-yk)2+i^I(FM(xk)-yk)2. 

i N X K e D j=l i X | j X k 6 Dj 
ykeD ykeDj 

. ( 2 1 > 

A schematic view of computing and communication of findings realized with the aid of 
(21) is illustrated in Figure 8.2. 

Figure 8.2 A quantification of the global behaviour of the consistency - based fuzzy 
model 

Note that when the fuzzy model FM(.) is transferred, as before to Dj, we communicate, 
the prototypes obtained at D and the coefficients of the local linear models of the 
conclusion part of the rules. Likewise, as shown in (8.2), the output of the fuzzy model 
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obtained for xk <= Dj involves the induced value of membership degree Wj(xk) and an 
aggregation of the local regression models. 
Apparently the expression of VV is a function of a and the optimized level of 
consistency is such for which W attains its minimal value, namely 

aopt = arg Min W(a) . 
(22) 

The optimization scheme (15) along with its evaluation mechanisms governed by (21) 
can be generalized by admitting the various levels of impact that each data D; might have 
in the process of achieving consistency. To do so, we introduce some positive weights, w;, 
i=l, 3 , . . . p, which are afterwards used in the performance index 

V = X ( F M ( x k ) - y k ) 2 + a X w J X ( F M ( x k ) - y k ) 2 . 
x k eD j=l x k eD 
y k eD y k eD 

(23) 
Lower values of w; indicate lower influence of the model formed on a basis of data D; 
when constructing the model for data D. The role of such weights is particularly apparent 
when dealing with data Di , which are in some temporal or spatial relationships with 
respect to D. In these circumstances, the values of the weights reflect how far (in terms 
of time or distance) the sources of the individual data are from D. For instance, if Dj 
denotes a collection of data gathered some time ago in comparison to the currently 
collected data Di, then it is intuitively clear that the weight Wj is lower than Wj. 
For an auxiliary performance index that expresses a quality of the model for which (15) 
has been minimized with a being selected with regard to (22), we consider the following 
expression 

Q~=^I(FM(xk)-yk)2. 
yk6D 

(24) 

The values of Q~ considered vis-a-vis the results expressed by (24) are helpful in 
assessing the extent that the fuzzy model optimized with regard to data D while achieving 
consistency with Di, D2, ..., Dp will deteriorates when applied to D over the optimal 
model being optimized exclusively on a basis of D. 

In what follows, we also introduce a computationally effective measure articulating a 
level of experience consistency obtained for D in the form of granular characterization of 
the parameters of local regression models. Before proceeding with the details, we 
elaborate a method in which individual rules existing in the models formed for D and the 
datasites Di, D2, ..., Dp are "synchronized" (aligned). 

144 



8.3.3 Alignment of information granules 

The rules forming each fuzzy model have been formed independently at each datasite. If 
we intend to evaluate a level of consistency of the rules at D vis-a-vis the modeling 
evidence available at Dj, some alignment of the rules become essential. Such an 
alignment concerns a way of lining up the prototypes forming the condition part of the 
rules. We consider the models obtained at D and Dj, j=l ,2, ..., P with their prototypes vi, 
\2, ..., v0 and vi[j], V2[j],..., v0[j]. We say that the rule "i" at D and the rule "/" at Dj are 
aligned if the prototypes Vk and v/[j] are the closest within the collections of the 
prototypes produced for D and Dj. The alignment process is realized by successively 
finding the pairs of the prototypes being characterized by the lowest mutual distance. 
Overall, the alignment process can be described in the following manner: 

Form two sets of integers (indexes) I and J, where I = J = {1,2,... ,c}. Start with an 
empty list of alignments, L= 0 . 

Repeat 
Find a pair of indexes io and jo for which the distance attains minimum 

(io,jo) = argmini,i ||vi-v/(j)|| 
The pair (io, jo) is added to the list of alignments, L= L u (i0, jo) 
Reduce the set of indexes I and J by removing the elements that were placed on 
the list of alignments, I = I \ {io} and J = J \{jo} 

until1 = 0 

Once the above loop has been completed, we end up with the list of alignment of the 
prototypes in the form of pairs (iiji), (12, J2),---, (io, jo)-

8.4 Granular parameters as a characterization of experience-
consistent models 

Once the mechanism of experience consistency has been completed and the local models 
have been aligned (following the scheme provided in the previous section), we can now 
look at the characterization of the set of the related parameters of the local regression 
models. In essence, through the alignment of the prototypes at D and Dj, we obtain the 
corresponding vectors of the parameters of the regression models of the conclusion parts. 
Denote these vectors corresponding to a certain rule by a, ai, ak, ..., and ai altogether 
arriving at D and Dj datasites. If we now consider the j - th coordinate of all of them, we 
obtain the numeric values aj, ay, ..., ay. The essence of their aggregation concerns their 
global representation completed in the form of a single fuzzy set. The datasites' modal 
value is just aj .while the membership function is reflective of the numeric values of the 
corresponding parameters of the local models. The idea introduced in [11] follows this 
observation. Let us consider a finite number of numeric values Zj={aj, ay, ..., ay}. We 
intend to span a unimodal fuzzy set A over data aj in such a way that it represents all 
collaborative datasites to the highest possible extent. The form of the membership is also 
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defined in advance. For instance, we could consider a certain type of membership 
functions, say triangular, Gaussian, parabolic, etc. Furthermore, we consider that a modal 
value of Aj, that is aj, is given. Let us look at the values of â  that are lower than aj, â  < aj. 
Denote this set by Q., Zi. = {aji | aj; <aj}.We use them to estimate the parameters of the left-
hand side of the membership function. The determination of the right-hand side of the 
membership function is realized in an analogous manner by considering the set ZJ+ where 
Zi+={aji | aj; >aj}. The method for computation of a membership function of fuzzy set of 
type-2 is followed in the same way as discussed in Chapter 4(Section 4.2.1). 

The result of the aggregation becomes a triangular fuzzy number of the j-th parameter of 
the local regression model. Denote it by Aj =(aj., aj, aj+) with the three parameters 
denoting the lower, modal, and upper bound of the fuzzy number. Applying the same 
procedure to all remaining parameters of the vector a, we produce the corresponding 
fuzzy numbers Ai, A2, ..., Aj.i, Aj+i, ..., An, and Ao. Given them, the rule in D reflects 
the nature of the incorporated evidence offered by the remaining models Di, D2, etc. If 
there is a fairly high level of consistency, this effect is manifested through a fairly 
"concentrated" fuzzy number. Increasing inconsistency results in a broader, less specific 
fuzzy number of the parameters. In summary, a certain fuzzy rule assumes the following 
format 

IfxisB,thenY = Ao ffi Ai®xi © A2 <g> x2 © ... © A„ ®xn 

(25) 
The symbols © and <g> being used above underline the nonnumeric nature of the 
arguments standing in the model over which the multiplication and addition are carried 
out. For given numeric inputs x =[xi, x2, ..., xn]T , the resulting output Y of this local 
regression model is again a triangular fuzzy number Y = <w, y, z> where their 
parameters are computed as follows 

Modal value y = ao+ aixi+a2x2+... +anxn 

Lower bound w = ao +min(ai.xi, ai+xi) + min(a2.x2, a2+x2)+... + 
min(an.xn, an+xn) 

Upper bound z = ao +max(ai-Xi, ai+xi) + max(a2.X2, a2+x2)+... + 
max(an.xn, an+xn) 

The above process represents the formation of the fuzzy numbers of the local regression 
model of the rule is repeated for all rules. At the end we arrive at the rules of the form 

If x is Bi then Y = Ai0 © AntgJX! ffi Ax2 <g> x2 ffi ... © A l n ®xn 

If x is B2 then Y = A20 ffi A2i ® Xi © A22 ® x2 ffi ... ffi A2n ® xn 

IfxisBothen Y = Aoo ffi A0i®xi ffiAo2 ® x2 ©... ©Aon ®xn 

(26) 
Given this structure, the input vector x implies the output fuzzy set with the following 
membership function 
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Y = X w
1 ( x ) ® [ A

1 o © ( A n ® x , ) © ( A l 2 ® x 2 ) © . . . © ( A i n ® x n ) ] 
i=l 

Owing to the fact of having fuzzy sets of the parameters of the regression model in the 
conclusion part of the rules, Y becomes a fuzzy number rather than a single numeric 
value. 

8.5 Experimental studies 

We start with several one-dimensional synthetic data sets that are helpful in illustrating 
the very nature of the problem and quantify the effect of building consistency under 
various circumstances. 

Synthetic data In this series of experiments, we consider a collection of synthetic data D, 
Dj, j=l, 2, ..., 5 The plots of data D, Dp D5 are illustrated in Figure 8.3. Each of them 
consists of 100 data points. In contrast, D is far smaller as it consists of 20 data. 
Furthermore, it is also affected by Gaussian noise of zero mean value and some standard 
deviation. Some examples of the dataset D are presented in Figure 8.4. For each dataset 
we consider c = 4 rules, which reflect the structure of data. We may anticipate that this 
number of rules could be capable of modeling the data to a high extent. 

- 2 0 2 6 8 10 • 
-ID -8 -6 

Central datasite(D) 

- A u__ 
•2 0 2 4 ! 3 ! ' l , 

Datasite-1 

*- X 
X 

-2 0 2 4 6 

Datasite-2 
•2 0 2 4 1 

Datasite-3 
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Datasite-4 Datasite-5 
Figure 8.3 Data sets used in the experiment. 

