
University of Alberta 

LEARNING STRUCTURED CLASSIFIERS FOR STATISTICAL DEPENDENCY PARSING 

by 

Qin Iris Wang 

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of 
the requirements for the degree of Doctor of Philosophy. 

Department of Computing Science 

© 

Edmonton, Alberta 
Fall 2008 



1*1 Library and 
Archives Canada 

Published Heritage 
Branch 

395 Wellington Street 
Ottawa ON K1A0N4 
Canada 

Bibliotheque et 
Archives Canada 

Direction du 
Patrimoine de I'edition 

395, rue Wellington 
Ottawa ON K1A0N4 
Canada 

Your file Votre reference 
ISBN: 978-0-494-46446-5 
Our file Notre reference 
ISBN: 978-0-494-46446-5 

NOTICE: 
The author has granted a non
exclusive license allowing Library 
and Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non
commercial purposes, in microform, 
paper, electronic and/or any other 
formats. 

AVIS: 
L'auteur a accorde une licence non exclusive 
permettant a la Bibliotheque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par telecommunication ou par Plntemet, prefer, 
distribuer et vendre des theses partout dans 
le monde, a des fins commerciales ou autres, 
sur support microforme, papier, electronique 
et/ou autres formats. 

The author retains copyright 
ownership and moral rights in 
this thesis. Neither the thesis 
nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author's 
permission. 

L'auteur conserve la propriete du droit d'auteur 
et des droits moraux qui protege cette these. 
Ni la these ni des extraits substantiels de 
celle-ci ne doivent etre imprimes ou autrement 
reproduits sans son autorisation. 

In compliance with the Canadian 
Privacy Act some supporting 
forms may have been removed 
from this thesis. 

Conformement a la loi canadienne 
sur la protection de la vie privee, 
quelques formulaires secondaires 
ont ete enleves de cette these. 

While these forms may be included 
in the document page count, 
their removal does not represent 
any loss of content from the 
thesis. 

Canada 

Bien que ces formulaires 
aient inclus dans la pagination, 
il n'y aura aucun contenu manquant. 



To my parents, who made me who I am today. 



Abstract 

In this thesis, I present three supervised and one semi-supervised machine learning ap

proach for improving statistical natural language dependency parsing. I first introduce a 

generative approach that uses a strictly lexicalised parsing model where all the parameters 

are based on words, without using any part-of-speech (POS) tags or grammatical categories. 

Then I present an improved large margin approach for learning dependency parsers from 

treebank data that allows a more general set of linguistic features to be used. Specifically, 

I incorporate local constraints that enforce the correctness of each individual link, rather 

than just scoring the whole parse tree. For dealing with sparse data, I smooth the lexical 

parameters according to their underlying word similarities using Laplacian regularization. 

Third, I present a simpler and more efficient approach to training dependency parsers by 

applying a boosting-like procedure to standard supervised training methods. By using lo

gistic regression as an efficient base classifier (for predicting dependency links between 

word pairs), I am able to efficiently train a dependency parsing model, via structured boost

ing, that achieves state-of-the-art results in English, and surpasses state-of-the-art in Chi

nese. Finally, I propose a novel semi-supervised training algorithm for learning dependency 

parsers. By combining a supervised large margin loss with an unsupervised least squares 

loss, I obtain a discriminative, convex, semi-supervised training algorithm for dependency 

parsing. 



Acknowledgements 

I was very fortunate to have two fantastic supervisors, Dr. Dekang Lin and Dr. Dale Schu-

urmans. I am profoundly grateful to Dekang for his continuous help and encouragement 

throughout my graduate career. (I just wish he could've stayed longer at the University of 

Alberta!) I am also eternally grateful to Dale, who is always insightful, energetic, encour

aging and helpful. His vigorous pursuit of excellence in research, teaching, advising and 

every other aspect of his academic work is truly inspiring. 

I would like to thank my thesis committee, Dr. Greg Kondrak, Dr. Randy Goebel, 

Dr. Chris Westbury and my external examiner Dr. Martha Palmer, for their excellent and 

helpful suggestions and thought-provoking questions. In particular, many thanks to Martha 

and Chris for their valuable comments on my thesis. 

I am grateful to all the staff at the Alberta Ingenuity Center for Machine Learning lab, 

especially Leslie Acker, who is a wonderful lady and cheered me up every day. 

I would also like to thank my brilliant colleagues, Colin Cherry, Chris Pinchak, Shane 

Bergsma, and my fabulous friends I met at conferences, especially Liang Huang from the 

University of Pennsylvania. Their persistence, diligence and perseverance have always 

inspired me to better myself. 

Special thanks to my great friends, Nathan, Yuntong, Yang and Fang, who are always 

there whenever I need a hand. I am also grateful to Baochun, Yuxi, Guohua, Linli, Feng, 

John, Dan, Jason, Shanny, Oliver, Hongjing, Sufeng, Oneway, Xiaorui, Joyce, and many 

others, for making Edmonton an enjoyable and memorable place to spend my time doing 

graduate studies. 

Finally, I would like to thank my parents. They provided an enormous amount of sup

port and made me who I am today. I dedicate this thesis to them. 



Table of Contents 

1 Introduction 1 
1.1 Motivation 1 
1.2 Main Contributions 3 
1.3 Thesis Outline 5 

2 Background on Parsing 7 
2.1 What Is a Parser? 7 
2.2 Syntactic Representations of a Parse Tree 7 

2.2.1 Dependency Structures vs. Constituency Structures 8 
2.2.2 Other Syntactic Representations 10 

2.3 Parsing Algorithms 11 
2.3.1 Dynamic Programming 11 
2.3.2 Dependency Parsing Algorithms 12 

2.4 Scoring Parses 13 
2.4.1 Local Scoring Functions 13 
2.4.2 Static Features 14 
2.4.3 Dynamic Features 16 

2.5 Treebanks 17 

3 Background on Learning to Parse 18 
3.1 Introduction 19 
3.2 Early Statistical Approaches 20 
3.3 Reranking 23 
3.4 Local Training Methods 24 

3.4.1 Logistic Regression Models 24 
3.4.2 Support Vector Machines 26 

3.5 Global Training Methods 27 
3.5.1 Conditional Random Fields 28 
3.5.2 Structured Large Margin Training 29 

3.6 Other Relevant Machine Learning Techniques 30 
3.6.1 Boosting 30 
3.6.2 Similarity Smoothing 32 
3.6.3 Unsupervised/Semi-supervised Learning 34 

4 Experimental Setup 37 
4.1 Data Sets 37 

4.1.1 English 37 
4.1.2 Chinese 38 

4.2 Evaluation Measures 38 
4.3 Complexity Issues 40 

5 Strictly Lexicalised Dependency Parsing 41 
5.1 Lexicalised Parsing 41 
5.2 A Probabilistic Dependency Parsing Model 42 
5.3 Similarity-based Smoothing 46 
5.4 Dependency Parsing Algorithms 47 



5.5 Experimental Results 49 
5.6 Related Work 50 
5.7 Contributions 52 
5.8 Conclusion 52 

6 Extensions to Large Margin Dependency Parsing 53 
6.1 Large Margin Training with Local Constraints 54 

6.1.1 Large Margin Training 54 
6.1.2 Training with Local Constraints 55 

6.2 Laplacian Regularization 57 
6.3 Experimental Results 58 
6.4 Related Work 61 
6.5 Contributions 62 
6.6 Conclusion 62 

7 Training Dependency Parsers via Structured Boosting 63 
7.1 Introduction 63 
7.2 Structured Boosting 64 
7.3 Implementation Details 65 
7.4 Experimental Results 67 
7.5 Contributions 70 
7.6 Conclusion 71 

8 Semi-supervised Convex Training for Dependency Parsing 72 
8.1 Introduction 73 
8.2 Supervised Structured Large Margin Training 75 
8.3 Semi-supervised Structured Large Margin Objective 76 
8.4 Semi-supervised Convex Training for Structured SVMs 77 

8.4.1 Least Squares Convex Objective 77 
8.4.2 Semi-supervised Convex Objective 78 

8.5 Efficient Optimization Strategy 79 
8.6 Implementation Details 79 
8.7 Experimental Results 80 

8.7.1 Experimental Design 80 
8.7.2 Results 81 

8.8 Contributions 83 
8.9 Conclusion 83 

9 Conclusions and Future Directions 84 
9.1 Summary of Contributions 84 
9.2 Future Directions 84 

9.2.1 Variations of Structured Boosting 84 
9.2.2 Multilingual Dependency Parsing 85 
9.2.3 Domain Adaptation 85 
9.2.4 A Unified View of My Current Work 86 

Bibliography 87 



List of Tables 

2.1 Static features 15 

4.1 PARSEVAL measures 38 
4.2 Dependency tree accuracy measures 39 

5.1 Evaluation results on CTB4 49 
5.2 Performance of alternative models 49 

6.1 Accuracy on CTB4-10dev set (%) 59 
6.2 Accuracy on CTB4-10 test set (%) 59 
6.3 Accuracy on CTB4-10 training set (%) 59 
6.4 Comparison with the approach in Chapter 5 on CTB4-10 (%) 60 

7.1 Boosting with static features (%) 68 
7.2 Boosting with dynamic features (%) 69 
7.3 Comparison with state-of-the-art (%) 70 

8.1 Size of experimental data (# of sentences) 81 
8.2 Supervised and semi-supervised dependency parsing accuracy on Chinese 

(CTB4) (%) 82 
8.3 Supervised and semi-supervised dependency parsing accuracy on English 

(PTB) (%) 82 



List of Figures 

2.1 A dependency tree 8 
2.2 A constituency tree 8 

3.1 The AdaBoost boosting algorithm 31 
3.2 Similar words of keystone 33 

5.1 A dependency parsing algorithm 48 



Chapter 1 

Introduction 

Learning syntactic parsers has been an active research area for more than a few decades. 

My research is focused on developing effective and efficient machine learning algorithms 

for inferring dependency parsers from natural language data, e.g., discovering dependency 

structure from raw text. I present several machine learning approaches to dependency pars

ing, which can be implemented efficiently, are extensible through the feature set and provide 

state-of-the-art accuracy. 

1.1 Motivation 

Syntactic parsing is a fundamental problem in natural language processing (NLP), where 

one maps a sentence from a non-structured linear form into a structured form. The struc

tured form simplifies the process of extracting meaning from text. (Henceforth, I will use 

the term "parsing" to refer to "syntactic parsing".) Parsing has been an active area of re

search since the 1960s, not only because parsing output is very useful for many other NLP 

applications, such as machine translation (Ding and Palmer, 2005), information extraction 

(Culotta and Sorensen, 2004), question answering (Pinchak and Lin, 2006), coreference 

resolution (Bergsma and Lin, 2006) and query segmentation (Bergsma and Wang, 2007), 

but also because parsing itself is a very interesting research area. 

Ambiguities, which abound in natural language, are a major problem in parsing. For 

example, for the sentence "/ saw her duck", there are three interpretations: 

• I saw her pet duck. 

• I saw her bend over. 

• I cut her pet duck with a saw. 

1 



Before the 1990s, the predominant approaches to parsing were symbolic, where a hand-

coded grammar was a necessary component (Allen, 1987). Symbolic parsers may perform 

well in a specific domain. However, the performance of hand-coded parsers drops off dra

matically when they are applied to broader domains. The reason is that symbolic parsers 

suffer two main problems. One is that they do not deal with ambiguities well. They rely on 

selectional preferences and heuristic grammar rules to resolve ambiguities, but there are of

ten many different parses that satisfy the same number of selectional preferences and meet 

the same heuristic criteria. The second problem is that they cannot parse sentences that are 

not covered by the specified grammar rules. Both of these problems, however, can be solved 

simultaneously by using statistical/machine learning approaches. First, by using a scoring 

function to select the most preferred parse tree, a statistical parser deals with ambiguities in 

a more principled way (see more discussion below in Section 2.4). Second, any parse tree 

is potentially allowed in a statistical parser. 

Statistical approaches have been playing an increasingly prominent role in parsing since 

the 1990s. Parsing accuracy has increased significantly due to the introduction of machine 

learning methods in recent years. Parsing is an especially challenging and important task 

for machine learning, since it involves complex structured outputs (parse trees) and limited 

training data (manually constructed treebanks), and yet machine learning methods have 

proved to provide the best approach to obtaining robust parsers for real data. From the ma

chine learning perspective, parsing can be considered as a structured classification problem. 

In a parsing model, during the learning phase, parameters defining the model are estimated 

using some machine learning criterion. During the classification phase, a parser takes a test 

sentence and the learned parameters as input and outputs the most preferred parse tree for 

that sentence. 

Although machine learning approaches have shown significant improvement in increas

ing parsing accuracy, there are still some drawbacks in existing methods. First, in almost all 

previous statistical parsers, part-of-speech tags, either obtained from an external tagger or 

generated within the parser, are always considered to be a necessary component, since POS 

tags play an important role in dealing with the data sparseness problem. Unfortunately, 

for some languages, such as Chinese or Japanese, POS tags are harder to assign because 

there is more ambiguity and fewer morphological clues. For example, in Chinese, a single 

word is often combined with many other words and the combined items often have differ

ent POS tags. Alternative smoothing approaches are needed to handle the data sparseness 

problem in these languages. Second, there are weaknesses in current large margin training 

2 



approaches to parsing, including: the introduction of an exponential number of constraints, 

corresponding to each possible parse tree of each sentence; evaluating the standard large 

margin training loss only at the global tree level, without penalizing any specific component 

in an incorrect parse tree; and creating serious over-fitting problems due to the large num

ber of bi-lexical (word-pair) features. Although smoothing techniques have been widely 

used in probability models, they have not been used in large margin frameworks. Third, 

recent global training algorithms for learning structured predictors have been applied to 

parsing. However, the drawbacks of these global training algorithms are that they are spe

cialized, complex to implement and expensive to run. For a complex task like parsing, 

these drawbacks are significant. Finally, although a great deal of progress has been made 

on semi-supervised learning for parsing, available semi-supervised training algorithms for 

parsing are either too expensive or the results are not as good as expected. 

My thesis research is based upon the observation that there are still some limitations in 

existing statistical approaches to parsing and this has motivated me to employ and develop 

advanced supervised and semi-supervised machine learning algorithms to train accurate 

dependency parsers from natural language data. 

1.2 Main Contributions 

This thesis addresses the problem of learning dependency parsers from language data. The 

main contributions of the thesis are summarized as follows. 

• First, I present a conditional probability parsing model that uses a maximum likeli

hood Markov network training approach to dependency parsing (Wang et al, 2005). 

The resulting model is similar to a maximum entropy Markov model. In this ap

proach, whenever a dependency link between two words is generated, it considers 

the link labels of the neighbors of the two words. Thus the search for a parse tree 

with the highest probability is equivalent to finding a tree with the highest score of 

sum over all the dependency links in the logarithmic space. Unlike previous genera

tive parsing models that compute the joint probability of a parse tree and a sentence, I 

find a tree which has the highest conditional probability given the sentence. Without 

relying on part-of-speech tags or grammatical categories to deal with the data sparse-

ness issue in parsing, I apply similarity-based smoothing to the conditional parsing 

model instead. To the best of my knowledge, the similarity-based smoothing tech

nique has not been applied to parsing before. 

3 



• Next, I propose an improved large margin training approach to learning dependency 

parsers, which is an extension to the standard large margin training (Wang et al., 

2006). Specifically, I incorporate local errors of a parse tree that enforce the cor

rectness of each individual link, rather than just scoring the whole parse tree. This 

approach only introduces a polynomial number of constraints, instead of an exponen

tial number, where these constraints capture local errors with more detailed parse tree 

information. To deal with sparse data, I smooth the lexical parameters according to 

their underlying word similarities, introducing similarity-based smoothing technique 

into the large margin framework. The refined new large margin training objective— 

with fewer constraints and a better regularizer— provides better parsing results and 

is computationally less expensive than standard training formulations. 

• Then, I present a simpler and much more efficient approach for training dependency 

parsers by applying a boosting-like procedure to standard supervised training meth

ods (Wang et al., 2007). I call this approach structured boosting. Unlike previous 

structured training techniques, which are based on specialized training algorithms 

that are complex to implement and expensive to run, structured boosting provides 

global parsing accuracy with only local training cost. It does not require the un

derlying training algorithm be modified, while still ensuring the training outcome 

is directly influenced by the resulting accuracy of the parser. By using logistic re

gression as an efficient base link classifier (for predicting dependency links between 

word pairs), I am able to efficiently train a dependency parsing model that achieves 

state-of-the-art results in English, and surpasses state-of-the-art in Chinese. 

• Finally, I present a novel, convex, semi-supervised large margin training algorithm 

for learning dependency parsers, where I can make use of both labeled and un

labeled data resource (Wang et al., 2008). A large number of distinct approaches 

to semi-supervised training algorithms have been investigated, such as self-training 

(Yarowsky, 1995; Charniak, 1997; Steedman et al., 2003; McClosky et al., 2006a), 

generative models (Klein and Manning, 2002; Klein and Manning, 2004; Smith and 

Eisner, 2005a), semi-supervised support vector machines (S3VM) (Bennett and Dem-

iriz, 1998; Altun et al., 2005; Xu and Schuurmans, 2005), graph-based algorithms and 

multi-view algorithms (Zhu, 2005). In recent years, many researchers have put effort 

into developing algorithms for S3VMs in particular. However, the standard objec

tive of an S3VM is non-convex on unlabeled data, thus requiring sophisticated global 

4 



optimization heuristics to obtain reasonable solutions. Instead of devising various 

techniques for coping with non-convex loss functions as done by other researchers, 

I approach the problem from a different perspective. In particular, I investigate a 

semi-supervised approach for structured large margin training, where the objective 

is a combination of two convex functions, a structured large margin loss on labeled 

data and a least squares loss on unlabeled data. I apply the resulting semi-supervised 

convex objective to dependency parsing, and obtain significant improvement over the 

corresponding supervised structured SVM. 

In summary, I present three supervised and one semi-supervised approach to learning 

dependency parsers for both English and Chinese. These approaches can be implemented 

efficiently, are extensible through the feature set and provide state-of-the-art accuracy. 

1.3 Thesis Outline 

Below is a brief summary of the remainder of this thesis. 

Chapter 2. Background on Parsing: First, I briefly introduce the problem of natural 

language parsing, parse tree representations, parsing algorithms and the role of scoring 

functions in parsing. 

Chapter 3. Background on Learning to Parse: Then, I survey the dominant ma

chine learning approaches that have been applied in the area of dependency parsing, from 

early statistical approaches, local training methods to global training methods and other 

relevant machine learning techniques, such as boosting, similarity-based smoothing and 

unsupervised/semi-supervised learning. 

Chapter 4. Experimental Setup: As a final preliminary step, I briefly discuss the data 

sets and the evaluation metrics I will use for evaluating parsers' performance to be reported 

in later chapters. 

Chapter 5. Lexicalised Dependency Parsing: In this and the following three chapters, 

I describe a few advanced statistical approaches I have investigated for natural language 

dependency parsing. In particular, I introduce a generative approach to purely lexicalised 

dependency parsing that is augmented with similarity based smoothing, but no POS tags or 

grammatical categories are used. 

Chapter 6. Extensions to Large Margin Dependency Parsing: Next, I present an 

improved large margin approach for learning dependency parsers from treebank data, which 

is an extension to standard large margin training. I introduce both the idea of capturing the 

5 



local parse tree errors and using word similarities in the large margin framework. 

Chapter 7. Training Dependency Parsers via Structured Boosting: I then present a 

simpler and more efficient approach to training dependency parsers by applying a boosting

like procedure to standard supervised training methods. By using logistic regression as an 

efficient base classifier (for predicting dependency links between word pairs), one is able 

to efficiently train a dependency parsing model, via structured boosting, that achieves state-

of-the-art results in English, and surpasses state-of-the-art in Chinese. 

Chapter 8. Semi-supervised Convex Training for Dependency Parsing: Finally, I 

propose a novel semi-supervised training algorithm for learning dependency parsers. By 

combining a convex large margin training loss on labeled data with a convex least squares 

loss on unlabeled data, I obtain a discriminative, convex, semi-supervised large margin 

training algorithm for dependency parsing. 

Chapter 9. Conclusions and Future Directions: To conclude, I give a brief review of 

the main contributions of the thesis and discuss future research directions. 

6 



Chapter 2 

Background on Parsing 

This thesis focuses on automatically inferring dependency structure from natural language 

data. In this chapter I will briefly introduce the syntactic representations of a parse tree, 

parsing algorithms, the scoring functions which specify the most preferred parse tree, the 

features which are used in a scoring function, and finally treebanks, which are used to 

evaluate parsers. 

2.1 What Is a Parser? 

Generally speaking, parsing is the process of analyzing an input sentence in order to deter

mine its syntactic structure, which in most cases is represented as a tree structure. The two 

dominant syntactic tree representations are constituency trees and dependency trees (Man

ning and Schutze, 1999). Thus, the goal of a parser is to analyze an input sentence and 

output the corresponding (most preferred) parse tree. 

After more than a decade of research, many statistical approaches have been success

fully applied to natural language parsing. These approaches mainly differ in three aspects: 

the output representations (i.e., what linguistic structure is used to represent a parse tree?), 

the parsing algorithms (i.e., which parsing algorithms can be used and how efficient are 

they?), and the scoring functions (i.e., how can alternative parses be scored so that the 

best scoring parses correspond to humans' preferred interpretations?). All of these three 

elements are necessary components of a good parser. 

2.2 Syntactic Representations of a Parse Tree 

The first question one would ask about a parser is, what does the output of the parser look 

like? For many years, researchers have been using a tree structure to represent the output 

7 



Investors continue to pour cash into money funds 

Figure 2.1: A dependency tree 

"~^VP 

NNS VBP TO VB NN IN NN NNS 

Investors continue to pour cash into money funds 

Figure 2.2: A constituency tree 

of a parsed sentence. Many different formalisms have been proposed to represent pars

ing output, but most machine learning work has focused on just two: constituency trees 

(also called phrase structure trees) and dependency trees. My own work has focused on 

dependency trees for reasons I outline below. 

2.2.1 Dependency Structures vs. Constituency Structures 

The dominant tradition within modern NLP has been to use a constituency structure to 

represent the syntactic structure of a sentence. However, using a dependency tree to describe 

linguistic structures in terms of dependencies between words is a viable alternative tradition. 

Dependency structures have a remarkably longer history in comparison with constituency 

structures. They can be traced back to two thousand years to the notion of dependency 

rooted in ancient Greek and Indian linguistic traditions. 

As shown in Figure 2.1, in a dependency structure, the basic units of a sentence are the 

syntactic relationships (aka. head-modifier or governor-dependent or regent-subordinate 

relations) between two individual words, where the relationships are expressed by drawing 

links connecting individual words (Manning and Schutze, 1999). The direction of each 



link points from a head word to a modifier word, and each word has one and only one 

head. In a dependency tree, one word is the head of the sentence (e.g., in Figure 2.1, the 

headword of the sentence is continue), and all other words are either a dependent of that 

word, or a dependent of some other word that connects to the headword through a sequence 

of dependencies. In this sense, a dependency structure can be considered as a rooted, di

rected graph. The dependency links in the tree (shown in Figure 2.1) are not labeled. Some 

researchers have also considered labeled dependency trees, where each link is assigned 

a corresponding functional category (e.g., subj—subject, obj—object). Although the pla-

narity constraint (projectivity or no crossing arcs)—if a word u depends on a word v, then 

all words between u and v are also subordinate to v— is enforced in most previous work, 

non-projective dependency structures are needed to account for long-distance dependencies 

(e.g., in English), or free word order (e.g., in Czech). 

By contrast, in a constituency structure, constituents are the basic units of a sentence. 

A constituent is defined as a word or a group of words that functions as a single unit within 

a hierarchical structure. The syntactic relationships are expressed by breaking up the sen

tence into constituents (phrases). For example, Figure 2.2 shows a constituency structure 

for the same sentence in Figure 2.1. The non-terminal symbols (labels of internal nodes) 

correspond to syntactic categories such as noun phrase (NP), verbal phrase (VP) or prepo

sitional phrase (PP) and part-of-speech tags like nouns (NN), verbs (VB) and prepositions 

(IN). The terminal symbols (leaves) are the words of the sentence. 

Although the basic units in dependency trees and constituency trees are different, the 

two types of trees are closely related. Indeed, their structures imply each other. In a de

pendency tree, a word plus its dependents constitutes a phrase. In a constituency tree, the 

dependencies between words are implied by phrases. A constituency tree can be automati

cally converted into a dependency tree using a set of simple predefined head-rules (Mager-

man, 1995; Collins, 1999; Yamada and Matsumoto, 2003; Bikel, 2004). On the other hand, 

a dependency tree can also be converted into a constituency tree by using simple heuristic 

rules and treebank-specific information (Xia and Palmer, 2001). It has been shown that 

dependency structures and constituency structures are strongly equivalent (Gaifman, 1965). 

