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ABSTRACT

The precision of a measurement of a gas-chromatographic peak
depends on the intensity and character of the base-line noise, the
shape and size of the peak, the prior information, and the method of
estimation. An estimation method is presented that approaches the
highest precision capable of any method used with a given gas-
chromatographic system. Unlike most other estimation methods, thé
method has the ability to use all the information available to
estimate the peak parameters, including prior information as well as

information from the chromatogram.

The base-line noise of many detectors can be statistically
characterized by a power-density spectrum. In such systems, the
estimation of peak parameters is most easily carried out.in the
frequency domain on the Fourier transform of the chromatogram.
Although any mathematical model that can completely describe a peak
is suitable for estimation purposes, a pe;k model that uses cumulants,

which are related to moments, has certain mathematical advantages.

Digitization of a continuous chromatogram involves the less
of some information, but the loss can be controlled by the choice of
the sampling interval, the sampling time, and the quantization interval.
Essentially all the information in a chromatogram about a peak lies in
a section of the chromatogram, centered about the mean of the peak,
which has a length equal to eight standard deviations of the peak plus

the autocorrelation width of the base-line noise.
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The estimation method was verified experimentally by

analyzing mixtures of hydrocarbons on a simple isothermal gas
chromatograph employing aLthermal conductivity detector. Standard
deviations of ‘0.003 relative for peak area and 0.02 index units
for retention index were obtained. As shown by the analysis of
computer-generated peaks, these standard deviations couid be reduced
to 0.0005 and 0.002 if the experimental conditions were caréfully
controlled. A peak model with seven adjustable parameters adequately
fitted moderately sized peaks of aliphatic hydrocarbons, but was

inadequate for large peaks and peaks of aromatic compounds.
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CHAPTER 1

THEORETICAL

In gas chromatography the ultimate concern is with the peak (s)
that are representations of the distribution of solute molecules in a
gas. Information about a peak is obtained from a chromatogram, which
ordinarily is a voltage-time representation of the peak. The informa-
tion in a chromatogram, however, is cor;upted by random fluctuations,
which we call base-line noise, that are not directly attributable to
the peak. Base-line noise adversely influences the precision of
measurement of peak parameters. This thesis is concerned with the
application of statistical communication theory and estimation theory
to the minimization of the effects of base-line noise on the estimation
of peak parameters. This study is not concerned with the source of
base-line noise, but only its effect. Moreover, this study is not
concerned with distortions in the observed peak caused by the detector
itself of any other determinate errors that can be corrected by

calibration.

The theory 6f estimation, and the mathematical techniques'
used to describe peaks and noise that are Presented here have been
successfully applied in many fields outside of gas chromatography:
economics, communications, radar, and seismology, among others. Since
these fields are outside the normal range of contact of people working
in gas chromatography, this chapter attempts to provide a general,
though incomplete, discussion of these methods and a brief guide to the

literature. Most of the general material is described more completely
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in.References 1 to 4. The primary purpose_of this chapter, however, is
to describe and explain the techniques used in Chapter 2 for the
analysis of peaks obtained from an isothermal gas-chromatographic
system with a thermal conductivity detector. Undoubtedly these methods

are applicable to many areas of chemistry outside of gas chromatography.

In order to distinguish a peak from extraneous noise or noa-~
peak signal components, the shape of the peék must be defined at least
as accurately as the precision of the measurements warrant. For
example, to define a peak as something that has area, retention time,
and width is not enough; noise waveforms may have these attributes also.
Since a general closed mathematical definition (or model) for the shape
of a peak has not yet been developed, a model consisting of a series of
terms of decreasing importance should be fruitful provided the number
of significant parameters required is not impractically large. Series
representations of variously shaped peaks can be developed from several
basis functions: Gaussian, lognormal, Poisson, Beta, or Gamma (5).

The Gram-Charlier ype A series, based on the Gaussian function, has
received the most attention in the literature on gas chromatography
(6-9), and a special form of it (Edgeworth's form) has been chosen for
study here. The third and higher éoefficients of Edgeworth's form of
the Gram-Charlier type A series, defined below, are called cumulants.
Cumulants have been widely used for the characterization of statistical
distributions. They are related to moments but they are ﬁathematically
easier to deal with and we believe they are more fundamental than
moments. Although cumulants do not have direct physical significance

in the same way that peak area is related to quantity of a solute, they



have theoretical significance (6-9) and may provide qualitative

information about a solute (9,10).

For the purposes of this study it is assumed that the
essential characteristics of base-line noise can be described by the
statistical distribution of ordinate values of the points on a base
line. Specifically, base-line noise is assumed to be a stationary
random process with a normal or Gaussian probability-density function.
Since the base-line noise of most gas-chromatographic detectors results
from several independent sources, the assumption of a normal probability-
density function should be accurate®*. When the statistical behavior
of noise does no: change with time, the noise is said to be stationary.
The assumption that base-line noise is stationary during the elution of
a peak should hold when the experimental parameters that affect the base
line are not changing with time, as in isothermal gas chromatography;
but it may.not hold in programmed temperature gas chromatography if the
intensity of the base-line noise increases as the column temperature
increases. Noise with an intensity or variance that increases with
increasing amplitude of the signal (as during the elution of a peak) is
nonstationary and is usually difficult to treat in the presence of
stationary noise. Noise that depends on the amplitude of the signal may
constitute a méjor part of the noise of ionization detectors and
detectors that measure the radioactivity of a sample, but should be

negligible for thermal conductivity detectors.

*
The central-limit theorem states that subject to certain

very general conditions, the sum of random variables becomes more and
more normal as the number of independent random variables increases

(11).
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The fluctuations in measurements of peak parameters are not
entirely due to base-line noise. For example, small randoﬁ variations
in column temperature and column inlet pPressure can cause fluctuations
in peak retention times and shapes without affecting the base line. 1In
concentrating on the effects of base-line noise the approach taken here
is complementary to that of Goedert and Guiochon (12). These authors
have studied the effects of random variations in the experimental
conditions, which are classified here as non-base—line noise, on the
measurement of peak area and peak height. The total variance of peak-
parameter measurements is a combination of the variance due to non-
base-line noise and that due to base-line noise. The variance due to
base-line noise alone can be estimated from the statistical character-
istics of a section of base line, and this estimated variance used to
separate the contributions of the two types of noise to ‘the total

observed variance of the parameters.

Peak retention time is commonly measured from the peak maximum,
which is cnly a single point from the peak profile. Points on the sides
of the peak, however, also contain information about retention time.

If the entire peak is considered in the calculation of peak parameters,
a decrease in the variance of the parameter estimates should be
attainable. Noise always adds variance to a parameter estimate, in an
amount that depends in part on the method of estimation or measurement.
The estimation method developed in this thesis is optimal or nearly
optimal in the sense that the variance of the parameter estimates
approaches the ultimate minimum variance. This is achieved by using

all of the information in the chromatogram, not merely the information



obtainable from a few points such as the peak maximum and the peak

width at the base line.

The computation required in the estimation method is
sufficiently complex so that an offline digital computer is necessary.
Using a computer means that the data must be digitized. Some of the
information contained in a continuous sighal is invariably lost on
digitization. Nevertheless, interval-area samples taken at constant
intervals of time (13) contain almost all the information in a
chromatogram provided the sampling interval is l;ss than a certain
minimum value. Also, the information lost from quantization is

negligible if the quantization interval is small relative to the

"intensity of base-line noise.

The notational conventions of Bracewell (1) have been
followed whenever possible. One of these is that the Fourier transform
of a function is capitalized. Others are the use of the convolution
symbol » and the letters I and 1 from the Russian alphabet,
which have a pictorial similarity to the functions they represent.
Three different time and frequency scales are used. .Time in seconds
is represented by the symbol % » and frequency in the corresponding
scale (hertz) by v . Time in peak-width units and in sampling-
interval units is represented by the symbols ¢ and 2z , and frequency

in the corresponding scales is represented by n and s .




PEAK MODELS

Peak shapes can be most easily compared when peaks are

reduced to unit area and unit width, and are centered at the origin.

Defining the area, A4 , retention time, to , and width, o , as follows:

A=[ f(t)at (1)
1 «©
ty =7 j'_w t f(t) at (2)
2 1 2
‘=3[ (-2, flt-t) a t (3)

a2 dimensionless peak-shape function, Y(Z) , can be derived

from a peak on a noise-free chromatogram, f(¢) , through the formula
y(z) = f(t)o/A (4)

where ¢ 1is dimensionless reduced time:

¢ = (-t )/ (5)

The above definitions of £he retention time and width of a peak are the
mean and the standard deviation. These are different from the more
common definitions as the time of the maximum and the width at the base
or a certain fraction of the height. The peak models discussed below
are simplified when the above definiiion of a peak-shape function is
used, and this is the primary reason why we define retention time and

width as the mean and standard deviation.
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With a noise model applicable to most detectors (described
in the next section) the parameter estimates are best calcﬁlated on the
Fourier transform of the chromatogram. Moreover, the mathematical
expression for.the peak-shape model defined below is simpler as a
function of frequency than as a function of time. Even though the
Fourier transform operator may be complicated, the advances in compﬁter
algorithms for numerical Fourier transforms make the use of the operator

of little concern (14). The Fourier transform of a standardized peak

shape function is

(-]

¥(m) = [ . expl-i2mzl y(z) d ¢ (6)
-0
where < is the square root of -1 , and n is frequency in a

dimensionless standardized scale.

Parameters

The three parameters area, A , retention time, to , and
peak width, o , along with a peak-shape function, completely and
uniquely describe a peak. Knowing the values of the three parameters
is enough to distinguish a particular peak from any other peak only
when the peak-shape function is previously known. Because of the
complexity of the gas-~chromatographic process and the difficulty of
controlling experimental conditions, accurate prior knowledge of the
peak shape function is usually not available. Therefore, in the
mathematical model of a peak, parameters in addition to 4 , to', and
0 are required to describe the peak-shape function. For estimation

purposes, any set of parameters that can completely and uniquely
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describe the peak-shape function will serve. It is not necessary that
the parameters have an easily interpreted physical meaning, especially
if only 4, to > and o are required for subsequent calculations, but
it is desirable. Three possible sets of parameters of a peak-shépe

function are samples from a previous chromatogram (15), moments (8), .

and cumulants.

The first, second, third, ... moments of a peak-shape

function may be defined as derivatives of the Fourier transform of the
peak-shape function:

e =P D
B, = (-22%) "D [Y(n)]n=0 ‘ (7)

where Dr is the differential operator, a?/an” r @and » is equal
to 1,2,3,... . 1In contrast, the cumulants of a peak-shape function
are defined as derivatives of the logarithm of the Fourier transform
of the peak-shape function:

(o PP
Kr = (-227) "D [1n Y(n)]n=0 (8)

The moments and cumulants defined by Equations 7 and 8 are ordinary
moments and cumulants of the peak—sﬁape function defined by Equation 4.
These dimensionless numbers are referred to here as the standardized
moments and cumulants of a peak. The first three standardized
cumulants are equal to the first three standardized momenés. But, a
cumulant of a higher order, r , is a function of the lower-order
moments from 1 to » . Tables of the algebraic formulas relating

moments to cumulants are given in Kendall and Stuart (16). The first
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cumulant of a standardized peak-shape function is equal to zero, and the
second is equal to one. The third and the fourth standardized cumulants

are sometimes called skew and excess.

An infinite number of parameters in any one of the above sets

will completely specify any physically possible peak-shape function.

But an infinite set of parameters is unnecessary because in the presence
of noise the peak-shape function can never be specified exactly.
Therefore, if the parameters are arranged in order of decreasing
significance (increasing statistical variance or decreasing information
content), only the lower-order parameters up to the number that can
describe the peak-shape function to a required level of significance
need to be estimated. The parameters that are estimated are called the
adjustable parameters, and the remaining. parameters in the infinite set,

which are given an g priori value, are called the nonadjustable

parameters.

The estimation of a large number of parameters is undesirable
as well as unnecessary because, as the number of parameters to be
estimated incfeases, the peak-shape function becomes increasingly
general and thus able to fit a Qider range of differently shaped peaks.
A model that is too general is likely to include nonpeak components such
as noise or interfering peaks along with the true peak in a chromatogram.
One way of introducing into the peak model the prior information
needed to distinguish a true peak from noise is by limiting the number
of adjustable parameters. When there is little prior information about
the model required for a particular peak, a compromise must be made;

the number of adjustable parameters should be enough so that the peak
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model can fit the peak, but not so many as to fit any nonpeak

components that may be present.

In this study cumulants are chosen to be the parameters for
peak-shape functions. Since moments can be calculated from cumulants,
cumulants have the same theoretical interpretation as moments, but
_they are easier to manipulate [they are additive under convolution,
(6)]. Simplicity is the only objective reason why we choose cumulants
over moments. The model incorporating cumulants as parameters is
chosen with the prior information that in simple ideal chromatographic

systems the peak-shape function approaches the Gaussian function.

Peak Shapes

A peak—-shape function can be represented by a series of terms
that are functions of the cumulants of the peak-shape function by use
of the general Charlier derivative-series method (5). Given the
Fourier transform of some basis function, ¢(n), the series expansion

of the Pourier transform of a peak-shape function, Y(n), is

©
¥(n) = o(n) expl | (K -y )(-i2mn)7/r1] (9)
r=1
where Ki and Y, are the 2»r'th cumulants of the peak-shape function
and the basis function. The basis function should be chosen so that
only the first few cumulants of the peaks being investigated need be
estimated. For example, the Poisson function might be used for

moderately tailed peaks. When a Gaussian basis-function is used,

Equation 9 becomes
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<O
¥(n) = expl [ K (-i2m)/p1] (10)
r=1
because all the cumulants of a Gaussian function are zero, except
for the second, which is equal to one. An equivalent form of
Equation 10 can be obtained by expansion of the exponential and

collection of powers of n :

«©
Y(n) = [1+ Z U}(—izwn)r/r!]exp[(—iZﬂn)z/ZJ (11)
r=3
2

where Ué and U5 are equal to K4 and k% , and U6 = Ké + lQK3 .

_ _ 2 .
U7 = K7 + 35K4K3 ’ U8 = K8 + 56K5K3 + 35K4 y oees Equation 11
defines the Gram-Charlier type A series (GCA series), and
Equation 10 defines Edgeworth's form of the GCA series (17). The

most frequently used series expansion of a chromatographic peak (6-9)

is the time domain version of Equation 11:

w 2
y(z) = [1+ ) U b, (c)] e % /2 (12)
=3

where hr(;) is the Tchebycheff-Hermite polynomial:

2 2
hr(c) = e® /2 (-D)re-; /2 (13)
Egquation 9 , carried to the sixth cumulant, is used as a model in
Chapter 2.