(a) (b) 
Figure 8.4 Datasite (D) affected by two levels of noise: o = 0.2 (a) and o=1.5 (b) 

Since we repeated the experiments for each noise level 10 times, this organization of the 
experiments helps to reveal any meaningful tendency that might exist. The obtained 
results are summarized in Table 8.1 where we report the values of W for a = 0 and aopt. 
The results are provided in terms of the mean value and the standard deviation. Given the 
results, the tendency becomes quite straightforward as to the level of noise and the 
optimal value of a: higher noise level comes with higher values of a. It is not surprising 
that as the quality of data deteriorates (higher level of noise), we anticipate a somewhat 
stronger impact from other data sites to compensate for the lower quality of the data. 

Table 8.1 Performance index W (mean and standard deviation) for a = 0 and the 
optimal values of a. 

VV(a=0) 

VV(aopt) 

a opt 

o=0.0 

0.003 

0.003 

0.001 

a=0.1 
0.04 

±0.02 
0.04 

±0.02 
0.001 

± 0.002 

a=0.2 
0.20 

±0.13 
0.17 

±0.08 
0.011 

±0.012 

o=0.3 
0.33 

±0.17 
0.29 

±0.17 
0.015 

± 0.009 

o=0.4 
0.62 

±0.33 
0.52 

±0.25 
0.023 

±0.016 

a=0.5 
0.77 

±0.27 
0.67 

±0.18 
0.021 

±0.019 
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VV(a=0) 

VV( a opt) 

a opt 

o=0.6 
1.48 

±0.61 
1.09 

±0.37 
0.05 

±0.03 

o=0.7 
2.24 

±0.99 
1.56 

±0.68 
0.07 

±0.03 

o=0.8 
2.48 

±1.78 
1.70 

±1.03 
0.07 

±0.05 

o=0.9 
2.68 

± 1.07 
2.04 

±0.96 
0.07 

±0.03 

o=1.0 
2.30 

± 1.41 
1.95 

±1.11 
0.06 

±0.05 

VV(a=0) 

VV(aopt) 

a opt 

0=1.1 
3.71 

± 1.35 
2.8616 
±0.95 
0.09 

±0.05 

o=1.2 
4.63 

±2.28 
3.05 

±0.78 
0.10 

±0.07 

o=1.3 
4.79 

±2.11 
3.34 

±1.31 
0.13 

±0.09 

o=1.4 
6.39 

±2.59 
3.85 

±1.26 
0.19 

±0.11 

o=1.5 
9.77 

±5.27 
5.01 

±1.54 
0.36 

±0.44 

The plot of the fuzzy model for a = 0 for the two levels of noise presented in Figures 8.4 
is incorporated in Figure 8.5 that also illustrate the model in case of the optimal value of 

a. 

-B -6 * -2 0 2 < 8 B 10 

(b) 

Figure 8.5 Plot of the fuzzy model for D: for a =0 (dotted lines) and aopt (solid lines) for 
two levels of noise, a = 0.2 (a) and a=1.5 (b). 
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By incorporating the knowledge about parameters of the models of D;s we end up with 
triangular fuzzy numbers of the parameters, shown in Figure 8.6. 

Figure 8.6 Triangular fuzzy numbers of the parameters of the rule-based model for a = 
0.2 (a) and a=1.5 (b). Dotted lines represent a =0, while the solid lines are 
obtained for otopt. 
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The use of granular (fuzzy) parameters in the model results in the granular form of the 
output (expressed in terms of triangular fuzzy numbers). The bounds (lower and upper 
bound, respectively) are illustrated in Figure 8.7. Notably, the bounds are quite tight over 
almost the entire range of the input variable. The substantial spread of the range occurs 
for the values outside the lowest and highest prototypes formed in the input space. 

(a) » ) 
Figure 8.7 The bounds of the output triangular fuzzy set (also shown is its modal value) 

for the model before (a) and after the completion of experience-consistent 
optimization. 

Machine Learning data In the ensuing series of experiments, we consider real-world data 
available at StatLib and Machine Learning repositories. The main characteristics of data 
used here along with their origin are summarized in Table 8.2. 

Table 8.2 A suite of experimental data. 

No. 

1 

2 

3 
4 

Dataset 

Abalone 

California House 

Auto-mpg 
Boston Housing 

Source 

UCI- Web* 
StatLib 
Repository - Web 
UCI- Web* 
UCI- Web* 

Number 
of data 

(N) 
4,177 

20,640 

398 
506 

Number of 
features 

(n) 
8 

8 

7 
13 

Note: Web*: http://www.ics.uci.edu/~mlearn/MLRepository.html. 
Web*: http://lib.stat.cmu.edu/ 

In the experiments we use 5% of all the data to form D, while the rest of the data set is 
split into equal parts whose size depends upon the assumed value of P forming in this 
way Di, D2, ..., and Dp. We also experiment with a collection of datasites (P) 
contributing to the experience-based modeling. The number of clusters (c) was varied in-
between 2 and 6. For each dataset from the above list, we report in a tabular fashion the 
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values of W for a =0 and a^t. The optimization with respect to a is carried out by 
running the experiment for different values of this parameters starting with a =0.0 and 
successively increasing its value up to the point we have reached the minimal value of the 
index. 

VV(a=0) 

VV(aopt) 

aopt 

K 

c=2 

9.43 

±0.85 
9.16 

±0.78 
0.816 

± 0.788 

0.97 

c=3 

9.22 

±0.85 
8.96 

±0.72 
0.289 

± 0.203 

0.97 

c=4 
9.19 

±0.87 
8.83 

±0.62 
0.398 

± 0.695 

0.96 

c=5 

9.52 

±0.97 
9.22 

±0.86 
0.206 

±0.103 

0.97 

c=6 

9.76 

±0.95 
9.39 

±0.85 
0.183 

± 0.084 

0.96 
p=l 

VV(a=0) 
VV(aopt) 

aopt 

K 

c=2 

14.83 

±1.04 
14.42 
±0.91 
0.187 

±0.111 

0.97 

c=3 

14.78 

±1.18 
13.95 

±0.83 
0.329 

±0.137 

0.94 

c=4 

14.95 

±1.41 
14.11 

±0.69 
0.183 

±0.156 

0.94 

c=5 

15.84 

±1.67 
14.39 
±0.97 
0.327 

± 0.259 

0.91 

c=6 

16.47 

±1.54 
15.29 

±1.45 
0.168 

± 0.074 

0.93 
P=2 

VV(a=0) 
VV(aopt) 

aopt 

K 

c=2 
20.22 
±1.24 
19.23 

±1.08 
0.458 

± 0.433 

0.95 

c=3 
20.34 

±1.53027 
18.69 

±0.92 
0.380 

± 0.261 

0.92 

c=4 
20.70 
±1.99 
18.79 

±1.10 
0.302 

± 0.227 

0.91 

c=5 
22.16 
±2.41 
19.74 

± 1.28 
0.252 

±0.166 

0.89 

c=6 
23.17 
±2.16 
21.23 

±2.02 
0.150 

± 0.058 

0.92 
P=3 

VV(a=0) 
VV(aopt) 

aopt 

K 

c=2 
25.62 
±1.46 
24.28 

±1.15 
0.380 

±0.431 

0.95 

c=3 
25.90 
±1.92 
23.75 

±1.11 
0.303 

± 0.223 

0.92 

c=4 
26.45 
±2.60 
23.78 
±0.81 
0.257 

± 0.227 

0.90 

c=5 
28.48 
±3.19 
24.71 

±1.77 
0.259 

± 0.094 

0.87 

c=6 
29.87 
±2.81 
26.28 

±2.20 
0.153 

± 0.070 

0.88 
P=4 
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VV(a=0) 

VV(aopt) 

aopt 

K 

c=2 
31.01 
±1.66 

29.8249 

±1.41 
0.178 

± 0.303 

0.96 

c=3 
31.46 
±2.30 

28.8912 

±1.18 
0.186 

± 0.080 

0.92 

c=4 
32.20 
±3.21 

28.9101 

±1.41 
0.180 

± 0.058 

0.90 

c=5 
34.79 
±3.95 

30.4058 

±2.02 
0.173 

± 0.076 

0.87 

c=6 
36.55 
±3.45 
31.91 

±2.09 
0.141 

± 0.062 

0.87 
P=5 

VV(a=0) 
VV(aopt) 

a opt 

K 

c=2 
57.95 
±2.78 
55.06 
+ 1.74 
0.067 

± 0.038 

0.95 

c=3 
59.24 
±4.28 
53.34 
±1.77 
0.122 

± 0.073 

0.90 

c=4 
60.94 
±6.27 
53.06 
±2.22 
0.160 

±0.150 

0.87 

c=5 
66.35 
±7.85 
56.73 
±3.56 
0.131 

±0.105 

0.86 

c=6 
69.99 
±6.70 
60.75 
±5.25 
0.066 

± 0.024 

0.87 

P=10 
Abalone 

W(a=0) 
VV(aopt) 