(Note that although a constituency tree corresponds to a dependency tree, a dependency tree 

usually maps to multiple constituency trees.) 

In recent years, there has been an increasing interest in dependency-based as opposed 

to constituency-based approaches to syntactic parsing, with application to a wide range of 

research areas and different languages. For example, Fox (2002) found that the depen-

9 



dency structures of a pair of translated sentences have a greater degree of cohesion than 

their constituency structures. Cherry and Lin (2003) exploited such cohesion between the 

dependency structures to improve the quality of word alignment of parallel sentences. De

pendency relations have also been found to be useful in information extraction (Culotta and 

Sorensen, 2004; Yangarber et al, 2000), machine translation (Ding and Palmer, 2005) and 

coreference resolution (Bergsma and Lin, 2006). 

There are many reasons why dependency structures have advantages over constituency 

and other syntactic structures. First, the original, fundamental notion in traditional gram

mar of "parsing a sentence into subject and predicate" is based on lexical relations between 

word-pairs rather than constituent relations (Manning and Schutze, 1999). Second, the indi

rect representation of constituency structures makes unsupervised language acquisition very 

difficult, whereas dependency structures are much clearer and hence easier to understand. 

Consequently, many researchers who are working on (unsupervised) grammar induction fo

cus on dependency structures instead of constituency structures (Klein and Manning, 2004; 

Smith and Eisner, 2005b; Smith and Eisner, 2006). In addition, although constituency struc

tures have dominated linguistics theory for the last few decades, dependency-based theories 

can often be found embedded in various aspects of constituency-based approaches to natural 

language parsing. For example, it has been found that the performance of a statistical parser 

can be greatly improved by adding information about lexical dependencies between head

words in a sentence (Collins, 1996). Lexical dependency information has also been used in 

more recent statistical parsers as well (Collins, 1999; Charniak, 2000). Furthermore, it has 

been argued in (Lin, 1995) that dependency-based evaluation is much more meaningful for 

the applications that use parse trees, since semantic relationships are generally embedded 

in dependency relationships. Finally, syntactic relations between word-pairs in dependency 

structures are closer to one's ultimate goal of extracting meaning from sentences (Yuret, 

1998). 

2.2.2 Other Syntactic Representations 

Beyond the constituency structures and dependency structures discussed above, there are 

many other syntactic formalisms that have been proposed in the computational linguistic 

literature. Prominent examples include Link Grammars (Lafferty et al., 1992), Head-driven 

Phrase Structure Grammars (HPSGs) (Pollard and Sag, 1994), Tree-Adjoining Grammars 

(TAGs) (Joshi et al, 1975), and Combinatory Categorial Grammars (CCGs) (Steedman, 

2000). These representations are more complex, and consequently have not been well inves-

10 



tigated as potential targets for machine learning based approaches, although some prelimi

nary attempts have been made (Copestake and Flickinger, 2000; Vijay-Shanker, 1993; Clark 

and Curran, 2004). Much more work has been devoted to learning to predict constituency 

or dependency structures, and, as mentioned, I have focused on dependency structures in 

my current work. 

2.3 Parsing Algorithms 

Parsing is a complicated task; with increasing sentence length, the number of possible parse 

trees increases exponentially. A parse tree can be constructed either top-down or bottom-up. 

A parser's goal is to search through the space of all the possible parse trees to find the most 

appropriate tree for the sentence. Almost all current parsing algorithms that can effectively 

deal with the problem of ambiguities—i.e., when a sentence has more than one parse—are 

based on dynamic programming approaches. 

2.3.1 Dynamic Programming 

Dynamic Programming (DP) is a class of algorithms that apply a table-driven method to 

solve problems by combining solutions to sub-problems (Bellman, 1957). The intuition 

of using a dynamic programming strategy is that a large problem can be solved by ap

propriately combining the solutions to various sub-problems. In the case of constituency 

parsing, a table is used to store subtrees for each of the various constituents in the input 

as they are discovered. Once all the subtrees have been systematically filled into the table, 

the whole parse tree can be obtained by combining the different subtrees. The advantage 

of this approach is that these subtrees are only discovered once, stored, and then used in 

all the parse trees calling for that constituent. This solves the re-parsing problem (subtrees 

are looked up, not re-parsed) and allows for an approach to handling the ambiguity prob

lem (the parsing table implicitly stores all possible parses by storing all the constituents 

with links that enable the parses to be reconstructed). There are three well-known parsing 

algorithms using dynamic programming (Jurafsky and Martin, 2000): the Cocke-Kasami-

Younger (CKY) algorithm, the Graham-Harrison-Ruzzo (GHR) algorithm and the Earley 

algorithm. Although originally developed for constituency parsing, these algorithms can be 

applied to dependency parsing with minor modifications. 

11 



2.3.2 Dependency Parsing Algorithms 

A dependency parsing algorithm is, in effect, a dynamic programming algorithm that has 

the goal of producing a maximum weight spanning tree subject to the constraints (Eisner, 

1996). The weight of a tree is computed by a scoring function—which will be introduced 

in Section 2.4 below—whose role is to specify the most preferred parse from among the 

set of all possible, legal parse trees for a sentence. There are a wide variety of dependency 

parsing algorithms available with different computational cost. They range from Eisner's 

0(ns) projective dependency parsing algorithm (Eisner, 1996), where n is the length of the 

sentence, all the way up to an 0(n5) chart parsing algorithm (Jurafsky and Martin, 2000). 

With minor modifications, traditional constituency parsing algorithms (e.g., a CKY 

parser) can be used for dependency parsing, with <3(n5) complexity. The basic idea is 

simply to treat dependencies as constituents. In a dependency chart parsing algorithm, each 

chart entry consists of the head, the modifier and all their left and right dependents. Specifi

cally, the dependency parser constructs a set of chart items, each of which has a head word. 

Each chart item is a 4-tuple: (low, head, high, score) where low, head and high (low < 

head < high ) are positions of words in a sentence and score is a non-negative number. 

This means that there exists a dependency tree that spans the words from low to high with 

the given score, and rooted at the position head. Initially, the parsing algorithm creates a 

chart item for each individual word in the input sentence. The items are then combined 

with the existing items that are adjacent items to their left. The combined item has the span 

of the union of the two components and may take either item's head as its head. Thus, a 

dependency tree for the whole sentence can then be built up in a bottom-up manner, by suc

cessively combining adjacent chart items into bigger ones. A dependency parsing algorithm 

implemented in this way has 0(n 5) complexity, in the worst case. 

The novel probabilistic dependency parsing algorithm described in (Eisner, 1996) is a 

modified chart-parsing algorithm, with 0(n3) complexity. The modification is that instead 

of storing spans of subtrees, it stores spans of half subtrees. A span is defined as a substring 

such that no interior word links to any word outside the span. The underlying idea is that in 

a span, only the end-words are active, i.e., those that still need a head. Either one or both of 

the end-words can be active. 

The difference between these algorithms has to do with the linguistic constraints they 

can enforce and the types of features they can use during dynamic programming. Faster 

algorithms enforce fewer linguistic constraints and need to use a more restricted class of 

12 



features. For example, when attaching a preposition, Eisner's 0(n 3 ) parser cannot access 

the noun after the preposition, whereas an 0(n°) chart parser is able to do so and can 

therefore correctly disambiguate some prepositional phrase attachments that the cheaper 

0(n3) parser cannot handle appropriately. 

The above algorithms I have discussed are projective dependency parsing algorithms. 

Several non-projective dependency parsing algorithms have been proposed. For example, 

McDonald et al. (2005b) propose an 0(n2) non-projective dependency parsing algorithm 

using the Chu-Liu-Edmonds (1965; 1967) maximum spanning tree algorithm. I only use 

projective dependency parsing algorithms in my thesis work. 

2.4 Scoring Parses 

In principle, dependency parsing algorithms can enumerate all legal parses. For a given 

sentence however, there are usually exponentially many possible parse trees. Usually, a 

scoring function is introduced to specify the most preferred parse tree among legal parse 

trees. That is, the scoring function plays the important role of specifying how potential 

parsing ambiguities are to be resolved. The main computational question is, can a scoring 

function be integrated into current dependency parsing algorithms while maintaining an 

efficient dynamic programming approach to computing the most preferred (i.e., highest 

scoring) parse? The answer is yes. If the scoring function decomposes into a combination 

of local link scores, then one can use dependency parsing algorithms to efficiently compute 

the legal parse that attains a maximum score. 

2.4.1 Local Scoring Functions 

To discuss scoring functions in more detail, it will be advantageous to introduce some no

tation. Given a sentence X = (xi,...,xn) (xi denotes each word in the sentence), I am 

interested in computing a directed dependency tree, Y, over X. In particular, I assume 

that a directed dependency tree Y consists of ordered pairs (xi —> XJ) of words in X such 

that each word appears in at least one pair and each word has in-degree at most one. As 

discussed in Section 2.2.1, dependency trees are usually assumed to be projective, which 

means that if there is an arc (xi —*• Xj), then x, is an ancestor of all the words between X{ 

and Xj in the sentence X. Let $(X) denote the set of all the directed, projective trees that 

span on X. The parser's goal is then to find the most preferred parse; that is, a projective 

tree, Y € &(X), that obtains the highest "score". In particular, one assumes that the score 

of a complete spanning tree Y for a given sentence, whether probabilistically motivated 

13 



or not, can be decomposed as a sum of local scores for each link (a word pair) (Eisner, 

1996; Eisner and Satta, 1999; McDonald et al., 2005a). Given this assumption, the parsing 

problem reduces to 

Y* = arg max score(Y\X) 

= arg max T J score(xi —> Xj) (2.1) 
(xi—>xj)<=Y 

where the score(xi —» Xj) can depend on any measurable property of Xi and Xj within 

the sentence X. This formulation is sufficiently general to capture most dependency pars

ing models, including probabilistic dependency models of (Eisner, 1996), non-probabilistic 

models (McDonald et al., 2005a), and my own work in this thesis. 

For standard scoring functions, particularly those used in non-generative models, one 

further assumes that each link score in (2.1) can be decomposed into a weighted linear 

combination of features 

. score(xi —> Xj) = 0 • f(xi —> Xj) (2.2) 

where f (xi —> Xj) is a feature vector for the link (ajj —* Xj), and 9 are the weight parameters 

to be estimated during training. (Parameter estimation will be discussed in Chapter 3 below. 

The larger set of "dynamic" features often used in generative models will be discussed in 

Section 2.4.3 and revisited in greater detail in Chapter 5 below.) 

2.4.2 Static Features 

Of course, the specific features used in any real situation are critical for obtaining a rea

sonable dependency parser. The natural sets of features to consider in this setting are very 

large, consisting at the very least of features indexed by all possible lexical items (words). 

For example, natural features to use for dependency parsing are indicators of each possible 

word pair 

Juv\xi ~~^ xj) = *-(xi=u)*-(xj=v) 

which allows one to represent the tendency of two words, u and v, to be directly linked in a 

parse. Here l(x = u) denotes the indicator function such that 

_ J 1 if x = u\ 
(X=U) - I Q 0 m e r W i S e _ 

Obviously, there are a large number of lexical features, which causes sparse data prob

lems below when I begin to consider how to learn parsers from data (in Chapter 3). A 

14 



Basic Uni-gram Features 

Basic Bi-gram Features 

In Between POS Features 

Surrounding Word POS Features 

p-word, p-pos 
p-word 
p-pos 
c-word, c-pos 
c-word 
c-pos 

p-word, p-pos, c-word, c-pos 
p-pos, c-word, c-pos 
p-word, c-word, c-pos 
p-word, p-pos, c-pos 
p-word, p-pos, c-word 
p-word, c-word 
p-pos, c-pos 

p-pos, b-pos, c-pos 

p-pos, p-pos+1, c-pos-1, c-pos 
p-pos-1, p-pos, c-pos-1, c-pos 
p-pos, p-pos+1, c-pos, c-pos+1 
p-pos-1, p-pos, c-pos, c-pos+1 

Table 2.1: Static features 

p-word/c-word: word of parent/child node in a dependency tree, 
p-pos/c-pos: POS of parent/child node in a dependency tree. 
p-pos-l/p-pos+1: POS to the left/right of parent in a sentence. 
c-pos-l/c-pos+1: POS to the left/right of child in a sentence, 
b-pos: POS of a word in between parent and child nodes. 

standard way to handle sparseness is to combine features via abstraction. A common strat

egy for abstraction is to use parts-of-speech (POS) to compress the feature set, for example 

by only considering the tag (instead of the word) of the parent 

fpv{Xi —> Xj) -- \p0S(xi)=p)\xj=v) 

In general, the most important aspect of a link feature is simply that it measures some

thing about a candidate word pair that is predictive of whether the words will actually be 

linked in a given sentence. Thus, many other natural features, beyond parts-of-speech and 

abstract grammatical categories, immediately suggest themselves as being predictive of link 

existence. For example, one very useful feature is simply the degree of association between 

the two words as measured by their pointwise mutual information (PMI) computed from 

natural word co-occurrence statistics (more on this in Chapter 3 below) 

fpMl(xi-*Xj) = PMI(xi,Xj) 

Another useful link feature is simply the distance between the two words in the sen-

15 



tence; that is, how many words they have between them 

fdist{xi —> Xj) = \position(xi) -position(xj)\ 

In fact, the likelihood of a direct link between two words diminishes quickly with distance, 

which motivates me to use more rapidly increasing functions of distance, such as the square 

fdisa(xi -* Xj) = (positional) - position(xj))2 

All the above simple features can be easily used by a scoring function to compute the 

weight of a link. In practice, I can actually use a much larger set of static features to score 

a dependency link. For example, the work I will propose in Chapter 7 uses almost all the 

features described in (McDonald et al., 2005a). These static features are given in Table 2.1. 

2.4.3 Dynamic Features 

"Dynamic" features (also called non-local features) are features that take into account the 

labels (i.e., the links) of (some) of the surrounding components when predicting the label of 

a target component. In particular, when predicting the label of a target component Xij e X 

from a composite object X (that is, whether or not there is a link between two words xi 

and Xj in the sentence X, and what the orientation of this link might be) one can assume 

that the labels for some other components, say Xij-i e X, have already been computed. 

The only constraint is that the required neighboring labels must always be available before 

attempting to label xij. 

The easiest way to illustrate the concept is in a sequential labeling task, like part-of-

speech tagging: Given a sentence X = x\,..., xn, the goal is to predict the corresponding 

tag sequence Y = y\,..., yn. Here the preceding tags can be used as features for the current 

word under consideration—e.g. in a maximum entropy Markov model (MEMM) (Mc-

Callum et al., 2000)—while still permitting an efficient dynamic programming algorithm 

(Viterbi decoding) to be used for structured prediction. Alternatively, one could use the 

following tags as features or use both the preceding and following tags (Toutanova et al., 

2003). The idea of dynamic features, however, is more general than sequence labeling and 

maximum conditional likelihood training. 

For dependency parsing, dynamic features can also be easily employed. For example, 

when considering a possible link label that connects a head word to a subordinate word, 

one will always have access (in any standard parsing algorithm) to the existing children of 

the head that occur between the two words under consideration. In this case, the number 

16 



and types of pre-existing subordinate children are valid features that can be used to predict 

whether the new head-subordinate link should occur, which turns out to be a very infor

mative feature for link prediction in parsing. These dynamic features are used in the work 

of (Collins, 1997; McDonald and Pereira, 2006), and in my own work to be presented in 

later chapters. In particular, I will make extensive use of dynamic features of this kind in 

Chapter 5 below, which employs a generative model of dependency tree construction. 

Although the idea of using dynamic features is not new for parsing (Collins, 1997; 

Magerman, 1995), it is still not as widely appreciated as perhaps it should be. In fact, even 

though the possibility is not always used in non-generative approaches to parsing (Mc

Donald et al., 2005a), it yields immediate improvements when subsequently reintroduced 

(McDonald and Pereira, 2006). 

2.5 Treebanks 

A treebank is a collection of sentences manually annotated with the "correct" parse tree. 

Treebanks have been widely used by researchers for training and evaluating their parsers 

for more than a decade. 

There are treebanks available for different languages, such as the Penn Treebank (Mar

cus et al., 1993) for English, the Penn Chinese Treebank 4.0 (Palmer et al, 2004) and Penn 

Chinese Treebank 5.0 (Palmer et ah, 2005) for Chinese, and the Czech Prague Dependency 

Treebank (Hajic, 1998) for Czech. The Penn Treebank and Penn Chinese Treebank contain 

constituency trees, which can be automatically converted into dependency trees using pre

defined head rules (Collins, 1999; Yamada and Matsumoto, 2003; Bikel, 2004), as briefly 

discussed in Section 2.2.1. There are also dependency treebanks available for many other 

languages from CoNLL-X Shared Task (Buchholz and Marsi, 2006). 

With treebanks, it is trivial to extract the grammatical knowledge that is implicit in the 

example parses. More importantly, by making the evaluation of parsers more standardized, 

treebanks have been playing an important role for the growing interest in parsing since the 

last decade when the first treebank was constructed. However, treebanks are an extremely 

precious resource. For example, the average cost of producing an English treebank parse 

can run as high as 30 person-minutes per sentence (more than 20 words on average). There

fore, there is a need for machine learning methods that can either learn accurate parsers 

with limited treebank data, or exploit auxiliary unlabeled data (raw text), which is plentiful. 

17 



Chapter 3 

Background on Learning to Parse 

Over the past decade, there has been tremendous progress on learning parsing models from 

treebank data (Magerman, 1995; Collins, 1996; Collins, 1997; Charniak, 1997; Ratna-

parkhi, 1999; Charniak, 2000; McDonald et al., 2005a). Most of the early work in this area 

was based on postulating generative probability models of language that included parse 

structures (Magerman, 1995; Collins, 1997; Charniak, 1997). Learning in this context con

sisted of estimating the parameters of the model with simple likelihood based techniques, 

but incorporating various smoothing and back-off estimation tricks to cope with the sparse 

data problems (Collins, 1997; Bikel, 2004). Subsequent research began to focus more on 

conditional models of parse structure given the input sentence, which allowed discrimina

tive training techniques such as maximum conditional likelihood (i.e. "maximum entropy") 

to be applied (Ratnaparkhi, 1999; Charniak, 2000). In fact, I will show in my own work in 

Chapter 5 that effective conditional parsing models can be learned using relatively straight

forward "plug-in" estimates, augmented with similarity based smoothing. Currently, the 

work on conditional parsing models appears to have culminated in large margin training 

approaches (Taskar et al., 2003; Taskar et al., 2004b; Tsochantaridis et al., 2004; McDon

ald et al, 2005a), which demonstrate state-of-the-art performance in English dependency 

parsing (McDonald et al, 2005a). 

Despite the realization that maximum margin training is closely related to maximum 

conditional likelihood for conditional models (McDonald et al., 2005a), a sufficiently uni

fied view has not yet been achieved that permits the easy exchange of improvements be

tween the probabilistic and non-probabilistic approaches. For example, smoothing meth

ods have played a central role in probabilistic approaches, as shown in the previous work of 

(Collins, 1997) and in my own work which I will present in Chapter 5, and yet they are not 

being used in current large margin training algorithms. I address this issue in my current 

18 



work in Chapter 6 below. Other unexploited connections also exist between large margin 

and probabilistic approaches. For example, it also turns out that probabilistic approaches 

pay closer attention to the individual errors made by each component of a parse, whereas 

the training error minimized in the large margin approach—the "structured margin loss" 

(Taskar et al., 2003; Tsochantaridis et al., 2004; McDonald et al., 2005a)—is a coarse mea

sure that only assesses the total error of an entire parse rather than focusing on the error of 

any particular component. I will address this in Chapter 6. 

In this chapter, I first discuss some most commonly used learning methods for parsing: 

early statistical approaches, reranking, local training methods and global training methods. 

Here I begin to show the connections between these alternative approaches (and exploit 

these connections in more detail in my work in Chapter 5, Chapter 6, Chapter 7 and Chap

ter 8). Then I will introduce other relevant machine learning techniques for parsing: boost

ing, distributional word similarity and unsupervised/semi-supervised learning methods. 

3.1 Introduction 

The problem of learning a dependency parser can be formulated as follows. One is given a 

set of annotated sentences (Xx, Yi),..., (X^, Y^) from a treebank, where each sentence Xj 

consists of a word string and each annotation Yi is a complete labeling of a link label (left 

link, right link, no link) for every pair of words in the sentence. The goal of learning is to 

estimate the parameters 6 of the scoring function used in the parsing model. In particular, 

one seeks values for the parameters that can accurately reconstruct the training parses, and 

more importantly, are also able to accurately predict the dependency parse structure on 

future test sentences. 

A sentence X; = xiti, ...,xi>n and a dependency tree labeling Yi = yitii2, -,yi,n-i,n 

can be decomposed into local examples 

(xi,l,Xi,2\yi,l,2)\(Xi,Yi)i —i {xi,n-l,Xi,n;yi,n-l,n)\(Xi,Yi) 

consisting of arbitrary (not necessarily adjacent) word pairs and their link label (none, left, 

right) in context (Xj, Yi). The context is important because accurately predicting a compo

nent label, even locally, requires the consideration of more than just the word pair itself, but 

also the surrounding words, and possibly even the labels of some of the surrounding words 

(McDonald and Pereira, 2006). 

This decomposition facilitates a purely local approach to the dependency parsing prob

lem that amounts to learning a scoring function (of the kind described in Section 2.4) from 

19 



local training examples consisting of local contexts and their corresponding link labels. 

That is, given the original training data (X\,Yi),..., (XN,YN), one can first break the data 

up into local examples 

ignore the relationships between examples, and use a standard supervised learning algo

rithm to learn a local predictor Xij,Xi^ >-> Vij,k in context (Xi, Yj). For example, if one 

restricts attention to linear predictors (support vector machines or logistic regression mod

els), one only needs to learn a weight vector 0 over a set of features defined on the local 

examples f (a^j, x,^, Vij,k\ Xi,Yi). Here, each feature fm computes its value based on the 

component (xij,xitk), the label Vij,k, in their context (Xi, Yi), as described in Section 2.4. 

In this case, a multi-class support vector machine (Crammer and Singer, 2001) or logistic 

regression model (Hastie et al., 2001) could be trained in a conventional manner to achieve 

an accurate local prediction model. In fact, exactly this approach has been considered by 

many researchers—see Section 3.4 below. Then a dependency parser can be learned sim

ply by combining a local link classifier with a dependency parsing algorithm to achieve 

global consistency. That is, the link classifier can play the role of the scoring functions as 

discussed in Section 2.4. 

Thus, the goal of learning is to learn a link predictor (specified by a good set of weights 

6) that yields an accurate parser. The different training algorithms investigated to date differ 

in whether they use static vs. dynamic features (as discussed in Sections 2.4.2 and 2.4.3), 

the training objective used, and whether training takes into account global parsing accuracy 

after dynamic programming, or merely trains a local link predictor from local examples 

only. 

3.2 Early Statistical Approaches 

Most statistical parsers in the late 1990s represented sentences as constituency structures 

(Collins, 1996; Collins, 1997; Charniak, 2000). More specifically, a set of rewrite rules, 

each of which has the form category —> category*, are used to capture the regularities of 

word order in a sentence. The first rule starts with the start symbol S (for sentence). A 

rule rewrites the non-terminal symbol on the left-hand side as a sequence of syntactic cate

gories or part-of-speech tags (e.g., NP, VP, PP or NN, VB, IN). In general, a non-terminal 

can be rewritten as one or more other syntactic categories or words. The possibilities for 

rewriting depend only on the category, but not on any surrounding context. So such con-

20 



stituency grammars are commonly referred to as context-free grammars (CFG). A Proba

bilistic Context Free Grammar (PCFG) is simply a CFG with probabilities added to the 

rules, indicating how likely different rewriting rules are (Manning and Schutze, 1999). 

These earlier PCFG-based parsers differ in: 

• how the statistics needed by the system are gathered; 

• how those statistics are smoothed; 

• the degree of supervision; 

• how heavily the lexical information is used; 

• and whether a hand-written grammar is needed. 

But all these systems make use of a scoring function of the kind discussed in Section 2.4, 

based on dynamic features. The corresponding link scores are log probabilities of parse 

trees. Choosing the parse tree with the highest probability amounts to choosing the tree 

with the highest score as discussed in Section 2.4. These parsers vary greatly on how head 

word information, i.e., the one word that best represents the meaning of the constituent, is 

used to disambiguate possible parses for an input sentence. Black et al. (1993) introduces 

history-based parsing, in which learned decision-tree probability models are used to score 

the different derivations of sentences produced by a hand-crafted grammar. Jelinek et al. 