Although the GCA series and the Edgeworth series are

formally equivalent, terminating them after a finite number of terms



12

involves different prior information about the nonadjustable parameters.
Consequently, the effects of the termination on the precision and
accuracy of the adjustable parameters may be different. The coefficients
of the sixth and higher terms of the GCA series are functions of
lower-order cumulants, whereas the coefficients of all the terms of
Edgeworth's series are the cumulants themselves. Since the high-

oxder coefficients of the GCA series contain information about lower
order cumulants, neglecting a high-order coefficient would involve the
loss of some information about the lower-order cumulants. For example,
suppose the third cumulant of a peak-shape function were equal to one
and the cumulants of higher order were equal to zero. This peak-

shape function is a possible representation of an actual peak, but since
the peak would be partly negative, it would be unusual. The series
representation of the peak in Edgeworth's form could be terminated after
the term involving the third cumulant. On the other hand, the
representation of the same peak in GCA form would have to be continued
at least to the sixth term because from the contribution of the third
cumulant, the sixth term would be equal to ten, a value that might be
significant even if the sixth cumulant were insignificant. For
simplification of the effects of termination on parameter estimation,
therefore, any one term of a series model of a peak-shape function should

depend on only one parameter.

The coefficients of the GCA seriés being functions of more
than one cumulant does not mean that this series should not be used for
the representation of peak-shape functions. For certain peak shapes in

certain types of noise, the coefficients of the GCA series, Ur ’
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could conceivably approach insignificance faster than cumulants and

would therefore be preferred to cumulants.
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A NOISE MODEL

Exrors in the estimates of peak parameters due to base-line
noise are caused by the unpredictability of the noise. But, because
all physical signals are bandlimited (18), base-line noise is never
completely unpredictable. Given a point on a base line, a second point
occurring some time later will likely‘be within a range of the first
point that depends on the intensity and character of the noise and
the separation of the points. By giving the most weight to points on
a base line nearest a peak, a chromatographer uses this relation,
sometimes unconsciously, when he examines the base line under the peak.
When noise is stationary, so that its average properties do not change
with time, and when the mean of the noise is zero, the randomness as
well as the predictability, or nonrandomness, of noise is characterized
by the autocovariance function, qx(r) , which is tﬁe average of the
product of the ordinate values, (%) , of two points on a base line
taken T units of time apart (19).

, T/2 | .

e (t) = lim 7 | xz(t) z(t+t) A ¢ (14)
T -T/2

where T is called the lag. Sometimes the terms autocovariance and
autocorrelation are interchanged, but we reserve the term autocorrela-
tion for a normalized autocovariance (see Equation 49). The auto-
covariance at zero lag is the variance of the noise; as the lag becomes
large, the autocovariance should approach zero, indicating that points

far apart are independent (covariance independent).
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Power-Density Spectrum

The Fourier transform of an autoco&ariance function is the
power-density spectrum*, Cé(V) . If x and ¢ have dimensions of
volts and seconds, Qx will have dimensions of volt squared per
hertz. The power-density spectrum of noise is the variance density
per unit frequency, hence the area of a power-density spectrum, which is
the integral of the variance density over all frequencies, is equal to
the variance or power of the noise, cx(O). White noise is noise
that has a constant or flat power-density spectrum over a wide frequency
range. The autocovariance function of white noise consists of a

spike-1like function which rapidly approaches zero on both sides of the

origin.

The method for estimation of peak parameters described later
requires the use of the probability-density function (p.d.£.) of the
points on a base line. If the p.d.f. of the noise is normal, as
assumed here, then the noise is completely characterized by its power-
density spectrum. In the limit of continucus sampling so that integrals
can replace summations, the joint p.d.f. of a set of points, £ , on

a section of base line is

lX(v)|2

c v 4 . 13

(ﬁ) = b expl-1/2 f

Lo o]

P

where X(v) is the Fourier transform of the section of base line being

*
A power-density spectrum may also be called a power spectrum

or a spectral density as in Reference 3.
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studied. The existence of the integral in Equation 15 requires that
the power-density spectrum, C;(v) ., be greater than zero for all
frequencies. This causes no difficulty in practice when the data are
quantized because quantization introduces white noise with a power;
‘density spectrum greater than zero over the range of frequency being
considered. The constant, b , in Equation 15 is independent of the

particular section of base line being studied; therefore its evalua-

tion is unnecessary.

A point on a base line in the time domain is dependent on all
the other points for which the autocovariance is greater than zero.
The dependence may extend over a large number of points and over a
wide period of time. Calculations involving stationary normal noise
are considerably simplified in the frequency domain because the
Fourier transform of highly interdependent base-iine noise results in
a set of effectively independent points, the variance of each point,
X(v) , being equal to C;(v) . If the points on the base-line were
effectively independent of each other, that is, if the noise were

white over the frequency range of interest, of course, there would be

no need to do the calculations in the frequency domain.

The probability-density function of a section of base line,
ngg) ¢ is used only formally in the estimation calculations; its
N
actual value is not determined. Nevertheless, the value of pg(%)
for a particular section of base line is proportiocnal to the probability
that the base line is caused by noise alone. For éxample, if the value
of p G{) is unusually low, the chromatogram probably contains a

component that is not noise, possibly a peak. If a peak is

subtracted from the base line, the value of gngg) might
%
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become reasonably large, and the increase may indicate that the
original chromatogram contained a peak similar to the one that was

subtracted.

Power-Density Spectrum Estimation

The calculation of the integral in Equation 15 requires
prior knowledge of the power-density spectrum. The definition of
the autocovariance function (Equation 14) suggests that the power-
density spectrum may be estimated from the Fourier transform of a

section of a chromatogram that does not contain a peak (20) :
2
C (v) ~ |xtv) /T ' (16)

wvhere T 1is the interval of time over which data is taken. The
section of base line used for the estimate of the power-density
spectrum could be taken some time before or after the peak being
examined; all that is required is that the noise be stationary enough
so that the noise near the peak will not differ greatly from the noise
used to estimate the power-density spectrum. The variance of the
spectral-density estigate, Qx(v) in Equation 16, is equal to C’x(v)2
and is independent of the amount of data used. The precision can be
improved by averaging the spectrum over a small range of frequency.

The averaging process resulting in Q£(v) , called smoothing or

convolution, is described by the equation:

o]

Cl(v) =f € (u) Wlv-u) du . (17)
X &

-0

where W(v) 1is a weighting function called a spectral window (20).
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The convolution operation is conveniently represented by the symbol

* With this symbol, Equation 16 can be written

Ca’:(v) = C'x(v) * W(v) (18)

The variance of the smoothed spectral-density estimate, q;(v) , is

©
variance of Ca':(\)) 2%6’;(\’)2 / W(u)? au (19)
-0
After convolution with W{(v) , the variance of the power-density
spectrum decreases with increasing amounts of data and ﬁan be made as
small as desired. But, the increase in precision obtained by smoothing
is at the expense of accuracy; the estimate will be biased by an amount
proportional to the curvature of C&(v) and to the width of the
spectral window. The bias can be decreased by filtering the data to
give a nearly white spectrum before smoothing (21). We apply this
filter to the data in the time domain to minimize end effects as
discussed later in the section on sampling. In the time domain,

filtering resulting in '(f) is represented by convolution
x!(t) = z(t) * h(t) (20)

where h(t) is the impulse-response function of the filter. Since the
mean of a base line in gas chromatography is arbitrary, it has a high
variance indicating that the power-density spectrum of bdse-line noise
will be extremely high at zero frequency. To whiten this intense

noise at zero frequency, the filter #(%) should have zero area

(Figure 1, II). The digital filter, {-1,2,-1], gives an approximately
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flat spectrum for the base-line noise of a thermal conductivity
detector (see Chapter 2). The compromise between bias and precision
that governs the choice of a spectral window is not critical when the

spectrum is white. We have used a simple digital spectral window,

P2,%,%].

Convolution in the time domain (Equation 20) co?responds to
multiplication in the frequency domain; therefore, the power-density
spectrum can be regained from the smoothed spectrum by multiplying the
smoothed spectrum by the inverse of the absolute square of the Fourier
transform of the impulse-response function of the filter. At zZero
frequency both the spectrum of the filtered data and the filter-
transfer function, H(0) , are zero leaving the power-density spectrum,
qr(O) » undefined. Since X(0) , the mean of the base~line noise, has
a high variance, qx(O) is usu;lly extremely large; therefore, its

reciprocal, needed in Equation 15, is defined to be zero.

' Figure 1 shows the steps involved in the estimation of a
power-density spectrum. First, filter the data in the time domain
using a filter that will give a nearly white spectrum (Figure 1, I to
III). Fourier transform and calculate the power-density spectrum using
Equation 16. Smooth according to Equation 18 (Figure 1, IV to VI),
and then multiply by thé inverse of the square of the transfer.function
of the filter (Figure 1, VII and VIII). These operations are

summarized by

C (v) =% xrv) |2 » wev) |H(v)] 72 (21)
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Figure 1. Estimation of power-density spectrum (schematic).

I, section of base-line noise; 1II, impulse-response function of a
whitening filter; III, filtered data resulting from the convolution
of I and II; 1V, power—-density spectrum of the filtered data;

V, a spectral window; VI, smoothed power-density spectrum obtained

by convolving V with 1Iv; VII, reciprocal of the absolute square

of the impulse-response function of the filter in II. The dashed
line in VIII is the final power-density spectrum of the base-line
noise obtained by multiplying VI by VII. The solid curve in VIII
and IX is the true power-density spectrum obtained as 7T

approaches infinity. The upper-dashed curve in IX is the unsmoothed
spectrum resulting from the multiplication of IV and VII. The
lower-dashed curve in IX is the biased spectrum obtained by smoothing
without whitening. Since all of the cufves except I and III are
symmetric about the ordinate axis, the negative parts of the curves

have been omitted.
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with

-1
qr(O) =0

Two useful, simple characterizations of noise are the power

or variance and the autocorrelation width. The power is defined by

the equation

W o= Cp(v) dv (22)

-0

and the autocorrelation width by

Te = Cx(O)/Wc (23)

One half the autocorrelation width is an indication of the separation
in time between independent or uncorrelated points in the noise. For

the calculation of Wé and Te in practice, it can be assumed that

€0 ~ € (1/T).
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DIGITIZATION

Converting an analog signal such‘as the voltage from a
detector into a form that can be used by a digital computer involves
two distinct processes. First, a finite number of samples are taken;
second, the samples are quantized. The resulting digitized signal is
a finite series of numbers each having a finite number of significant
digits. The effect of these processes on the precision and accuracy

of sampled data is described in detail below.

Sampling

The application of the theory presented in (1) is discussed
in the following section. The information contained in a chromatogram
and the information contained in a set of samples of the chromatogram
can be compared when the set of samples is treated as a fuhction of
continuous time rather than discrete time. The delta function, 6(%),
which is a generalized function and not a function in the usual sense,
but can be treated as if it were, represents a single sample. The
delta function can be defined as the limit of a Gaussian function as
the standard deviation approaches zero; although it is infinitely high
and infinitesimally narrow, it has unit area. Figure 2, I shows a
delta function at time ¢’ as an arrow of unit height. Multiplying
a data function, x(¢t) , by &(t-t’) results in a function défined
for all time that represents a sample of the data at time ¢’
(Figure 2, II). The operation of taking samples of a function, z'(%),
at constant intervals of time, AZ seconds apart, is described by

z (z) = ) &8(z-n)z(z) (24)
==
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Figure 2. Sampling of a chromatogram in the time and frequency

domain (schematic). I, a continuous chromatogram and a delta function;
II, sample of the chromatogram resulting from the multiplication of
the continuous chromatogram by the delta function; III, chromatogram
in reduced time; IV, Fourier transform of III; V, constant interval
samples of III; VI, Fourier transform of sampled chromatogram, the
dashed lines show the separate replicas of IV; VII, the Fourier
transform of a sampled chromatogram that has less intense high
frequency components than VI so that no overlap occurs, ng(s) is
the frequency sampled form of X;(s) ; VIII, xsd is the inverse
Fourier transform of the frequency sampled data X;d in VII. In
VIII the dashed lines are the separate replicas of the original

continuous-data function in the time domain.
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where
x(z) = 2'(t)/At

and =z is.redﬁced time equal to %¢/At . The result of sampling the
data, xs(z) , is obtained by multiplication of two functions: the
original data function and another consisting of a series of delta
functions spaced one unit of reduced time apart. Representing the
series of delta functions (the sampling function) by the symbol [I{2)

in Equation 24 gives

acs(z) = x(z) M(z) (25)
where
M(z) = E §(z-n) (26)
N=—oo
In the frequency domain,
X_(s) = X(s) » I(s) (27)

where 8 is reduced frequency equal to vAt , and X(s) is the Fourier

transform of the continuous data (Figure 2, IV).

Figure 2, VI shows the effect of convolution by Iﬁ(s) in
the frequency domain; replicas of the Fourier transform of the original
data function, X(s) (Figure 2, IV), are formed at intervals of one
unit of frequency. These replicas will overlap (Figure 2, VI) and
interfere unless X(s) 1is equal to zero for all frequencies greater

than or equal to 1/2. If there is no éverlap, Xs(s) will be
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identical to X(s) over the regiom where »lsl is less than 1/2
and the inverse Fourier transform of the central replicate'will
regenerate the original continuous curve. Therefore, provided the

sampling interval, At , is small enough so that
X(s) =0 when |s| > 1/2 (28)

the samples will contain all the information in the data. In absolute
units the critical sampling frequency 1/(2A%f) Hz is called the

Nyquist frequency.