aopt 

K 

c=2 

9.43xl09 

± 1.6x10s 

9.40xl09 

±1.64xl08 

0.366 
± 0.470 

1.00 

c=3 

9.07xl09 

± 1.86x10s 

9.04xl09 

± 1.86x10s 

0.289 
± 0.468 

1.00 

c=4 
8.99x109 

± 2.01x10s 

8.98x109 

± 2.00x10s 

0.071 
± 0.038 

1.00 

c=5 

8.89x109 

± 2.12x10s 

8.86xl09 

± 2.23x10s 

0.090 
±0.141 

1.00 

c=6 

8.83xl09 

±2.11xlOs 

8.81xl09 

± 2.14x10s 

0.071 
± 0.027 

1.00 
p=l 

VV(a=0) 
VV(aopt) 

aopt 

K 

c=2 

1.43xl010 

± 1.76x10s 

1.42xl010 

± 1.47xl08 

0.437 
± 0.438 

0.99 

c=3 

1.38xl010 

± 1.80x10s 

1.38xl010 

±1.74xl08 

0.128 
±0.126 

1.00 

c=4 
1.38xl010 

± 2.05x10s 

1.37xl010 

±2.03xl08 

0.055 
±0.031 

0.99 

c=5 

1.36xl010 

+ 2.35x10s 

1.36x10'° 
± 2.37x10s 

0.062 
± 0.033 

1.00 

c=6 

1.36xl010 

± 2.49x10s 

1.35xl010 

± 2.24x10s 

0.070 
± 0.030 

0.99 
P=2 

VV(a=0) 
VV(aopt) 

aopt 

K 

c=2 
1.92xl010 

± 1.98x10s 

1.90xl010 

± 1.22x10s 

0.466 
± 0.493 

0.99 

c=3 
1.86xl010 

± 2.08x10s 

1.85x10'° 
± 1.73x10s 

0.082 
± 0.054 

0.99 

c=4 
1.85x10'° 

± 2.43x10s 

1.84x10'° 
± 2.24x10s 

0.045 
± 0.025 

0.99 

c=5 
1.84x10'° 

± 2.93x10s 

1.85x10'° 
± 2.43x10s 

0.039 
± 0.020 

1.01 

c=6 
1.84x10'° 

+ 3.36x10s 

1.82x10'° 
± 2.73x10s 

0.053 
± 0.020 

0.99 
P=3 
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VV(a=0) 
VV(aopt) 

aopt 

K 

c=2 
2.41xlOw 

±2.34xl08 

2.38xl010 

± 1.66x10s 

0.385 
±0.553 

0.99 

c=3 
2.34x10'° 
±2.57xl08 

2.32xl010 

± 1.74xl08 

0.075 
+ 0.046 

0.99 

c=4 
2.33xl010 

±3.004xl08 

2.31xl010 

±2.41xl08 

0.066 
± 0.042 

0.99 

c=5 
2.31xl010 

±3.68xl08 

2.30xl010 

± 3.15x10s 

0.036 
+ 0.017 

1.00 

c=6 
2.3xl010 

±4.47xl08 

2.30xl010 

± 4.09x10s 

0.036 
+ 0.012 

1.00 
P=4 

VV(a=0) 
VV(aopt) 

aopt 

K 

c=2 
2.90 xlO10 

± 2.79xl08 

2.87xl010 

± 1.45xl08 

0.200 
+ 0.198 

0.99 

c=3 

2.81xl010 

±3.20xl08 

2.79xl010 

+ 2.76x10s 

0.055 
+ 0.027 

0.99 

c=4 
2.80xl010 

+ 3.72xl08 

2.78xl010 

± 3.16xl08 

0.051 
+ 0.042 

0.99 

c=5 

2.79xl010 

+ 4.54xl08 

2.77xl010 

± 3.83x10s 

0.031 
+ 0.014 

0.99 

c=6 

2.79xl010 

±5.66xl08 

2.76x10'° 
± 4.04x10s 

0.046 
+ 0.017 

0.99 

P=5 

VV(a=0) 
VV(aopt) 

aopt 

K 

c=2 
5.34x10'° 
± 5.59x10s 

5.28xl010 

± 2.39x10s 

0.105 
+ 0.096 

0.99 

c=3 
5.20x10'° 
+ 6.92x10s 

5.15xl010 

± 4.59x10s 

0.038 
+ 0.021 

0.99 

c=4 
5.19x10'° 
+ 7.80x10s 

5.14x10'° 
± 5.29x10s 

0.026 
±0.019 

0.99 

c=5 
5.17x10'° 
+ 9.31xl08 

5.12x10'° 
± 6.97x10s 

0.020 
±0.011 

0.99 

c=6 
5.17x10'° 
±1.20xl08 

5.11x10'° 
± 8.94x10s 

0.024 
±0.012 

0.99 
P=10 

California Housing 

VV(a=0) 
VV(aopt) 

aopt 

K 

c=2 

0.87xl02 

±0.67xl02 

0.25xl02 

±0.15xl02 

7.079 
± 6.422 

0.287 

c=3 

5.63xl04 

±6.17xl04 

1.93xl04 

±3.13xl04 

7.175 
±4.618 

0.343 

c=4 
1.23xl07 

± 2.89x107 

8.22xl06 

± 2.08x107 

1.810 
± 4.624 

0.668 

c=5 

2.17xl09 

±6.23xl09 

1.86xl09 

+ 5.29xl09 

4.474 
± 6.461 

0.857 

c=6 

5.87xl012 

± 1.86xl013 

1.88x10s 

±4.49xl08 

6.344 
± 6.690 

0.000 
p=l 

VV(a=0) 
VV(aopt) 

aopt 

K 

c=2 
1.73xl02 

±1.34xl02 

0.53xl02 

± 0.25*102 

3.249 
± 4.660 

0.306 

c=3 
9.16xl04 

±1.03xl05 

3.62x10" 
+ 5.82*10" 

5.552 
± 4.093 

0.395 

c=4 
2.36xl07 

±5.71xl07 

2.08xl07 

±5.65*107 

3.066 
±5.383 

0.881 

c=5 
3.57xl09 

±1.00x10'° 
3.55xl09 

+ 1.00*10'° 
6.216 

± 6.897 

0.994 

c=6 
1.18xl013 

±3.73xl013 

1.18x10" 
+ 3.73*10" 

2.150 
±4.141 

1.000 
P=2 
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c=2 c=3 
2.59xlOz 1.27xl05 

VV(a=0) ±2.01xl02 ±1.44xl03 

VV(aopt) 0.75xl02 4.91xl04 

±0.25xl02 +7.53xlQ4 

a opt 2.572 4.780 
±4.521 ±5.058 

K 0.290 0.387 

c=2 c=3 

3.44xl02 1.62xl03 

VV(a=0) ±2.69xl02 ± 1.86xl05 

VV(aopt) 1.07xl02 6.50x10" 
±41.15 + 1.0310s 

a opt 2.158 8.495 
± 4.536 ± 4.936 

K 0.311 0.401 

c=2 c=3 
4.31xl02 1.97xl05 

VV(a=0) ±3.35xl02 ±2.27xl05 

VV(aopt) l.OOxlO2 9.15xl04 

+32.2711 ±1.45xlQ5 

a opt 2.241 4.501 
±4.510 ±5.977 

K 0.232 0.464 

c=2 c=3 
8.60xl02 3.76xl05 

VV(a=0) ±6.77xl02 ±4.41xl05 

VV(aopt) 2.08xl02 1.822xl05 

+93.50 +3.2xl05 

a opt 2.332 7.339 
± 4.600 ± 6.768 

K 0.242 0.485 

c=2 c=3 

5.10x10s 5.20xl06 

VV(a=0) + 1.45x10" ±9.11xl06 

VV(aopt) 6.52xl03 3.36xl06 

±1.51x10" ±6.01xl06 

a opt 10.737 7.024 
± 4.867 ± 7.402 

K 0.013 0.646 

c=4 c=5 c=6 
3.51xl07 4.94xl09 1.78x10" 

±8.60xl07 ±1.38x10'° ±5.63x10" 
2.83xl07 4.6xl09 2.32xl09 

±8.49xl07 ±1.28x10'° ± 7.07x109 

1.856 3.926 1.924 
±3.075 ±6.315 ±4.507 

0.806 0931 0.000 
P=3 

c=4 c=5 c=6 
4.63xl07 6.44109 2.351013 

± 1.1410s ± 1.791010 ±7.441013 

3.66X107 6.19xl09 6.19x10s 

± 1.0610s ±1.7210'° ±1.7410'° 
5.684 1.44 1.524 

±6.176 ±4.503 ±4.616 

0.790 0961 0.000 
P=4 

c=4 c=5 c=6 
5.66xl07 7.88xl09 2.88xl013 

±1.40xl08 ±2.18x10'° ±9.12xl013 

3.53xl07 5.10xl09 2.88xl013 

±9.47xl07 +1.32x10'° + 9.12xl013 

5.364 2.257 0.168 
± 5.375 ± 4.292 ± 0.422 

0.624 0647 1.000 
P=5 

c=4 c=5 c=6 
1.14xl08 1.57x10'° 5.45xl013 

± 2.85x10s ±4.37x10'° ±1.72x10'" 
9.01xl07 1.56x10'° 1.70xl012 

+ 2.25xl08 +4.37x10'° + 5.37xl012 

1.094 0.006 0.0005 
± 2.297 ± 0.008 ± 0.001 

0.790 0.994 0.031 

P=10 
Auto-mpg 

c=4 c=5 c=6 

2.61x10s 1.03xl09 1.63x10'° 
± 7.49x10s ±2.16xl09 ±4.83x10' 
2.47x10s 8.69x10s 3.66x10s 

± 7.35x10s ±1.83xl09 ± 6.27xl0! 