(1994) and Magerman (1995) also train history-based decision tree models from a treebank, 

but without using a hand-written grammar. Other early learned parsers use statistics of 

lexical information between pairs of head words combined with chart parsing techniques to 

achieve better performance (Collins, 1996; Collins, 1997; Charniak, 1997). I discuss some 

of these previous statistical parsers in more detail. 

Magerman (1995) described a statistical parser based on decision-tree learning tech

niques. First, a decision tree model is defined as an interpolated n-gram model. Then the 

parsing problem is viewed as making a sequence of disambiguation decisions. The prob

ability of a complete parse tree Y of a sentence X is the product of each decision (dj) 

conditioned on all previous decisions: 

P(Y\X) = H P(d i |d i_1 ,d i_2 , . . . ,di ,X) (3.1) 

All decisions are pursued non-deterministically according to the probability of each choice, 

which is estimated using statistical decision tree models. In particular, the model parame

ters are estimated by counting the frequencies of each n-gram from a training corpus with 

21 



a deleted interpolation smoothing technique (Manning and Schutze, 1999). Thus the parser 

is trained completely automatically from the treebank, without using any hand-crafted 

grammar. With a large amount of lexical information incorporated into the decision tree 

model, the resulting parser represents a substantial improvement over previous PCFG-based 

parsers. 

Another statistical parser based on bigram lexical dependencies is presented by Collins 

(1996). The model is defined as: 

P(Y\X) = P(B, D\X) = P(B\X)P(D\X, B) (3.2) 

where B is the set of baseNPs and D is the set of dependencies between pair of words. 

The method uses lexical information directly by modeling head-modifier relations between 

word-pair, which is similar to dependency grammars. The parameters of the baseNP model 

and the dependency model are estimated separately. The parsing algorithm is a simple 

bottom-up chart parser which uses dynamic programming algorithms, as discussed in Sec

tion 2.3.2. Here the parser finds the tree that maximizes (3.2) subject to the constraint that 

no crossing links are allowed in a dependency tree. 

Charniak (1997) proposes another statistical parser which uses a generative parsing 

model, where it computes the joint probability of a sentence X and its parse tree Y, 

P(X,Y), instead of computing the conditional probability P(Y\X) as used in previous 

models (Magerman, 1995; Collins, 1996). Although this difference has no effect for pars

ing, it would be useful when these parsing systems are attached to another system and the 

parser is used as a language model. Another difference is that Charniak (1997) uses a for

mal treebank grammar (Charniak, 1996), while no such grammar is explicitly used in both 

(Magerman, 1995) and (Collins, 1996). Except for those differences, the three systems 

have much in common. In all the three cases the statistics are gathered from the training 

corpus and the lexical information predefined in a phrase is heavily used in its statistics. 

Furthermore, all three systems find the parse with the highest probability score according to 

the smoothed probability distribution they define. The differing performance between these 

systems is due to the different statistics they gather and the different smoothing techniques 

used for those statistics. 

Collins (1997) proposed three generative, lexicalised, probabilistic parsing models that 

gave better performance than the previous conditional counterpart (Collins, 1996). In 

(Collins, 1997), he first introduces a model that is similar to (Collins, 1996) in structure, but 

with additional probabilities for generating the head and STOP events for each constituent. 

22 



The model is then extended to include a probabilistic treatment of both subcategorization 

and wh-movement. The advantage of this model over the previous one proposed by Char-

niak (1997) is that the latter may suffer the sparse data problem more seriously. 

The fact that lexical information is very useful for constituency parsing (Magerman, 

1995; Collins, 1996), which has caused increasing interest in studying the lexical affini

ties between words directly. Eisner (1996) proposes three distinct, lexicalised, probabilistic 

parsing models to investigate dependency relationships between word pairs: Model A—a 

bigram lexical affinity model where words attempt to modify each other; Model B—a sense 

tagging model where each word chooses a subcategorization/supercategorization frame and 

the model selects an analysis that satisfies all frames if possible; and Model C—a recursive 

generative model where each word generates its left and right dependents separately. The 

results show that the generative model (Model C), which is similar to (Collins, 1997), per

forms the best of the three. Subsequently, a novel 0(n3) dependency parsing algorithm 

was presented by Eisner (1996), as discussed already in Section 2.3.2. No hand-written 

grammar is required. 

3.3 Reranking 

Ratnaparkhi (1999) observed that the correct parse almost always appeared in the top 20 

completed parses produced by his algorithm. This observation led to great subsequent in

terest in parse reranking schemes. This work noticed that some features that are not easily 

incorporated in a generative model like those first considered in (Charniak, 1997; Collins, 

1997), but are nevertheless still very useful for discriminating the correct tree for a sentence. 

Initially, it was not understood how to use such features in the original training algorithms 

so instead the problem was solved by using reranking as a postprocessing procedure. In 

reranking methods (Johnson et al., 1999; Collins, 2000; Shen et al., 2003; Charniak and 

Johnson, 2005), an initial parser is used to generate a number of candidate parses. A dis

criminative model is then used to choose the best parse among these candidates. In a rerank

ing model, a tree is represented as an arbitrary set of features, without concerns about how 

these features interact or overlap, and without the need to define a derivation which takes 

these features into account. Thus features like those discussed in Section 2.4 could be used. 

An obvious drawback of reranking is that an initial probabilistic parser is needed. In 

addition, the best parse is not necessarily in the list of the top k best parses. This approach 

has since been more or less subsumed by the more recent logistic regression and large 

23 



margin approaches discussed in Section 3.4 and Section 3.5 below. 

3.4 Local Training Methods 

The decomposition of training data (sentences and their parses) into local examples (as de

scribed in Section 3.1) facilitates a purely local approach to the learning problem. That 

is, one can first break the data up into local examples, ignore the relationship between ex

amples, and use a standard supervised learning algorithm to learn a local predictor. For 

example, if one restricts attention to linear predictors (e.g., support vector machines or lo

gistic regression models), one only needs to learn a weight vector 6 over a set of features 

defined on the local examples, as discussed in Section 2.4. In this case, a multi-class sup

port vector machine (Crammer and Singer, 2001) or logistic regression model (Hastie et 

al., 2001) could be trained in a conventional manner to achieve an accurate local prediction 

model. Then the local prediction model can be used to perform dependency parsing on 

sentences by combining with a parsing algorithm. Exactly this approach to combining local 

link predictors with dependency parsing algorithms has been tried, with some success, by 

many researchers—using support vector machines (Yamada and Matsumoto, 2003), logis

tic regression (aka. maximum entropy models) (Ratnaparkhi, 1999; Charniak, 2000), and 

generative probability models, such as the work described in (Collins, 1997) and my own 

work which will be presented in Chapter 5 later—to learn local scoring functions. 

In principle, any machine learning approach can be used as a local link predictor. How

ever, most researchers have focused their work on two linear predictors—logistic regression 

models and support vector machines—for dependency parsing. The main reason that these 

two models have been most commonly used is due to their ability to cope with a large set of 

features. I briefly introduce these two local training models in the remainder of this section. 

3.4.1 Logistic Regression Models 

Logistic regression models (aka. log-linear models, maximum likelihood exponential mod

els or maximum conditional likelihood) have been widely used in many areas. In the NLP 

community, logistic regression models are also often called maximum entropy (maxent) 

models. 

Logistic regression models are of the form 

= _^(*Ty^)) (3.3) 
E^exp^f (*,</)) 

24 



where X is an input context and y is a single output. The elements of f are the feature 

indicator functions that are true if a particular property of X, y is true. The parameters are 

0, i.e., one adjustable weight per feature, as discussed in Section 2.4. 

Logistic regression models are a common modeling technique for a variety of NLP 

tasks. There are at least three obvious advantages of logistic regression models over gen

erative ones. First, logistic regression models can be easily updated by changing the set of 

features used, whereas arbitrary features cannot be easily incorporated in generative mod

els. Second, logistic regression models are more capable of dealing with (inter-dependent) 

features of the inputs. By contrast, inter-dependent observations are difficult to represent in 

generative models, since these create intractable inference problems (i.e., intractable pars

ing problems) (Lafferty et al., 2001). Finally, logistic regression models are trained to 

minimize a loss function related to labeling error, which leads to smaller error in practice 

if enough training data is available. Generative models, on the other hand, are trained to 

maximize the joint probability of the training data, which is not necessarily closely related 

to the classification accuracy if the data is not generated by the model, which is usually the 

case in practice. Due to these advantages, logistic regression models are now much more 

commonly applied to parsing problems across different grammar formalisms (Ratnaparkhi, 

1999; Charniak, 2000; Miyao and Tsujii, 2002; Riezler et al, 2002; Toutanova et al., 2002; 

Clark and Curran, 2003; Clark and Curran, 2004; Charniak and Johnson, 2005). 

The first work that used a maximum entropy approach to learn a parser was conducted 

by Ratnaparkhi (1999). His parser constructs parse trees with actions similar to those of 

a standard shift-reduce parser. The derivation of a parse tree is a sequence of actions 

a\, a2,..., an used for constructing a completed parse tree. Therefore all actions that lead 

to a well-formed parse tree are allowable, and maximum entropy models are trained by ex

amining the derivations of the parse trees in a treebank. The actions of the procedures are 

scored with maximum entropy probability models that use information in the local context 

to compute their probabilities. The drawback of this approach is that the model maximizes 

the probability of the action during each step of the parsing process, instead of overall qual

ity of the parse tree, and thus may suffer from the label bias problem (Lafferty et al., 2001). 

Logistic regression models are also prone to overfitting. A common strategy to regular

ize logistic regression models is to use a Gaussian prior on the parameters, i.e., to maximize 

n F 1 ft2 

Goodman (2004) has shown that using a exponential prior is better motivated by the data 

25 



than previous techniques and often produces lower error rates. With an exponential prior, 

one maximizes 
n F 

Ip(j/|*)IIa*eXP(-a^) <3-5> 
j=l i = l 

where a, is a discounting constant and the parameters 0; are non-negative. This max

imization has the advantage of performing implicit feature selection, since many of the 

parameters Qi will be set to zero in the final solution. 

Charniak (2000) presents a maximum-entropy-inspired parser, which is based on a 

probabilistic generative model. The generative model is very similar to the model pro

posed by Collins (1997). Although this maximum-entropy-inspired parser is not quite as 

flexible as true maximum entropy based models, it is much simpler. The use of the model 

for conditioning and smoothing, which leads the author successfully to test and combine 

many different conditioning events, is the major technical innovation of this work. 

3.4.2 Support Vector Machines 

Support Vector Machines (SVMs) are based on maximum margin strategy introduced by 

Vapnik (1995) but otherwise can be built on top of exactly the same set of features as a 

logistic regression (maxent) model. A binary classification problem can be defined in a 

SVM as follows. Given a set of training data X = xj., , . . ,XN and corresponding labels 

Y = yi,...,yN> o n e would like to find a hyperplane 0 T x + 6 = 0 that correctly separates 

training examples and has a maximum margin, i.e., maximizes the distance between two 

hyperplanes. This is achieved by imposing constraints 0 T x + b > 1 and 9Tx + b < —1. 

In fact, the optimal hyperplane with a maximum margin can be obtained by solving the 

following quadratic program 

min -zOT6 + eT£ subject to 
d,i 2 

yt (0TXi + &) > 1 - & 

d > 0 (3.6) 

where /3 is the regularization parameter and £» are the slack variables for the non-separable 

case. 

For parsing, one typically needs a multi-class SVM (Crammer and Singer, 2001) that 

can handle three or more different class labels (e.g., left link, right link, no link). A multi-

class SVM uses features f (X, I) that depend on both the input example X and a candidate 

26 



label /. The optimal multi-class classifier is learned by solving the quadratic program 

min T;0T0 + eT£ subject to 

& > i ( ¥ w ) + eTf(xhi) - drf(Xi,yi) 

for alH, I (3.7) 

Given 6, a test input X is classified to a label according to 

y = argmax GTf(X,l) (3.8) 

As efficient classifiers, SVMs have been widely used in NLP in recent years. For exam

ple, as mentioned before, Yamada and Matsumoto (2003) use a multi-class SVM to learn a 

local scoring function for a dependency parser. Their model uses a discriminative method 

that maximizes the differences between scores of the link labels in the correct parse versus 

the scores of the top competing link labels. They obtain satisfactory dependency parsing 

results on English, although they only train the model parameters locally, not considering 

optimizing those parameters based on minimizing the global loss of the entire parse tree. 

3.5 Global Training Methods 

Unfortunately, the simple local learning methods mentioned in Section 3.4 have an obvious 

shortcoming. The problem is that the training loss being minimized during local parameter 

optimization has nothing directly to do with the parser. Parsing is a large-scale structured 

prediction problem where multiple predictions must be coordinated (via dynamic program

ming) to achieve an accurate parse for a given input sentence. The obvious drawback of 

using local scoring functions mentioned above is that each link is scored separately, instead 

of being computed in coordination with other links in a sentence. Although it is true that 

an accurate local predictor is a prerequisite for an accurate parse prediction, the parame

ters of the local model are not being trained to directly optimize the global accuracy of the 

parser. That is, a far better choice of parameters might exist within the given space defined 

by the features that leads to better global parsing accuracy. This is where the advent of 

recent training algorithms for learning structured predictors has been helpful. The main 

idea behind these training algorithms has been to explicitly incorporate the effects of the 

structured predictor (i.e., the parser) directly into the training algorithm. That is, parameter 

optimization of a local predictor is performed by directly considering the implied effects on 

27 



the structured (global rather than local) prediction error. The challenge is that each compo

nent yi of Y should not depend only on the input X, but instead should take into account 

correlations between yi and its neighboring components yj £ 7 . 

A significant amount of progress has recently been made on developing training algo

rithms for learning structured predictors from data. The extension to structured training loss 

has been developed for both the large margin training principle of support vector machines 

(Tsochantaridis et al., 2004; Altun et al., 2003; Taskar et al., 2003) and the maximum condi

tional likelihood principle of logistic regression (Lafferty et al., 2001). It has been shown in 

many application areas that structured prediction models that directly capture the relation

ships between output components perform better than models that do not directly enforce 

these relationships (Lafferty et al., 2001; Tsochantaridis et al, 2004; Altun et al., 2003; 

Taskar et al., 2003; Taskar et al., 2004b). In particular, training algorithms based on these 

principles have been applied to parsing (Taskar et al., 2004b; Tsochantaridis et al., 2004), 

and have recently resulted in state-of-the-art accuracy for English dependency parsing (Mc

Donald et al., 2005a; McDonald and Pereira, 2006; Corston-Oliver et al., 2006). I employ 

this technique in Chapter 6. 

Below I give a brief review of the most successful global training methods: Conditional 

Random Fields and Structured Large Margin Training. 

3.5.1 Conditional Random Fields 

Conditional Random Fields (CRFs) are closely related to log-linear (logistic regression) 

models described in Section 3.4.1. Standard log-linear models are trained to make the best 

local decision, while CRFs are trained to use global normalization for parameter estima

tion, thus can make the best global decision instead. For example, in a sequence labeling 

task, a log-linear model (e.g., a maximum entropy Markov model (MEMM), as described 

in (McCallum et al., 2000)) normalizes the conditional probabilities of next states given the 

current states with per-state exponential models. A CRF, however, has a single exponen

tial model for the joint probability of the entire sequence of labels given the observation 

sequence. Therefore, CRFs compute the weights of different features at different states 

globally and the label bias problem shared by locally normalized log-linear models can be 

avoided (Lafferty et al., 2001; Sha and Pereira, 2003). 

A CRF's global feature vector for input sequence X and label sequence Y is given by 

F(X,Y) = y£tf(X,Y,j) (3.9) 
3 

28 



where j ranges over input positions. The conditional probability distribution defined by the 

CRF is then 

Pe{Y\X) = - ^ . ; ' ^ (3.10) 
exp(0TF(X,Y)) 

£ L e x p ( 0 T F ( X , L ) ) 

where L ranges over all possible Y. 

CRFs were first introduced by Lafferty et al. (2001), who applied them to part-of-speech 

tagging. Since then, CRFs have been widely applied to sequence labeling tasks, such as in

formation extraction (McCallum and Li, 2003) and shallow parsing (Sha and Pereira, 2003). 

More recently, Jiao et al. (2006) have presented a CRF-based semi-supervised training al

gorithm for sequence segmentation and labeling tasks, which uses a combination of labeled 

and unlabeled training data. Their experimental results show that incorporating unlabeled 

data improves the performance of the supervised CRF. However, CRFs have never previ

ously been applied to dependency parsing, due to the extremely expensive computational 

cost. 

3.5.2 Structured Large Margin Training 

Many margin-based discriminative approaches exist and have been applied to parsing, in

cluding perceptron (Collins, 2002), support vector machines (Altun et al., 2003), and struc

tured maximum margin methods (Taskar et al., 2004b; McDonald et al., 2005a). 

Structured large margin training can be expressed as minimizing a regularized loss 

(Hastie et al., 2004) 

min |6»T0 +VmaxA(L^ ,y i ) - ( sco re (6 l , y i ) -5co re (6 l ,L i i f c ) ) (3.11) 

where Y is the target tree for sentence X,; L ^ ranges over all possible alternative trees 

in <&(X;); score(0,Yi) — Yl(Xm^xn)&Yi 6THxm —• xn), as discussed in Section 2.4.1; 

and A(Ljfe, Yi) is a measure of distance between the two trees L^k and Yj. This is an 

application of the structured large margin training approach first proposed in (Taskar et al., 

2003) and (Tsochantaridis et al., 2004). 

Using the techniques of (Hastie et al., 2004) one can show that minimizing the objective 

29 



(3.11) is equivalent to solving the quadratic program 

min 7T#T0 + eT£ subject to 
<>4 2 

€i,k > &{Li,k, Yi) + score(0, Lifk) - score(0, Y) 

ii,k > o 

fOTaUi,Li)feE$(XO (3.12) 

which corresponds to the training problem posed in (McDonald et al., 2005a). This ap

proach has yielded the best published results for English dependency parsing (McDonald 

et al., 2005a). The main drawback of this approach are the exponential number of con

straints in (3.12). McDonald et al. bypass this problem with an on-line training algorithm. 

I will improve the standard supervised large margin training technique and invent a novel 

semi-supervised convex training algorithm for dependency parsing in later chapters. 

3.6 Other Relevant Machine Learning Techniques 

In this section, I discuss a few other machine learning techniques that I have exploited in 

my research. 

3.6.1 Boosting 

Boosting is a general machine learning method for improving the accuracy of a learning 

algorithm. The idea of boosting is to combine many moderately accurate "rules of thumb" 

(or weak classifiers) in a principled manner to produce a single highly accurate classifier 

(Schapire, 2001). Due to their sound theoretical foundations, a lot of work related to boost

ing algorithms has been conducted (Freund and Schapire, 1996; Freund and Schapire, 1997; 

Schapire and Singer, 1999; Collins et al., 2002). 

The AdaBoost algorithm (Freund and Schapire, 1997), which solved many of the prac

tical difficulties of the earlier boosting algorithms, is the most popular. A simplified de

scription of AdaBoost is shown in Figure 3.6.1. 

Given an input training set {x\,y\),..., (xn,yn), AdaBoost calls a given weak learner 

(also called weak hypothesis or base learning algorithm) in a series of rounds t = 1,2,..., T. 

The algorithm updates the set of weights over the training examples at each boosting round. 

The idea behind AdaBoost is to start with a uniform weighting over the training examples, 

and progressively adjust the weights to emphasize the examples that have been frequently 

misclassified by the weak hypotheses. Thus the weak learner is forced to concentrate on 

30 



Given: (xi,yi),.. . , (xn,yn) where xt € X, j/j G F = {-1,+1} 
Initialize Z?i(i) = 1/ra. 
Far* = l , . . . ,T : 

• Train weak learner using distribution A -

• Get weak hypothesis ht : X —> {—1, +1} with error 

et = Pri^Dt[ht(xi) y^yi}. 

• Choose at = ^Ini^f") 

• Update: 

n C\ - Dt^ I e~~at iiht(xi) =Vi _ Dt{i)exp{-c*tyiht(xi)) 

where Zt is a normalization factor (choose so that A + i will t>e a distribution). 

Output the final hypothesis: 

H{x) = sign I ^ a t / i t ( x ) I . 

Figure 3.1: The AdaBoost boosting algorithm 

31 



the hard examples in the training set. The final hypothesis is a weighted majority vote of 

the T weak hypotheses. The most essential theoretical property of AdaBoost has to do with 

its ability to reduce the training error. It has been proved that if each weak hypothesis is 

slightly better than random guess, then the training error drops exponentially fast. 

The advantages of AdaBoost are its simplicity and generality. First, it is simple and 

easy to implement. Second, it has no parameters to tune, while most other machine learn

ing methods possess multiple parameters. Furthermore, it can be applied to any standard 

training method without requiring any prior knowledge about the weak learner. More im

portantly, it provides a set of theoretical guarantees given sufficient training data and a 

weak learner which can produce only moderately accurate weak hypotheses. Due to its 

many practical advantages, boosting has been applied to many tasks, such as text catego

rization (Schapire and Singer, 2000), tagging and prepositional phrase attachment (Abney 

et al., 1999) and parsing (Haruno et al., 1999). I will consider this technique in my own 

work on parsing in Chapter 7 below. 

3.6.2 Similarity Smoothing 

The sparse data problem is very common in NLP. For learning a parser from data, the 

feature set introduced in Section 2.4.2 is far too large to yield uniformly reliable estimates. 

Abstraction (e.g. using parts-of-speech) and smoothing are two standard techniques for 

mitigating the sparse data problem. Note that most features discussed in Section 2.4.2 

correspond to words or pairs of words. The weights on these features can be smoothed 

based on similarity determined on an auxiliary, unannotated corpus. 

Words that tend to appear in the same contexts tend to have similar meanings. This 

is known as the Distributional Hypothesis in linguistics (Harris, 1968). For example, the 

words test and exam are similar because both of them follow verbs such as administer, 

cancel, cheat on, conduct, etc. and both of them can be preceded by adjectives such as 

academic, comprehensive, diagnostic, difficult, etc. 

Many methods have been proposed to compute distributional similarity between words 

(Hindle, 1990; Pereira et al., 1993; Grefenstette, 1994; Lin, 1998). Almost all of those 

methods represent a word by a feature vector where each feature corresponds to a type of 

context in which the word appears. They differ in how the feature vectors are constructed 

and how the similarity between two feature vectors is computed. 

32 



centrepiece 0.28, figment 0.27, fulcrum 0.21, culmination 0.20, albatross 0.19, 
bane 0.19, pariahs 0.18, lifeblood 0.18, crux 0.18, redoubling 0.17, apotheosis 
0.17, cornerstones 0.17, perpetuation 0.16, forerunners 0.16, shirking 0.16, cor
nerstone 0.16, birthright 0.15, hallmark 0.15, centerpiece 0.15, evidenced 0.15, 
germane 0.15, gist 0.14, reassessing 0.14, engrossed 0.14, Thorn 0.14, biding 
0.14, narrowness 0.14, linchpin 0.14, enamored 0.14, formalised 0.14, tenths 
0.13, testament 0.13, certainties 0.13, forerunner 0.13, re-evaluating 0.13, an
tithetical 0.12, extinct 0.12, rarest 0.12, imperiled 0.12, remiss 0.12, hindrance 
0.12, detriment 0.12, prouder 0.12, upshot 0.12, cosponsor 0.12, hiccups 0.12, 
premised 0.12, perversion 0.12, destabilisation 0.12, prefaced 0.11, 

Figure 3.2: Similar words of keystone 

Similarity Measures 

The most popular method is to use point-wise mutual information (PMI) to compute word 

similarity (Manning and Schutze, 1999). In this method, each word is presented as a feature 

vector / of contexts. The contexts of a word w are defined to be the set of words that occur 

within a small context window of w in a large corpus. The contexts of an instance of w 

consist of the closest non-stop-words on each side of w and the stop-words in between. 

Usually, the set of stop-words are defined as the top k most frequent words in the corpus. 

The value of a feature c is then defined as the point-wise mutual information between c and 

w: 

fw(c) = PMI(w,c) = log ( p ^ y ^ y ) (3-13) 

where P(w, c) is the probability of w and c. co-occur in a context window. 

Once the feature vectors have been determined, the similarity between two words w\ 

and W2 is then computed as the cosine of the corresponding feature vectors: 

Sim(wuw2) = f°\fp „ (3.14) 
11 Iu>i I] 111̂ 2 II 

For example, Figure 3.6.2 shows the top similar words and corresponding similarities 

for the word keystone. They are computed from the English Gigaword corpus (Graff., 2003), 

which is a raw, unannotated newswire text data containing about one giga English words. 

Similarity-based Smoothing 

Similarity-based smoothing is used in (Dagan et al., 1999) to estimate word co-occurrence 

probabilities. Their method performs almost 40% better than the more commonly used 

33 



back-off method. Unfortunately, similarity-based smoothing has not been successfully ap

plied to statistical parsing up to now. However, in my own work in Chapter 5 and Chapter 

6 below, I show how similarity-based smoothing can be used to improve the accuracy of 

generative and large margin based learning approaches for parsing respectively. 