The Fourier transform of a function sampled in the time
domain is continuous (Equation 27); whereas the Fourier transform
algorithm used in a digital computer is discrete; that is, the Fourier
transform is calculated at frequencies that are multiples of 1/N
where N is the number of samples taken. (#AZ is equal to T , the
interval over which the data are sampled in the time domain.) When
the fast Fourier transform algorithm (14) is used, the number of
samples must usually be a power of 2 , though the number of samples
available may not be an exact power of 2 . If M is a power of 2
and the number of samples available, ¥ , is less than ¥ , then
the last M - N samples can be given the value zero, and the Fourier
transform will be calculated at frequencies that are multiples of 1/M
rather than 1/N . The case of §¥ egual to M is discussed below,
although the theory for the case of ¥ 1less than M is different and
more complicated, the practical conseguence of sampling the Fourier
transform is the same as that for ¥ ecual to M . A discrete Fourier

transform of a function is equivalent to taking constant-interval
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samples, in the frequency domain, of the continuous Fourier transform
of the function. The sampling operation in the frequency domain can
be represented symbolically as multiplication by a sampling function,

N M(Ns) (Figure 2, VII):

Xsd(s) = Xs(s) N [(Ns) (29)

The time-domain version of frequency-sampled data is the inverse

Fourier transform of Equation 29:

Xsd(z) = :cs(z) * [M(z/N) (30)

When the sampling theory used for sampling in the time domain is
applied to sampling in the frequency domain, samples of Xs(s) at
intervals of 1/N are equivalent to the continuous function, Xg(s),

provided the section of base line taken is large enough so that

z (z) = 0 when lz| > w/2 (31)

Figure 2, VIII shows the overlap error resulting from an
attempt to regenerate a data function when & (or T ) is too small.
Since a Gaussian function approaches zero only.at infinity in the time
domain, taking the discrete Fourier transform of a Gaussian peak will
introduce an error the magnitude of which will increase as the width
of the peak (o) ihcreases relative to the period of time over which
the data are taken (T) . From a table of ordinate values of a
Gaussian function, the maximum error relative to the peak maximum is
less than lO—6 when T is greater than 9.80 . Also, since the

Fourier transform of a Gaussian function is itself a Gaussian function
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[with a standard deviation equal to 1/(2m0)] and is never equal to
zero for any frequency, taking samples of a Gaussian peak in the time
domain will introduce an error the magnitude of which will increase as
the peak width decreases relative to the sampiing interval (Af) . The
maximum relative error is less than 10“6 when the peak width is
greater than 1.7At . The combination of these time- and frequency-
domain restrictions means that at least seventeen (1.7 X 9.8) samples
of constant interval are required to specify a Gaussian peak with a

6

relative accuracy better than 10 ° . The requirements of At and T

for a peak in the presence of base-line noise are discussed below in

the section on estimation theory.

The condition that a base line be zero at the ends of the
section of base line over which samples are taken (Equation 31) is
seldom met in practice because the variable zero control of the detector
is set so that the output signal will never be negative or zero
throughout the chromatographic run. Also, trends in the base line,
or noise with a period.greater than 7/2, will cause at least one end
of the sampled section to be significantly different from zero.
Although extra parameters for the mean and the trend in a base line
could be included in the peak modei, it is easier to filter the data to
remove these components before Fourier transforming. Including a
parameter for the mean is equivalent to filtering the data with a ~
function that has zero area, but a filter that removes any component
other than the mean may destroy some of the information in the data
about the peak being measured. We have found that the noise-whitening

filter used in the estimation of power-density spectra [h(£) in
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Equation 20] is suitable for this purpose.

Interval-Area Sampling

Interval-area samples (13) are defined by

a2t '
z (2) =(f x(t)at] mliz) (32)
a 2%
Equation 32 can be written
x (2) = [2(2) = N(z)] [q(z) (33)

where integration is represented as convolution by a rectangile func%ion,

I (z) , where

M(z) =1 when |z| < 1/2

and

N(z) =0 when |z]| > 1/2 (34)

In practice a small dead time occurs between interval-area samples while
the integrator is transferring the data and being reset to zero in
preparation for the next sample. If d is the relative dead time, the

. +
rectangle function in Equation 33 should be replaced by H(ZI?QZ) , but

if the dead time is small compared to the sampling interval, this small

correction can be ignored.

In the frequency domain, the interval-area sampled data become

X_(s) = X(s) “;‘sﬂ + [(s) (35)
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Coﬁparing Equation 35 with the equation €or instantaneous sampled data,
Equation 27, interval-area sampling multiplies the Fourier transform of
the original data by the Fourier transform of a rectangle function
(Figure 3, I). This gives interval-area sampling an advantage over
instantaneous sampling in that noise at high frequencies (s greater
than 1/2) is attenuated and is less likely to cause overlap errors.
The data in the useful frequency range (s less than 1/2), however,
will be distorted. The determinate error in the estimates of peak
parameters caused by this distortion can be calculated from the
definition of cumulants (Equation 8). The resulting corrections are
the well known Sheppard corrections for grouping (22); the corrections
for peak area, retention time, and odd-order cumulaﬂts are zero, but
the corrections for peak width and even-order cumulants can be
significant. These corrections could be applied to the parameter
estimates or included in the peak model, with the understanding that
neglecting high-order uncorrected cumulants introduces the prior
information that these cumulants have the values of the Sheppard
corrections. Sheppard's corrections are exact for a peak function, but
only approximate when a peak is contaminated by noise. It is better,
therefore, to correct the data rather than the parameter estimates even
though more computation is required. Correcting the data, however,
introduces a bias into the estimate of the power-density spectrum; more

is said about this below.

After filtering the Fourier transform of interval-area sampled

data is
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Figure 3. Digitization effects. I, Fourier transform of rectangle
function; 1II, effect of jitter errors (schematic); 1III, power-
density spectrum of jitter noise; IV, power-density-spectrum of
noise caused by integration dead time fluctuations; V, continuous
data (schematic, with arrows representing instantaneous samples);

VI; result of the quantization of the data in V (schematig);

VII, probability-density function of continuous data in V (schematic);
VIii, probability-density function of quantized data in VI
(schematic). The lined area in II is the interval area sample
resulting from jitter. With no jitter, the integration would extend
to the dashed lines. The area of the lined part of VII is equal to

the area of the delta function represented by an arrow from the origin

in VIII.



X!(s) = X(s) H(s) % (36)

where H(s) is the transfer function of the filter and where the
sampling=-interval and the sampling-time conditions (Equations 28 and
31) are assumed to have been met. The corrected Fourier transform of

the data required for the estimation of the peak parameters is then
X(s) = X!(s) (a(s) SERLT)y-1 (37)

For the calculation of the integral in pxﬁg) Equation 15 we define
X

the Fourier transform of the data at zero frequency, X(0), to be zero

because the reciprocal of the power density spectrum, C:,z:(O)-l , is

defined to be zero.

Jitter

Variation in the sampling interval is called jitter; as shown
below, jitter adds noise to interval-area sampled data that increases
with signél amplitude. Although we do not consider jitter noise inv
the noise model (because it is nonstationary), jitter always occurs to
some extent in practice. We consider jitter noise here with a view to
measuring it and thereby determining the limitations of the noise
model. The results below are a simple extension of the theory
presented in (23) to interval-area sampling. Figure 3, II illustrates
that the jitter at the beginning of integration, £(z-1/2) , is the
difference between the time when integration actually begins and the
time when it was expected to have begun, 2z - 1/2 . The effect of

jitter is then as shown in the equation



ZHg+E (21) :
:z:aj(z) = (f z(t) 4 t] M(z) (38)

z2-3+E (3-%)
A Taylor series expansion of xéj(z) taken to the first power of

the jitter gives

z_s(z) gx (z) + [x(2+1/2) E(z+1/2)
J a i (39)

- x(2-1/2) E(2-1/2)]1 [(z)
Equation 39 is an adequate approximation of Equation 38 when the
standard deviation of the jitter is small compared to the sampling
interval, and when d x(2)/d 2z is small compared to x(2) . The
slope condition holds when the Nyquist sampling condition is met and
there is little signal density at frequencies near the Nyquist
frequency. Jitter as defined above can be considered a continuous
random process sampled at the same time as the data. It is assumed
that the jitter has a normal p.d.f. with zero mean and standard
deviation oj » and has a white power-density spectrum extending beyond
the Nyquist sampling frequency so that the autocovariance function of
the jitter is effectively a delta function. It is assumed, also, that
the jitter, &(z) , is-uncorrelated with the signal, x(2) . If the
signal and the jitter are correlated (by mechanical vibration, for
example) a more elaborate model than that used here would be required.

The autocovariance function of jittered interval-area samples is then

cj(z) ~ cxa(z) + [cx(0)+§2] c§ [258(z)
(40)
=8 (2+1) =68 (2-1) ]

and the power-density spectrum is
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Cj(s) rvC. (s) + 2(Wc+§:'2) 032. [1-cos(2ms)] (41)
a

The mean of the data, 5-, is included in Equation 41 because in the
calculation of the noise power, Wé in Equation 22, the power-
density at zero frequency is given a value that is reasonable for
noise with a zero mean; the actual value of C;(O) is equal to the
square of the mean of the data. Equation 41 shows that jitter adds
a noise component to interval-area-sampled data that has an intensity

proportional_to the square of the mean of the data.

Another noise source associated with sampling is caused by
the variation in the integrator dead time referred to previously.
Assuming that the dead time has a normal p.d.f. with a standard
deviation, cd , that is much less than the mean dead time, and that
the variation in dead time has a white power-density spectrum
uncorrelated with the signal, dead-time noise adds to the base-~line
noise a component with a white power-density spectrum equal to
(Wé+§2)o§ . Fiqures 3, III and IV compare the power-density

spectra of jitter and variable dead time noise.

Quantization

The second step of digitization is quantization. As shown in
Figure 3, V to VIII, quantization can give a dat; sample a random
error and a constant error both of which may be as large as one half
the quantization interval. Below the theories presented in (24)
and (25) are summarized and interpreted. Quantization of a random

variable is equivalent to taking interval-area samples of the p.d.f.
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of.the noise. In a normalized scale where the data, é , are taken
in units of the quantization interval, the p.d.f. of quantized
noise is

P, (x-1/2) =px(a:) * [M(x-1/2) [[[(Q—l/2) (42)

q .

where px(x) is the p.d.f. of the data at a specified time. A
considerable simplification in the equations given below.results when
pxﬁx) in Equation 42 is shifted downwérd.one half unit. Although
shifting adds a constant error to the mean of the data, this error can
be ignored since the mean is arbitrary. The joint p.d.f. of xl- at

time ¢ , and z, at time (f+1) 1is then

D, (2,,%,) = Py (T1.%,) * I(z,) * I(x,) mf,) M(z,) (43)

and the Fourier transform of this joint p.d.f. (along the & axis,

not the usual transform along the time axis) is

sin(wxl) sin(nxz)

qu(xl,xz) = Px(xl.xz) * I]I(xl) * I]I(xz) (44)

The autocovariance function of the quantized noise can be obtained
from Equation 44 with the formula
2

1 xq

1. o _ (45)
q (-i2m 2 Xy ¥y TXTX,0

When the data have a normal p.d.f., the Fourier transform of

the joint p.d.f. of two data points is
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_ 2 2
P (x;eX,) = exP{-w{xl+2p (r)x1x2+x2]} . (46)

where

w = (21) W,/ (47)

In terms of the autocovariance function of the base-line noise

(Equation 14), the variance, Wé , in Equation 46 is

We = cx(O) (48)

and the autocorrelation function, p(tr) , in Equation 46 is

p(t) = e, (‘r)/cx (0) (49)

From Equations 44, 45, and 46 the autocovariance function of

quantized noise is

n

e, (1) =Wp() + 02 V(-1 exp(wn?)

q 7n=1
(50)

g ® _ n+m
-5 11 A explwin®iz ()mmin®)
an n=-o m=-o

t
where the prime on Z means omission of the value at n = 0 .
n

Equation 50 shows that quantization adds noise to the data,
and the second and third terms of the equation express the autocovari-
ance function of the quantization noise. Using the symbol cq(r) for
the autocovariance function of the quantization noise and using only

the most significant terms in Equation 50 gives, for the indicated
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values of the autocorrelation function of the base-~line noise, p(t) ,

ey = 112 - (4 +1/7%)e™” | EICES!
== e+ @ P22F) /), plr) =172
= - 4Wée-w ’ ‘ p{t) =0 (51)
= - - @22 /2ty ) = - 12
=-1/12 - (4Wc-1/1r2)e"w , plt) = - l

Since the derivative of ‘cq(r) with respect to p(t) is
equal to + = when p(1) is equal to + 1 , the constants (+ 1/12)
in Equation 51 occur only when p(t) is identically equal to +1.
In most practical situations p(t) is identically equal to + 1 when
the lag is zero and is seldom equal to + 1 when the lag is any other
value. Therefore, Cq(T) has a component at zero lag that is in
effect a delta function. The power-density spectrum of quantization
noise, consequently, has a white component that extends to infinite
frequency, but when the data are sampled, only the portion between the
negative and positive Nyquist frequencies is observed. (There is no
overlap error because the autocovariance function, being a delta
function, is not affected by sampling.) The impulsive nature of ¢ (1)
arises from the assumption that the quantization interval is exactly
constant;.jitter in the quantization interval no doubt occurs to some
extent in practice and would broaden the impulsive cpmponént. The
resulting power-density spectrum would approach zero at high frequencies,
but unless the sampling interval were extremely small or the jitter in

the quantization interval severe, the power-density spectrum of the
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impulsive component should be nearly constant in the observed frequency

range.

Apart from the constants (+ 1/12), the terms in Equation 51
do not vary rapidly with small changes in the value of p(1); hence
the equation can be used to sketch in the approximate autocovariance
function of the quantization noise when the autocovariance function of
the base-line noise is known. When the standard deviation of the base-
line noise is small enough, the terms other than the constant 1/12
can be neglected. (If the standard deviation is one half, in units of
the quantization interval, the largest of these terms is about 10-6.)
Therefore, under most experimental conditions the effect of quantization
is to add white noise to the base-line noise. In absolute units,
the power of quantization noise is 1/12 q2 (voltsz), where ¢q is the
quantization interval in volts. When the p.d.f. of base-line noise
is normal, the p.d.f. of quantized base-line noise will not be normal
because the p.d.f. of quantization noise is rectangular. When the
standard deviation of the base-line noise is several times the

quantization interval, however, the effect of the rectangular p.4.f.

can be ignored.

Quantization of interval-area samples occurs after the
integration over the sampling interval, so the correction for the
distortion caused by interval-area sampling, Equation 36, should not
be applied to quantization noise. In the calculation of the integra}
in px(g) in Equation 15, however, the same error occurring in the

N
hm,lﬂWF,athPwadmﬂWSmwmm %w),mwksm

the cancellation of the error. Therefore, applying the correction for
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interval-area sampling to quantization noise will not affect the
parameter estimates, but will introduce a consistent error in the
estimates of the parameter standard deviations (defined below), which

depend on C;(v) but are independent of the data.
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ESTIMATION

Information from the Data

The object of estimation is to extract a peak from a base
line so that the peak can be reconstructed as it would appear were
there no base-line noise. Finding the peak that caused the data
reduces to estimating the parameters of the peak model when the model
is given. But, because the estimates will be derived from random data,
the estimates themselves will be random, and it will not be possible
to state the exact values of the parameters that caused the peak in a
particular chromatogram. Knowing the probability structure of the
noise, however, one can give the probability that a certain range of

true values caused the peak in the data.