5.426 2.532 1.796 
± 6.264 ± 4.929 ± 2.954 

0.946 0.844 0.022 
P=l 
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VV( a =0) 
VV( a opt) 

a opt 

K 

c=2 

l.OlxlO6 

± 2.90xl06 

2.95xl03 

+ 3.69xl03 

10.585 + 4. 
684 

0.003 

c=3 

9.28xl06 

±1.63xl07 

7.15xl06 

±1.52xl07 

4.462 
± 6.962 

0.770 

c=4 
5.13x10s 

± 1.49xl09 

5.03xl08 

± 1.49xl09 

1.416 
± 4.460 

0.981 

c=5 

2.03xl09 

± 4.26x10s 

2.02xl09 

±4.26xl09 

0.021 
± 0.038 

0.995 

c=6 

3.22xl010 

± 9.54xl010 

8.34108 

± 1.83x10s 

3.943 
±5.913 

0.026 
P=2 

VV(a=0) 
W ( a opt) 

a opt 

K 

c=2 
1.53xl06 

± 4.40x10s 

5.00x103 

+ 5.77xl03 

10.253 
± 4.936 

0.003 

c=3 
1.39xl07 

±2.47xl07 

l.lOxlO7 

±2.24xl07 

1.098 
±2.918 

0.791 

c=4 
7.67xl08 

±2.23xl09 

7.41xl08 

+ 2.24xl09 

3.144 
± 4.552 

0.966 

c=5 
2.90xl09 

±6.08xl09 

3.28xl08 

+ 8.02xl08 

2.712 
±5.351 

0.113 

c=6 
4.79xl010 

±1.42xlOn 

4.78xl010 

+ 1.42x10" 
0.002 

± 0.004 

0.998 
P=3 

VV( a =0) 
VV( a opt) 

a opt 

K 

c=2 

2.00x106 

±5.74xl06 

5.96xl03 

+ 7.82xl03 

8.568 
± 5.395 

0.003 

c=3 

1.46xl07 

±2.32xl07 

l.lOxlO7 

+ 2.01xl07 

2.516 
± 3.592 

0.753 

c=4 
9.97xl08 

±2.91xl09 

9.77xl08 

+ 2.92xl09 

0.200 
± 0.604 

0.980 

c=5 

3.77xl09 

±7.89xl09 

2.31xl09 

6.04x109 

1.468 
± 4.559 

0.613 

c=6 

6.39xl010 

±1.90x10" 
6.19xl010 

+ 1.91x10" 
1.383 

± 4.320 

0.969 
P=4 

VV( a =0) 
VV(aopt) 

a opt 

K 

c=2 
2.33xl06 

±6.65xl06 

7.31xl03 

±8.70xl03 

9.278 
± 4.267 

0.003 

c=3 
1.89xl07 

±3.10xl07 

1.52xl07 

±2.79xl07 

0.433 
±1.251 

0.804 

c=4 
1.22xl09 

±3.58xl09 

1.21xl09 

+ 3.58xl09 

0.796 
± 2.502 

0.992 

c=5 
4.67xl09 

±9.86xl09 

4.58xl09 

+ 9.72xl09 

0.443 
±1.370 

0.981 

c=6 
8.18x10'° 

±2.44x10" 
7.44xl010 

+ 2.21x10" 
0.698 

±2.122 

0.910 
P=5 

VV(a=0) 
VV( a opt) 

a opt 

K 

c=2 
4.44x106 

±1.28xl07 

1.87x10" 
+ 1.98xl04 

5.793 
± 5.509 

0.004 

c=3 
3.37xl07 

±5.35xl07 

2.56xl07 

+ 4.66x107 

1.951 
±4.00 

0.760 

c=4 
2.59xl09 

± 7.67xl09 

2.49x109 

+ 7.71xl09 

0.0009 
±0.001 

0.961 

c=5 
7.21xl09 

±1.51x10'° 
6.75xl09 

+ 1.42x10'° 
0.0002 

± 0.0004 

0.936 

c=6 
2.07x10" 

±6.23x10" 
2.07x10" 

±6.23x10" 
0 
0 

1.000 
P=10 

Boston Housing 
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Interestingly, in all cases we observe a substantial reduction of the values of W(ao p t) 
W(ao p t) 

over the values W(a=0). A ratio K = can serve as a suitable indicator that 
W ( a = 0) 

quantifies the achieved improvement resulting from the mechanism of incorporating 
experience consistency. Overall, for all the data presented so far, the values of K range in-
between 0.0029 and 0.9978 with an average value assuming 0.780525. More specifically, 
for each data the results are as follows: 

Abalone: K ranges in-between 0.855 and 0.973 with the average equal to 0.924 
California housing: K is in the range of 0.9853and 0.997 where the average is 0.993 
Auto-mpg: K is in 0.2317and 0.994 and the average is equal to 0.586 
Boston housing: K is in-between 0.0029 and 0.998, average is 0.619 

On average the most improvement is noted for the Auto-mpg data set. Similar average 
improvement is reported for the Boston housing data, while less reduction of K has 
occurred for the Abalone and California housing. 

The plots shown in Figure 8.8 illustrate radar plots of the parameters of linear model 
occurring in the first rule of the rule-based system. Notably, a number of these parameters 
have changed their values as a result of the experience-oriented modeling. 
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P=10 
c=2 

P=10 
c=6 

Figure 8.8 Radar-Plot for California Housing dataset: the parameters of the first rule 
(local model of its conclusion part). 

oV 
0.8 
0.7 

O.S 
0.5 
0.4 

0.3 • 

0.2 -
0.1 -

n -

, 

c=2 

i^f^^K 

- c » 3 •-
- c=6 

c=4 

*-
- r * -

10 P 

0.9 4 
0.8 -

0.7 -

0.6 -

0.5 -

0.4 -

0.3 -

0.2 

0.1 -

0 

i 

P P J P 

*"""--- — 
^ • 2 * " ^ i - ' - - - •' - l - ^ * * * ^ ^ . ^ ^ __ 

- - • « t : 

, , , • • - * • 

(a) 
(a) 

c=2 c=3 c=4 

0.5 i 
0.45 

0.4 -
0.35 

0,3 
0.25 • 

0.2 
0.15 • 

0.1 
0 05 -

0 

, 

\ \ 

\ \ ^ 
\ „ -

II11 

-

r * -

a 

0.5 
0.45 
0.4-

0.35 
0.3 

0.25-
0.2 

0.15 
01 

0.05 
0 

, 

p»1 P-2 - - - • 

p=5 i i p«10 

v\ x^ - V>s \ N'^N X 
^—'"-̂ _- •-->. **--, ,->»-

.. p-3 p. , 

RCSF^E 

8 10 P 

(b) (b) 

158 



2 4 

(c) 

c=2 
c=5 

c=3 

0=6 

(c) 
p=1 p=2 p=3 p=4 

p=5 p=10 

(d) 
(d) 

Figure 8.9 Optimal values of alpha versus P indexed by c (Columnl), Optimal values of 
alpha versus c indexed by P (b) for datasets : Abalone(a), California 
Housing (b), Auto-mpg(c), and Boston Housing(d). 

As illustrated in a series of graphs, Figure 8.9, some general tendency could be observed 
for a number of datasets. First, for a given number of models being available (P), the 
level of optimal level of acceptance of guidance from these models tends to assume lower 
values (a decreasing tendency reported for the optimal values of a). There are some 
occasional departures from this tendency, particularly for the lower values of "c". For a 
fixed number of rules (c), we note that while increasing the number of datasites, the 
optimal value of a becomes lower. These observed trends appeal to our intuition: if we 
encounter a larger number of models or the models are expressed by means of a larger 
number of rules, the level of reliance coming from them tends to become reduced. This 
could be partially caused by the fact that there is a higher level of diversity between the 
models, so we reduce their contributing role in the development of the fuzzy model and 
focus to a higher extent on the data D. 

8.6 Conclusions 

In this chapter, we have developed an approach to fuzzy rule-based model identification 
realized in a collaborative framework of data (experiential evidence) and past experience 
(knowledge evidence). We demonstrated how to reconcile these two essential sources of 
guidance in the form of local regression models. In particular, one could note that the 
knowledge-based component (previously constructed models) can serve as a certain form 
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of the regularization mechanism encountered frequently in various modeling platforms. A 
level of achieved consistency is expressed in terms of fuzzy sets of the regression 
parameters of the local models occurring in the conclusions of the rules. In other words, 
the form of the parameters gives rise to so-called fuzzy linear regression models. The 
optimization procedure applied there helps us strike a sound balance between the data-
driven and knowledge-driven evidence. It is also important to note that the granularity of 
the fuzzy numbers of the parameters of the local regression models becomes helpful in 
the quantification of the reconciled differences between the models. 

The proposed approach to the development of granular rule-based architectures could be 
refined by allowing for a different treatment of individual rule-based systems depending 
upon their temporal or spatial relationships with the original data set D. Furthermore, we 
could consider the use of the developed scheme in case of other fuzzy models or 
neurofuzzy architectures. 