In the original application of similarity-based smoothing (Dagan et al., 1999), bigram 

probabilities P(w2\wi) were computed as the weighted average of the conditional probabil

ity of W2 given similar words of w\: 

PSIM(W2\W1)= V Sirn{W]'W\)PMLE (w2\w[) (3.15) 

«/ie7(U) norm{wi) 

where Sim{w\, w[) denotes the similarity (or an increasing function of the similarity) be

tween wi and w[, and S(w\) denotes the set of words that are most similar to w\. The 

normalization factor norm(w\) is computed as 

norm (wi) = \_, Sim(wi,w[) 
w'1eS(wi) 

The underlying assumption of this smoothing scheme is that a word is more likely to occur 

after w\ if it tends to occur after similar words of w\. 

Similarity-based smoothing has turned out to be an important smoothing approach in 

many areas of natural language processing, which allows one to tap into unlimited auxil

iary sources of raw unannotated text. By using similarity-based smoothing, one can easily 

estimate parameters for words that have never appeared in the training corpus. One of the 

goals of my work has been to obtain similar advantages on parsing. 

3.6.3 Unsupervised/Semi-supervised Learning 

Unsupervised learning is clearly important in statistical natural language research as it elim

inates the need for extensive manual annotation. However, in general, and parsing in par

ticular, unsupervised learning is significantly harder than supervised learning, especially on 

language data where so many linguistic variables remain latent. The dangers of poor esti

mation are exaggerated and even self-reinforcing in this case, since unsupervised learners 

typically attempt to bootstrap from inferred values of hidden variables, which themselves 

are based on earlier, weaker estimates. 

Learning a parser from treebanks has its advantages—it is an example of supervised 

learning, which is well studied—but it has the limitation of domain dependence. A parser 

trained using state-of-the-art techniques and models from a given treebank tends to per

form very well within that treebank's domain, but it usually tends to perform very poorly 

34 



on the data from other domains. Another limitation is that there are only a few languages 

available in treebanks. Except for the English treebank, most other treebanks are signifi

cantly smaller. Building a treebank is very expensive, usually taking a few human-years to 

construct, at the minimum. 

Perceiving these limitations of supervised parsing, many researchers have investigated 

unsupervised parsing techniques. To date, however, the performance of unsupervised parsers 

are far inferior to supervised parsers. It has been more than a decade since researchers be

gan working on unsupervised parsing (Carroll and Charniak, 1992; Pereira and Schabes, 

1992). Unsupervised parsing requires only raw, unannotated text, which is unlimited and 

practically free (although using a small set of annotated examples is advantageous in most 

unsupervised cases). Hence the domain and language dependency issues vanish. The ideal 

goal of unsupervised parsing research would be the ability to automatically synthesize use

ful parsing models for any given application, with a minimum of human effort. 

Earlier work on unsupervised grammar induction is mainly based on information-theoretic 

criteria (Magerman and Marcus, 1990), such as linguistic knowledge and lexical relation

ships between words. For example, Yuret (1998) introduces probabilistic lexical attraction 

models which can represent long distance relations between words. Within the framework 

of lexical attraction, he developed an unsupervised language acquisition program that learns 

to identify linguistic relations in a given sentence. 

Recent successful work in grammar induction has used generative probabilistic models 

and unsupervised parameter estimation techniques, specifically, EM-like algorithms (Klein 

and Manning, 2002; Klein and Manning, 2004). For example, Klein and Manning (2004) 

have presented a dependency-based model for the unsupervised induction of syntactic struc

ture. They then combine this model with another constituent-induction model. The com

bined model substantially outperforms either individual model. A crucial reason that their 

models are capable of recovering syntactic structure more accurately than previous ones is 

that they minimize the amount of hidden structure that must be induced. 

The drawbacks of using EM algorithm for unsupervised learning are the issues of local 

optima and the disconnect between likelihood and accuracy. EM tries to fit the parame

ters of a statistical model with hidden structure to the training data, which is not enough to 

recover useful syntactic structure. Subsequently, alternative estimation strategies for unsu

pervised learning have been proposed, such as my own work on POS tagging by using better 

smoothing techniques or added constraints (Wang and Schuurmans, 2005), or Contrastive 

Estimation (CE) by Smith and Eisner (2005a). Contrastive Estimation is a generalization of 

35 



EM, by defining a notion of learner guidance. It makes use of a set of examples (its neigh

borhood ) that are similar in some way to an observed example, requiring the learner to 

move probability mass to a given example, taking only from the example's neighborhood. 

The neighborhood selection is crucial, and Smith and Eisner (2005b) choose a neighbor

hood that explicitly represents potential mistakes of the model. The model is then trained 

to avoid these mistakes. 

Recently, another new unsupervised learning algorithm of training structured predic

tors, which is discriminative, convex, and avoids the use of EM has been presented by 

Xu et al. (2006). Their experimental results for training hidden Markov models (HMMs) 

without supervision show that the convex discriminative procedure can produce better con

ditional models than conventional EM training. The current technique is computationally 

very expensive, however, requiring one to solve very large semi-definite programs. More 

recently, as discussed in Section 3.5.1, Jiao et al. (2006) have presented a CRFs-based semi-

supervised training algorithm for sequence segmentation and labeling tasks. Their approach 

is based on extending the minimum entropy regularization framework to the structured pre

diction case, yielding a training objective that combines unlabeled conditional entropy with 

labeled conditional likelihood. Their experimental results show that incorporating unla

beled data improves the performance of the supervised CRF. None of these alternative 

unsupervised training procedures, however, have yet been applied to parsing. This is a 

direction for future research that I would like to pursue, as discussed in Chapter 9.2 below. 

36 



Chapter 4 

Experimental Setup 

In previous chapters, I have introduced some background knowledge on syntactic parsing, 

and how one can use machine learning methods to tackle this problem. I have discussed 

some most commonly used learning methods for parsing and shown the connection be

tween these alternative approaches. I have also introduced other relevant machine learning 

techniques for parsing. In this chapter, I describe the data sets and the evaluation metrics I 

will use for the experiments to be reported in later chapters. 

4.1 Data Sets 

The treebanks discussed in Section 2.5 are the primary data source for researchers to eval

uate their parsers. There are treebanks for Arabic, Chinese, Czech, English and Korean 

available from the Linguistic Data Consortium (LDC). These treebanks differ in data size 

and the tree annotations (dependency trees or constituency trees). 

4.1.1 English 

For experiments on English, the treebank used is the Wall Street Journal (WSJ) section of 

the English Penn Treebank (PTB) (Marcus et al, 1993). PTB contains a collection of 43,600 

manually parsed English sentences (over one million words) with constituency trees. For 

the PTB, researchers have used a standard training, development and test split, i.e., section 

02-21 for training, section 22 for development and section 23 for test. The constituency 

structures were converted to dependency trees based on the same rules as (Yamada and 

Matsumoto, 2003) mentioned in Section 2.2.1. When POS tags are needed, Fuse the gold 

standard tags for the training set. The development and test sets are tagged with the part-

of-speech tagger of (Ratnaparkhi, 1996). 

37 



Precision ^ 
Recall $ 
Crossing Brackets ^ 

Table 4.1: PARSEVAL measures 

A = number of correct constituents in a proposed parse 
B = number of constituents in a proposed parse 
C = number of constituents in the treebank parse 
D = number of constituents violating constituent boundaries in a proposed parse 

4.1.2 Chinese 

For experiments on Chinese, I used both the Penn Chinese treebank 4.0 (CTB4) (Palmer 

et al, 2004) and the Penn Chinese treebank 5.0 (CTB5) (Palmer et al, 2005). Chinese 

Treebank 4.0 contains 15,162 sentences (404,156 words). Chinese Treebank 5.0 contains 

Chinese Treebank 4.0 as a subset, but adds approximately 3000 sentences (100,000 words) 

of Taiwanese Chinese text. CTB4 and CTB5 also contain constituency trees for each train

ing sentence. The conversion from constituency structures to dependency trees is based on 

the rules described in (Bikel, 2004). For CTB4, researchers have been using the data split 

of (Bikel, 2004): Sections 1-270 and 400-931 for training, Sections 301-325 for develop

ment and Sections 271-300 for test. However, for the new released Chinese treebank 5.0, 

researchers have not yet agreed on a data split. One option is to use the split of (Corston-

Oliver et al., 2006), i.e., a 70% / 15% / 15% split for training / development / test by 

sampling the whole treebank. Following other researchers, I use the gold standard tags for 

all the data sets. 

4.2 Evaluation Measures 

An important question is how to evaluate the success of a parser. One evaluation method is 

called task-based evaluation, where researchers use parsers to improve the performance of 

other systems, such as information extraction, question answering and machine translation 

systems. Thus, parsers can be evaluated by embedding them into such a system and to 

analyze the differences that the various parsers make. 

However, for simplicity, modularization, and reasons of convenience, an evaluation 

method that directly measures the performance of a parser is more desirable. In this case, 

one Would first think of comparing a parse tree with a gold standard tree taken from a 

38 



Dependency Accuracy 
Root Accuracy 

Complete Match 

percentage of words that have the correct head 

percentage of sentences that have the correct root 

percentage of sentences where the entire 
dependency tree is correct 

Table 4.2: Dependency tree accuracy measures 

treebank—a collection of manually parsed sentences. The most stringent measure is to 

investigate if the two trees are exactly the same. This measure is called tree accuracy or 

complete match, which completely ignores those parses which have any error. But for some 

purposes, partially correct parses would still be very useful, and the complete match score 

is not detailed enough to truly assess parsing accuracy. Therefore, less stringent evaluation 

measures are usually used for both constituency trees and dependency trees. 

The PARSEVAL measures shown in Table 4.1 are used to evaluate the component 

pieces of constituency trees (but not dependency trees). These measures have been com

monly used for parser evaluation for more than a decade (Black et al., 1991), originally 

used to compare the performance of non-statistical parsers. 

For dependency trees, due to the constraint that each word has only one head word, 

the number of total links in a dependency tree is the same as the number of words in the 

sentence. Thus, the three accuracy measures shown in Table 4.2 are usually used instead 

to assess the accuracy of a dependency parser: dependency accuracy (DA), root accuracy 

(RA) and complete match (CM). Of the three, dependency accuracy is often considered to 

be the most important measure, since lexical relations between word-pairs are embedded in 

dependency links, while the other two measures, root accuracy and complete match, are not 

detailed enough for the evaluation of a parser's performance. 

I can also evaluate a dependency parser with either directed dependency accuracy (where 

dependency links are directed) or undirected dependency accuracy (where the direction of 

links are ignored). The downside of the undirected accuracy measure is that, it is not as 

informative as the directed accuracy measure, since a syntactic relationship between two 

words is usually asymmetric. However, the undirected measure is still desirable when one 

is only interested in the likelihood of the linkage between two words. Moreover, the num

ber of features can be largely reduced by using undirected features. In effect, an undirected 

dependency tree can be easily converted into a directed one by specifying the head of the 

sentence, since the head induces a unique head-outward ordering over all other dependen-

39 



cies. 

In general, a parser's performance is evaluated based on these pre-defined data splits 

discussed in Section 4.1. Typically, the procedure is as follows: 

• Train the parser on training set; 

• Use development set to set parameters; 

• Use accuracy measures discussed above to evaluate the parser on test set to get unbi

ased estimate of parsing accuracy. 

For the four pieces of my own work I will present in Chapter 5, Chapter 6, Chapter 7, 

and Chapter 8 below, I adopt these data splits as discussed in Section 4.1 to evaluate my 

parsers and to compare my parsing results on both Chinese and English to the state-of-the-

art results. 

4.3 Complexity Issues 

Dependency parsing is a complicated task that involves dealing with a huge set of features 

and a large search space with exponential number of possible parse trees. In particular, 

for discriminative training, one needs to parse training corpora repeatedly, which is usually 

expensive. 

In practice, many strategies can be used to handle these issues. First, one can easily 

solve the huge feature set problem by introducing a cut-off number, i.e., those features that 

occur less than a cut-off number are ignored. Second, using a fast dependency parsing 

algorithm is an effective way to speed up the training phase. Finally, one can partition the 

training data according to some criteria and train the separate partitions in parallel. 

40 



Chapter 5 

Strictly Lexicalised Dependency 
Parsing 

In this chapter, I present a strictly lexical parsing model where all the parameters are based 

on words. This model does not rely on part-of-speech tags or grammatical categories. It 

maximizes the conditional probability of a parse tree given a sentence, as discussed in 

Section 3.4.1. This is in contrast with most previous generative models that compute the 

joint probability of the parse tree and the sentence. As I discussed in Section 3.4.1, this 

conditional model is trained to minimize a loss function related to labeling error and is 

able to deal with inter-dependent features of input sentences. It also allows one to use 

distributional word similarity to generalize the observed frequency counts in the training 

corpus (as discussed in Section 3.6.2). The experimental results on the Chinese Treebank 

4.0 show that the accuracy of the conditional model is 13.6% higher than the joint model and 

that the strictly lexicalised conditional model outperforms the corresponding unlexicalized 

model based on part-of-speech tags. This work was published in Wang et al. (2005). 

5.1 Lexicalised Parsing 

A common characteristic of previous generative parsers (Collins, 1996; Collins, 1997; 

Charniak, 2000) is their use of lexicalised statistics. However, it was subsequently dis

covered that bi-lexical statistics (parameters that involve two words) actually play a much 

smaller role than previously believed. It has been found by Gildea (2001) that the removal 

of bi-lexical statistics from a state-of-the-art PCFG parser resulted in little change in the 

output. Bikel (2004) observes that only 1.49% of the bi-lexical statistics needed in parsing 

were found in the training corpus. When considering only bigram statistics involved in the 

highest probability parse, this percentage becomes 28.8%. However, even when bi-lexical 

41 



statistics do get used, they are remarkably similar to their back-off values using part-of-

speech tags. Therefore, the utility of bi-lexical statistics becomes rather questionable. Klein 

and Manning (2003) present an unlexicalized parser that eliminates all lexicalised parame

ters, with a performance score close to the state-of-the-art lexicalised parsers. 

I present a statistical dependency parser that represents the other end of spectrum where 

all statistical parameters are lexical and the parser does not require part-of-speech tags or 

grammatical categories. This is called strictly lexicalised parsing. A part-of-speech lexicon 

has always been considered to be a necessary component in any natural language parser, 

as mentioned in Section 2.4.2. This is true in early rule-based as well as modern statistical 

parsers and in dependency parsers as well as constituency parsers. The need for part-of-

speech tags arises from the sparseness of natural language data. They provide generaliza

tions of words that are critical for parsers to deal with the sparseness. Words belonging to 

the same part-of-speech are expected to have the same syntactic behavior. 

Instead of relying on part-of-speech tags, I use distributional word similarities com

puted automatically from a large unannotated corpus as described in Section 3.6.2. One of 

the benefits of strictly lexicalised parsing is that the parser can be trained with a treebank 

that only contains dependency relationships between words. The annotators do not need 

to annotate parts-of-speech or non-terminal symbols (they do not even have to know about 

them), making the construction of treebanks easier. Strictly lexicalised parsing is especially 

beneficial for languages such as Chinese, where parts-of-speech are not as clearly defined as 

English. In Chinese, clear indicators of a word's part-of-speech, such as suffixes -ment, -ous 

or function words, such as the, are largely absent. In fact, monolingual Chinese dictionaries 

intended for native speakers almost never contain part-of-speech information. 

In the remainder of this chapter, I first present a method for modeling the probabilities 

of dependency trees. Next, in Section 5.3,1 apply a similarity-based smoothing technique 

to the probability model to deal with data sparseness. Then I describe a dependency parsing 

algorithm I use for experimental evaluation in Section 5.4. Finally, I present dependency 

parsing results on the Chinese Treebank 4.0 in Section 5.5 and discuss related work in 

Section 5.6. 

5.2 A Probabilistic Dependency Parsing Model 

Let X be a sentence and Y be its dependency tree (shown in Figure 2.1). As discussed in 

Section 2.2.1, Y is a directed tree connecting all the words in X. 

42 



A triple (u, v, d) specifies a dependency link I, where u and v are the indices (it < i;) of 

the words connected by I, and d specifies the direction of the link I. The value of d is either 

L or R. If d = L, v is the index of the head word; otherwise, u is the index of the head word. 

As discussed in Section 2.2.1, dependency trees are typically assumed to be projective 

(without crossing arcs), which means that if there is an arc from h to m, h is then an ancestor 

of all the words between h and m. Let &(X) be the set of possible directed, projective 

trees spanning on X. The parsing problem defined in Equation (2.1) in Section 2.4.1 is 

to maximize the sum of all the link scores in a candidate tree. Here, the score will be log 

conditional probabilities. Thus finding the tree with highest probability would be equivalent 

to finding the tree with a maximum score in Equation (2.1). 

Generative parsing models are usually defined recursively from top down, even though 

the decoders (parsers) for such models almost always take a bottom-up approach. The 

model proposed here is a bottom-up one. Like previous approaches, the generation of a 

parse tree can be decomposed into a sequence of steps. The probability of the tree is simply 

the product of the probabilities of the steps involved in the generation process. This scheme 

requires that different sequences of the steps must not lead to the same tree. This can be 

achieved by defining a canonical ordering of the links in a dependency tree. Each generation 

step corresponds to the construction of a dependency link in the canonical order. 

Given two dependency links I and I' with the heads being h and h! and the modifiers 

being m and m', respectively, the order between I and I' is determined as follows: 

• If h 7̂  h! and there is a directed path from one (say h) to the other (say hi), then /' 

precedes I. 

• Ifhj^h' and there does not exist a directed path between h and h', the order between 

I and I' is determined by the order of h and h' in the sentence (h precedes h' => I 

precedes I'). 

• If /i = ft.' and the modifiers m and mf are on different sides of h, the link with 

modifier on the right precedes the other. 

• If h = h! and the modifiers m and m! are on the same side of the head h, the link 

with its modifier closer to h precedes the other one. 

For example, if we add indices 1, 2, 3... to the words in Figure 2.1 (index 0 is for the dummy 

node at the beginning of the sentence), the canonical order of the links in the dependency 

tree is: (4, 5, R), (7, 8, L), (6, 8, R), (4, 6, R), (3, 4, R), (2, 3, R), (1, 2, L), (0, 2, R). 

43 



The generation process according to the canonical order is similar to the head outward 

generation process in (Collins, 1999), except that it is bottom-up whereas Collins' models 

are top-down. Suppose a dependency tree Y is constructed in steps G\, ..., GN in the 

canonical order of the dependency links, where N is the number of words in the sentence. 

The conditional probability of Y given X can be computed as 

P(Y\X) = P(G1,G2,...,GN\X) = T\N P(G i |X,G 1 , . . . ,G i _i) (5.1) 

To search for a parse tree with the highest probability is equivalent to find out a tree 

with the highest score of sum over all the dependency links in the logarithmic space. 

Y* = arg max P(Y\X) 
Y€*(X) 

= ^5maxlog(P{Y\X)) 
Ye$(x) 

N 

= arg max Y^log (P (Gi\X,Gu ...,Gi^)) (5.2) 

Following (Klein and Manning, 2004), I require that the creation of a dependency link 

from head h to modifier m be preceded by placing a left STOP and a right STOP around 

the modifier m and -iSTOP between h and m. The STOP events are crucial for modeling 

the number of dependents. Without them, a parse tree often contains some 'obvious' er

rors, such as determiners taking arguments, or prepositions having arguments on their left 

(instead of right). 

Let E^ (and E^) denote the event that there are no more modifiers on the left (and 

right) of a word w. Suppose the dependency link created in the step i is (u, v,d). lfd = L, 

Gj is the conjunction of the four events: E^, E%, -^E^and link,L(u, v). If d = R, Gj 

consists of four events: E^, E%, ~^E^ and linkR^u, v). The event Gi is conditioned on X, 

G\, ..., Gj_i, which are the words in the sentence and a forest of trees constructed up to 

step i-\. Let C^ (and C^ ) be the number of modifiers of w on its left (and right). I make 

the following independence assumptions: 

• Whether there are any more modifiers of w on side d depends only on the number of 

modifiers already found on side d of w. That is, E^ depends only on w and C#. 

• Whether there is a dependency link from a word h to another word m depends only 

on the words h and m and the number of modifiers of h between m and h. That is, 

- linkji(u,v) depends only on u, v, and C^. 

44 



- UnkL(u,v) depends only on u, v, and C„. 

Suppose Gi corresponds to a dependency link (u, v, L). The probability can be computed 

as: 
P (Gi\S,Gi,...,Gi-i) 
= P(EZ,E*,^EJ;,linkL(u,v)\S,Gu...,Gi-1) 
= P{EZ\u,C><)xP{E*\u,C*)x 

(1-P (E^\v, C£)) x P (linkL (u, v) \u, v, C^) 

The events E^ and E^ correspond to the STOP events in (Collins, 1999; Klein and 

Manning, 2004). This model requires three types of parameters: 

• P (E^\w, C%), where w is a word, d is a direction (left or right). This is the proba

bility of a STOP after taking C^ modifiers on the d side. 

• P (linkR (u, v) \u, v, C^) is the probability of v being the (C£ + l)'th modifier of 

u on the right. 

• P {linki (u, v) \u, v, C^) is the probability of u being the (C„ + l)'th modifier of v 

on the left. 

The maximum likelihood estimations of these parameters can be obtained from the 

frequency counts in the training corpus: 

• C{w, c, d): the frequency count of w with c modifiers on the d side. 

• C(u, v, c,d): If d = L, this is the frequency count of words u and v co-occurring in 

a sentence and v has c modifiers between itself and u. If d — R, this is the frequency 

count words u and v co-occurring in a sentence and u has c modifiers between itself 

andu. 

• K(u, v, c, d): similar to C(u, v, c, d) with an additional constraint that linkd{u, v) is 

true. 

c>>c 

P(linkR(u,v)\u,v,C*) = . ' ' ' , where c = C^; 
O [U, V, C, Jrl) 

P (linki (u, v) \u, v, C^) = — ' , where c = C%. 
C (u, v, c,L) 

All the parameters in the model are conditional probabilities of the tree given the sen

tence, where the variables on the left side of the conditioning bar are binary. Taking logs of 

45 



these probabilities one can then obtain a local scoring function that uses dynamic features 

as discussed in Section 2.4.3. This scoring function still decomposes in a way that allows 

one to use a dynamic programming parsing algorithm as described in Section 2.3 to parse 

sentences. The algorithm builds a packed parse forest from bottom up according to the 

canonical order introduced above. 

5.3 Similarity-based Smoothing 

I now introduce similarity-based smoothing into the dependency parsing framework out

lined above, which to the best of my knowledge, is novel. 

The parameters in the model consist of conditional probabilities P(E\C) where E is the 

binary variable linkd(u, v) or E^ and the context C is either [w, C^] or [u,v, C*], which 

involves one or two words in the input sentence. Due to the sparseness of natural language 

data, the contexts observed in the training data only cover a tiny fraction of the contexts 

whose probability distributions are needed during parsing. The standard approach is to 

back off the probability to word classes (such as part-of-speech tags). In this chapter, I take 

a different approach: the training data is searched to find a set of similar contexts to C, and 

the probability of E is estimated based on its probabilities in the similar contexts observed 

in the training corpus. 

Section 3.6.2 introduced the smoothing method of (Dagan et al, 1999). The underlying 

assumption of their smoothing scheme is that a word is more likely to occur after w if it 

tends to occur after similar words of w. Here I make a similar assumption: the probability 

P(£|C) of event E given the context C is computed as the weighted average of P(E\C) 

where C is a similar context of C and is attested in the training corpus: 

PSIM (E\C) = V Sim{C\^PMLE (E\C>) 
*—' norm(C) x ' 

where S(C) is the set of top k most similar contexts of C (in the experiments reported in 

this chapter, k = 50); O is the set of contexts observed in the training corpus, Sim(C, C) is 

the similarity between two contexts and norm(C) is the normalization factor. 

Here, a context is either [w, C^] or [u, v, C^] and their similar contexts are defined as: 

s{[w,c']) = {[v/tc*,]\u/eS(w)} 
s( u,v,Ct] ) = { [u',v',Ci] \u> € S(u),v< e S(v)} 

where S(w) is the set of top k similar words of w (k = 50). 

46 



Since all contexts used in the model contain at least one word, the similarity between 

two contexts, Sim(C, C'), is computed as the geometric average of the similarities between 

corresponding words: 

Sim ([w, C*] , [w>, C^,]) --= Sim {w,w') 

Sim ([u, v, C^\ , [u', v', C*,]) = y/Sim(u,u')Sim(v,v') 

Note that using a similarity-smoothed probability estimate is only necessary when the 

frequency count of the context C in the training corpus is low. Therefore the final probabil

ity is computed as the linear interpolation of the MLE probability and the similarity-based 

probability. 