The parameters of a peak on a base line are related to the

data through the equation
x(t;%) = f(t;%) + g(t) (52)

where f(%;a) is the peak function, g(¢) the base-line noise, and
& the set of parameters. For the purposes of this study, ao is
the peak area, al is the retention time, az is the peak width, and

o and higher are the standardized cumulants, K3 and higher. When

3
a peak is not present in the chromatogram, the p.d.f. of the data,

z . is given by Equation 15; therefore, when a peak is present, the

p.d.£. of z . given g (the true values of the parameters), is
pxla(glgl) = px(.;g-f) (53)
v v

by the use of Equation 52. Equation 53 holds when the peak model,
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f(t;%) : represents the peak completely, or at least accurately

enough so that any deviation of the peak model from the true peak is

indistinguishable from noise.

Prior Information

The true values of the parameters, ¢ may vary from
experiment to experiment because of indeterminate wvariations in the
experimental conditions (non-base-line noise) that may affect the
parameters without having an effect on the base line. The knowledge
or the lack of knowledge about the parameters for a particular
experiment is best described by a p.d.f., p%(%) , called the prior
p.d.f. of the parameters (26) . Assuming that the experimental
conditions that affect the true values of the parameters do not Qary
during the elution of the peak, one can speak of the "true" values for
a particular experiment. (It is assumed, also, that the true values
of the parameters are practically independent of the base line.) The
prior p.d.f. states the degree of belief in the hypothesis (26) that
previously obtained values of the parameters still apply to the
experiment under study. In other words it expresses, in concrete temrms,
the state of the information about the true values of the parameters
before the experiment is begun. The amount of prior information can
have an important effect on the accuracy and precision of the parameter
estimates; precise prior information is essential for the estimation or
detection of small peaks that are barely distinguishable form the base-

line noise.

Often in an analytical problem the experimenter has some

information, however vague, about the parameters before the experiment
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is begun. 1In gas chromatography little is'usually known about the area
of a peak except that the area is finite and positive (or partly
negative in anomalous cases), but the retention time and peak width of
a previously iaentified compound are often known precisely. This

prior information could be either obtained airectly from the accumulated
results of previous experiments on the same apparatus or predicted
theoretically from published data and the experimental conditions. The
prior p.d.f. of the parameters obtained by either of these methods

is likely to be normal or nearly normal when the number of previous .
experiments is large by the central-limit theorem (11) . A normal
prior p.d.f. is completely characterized by its mean, %P , and its
variance, K . Normality of the prior p.d.f. is unnecessary, but
desirable because it aids the numerical determination of the most
probable values of the parameters. If prior information is not
available for a particular parameter, it is reasonable to assume that
all values of the parameter within a physically possible range are
equally probable; then the prior p.d.f. is uniform and can be
represented by a rectangle function. An exact statement of the limits
of the range of the parameter is not required. For the estimation
method described below, it is important to know only that the true

value of the parameter is well within the permitted range.

The prior information introduced by the choice of the peak
model can be interpreted as giving the nonadjustable parameters certain
means and zero variance. For example, in the Charlier derivative

series with a Gaussian basis function, the high-order cumulants have

means equal to zero.
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Bayesian Estimation

From the p.d.f. of the data given the parameters
(Equation 52) and the prior p.d.f. of the parameters, the p.d.f.
of the parameters given the data can be obtained from the following

form of Bayes' theorem (27):

Py @ Py, &lR)
_ N ey

z) = R (54)
QY

where
P, @ = [P, @ Py, lw) a g (55)
N v Ry

The multiple integration in Equation 55 is over the parameter space

Q . Although not indicated in the notation, Equation 54 is conditional
on the experiment being run in situations where the prior p.d.f. of
the parameters and the previously obtained autocovariance function of
the base-line noise are applicable. The p.d.f. of the parameters
given the data defined by Equation 56 is called the posterior p.d.f.
of the parameters (26). The posterior p.d.f. does not contain
irrelevant information about the details of the base-line noise but
does contain all the essential information in the data about the
parameters. Being a multivariate function defined over am infinite
domain, however, a posterior p.d.f. is too cumbersome for most purposes.
Since numbers are easier to deal with than functions, a few character-
izing numbers will simplify the interpretation of a posterior p.d.f.
Below we discuss the estimation of parameter values that best describe

the position or location of a posterior p.d.f.
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Point Estimators

A set of operations ‘applied to data to obtain an estimate is
called an estimator. The resulting set of estimates is represented
by -the symbol g to distinguish it from the set of true balues, g .
‘our goai is to find an estimator whose estimates contain all of the
available information. Such an estimator we call "ideal". Since the
postérior p.d.f. contains all the information about the parameters,
the relative merit of an estimétor will depend on how well the p.d.f.
of the parameters given the estimates, p%l%(%lg) , "matches" the
posterior p.d.f., pglﬁ(glg) . If the two p.d.f.'s are not the

same, the estimates will contain less information than the data.

When the moments of two p.d.f.'s are the same, then the
p.d.f.'s themselves are the same; therefore, moments should be a
valid basis for the comparison of a posterior p.d.f. with an
estimator p.d.f. The first two moments are usually sufficient to
characterize an estimator. It is conceivable, however, that if some
estimator A were poorer than estimator B on the basis of the first
two moments, estimator A might "match" the posterior p.d.f. better
than estimator B on the basis of higher moments. In practical
applications characteristics of an estimator other than moments may be
important. Some examples of practical criteria are economics,
mathematical simplicity, calculation speed, and insensitivity to chanées
in the probability structure of the system (in particular, nonstationar-
ity in the autocovariance function of base-line noise). These criteria
are not considered here on the grounds that once an ideal estimator is

obtained, a simplification that results in a more practical estimator
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can be justified by comparing the moments of the practical estimator
with those of the ideal estimator. Furthermore, the mathematical
structure of an ideal estimator may contain clues to practical
simplifications; working downward in complexity is easier than

building a better estimator from a poor one.

The difference between the first moments or means of an
estimator p.d.f. and a posterior p.d.f. may be called the bias.

The bias for parameter aj is

-+ (-

B - ) - )
xj(x) f_m o p%]%(%lg) dg f_m @ p%l%(glg) dg (56)

By use of the expectation operator,' Ey » to represent averaging over
y (that is, multiplying by the p.d.f. of variable y and integration

with respect to y ), Equation 56 can be written:

. 57
(aJ) (57)

The second moments about the means or the variances are

’ 2
V (z) = , {[a.-E (@.)1°} (58)
&V klg I glgd
and
2
V (g) =E, {[c.-E_, (¢.)1°} (59)
2 ¥ T Cele i le %

An ideal estimator will have zero bias, and the variance of the estima-

tor p.d.f. will be equal to the variance of the posterior p.d.f.




48

Although an evaluation of the bias and the variances defined
above may be difficult, it is possible to approximate them or at
least make inferences about them by considering averages of the
estimates over the data and the parameters. Averaging over the data
for a given fixed set of values of the parameters, a conditional

bias can be defined by

B.(g) = ~a,
) = By (@) (60)

The conditional bias is an average over the data of the difference
between two parameter values, while the bias of an estimator defined
in Equation 56 is an average over ;he parameters of the difference
betﬁeen two p.d.f.'s. 1In some situations using an estimator that
has zero conditional bias may be desirable, but as shown in an example
below, an ideal estimator may have a non-zero conditional bias. The

overall bias of an estimator, averaged over both the data and the

parameters, is

B. = -0 . 1
; E%’%(ab aJ) (61)

where the joint p.d.f. of the data and the parameters required in

the expectation operation, E , is
%%
p%’%(g,%) = p%(g) p%l%(mg) (62)

The overall bias also is different from the bias of an estimator
defined in Equation 56. 1If one is zero, the other may be nonzero,
but under certain conditions discussed below, both will be zero. The

conditional variance of an estimator for parameter aj is
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. _ 2 ’
VJ.(%) = Ey% s £,%<aj)1 } , (63)

and the overall variance is

2 .
, = ~E .
?b E%:%{[ab £'%(a'g)] } (64)

The overall variance can be obtained experimentally by running a large
number of experiments; usually, it is the only characteristic of an
extimator that can be directly observed in practice. The other
characteristics must be inferred from a p.d.f. that may not be
directly observable when the p.d.f. is a function of the unknown
true values of the parameters. When an estimator is unbiased

(overall bias equal to zero), the overall variance is the variance of
the estimates about the mean of the prior p.d.f. (ap , in the case
of a normal prior p.d.f. and the midpoint of the range in the case
of a uniform p.d.f.). Since the overall variance is strongly influ-
enced by the randomness of the parameters, it is more characteristic
of the entire experimental system than of the estimator. Because it
is less influenced by the prior p.d.f., the mean-square error, defined
as the average difference between the estimated and the true values of
the parameters, characterizes the estimator better than the overall
variance. The conditional mean-square error is

2
-~ . 5
E%lg[(aa ag) 1 (65)

Sj (@) =

and the overall mean-square error is

2
S.=E —C .
P %’%[(ag ag) ] (66)
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The following equations give the relations between the mean-square

errors and the biases and variances:

2
Sj(%) = Vj(%) + Bj‘%) (67)
5;=V; - v, * 2E {a[B-B(a)]} (68)
where V is the variance of the prior p.d.f. The conditional

d
mean-square errxor is always at least as large as the conditional

variance. The overall mean-square error may be larger or smaller
than the overall variance; if the conditional bias is zero, it will

be smaller.

An important result concerning the overall mean-square error
can be derived from the posterior p.d.f. This result, called the
Cramér-Rao inequality (28), states that the smallest possible value
of the overall mean-square error of any estimator is greater than or

equal to the diagonal of the dispersion matrix:

S.>D.. 69
Jd — dJ9 (63)

where the dispersion matrix is the inverse of the information matrix,

L

N

-1
R=1 (70)

The elements of the information matrix are derivatives of the posterior

p.d.f. averaged over the data and the parameters:
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2 )
9% 1In p%lg(%l;g)
] (71)

ik = -E.;e,%[ ) o 3 ay

The Cramér-Rao inequality holds provided the derivatives in Equation 71
exist and are absolutely integrable with respect to z and ¢ . In
the noise and peak models used here these conditions will not be
satisfied when the prior p.d.f. of a parameter, ar for example, is
uniform because the derivative with respect to ar will not exist at
the discontinuous end points of the p.d.f. The mean square error

of e, might then be less than Dnr . But, if the posterior p.d.Ef.
is concentrated well within the ends of the uniform p.d.f., then the
Cramér-Rao inequality will hold approximately. An estimator that
satisfies the equality in Equation 69 is said to be efficient,
efficiency, ej , (overall mean square efficiency) being defined as

the ratio of the minimum mean-square error to the actual mean-square

error:
e.=D../S. (72)
J Jdd d

An efficient estimator exists only if the information matrix, defined

by Equation 71, is independent of the values of the data and the

parameters; this is true only when the posterior p.d.f. 1is normal

(29).

MP Estimator

From Equation 57, the mean of the p.d.f. of an ideal
estimator and the mean of the posterior p.d.f. should have the same

value. Therefore, the mean of the posterior p.d.f. would be an
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ideal estimator in terms of bias but the mean is often difficult to
calculate. Another estimator, also based on the posterior p.d.f. but
more easily calculated than the mean, consistsrof taking the most
probable values of the parameters to be the parameter estimates (MP
estimator). If an efficient estimator exists, the MP estimator will
be efficient and unbiased, and the p-d.f. of the MP estimator will
be the same as the posterior p.d.f. Consequently, if the posterior
p.d.f. is normal, then the MP estimator will be ideal in the sense
that the estimates along with the information or dispersion matrix will

contain everything that can be said about the parameters.

Example

To illustrate the use of an MP estimator, consider the
problem of estimating the mean, o , of the retention time of a gas-
chromatographic peak from 7 measurements (runs) xl,xz,...,xh . Runs
on previous days showed that the true mean has a normal p.d.f. with
mean ¢ and variance Vé » and that the individual measurements are
independent and have a normal p.d.f. with variance ¢ . The

posterior p.d.f. of the true mean, o , given the data, z , is

Vx +a ce/n

_ -1/2 2
Palg‘“lfﬁ’ = (2nV') expl-(a - e )</2v"] (73)
where
_ n
z= ) z./n
g=1 7

and
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The MP estimator, a , is found by equating the first derivative with

respect to o of the right side of Equation 73 to zero, replacing o

with a , and solving for a

-
_ pa: + apC'/n

AT 7 74

The MP estimator of the mean, the weighted average of the prior mean
and the data mean, is not the same as the commonly used estimator, z ;
nevertheless, a and & become approximately equal when eithexr the
number of measurements or the prior variance becomes large. The
estimator p.d.f. of o , given a , is

Py|glela) = 217"y ™2 expi- (a-a) 2/2v"] (75)

Since pdla(ala) is equal to palg(alg) for all values of « , the
MP estimator is ideal; also, since the posterior p.d.f. is normal,

the MP estimator is efficient and unbiased.

The different quantities defined above that are used to

characterize an estimator are listed below for the MP estimator of

the mean retention time.

o -
- P
Bla) 1+nV /C (76)
P
B(%)=B=0 (77)




54

' -l“ (78)

Vi) =V l+C/(an). )

2
1+ (a_-0) %/ (nV;)

S@) =7V l+C/(an) (79)
o
V= TZ7mr (80)
P
=D=y = _C/n__
S=D=17 ‘1+c'/(nvp) (81)
V% (,75) = Va @) =1 (82)

The overall bias B and the estimator bias Ex(%) are zero, whereas

X
the conditional bias B(a) is nonzero except when the true mean
happens to equal the prior mean (Equation 76). But, when # or Vb
are large, the conditional bias approaches zero. A nonzero conditional
bias would be undesirable when the estimates of the retention times of
two peaks on the same chromatogram are used to calculate a retention
ratio or 2 retention index. Here, it would be better to use the Mp
estimator of the final result, utilizing prior information of the final
result itself, rather than to combine the estimates of two retention
times. The estimator variance, V&(a) + is less than either the prior
variance, ?b » or the variance of the average of the data, xz ., which
is equal to C/n . The overall variance, V¥ » is greater than the sum
of the prior variance and the variance from the data (C/n) when C/n
is less than V% ; in other cases V "is less than ?é (Equation 80).
If the prior variance was assumed to be infinite when in fact it was
finite, that is, if the prior information was ignored in the estimation,

the overall variance would be equal to the sum of the prior variance
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and the variance from the data, Vé + C/n - In the statement of the
estimation problem the true mean was assumed to be random;‘in some
situations the true mean may be constant and the prior information
may be random. For example, suppose the prior mean, ap , is the
average of m measurements and the prior variance, Vé s is equal to
C/m . The MP estimator would in effect be the average of 7 plus
m measurements, the m measurements being considered as priox
information. The overall variance (Equation 80) correctly gives the
average variance of a about ap - But, because the prior mean could
be far from the true mean in a single sequence of # runs, the overall
variance is not a useful result in this case. The overall mean-
Square error gives the more realistic variance of the estimate'about

the true value of the mean.