The experience-based modeling could be realized when dealing with a variety of models 
available at each datasite Dj. While the optimization is carried out in the same manner as 
before and the performance of the model can be evaluated as given in (21), the 
heterogeneity of the involved models prevents us from forming the fuzzy numbers of the 
parameters of the overall model. 
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Chapter 9 

Experience-Consistent Modeling Using 
Radial Basis Function Neural Networks 

We discuss a new approach to system modeling that utilizes a collaborative framework of 
data-driven experience and knowledge-driven experience. Data-driven knowledge is 
obtained by building a model from the currently available data, while knowledge-driven 
experience is based on parameters of models built in the past. We construct and present a 
conceptual and algorithmic framework to reconcile these two essential sources of 
knowledge by considering gradient-based neural network models. The models use radial 
basis function networks (RBFN). We define appropriate performance indexes which 
demonstrate the effect of collaboration between the models. Experimental results are 
obtained for several low-dimensional synthetic datasets and for datasets from the 
Machine Learning Repository. 

9.1 Introduction 

Successful model building depends on the quality of experimental data. Knowledge about 
models is encoded in the architecture and parameters of the models. For example, in 
neural networks, regression analysis, and rule-based systems such as decision trees, 
knowledge is encoded in the respective weights, regression coefficients, and simple, crisp 
rules, respectively. In fuzzy systems [5][8][9][10][11][14][15], knowledge is represented 
by fuzzy sets and their membership values and fuzzy rules. If a dataset used to build a 
model contains a relatively small number of patterns and/or contains a high amount of 
noise, one can expect that the usefulness of the model and its prediction capability will be 
poor. In such a scenario, a reliance on models developed in the past might be quite useful 
in enhancing the predictive quality of the currently built model. Specifically, in 
constructing a new model, one solution might be to utilize not necessarily the past data 
themselves (which may no longer be available), but rather the parameters of the already 
existing models. 

Business, government, and scientific organizations distribute their massive quantities of 
data in physically separated data warehouses located far from each other. Due to security, 
privacy, the sensitive nature [1][6][12] of the data, or for technical reasons, access to the 
data warehouses may be limited or even prohibited. Furthermore, even if access to the old 
data is available, transmitting very large volumes of data may not be feasible due to 
transmission problems or high traffic on computer networks. 
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There are other reasons for using existing models rather than past data to build a new 
model. The datasets used to build previous models may be larger, less noisy, or more 
reliable (if the data collection was performed in a meticulous manner). Moreover, 
existing models built on recent data could have a large impact on models currently being 
created. 

A new model may not work well for a number of reasons. Some variables might not be 
included in a dataset used for model building because of their high complexity, cost of 
measurement, or simply because the modeller does not understand the importance of 
some features and their influence on the model. These phenomena can be overcome to 
some extent by using the parameters of an existing model as a guide in new model 
building. 

For these reasons a reliance on previously constructed models when creating a current 
model makes a great deal of sense. Here we consider regression models, i.e., models 
which deal with prediction of the continuous value of the output variable. We implement 
a prediction learning function [2][4][7][13], a radial basis function network (RFBN) 
employing a single linear neuron, which essentially works as a summation node in an 
output layer. We use RBFN as activation functions for all neurons in a hidden layer and 
employ the FCM algorithm to determine parameters of the RBFN. 

This chapter is organized as follows. The notation used and the mathematical formulation 
of the problem are presented in section 9.2. In section 9.3 we show and discuss 
experimental studies. Section 9.4 offers conclusions and suggests ways to extend the 
work done in this work. An outline of the algorithm used, mathematical derivations, an 
optimization scheme for neural network models, and the steps followed in experiments, 
are included in the Appendices. 

9.2 Notation and a formulation of the problem 

We continue to use the standard notation of previous chapters. Input patterns are 
represented as n-dimensional vectors in Rn. C is the number of clusters, v represents 
prototype vectors, and U or R denotes a partition matrix. 

Assume that we wish to build a new model using a given dataset (site) D that contains N 
patterns and n dimensions. The dataset D consists of the following pairs (xk,yk), k = 1, 
2, ..., N. Further assume that we have P auxiliary datasets (sites) denoted as D[l], 
D[2], ...., D[P] collected in the past. Each of these P datasets (sites) consists of Ni, N2,..., 
Np patterns, respectively. All patterns on site D and auxiliary sites D[l ] through D[P] are 
defined in the same feature space X. Suppose that in the past, we used each of these P 
datasets to construct P independent models. Though the datasets used to construct the P 
models may no longer be available, we can utilize knowledge encoded in the parameters 
of these models to influence building the new model utilizing the currently available data 
on site D. 
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On each of the auxiliary sites D[l] through D[P] and on site D we partition the data 
subsets into C fuzzy clusters using the FCM method. The clustering process performed 
for each site yields a collection of prototypes vjii] (cluster centers).Next we compute the 
partition matrix R[ii] using radial basis approach, as mentioned in the Chapter 4 section 
4.7.3. The subscript ii = 1, 2, ..., P individually identifies each site; i = 1, 2, ..., c denotes 
a cluster number; and Ni, N2, ..., Np indicates the number of patterns available on the ii-
site, ii = 1, 2 P. 

To accomplish an exchange mechanism of local constructs (parameters) between the 
main site D and auxiliary sites D[l ] through D[P], we define two performance indexes V 
and Gto assist in calculating the level of communication between the sites (models). 

V= X ( X w ^ C x J - t a r g e t O ^ a i t c t w i R J x O - t w J i i l R J x , ) ) 2 -
k=l i=l ii=l k=l i=l i=l 
Xt.targetteD xkeD 

0) 

More specifically, indices V and G assist in measuring the level of interaction between 
models created exclusively on the basis of dataset D and auxiliary models built on 
datasets D[l] through D[P], Figures 9.1(a) and 9.1(b) show the meaning and effect of 
indexes V and G which minimize the standard sum of squared errors and the normalized 
(by N) standard sum of squared errors, respectively, between predicted and actual values. 
The semantics for both indices are as follows. 

D[1](N,) D [ 2 ] ( N 2 ) D[1](N,) 

(a) (b) 

Figure 9.1 Minimization of the performance indexes V and G—a schematic view. 

First, we introduce performance index V to achieve a balance (stability) and consistency 
between the model created only on the basis of site D (the left part of equation 1) and the 
results produced formerly by the models on sites D[ii], ii = 1, 2, ..., P (the right part of 
equation 1 and further details regarding optimal estimation of weights Wi and w;[ii] refer 
Appendices A, B and C). The value of index V is based on the optimal estimation of 
weights w; and w;[ii] of the neural network mocjLels computed for datasets D and D[l] 
through D[P], respectively. We wish to minimize index V for some value of a, changing 
from 0 to 2 with step 0.001, to obtain the optimal set of parameters that relies on the 
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constraints of consistency. The set of these parameters is denoted by w;(opt). The overall 
balance embedded in index V is obtained for a certain value of a. Higher values of a 
imply a higher influence of other models on the currently constructed model. The nature 
of index V is presented in Figure 9.1(a) and formula (1). One sees that the computation of 
V is performed on the basis of dataset D only as well as the optimal sets of weights w; 
and w;[ii] of the models found earlier are computed using datasets D and D[l] through 
D[P], respectively. We note that the second component of (1) could be viewed as a 
regularization term. 

While the semantics of V (which evaluates the quality of the optimal model based on 
dataset D) should be quite clear by now, the second performance index G requires some 
attention. As shown in Figure 9.1(b), the optimal sets of weights wopt, which minimized V 
for some value of a, are now transferred to sites D[l] through D[P] and their quality is 
evaluated there by the normalized sum of squared errors. One can say that index G 
expressed by (2) measures the global performance of the optimal model as its 
computation is based on optimal vector wopt, common to all sites, as well as dataset D and 
datasets D[l] through D[P]. 

f c A 

^ xk,targett6D V i=l J 

( C \ 
G = ̂  I [ X ^ ^ M ^ - t a r g e t , ] + i - £ | fZw^op^^J l ] ) 

^ 1 xk,tai 

-target, 

-targe^ 
V. V i=l J 

ff C \ V 
+ + ̂ ~ I [[Xw^opORJxJP]) 

*P xk,targetkeD[P] V.V i=l / / 

(2) 

Apparently the expression of G is a function of a and the optimized level of consistency 
is that for which G attains its minimal value, namely aopt = arg Min G(oc). A schematic 
view of computing realized with the aid of (2) is presented in Figure 9.1(b). 

More detailed derivations for computing performance indexes V and G as well as the 
computational steps and optimization schemes for neural network models are presented in 
Appendices B through D. 

9.3 Experimental studies 

In order to demonstrate the effectiveness of RBF neural network experience-consistent 
modeling, we experiment with synthetic datasets and the Machine Learning Repository at 
the University of California, Irvine (UCI). The basic properties of the datasets used are 
summarized in Table 9.1. 
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Table 9.1 Experimental data used in constructing RBFN models. 

No. 