P (E\C) = aPMLE{E\C) + (1 - a)PsiM(E\C) (5.3) 

where the smoothing factor a = L r 5 and \C\ is the frequency count of the context C in 

the training data. The purpose of a is to dynamically scale the smoothing, based on the 

frequency of the pair. 

A difference between the similarity-based smoothing approach of (Dagan et al., 1999) 

and the approach proposed here is that this model only computes probability distributions of 

binary variables. Words only appear as parts of contexts on the right side of the conditioning 

bar. This has two important implications. First, when a context contains two words, one 

can use the cross product of similar words, whereas Dagan et al. (1999) can only use the 

similar words of one of the words. This turns out to have significant impact on accuracy (see 

Section 5.5). Second, in (Dagan et al, 1999), the distribution P(.\w[) may itself be sparsely 

observed. When PMLE(W<2\W[) is 0, it is often due to data sparseness. Their smoothing 

scheme therefore tends to under-estimate such probability values. This problem is avoided 

with the approach presented here. If a context does not occur in the training data, it is not 

included in Equation 5.3. If it does occur, the maximum likelihood estimation is reasonably 

accurate even if the context only occurs a few times, since the entropy of the probability 

distribution is upper-bounded by log 2. 

5.4 Dependency Parsing Algorithms 

Before presenting experimental results, I first describe the dependency parsing algorithm 

used in the experimental evaluation, which is adapted from a standard CKY parsing algo

rithm (Jurafsky and Martin, 2000). This has been discussed in Section 2.3.2. 

Although the output of the parser is a dependency tree, internally, it works as similarly 

as a chart parsing algorithm for Context Free Grammars. Specifically, in a dependency 

47 



Parse () { 
for (h = 0; h < N; ++h) { 
Addltem(new Item(h, h, h, 0) ) ; 
for 1 from h down to 0 do { 

foreach item t in items(1, h) { 
MergeAsModifier(t); 
MergeAsHead(t); 

} 
} 

} 
} 

MergeAsHead(item) { 
h = item.high; mid = item.low - 1; 
for 1 from mid down to 0 do { 
m = argmax_{t in items(1, mid)} combined_score(h, t) 
Addltem(new Item(m.low, item.head, item.high, Combined_score(h, m))); 

} 
} 

MergeAsModifier(item) { 
h = item.high; mid = item.low - 1; 
for 1 from mid down to 0 do { 
foreach item m in items(1, mid) without a pre-head modifier 
Addltem(new Item(m.low, m.head, item.high, Combined_score(m, item); 

} 
} 

Addltem(item) { 
if not exist t in item(l, h) s.t. t.head==item.head and 

t.score > item.score 

then add item to items(item.low, item.high); 

} 

Figure 5.1: A dependency parsing algorithm 

parsing algorithm, the parser constructs a set of chart items, each of which has a head word. 

Each chart item is a 4-tuple: (low, head, high, score) where low, head and high (low < head 

< high ) are positions of words in a sentence and score is non-negative. This means that 

there exists a dependency tree that spans the words from low to high with the given score, 

and rooted at the position head. Initially, the parsing algorithm creates a chart item for each 

individual word in the input sentence. The items are then combined with the existing items 

that are adjacent items to their left. The combined item has the span of the union of the 

two components and may take either item's head as its head. Thus, a dependency tree for 

the whole sentence can then be built up in a bottom-up manner, by successively combining 

adjacent chart items into bigger ones. A dependency parsing algorithm implemented in this 

way has 0(n5) complexity, in the worst case, as I have mentioned in Section 2.3.2. An 

algorithm outline is given in Figure 5.1. 

This dependency parsing algorithm is essentially a modified CKY parsing algorithm. 

I use this algorithm in the experimental evaluation in this chapter and in all the following 

chapters. 

48 



Test data 
Undirected Accuracy (%) 

CTB4-10 
90.8 

CTB4-15 
85.6 

CTB4-20 
84.0 

CTB4-40 
79.9 

Table 5.1: Evaluation results on CTB4 

Models 
(a) Strictly lexicalised conditional model 
(b) At most one word is different in a similar context 
(c) Strictly lexicalised joint model 
(d) Unlexicalized conditional models 
(e) Unlexicalized joint models 

Accuracy (%) 
79.9 
77.7 
66.3 
71.1 
71.1 

Table 5.2: Performance of alternative models 

5.5 Experimental Results 

I evaluated the proposed learning technique developed in this chapter on the Penn Chinese 

Treebank 4.0 (CTB4) as described in Section 4.1.2. I used the same experimental settings 

as discussed in Section 4.1.2 for CTB4. I tested on the sets of data with different sentence 

length: CTB4-10, CTB4-15, CTB4-20 and CTB4-40, which contain test sentences with up 

to 10,15, 20 and 40 words respectively. Parsing Chinese generally involves segmentation as 

a pre-processing step. I used the gold standard segmentation in the CTB4. The distributional 

similarities between words are computed using the Chinese Gigaword corpus (Graff and 

Chen, 2003). I did not segment the corpus when computing the word similarities. 

I measured the quality of the parser by undirected accuracy as discussed in Section 4.2, 

which is defined as the number of correct undirected dependency links divided by the total 

number of dependency links in the corpus (the treebank parse and the parser output always 

have the same number of links). The results are summarized in Table 5.1. These results 

show the performance of the parser is highly correlated with the length of sentences, due 

to the fact that the number of possible parse trees increases exponentially with sentence 

length. 

I also experimented with several alternative models. Table 5.2 summarizes the results 

of these models on the test corpus with sentences with less than or equal to 40 words. 

One of the characteristics of the parser developed here is that it uses words similar to 

both the head and the modifier for smoothing. The similarity-based smoothing method in 

49 



(Dagan et al., 1999) uses the words similar to only one of the words in a bigram. The 

definition of similar context can be changed as follows so that only one word in a similar 

context of C may be different from a word in C (see Model (b) in Table 5.2): 

S{[u,v,C*]) 
= { [U',V,C*]\U'€S(U)}\J{ [u,v',C*]\v'€S(v)} 

where w is either v or u depending on whether d is L or R. This change leads to a 2.2% 

drop in accuracy (compared with Model (a) in Table 5.2), which is probably due to the fact 

that many contexts do not have similar contexts in the training corpus. 

Since most previous parsing models maximize the joint probability of the sentence and 

the parse tree P(X, Y) instead of the conditional probability of P(Y \X), I also implemented 

a joint model (see Model (c) in Table 5.2): 

p , y v , A P(E^\mhC^) x P ( £ * |m, ,C* ) x 

where hi and m» are the head and the modifier of the i'th dependency link. The probability 

P (m,i\hi, C * J is smoothed by averaging the probabilities^ (mi\hi,ChJ J, where h\ is a 

similar word of hi, as in (Dagan et al., 1999). This change of using a joint model causes a 

dramatic decrease in accuracy, from 79.9% for the conditional model to 66.3% for the joint 

model. 

In the model proposed here, the use of distributional word similarity can be viewed as 

assigning soft clusters to words. In contrast, parts-of-speech can be viewed as a hard clus

ters of words. Both the conditional and joint models can be modified to use part-of-speech 

tags instead of words. Since there are only a small number of tags, the modified models 

use maximum likelihood estimation without any smoothing except for a small probabil

ity constant for unseen events. Without smoothing, maximizing the conditional model is 

equivalent to maximizing the joint model. The accuracy of the unlexicalized models (see 

Model (d) and Model (e) in Table 5.2) is 71.1% which is considerably lower than the strictly 

lexicalised conditional model I have proposed, but higher than the strictly lexicalised joint 

model. This demonstrates that soft clusters obtained through distributional word similarity 

perform better than the part-of-speech tags, when used appropriately. 

5.6 Related Work 

Previous probabilistic parsing models (Collins, 1997; Charniak, 2000) maximize the joint 

probability P(X, Y) of a sentence X and its parse tree Y. This chapter considers an ap-

50 



proach that maximizes the conditional probability P(Y\X). The use of conditional model 

allows one to take advantage of similarity-based smoothing. 

Clark et al. (2002) also compute a conditional probability of dependency structures. 

While the probability space considered in this chapter consists of all possible projective 

dependency trees, their probability space is constrained to be all dependency structures 

that are allowed by a Combinatorial Category Grammar (CCG) and a category dictionary 

(lexicon). They therefore do not need the STOP markers in their model. Another major 

difference between the model presented here and (Clark et al., 2002) is that the parameters 

used here consist exclusively of conditional probabilities of binary variables. 

Ratnaparkhi's maximum entropy model (Ratnaparkhi, 1999) is also a conditional model. 

However, his model maximizes the probability of the action during each step of the parsing 

process, instead of overall quality of the parse tree. 

In many dependency parsing models such as (Eisner, 1996; McDonald et al., 2005a), 

the score of a dependency tree is the sum of the scores of the dependency links, which 

are computed independently of other links. An undesirable consequence of this is that the 

parser often creates multiple dependency links that are separately likely but jointly improba

ble (or even impossible). For example, there is nothing in such models to prevent the parser 

from assigning two subjects to a verb. In the DMV model (Klein and Manning, 2004), the 

probability of a dependency link is partly conditioned on whether or not there is a head 

word of the link that already has a modifier. The model proposed in this chapter is quite 

similar to the DMV model, except that it computes the conditional probability of the parse 

tree given the sentence, instead of the joint probability of the parse tree and the sentence. 

There have been several previous approaches to parsing Chinese with the Penn Chinese 

Treebank (Bikel and Chiang, 2000; Levy and Manning, 2003). Both of these approaches 

employ phrase-structure joint models and use part-of-speech tags in back-off smoothing. 

Their results were evaluated with the precision and recall of the brackets implied in the 

phrase structure parse trees. In contrast, the accuracy of the proposed model is measured in 

terms of the dependency relationships. A dependency tree may correspond to more than one 

constituency trees. My results are therefore not directly comparable with the precision and 

recall values in previous research. Moreover, it was argued in (Lin, 1995) that dependency 

based evaluation is much more meaningful for the applications that use parse trees, since 

the semantic relationships are generally embedded in the dependency relationships. 

Non-probabilistic approaches to dependency parsing, including large margin based tech

niques in particular will be considered in the next chapter. 

51 



5.7 Contributions 

In this chapter, I presented a generative approach that employs Maximum Likelihood Markov 

Network training for dependency parsing. This model is similar to the maximum entropy 

Markov models (MEMMs). In both MEMMs and the model presented here, the goal is to 

maximize the conditional probability given the observations and previous state. The proba

bility parsing model I presented is also very closely related to the score-based parsing model 

introduced in Section 2.4.1, since the product of each link probability can be converted to 

sums of score in the log space. Similarity-based smoothing was also applied to deal with 

data sparseness, instead of relying on part-of-speech tags or grammatical categories, which 

has not been applied to parsing before. 

5.8 Conclusion 

To the best of my knowledge, all previous natural language parsers have to rely on part-of-

speech tags. In this chapter I presented a strictly lexicalised model for dependency parsing 

that only relies on word statistics. I compared the resulting parser with an unlexicalized 

parser that employs the same probabilistic model except that the parameters are estimated 

using gold standard tags in the Chinese Treebank. My experiments show that the strictly 

lexicalised parser significantly outperformed its unlexicalized counterpart. 

An important distinction between the proposed statistical model and previous parsing 

models is that all the parameters in the model presented here are conditional probability of 

binary variables. This allows one to take advantage of similarity-based smoothing, which 

has not been successfully applied to parsing before. 

52 



Chapter 6 

Extensions to Large Margin 
Dependency Parsing 

The approach presented in Chapter 5 has a limitation; it uses a local scoring function in

stead of a global scoring function to compute the score for a candidate tree. The structured 

large margin approach (discussed in Section 3.5.2), on the other hand, uses a global scoring 

function by minimizing a training loss—the "structured margin loss" (Taskar et al., 2003; 

Tsochantaridis et al., 2004; McDonald et al., 2005a)—which is directly coordinated with 

the global tree. However, the training error minimized in the large margin approach is a 

coarse measure that only assesses the total error of an entire parse rather than focusing on 

the error of any particular component. Also smoothing methods, which have been widely 

used in probabilistic approaches, are not currently being used in large margin training algo

rithms. In this chapter I improve structured large margin training for parsing in two ways. 

First, I incorporate local constraints that enforce the correctness of each individual link, 

rather than just scoring the global parse tree. Second, to cope with sparse data and gener

alize to unseen words, I smooth the lexical parameters according to their underlying word 

similarities. To smooth parameters in the large margin framework, one needs to introduce 

the technique of Laplacian regularization in large margin parsing. Finally, to demonstrate 

the benefits of the proposed approach, I reconsider the problem of parsing Chinese tree-

bank data using only lexical features, as in Chapter 5. My results show that improved 

accuracy can be obtained over current large margin approaches, and furthermore show that 

similarity smoothing combined with local constraint enforcement leads to state-of-the-art 

performance. Once again, these results only require word-based features, and do not rely 

on part-of-speech tags nor grammatical categories in any way. 

In this chapter, I present my two modifications to large margin training for parsing, 

i.e., enforcing local parsing constraints and incorporating word similarity smoothing via 

53 



Laplacian regularization, in Section 6.1 and Section 6.2 respectively. Then I present my 

experimental results on fully lexical dependency parsing for Chinese. This work was pub

lished in Wang et al. (2006). 

6.1 Large Margin Training with Local Constraints 

In this chapter, I only use those simple, lexically determined features which are defined in 

Section 2.4.2, {fuv}, IPMI, fdist and fdist2 (without the parts-of-speech {/p„}). The corre

sponding parameters 9 for these features are, 9UV, QPMI, 9dist, 9dist2- Moreover, I only use 

undirected forms of these features, where, for example, /„„ = fvu for all pairs (or, put 

another way, I tie the parameters 9UV — 9VU together for all u, v). Ideally, I would like to 

use directed features, but I have already found that these simple undirected features permit 

state-of-the-art accuracy in predicting (undirected) dependencies. Nevertheless, extending 

my approach to directed features and contextual features (as in Chapter 5), remains an im

portant direction for future research. Note that this is a much simpler feature set than that 

used in Chapter 5, here consisting only of static features, whereas Chapter 5 used dynamic 

features extensively. Unifying these two projects remains a direction for future work (Sec

tion 9.2.4 below). 

6.1.1 Large Margin Training 

To train the parameters 9,1 follow the structured large margin training approach discussed 

in Section 3.5.2 (Taskar et al., 2003; Tsochantaridis et al., 2004), which has been applied 

with great success to dependency parsing (Taskar et al., 2004b; McDonald et al., 2005a). 

Even through I have already discussed the structured large margin training framework in 

Section 3.5.2,1 will repeat some of the details here that I need to explain and derive my new 

approach. 

Large margin training can be expressed as minimizing a regularized loss (Hastie et al., 

2004) as shown in (3.11), which is equivalent to solving the following quadratic program 

min T:0T9 + eT£ subject to 
0,4 2 

&)fc > A(Li,k,Yi) + score(9,Liik) - score(9,Yi) 

for a l H , L a €*(*<) (6.1) 

where Y{ is the target tree for sentence Xf, Lith ranges over all possible alternative trees 

in $(X;); score(9, Y) = Y.(Xm->xn)eY ^Tf(x™ ""*• x™)'> a n d &(Li,k,Yi) is a measure of 

distance between the two trees L;^ and Yi. 

54 



Unfortunately, the quadratic program (6.1) has three problems one must address. First, 

there are exponentially many constraints—corresponding to each possible parse of each 

training sentence—which forces one to use alternative training procedures, such as incre

mental constraint generation, to slowly converge to a solution (McDonald et al., 2005a; 

Tsochantaridis et al., 2004). Second, and related, the original loss (3.11) is only evaluated 

at the global parse tree level, and is not targeted at penalizing any specific component in an 

incorrect parse. Although (McDonald et al., 2005a) explicitly describes this as an advan

tage over previous approaches (Ratnaparkhi, 1999; Yamada and Matsumoto, 2003), below 

I find that changing the loss to enforce a more detailed set of constraints leads to a more 

effective approach. Third, given the large number of bi-lexical features {fuv} in the model, 

solving (6.1) directly will over-fit any reasonable training corpus. (Moreover, using a large 

f3 to shrink the 9 values does not mitigate the sparse data problem introduced by having so 

many features.) I now present my refinements that address each of these issues in turn. 

6.1.2 Training with Local Constraints 

Initially, I considered training on just an undirected link model, where each parameter in 

the model is a weight 9xxi between two words, x and x', respectively. Since links are 

undirected, these weights are symmetric 0XX> = 6xix, and the score can also be written 

in an undirected fashion as: score(x,x') = 9Tf(x,x'). The main advantage of working 

with the undirected link model is that the constraints needed to ensure correct parses on the 

training data are much easier to specify in this case. Ignoring the projective (no crossing 

arcs) constraint for the moment, an undirected dependency parse can be equated with a 

maximum score spanning tree of a sentence. Given a target parse, the set of constraints 

needed to ensure the target parse is in fact the maximum score spanning tree under the 

weights 9, by at least a minimum amount, is a simple set of linear constraints: for any edge 

x\x<i that is not in the target parse, one simply adds two constraints 

0Tf(x1,x[) > 0Tf(xi,a:2) + l 

9rf(x2,x'2) > 9Tf(x1:x2) + l (6.2) 

where the edges xix[ and X2x'2 are the adjacent edges that actually occur in the target parse 

that are also on the path between x\ and x2. (These would have to be the only such edges, or 

there would be a loop in the parse tree.) These constraints behave very naturally by forcing 

the weight of an omitted edge to be smaller than the adjacent included edges that would 

form a loop, which ensures that the omitted edge would not be added to the maximum 

55 



score spanning tree before the included edges. 

In this way, I can simply accumulate the set of linear constraints (6.2) for every edge 

that fails to be included in the target parse for the sentences where it is a candidate. This set 

of constraints can be denoted as 

A = {9Tf(xl,x'1)>9Tf(xl,x2) + l} (6.3) 

Importantly, the constraint set A is convex in the link weight parameters 9, as it consists 

only of linear constraints. 

Ignoring the non-crossing condition, the constraint set A is exact. However, because 

of the non-crossing condition, the constraint set A is more restrictive than necessary. For 

example, consider the word sequence ...XiXi+iXi+2%i+z--; where the edge Xi+\Xi+% is in 

the target parse. Then the edge XiXi+2 can be ruled out of the parse in one of two ways: 

it can be ruled out by making its score less than the adjacent scores as specified in (6.2), 

or it can be ruled out by making its score smaller than the score of Xi+\Xi+z. Thus, the 

exact constraint contains a disjunction of two different constraints, which creates a non-

convex constraint in 9. (The union of two convex sets is not necessarily convex.) This is 

a weakening of the original constraint set A. Unfortunately, this means that, given a large 

training corpus, the constraint set A can easily become infeasible. 

Nevertheless, the constraints in A capture much of the relevant structure in the data, and 

are easy to enforce. Therefore, I wish to maintain them. However, rather than impose the 

constraints exactly, I enforce them approximately through the introduction of slack variables 

£. The relaxed constraints can then be expressed as 

0Tfv*i,*i) > 9Tf(x1:x2) + 1 - ^X1X2;XIX{ (6.4) 

and therefore a maximum soft margin solution can then be expressed as a quadratic program 

min 77#T0 + £ T e subject to 
#,£ 2 

9Tf(x1,x'1) > 9Tf(xl,X2) + 1 - Cx1x2,x1x'1 

for all constraints in A (6.5) 

where e denotes the vector of all l's. 

Even though the slack variables are required because the parameters have been slightly 

over-constrained, given that there are so many parameters and a sparse data problem as 

well, it seems desirable to impose a stronger set of constraints. A set of solution parameters 

achieved in this way will allow maximum weight spanning trees to correctly parse nearly 

56 



all of the training sentences, even without the non-crossing condition (see the results in 

Section 6.3). 

This quadratic program has the advantage of producing link parameters that will cor

rectly parse most of the training data. Unfortunately, the main drawback of this method thus 

far is that it does not offer any mechanism by which the link weights 9WW/ can be general

ized to new or rare words. Given the sparse data problem, some form of generalization is 

necessary to achieve good test results. I achieve this by exploiting distributional similarities 

between words to smooth the parameters. 

6.2 Laplacian Regularization 

I wish to incorporate similarity based smoothing in large margin training, while using the 

more refined constraints outlined in Section 6.1.2. 

Recall that most of the features that are used, and therefore most of the parameters that 

need to be estimated are based on bi-lexical parameters 9WW> that serve as undirected link 

weights between words w and w' in my dependency parsing model (Section 5.2). Here I 

would like to ensure that two different link weights, 9WlWi and 9W2W>, that involve similar 

words also take on similar values. The previous optimization (6.5) needs to be modified to 

take this into account. 

Smoothing the link parameters requires one to first extend the notion of word similarity, 

which is defined in Section 3.6.2, to word-pair similarities, since each link involves two 

words. Given similarities between individual words, computed according to (3.13) and 

(3.14), the similarity between word pairs are then defined as the geometric mean of the 

similarities between corresponding words as in Section 5.3: 

Sim(wiLw[,W2W,2) = \iSim(wi,W2)Sim(w'1,W2) (6.6) 

where Sim(w\,W2) is the similarity between w\ and w?. Then, instead of just solving 

the constraint system (6.5), one can also ensure that similar links take on similar parameter 

values by introducing a penalty on their deviations that is weighted by their similarity value. 

Specifically, I use 

J2^2Sim(w1w'1,w2w'2)(9m<-9W2W,f = 20>TL(S)9> (6.7) 
W\w'x W2W'-2 

Here L{S) is the Laplacian matrix of the similarity matrix S, which is defined by L(S) = 

D(S)—S where D(S) is a diagonal matrix such that DW1W/<W1W/ = Y2w2w' S(wiw[,W2W2). 

57 



Also, 6' corresponds to the vector of bi-lexical parameters. In this penalty function, if two 

edges w\w[ and W2W2 have a high similarity value, their parameters will be encouraged to 

take on similar values. By contrast, if two edges have low similarity, then there will be little 

mutual attraction imposed on their parameter values. 

Note, however, that I do not smooth the parameters, OpMi, ddist, ®disti, corresponding 

to the pointwise mutual information, distance, and squared distance features described in 

Section 5.2, respectively. These are not sparse features. I only apply similarity smoothing 

to the bi-lexical parameters. 

The Laplacian regularizer (6.7) provides a natural smoother for the bi-lexical parameter 

estimates that takes into account valuable word similarity information computed as above. 

The Laplacian regularizer also has a significant computational advantage: it is guaranteed 

to be a convex quadratic function of the parameters (Zhu et al., 2003). Therefore, by com

bining the constraint system (6.5) with the Laplacian smoother (6.7), I can obtain a convex 

optimization procedure for estimating the link parameters 

min ^9TL(S)9 + £ T e subject to 

dT{(w1,w[) > dTf(w1,W2) + I - Zw^w^ 

for all constraints in A (shown in Equation (6.3)) (6.8) 

where L(S) does not apply smoothing to 9Pm, 9^, 9dist2. 

Clearly, (6.8) describes a large margin training program for dependency parsing, but one 

which uses word similarity smoothing for the bi-lexical parameters, and a more refined set 

of constraints developed in Section 6.1.2. Although the constraints are more refined, they 

are fewer in number than (6.1). That is, there are only a polynomial number of constraints 

corresponding to each word pair in (6.2), rather than the exponential number over every 

possible parse tree in (6.1). Thus, I obtain a polynomial size quadratic program that can be 

solved for moderately large problems using standard optimization software packages. I used 

CPLEX in my experiments below. As before, once optimized, the solution parameters 9 can 

be introduced into the dependency model shown in Equation (2.1) according to Equation 

(2.2) discussed in Section 2.4. 

6.3 Experimental Results 

I used the same experimental settings as in Section 5.5, except that I only experimented 

with CTB4-10 here, which contains sentences with no more than 10 words. The main 

58 



Features used 

Pairs 
+ Lap 
+ Dist 
+ Lap + Dist 
+ MI + Dist 
+ Lap + MI + Dist 

Trained w/ 
local loss 

61.30 
63.90 
63.64 
64.94 
63.12 
65.71 

Trained w/ 
global loss 

56.88 
49.35 
61.30 
52.99 
61.82 
56.62 

Table 6.1: Accuracy on CTB4-10 dev set (%) 

Features used 

Pairs 
+ Lap 
+ Dist 
+ Lap + Dist 
+ MI + Dist 
+ Lap + MI + Dist 

Trained w/ 
local loss 

64.26 
65.06 
65.46 
65.86 
67.07 
68.27 

Trained w/ 
global loss 

61.84 
56.22 
64.66 
55.42 
65.46 
57.43 

Table 6.2: Accuracy on CTB4-10 test set (%) 

Features used 

Pairs 
+ Lap 
+ Dist 
+ Lap + Dist 

+ MI + Dist 
+ Lap + MI + Dist 

Trained w/ 
local loss 

98.02 
97.77 
97.55 
97.47 
97.68 
97.38 

Trained w/ 
global loss 

83.93 
72.16 
83.76 
72.16 
79.85 
70.62 

Table 6.3: Accuracy on CTB4-10 training set (%) 

59 



Model 

Chapter 6 with local loss 
Chapter 6 with global loss 
Chapter 5 

Dev set 

65.7 
56.6 
61.0 

Test set 

68.3 
57.4 
76.3 

Table 6.4: Comparison with the approach in Chapter 5 on CTB4-10 (%) 

reason for using only short sentences is due to the computational cost in the learning phase. 