Estimator for Nonlinear Peak Model

In the noise model described here the parameters must be
linear in the peak function for the MP estimator to be efficient.
Edgeworth's form of the GCA series (Equation 10) is nonlinear
(except for ao', the peak area), and therefore the MP estimator will
be inefficient and generally biased. Nevertheless, the loss in
efficiency and the bias are not usually serious. The primary hypothesis
of this thesis is that the MP estimates along with the dispersion
matrix or the information matrix, though not ideal characterizations
of a posterior p.d.f., are approximately ideal. Even when the MP
estimator is poor in terms of variance and bias, it may be valuable

in its own right in giving the estimates that are the most probable in

the light of the data available.
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The Edgeworth series is a transcendental function of the peak
parameters. Hence the MP estimators for the individual éarameters
cannot be derived in the form of an explicit algebraic function as
can the MP egtimatcr of the mean in the example considered above
(Equation 74). The estimator of each parameter depends* on the values
of all the other parameters, and all the estimates must be determined
simultaneously. If the prior information about a particular parameter
is strong and the information from the data adds little to the total
information (see below), simply assigning the value of the prior mean
to the estimate of that parameter may be adequate without calculating
it, that is, the parameter may be made nonadjustable. When only the
first few parameters of a series peak-shape model are estimated, it is
assumed that the data will contribute little to the information about
the high order parameters; these parameters can thus be given a constant
value and made nonadjustable. When the peak-shape function is well
known, it may be necessary to estimate only the area, the retention
time, and the width of the peak. Reference (15) gives an example
in which the parameters of the peak-shape function are a set of samples

of the peak on a previous chromatogram.

Fisher's Measure of Information

The posterior p.d.f. (BEquation 54) is proportional to the
product of the prior p.d.f. and the p.d.f. of the data, given the
values of the parameters. Therefore, the information matrix defined

by Equation 71 is the sum of two parts:

*
The dependence is mathematical rather than statistical,
though the estimates may be statistically dependent also.




57

P=f,*%s . (83)
The prior-information matrix, ,gé » has the elements

32 1n P
s T P (84)
If the vector of prior variances,. 3} : 1s extended to be a matrix
with covariances as well as variances, then the prior-information
matrix will be equal to the inverse of the covariance matrix. When
one or more of the parameteré has a uniform prior p.d.f. and if the
MP estimates are well within the end points of the uniform p.d.f.'s,
thé corresponding rows and columns of the prior-information matrix

can be given the value zero. The data-information matrix, '{d , has

the elements

»* 1n p (Bl
'y

I = -E_[ ] _ (85)
Gk K el g
In the noise model used here, Equation 85 becomes
- f°° 1 3 F(s) 3 F(s) 4s (86)
djk . Cx(S) ] @ 3 ay

where the dagger + means take the complex conjugate.

The diagonal elements of an information matrix are quantitative
measures of the average amount of information contained in the data
(including the prior data) about the parameters, or from another view-

point, they are the worth of the parameters in terms of the information
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the parameters contain about a peak. Some'parameters may contain
information from the data already contained in other paraméters. The
off-diagonal elements of an information matrix expreés the degree of
this redundancy between two pa?ameters. Although there are other
measures of information, this one, called Fisher's measure (30),
arises naturally from considerations of the posterior p.d.f. and is
intuitively related to the familiar usage of precision defined as the
reciprocal of variance. Fisher's measure of information is not an
absolute measure of precision or information, however, because the
magnitude of the matrix elements Iﬁj depend on the units of the
parameters. Therefore, Fisher's information measure may not be suitable
for the comparison of the information content of the parameters of
different peak models. The magnitudes of the diagonal elements of the
information matrix are used here for the comparison of the information

in the parameters of peaks with different parameter values.

An essential requirement of a series model of a peak-shape
function is that the information content of a parameter in the series
must decrease with increasing order of the parameter. As more and more
parameters are included in a model, they should eventually contain all
the information about the peak*. Edgeworth's series satisfies this
requirement: in white noise the ratio of the information in parametexr

2

r to the preceeding parameter of order (r-1) is equal to 2(2r-1)/r

when r is greater than 3 . 1In general, the information matrix for

any peak model is symmetric, element Iﬁk is equal to element ij ’

*
In some models, the information content of a parameter may

first increase and then decrease with increasing order. The initial
increase may be disregarded.
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and the determinant of the information matrix is greater than zero. The
off-diagonal elements of the information matrix for Edgeworth's series,
because of the symmetry with respect to frequency of the derivatives

in the definition of the matrix elements (Equation 85), are zero for
even-odd subscript pairs except for the elements containing derivatives
of the peak width, a_ . That is, element Iﬁk is equal to zero when

2
J +k is odd except when § or k is equal to 2 .

Predicted Standard Deviations

The square_root of the diagonal elements of a dispersion
matrix (Q » Equation 70) are estimates of the standard deviations of
the parameters. These predicted standard deviations are random
variables because, in the case of inefficiency, they depend on the data.
The off-diagonal elements of Q are covariances. They indicate the
magnitude of the statistical interdependence of errors between two
parameters in the same way an autocovariance function characterizeé
noise. For example, if the noise were to cause parameter estimate
aﬁ to have a certain error, then parameter a, probably would have
an error Djk times the error in aj . The degree of interdependence

is more easily seen in the correlation matrix, Q' , where

1 .
e
’ = » * o
Djk ng(Dgg Dkk) (87)
The diagonal elements of a correlation matrix are equal to 1 , and the
off-diagonal elements can be neither greater than 1 nor less than
-1. The Cramér-Rao inequality does not give specific information about

the magnitude of individual covariances; the actual covariances may be

greater or less than the corrésponding element of the dispersion matrix.
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A geometrical interpretation of the Cramér-Rao inequality in reference
(28) wuses the complete disperson matrix to make probability statements

about the errors in the parameters taken as a group.

Ideally the off-diagonal elements of the correlation matrix
for a peak model are all zero. In this case the estimation of the
high-order parameters of a series model could be omitted without
significantly affecting the estimates of low-order parameters.
Neglecting a cumulant in Edgeworth's series, or giving it the value
zero, when in fact it has the value X' , introduces a determinate
error equal to =K' . 1If lower order cumulants have a nonzero
correlation with the neglected cumulant, the error can propagate
downward to give the lower cumulant estimates a significant bias.

On the other hand, if the estimator is inefficient, zero correlation
does not necessarily rule out this kind of error. For Edgeworth's
series the correlation between retention time (an odd-order parameter)
and any even-order parameter is zero. Hence, neglecting even-order
cumulants should not have a significant effect on the bias of the

retention-time estimate.

The other off-diagonal elements of the correlation matrix
for the parameters of the Edgeworth series are generally nonzero, and
their magnitudes vary greatly with the values of the parameters. The
values of even-even and odd-odd subscript correlations are positive
and may be an high as 0.99, but decrease as the distance from the
matrix diagonal increases. The values of the even-odd correlations are

generally small or negative; sometimes they may be as low as -0.99.
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Efficiency and Bias

For an MP estimator to be efficient, the magniﬁudes of
the elements of the information matrix must be constant over all values
of the parametérs. Therefore, as the values of the elements become
more nearly constant over the range of parameter values in which the
posterior p.d.f. is most significant (such as + 3 standard
deviations from the maximum), the MP estimator will become more
efficient. As the number of independent samples used in the
estimation approaches infinity, the MP estimator becomes efficient,
unbiased, and normal (31). But the number of independent samples that
contain information about a peak is limited by the finite width of the
peak and by the autocovariance of the noise. Nevertheless, as the
amount of information (the magnitude of the diagonal elements of { )
increases, the posterior p.d.f. becomes more concentrated about its
maximum and the range over which the posterior p.d.f. is significant
becomes smaller. Therefore, since the nonlinearity of the system that
contributes to inefficiency does not increase with the values of the
diagonal elements of { , the posterior p.d.f. must become more
nearly constant over the significant range, and the MP estimator must
become more efficient as the information increases. This argument is
often stated in terms of signal-to-noise ratios (32) , but these are
equivalent to the diagonal elements of the information matrix, Id .
In a situation where the MP estimator might be highly inefficient
and highly biased because of insufficient information in the data and
little prior information, to present the entire posterior p.d.f. would
be better than to attempt to characterize it with a point estimate and

an approximate variance. The amount of information about the parameters
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can be increased experimentally by increasing the area of the peak
relative to the noise power of by decreasing the similarity of the
peak to the noise waveforms. For example, a chromatogram with a noise
power-density spectrum concentrated at low frequencies w;uld give
‘more information about narrow peaks than broad peaks of the same area
because narrow peaks have more information at high frequencies, where

the noise intensity is low.

Bias, since it is defined in terms of means, can result from
choosing the maximum rather than the mean of the posterior p.d.f.
when the posterior p.d.f. is asymmetric about its maximum.. Bias in
an MP estimator caused by asymmetry in the posterior p.d.f. will
decrease with increasing information for the same reason that
efficiency increases with more information. Nonstafionary base-line
noise can cause bias in the estimates of parameters as well as in the
estimates of parameter standard deviations. Nonstationarity that
results in changes in the magnitude of the power-density spectrum
but not its mathematical form might be reduced by approximating the
power-density spectrum with a simple function and estimating one or
two parameters of the function along with the peak parameters. This
method can be used only when the power-density spectrum does not
change or changes only slightly during the elution of a peak. 1In the‘
problem of estimating the mean of a set of measurements discussed
above, the variance of a single measurement is as;umed to be

constant and known. If the variance changed from day to day, it
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could be estimated along with the mean. However, aepending on the
form of the prior p.d.f., the MP estimator of the variaﬁce may be
inefficient (because the posterior p.d.f. is not normal) and may be
biased (becausé the posterior p.d.f. is asymmetric about its

maximum) .

Sampling Interval and Sampling Time

In practice an important cause of both bias and inefficiency
is presenting the estimator with insﬁfficient data either in the
frequency domain (sampling over too small a range of frequency) or in
the time domain (sampling over too short a period of time). Consider
the loss of efficiency, and also the loss of information, in the
frequency domain caused by sampling the Fourier transform of data

between finite Nyquist frequencies. According to Equation 87 a

L33

Jd
of a function of frequency. This function can be called the

diagonal element of a data information matrix, Id , is an integral

information function of parameter aj . The information functions are
real, positive, and even functions of frequency, and they approach zero
at high frequencies. The total information is the integral of a
frequency function over infinite limits. Although using finite
integration limits will cause loss of some information, a small loss,
such as 1% of the total information, may be acceptable in practice.
Given a 1% or some other acceptable information loss, integration
limits i-sj could be found so that integration of the information
function between these limits would attain (100-1)% of the total
information. If the integration limits are evaluated for each parameter

and the largest limit (sI) found, then the sampling interval AtI
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equal to l/(2sI) would be the largest that could be used for the
parameters to contain at least {100-1)% of the information in the
data. Outside the frequency range i_sI the data contain little
information abéut the parameters. Since data that contain no
information cannot contribute to bias, the maximum sampling interval,
At_ , will be small enough to ensure that bias as well as information
loss are within acceptable limits. Similarly, the time intervals,

T. , within which the data contain an acceptable fraction of the total
information about parameter aj can be found by use of the inverse
Fourier transforms of the information functions. The inverse Fourier
transform of an information function is a function of time and its
integral between infinite limits is equal to the total information,

Id . However, finding the shortest acceptable time interval, TI ’
Jd

in the time domain, where information functions are oscillatory, will
be more difficult than finding SI in the frequency domain. The
information functions in the time domain are symmetrical about the

retention time of a peak. Therefore, data should be taken the same

distance (TI/2) on each side of the mean even when the peak has a

pronounced tail.

Even though the above methods for finding the maximum sampling
interval and the minimum sampling time are exact and clearly defineqd,
they may be difficult to evaluate. An approximate method for calculating
the maximum sampling interval is discussed in the section on digitization.
Points on a base line separated by more than one half the autocorrelation
width of the noise, Tc (Equation 22), are effectively independent;

therefore points more than one half the autocorrelation width plus four
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peak widths (standard deviations) from the retention time of a peak
should contain little information about the peak. Hence, a reasonable

approximation of TI is (80’+Tc) .




CHAPTER 2

EXPERIMENTAL

Many computer-based methods for the reduction of chromato-
graphic data are designed for the computer rather than for the
chromatographic system. Most computer methods are designed to meet
the limitations of data Storage, time, and cost, or to handle data
from several chromatogréphs simultaneously. These methods have an
importgnt role in the automation of routine analyses; nevertheless,
if all the information in a chromatogram is to be used to cbtain the
most precise measurements, a method designed for the chromatogram is
required. In research applications and in some routine appiications
the information contained in a chromatogram about a peak may be a more
important consideration than the cost of extracting the information.
The maximun posterior probability (MP) method, described in Chapter 1,
is suited to such applications because it utilizes as much of the
available information as possible for the estimation of peak parameters.
In this chapter the Mp method is applied to the estimation of peaks
obtained from an isotyermal gas-chromatographic system with a thermal
conductivity detector. Isolated peaks are considered primarily,
though in limited circumstances the method is useful for the detection

of small peaks under a larger peak.

In the MP method the most probable values of the parameters
of a peak model are taken to be the estimates of the parameters of an
experimentally observed peak. The probabilities of different values

of the parameters are derived from a probability-density function
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(p.d.f.) called the posterior p.d.f. of the parameters. Once the
posterior p.d.f. has been obtained, the determination of the values
of the parameter estimates is a purely numerical problem. The

mathematical details of the method used by the authors are given in

the Appendix.

The posterior p.d.f. contains all the available iuformation
about the parameters of a peak. The MP estimates and the minimum
mean-square errors calculated from the posterior p.d.f. together
contain nearly all the available information in that they approximately
specify the posterior p.d.f. The square root of the minimum mean-
square errors, here called the predicted standard deviations, are
approximate standard deviations of the parameters due to base-line
noise alone. These and the information matrixz, which provides a

quantitative measure of information, are defined in the Appendix.