1 
2 
3 
4 
5 

Name of dataset 

Synthetic-1 
Synthetic-2 
Auto-mpg 

Boston Housing 
Abalone 

Number of 
data (N) 

1000 
1000 
398 
506 

4177 

Number of input 
and output 

attributes (n) 
2 
2 
8 
14 
9 

Source(No. 3,4 and 5): http://www.ics.uci.edu~mlearn/MLRepository.html 

For the synthetic 2-dimensional datasets, the number of clusters c and the number of 
auxiliary sites P were set to 3 and 4, respectively. The 1000 patterns generated for two 
synthetic datasets were randomly divided into 5 subsets, D and D[l] through D[4], each 
containing 200 patterns. Datasets obtained from the Machine Learning Repository, have 
more dimensions; P varies from 1 to 5, and c changes from 2 to 5. The total number of 
patterns available for datasets 3, 4, and 5 (Table 9.1) were randomly and evenly 
distributed among the D site and P auxiliary sites so that each of the sites contains an 
equal number of patterns. For example, an Auto-mpg dataset contains 398 patterns. 
Dividing the dataset into 4 sites (D and D[l] through D[3]) yields 99 patterns on each site. 

The different learning rates were investigated in the Machine Learning datasets. 
Generally lower learning rates tend to give better results but with higher learning rates the 
network oscillates. In our collaborative modeling approach, when the learning rate is 
greater than 0.005 in synthetic, Auto-mpg, and Boston Housing datasets, and in case of 
the Abalone dataset greater than 0.0005, the collaborative model tends to oscillate. To 
better interpret the simulation results, we define a coefficient called Ratio. As 
Ratio=(G(a=0)-G(aopt))/G(a=0), it reflects the reduction of G(a0pt) obtained for optimal 
a in comparison to the value of G calculated for a=0. 

The prediction results of the neural networks with different combinations of hidden nodes 
and splits are summarized in tables 9.2—9.6. 

The convergence characteristic at different a values is shown for selected splits in the 
figures 9.4-9.6. 
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Experiment 1: Synthetic Datasets-1 
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Figure 9.2 Synthetic dataset D and D[l] through D[4] used in Experiment 1; No 
noise(a=0); all datasets consist of 200 patterns. 

Table 9.2 Values of the global performance index for RBFNs: P=4, C=3. 

G(a=0) 
G(aopt) 

Ratio 
Ctopt 

o=0 
4.692 
2.381 
0.493 
1.021 

o=0.25 
4.804 
2.447 
0.491 
0.986 

o=0.5 
4.922 
2.617 
0.468 
0.975 

o=1.0 
5.784 
3.262 
0.436 
0.904 

o=1.5 
6.83 
4.51 
0.34 
0.9 

We ran Experiment-1 for a synthetic 2-dimensional dataset that represents a sinusoid and 
contains 1000 patterns. The number of clusters and the number of auxiliary sites D[ii] 
were set to 3 and 4, respectively. As shown in Figure 9.2, sites D[l] through D[4] 
represent "ideal" models with no noise, while site D does not contain noise (a=0) or is 
cluttered with small or large amounts of noise determined by varying values of a. Note 
that for CT=1 .0 and o=l .5 the amount of noise added is quite large and the sinusoid pattern 
is not clearly recognizable. As expected, we observe that as the amount of noise on the D 
site gradually increases, the effect of the 4 "perfect" models on improving the D model 
slightly decreases (Tables 9.2). This is demonstrated by decreasing values of Ratio from 
0.493 to 0.340 and slightly decreasing values of a from 1.021 to 0.900. In particular, this 
experiment shows that when the largest amount of noise (a=1.5) is introduced on site D, 
the Ratio value drops quite substantially to 0.340. Again, for a large amount of noise, 
a=1.5, the influence of other sites on "fixing" the D site diminishes and Ratio drops to 
0.348. 
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Experiment 2: Synthetic Datasets-2 

Figure 9.3 Synthetic datasets on sites Di through D4 used in Experiment 2, where in each 
datasite, N=200. 

o determines a small level of noise added to the 4 sites. Five D sites for 5 different values 
of a are the same as in Experiment 1. 

Table 9.3 Values of the global performance index for RBFN: P=4, C=3. 

G(a=0) 
GHaopt) 
Ratio 
Ctopt 

o=0 
4.908 
2.583 
0.474 
1.035 

o=0.25 
5.022 
2.65 

0.472 
0.976 

o=0.5 
5.139 
2.819 
0.451 
0.986 

o=1.0 
6.003 
3.465 
0.423 
0.914 

o=1.5 
7.046 
4.713 
0.331 
0.91 

Similar to Experiment 1, Experiment 2 was run on a synthetic 2-dimensional dataset that 
contains 1000 patterns and represents a sinusoid. As before, the number of clusters and 
the number of auxiliary sites D[ii] were set to 3 and 4, respectively. As seen in Figure 9.3, 
the level of noise on sites D[l] through D[4] is small and slightly increasing, while site D 
remains the same as in Experiment 1, i.e., it has either no noise or is contaminated with a 
considerable amount of noise determined by a. Again, we observe that as the amount of 
noise on the D site increases, the effect of the 4 "quite good" models on improving the D 
model decreases (Table 9.3). For an RBFN this is demonstrated by decreasing values of 
Ratio from 0.474 to 0.331 and slightly decreasing values of a from 1.035 to 0.910. 
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Machine Learning Datasets 

We performed experiments on three selected datasets from the Machine Learning 
Repository. We demonstrate results for different numbers of clusters c varying from 2 to 
5 and a number of sites changing from 1 to 5. 

Experiment 3: Auto-mpg 

Table 9.4 The values of the global performance index for RFBN: P=l-5; C=2-5 

P\C 
l:G(a=0) 

G(aopt) 
Ratio 
Clopt 

2: G(a=0) 
G(aopt) 
Ratio 
Clopt 

3:G(a=0) 
G(aopt) 
Ratio 
Clopt 

4: G(a=0) 
G(aopt) 
Ratio 
Clopt 

5: G(a=0) 
G(aopt) 
Ratio 
Clopt 

2 
480.887 
474.061 

0.014 
1.128 

1311.730 
855.546 
0.348 
1.491 

1252.120 
1181.990 

0.056 
1.219 

1634.130 
1460.570 

0.106 
0.983 

1971.180 
1667.740 

0.154 
0.96 

3 
426.886 
401.440 

0.060 
0.968 

914.346 
641.818 

0.298 
1.861 

932.811 
869.457 
0.068 
1.249 

1114.640 
1011.040 

0.093 
1.661 

1505.710 
1263.730 

0.161 
2 

4 
334.975 
326.557 
0.025 
1.146 

609.210 
546.224 

0.103 
2 

700.637 
656.682 

0.063 
1.347 

944.922 
896.693 

0.051 
0.408 

1321.930 
1097.800 

0.170 
0.764 

5 
322.437 
285.941 

0.113 
1.501 

447.574 
424.634 

0.051 
0.903 

673.026 
554.116 

0.177 
0.969 

886.008 
775.992 

0.124 
0.739 

1049.750 
1002.050 

0.045 
0.408 
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Figure 9.4 Plots of performance index G vs. a for P=l (a) and P=3 (b). 
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Analysis of the results for Auto-mpg data in Table 9.4 provides similar conclusions to 
those made for the Synthetic Datasets-2 (Experiment 2) in Table 9.3. Table 9.4 shows in 
bold several small or small-medium values of Ratio within [0.113, 0.348]. It appears that 
the same configurations of the data partitions and clusters have a low-medium or low 
effect on the model created on site D. For a higher number of partitions and 1 and 4 
clusters, models existing on the auxiliary sites have a very low influence on the model 
created on site D. Having more than 3 partitions apparently introduces more noise 
because the number of patterns in the entire dataset is relatively small (equal to 398). The 
values of a, which minimize the G index, vary from the lowest of 0.408 to the highest of 
2 and do not exhibit any easily discernable behaviour. 

Experiment 4: Boston Housing 

Table 9.5 Values of the global performance index for RFBN: P=l-5; C=2-5 

P\C 
l:G(a=0) 

G(aopt) 
Ratio 

Clopt 

2: G(a=0) 
G(aopt) 
Ratio 

Clopt 

3:G(a=0) 
G(aopt) 
Ratio 

(Xopt 

4: G(a-O) 
G(aopt) 
Ratio 

Clopt 

5:G(a=0) 
G(aopt) 
Ratio 

Ctopt 

2 
791.919 
774.573 

0.022 
1.503 

1167.540 
1162.440 

0.004 
1.04 

1530.650 
1528.220 

0.002 
1.157 

1943.610 
1933.760 

0.005 
0.58 

2358.530 
2300.690 

0.025 
1.989 

3 
742.164 
733.830 

0.011 
0.794 

1083.810 
1081.880 

0.002 
0.891 

1548.430 
1472.820 

0.049 
0.708 

1923.770 
1847.020 

0.040 
1.829 

2339.100 
2261.300 

0.033 
1.074 

4 
735.192 
715.810 

0.026 
1.978 

1168.830 
1090.250 

0.067 
0.751 

1534.910 
1449.880 

0.055 
0.446 

1968.390 
1825.100 

0.073 
0.416 

2593.630 
2190.290 

0.156 
2 

5 
745.661 
727.730 

0.024 
0.339 

1166.130 
1096.400 

0.060 
1.147 

1526.660 
1436.150 

0.059 
0.443 

1962.400 
1786.930 

0.089 
2 

2306.190 
2094.800 

0.092 
2 
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Figure 9.5 Plots of performance index G vs. a for P=l (a) and P=3 (b). 