In Chapter 8, we will introduce an efficient optimization strategy that allows us to learn on 

longer sentences. 

I use similarity information in both training and parsing. For training, I smooth the 

parameters according to their underlying word-pair similarities by introducing a Laplacian 

regularizer (see Section 6.2). For parsing, the link scores in (2.1) are smoothed by word-

pair similarities before the maximum score projective dependency tree is computed, i.e., for 

any unseen link in the new sentences, the weight of the link is computed as the similarity 

weighted average of similar links seen in the training corpus (similar to the approach used 

in Chapter 5). 

Table 6.1, Table 6.2 and Table 6.3 show the experimental results trained and evaluated 

on Chinese Treebank sentences of length no more than 10, using the standard data split. The 

regularization parameter j3 was set by 5-fold cross-validation on the training set. I evalu

ate parsing accuracy by comparing the undirected dependency links in the parser outputs 

against the undirected links in the treebank. 

Table 6.1 and Table 6.2 show that training based on the more refined local loss is far su

perior to training with the global loss of standard large margin training, on both the test and 

development sets. Parsing accuracy also appears to increase with the introduction of each 

new feature. Notably, the pointwise mutual information and distance features significantly 

improve parsing accuracy—and yet I know of no other research that has investigated these 

features in this context. Finally, I note that Laplacian regularization improved performance 

as expected, but not for the global loss, where it appears to systematically degrade perfor

mance. It seems that the global loss model may have been over-regularized (Table 6.3). 

However, I have picked the (3 parameter which gave me the best results in my experiments. 

One possible explanation for this phenomenon is that the interaction between the Laplacian 

regularization in training and the similarity smoothing in parsing, since distributional word 

similarities are used in both cases. 

60 



Finally, I compared the results of this work to the probabilistic parsing approach pro

posed in Chapter 5, which on this data obtained accuracies of 61.0% on the development set 

and 76.3% on the test set, as shown in Table 6.4. The discrepancy between the two results 

of the probabilistic approach indicates its non-robustness, at least on the small data set used 

for the experiments. In fact, a complicated feature set is used in Chapter 5. Although it is 

trivial to incorporate these features into the current large margin framework presented here, 

I only used a much simpler feature set. Applying those complicated features to the large 

margin approach is a direction for my future work, which I will discuss in more detail in 

Section 9.2. 

6.4 Related Work 

Several research groups applied large margin criterion to parsing (Yamada and Matsumoto, 

2003; Taskar et al., 2004a; Tsochantaridis et al., 2004; McDonald et al., 2005a). Yamada 

and Matsumoto (2003) use a multi-class SVM to learn a local scoring function for a de

pendency parser. Their model uses a discriminative method that maximizes the differences 

between scores of the link labels in the correct parse versus the scores of the top competing 

link labels. They obtain satisfactory dependency parsing results on English. However, the 

proposed approach uses a local training criteria, i.e., they only train the model parameters 

locally, not considering optimizing those parameters based on minimizing the global loss 

of the entire parse tree. 

In the work of (Tsochantaridis et al., 2004), a structured support vector machine learn

ing framework is presented which involves features extracted jointly from both inputs and 

outputs. The resulting quadratic program has an exponential number of constraints and is 

solved by an approximation algorithm which finds a small set of active constraints. Taskar 

et al. (2004a) also present a discriminative approach to parsing inspired by the large-margin 

criterion and they encountered the same problem as Tsochantaridis et al.—exponential 

number of constraints. They use a factorization approach which is analogous to the stan

dard dynamic programming for parsing. Unlike Tsochantaridis et al. (2004) and Taskar et 

al. (2004a), there are only polynomial number of constraints in the large margin framework 

I presented, so that I can solve the problem much more efficiently. Recently, by using an 

approximate online large-margin training algorithm and considering only the A;-best parse 

trees, McDonald et al. (2005a) achieve state-of-the-art performance in dependency parsing 

in English. 

61 



6.5 Contributions 

Discriminative large-margin training to parsing has achieved the best results on dependency 

parsing for English. To date, however, in existing large-margin approaches, the training loss 

is only measured on the global tree level, not considering the local errors in a parse tree. 

Second, in the standard large-margin approach to parsing, there are an exponential num

ber of constraints, making it impossible to solve the quadratic problem directly. Moreover, 

smoothing techniques, which are critical for natural language tasks and have been widely 

used in probability models, have not been applied to the large margin framework. I pre

sented my refined approaches to deal with these issues one by one and obtained state-of-

the-art performance, while only requiring word-based features that do not rely on part-of-

speech tags nor grammatical categories. 

6.6 Conclusion 

I have presented two improvements to the standard large margin training approach for de

pendency parsing. To cope with the sparse data problem, I smooth the parameters according 

to their underlying word similarities by introducing a Laplacian regularizer. Secondly, I cap

ture local errors of a parse tree instead of the global parse tree error, i.e., I use more refined 

local constraints in the large margin criterion, rather than the global parse-level losses that 

are commonly considered. These improvements result in state-of-the-art parsing accuracy 

for predicting undirected dependencies in test data, competitive with previous large margin 

and previous probabilistic approaches in experiments. 

There are many directions for future work. One extension is to consider directed fea

tures, and contextual features like those used in current probabilistic parsers as discussed 

in Chapter 5. I would also like to apply this approach to parsing English, and possibly 

re-investigate the use of parts-of-speech features in this context. 

62 



Chapter 7 

Training Dependency Parsers via 
Structured Boosting 

Recent techniques for learning natural language parsers via coordinated training algorithms, 

such as conditional random fields and maximum margin Markov networks, have contributed 

significant progress. Unfortunately, as we have just seen in Chapter 6, these techniques are 

based on specialized training algorithms, are complex to implement, expensive to run, and 

require a great deal of refinement and computational resources to apply to parsing. In this 

chapter I present a much simpler approach to training dependency parsers, by applying a 

boosting-like procedure to standard local training methods. The idea is to learn a local link 

predictor using standard methods, such as logistic regression or support vector machines, 

but then achieve improved global parsing accuracy by "boosting" the influence of misclas-

sified dependency links after re-parsing the training data. 

By using logistic regression as an efficient base classifier for predicting dependency 

links between word pairs, I am able to efficiently train a dependency parsing model, via 

structured boosting, that achieves state-of-the-art results in English, and surpasses state-of-

the-art in Chinese. 

7.1 Introduction 

One drawback with current structured prediction training algorithms for parsing is that they 

involve new, specialized parameter optimization algorithms, that are complex, non-trivial 

to implement, and usually require far more computation than standard classification learn

ing methods (Lafferty et al., 2001; Taskar et al, 2003). The main reason for increased 

complexity is the fact that a parser must be considered in the underlying training principle, 

which causes the structured inference of output predictions to be tightly coupled with the 

63 



parameter optimization process during training, as seen in Chapter 6. 

In this chapter, I demonstrate the somewhat surprising result that state-of-the-art per

formance on dependency parsing can be achieved through the use of conventional, local 

classification methods. In particular, I show how a simple form of structured boosting can 

be used to improve the accuracy of standard local classification methods, in the structured 

case, without modifying the underlying training method. The advantage of this approach 

is that one can use off-the-shelf classification techniques, such as support vector machines 

or logistic regression, to achieve competitive dependency parsing results with little addi

tional effort. I achieve this through the use of a very simple idea: Specifically, I introduce a 

very simple form of "structured boosting", where a parser is used to modify the predictions 

of the local, weak learning algorithm at each boosting round, which then influences the 

example weightings and subsequent hypotheses, implicitly improving the parser's perfor

mance. That is, although dependency parsing is a very complex problem, one can achieve 

state-of-the-art results by training a local "link predictor" that merely attempts to predict 

the existence and orientation of a link between two words given input features encoding 

context—without worrying about coordinating the predictions in a coherent global parse 

tree. Instead, a wrapper approach, based on structured boosting, is used to successively 

modify the training data so that the training algorithm is implicitly encouraged to facilitate 

improved global parsing accuracy. 

Below I first introduce the main technique proposed in this chapter, explain its relation 

to standard boosting approaches, and then specify the detailed approach used in my exper

iments. Then in Section 7.4, I describe my experiments in learning dependency parsers 

from treebank data, and show how competitive results can be obtained through the use of 

standard learning methods. In fact, the results surpass state-of-the-art accuracy in Chinese 

parsing, and are competitive with state-of-the-art in English. This work was published in 

Wang et al. (2007). 

7.2 Structured Boosting 

I now describe the simple idea, structured boosting, that provides a straightforward way to 

combine parsing with local parameter optimization, without modifying the underlying local 

training algorithm. In fact, the procedure is a trivial variant of standard boosting algorithms 

(Freund and Schapire, 1996; Schapire and Singer, 1999; Collins et al., 2002), altered to 

incorporate a dependency parsing algorithm during the classification phase. The procedure 

64 



is as follows. 

• First, train a standard predictor on the labeled training sentences, as discussed in 

Section 3.1, to produce a "weak" local link predictor for parsing. 

• Then use a dependency parsing algorithm to re-predict the training labels, in a coordi

nated global fashion, using the learned link predictor as an internal scoring function. 

• Based on the resulting misclassifications of the parser output, calculate the ensem

ble weight for the current weak local link predictor, and update the local example 

weights, according to any standard boosting method; for example, either exponential 

loss Adaboost (Freund and Schapire, 1996; Schapire and Singer, 1999) or logistic 

regression loss boosting (Collins et al., 2002). Note that this will increase the weight 

of all links incorrectly classified by the parser. 

• Repeat the above steps for some number of boosting rounds. 

The resulting ensemble of weak local link predictors then provides a combined local pre

dictor that can be used for subsequent global dependency parsing on test sentences. 

The advantage of this approach is its simplicity and generality. It can be applied to 

any standard local training method without requiring any modification of the underlying 

algorithm, yet via structured boosting, the local learning algorithm is forced to respond to 

the behavior of the parser. In effect, it is a simple training wrapper, where local examples 

are reweighted, not based on the predictions of a current hypothesis, but instead on the 

predictions that the local hypothesis forces the parser to make. Below I find that a structured 

boosting method of this form can improve the quality of dependency parsers learned from 

treebank data. Note that only a few boosting rounds are ever feasible in my application, 

because each round requires the entire corpus to be re-parsed and the local prediction model 

re-trained. Nevertheless, I still witness some useful improvements and achieve state-of-the-

art results. 

7.3 Implementation Details 

The goal of this chapter is to show that a simple dependency parsing algorithm can provide 

improved parsing accuracy via structured boosting. Like all the other discriminative training 

approaches, this algorithm can make use of a rich feature set, including inter-dependent or 

non-local features. Unlike other global training approaches, structured boosting is very easy 

to implement and as cheap as local methods to run. 

65 



Implementation of this strategy requires one to specify the features used, the local train

ing algorithm, the parsing algorithm and the outer boosting method. 

Static Features 

For both English and Chinese I used a common set of feature templates as discussed in 

Section 2.4.2. Specifically, I used the same set of features described in (McDonald et al, 

2005a), except the "In Between POS Features" (see Table 2.1). Given a target word pair 

and their context, these static features consisted of indicators of the individual words, their 

part-of-speech tags, and also the part-of-speech tags of words in the surrounding context. In 

addition to the indicator features used in (McDonald et al., 2005a), I also added a distance 

feature as discussed in Section 2.4.2 that simply measures how far apart the two words are in 

the sentence, which is highly predictive of link existence, since most links in a dependency 

parse are short range. 

Dynamic Features 

For dynamic features, as described in Section 2.4.3,1 used the number of previous children 

of a candidate head word, and an indicator of the part-of-speech, if any, of the previous child 

word on the same side of the candidate head word. For English, I used one special dynamic 

feature to try to capture prepositional phrase attachment preference: if a candidate child is 

tagged as PP (prepositional phrase), then I use a feature that indicates the tag and word of 

the first grandchild (first child of the child). The experimental results to be presented in the 

next section show that simple dynamic features easily improve a parser's performance. Here 

I use a bigger feature set than the work presented in Chapter 5 and Chapter 6. I used both 

static and dynamic features in Chapter 5, while in Chapter 6,1 used the distance and mutual 

information features as well as static features, but no dynamic features were used. However, 

in both Chapter 5 and Chapter 6, I did not use any features which involve part-of-speech 

tags. 

Local Training 

For the local training algorithm I used a standard logistic regression model (aka maximum 

entropy model), as discussed in Section 3.4.1. The local learner attempts to predict one of 

three word pair labels (no link, left link, right link) for each word pair in a sentence, given 

the features described above. To deal with the problem of overfitting, I use the regularization 

technique proposed by Goodman (2004) as discussed in Section 3.4.1. The regularization 

parameter, a, was set to 0.5 in the experiments below. This parameter was selected with 

66 



some tuning on the English development set, and then used without modification on the 

other data sets. Unfortunately, the number of features and number of local examples were 

both so large that training the logistic regression model, even once, took more than a day. 

So to accelerate the training process, I employed one further trick: I partitioned the set of 

local examples (determined by word pairs in each sentence) according to the part-of-speech 

tags of the pair. Within each equivalence class, the number of features could then be further 

reduced by dropping those features that became constant within the class. This partitioning 

dropped the overall training cost to a few hours on a few computers, since the separate 

partitions could then be trained in parallel. Interestingly, the quality of the learned model 

was not significantly affected by this training procedure. This suggests that the part-of-

speech tags of the word pair, which are used to create the partitions, are the most essential 

piece of information in deciding the existence and orientation of a dependency link. 

Parser 

There are many dependency parsing algorithms available with differing computational cost, 

as discussed in Section 2.3. In my experiments, I used the dependency parsing algorithm 

described in Section 5.4, which allowed me to use all of the features described above, while 

also enforcing the planarity constraint. 

Boosting Method 

I experimented with a simplified variant of boosting where the weights of each mis-parsed 

local example were simply increased by an additive constant, with other weights kept the 

same, and only the last hypothesis is kept. In fact, in my experiments below I obtain state-

of-the-art results just using this simplified procedure, and so I focus on these initial results 

here. Comparisons to standard boosting algorithms, such as Adaboost Ml, M2 (Freund and 

Schapire, 1997) and the logistic regression form of boosting described in (Collins et al, 

2002) remain areas for future research. 

7.4 Experimental Results 

To determine the effectiveness and generality of my approach I conducted a number of 

experiments on each of the data sets (English and Chinese). These results were achieved 

using only the simplified boosting procedure mentioned above (additive weight updates, 

keeping only the last hypothesis). 

I used the English Penn Treebank, the Chinese Treebank 4.0 and the Chinese Treebank 

67 



Iter 

1 
2 
3 
4 

English (PTB) 
DA RA CM 

87.77 89.61 27.44 
88.08 89.61 28.97 
88.10 89.74 28.81 
88.49 90.62 29.04 

Chinese (CTB4) 
DA RA CM 

82.20 88.58 19.38 
82.33 89.62 19.72 
82.22 89.97 18.69 
82.79 89.97 19.38 

Table 7.1: Boosting with static features (%) 

5.0 for my experiments as described in Section 4.1. I trained and tested on the full set of 

all the data sets, while I experimented only on sentences with limited length on the Chinese 

Treebank 4.0 in Chapter 5 and Chapter 6. 

First, to determine the effectiveness of the basic structured boosting idea, I started with 

a simple local prediction model (static features only) and measured parsing accuracy on the 

held out test set as a function of the number of boosting rounds. Table 7.1 shows that parsing 

accuracy is improved in each round of boosting with static features, on both English and 

Chinese (using the Chinese Treebank 4.0). To explain the improvements more carefully, 

note that I used dependency accuracy (DA), root accuracy (RA) and complete match (CM) 

for evaluation, as discussed in Section 4.2. My overall focus in this thesis, however, is 

on improving the dependency accuracy scores, rather than the root accuracy and complete 

match scores. This fact is reflected in the boosting procedure, since instance reweighting 

is based only on whether each candidate link is predicted correctly, not whether the root is 

labeled correctly, nor whether the complete sentence is matched correctly. 

Not surprisingly, Table 7.1 shows that the dependency accuracy (DA) improves on each 

round of boosting for English, and improves on most rounds (and improves overall) for 

Chinese; while the RA and CM results fluctuate somewhat. Note that although the im

provements appear small, the observed DA differences are all statistically significant. For 

English, the test corpus consists of 564,848 instances (word pairs occurring in a sentence), 

and differences of 0.02 in the percentages shown in the tables are statistically significant 

with greater than 99% confidence. For Chinese, the test corpus consists of 99,922 instances, 

and differences of 0.05 in the percentages shown in the tables are statistically significant 

with greater than 99% confidence. 

Second, to determine the effectiveness of dynamic features, I added these additional fea

tures to the local prediction model and repeated the previous boosting experiment. Table 7.2 

shows a significant further improvement in parsing accuracy over just using the static fea-

68 



Iter 

1 
2 
3 
4 

English (PTB) 
DA RA CM 

89.10 90.36 33.77 
89.15 89.65 34.56 
89.20 89.69 34.31 
89.22 90.20 34.35 

Chinese (CTB4) 
DA RA CM 

86.08 92.39 25.26 
86.25 92.39 26.64 
86.45 91.70 28.72 
86.58 92.04 28.37 

Table 7.2: Boosting with dynamic features (%) 

tures alone (Table 7.1). Once again, however, boosting provides further improvement over 

the base model on both English and Chinese with respect to dependency accuracy. In each 

case the improvement is significant. 

Finally, I compare the results I was able to achieve to the state-of-the-art. Table 7.3 

shows the best results achieved by my method and other researchers on English and Chinese 

data. Once again, all of the results on English are obtained on the same standard training 

and test set splits on the English Penn Treebank. The results on Chinese are obtained on 

two different data sets, Chinese Treebank 4.0 and Chinese Treebank 5.0 as noted. These 

treebanks were discussed in Section 2.5. In Table 7.3, Y&M03 refers to (Yamada and 

Matsumoto, 2003), N&S04 refers to (Nivre and Scholz, 2004), Chap5 refers to my own 

work discussed in Chapter 5, MIRA05 refers to (McDonald et al., 2005a), MIRA06 refers 

to (McDonald and Pereira, 2006), BPM06 refers to (Corston-Oliver et al., 2006). Finally, 

Chap7 refers to the approach outlined in this chapter. From Table 7.3 one can see that 

on English, the results achieved through the simple boosting method are competitive with 

the state-of-the-art, but are still behind the best results of (McDonald and Pereira, 2006). 

However, the results obtained on CTB4 are significantly better than the ones presented 

in Chapter 5. Moreover, perhaps surprisingly, Table 7.3 shows that the technique I have 

proposed in this chapter actually achieves state-of-the-art accuracy on Chinese parsing for 

both treebank collections. * 2 

I did not compare the results with those presented in Chapter 6. The reason is that I only 

parsed sentences (from CTB4) with less than or equal to 15 words in Chapter 6, however, I 

parsed all the sentences in the entire corpus here. 

'The results on Chinese Treebank 5.0 are generally worse than on Chinese Treebank 4.0, since the former is 
a superset of the latter, and moreover the additional sentences come entirely from a Taiwanese Chinese source 
that is more difficult to parse than the rest of the data (Palmer et al., 2005; Palmer et al., 2004). 

2In fact, MIRA has been tried on Chinese Treebank 4.0 with the same data split reported above, obtaining a 
dependency accuracy score of 82.5, which does not match the 86.6 percent dependency accuracy achieved by 
the boosting technique on this data (Ryan McDonald, personal communication). 

69 



Model 

Y&M03 
N&S04 
Chap5 

MIRA05 
MIRA06 
BPM06 

Chap7 
model 

English (PTB) 
DA RA CM 

90.3 91.6 38.4 
87.3 84.3 30.4 

-
90.9 94.2 37.5 
91.5 - 42.1 
90.8 93.7 37.6 

89.2 90.2 34.4 

Chinese (CTB4 & CTB5) 
DA RA CM 

-
-

79.9* 
-
-

73.3f 66.2f 18.2f 

77.6f 60.6f 13.5f 
86.6* 92.0* 28.4* 

Table 7.3: Comparison with state-of-the-art (%) 

* Obtained with Chinese Treebank 4.0 using the data split reported in Chapter 5. 
t Obtained with Chinese Treebank 5.0 using the data split reported in (Corston-Oliver et al., 2006). 

Computational Complexity 

Clearly, there is some computational overhead associated with training by boosting, since 

each round requires the base learning algorithm to be re-trained on the re-weighted training 

data. The training cost scales up proportional to the number of boosting iterations however, 

and reasonable improvements can be achieved with a small number of rounds. Interestingly, 

I have found for test complexity, the computational cost of using a composite hypothesis 

for scoring the local predictions does not add much overhead to the parsing complexity 

(although I report only single hypothesis results here). 

7.5 Contributions 

Most of the previous parsing work used simple likelihood based approaches or local train

ing methods. Recently, structured training algorithms have been applied to parsing and 

achieved state-of-the-art accuracy for English dependency parsing. Unfortunately, The 

main drawback with current structured training techniques is that they are specialized, non-

trivial to implement, and require a great deal of refinement and computational resources to 

apply to a significant task like parsing. 

As described earlier in this chapter, I propose a simpler, more general approach, struc

tured boosting, which can be applied to any local link classifier, without requiring the un

derlying training algorithm be modified, while still ensuring that the training outcome is 

directly influenced by the resulting accuracy of the parser. Therefore, structured boosting 

provides a new learning framework, which only needs as much computational cost as local 

70 



learning algorithms while provides global training accuracy via boosting, as I have shown 

in Section 7.4. 

7.6 Conclusion 

I have addressed the problem of learning dependency parsers by using a simple form of 

boosting to augment the training of standard local link classifiers. The procedure is general, 

and allows one to improve performance at global parsing accuracy without modifying the 

underlying training algorithm, nor implementing a complex training algorithm. Further im

provements in dependency parsing accuracy are easily obtained by using dynamic features 

that consider the link labels of surrounding word pairs. 

Although the results are very promising, and in fact provide the new state-of-the-art 

result in Chinese dependency parsing, there remain many directions for future work. One 

obvious direction is to investigate the effect of using alternative boosting algorithms, and 

also to investigate the theoretical nature of applying these algorithms to the structured boost

ing case: under what circumstances do the algorithms converge, and what guarantees can 

be made about their performance. I would also like to explore further ideas about useful 

features for dependency parsing, and additional smoothing and regularization techniques 

for local training. 

71 



Chapter 8 

Semi-supervised Convex Training for 
Dependency Parsing 

In previous chapters I presented three algorithms for dependency parsing: 1, a maximum 

likelihood based approach with similarity based smoothing; 2, an improved large margin 

approach with a refined objective that considers local constraints and uses a Laplacian reg-

ularizer; and 3, structured boosting, which uses a simple form of boosting to augment the 

training of local link classifiers to improve global parsing accuracy. However, all of these 

training algorithms are fundamentally supervised, which means that they require fully la

beled data as input. On the other hand, semi-supervised learning has become a major topic 

in machine learning over the past few years. The goal of of semi-supervised learning is 

to improve the accuracy of a learned predictor by exploiting auxiliary unlabeled data in 

addition to labeled data. Unfortunately, the training loss used by standard supervised al

gorithms, such as support vector machines, becomes non-convex in the presences of miss

ing labels, which causes tremendous difficulty in parameter optimization. Although semi-

supervised learning is obviously a critical idea, it is quite difficult to develop an efficient 

semi-supervised learning algorithm for a complex, large-scale task like parsing. 

In this chapter, I present a novel semi-supervised training algorithm for learning de

pendency parsers. By combining a supervised large margin loss with an unsupervised least 

squares loss, a discriminative, convex semi-supervised learning algorithm is obtained that 

can be applied to large-scale problems. To demonstrate the benefits of this approach, I apply 

the technique to learning dependency parsers from labeled and unlabeled corpora. Using a 

stochastic gradient decent algorithm, a semi-supervised dependency parsing model can be 

learned efficiently that significantly outperforms corresponding supervised methods. 