The posterior p.d.f. is proportional to the product of two
p.d.f.'s (Equation a-1, Appendix). 'One is the p.d.f. of the
parameters given the data, which contains the information in the
experimental observat%ons about the parameters. The other is the
prior p.d.f. of the parameters, which contains information about the
parameters available from previous experience. The p.d.f. of the
prarameters given the data reflects the effect of the randomness of the
data on the apparent values of the parameters. The derivation of this
pr.d.f. requires clearly and carefully defined models for the randomness
of the data, for the peak as a function of the parameters to be
estimated, and for the relation between the peak model and the data

(see Appendix I). These models may be called the a priori
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information about the system because they are not based on direct
experimental evidence. In contrast to the a priori information,

that contained in the prior p.d.f. of the parameters may be obtained
from direct observation. In this study, prior information is
unavailable, and therefore a prior p.d.f£f. is chosen that is the
least informative of all possible p.d.f.'s. A4 priori information
about a chromatographic system is obtained by a process of induction

from other systems that the experimenter believes are similar to the

system under study.

Since a priori assumptions may be incorrect for particular
experimerts, the results may not be valid descriptions of reality.
Nevertheless, the results will be self-consistent with respect to the
a priori information, and independent checks to confirm the reality

of the models being used can be made after the experiment has been

carried out.

For the purpose of obtaining all the information in a
chromatogram about a peak, the mathematical form of the model for the
peak is unimportant. The primary consideration is that the peak model
must specify the actual peak as completely as possible. The peak
model used here (Edgeworth's form of the Gram-Charlier type-A series)
' is based on the Gaussian function. The choice of the parameters used
to indicate deviations of the peak shape from the Gaussian foxrm also
is unimportant. The shape parameters used here are standardized
cunulants. (The word standardized is usually omitted.) Cumulants,
though related to moments, are mathematically more simple and for this

reason are preferred. The parameters are fepresented by the symbols
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A for peak area, to for retention time (mean), o for peak width

(standard deviation), and <Ké to Ké for the cumulants.

In the model for base-line noise the average behavior of

. base-line noise is completely characterized by an autocovariance
function, the Fourier transform of which is a power-density spectrum.
- It is assumed that the noise has a normal p.d.£f. Ié is also assumed
that the power-density spectrum is independent of time (stationary)
so that the spectrum can be estimated from a section of base line
without a peak. Although the estimate of the power-density spectrum
may be considered prior information about the chromatographic system,
the assumption that the estimate is stationary and is an accurate
description of the noise during the elution of a peak is a priori
information. Only noise that adds to the chromatographic signal is
considered in the estimation of peak parameters. Multiplicative
noise or noise with a variance that increases with increasing signal
smplitude was studied and found to be negligible in the chromatographic

system examined.

In practice, base-line noise is not the only cause of
variation in the values of estimated parameters. Fluctuations in the
carrier-gas flow rate and the column temperature cause variations that
may be larger than those caused by base-line noise. For the purpose
of testing the MP estimator a chromatographic system is required in
which only base-line noise affects the estimates of the parameters.
Moreover, the true values of the parameters must be known to detect bias.
A system satisfying these requirements to a degree that can show the

influence of the estimator itself on highly precise results may be
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difficult to construct. Such a system, however, can be simulated by
placing peaks generated by a computer with known values of parameters
onto sections of actual base-line noise. Although the simulated
chromatograms can be used to test the MP estimator under the
a priori assumptions, they cannot be used to tést the applicability of

the g priori assumptions to reality; for this, actual peaks must be

analyzed.

In summary, the application of the MP method to a specific
chromatographic system consists of the following steps.
1. Characterize the random part of the data. Choose a model, determine
the values of the parameters of the model (here we determine the power-
density spectrum), and then test the applicability of the model (for
stationarity, normality, etc.).
2. State the mathematical model of the peak(s).

3. State the prior information about the parameters of the peak in the

form of a p.d.f.

4. Write computer programs and test them with computer generated peaks.
5. Analyze actual chromatograms. |

6. Study the results ‘to check the applicability of the models and the
adequacy of the digitization of the data in steps 1 and 5 (quantization

level, sampling interval, and sampling time).

In the material that follows, presented in three separate
parts, base-line noise is studied through power-density spectra, the
MP estimator itself is tested through the use of computer—-generated

peaks on actual base-line noise, and the MP method is applied to actual

chromatographic peaks. The assumptions made, and the mathematical
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details of the peak model and the computation method used are presented

in Appendix I.
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EXPERIMENTAL

Chromatograms were digitized by faking interval-area samples
(defined in Chapter 1). an Rerograph Digital Integrator Model 471-42
operated in the manual integrate mode was used for this purpose. The
interval areas were printed on paper tape and manually transferred to
punched cards. The remote readout terminals were connected to an
Adjustable Time Delay (Potter and Brumfield, Model CHD) through a

100-ohm resistor and a 0.02-MFD capacitor as in Figure 4.

Adijustable

Remote Time Delay
Readout © ,\1
Terminals o INC ¥NO
I
11

of Integrator AN~

Power Supply
Figure 4. Schematic wiring diagram of circuit used to obtain interval-

area samples of detector signal.

The capacitor limited the integration dead time to less than

60 pusec as measured with an oscilloscope. A Gow Mac Model 9999-C
Power Supply provided constant vqltage for the Adjustable Time Delay.
The sensitivity of the integrator was specified to be 2.5 X lO-7
volt sec/count. The sampling interval was measured independently

for each chromatographic run by dividing the elapsed time, as
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indicated by the integrator's internal clock (line-frequency
synchronous), by the total number of samples taken. Drift in the

sampling interval over a 1l4-hr period was less than 0.1% .

The thermal conductivity cell was a Gow Mac Model 9285
semi-diffusion pretzel cell with type-W tungsten filaments mounted
in a TR IIB temperature-regulated case. A Gow Mac Model 9999-C
Power Supply supplied bridgé current. A two-diaphram pressure regula-
tor supplied helium carrier gas at 50 psig. Sections of thermometer
capillary along with a needle valve controlled the flow of helium
through the sample and reference sides of the detector separately.
The flows were adjusted to 40 ml/min by use of a soap-bubble
flowmeter. Sample of 1 ul of liquid plus 1 ul of air were injected

on-column with a Hamilton 10-ul syringe having a Chaney Adapter.

Most of the data were obtained with a 4-m, 0.31l-cm
i.d., copper column packed with 10% SE-30 on 60 to 80 mesh
Chromosorb P. The column temperature was held at 80.10°C to within
an estimated 0.05°C in a Colora water-bath thermostat. The
temperature of the thermal conductivity cell was set at approximately
120°C with a variable voltage transformer rather than the internal
temperature controller. The pressure drop across the column was
139 cm Hg, barometric pressure varied between 68.7 and 69.1 cm Hg,

detector current was 250 ma, and the sampling interval was

1.504 + 0.002 sec.

The following digital filter (the necessity for filtering

the data is discussed in Chapter 1) was used for both minimizing the
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sampling end-point errors and for whitening base-line noise for

estimation of power-density spéctra:
h(z) = 6(z) - [8(2-1)+8(2+1)1/2 (88)

where 0§ represents a delta function and z represents reduced

time in units of the sampling interval, At . The first-and the last
data samples were given the value zero after filtering. The filtered
data were corrected for both the filtering and the distortion caused
by interval-area sampling ﬁy multiplying the Fourier transform of the
filtered data by (mws)/[2 sin(1rs)]3 , where s is reduced frequency.
The corrected Fourier transform of the data at zero frequency was
defined to be zero because the mean of the base-line noise, being
arbitrary, causes the power-density of the noise at zero frequency

to be extremely large.




75

POWER-DENSITY SPECTRA

Curve A in Figure 5 is an'estimate of the power-density
spectrum of the base-line nqise for the gas-chromatographic system
described above. The estimate was obtained from five base-line
sections of 512 interval-area samples each. The sections were
taken between chromatographic runs over a period of 14 hr. The five
separate estimates of the power-density spectrum were averaged; the
averaging process smooths the estimate and is equivalent to convolution
with a Bartlett spectral window (34). A Hanning spectral window used

for further smoothing is described by
W(s) =68(8)/2 + [8(s-1/N)+8(s+1/N)])/4 (89)

where &N 1is the number of data samples. The power-density spectrum
of the base-line noise after filtering (Equation 88), but before
smoothing and correcting, was not flat, but decreased slightly at low
frequencies. The filter did not give a completely flat spectrum,

and smoothing this uncorrected spectrum caused a positive bias at low
frequencies. Nevertheless, the error is not so large as the negative
bias that would be introduced if the spectrum were smoothed after
correcting for filtering. The powér (total variance) of the noise was
17 uvz and the autocorrelation width 242 sec. The power of the
individual sections of base line ranged from 0.4 to 55 uv2 , and
the autocorrelation widths ranged from 115 to 243 sec: The variation
in the power is a measure of the degree of nonstationarity in the

system. The observed variation was much greater than would be

expected of a stationary process. Nearly all the variation occurred
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Figure 5. Power-density spectra of base-line noise from a thermal
conductivity detector. The dashed lines indicate the Nyquist

frequencies, which are 0.33 Hz for A and 0.28 Hz for B .
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at‘the lowest frequencies (0.001 to 0.004 Hz). Tests with computer-
generated peaks (discussed in detail below) show that these large
variations in power have little effect on MP estimates of peak

Parameters.

Cuive B in Figure 5 is the estimate of a power-density
spectrum obtained for base-line noise with the automatic temperature
controller of the detector in operation. The controller introduced
an oscillation in the base line with an amplitude of about 10 pv
peak to peak. The oscillation accounts for the slight shoulder on
curve B at about 0.005 Hz, which corresponds to the cycle frequency
of the controller. The power and.the autocorrelation width of
curve B is 110 uv2 and 280 sec. Curve B is less smooth than
curve A in Figure 5 because it was derived from only one section of

512 samples instead of five as for curve A.

The base-line noise of the gas-chromatographic system
(curve A in Figure 5) is characterized by intense noise at low
frequencies. Above 0.02 Hz the noise is much less intense and is
essentially white. The white part of the spectrum has an average
power density of 0.017 uvz/Hz . About 25% of the white noise
component is caused by quantization which is a noninstrumental source
of noise. The remaining instrumental white noise has an average
power-density of 0.012 pvz/Hz ; the primary sources of this noise are
probably the amplifier of the integrator and the power supply of the
detector. The relatively large proportion of quantization noise could
be decreased by either amplifying the detector signal or reducing the

quantization interval.
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Interval-area sampling attenuates the noise at frequencies
above the Nyquist sampling frequency | [1/(2At) , where At is the
sampling intervall, but just above and less than twice the Nyquist
frequency there is little attenuation (Figure 3, I). Sampling causes
the power density of the noise in this region to overlap the power
density just below the Nyquist frequency (Figure 3, VI). The overlap
accounts for part of the upturn of spectrum A as the Nyquist frequency
is approached, because the instrumental white-noise component probably
extends through the region where overlap occurs. The remainder of the
upturn is caused by the application of the correction for distortion
due to interval-area sampling to quantization noise. Quantization
noise is introduced after sampling and therefore does not require
correction, but it cannot be separated from base-line noise, which

does require correction.

The random variation of the sampling interval (jitter) was
measured by taking a number of sets of noise data with the zero-
offset control of the detector bridge adjusted to give average outputs
ranging from O to 30 mv . The power density, averaged over
twenty points nearest the Nyquist frequency and nearest one half of
the Nyquist frequency, when plotteé against the square of the signal
average, gave two straight lines with little scatter. The slopes of
the lines were substituted in the equation for jitter noise (Equation
41) and the equation for noise due to variation in integfation dead
time to give 40 psec as the standard deviation of jitter, and
90 psec as the standard deviation of the variation in integration

dead time. The result for jitter is reasonable and probably accurate,
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__nbu£ the result for variation in dead-time is larger than the intégration
dead-time itself. This violates the assumption made in the derivation
of the effects of variation in integration dead time so the value

20 ﬁsec is not an accurate estimate of the true value. A result
this high could occur if the p.d.f. of the variations was non-normal,
but more likely was caused by a noise source other than variation in
integration dead time that also has a white power-density spectrum
that increases with the amplitude of the detector signal. The noise
from the integrator amplifier undoubtedly increases to some extent
with increasing level of input signal. The power density of the noise
at low frequencies also increased with signal level, but not so
regularly and not at the same rate as at high frequencies. Further
runs with a well insulated mercury cell and a voltage divider as a
signal source showed conclusively that an important part of the power
density of the noise at low frequencies was from the integrator

amplifier (see Table VIII).
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ESTIMATOR EVALUATION

The estimation method was tested by adding computer-
generated peaks with known parameter values to the sections of base-
line noise used for estimating the power-density spectra. Other than
round-off errors in the computer-generated peaks (which were negligible)
and numerical errors in the estimation process (see Appendix II), the
base-line noise was the only source of error in the analysis of these
simulated chromatograms. The computer-generated peaks were not
interval-area sampled, hence the sections of base-line noise and the
power—-density spectra were not corrected for interval-area sampling.
This means that the average characteristics of the base-line noise of
the system being tested are slightly different from those of the
experimental system. The difference is small (the correction for
interval-area sampling is relatively small), however, and since the
MP method is independent of the type of noise (as long as an accurate
power-density spectrum is used), the results of the test will be
valid for the experimental system. The retention times of the
computer-generated peaks were taken from a set of pseudo-random real
(nonintegral) numbers with a uniform p.d.f. The estimated parameter
values were compared with the true.values through the use of
Student's ¢ . Bias was considered significant when the 90%
confidence interval about the observed value of Student's ¢ did not
include the value zero. The variances of the estimates Qere compared
by use of the efficiency, which is the ratio of the predicted to
observed variance. The predicted variance, obtained from the

Cramér-~Rao inequality (Equation 69), is the smallest possible variance
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of any estimator.

The predicted standard de&iations in Figure 6 are square
roots of the averages of the predicted variances for each parameter,
calculated for each set of peaks. The relative standard deviation
of area and the absolute standard deviations of the other pérameters
are approximately inversely proportional to peak area over the range
103 to lO6 counts. This range would correspond to about 0.0003
to 0.3 pl of normal octane. For areas or amounts greater than this
range the curves in Figure 6 should continue as straight lines.
Therefore, when base-line noise is the only source of errot, results

as precise as desired could be obtained by increasing peak area.

Table I gives the actual performance of the MP estimator
for peaks similar to normal octane. Many of the efficiencies.are
significantly greater than one. Theoretically the efficiency of an
estimator cannot be greater than one, but an experimentally measured
efficiency can be greater than one for two reasons. The first is
the randomness of both the observed variance and the expected variance.
The variance of the observed variance is approximately invérsely
proportional to the number of experimental runs. Because the peak
model is nonlinear, the predicted variance of a parameter depends
on the values of all the parameters and will vary as the parameter
estimates vary. When the total information about the parameters is
reasonably large, however, the variation of the predicted variance
should be negligible in comparison with the variation or variance of
the observed variance. From the ten runs furnishing the data for peak

area in Figure 6, the relative standard deviation of the predicted
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Figure 6. Variation of predicted standard deviation with peak area.