The PvBFN model was employed on the Boston Housing dataset with 506 patterns and 14 
attributes. The findings mostly parallel results obtained for the Auto-mpg dataset. Some 
configurations of partitions and clusters, in terms of their counts, cause an increased and 
substantial effect of other sites on site D. One can conclude that when the number of 
dimensions in the dataset increases and the number of patterns is relatively small the 
RBFN method clearly has an effect on site D. Again, G does not seem to be very 
dependent on a; however, the collaboration is beneficial. 

Experiment 5: Abalone 

Table 9.6 Values of the global performance index for RFBN: P=l, 2, 5; C=2-5. 

P\C 
l:G(a=0) 
G(aopt) 
Ratio 
Otopt 

2: G(a=0) 
G(aopt) 
Ratio 
ttopt 

5:G(a=0) 
G(aopt) 
Ratio 
ttopt 

2 
87.233 
87.195 
0.000 
1.081 

137.335 
135.109 
0.016 
1.128 

280.586 
272.247 

0.030 
0.946 

3 
65.319 
58.551 
0.104 
1.276 

91.480 
87.307 
0.046 
0.733 

189.951 
176.575 
0.070 
1.611 

4 
47.052 
45.801 
0.027 
0.879 

87.192 
74.565 
0.145 
1.23 

192.595 
157.982 
0.180 
1.589 

5 
46.060 
43.529 
0.055 
0.978 
83.471 
70.451 
0.156 
0.753 

166.728 
143.051 
0.142 
0.487 
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Figure 9.6 Plots of performance index G vs. a for P=l (a) and P=2 (b). 

The Abalone dataset has 4177 patterns and 9 dimensions. To some extent, the findings 
parallel results obtained from Auto-mpg and Boston Housing datasets. Again, some 
configurations of partitions and clusters, in terms of their counts, show a low effect of 
other sites on site D. The reader is referred to values in bold in Table 9.6. The influence 
of other sites on site D is relatively low for the RBFN models. This is evident when the 
number of dimensions in the dataset increases and the number of patterns is relatively 
large. Again, it is difficult to notice any easily interpretable pattern in the behaviour of a. 

9.4 Conclusions 

We present a methodology of system identification and modeling accomplished through a 
collaborative framework and knowledge-driven experience. Data-driven knowledge is 
realized by building models from currently available data, while knowledge-driven 
experience is based on the parameters of models built in the past. We construct and 
present conceptual and algorithmic frameworks for the reconciliation of these two 
essential sources of knowledge by considering gradient-based neural network models. In 
particular, we employ models based on RBFN. The experimental results show that 
knowledge-driven experience can enhance data-driven experience, i.e., models built in 
the past can "improve" the quality of models currently under construction. 

In the future different model architectures could be examined, i.e., linear and nonlinear 
regression models could be combined. Neural network systems could be based on error 
back-propagation and fuzzy rule-based systems residing on the datasites could realize the 
exchange of parameters and cooperation between the models via high level information 
granules and prototypes. A much more challenging task would involve dealing with 
models built on different feature spaces, i.e., different model architectures could be 
reconciled as could slightly different feature spaces on which the models are built. 

173 



References 

1. R. Agarwal, R. Srikant, Privacy-prserving data mining. In Proc. Of the ACM SIGMOD 
Conference on Management of Data, ACM Press, New York, May 2000, 439-450. 

2. L. Breiman, Bagging predictors, Machine Learning, 24(3), 1996,123-140. 

3. S. G. Cao, N. W. Rees, G. Feng, Analysis and design for a class of complex control 
systems, Part I and Part II, Automatica, 33, 6, 1997, 1017-1028 and 33, 
6, 1997, 1029-1039. 

4. K. H. Fasol, H. P. Jorgl, Principles of model building and identification, 
Automatica, 16,5, 1980, 505-518. 

5. A. Jain, R. Duin, J. Mao, Statistical pattern recognition: a review, IEEE Transactions 
on Pattern Analysis and Machine Intelligence, 22, 2000, 4-37. 

6. M. R. Genesereth, S. P, Ketchpel, Software agents, Communications of the ACM, 37(7), 
1994, 48-53. 

7. S. S. Haykin, Neural Networks: A comprehensive Foundation, Macmillan, New York, 
1994. 

8. M. Kumar, N. Stoll, R. Stoll, An energy-gain bounding approach to robust fuzzy 
identification, Automatica, 42,5, 2006, 711-721. 

9. W. Pedrycz, G. Vukovich, On elicitation of membership functions, IEEE Trans, on 
Systems, Man, and Cybernetics, PartB, 32, 2002, 761-767. 

10. W. Pedrycz, Knowledge-Based Clustering: From Data to Information Granules, J. 
Wiley, Hoboken, NJ, 2005. 

11. W. Pedrycz, F. Gomide, Fuzzy Systems Engineering, J. Wiley, Hoboken, NJ, 2007. 

12. D. B. Skillicorn, S. M. McConnell, Distributed prediction from vertically partitioned 
data, Journal of Parallel and Distributed computing, 2007'. 

13. G. Tsoumakas, L. Angelis, I. Vlahavas, Clustering classifiers for knowledge 
discovery from physically distributed databases, Data & knowledge Engineering, 49(3), 
2004, 223-242. 

14. L. A. Zadeh, Towards a theory of fuzzy information granulation and its centrality in 
human reasoning and fuzzy logic, Fuzzy Sets and Systems, 90, 1997, 111-117. 

15. L. A. Zadeh, Toward a generalized theory of uncertainty (GTU)- an outline, 
Information Sciences, 172, 2005, 1-40. 

174 



Chapter 10 

Conclusions and Future Directions 
This chapter highlights the conclusions made in this study and discusses some directions 
for future research. 

10.1 Conclusions 

This study proposes a new suite of collaborative frameworks using the idea of 
knowledge-based networks. We investigate two collaborative frameworks: collaborative 
clustering and experience-consistent. The collaborative clustering framework deals with 
clustering problems. The experience-consistent framework handles regression and 
classification problems. 

An important task of our research is to find consensus among datasites through a 
collaborative approach so that a global structure (model) of the datasites can be 
constructed. 

In fuzzy collaborative clustering each site comes with its own partition matrix; direct 
comparison of two partition matrices is not feasible as we may not have a correspondence 
between rows. We have used the concept of proximity and a proximity matrix induced by 
a given partition matrix. It is essential to evaluate how consistent the resulting structures 
are. A viable method we have applied is to compare partition matrices to quantify the 
distance between them. 

In experience-consistent modeling it is advantageous to not only consider currently 
available data, but also to actively exploit previously obtained knowledge. A previously 
constructed model can serve as a regularization mechanism for conditions that will be 
encountered quite often in various modeling platforms. A level of achieved consistency is 
expressed in terms of fuzzy sets of the regression parameters of the local models 
occurring in the conclusions of the rules. In other words, the form of the parameters gives 
rise to so-called fuzzy linear regression models. The optimization procedure applied helps 
to strike a sound balance between data-driven and knowledge-driven evidence It is noted 
that the granularity of the fuzzy numbers of the parameters of the local regression models 
is helpful in quantifying the reconciled differences between models. 

Experimental results presented in Chapters 5 to 9 reveal that both collaborative 
frameworks are efficient and can be used to the find global characteristics of the 
collaborating sites. 
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• In the case of fuzzy collaborative clustering (both horizontal and vertical modes) 
the results are compelling; in most cases the values of the proximity index were 
reduced around 40% in comparison to values reported without collaboration. The 
plots of prototypes before and after collaboration also show the effectiveness of 
the developed algorithm. 

• In the case of the experience-consistent framework, for all models under study 
global objective functions were minimized after collaboration. 

The study makes the following contributions: 

Fuzzy collaborative clustering framework 

In fuzzy collaborative clustering we have formulated the distributed computing problem 
entirely in the framework of Pedrycz's collaborative clustering model which is based on a 
fuzzy clustering (FCM), and we have extended the study in several respects: 

• Previous work mainly focused on basic aspects of collaborative clustering; 
we have developed a new suite of collaborative clustering frameworks. 

• We reformulate new horizontal and vertical clustering frameworks to 
support multiple phases of reconciliation of the collaborative process so as 
to obtain optimal global structures of the collaborating sites. 

• We introduce a quantification method for evaluating the overall 
consistency achieved among datasites using a proximity-distance method. 
Experimental results reveal that the proximity-distance index is a suitable 
vehicle to quantify the collaboration and will help in selecting an optimal 
P-

• We present an evaluation of our approach in advanced constructs such as 
type-2 fuzzy sets. 

In such a framework each site actively participates in collaboration for multiple phases, 
thus this method is suitable for dynamic applications. The multiple phase method also 
overcomes instabilities in the clusterings and improves the ability to find global structures 
present in collaborating datasites. 
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Experience-consistent framework 

The experience-consistent framework deals with predictions in a distributed environment. 
The main contributions of this study are: 

• We elaborate on key design issues of distributed methods relating to regression, 
fuzzy linear regression (rule-based model), linear classification (two-class model), 
and radial basis function networks (RBFN) for system identification. 

• We introduce a variety of communication mechanisms for effective interactions 
between datasites. 

• We evaluate our methods in advanced constructs such as type-2 fuzzy sets. 

10.2 Future directions 

Suggestions for future research in both collaborative frameworks are summarized below. 