72 



8.1 Introduction 

As I have introduced in previous chapters, supervised learning algorithms have achieved 

state-of-the-art accuracy on dependency parsing, as shown in the work of (McDonald et al., 

2005a; McDonald and Pereira, 2006) and my own work presented in Chapter 7. However, 

a key drawback of supervised training algorithms is that they can only take labeled data 

as input, while labeled data is usually very difficult to obtain. Perceiving the limitation 

of supervised learning—in particular, the heavy dependence on annotated corpora—many 

researchers have investigated semi-supervised learning techniques that can take both labeled 

and unlabeled training data as input. Following the common theme of "more data is better 

data" I also use both limited labeled corpora and a plentiful unlabeled data resource. My 

goal is to obtain better performance than a purely supervised approach with only modest 

additional computational effort. Unfortunately, although significant recent progress has 

been made in the area of semi-supervised learning, the performance of semi-supervised 

learning algorithms still fall far short of expectations, especially in challenging real-world 

tasks such as natural language parsing or machine translation. 

A large number of distinct approaches to semi-supervised training algorithms have 

been investigated in the literature (Bennett and Demiriz, 1998; Zhu et al., 2003; Alton 

et al., 2005; Mann and McCallum, 2007). Among the most prominent approaches are 

self-training, generative models, semi-supervised support vector machines (S3VM), graph-

based algorithms and multi-view algorithms (Zhu, 2005). Self-training is a commonly used 

technique for semi-supervised learning that has been applied to several natural language 

processing tasks (Yarowsky, 1995; Charniak, 1997; Steedman et al., 2003). The basic idea 

is to bootstrap a supervised learning algorithm by alternating between inferring the missing 

label information and retraining. Recently, McClosky et al. (2006a) successfully applied 

self-training to parsing by exploiting available unlabeled data, and obtained remarkable re

sults when the same technique was applied to parser adaptation (McClosky et al., 2006b). 

More recently, Haffari and Sarkar (2007) have extended the work of Abney (2004) and 

obtained a better mathematical understanding of self-training algorithms. They also show 

connections between these algorithms and other related machine learning algorithms. 

Another approach, generative probabilistic models, are a well-studied framework that 

can be extremely effective. However, generative models use the EM algorithm for param

eter estimation in the presence of missing labels, which is notoriously prone to getting 

stuck in poor local optima. Moreover, EM optimizes a marginal likelihood score that is not 

73 



discriminative. Consequently, most previous work that has attempted semi-supervised or 

unsupervised approaches to parsing have not produced results beyond the state-of-the-art 

supervised results (Klein and Manning, 2002; Klein and Manning, 2004). Subsequently, 

alternative estimation strategies for unsupervised learning have been proposed, such as my 

own work on POS tagging by using better smoothing techniques or added constraints (Wang 

and Schuurmans, 2005), or Contrastive Estimation (CE) by Smith and Eisner (2005a). Con-

trastive Estimation is a generalization of EM, by defining a notion of learner guidance. It 

makes use of a set of examples (its neighborhood) that are similar in some way to an ob

served example, requiring the learner to move probability mass to a given example, taking 

only from the example's neighborhood. Nevertheless, CE still suffers from shortcomings, 

including local minima. 

In recent years, SVMs have demonstrated state-of-the-art results in many supervised 

learning tasks. As a result, many researchers have put effort into developing algorithms for 

semi-supervised SVMs (S3VMs) (Bennett and Demiriz, 1998; Altun et al., 2005). How

ever, the standard objective of an S3VM is non-convex on the unlabeled data, thus requiring 

sophisticated global optimization heuristics to obtain reasonable solutions. A number of re

searchers have proposed several efficient approximation algorithms for S3VMs (Bennett 

and Demiriz, 1998; Chapelle and Zien, 2005; Xu and Schuurmans, 2005). For example, 

Chapelle and Zien (2005) propose an algorithm that smoothes the objective with a Gaus

sian function, and then performs a gradient descent search in the primal space to achieve 

a local solution. An alternative approach is proposed by Xu and Schuurmans (2005) who 

formulate a semi-definite programming (SDP) approach. In particular, they present an al

gorithm for multi-class unsupervised and semi-supervised SVM learning, which relaxes the 

original non-convex objective into a close convex approximation, thereby allowing a global 

solution to be obtained. However, the computational cost of SDP is still quite expensive. 

Instead of devising various techniques for coping with non-convex loss functions, I ap

proach the problem from a different perspective. I simply replace the non-convex loss on 

unlabeled data with an alternative loss that is jointly convex with respect to both the model 

parameters and the (encoding of) the self-trained prediction targets. More specifically, for 

the loss on the unlabeled data part, I substitute the original unsupervised structured SVM 

loss with a least squares loss, but keep constraints on the inferred prediction targets, which 

avoids trivialization. Although using a least squares loss function for classification appears 

misguided, there is a precedent for just this approach in the early pattern recognition liter

ature (Duda et al., 2000). The least squares loss function has the advantage that the entire 

74 



training objective on both the labeled and unlabeled data now becomes convex, since it con

sists of a convex structured large margin loss on labeled data and a convex least squares loss 

on unlabeled data. As I will demonstrate below, this approach admits an efficient training 

procedure that can find a global minimum, and, perhaps surprisingly, can systematically 

improve the accuracy of supervised training approaches for learning dependency parsers. 

Thus, in this chapter, I focus on semi-supervised language learning, where I can make 

use of both labeled and unlabeled data. In particular, I investigate a semi-supervised ap

proach for structured large margin training, where the objective is a combination of two 

convex functions, the structured large margin loss on labeled data and the least squares loss 

on unlabeled data. I apply the resulting semi-supervised convex objective to dependency 

parsing, and obtain significant improvement over the corresponding supervised structured 

SVM. Note that my approach is different from the self-training technique proposed in (Mc-

Closky et al., 2006a), although both methods belong to semi-supervised training category. 

In the remainder of this chapter, I first review the supervised structured large margin 

training technique. Then I introduce the standard semi-supervised structured large margin 

objective, which is non-convex and difficult to optimize. Subsequently, I will present a 

new semi-supervised training algorithm for structured SVMs that is based on a convex 

formulation of the optimization problem. Finally, I apply this algorithm to dependency 

parsing and show improved dependency parsing accuracy for both Chinese and English. 

This work has been published in (Wang et al., 2008). 

8.2 Supervised Structured Large Margin Training 

As I discussed in previous chapters, supervised structured large margin training approaches 

have been applied to parsing and produce promising results, which has been discussed in the 

work of (Taskar et al., 2004b; McDonald et al., 2005a), and also in my own work presented 

in Chapter 6. In particular, as mentioned in Section 3.5.2, Equation (3.11), structured large 

margin training can be expressed as minimizing a regularized loss (Hastie et al., 2004), 

which I repeat again below for reference: 

min - 0 T f l + y~] max A(Liik, Yj) - (score(0, Yj) - score(0, Litk)) (8.1) 
0 6 ^^ Li,k 

I 

where Yi is the target tree for sentence Xf, lnj- ranges over all possible alternative k trees 

in <b{Xi)\ score(0,Yi) = Y,(Xm^>x„)eYi & ' f(x™, —• xn), as shown in Section 2.4.1; and 

A(Ljifc, Yi) is a measure of distance between the two trees L^ and Yi. This is an application 

75 



of the structured large margin training approach first proposed in (Taskar et al., 2003) and 

(Tsochantaridis et al., 2004). 

The above standard large margin training approach has limitations on finding local parse 

tree errors and dealing with data sparseness. In Chapter 6, I proposed a new approach 

(shown in Equation 6.8) which enforces local parsing constraints and incorporates distri

butional word similarity smoothing via Laplacian regularization. However, I only parsed 

sentences (from CTB4) with less than or equal to 15 words, since the system is difficult 

to scale up. McDonald et al. (2005a) used an online large margin training approach and 

obtained state-of-the-art dependency parsing results on English when trained on the whole 

corpus. Therefore, in this chapter, I will only consider the standard supervised large margin 

training approach instead of the one I proposed in Chapter 6 for comparison. 

To compare with the new semi-supervised approach I will present in Section 8.4 below, I 

re-implemented the supervised structured large margin training approach in the experiments 

in Section 8.7, where I used a much smaller feature set than (McDonald et al., 2005a) and 

still obtained very promising results. More specifically, I optimize the following convex 

objective on the supervised data (which is based on Equation 8.1): 

k k 

m i n max ^ y A(Lj)rn]n, 
,m,ni •L->i,m,n ) (8.2) 

i m = l n = l 

where diff{9,Yi)m,n,Li^n) - score(9,Yiimjn) - score(8', L^m>n) and k is the sentence 

length. I represent a dependency tree as a k x k adjacency matrix. In the adjacency matrix, 

the value of Y^m,n is 1 if the word m is the head of the word n, 0 otherwise. Since both the 

distance function A(Lj, Ŷ ) and the score function decompose over links, solving (8.2) is 

equivalent to solve the original constrained quadratic program shown in (3.12). 

8.3 Semi-supervised Structured Large Margin Objective 

The objective of standard semi-supervised structured SVM is a combination of structured 

large margin losses on both labeled and unlabeled data. It has the following form: 

N U 

min -r#T0 + y~] structureddoss (9, Xf, Yj) + Y^structured-loss (9, Xj,Yj) (8.3) 

where 

k k 

L 

structuredJoss (9, Xj, Y) = max ^ ^ A(L i )m)n, Y;)m,„) - diff(9, Y^m>n, Li:m,n) 
771=1 7 1 = 1 

76 



iV and U are the number of labeled and unlabeled training sentences respectively, and Yj 

ranges over guessed targets on the unsupervised data. 

Note that in the second term of the above objective shown in (8.3), both 6 and Yj are 

variables. The resulting loss function has a hat shape (usually called hat-loss), which is non-

convex. Therefore the whole objective is non-convex, making the search for global optimal 

difficult. Note that the root of the optimization difficulty for S3VMs is the non-convex 

property of the second term in the objective function. I will propose a novel approach 

which can deal with this problem. I introduce an efficient approximation—least squares 

loss—for the structured large margin loss on unlabeled data below. 

8.4 Semi-supervised Convex Training for Structured SVMs 

Although semi-supervised structured SVM learning has been an active research area, semi-

supervised structured SVMs have not been used in many real applications to date. The 

main reason is that most available semi-supervised large margin learning approaches are 

non-convex or computationally expensive (e.g. (Xu and Schuurmans, 2005)). These tech

niques are difficult to implement and extremely hard to scale up. I present a semi-supervised 

algorithm for structured large margin training, whose objective is a combination of two con

vex terms: the supervised structured large margin loss on labeled data and the cheap least 

squares loss on unlabeled data. The combined objective is still convex, easy to optimize 

and much cheaper to implement. 

8.4.1 Least Squares Convex Objective 

Before I introduce the new algorithm, I first introduce a convex loss which I apply it to 

unlabeled training data for the semi-supervised structured large margin objective which I 

will introduce in Section 8.4.2 below. More specifically, I use a structured least squares 

loss to approximate the structured large margin loss on unlabeled data. The corresponding 

objective is: 
U k k 

min | 0 T 0 + ^ E E E ( * T f ( ^ ™ -> Xi,n) - lj,m,n)2 (8.4) 
^'Y-» j=\ m = l n = l 

subject to constraints on Y (explained below). 

The idea behind this objective is that for each possible link {X^m —• Xj>n), the goal 

is to minimize the difference between the link and the corresponding estimated link based 

on the learned weight vector. Since this is conducted on unlabeled data, one needs to 

estimate both 6 and Yj to solve the optimization problem. As mentioned in Section 8.2, a 

77 



dependency tree Yj is represented as an adjacency matrix. Thus one needs to enforce some 

constraints in the adjacency matrix to make sure that each Yj satisfies the dependency tree 

constraints. These constraints are critical because they prevent (8.4) from having a trivial 

solution in Y. More concretely, suppose one uses rows to denote heads and columns to 

denote children. Then the following constraints are obtained on the adjacency matrix: 

1. All entries in Yj are between 0 and 1 (convex relaxation of discrete directed edge 

indicators); 

2. The sum over all the entries on each column is equal to one (one-head rule); 

3. All the entries on the diagonal are zeros (no self-link rule); 

4. Yj^n + Ij.n.m < 1 (anti-symmetric rule), which enforces directedness. 

One final constraint that is sufficient to ensure that a spanning tree is obtained, is connected

ness (no-cycle), which can be enforced with an additional semidefinite constraint. Although 

convex, this last constraint is more expensive to enforce than the others, therefore I drop it 

in my experiments below. 

Critically, the objective (8.4) is jointly convex in both the weights 9 and the edge indi

cator variables Y. This means, for example, that there are no local minima in (8.4)—any 

iterative improvement strategy, if it converges at all, must converge to a global minimum. 

8.4.2 Semi-supervised Convex Objective 

By combining the convex structured SVM loss on labeled data (shown in Equation (8.1)) 

and the convex least squares loss on unlabeled data (shown in Equation (8.4)), one can 

obtain a semi-supervised structured large margin loss 

N U 

min —0T 6 + 2_] structured Joss (9, Xj, Yj) + y ^ least squares Joss (9, Xj,Yj) (8.5) 

subject to constraints on Y (explained above). 

Since the summation of two convex functions is also convex, (8.5) must be jointly 

convex in 9 and Yj . Replacing the two losses with the terms shown in Equation (8.2) and 

Equation (8.4), one obtains the final convex objective as follows: 

N k k 

min W]Tf9T0 + E m r i x E E A(£»,m,n, Yi,m,n) - diff{9, Yi>mjn, Litm>n) + 
0>Y> i = l m = l n = l 

U k k 

j=\ m=l n = l 

78 



subject to constraints on Y (explained above), where as before diff(9,Y^m^n,Litmtn) = 

score($, Yi^m^n) — score(0, LiiTn<n), and N and U are the number of labeled and unlabeled 

training sentences respectively. Note that in (8.6) the regularizer has been split into two 

parts; one for the supervised component of the objective, and the other for the unsupervised 

component. Thus the semi-supervised convex objective is regularized proportionally to the 

number of labeled and unlabeled training sentences. 

8.5 Efficient Optimization Strategy 

To solve the convex optimization problem shown in Equation (8.6), I used a gradient descent 

approach which simply uses stochastic gradient steps. The procedure is as follows. 

• Step 0, initialize the Yj variables of each unlabeled sentence as a right-branching 

(left-headed) chain model, i.e. the head of each word is its left neighbor. Hence, the 

optimization begins with a feasible starting point. 

• Step 1, pass through all the labeled training sentences one by one. The parameters 9 

are updated based on each labeled sentence. 

• Step 2, based on the learned parameter weights from the labeled data, update 6 and 

Yj on each unlabeled sentence alternatively. 

- treat Yj as constants, update 0 on each unlabeled sentence by taking a local 

gradient step. 

- treat 6 as constants, update Yj by calling the optimization software package 

CPLEX to solve for an optimal local solution. 

• Repeat the procedure of step 1 and step 2 until maximum iteration number has 

reached. 

This procedure works efficiently on the task of dependency parsing. Although 9 and 

Yj are updated locally on each sentence, the objective shown in Equation (8.6) is globally 

minimized after each iteration. In the experiments, the objective usually converges within 

30 iterations. 

8.6 Implementation Details 

To investigate the effectiveness of this approach I implemented a version using a simple 

feature set and parsing algorithm. 

79 



Features 

For simplicity, in this work, I only used two sets of features—word-pair and tag-pair indica

tor features, which are part of features used in Chapter 7. Although the algorithm can take 

arbitrary features, by only using these simple features, I already obtained very promising 

results on dependency parsing using both the supervised and semi-supervised approaches. 

Using the full set of features and comparing the corresponding dependency parsing results 

with my previous work remains a direction for future work. 

Dependency Parsing Algorithms 

As in previous chapters, I use the dependency parsing algorithm shown in Figure 5.1 pre

sented in Section 5.4, although Eisner's algorithm (Eisner, 1996) and the Spanning Tree 

algorithm (McDonald et al., 2005b) are also applicable. 

8.7 Experimental Results 

Given a convex approach to semi-supervised structured large margin training, and an effi

cient training algorithm for achieving a global optimum, I now investigate its effectiveness 

for dependency parsing. In particular, I investigate the accuracy of the results it produces. 

I applied the resulting algorithm to learn dependency parsers for both English and Chi

nese. Note that I need a different experimental setup from previous chapters because it is a 

semi-supervised approach. 

8.7.1 Experimental Design 

Since I use a semi-supervised approach, both labeled and unlabeled training data are needed. 

For experiment on English, I used the English Penn Treebank (PTB) as described in Sec

tion 4.1. The standard training set of PTB was spit into 2 parts: labeled training data—the 

first 30,000 sentences in section 2-21, and unlabeled training data—the remaining sentences 

in section 2-21. For Chinese, I experimented on the Penn Chinese Treebank 4.0 (CTB4) 

as described in Section 4.1. I also divided the standard training set into 2 parts: sentences 

in section 400-931 and sentences in section 1-270 are used as labeled and unlabeled data 

respectively. For both English and Chinese, I adopted the standard development and test 

sets throughout the literature. 

As listed in Table 8.1 with greater detail, I experimented with sets of data with different 

sentence length: PTB-10/CTB4-10, PTB-15/CTB4-15, PTB-20/CTB4-20, CTB4-40 and 

CTB4, which contain sentences with up to 10, 15, 20, 40 and all words respectively. The 

80 



Data split 

English (PTB) 

Chinese (CTB4) 

PTB-10 
PTB-15 
PTB-20 
Source 

CTB4-10 
CTB4-15 
CTB4-20 
CTB4-40 

CTB4 
Source 

Training(labeled/unlabeled) 

3026 /1016 
7303 / 2370 
12519/4003 
Sec. 02-21 
642 / 347 
1262 / 727 

2038/1150 
4400 / 2452 
5314/2977 

Sec. 400-931 /1-270 

Development 

163 
421 
725 

Sec. 22 
61 
112 
163 
274 
300 

Sec. 301-325 

Test 

270 
603 
1034 

Sec. 23 
40 
83 
118 
240 
289 

Sec. 271-300 

Table 8.1: Size of experimental data (# of sentences) 

reason we only did experiments with sentence length up to 20 words for English is due to 

the computational cost. We could train on the full Chinese corpus since CTB4 is smaller 

than PTB. Note that the optimization strategy we used here is much more efficient than the 

one we used in Chapter 6 before, where we could only train on sentences with no more than 

10 words. 

8.7.2 Results 

Same as in previous chapters, I evaluate parsing accuracy by comparing the directed depen

dency links in the parser output against the directed links in the treebank. The parameters a 

and A which appear in Equation (8.6) were tuned on the development set. Note that, during 

training, I only used the raw sentences of the unlabeled data. As shown in Table 8.2 and 

Table 8.3, for each data set, the semi-supervised approach achieves a significant improve

ment over the supervised approach in dependency parsing accuracy on both Chinese and 

English. These positive results are somewhat surprising since a very simple loss function 

was used on the unlabeled data. A key benefit of the approach is that a straightforward 

training algorithm can be used to obtain global solutions. 

Although promising, the results shown in Table 8.2 and Table 8.3 are still not as good as 

the ones shown in Chapter 7 (Table 7.3). This is not unexpected, since I used a much smaller 

feature set here. Interestingly, Table 8.2 also shows that on Chinese (trained on CTB4-

10), the accuracies from the supervised and the semi-supervised approaches are 83.0% and 

84.5% respectively, which are much better than the results from Chapter 5 and Chapter 6 

(as shown in Table 6.4). Note that supervised structured large margin approaches are used 

81 



Training data 
CTB4-10 

CTB4-15 

CTB4-20 

CTB4-40 

CTB4 

Test sentence length 
< 10 
< 10 
< 15 
< 10 
< 15 
<20 

< 10 
< 15 
<20 
<40 
<10 
< 1 5 
<20 
<40 
all 

Supervised 
82.98 
84.80 
76.96 
84.50 
78.77 
74.89 
84.19 
78.03 
76.25 
68.17 
82.67 
77.92 
77.30 
70.11 
66.30 

Semi-supervised 
84.50 
86.93 
80.79 
86.32 
80.57 
77.85 
85.71 
81.21 
77.79 
70.90 
84.80 
79.30 
77.24 
71.90 
67.35 

Table 8.2: Supervised and semi-supervised dependency parsing accuracy on Chinese 
(CTB4) (%) 

Training data 
PTB-10 

PTB-15 

PTB-20 

Test sentence length 
< 10 
< 10 
<15 
<10 
<15 
<20 

Supervised 
87.77 
88.06 
81.10 
88.78 
83.00 
77.70 

Semi-supervised 
89.17 
89.31 
83.37 
90.61 
83.87 
79.09 

Table 8.3: Supervised and semi-supervised dependency parsing accuracy on English (PTB) 

82 



in both Chapter 6 and Chapter 8, while the results are very different. The discrepancies are 

due to the different feature set used. Part-of-speech features are not used in Chapter 6. Al

though some additional features, such as distance and mutual information features, are used 

there, these features are not very helpful with short sentences on predicting dependency 

links. Therefore, on CTB4-10, with only word-pair and tag-pair features, the supervised 

structured large margin approach generates much better results than the one in Chapter 6. 

The results presented in this chapter are not directly comparable with results shown in 

(McClosky et al., 2006a), since the parsing accuracy shown here is measured in terms of 

dependency relations while their results are /-score of the bracketings implied in the phrase 

structure. 

8.8 Contributions 

In this chapter, I have presented a novel algorithm for semi-supervised structured large 

margin training. Unlike previous proposed approaches, I introduce a convex objective for 

the semi-supervised learning algorithm by combining a convex structured SVM loss and 

a convex least square loss. This new semi-supervised algorithm is much more computa

tionally efficient and can easily scale up. I have supported this hypothesis by applying the 

algorithm to the significant task of dependency parsing. The experimental results show that 

the proposed semi-supervised large margin training algorithm outperforms the supervised 

approach, without much additional computational cost. 

8.9 Conclusion 

I have addressed the problem of learning dependency parsers by using a novel semi-supervised 

training algorithm. Although the semi-supervised results are significantly better than the su

pervised counterpart, there remain many directions for future work. One obvious direction 

is to use the whole Penn Treebank as labeled data and use some other unannotated data 

source as unlabeled data for semi-supervised training. Another direction is to apply the 

semi-supervised idea to other natural language problems, such as machine translation, topic 

segmentation and chunking. In these areas, there are only limited annotated data available, 

therefore semi-supervised approaches are necessary for one to achieve better performance. 

The proposed semi-supervised approach can be easily applied to these tasks. Furthermore, 

as I mentioned before, a much richer feature set can be used in our algorithms to get better 

performance. 

83 



Chapter 9 

Conclusions and Future Directions 

9.1 Summary of Contributions 

In this thesis, I investigated the problem of natural language parsing. Parsing accuracy has 

increased significantly due to the introduction of machine learning methods into this area 

in recent years. In this thesis I investigated many ideas for improving the state-of-the-art in 

this area. In particular, I presented four projects on dependency parsing in Chinese and En

glish, based on different training algorithms: 1, a maximum likelihood estimation method 

augmented with similarity-based smoothing, where no POS tags or grammatical categories 

are needed; 2, an improved structured large margin training approach that uses local con

straints and Laplacian regularization; 3, a simple training algorithm for dependency parsing 

that uses a simplified form of structured boosting to improve the training of a standard local 

link classifier; and 4, a novel semi-supervised training algorithm for learning dependency 

parsers. 

All of these projects use advanced global machine learning algorithms to train accurate 

dependency parsers from treebank data efficiently. Consequently, I have been able to obtain 

state-of-the-art results in English, and surpass state-of-the-art in Chinese on dependency 

parsing. 

9.2 Future Directions 

Below I highlight some areas of future research this thesis suggests. 

9.2.1 Variations of Structured Boosting 

In Chapter 7, I have addressed the problem of learning dependency parsers by using a 

simple form of boosting to augment the training of standard local link predictors. Although 

84 



the results obtained are very promising, there remain many directions for future work. One 

obvious direction is to investigate the effect of using alternative boosting algorithms, such as 

Adaboost Ml, M2 (Freund and Schapire, 1997) and the logistic regression form of boosting 

described in (Collins et al, 2002). It would be interesting to investigate the theoretical 

nature of applying these algorithms to the structured boosting case shown in Chapter 7: 

under what circumstances do the algorithms converge, and what guarantees can be made 

about their performance? 

9.2.2 Multilingual Dependency Parsing 

I have applied my parsers to both English and Chinese in this thesis. Due to the rising 

importance of globalization and multilingualism, there is a need to build natural language 

parsers for a wider range of languages. A common characteristic in current existing parsers 

is that, the performance is very good on English, while the performance of the same parsers 

on other languages, such as Chinese, Czech, Danish or Arabic, still fall far short of expec

tations (McDonald and Pereira, 2006; Corston-Oliver et al., 2006). One advantage of the 

dependency parsing approaches I proposed is that I develop them from principled, general 

machine learning algorithms so they are not restricted to one specific language. Thus, all the 

techniques I have presented can be easily applied to other languages, if the corresponding 

treebanks are available. 