Except for area, the parameters of the peaks have values similar to

those of normal octane in Table IV. Area is in units of integrator

counts; lO3 units correspond to about 0.03% of a 1 pl sample.
The standard deviations of area, Ar » are relative, and those of
to and o are in units of the sampling interval. The power-

density spectrum is that of curve A in Figure 5.

82



Effect of Peak Arxea on MP Estimator Performancea

TABLE I

Efficiency (t-:)b

83

Area 103 lO4 105 106
A 4.4 1.6 2.4 1.7
to 5.7 2.2 3.0 4.1
o] 8.1 2.6 2.3 2.0
K3 3.7 2.1 1.7 2.4
X, 1.4 5.0 2.9 2.5
Ks 6.2 2.9 1.5 2.7
KG 9.3 10. 5.8 2.8

Bias (Student's ¢)°

Area 103 lO4 105 106
4 -1.5 -0.1 1.2 1.0
to -1.0 -0.7 0.1 0.6
c -1.2 0.5 1.3 1.4
K3 -0.6 -0.2 0.2 0.8.
K; -0.1 1.0 1.4 2.1
Ks -0.8 0.1 0.2 0.5
K6 1.5 1.6 2.0 2.6

a‘I’en computer generated peaks were evaluated for each area.
The peak parameters are as in Figure 6.
bThe 90% confidence interval for ¢ is 0.53eo < e < 2,7

where

€

0]

is the observed efficiency.

cThe 90% confidence intexrval is ¢ + 1.8

ol
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variance was 10% at 103 and 0.01% at 106 area units. The
approximate relative standard deviation for an observed variance, on
the other hand, is /372. where 7n is the number or runs, or 45%
for ten runs. Confidence intervals for the estimated efficiency,
which is a ratio of variances, were calculated by use of Fisher's

F Qdistribution. The predicted variance in the numerator of the

efficiency ratio was assumed to have an infinite number of degrees of

freedom.

The second cause of an estimated efficiency greater than
one is inaccuracy in the power-density spectrum. For example, if
the spectrum is mutliplied by a constant, the predicted variance,
and therefore the efficiency, will be proportional to the constant;
the observed variance, however, will not change. The positive
bias at low frequencies of the estimate of the power-density spectrum
probably is the major cause of the efficiencies in Table I being
greater than one. The error in the power-density spectrum should not
have serious consequences; it should have little effect on bias of
the parameters (except possibly for extremely broad peaks, discussed
below) and merely make the predicted standard deviations slightly
conservative. The efficiencies still can be used to detect trends

in the performance of the MP -estimator.

Effect of Peak Area

Contrary to. the theoretical prediction in Chapter 1, Table I
shows that as peak area and information increased, efficiency seemed

to decrease and bias to increase. (The amount of information about a
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pafameter is roughly equal to the inverse square of the predicted
standard deviation.) In view of the randomness of efficiency and bias
these variations may be coincidental. The steady change in bias from
negative to positive, and the less pronounced decrease in efficiency
with increasing area is probably the result of numerical errxors in the
estimation process rather than a proéerty of the MP estimator itself.
As the amount of information increases, the demand for numerical
accuracy also increases. But all the data in Tables I, II, and III
were obtained with approkimately the same numerical accuracy in that
the probability of the estimates was close to the probability of the
most probable values of the parameters (same termination constant,
see Appendix II). A better procedure might be to vary the termination
constant with the amount of information so the numerical accuracy

can increase as the information increases.

Effect of Peak Width

Again contrary to the predicted trend, Table II shows that
efficiency generally seems to decrease as peak width decreases and
as information increases. The cause of the disagreement with theory
is probably the positive bias in the estimate of the power-density
spectrum at low frequencies. As peék width increases, the information
for all the parameters concentrates at low frequencies. Thus, the
information matrix, and consequently the predicted variances, for wide
peaks will be influenced more than for narrow peaks by thé bias in the
power-density spectrum. The decrease in apparent efficiency with
increasing peak width is caused by a determinate error in the predicted

variances; whereas for increasing peak area the decrease in apparent
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efficiency is caused by a determinate error in the observed variances.

As the total amount of information about a peak decreases,
the posterior -p.d.f. flattens and eventually more than one maximum
may appear. The base-line noise may form peak-like curves, which will
appear as maxima in the posterior p.d.f. and will be especially
evident along the retention-time axis. Predicted variances, which
depend on the curvature of the posterior p.d.f. near the absolute
maximum, are accurate only when the posterior p.d.f. is normal.

A posterior p.d.f. with multiple maxima is definitely not normal,
and thevactual variances will be greater than predicted. Therefore,
as information decresses and the detection limit is approached,
efficiency should decrease, though the decrease does not begin within

the ranges of area and peak width in Tables T and II.

Although the bias of most of the parameters in Table I is
insignificant, there seems to be a general trend of increasing bias
with increasing order of the parameters, which might be expected
because of the increasing nonlinearity of the high-order parameters.
If the test for bias were based on the predicted rather than the
observed variance, the bias of all the parameters would be significant
because the efficiencies are all greater than one. In Table II the

bias appears to be independent of the peak width.

Number of Data Points

The effect of the number of data points used in the

estimation on bias and efficiency is shown in Table TII. Evidently,

the rule of thumb derived in Chapter 1 (thc number of data points that
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Effect of Number of Data Points on MP Estimatora

o =2.0, T_= 1690
Ar to g
i Q € t € t € t
512 454 0.6 0.1 0.8 1.2 0.5 -1.7
100 124 0.5 -0.1 0.4 1.3 0.4 -0.2
50 57 0.3 0.0 0.4 1.3 0.3 -0.1
s.d. = 0.00016 0.00027 0.00045
¢ = 4.0, 177
512 457 0.3 -1.4 1.2 -0.5 0.6 -1.4
150 147 0.3 -1.5 0.5 1.5 0.7 -1.6
100 123 0.4 -1.7 0.5 0.2 0.6 -1.7
60 66 0.3 -1.3 0.4 0.3 0.6 -1.3
s.d. = 0.00072 0.0017 0.0034
¢ = 10.0, = 233
512 457 0.8 -0.6 0.3 0.3 1.1 -0.2
200 186 1:1 0.2 0.4 0.6 1.4 0.4
100 110 0.8 -0.1 0.5 -0.2 1.2 0.2
s.d. = 0.0076 0.038 0.067

aFive runs were made for each value of
points used in the estimation).

N (number of data
Same conditions as for Table II.

bTI = 80 + Tc , Where Tc is the autocorrelation width of

the noise.
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cover eight peak standard deviations plus Fhe autocorrelation width of
the noise)gives an adequate number of points for the noiseAstudied.
Half that number decreases the efficiency for any of the parameters by
no more than 50%. Bias seems to stay constant as the number of
points decreases, but since the efficiency decreases (because the
observed variance increases), the vaiue of the bias in units of the
parameters actually increases. The sum of weighted squared deviationms,
represented by the éymbol € 1in Table III, should theoretically be
nine less than the number of points, N (see Appendix I). A constant
difference between @ and N as N decreases could be explained by
bias in the estimate of the power~density spectrum. The actual value
of @ decreases more slowly than ¥ in Table III, probably because
of end effects arising from the chromatographic signal being nonzero

near the ends of the interval over which samples were taken.

Effect of Nonstationary Noise

Nonstationarity was examined by analyzing sets of five to
ten computer-generated peaks added to the lowest- and highest-power
base-line sections used to obtain curve A in Figure II. The two
sections were taken about six hours apart. The efficiencies were
usually greater by a factor of two on the low-power noise than on the
high-power noise for peak widths ranging from ten to twenty sampling-
interval units, but there was no consistent difference in bias.

Even though the power of the high-noise section was more than 100
times the power of the low-noise section, the values of @ were not
greatly different: 520 and 420. The power of noise, therefore,

is a poor indicator of the effect of the noise on parameter estimates.




Moreover, the nonstationarity encountered did not seriously affect

the estimation process.

90
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CHROMATOGRAPHIC PEAKS

In this section results obtained from actual chromatographic
peaks are presented. No effort was made to optimize the performance
of the chromatographic system. The column was designed only to give
peaks broad enough to minimize sampling errors with the integrator-
sampling system operated at the maximﬁm practical sampling rate.
Tables IV, V, and VI summarize the results of measurements of two
hydrocarbon mixtures. One mixture contained about 3.6% by weight
of each of normal heptance, 2,3,4-trimethylpentane, and normal
octane. The other mixture contained about 4% of each of normal

heptane, toluene, and noxmal octane. The solvent was 2-methylpentane.

TABLE IV

Means of Peak Parameters

42 t bsc oS X X X X

r 0 3 4 5 6
Normal 1.025 262.6 . 3.89 0.107 0.08 0.15 = 0.14
heptane
Normal 1.016  545.9 7.24  0.067 0.04 0.23  0.03
octane
2,3,4-tri- .919 391.7 5.42 0.045 0.04 0.16 0.08
methylpentane
Toluene .919 413.8 5.88 0.464 0.40 0.21 0.52

%Relative area response per gram. :
Areas were normalized, divided by the weight of the component,

then averaged (not relative to any particular compound).
b . .
Net retention time.

®In units of the sampling interval.
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Standard Deviations

The observed standard deviations‘in Table V are all greater
than those predicted. The low efficiency could not have been caused
by the efficiency inherent in the MP estimator because the efficiency
obtained for computer-generated peaks was generally greater than one.
The predicted standard deviations account for the effect of base-line
noise only; the low efficiency must be the result of non-base-line
noise caused by fluctuations in flow rate and bPressure of the carrier
gas, temperature of the detector cell and the column, etc.

The observed and predicted standard deviations for relative
normalized area agreed with a factor of 3 to 6 . In spite of
the crude chromatographic system, the standard deviations were low by
usual criteria. With an apparatus designed to control non-base-line
noise, Goedert and Guiochon (12) attained a relative standard
deviation of only 0.6 x lO-3 for a peak with roughly the same width
but twenty times the area, in absolute units, of the normal heptane
peak described in Table IV. The predicted standard deviations for
relative normalized area were calculated from the predicted standard

. . . . . *
deviations of the individual area measurements” .

*Let Al be the area of the component of interest and

A2'A3"°"An be the areas of the other components. The normalized

area is
T -
1= Al/S (90)

7
where S = Z Aj . The square of the standard deviation of the
g=1 ~

normalized area is

n
2
wa1)? = [(S'AA1)2+Ai Y 4.5t (91)
n J=2 J
where S' = Z A. and AA. is the standard deviation of component

J=2
J . The areas are assumed to be statistically independent and this will
apply when the peaks are far enough apart so the information functions
for areas do not overlap in the time domain.
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The cobserved relative standard deviations are greater for absolute

area (34 x 10-3 for normal heptane) than for normalized area because

of the sample-injection technique.

The observed standard deviations for retention time in
Table V arxe about 1000 times those predicted, probably because of
low-frequency fluctuations of the carrier-gaé flow rate and the column
temperature. Low-frequency fluctuations should not affect relative
retention-time or retention-index measurements as much as absolute
retention-time measurements. The mean, observed standard deviation,
and predicted standard deviation for the retention index of 2,3,4-
trimethylpentane were 754.61, 0.022, and 0.0019; for toluene these
were 762.66, 0.026, and 0.0018. The observed standard deviations
for retention index were indeed only ten times the predicted values.
Precision estimates are seldom included in published fetention—index
data. Retention indices are usually reported to the nearest whole
number and seldom to the nearest tenth (34). Precise measurements of
retention indices may not be necessary because absolute retention
indices are difficult to reproduce on different columns. Nevertheless,
precise values are needed to compare the retention indices of different
compounds on the same column and to measure the rate of change of
retention index with column temperature. The highly precise estimates
of retention time obtainable by the method presented here should be

valuable for these purposes.

The predicted standard deviations for the retention indices

reported above include the contribution from the predicted standard
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deviation of the retention time of the air_peak*. Although the air
peaks were too narrow (0 equal to 1.0 sampling-interval units) to
obtain a good fit, the MP estimates of the air-peak retention times
were used in the retention-index calculations. The derivative with
respect to retention time of the function M, which is used to obtain
the MP estimates (see Appendix II), is antisymmetric in the

frequency domain, whereas the overlap error in the frequency domain

* .
Let ta’ tn’ tx’ tn+l be the retention times, and A ta'

Atn, Atx, Atn +1 be the standard deviations of the retention times of

air, the =n'th normal hydrocarbon, compound x , and the n+l'th
normal hydrocarbon. The retention index of compound x is then

Ifx = 100»n + 100N/D (92)
where
N = log(tk-ta) - log(tn—ta)
and
D= log(tn+l-ta) - log(tn-ta)

The square of the standard deviation of the retention index is

2 DAE N At

(AITx)Z 1 102 {(t ,_tx)z . tz;l)z
D X a 7n+l "a
(N-D)AE
n,2 D N N-D 2
+ 1" + [( - — + ——)At_1°} (93)
tn-ta tx ta tn+1 ta tn ta a

Equation 93 gives the minimum variance derived from the Cramér-
Rao inequality (Equation 69). Equation 92 is the definition of a
retention index, but the direct substitution of retention-time estimates
into the defining equation does not give an MP estimator of the
retention index. Similarly, the definition of peak area is unrelated
to the MP estimator of area. These remarks also apply to the
estimates of relative normalized area discussed in the previous footnote,
that is, the estimator of normali:>d area based on the definition of
normalized area may not be the best estimator.
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caused by the peak being too narrow is symmetric and should have little
effect on the retention-time estimates of the air peaks. The error
curves (the difference between observed and fitted peak, see

Appendix I) for air peaks wefé/indeed symmetric about the retention
times, showing that the error in the fit was primarily in the area'and
width parameters. In any case, the effect of small errors on the
retention time of the air peak is negligible in the retention index of

peaks far from the air peak.

Base-line noise accounted for about 10% of the observed
standard deviations for the peak width and the cumulant measurements.
Part of the remaining variation may be due to noise that increased
with signal amplitude; this noise would cause variations in peak
shape that would not affect area and retention time so much as it

would the higher-order parameters.

In Table VI, the observed correlations between parameter
deviations from the mean were calculated by use of the 0Olkin and
Pratt correction for bias (35). Most of the observed correlations -
agree with the predic?ed correlations within the 90% confidence
interval. The correlations between errors in retention time and peak
width, however, are consistently and significantly higher than the
predicted values of zero. The high correlations are caused by the
strong physical relation between retention time and peak width that
was not included in the peak model. If this relation were known
exactly, the retention-time and peak-width parameters could be

replaced with a single parameter.
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Low-frequency fluctuations in the flow rate of the carrier
gas with a period longer than peak retention times would introduce
a proportional error into the retention times of all the peaks in
a chromatogram. The high positive correlation (greater than 0.97)
found between deviations of retention times for all pairs of peaks on
the same chromatogram confirmed the effect of extremely low-frequency
flow fluctuations. Peak-width errors were affected less strongly;
the correlations between errors in the widths of peaks on the same
chromatogram were greater than 0.56 for all pairs of peaks.
Cumulants were unaffected; the correlations between errors in the

cumulants of different peaks were near zero.