Fuzzy collaborative clustering framework 

We have presented vertical and horizontal fuzzy collaborative clustering for the case in 
which the collaborative framework attempts to find global structure in the presence of 
privacy preserving constraints. We demonstrate both cases at the same and different 
levels of information granularity at collaborating sites. 

• It would be worthwhile to study both vertical and horizontal frameworks for 
situations in which the intensity of a collaboration coefficient is computed 
dynamically, so that the impact of noisy datasites can be isolated during a 
collaboration process. 

• Future research may investigate the use of a multi-objective optimization 
approach to capture the complex global structure of collaborating sites 
(collaborating datasites may have hybrid structure: simultaneous heterogeneous 
and homogeneous structures). 

• A case in which each collaborating site has a different base learning algorithm 
could be investigated. This would generalize the framework, enabling us to cope 
with more real-world problems. 

Experience-consistent framework 

We present foundation frameworks for experience-consistent modeling. Based on these 
foundations, the following scenarios could be investigated: 
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• A two-class category classification of the model of experience-consistent 
framework could be generalized to handle multiclass problems. 

In fuzzy rule-based experience-consistent models we have implemented the model 
with the assumption that the same number of information granularity is present at 
all sites. In future, different levels of granularity present at interacting sites could 
be investigated. 

The proposed approach to the development of granular rule-based architectures 
could be refined by allowing for a different treatment of individual rule-based 
systems depending upon their temporal or spatial relationships with the original 
dataset D. Furthermore, the use of the developed scheme in case of other fuzzy 
models or neurofuzzy architectures could be considered. 

In RBFN experience-consistent model, a much more challenging task would 
involve dealing with models built on different feature spaces, i.e., the mechanism 
of reconciliation could be introduced, not only between different architectures of 
the models but also between slightly different feature spaces on which each model 
is built. 

Theoretical and algorithmic approaches of collaborative computing investigated in this 
study can be used as a foundation for further research in the area of fuzzy distributed 
modeling. 
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Appendix A 
Experience-consistent Regression model 

Here we include detailed derivations of the optimal vector of parameters of the regression 
model in presence of the experience-consistent component which minimizes V. Let us 
rewrite V in an explicit manner 

p 
v = Z ( a T x k + ao -Yk)2 + a Z Z ( a T x k + a o - a T U K -a0[j])2 

x keD j=l xkED 
ykeD ykeD 

N n P N n n 

= Z (Za.xki + ao -yk)2 + a Z Z (Za>xki+ ao -ZaiWxki -aoD])2 

k=l i=l j=l k=l i=l i=l 
xkeD x tED 
ykeD ykED 

For simplification purposes we include constant ao by accepting an augmented version of 
x and a. More specifically, we augment a by ao while the corresponding entry of x is set 
up to 1. In other words, we end with a and x to be two (n+l)-dimensional vectors. 
Subsequently taking the derivative of V we obtain 

ps\j N n P N n n 

T ~ = 2 Z (Zaixk. -yk)
xks +2aZ Z (Zaixki -ZaiWxki)xks =o 

C&s k=l i=0 j=l k=l i=0 i=0 
x keD xkeD 
ykeD ykeD 

N n N P N n P N n 

= Z ZaixHxkS - ZykXks+«ZZZa.xkixks - « Z Z ZaiWxkixkS = o 
j=l k=l i=0 j=l k=l i=0 

x keD 
ykeD 

Let us introduce the notation Yk [j] = Zai[Jl-xki • ^n t n e sequel we obtain 

N n N P N n P N 

Z Zaixk.xks - Zykxks + a Z Z Zaixkixks - « Z ZYk[Bxks = ° 
k=l i=0 k=l j=l k=l i=0 j=l k=l 
xkeD xkED XkgD X|,eD 
y ksD ykeD ykeD ykeD 

Taking common factor out, we obtain 

k=l i 
xkeD 
ykeo 

i=0 k=l 
x keD 
ykeD 
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P n 

E i E a i x ki + o t E 1 E a . x ki - yk+EYkU] 
j=l i=0 J { j=l J k=l IV >=° 

x keD 
yk<=D 

• * k s = 0 

Further simplification yields yv y k +«E Y J j ] and we obtain 

N [ n 

X Ea ixH(l + cc(P))-yk .xks=0 
k=l U=0 
xkeD 
ykeD 

n N 

E a . Ex^kl(i+a(p))- ExJkyk =o 
i=0 k=l 

x t e D 
lc=l 
x k eD 
ykeD 

Next we get 

n N 

( i+ a ( p ) )E a i Exsk
xk. - ExsT

kyk =o 
i=0 k=l 

x keD 
y keD 

k=l 
x k sD 
y k sD 

(i+«(p))Eai Ex*x
ki = Ex iyk 

i=0 k=l 
X k 6 D 
ykeD 

k=l 
X k 6D 
ykeD 

Rewriting the above expression in a matrix form, we obtain 

T _(XTX)"'.XTY 
a . = 
"opt (1 + a.P) 
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Appendix B 

RBF Base Model: Optimization Steps 

Step 1: First, we apply FCM (for several iterations) on individual dataset to generate 
prototypes (i.e., number of neurons in hidden layer) and then compute partition matrix Rj 
using Radial-basis approach as below. 

R1(x) = exp 
( ii it2 •> 

F - V i | 
I 2o,2 , 

Step 2: The consequent part is: 

j ^ R j W j . 

Step 3: The output of the overall model is: 
c 

y k = S R i w i ' 
i=l 

Q = I>k-£R1dW1)2, 
lc=l i=l 

M S E=il(yk -ZR
k l

w i ) 2 -
-N k=l i=l 

We intend to minimize the squared error between y and y by following the objective 
function using a gradient method to adjust w;. 

Q = (y-y)2> 
c 

y = Z y i . 
i=l 

w; (new) = W; (old) + Awj 
dQ 
dWj 

dQ dy 

A\Vj = -n——, where r| is a learning rate, 
8W: 

= -n 

-fi 

dy dwi ' 

5y 5y; 5w; ' 
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D § = |r[(y-y)2]=-2(y-y), 
dy oy 

2) 
3yl fy\ .1=1 

3 ) ^ = - ^ [ R i W l ] = Ri; 
' »-i *> L 1 1 J 1 ' 

CTV; (TW: 

Aw i=2ri(y-y)R i . 

w; is updated by the following equation. 

Wj (new)= W; (old)f 2^(y- y)R;. 
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Appendix C 

Optimization Scheme: Radial Basis Function Networks(RBFN) Model 

V= £ ( J w i R ^ x O - t a r g e t J ^ a J J c J w i R ^ x J - J w i l i i l R ^ x ^ ) 2 

k=l i=l 
xk,targetkeD 

ii=l k=l i=l 
xkeD 

i=l 

where, Rki(xk) = Uki(xk) that is determined as in Appendix-A , xk e D, and w; is a D 
site connection vector between the hidden layer and the output layer, wjii] are 
connection parameters for the D[ii] site. 

Let yk = targetk, 

av d 
9wc dw 

s s 

P N C 

Z (Iw iRM(xk)-yk)2+aXZ(Iw iR l d(xk)-Xw i[ i i]R l i(x1 ;))2 

k=l i=l 
x k , t a rge t k eD 

ii=l k=l i=l 
x k s D 

= 0 

P N C 

^ ^ 2 £ ( X w 1 R k l ( x k ) - y k ) R k s ( x k ) + 2aXZ(Ew iRk l(xk)-Xw1[ i i]Rk l(xk)) .Rk s(xk) = 0 
C w „ k=, i=, ii=1 k=1 i=1 i=1 k=l i=l 

xkeD xkeD 

N C P N C 

k=l 
X k E D 

ii=l k=l i=l 
x k e D 

W(w,) = J ] Xw iRk i(xk)Rk s(xk)- XykRks(xk) + a X £ I w ^ J x J R J x J 
k=l i=l k 
x t e D x 

- a X i t w J u J R ^ x J R J x ^ O 
ii=i k=i i=i 

x k e D 

Now update the Wj (new) 

w; (new) = W; (old) - n W ( w ; ) . 
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Appendix D 

Computational Steps of experience-consistent RBFN Model: 

Step 1: Run FCM on all datasites and R is computed as mentioned in Appendix-B. 

Step 2: Compute w ôpt) connection parameters minimizing V (optimization scheme as 
shown above) for a = 0.0 to 2.0 with step 0.001. 

V= £ (JwiR^xJ-targetO'+aXZCZwiRHCxJ-ZwitiilRax,))2 

k=l i=l 
xk,targetkeD 

ii=l k=l i=l 
xkeD 

i=l 

where: Rki(xk) = Uk i(xk), xk e D , and w; is a D site connection vector between the 
hidden layer and the output layer, wjii] are connection parameters for the D[ii] site. 

Wj(new) = Wj(old) -T|W(w i) , compute as in Appendix-C. 

Wi is updated iteratively so there is no further change in VV(Wj). 

Step 3: G index computed on w;(opt): 

G = ̂ 7 Z [ Z ^ o p O R i k C ^ - t a r g e t J + -J- Z I (Xw^opQR^xJl]) |-target 
^ xk,taigetkgD V i=l J N j xk,targetkeD[l]l V i=l J 

f C 

+ + ̂ ~ Z Zw^opfjR^xJP]) -target 
N P xk ,targetk ED[P] V V i=l / 

Step 4: Iterate a from 0 to 2 with step (0.001) for steps 2 and 3. 
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