9.2.3 Domain Adaptation 

The generalization properties of most current statistical learning techniques are based on 

the assumption that the training data and the test data come from the same underlying prob

ability distribution. Unfortunately, in many applications, this assumption is inaccurate. It is 

often the case that plentiful labeled data exists in one domain, but one desires a statistical 

model that performs well on another related, but not identical domain. Domain adaptation 

is an important, interesting, and challenging topic in natural language parsing. Many re

searchers have worked on adapting their parsers or part-of-speech taggers to a new domain 

(Blitzer et al., 2006; McClosky et al., 2006b), where there are few or no annotated resources 

available. I would like to investigate this subject and apply my parsers in other domains 

(e.g., biomedical data or web data) besides treebank data, to investigate the effectiveness 

and generality of my approaches. 

85 



9.2.4 A Unified View of My Current Work 

I have discussed four pieces of my work in detail in Chapter 5, Chapter 6, Chapter 7, 

and Chapter 8. They all look very different approaches superficially, however, they are 

actually closely related by "scoring" formulation and, more specifically, by Equation (2.1), 

introduced in Section 2.4. In other words, they all compute a linear classifier.1 The only 

differences among them are: 

• What features are used? 

• How are the parameters 6 estimated? 

First, I would like to incorporate the dynamic features used in Chapter 5 into the large 

margin framework presented in Chapter 6 and Chapter 8. Then I would like to explore fur

ther ideas about useful features for parsing, such as using simple morphological features. I 

am also interested in the idea of using second-order features (various feature combinations). 

In fact, combined features have been proved to be useful in dependency parsing with sup

port vector machines (Yamada and Matsumoto, 2003), and I have already obtained some 

preliminary results on generating useful feature combinations via boosting. 

A general perspective I bring to my investigation is the desire to delineate the effects of 

domain engineering (choosing good features for representing and learning parsing models) 

from the general machine learning principles (training criteria, regularization and smooth

ing techniques) that permit good results. Therefore, I would like to consider combining all 

the projects I presented in previous chapters. That is, I would like to incorporate all the 

static features shown in Table 2.4.2, the dynamic features discussed in Chapter 5 and the 

second-order features as discussed above, into the training algorithms presented in Chap

ter 6, Chapter 7 or Chapter 8, to train a dependency parser globally. Then I would aug

ment the training with the existing smoothing and regularization techniques (as described 

in Chapter 6, or new developed ones). I expect the resulting parser to have better perfor

mance than those I have presented in previous chapters. 

'in general, for any probabilistic model, the product of probabilities can be converted to sums of scores in 
the log space, which makes the search identical to a score based discriminative model. 

86 



Bibliography 

S. Abney, R. Schapire, and Y. Singer. 1999. Boosting applied to tagging and PP attach
ment. In Proceedings of the Conference on Empirical Methods in Natural Language 
Processing. 

S. Abney. 2004. Understanding the yarowsky algorithm. Computational Linguistics, 
30(3):365-395. 

J. Allen. 1987. Natural Language Understanding. Benjarnin/Cummings Publishing. 

Y. Altun, I. Tsochantaridis, and T. Hofmann. 2003. Hidden Markov support vector ma
chines. In Proceedings of International Conference on Machine Learning. 

Y. Altun, D. McAllester, and M. Belkin. 2005. Maximum margin semi-supervised learning 
for structured variables. In Proceedings of Advances in Neural Information Processing 
Systems 18. 

R. Bellman. 1957. Dynamic Programming. Princeton University Press. 

K. Bennett and A. Demiriz. 1998. Semi-supervised support vector machines. In Proceed
ings of Advances in Neural Information Processing Systems 11. 

S. Bergsma and D. Lin. 2006. Bootstrapping path-based pronoun resolution. In Pro
ceedings of the International Conference on Computational Linguistics and the Annual 
Meeting of the Association for Computational Linguistics. 

S. Bergsma and Q.Wang. 2007. Learning noun phrase query segmentation. In Proceedings 
of the joint Conference on Empirical Methods in Natural Language Processing and the 
Conference on Computational Natural Language Learning, pages 819-826. 

D. M. Bikel and D. Chiang. 2000. Two statistical parsing models applied to the Chinese 
treebank. In Proceedings of the Second Chinese Language Processing Workshop, Hong 
Kong. 

D. Bikel. 2004. Intricacies of Collins' parsing model. Computational Linguistics, 30(4). 

E. Black, S. Abney, D. Flickenger, C. Gdaniec, R. Grishman, P. Harrison, D. Hindle, R. In-
gria, F. Jelinek, J. Klavans, M. Liberman, M. Marcus, S. Roukos, B. Santorini, and 
T. Strzalkowski. 1991. A procedure for quantitatively comparing the syntactic cover
age of English grammars. In DARPA Speech and Natural Language Workshop. 

E. Black, F. Jelinek, J. Lafferty, D. Magerman, R. Mercer, and S. Roukos. 1993. Towards 
history-based grammars: Using richer models for probabilistic parsing. In Proceedings 
of the Annual Meeting of the Association for Computational Linguistics. 

87 



J. Blitzer, R. McDonald, and F. Pereira. 2006. Doman adaptation with structural correspon
dence learning. In Proceedings of the Conference on Empirical Methods in Natural 
Language Processing. 

S. Buchholz and E. Marsi. 2006. The Conference On Computational Natural Language 
Learning-X shared task on multilingual dependency parsing. In Proceedings of the 
Tenth Conference on Computational Natural Language Learning. 

G. Carroll and E. Charniak. 1992. Two experiments on learning probabilistic dependency 
grammars from corpora. Technical Report CS-92-16, Brown University. 

O. Chapelle and A. Zien. 2005. Semi-supervised classification by low density separa
tion. In Proceedings of the Tenth International Workshop on Artificial Inteligence and 
Statistics. 

E. Charniak and M. Johnson. 2005. Coarse-to-fine n-best parsing and maxent discrimina
tive reranking. In Proceedings of the Annual Meeting of the Association for Computa
tional Linguistics. 

E. Charniak. 1996. Tree-bank grammars. In Proceedings of the Association for the Ad
vancement of Artificial Intelligence, pages 1031-1036. 

E. Charniak. 1997. Statistical parsing with a context-free grammar and word statistics. 
In Proceedings of the Association for the Advancement of Artificial Intelligence, pages 
598-603. 

E. Charniak. 2000. A maximum entropy inspired parser. In Proceedings of North Ameri
can Annual Meeting of the Association for Computational Linguistics, pages 132-139. 

C. Cherry and D. Lin. 2003. A probability model to improve word alignment. In Proceed
ings of the Annual Meeting of the Association for Computational Linguistics, pages 
88-95. 

Y. Chu and T. Liu. 1965. On the shortest arborescence of a directed graph. Science Sinica, 
14:1396-1400. 

S. Clark and J. Curran. 2003. Log-linear models for wide-coverage CCG parsing. In 
Proceedings of the Conference on Empirical Methods in Natural Language Processing. 

S. Clark and J. Curran. 2004. Parsing the WSJ using CCG and log-linear models. In 
Proceedings of the Annual Meeting of the Association for Computational Linguistics. 

S. Clark, J. Hockenmaier, and M. Steedman. 2002. Building deep dependency structures 
with a wide-coverage CCG parser. In Proceedings of the Annual Meeting of the Asso
ciation for Computational Linguistics. 

M. Collins, R. Schapire, and Y. Singer. 2002. Logistic regression, Adaboost and Bregman 
distances. Machine Learning, 48. 

M. Collins. 1996. A new statistical parser based on bigram lexical dependencies. In 
Proceedings of the Annual Meeting of the Association for Computational Linguistics, 
pages 184-191. 

88 



M. Collins. 1997. Three generative, lexicalized models for statistical parsing. In Proceed
ings of the Annual Meeting of the Association for Computational Linguistics, pages 
16-23. 

M.Collins. 1999. Head-Driven Statistical Models for Natural Language Parsing. Ph.D. 
thesis, University of Pennsylvania. 

M. Collins. 2000. Discriminative reranking for natural language parsing. In Proceedings 
of International Conference on Machine Learning. 

M. Collins. 2002. Discriminative training methods for hidden Markov models: Theory and 
experiments with perceptron algorithms. In Proceedings of the Conference on Empiri
cal Methods in Natural Language Processing, pages 1-8. 

A. Copestake and D. Flickinger. 2000. An open-source grammar development environ
ment and broad-coverage English grammar using hpsg. In Proceedings of the Second 
Conference on Language Resources and Evaluation. 

S. Corston-Oliver, A. Aue, K. Duh, and E. Ringger. 2006. Multilingual dependency pars
ing using Bayes' point machines. In Proceedings of Human Language Technologies: 
The Annual Conference of the North American Chapter of the Association for Compu
tational Linguistics. 

K. Crammer and Y. Singer. 2001. On the algorithmic interpretation of multiclass kernel-
based vector machines. Journal of Machine Learning Research, 2:265-292. 

A. Culotta and J. Sorensen. 2004. Dependency tree kernels for relation extraction. In 
Proceedings of the Annual Meeting of the Association for Computational Linguistics. 

I. Dagan, L. Lee, and F. Pereira. 1999. Similarity-based models of word cooccurrence 
probabilities. Machine Learning, 34(l-3):43-69. 

Y. Ding and M. Palmer. 2005. Machine translation using probabilistic synchronous depen
dency insertion grammars. In Proceedings of the Annual Meeting of the Association for 
Computational Linguistics. 

R. Duda, P. Hart, and D. Stork. 2000. Pattern Classification. Wiley, second edition. 

J.Edmonds. 1967. Optimum branchings. Journal of Research of the National Bureau of 
Standards, 71B:233-240. 

J. Eisner and G. Satta. 1999. Efficient parsing for bilexical context-free grammars and 
head-automaton grammars. In Proceedings of the Annual Meeting of the Association 
for Computational Linguistics. 

J. Eisner. 1996. Three new probabilistic models for dependency parsing: An exploration. 
In Proceedings of the International Conference on Computational Linguistics. 

H. Fox. 2002. Phrasal cohesion and statistical machine translation. In Proceedings of the 
Conference on Empirical Methods in Natural Language Processing, pages 304-311. 

Y. Freund and R. Schapire. 1996. Experiments with a new boosting algorithm. In Proceed
ings of International Conference on Machine Learning. 

89 



Y. Freund and R. Schapire. 1997. A decision-theoretic generalization of on-line learning 
and an application to boosting. Computer and System Sciences, 55(1): 119-139. 

H. Gaifman. 1965. Dependency systems and phrase structure systems. Information and 
Control, 8:304-337. 

D. Gildea. 2001. Corpus variation and parser performance. In Proceedings of the Confer
ence on Empirical Methods in Natural Language Processing. 

J. Goodman. 2004. Exponential priors for maximum entropy models. In Proceedings of 
North American the Annual Meeting of the Association for Computational Linguistics. 

D. Graff and K. Chen. 2003. Chinese Gigaword. Linguistic Data Consortium. 

D. Graff. 2003. English Gigaword. Linguistic Data Consortium. 

G. Grefenstette. 1994. Corpus-derived first, second and third-order word affinities. In 
Proceedings ofEuralex. 

G. Haffari and A. Sarkar. 2007. Analysis of semi-supervised learning with the yarowsky 
algorithm. In Proceedings of the Conference on Uncertainty in Artificial Intelligence. 

J. Hajic. 1998. Building a syntactically annotated corpus: The Prague dependency tree-
bank. In Issues of Valency and Meaning. 

Z. Harris. 1968. Mathematical Structures of Language. Wiley, New York. 

M. Haruno, S. Shirai, and Y. Ooyama. 1999. Using decision trees to construct a practical 
parser. Machine Learning, 34:131-149. 

T. Hastie, R. Tibshirani, and J. Friedman. 2001. The Elements of Statistical Learning; Data 
Mining, Inference, and Prediction. Springer. 

T. Hastie, S. Rosset, R. Tibshirani, and J. Zhu. 2004. The entire regularization path for the 
support vector machine. Journal of Machine Learning Research, 5:1391-1415. 

D. Hindle. 1990. Noun classification from predicate-argument structures. In Proceedings 
of the Annual Meeting of the Association for Computational Linguistics, pages 268-
275. 

F. Jelinek, J. Lafferty, D. Magerman, R. Mercer, A. Patnaparkhi, and S. Roukos, 1994. 
Decision tree parsing using a hidden derivational model. In Proceedings of the Human 
Language Technology Workshop, pages 272-277. 

F. Jiao, S. Wang, C. Lee, R. Greiner, and D. Schuurmans. 2006. Semi-supervised condi
tional random fields for improved sequence segmentation and labeling. In Proceedings 
of the International Conference on Computational Linguistics and the Annual Meeting 
of the Association for Computational Linguistics. 

M. Johnson, S. Geman, S. Canon, Z. Chi, and S. Riezler. 1999. Estimators for stochastic 
"unification-based" grammars". In Proceedings of the Annual Meeting of the Associa
tion for Computational Linguistics. 

90 



A. Joshi, L. Levy, and M. Takahashi. 1975. Tree adjunct grammars. Journal of Computer 
and Systems Science, 21(2): 136-163. 

D. Jurafsky and J. Martin. 2000. Speech and Language Processing. Prentice Hall. 

D. Klein and C. Manning. 2002. A generative constituent-context model for improved 
grammar induction. In Proceedings of the Annual Meeting of the Association for Com
putational Linguistics. 

D. Klein and C. Manning. 2003. Accurate unlexicalized parsing. In Proceedings of the 
Annual Meeting of the Association for Computational Linguistics. 

D. Klein and C. Manning. 2004. Corpus-based induction of syntactic structure: Models of 
dependency and constituency. In Proceedingsof the Annual Meeting of the Association 
for Computational Linguistics. 

J. Lafferty, D. Sleator, and D. Temperley. 1992. Grammatical trigrams: A probabilistic 
model of link grammar. In Proceedings of the Association for the Advancement of Ar
tificial Intelligence Fall Symposium on Probabilistic Approaches to Natural Language. 

J. Lafferty, A. McCallum, and F. Pereira. 2001. Conditional random fields: Probabilistic 
models for segmenting and labeling sequence data. In Proceedings of International 
Conference on Machine Learning. 

R. Levy and C. D. Manning. 2003. Is it harder to parse Chinese, or the Chinese treebank? 
In Proceedings of the Annual Meeting of the Association for Computational Linguistics 
2003, Sapporo, Hokkaido, Japan. 

D. Lin. 1995. A dependency-based method for evaluating broad-coverage parsers. In Pro
ceedings of the International Joint Conference on Artificial Intelligence, pages 1420-
1425. 

D.Lin. 1998. Automatic retrieval and clustering of similar words. In Proceedings of the 
International Conference on Computational Linguistics and the Annual Meeting of the 
Association for Computational Linguistics, pages 768-774. 

D. Magerman and M. Marcus. 1990. Parsing a natural language using mutual information 
statistics. In National Conference on Artificial Intelligence, pages 984—989. 

D. Magerman. 1995. Statistical decision-tree model for parsing. In Proceedings of the 
Annual Meeting of the Association for Computational Linguistics, pages 276-283. 

G. S. Mann and A. McCallum. 2007. Simple, robust, scalable semi-supervised learning 
via expectation regularization. In Proceedings of International Conference on Machine 
Learning. 

C. Manning and H. Schutze. 1999. Foundations of Statistical Natural Language Process
ing. MIT Press. 

M. Marcus, B. Santorini, and M. Marcinkiewicz. 1993. Building a large annotated corpus 
of English: the Penn Treebank. Computational Linguistics, 19(2):313-330. 

91 



A. McCallum and W. Li. 2003. Early results for named-entity extraction with conditional 
random fields. In Proceedings of the Conference on Computational Natural Language 
Learning. 

A. McCallum, D. Freitag, and F. Pereira. 2000. Maximum entropy Markov methods for 
information extraction and segmentation. In Proceedings of International Conference 
on Machine Learning. 

D. McClosky, E. Charniak, and M. Johnson. 2006a. Effective self-training for parsing. In 
Proceedings of the Human Language Technology: the Annual Conference of the North 
American Chapter of the Association for Computational Linguistics. 

D. McClosky, E. Charniak, and M. Johnson. 2006b. Reranking and self-training for parser 
adaptation. In Proceedings of the International Conference on Computational Linguis
tics and the Annual Meeting of the Association for Computational Linguistics. 

R. McDonald and F. Pereira. 2006. Online learning of approximate dependency parsing 
algorithms. In Proceedings of European Chapter of the Annual Meeting of the Associ
ation for Computational Linguistics. 

R. McDonald, K. Crammer, and F. Pereira. 2005 a. Online large-margin training of depen
dency parsers. In Proceedings of the Annual Meeting of the Association for Computa
tional Linguistics. 

R. McDonald, F. Pereira, K. Ribarov, and J. Hajic. 2005b. Non-projective dependency 
parsing using spanning tree algorithms. In Proceedings of Human Language Technolo
gies and Conference on Empirical Methods in Natural Language Processing. 

Y. Miyao and J. Tsujii. 2002. Maximum entropy estimation for feature forests. In Pro
ceedings of the Human Language Technology Conference. 

J. Nivre and M. Scholz. 2004. Deterministic dependency parsing of English text. In 
Proceedings the International Conference on Computational Linguistics. 

M. Palmer et al. 2004. Chinese Treebank 4.0. Linguistic Data Consortium. 

M. Palmer et al. 2005. Chinese Treebank 5.0. Linguistic Data Consortium. 

F. Pereira and Y. Schabes. 1992. Inside-outside reestimation from partially bracketed cor
pora. In Proceedings of the Annual Meeting of the Association for Computational Lin
guistics, pages 128-135. 

F. Pereira, N. Tishby, and L. Lee. 1993. Distributional clustering of English words. In 
Proceedings of the Annual Meeting of the Association for Computational Linguistics, 
pages 183-190. 

C. Pinchak and D. Lin. 2006. A probabilistic answer type model. In Proceedings of 
the European Chapter of the Annual Meeting of the Association for Computational 
Linguistics. 

C. Pollard and I. Sag, editors. 1994. Head-Driven Phrase Structure Grammar. University 
of Chicago Press, Chicago. 

92 



A. Ratnaparkhi. 1996. A maximum entropy model for part-of-speech tagging. In Proceed
ings of the Conference on Empirical Methods in Natural Language Processing. 

A. Ratnaparkhi. 1999. Learning to parse natural language with maximum entropy models. 
Machine Learning, 34(1-3): 151-175. 

S. Riezler, T. King, R. Kaplan, R. Crouch, J. Maxwell, and M. Johnson. 2002. Parsing the 
Wall Street Journal using a lexical-functional grammar and discriminative estimation 
techniques. In Proceedings of the Annual Meeting of the Association for Computational 
Linguistics. 

R. Schapire and Y. Singer. 1999. Improved boosting algorithms using confidence-rated 
predictions. Machine Learning, 37. 

R. Schapire and Y. Singer. 2000. Boostexter: A boosting-based system for text categoriza
tion. Machine Learning, 39(2/3):135—168. 

R. Schapire. 2001. The boosting approach to machine learning: An overview. 

F. Sha and F. Pereira. 2003. Shallow parsing with conditional random fields. In Proceed
ings of the Human Language Technology Conference and the Annual Conference of the 
North American Chapter of the Association for Computational Linguistics. 

L. Shen, A. Sarkar, and A. Joshi. 2003. Using LTAG based features in parse reranking. In 
Proceedings of the Conference on Empirical Methods in Natural Language Processing. 

N. Smith and J. Eisner. 2005a. Contrastive estimation: Training log-linear models on unla
beled data. In Proceedings of the Annual Meeting of the Association for Computational 
Linguistics. 

N. Smith and J. Eisner. 2005b. Guiding unsupervised grammar induction using contrastive 
estimation. In Proceedings of the International Joint Conference on Artificial Intelli
gence Workshop on Grammatical Inference Applications. 

N. Smith and J. Eisner. 2006. Annealing structural bias in multilingual weighted grammar 
induction. In Proceedings of the International Conference on Computational Linguis
tics and the Annual Meeting of the Association for Computational Linguistics. 

M. Steedman, M. Osborne, A. Sarkar, S. Clark, R. Hwa, J. Hockenmaier, P. Ruhlen, 
S. Baker, and J. Crim. 2003. Bootstrapping statistical parsers from small datasets. 
In Proceedings of the European Chapter of the Annual Meeting of the Association for 
Computational Linguistics, pages 331-338. 

M. Steedman, editor. 2000. The Syntactic Process. MIT Press. 

B. Taskar, C. Guestrin, and D. Koller. 2003. Max-margin Markov networks. In Proceed
ings of Advances in Neural Information Processing Systems 16. 

B. Taskar, V. Chatalbasher, and D. Koller. 2004a. Learning associative Markov networks. 
In Proceedings International Conference on Machine Learning. 

B. Taskar, D. Klein, M. Collins, D. Koller, and C. Manning. 2004b. Max-margin parsing. 
In Proceedings of the Conference on Empirical Methods in Natural Language Process
ing. 

93 



K. Toutanova, C. Manning, S. Shieber, D. Flickinger, and S. Oepen. 2002. Parse disam
biguation for a rich HPSG grammar. In First Workshop on Treebanks and Linguistic 
Theories. 

K. Toutanova, D. Klein, C. Manning, and Y. Singer. 2003. Feature-rich part-of-speech 
tagging with a cyclic dependency network. In Proceedings of the Human Language 
Technology Conference and the Annual Conference of the North American Chapter of 
the Association for Computational Linguistics. 

I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. 2004. Support vector machine 
learning for interdependent and structured output spaces. In Proceedings of Interna
tional Conference on Machine Learning. 

V. Vapnik. 1995. The Nature of Statistical Learning Theory. Springer Verlag, New York. 

K. Vijay-Shanker. 1993. Using descriptions of trees in a Tree Adjoining Grammar. Com
putational Linguistics, 18(4). 

Q. Wang and D. Schuurmans. 2005. Improved estimation for unsupervised part-of-speech 
tagging. In Proceedings of the 2005 IEEE International Conference on Natural Lan
guage Processing and Knowledge Engineering, pages 219-224. 

Q. Wang, D. Schuurmans, and D. Lin. 2005. Strictly lexical dependency parsing. In 
Proceedings of the International Workshop on Parsing Technologies, pages 152-159. 

Q. Wang, C. Cherry, D. Lizotte, and D. Schuurmans. 2006. Improved large margin depen
dency parsing via local constraints and Laplacian regularization. In Proceedings of the 
Conference on Computational Natural Language Learning, pages 21-28. 

Q. Wang, D. Lin, and D. Schuurmans. 2007. Simple training of dependency parsers via 
structured boosting. In Proceedings of the International Joint Conference on Artificial 
Intelligence, pages 1756-1762. 

Q. Wang, D. Lin, and D. Schuurmans. 2008. Semi-supervised convex training for depen
dency parsing. In Proceedings of the Annual Meeting of the Association for Computa
tional Linguistics. 

F. Xia and M. Palmer. 2001. Converting dependency structures to phrase structures. In 
Proceedings of the Human Language Technology Conference. 

L. Xu and D. Schuurmans. 2005. Unsupervised and semi-supervised multi-class support 
vector machines. In Proceedings the Association for the Advancement of Artificial In
telligence. 

L. Xu, D. Wilkinson, F. Southey, and D. Schuurmans. 2006. Discriminative unsupervised 
learning of structured predictors. In Proceedings of International Conference on Ma
chine Learning. 

H. Yamada and Y. Matsumoto. 2003. Statistical dependency analysis with support vector 
machines. In Proceedings of the International Workshop on Parsing Technologies. 

94 



R. Yangarber, R. Grishman, P. Tapanainen, and S. Huttunen. 2000. Unsupervised discovery 
of scenario-level patterns for information extraction. In Proceedings of Applied Natural 
Language Processing and the Annual Conference of the North American Chapter of the 
Association for Computational Linguistics. 

D. Yarowsky. 1995. Unsupervised word sense disambiguation rivaling supervised meth
ods. In Proceedings of the Annual Meeting of the Association for Computational Lin
guistics, pages 189-196, Cambridge, Massachusetts. 

D. Yuret. 1998. Discovery of Linguistic Relations Using Lexical Attraction. Ph.D. thesis, 
MIT. 

X. Zhu, Z. Ghahramani, and J. Lafferty. 2003. Semi-supervised learning using Gaussian 
fields and harmonic functions. In Proceedings of International Conference on Machine 
Learning. 

X. Zhu. 2005. Semi-supervised learning literature survey. Technical report, Computer 
Sciences, University of Wisconsin-Madison. 

95 