The sum of weighted squared deviations, @ » for the peaks
described in Table IV exceeded the expected values by 10 to 1000
times. Part of the excess deviation is due to the nonstationarity of
the noise; the values of @ varied by a factor of 10 from run to
run for the same component. The two major contributions to the large
values of @ are incomplete agreement of the true peak shape with the
peak model (poor fit) and interfering peaks (impurities that give |
small peaks near the peak of the principal éompound). Interfering

peaks will be discussed first.

Interfering Peaks

A typical error curve for toluene (Figure 7, I) shows what
appears to be a single interfering peak with a maximum 3.70 greater
than that of the principal peak. The effects of interfering peaks on
MP estimation were studied by adding principal and minor pairs of

computer-—generated peaks with similar parameters (except for area and
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Figure 7. Error curves of chromatographic peaks. I, toluene; II,

2,3,4—trimethylpentane; IIT and IV, normal octane; V, normal

heptane; VI, normal nonane with severe drift. The number at the

top of each figure is the approximate height of the peak in microvolts.

The dashed lines are the profiles of the peaks. The mean values of

the parameters of the peake in I, II, ITI, and V are given in

Table 1IV.
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retention time) to a section of base-line noise. Error curves

similar to Figure 7, I were obtained with peaks comparablé in size
and shape to the toluene pair. The height of the peak on the error
curve was found to be proportional to the true area of the interfering
peak. Relative peak heights give the area of the interfering toluene
peak, if it is a peak, as 2.7% of the area of the toluene peak.
Similarly, the error curve for 2,3,4-trimethylpentane (Figure 7, II)
shows an interfering peak that would be about 0.5% of the principal
peak. The normal heptane peak appears to have two interfering

components (Figure 7, V) of about 0.3% and 0.4% .

The effect of an interfering peak on & can be calculated
from the amount of information in the data about area (Ill , defined
by Equation A-7 in the Appendix). The amount of information for area
is the sum of weiéhted squared deviations of a peak with unit area
from a constant zero base line. Therefore, the amount of area
jnformation for the toluene peak times the square of the area of the
interfering peak should give a crude estimate of the contribution of
Q of the interfering peak. The median value of @ for toluene was

4.4 x 104 , and the estimated contribution of the interfering peak is

4.0 x lO4 . The values of § obtained for computer-generated
interfering peaks agreed with the estimated value within an order of
magnitude. The agreement was not so good for heptane and 2,3,4-

trimethylpentane, however. For these peaks the interfering peaks

accounted for only 10% of the excess in the values of Q .

The detectability of interfering peaks was studied by running

mixtures of 2,2,4-trimethylpentane (principal) and heptane (minor)
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diluted with 2,3,4-trimethylpentane. The concentration of 2,2,4-
trimethylpentane was 3.6% by volume; the separation between the
principal and minor components was (3.0 + 0.4)g (resolution
0.7 + 0.1). The left part of Figure 8 shows the peaks as they
appeared on a strip chart recorder. Where the concentration of
normal heptane is 10% of that of 2,2,4-trimethylpentane, heptane
appears as a slight elongation of the tail of the principal peak. Below
10% there is no wvisual indicétion of an interfering peak. With the
use of error curves, however, an interfering peak is evident at 0.1%
(not shown in Figure 8), and at 0.6% there is no doubt that an
interfering peak is present. The use of error curves increases the

detectability of an interfering peak by a factor of at least 10 in

this case.

Relying on the detection of interfering peaks in the manner
described above may be hazardous. If the peak model is too general,
that is,_if the parameters contain insufficient pricr information,
the peak model may fit multiple peaks as a single entity. A study
of computer—generated peaks using up to the sixth cumulant in the péak
model, revealed that an interfering peak could be fitted along with
the principal peak (incorporated within the model) without leaving a
trace of the interfering peak on the error curve. The factors
influencing the incorporation of an interfering peak are the relative
areas of the peaks, the difference between their retention times,
and the total amount of information available about the principal
peak. The information in the data about the principal peak depends on

the shape and size of the peak relative to the power-density spectrum
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Figure 8. Detection of an interfering peak by use of chart recordings
(left) and error curves (right). The Percentage figqures refer to the

concentration of the interfering peak relative to the principal peak.
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of the base-line noise. For example, the information about a peak
decreases with increasing peak width. The interfering pe;ks in a

set of computer-generated peaks were visible on the error curves when
the peak widths were equal to 2 sampling-interval units, but were
incorporated within the peak model and did not appear on the error
curves when the peak widths were equal to 10 units. (The area of
the principal peak was 106 inteérator counts, the separation was

30 (resolution 0.75), and the area of the minor peak was 0.1%

of the area of the principal peak.) Although an error curve may not
indicate an interfering peak when it is incorporated within the peak
model, a peak that is incorporated will have a distinct effect on the
values obtained for the cumulants. If the cumulants of the pure
principal compound were known, an interfering peak could be detected
by comparing the cumulants of the pure and the impure compounds. It
would be just as well, though, to introduce the prior information
about the pure compound directly into the peak model or into the

prior p.d.f. of the cumulants.

When error curves of computer-generated peaks have the
appearance of the error curve of toluene in Figure 7, I, all the
parameter estimates have positive bias except area, which is slightly
less than the true value. When the retention time of the interfering
peak is less than that of the principal peak, giving an error curve
the mirror image of Figure 7, I , the effect of the interfering peak
on the even-order parameters is the same as when the retention time
of the interfering peak is greater than that of the principal peak,
whereas the odd-order parameters have negative bias. The values of

the cumulants obtained for toluene are significantly greater than those
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of 2,3,4-trimethylpentane (Table IV). If the peak in the error
curve for toluene were due to an interfering peak, the difference
between the cumulants of toluene and 2,3,4-trimethylpentane could be

attributed to the bias in the estimates of the cumulants of toluene

due to the interfering peak. -

Limitations of Peak Model

The above results on the detectability of interfering peaks
are self-consistent and valid with respect to the g priori information.
Nevertheless, attempts to isolate an impurity in toluene by fractional
trapping were unsuccessful. The toluene did not contain an impurity
with a concentration as high as 2.7% . Furthermore, error curves
obtained for benzene were similar to those for toluene, and the benzene
would be unlikely to have an impurity with the same relative area and
retention as an impurity in toluene. The peaks on the error curves of
benzene, toluene, and possibly normal heptane and 2,3,4~-trimethylpen-
tane were due to residuals that the peak model could not fit. These
peaks could be fitted if the peak model were extended to include more
adjustable parameters, but a better approach would be to use a different
basis function. A Poisson basis function might be suitable for the

peaks of the aromatic compounds studied here.

The cumulants of a Poisson function are all equal to a
positive constant. Therefore, attempting to fit a Poisson peak with
a Gaussian basis function and a finite number of cumulants as adjustable
parameters will introduce negative bias into the nonadjustable
cumulants, which are assumed to be zero. This negative bias will

bropagate downward to the low-order adjustable cumulants through the
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correlation between errors in high- and low-order cumulants. (an
interfering peak, in comparison, will cause a positive bias in tﬁe
low-order adjustable cumulants.) Therefore, the true values of the
cumulants for toluene may be significantly greater than the values
in Table IV. Even though they are biased, the difference between the
estimated values of the cumulants of 2,3,4-trimethylpentane and
toluene are clearly evident. The numerical differences between these
peak-shape parameters show that cumulants can be used to aid
identification. The visual difference between the shapes of 2,3,4-

trimethylpentane and toluene on a strip-chart recorder was relatively

small.

The error curves obtained for normal octane (Figure 7, III
is a typical example) indicate a poor fit without a straight-forward
explanation.. Estimating the values of the cumulants beyond the
sixth order should improve the fit. Without actually using an
expanded peak model, the effect of including additional parameters
was studied by examining the error curves of computer-generated peaks
with nonzero values of cumulants up to the tenth order. The error
curve in Figure 7, IIT is characterized by an envelope'of high-
frequency oscillations, the major component of which has a distance
between nodal points of 0.50 . The error curves cbtained when the
peak model was terminated at the next lower cumulant were similar to
the curves in Figure 9 for K3 to K6 . As the order of the terminal
cumulant increases, the distance between nodal points on the error
curve near the retention time decreases, but only from 1.80 for K3

to 1l.00 for KlO . Hence, if the error curve of normal octane was



REDUCED AMPLITUDE x 103

107

]0 4 L) L] ] i

(5.}

o

-4 .2 0 2 4
REDUCED TIME

Figure 9. Additive effect of cumulants on a Gaussian peak in the
time domain. Each curve is the difference between a standardized
peak shape function in the form of Edgeworth's series with one non-
zero cumulant and a standardized Gaussian peak shape function. The
values of the standardized cumulants, K3 to K6 , are 0.1,

~-0.1, 0.1, and 0.1 .
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caused by use of an incomplete model, the normal octane peak wogld
require a model with adjustable cumulants up to perhaps the twentieth
order. Such high-order cumulants could not reasonably cause
oscillations of the magnitude seen in Figure 7, III because of the
decreasing amount of information in a cumulant, and hence the decreasing
influence of a cumulant, as order increases. A number of cumulants
considered as a group may be significant, however, as in the case of

a Poisson peak where each cumulant is equal to the same constant. If
there was a functional relation between the cumulants of a peak, the
parameters of the function could be estimated rather than a large

number of individual cumulants.

As peak area and information decreases, the influence of the
nonadjustable cumulants decreases, and better fits can be obtained.
The error curve for octane (Figure 7, IV) at one tenth the area of the
peak giving the error curve in Figure 7, III indicates a perfect fit.
At lower areas, however, the estimates of the cumulants are much less

precise and are valueless for the purpose of comparing peak shapes.

Error curves similar to Figure 7, III were obtained when
white noise with power proportional to the square of the signal
amplitude was added to computer—geperated peaks in a simulation of
jitter noise. But to produce oscillations of the same magnitude as
those in Figure 7, III the standard deviation of jitter would have to
be more than ten times the value found from the study of power-density
spectra. Furthermore, the major features of error curves of normal
octane were reproducible from rﬁn to run; reproducibility would not be

possible if the oscillations were random.
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CONCLUSION

In general, if enough data pointé are used, if the base-line
noise is reasonably stationary, and if all the nonadjustable parameters
are either zero or insignificant, the MP estimates of the first
seven parameters of Edgeworth's series are unbiased, and the variances
of the parameters due to base-line noise are approximately the same as
the predicted variances. The method is insensitive to severe low-
frequency noise or drift; Figure 7, VI shows a perfect fit in the
presence of an intense low-frequency oscillation caused by the

temperature controller of the detector.

The most important limitation of‘the method is that the
conditions listed in the above paragraph must be known to- apply to the
system under study before the estimation is carried out. All
measurement methods are subject to similar g priori conditions, but
the MP method brings these assumptions to the foreground where they

can be clearly defined and tested.

One of the most worrisome assumptions is that of stationarity
of the ba§e-line noise. We found the greatest effect of nonstationarity
to be in the accuracy of predicted standard deviations. If more
accurate standard deviations were required, the effect of nonstation-
arity and the effect of errors in the measurement of power-density
spectra could be reduced by approximating the power-density spectrum
with a simple function of one or two parameters. These parameters
could then be estimated along with the peak parameters to give an

accurate estimate of the current power-density spectrum.
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There is some reluctance in the literature about measuring
high-order moments (8,9) because of the increasing influence of
base-line noise on measurements of moments of increasing order.
Using the MP method to measure cumulants (a cumulant is equal to
the moment of the same order plus a combination of moments of lower
orders) , however, we have shown that the decrease in precision is not
so rapid as to make the measurement of the sixth-order cumulant
valueless. Depending on the power-density spectrum of the base-line

noise, the precision may in fact increase with increasing order (in

Table V for K4 and Ks ).

The MP method is extremely sensitive to the presence of
small peaks near the principal peak. This sensitivity is a disadvan-
tage in that measurements of cumulants for their own sake requires
highly pure samples. Nevertheless, the ability to detect a seemingly
invisible peak on the shoulder of a large peak is valuable in itself.
It would be better, both for the purpose of measuring the shape of a
peak and of detecting interfering peaks, to extend the peak model to
include multiple peaks each with a separate set of parameters. The
fitting of multiple peaks has been done using a Gaussian peak model
(36) and a model based on samples‘of a previously run peak (15) .
Greater effective resolution and lower detection limits should be
attained, however, if a more complete and accurately defined peak
model were used, and if the characteristics of the base-line noise were

taken into consideration.

The data presented is for peaks for which there was no prior

information about any of the parameters. Prior information about any
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one parameter will decrease the standard deviation for that parameter
and any other parameter that is correlated with it. For example, con-
sider the effect of complete prior information (zero prior standard
deviation) about high-order parameters on the predicted standard
deviation for the area of a normal octane peak. The relative standard
deviations (x1000) are 0.82 (with K7 and higher well known),
0.61 (with KG and higher well known), 0.61 (with Ks , ete.),
0.43 (X,), 0.42 (K3), 0.23 (9), 0.23 (¢)), and 0.0 (4 , and
all other parameters well known). The most significant parameters
for area are KG R K4 s and o0 . This is also indicated by the high
correlations between these parameters and area shown in Table VTI.
Prior knowledge of the shape and width of the normal octane peak woul&
reduce the standard deviation for area by a factor of 3.5 . On the
other hand, prior knowledge of the retention time would have no
effect on the precision of area estimates. It must be emphasized,
however, that these results are the standard deviations due to base-
line noise alone predicted for an efficient estimator. Although the
MP estimator is nearly efficient when the amount of information is .
large, it is inefficient near the detection limit where the information
is small. Near the detection limit, pfior information about retention

time may be important for the estimation of area.
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APPENDIX I

MODELS

The posterior p.d.f. of the set of parameters, g . given

the data, z . is given by Bayes' theorem

P2 p%l%(glg)
= A-1
Py | %(glg) 7 ® (a-1)

where () is the prior p.d.f. of the parameters (xla)

P% L ' pﬁl% wlm

the p.d.f. of the data given the parameters, and pﬁ(%) a

scaling or normalizing factor. Since the maxima of a function and the
maxima of the logarithm of the function occur together, finding the

maximum of a posterior p.d.f. 1is equivalent to finding the minimum

of the function

Mg) = -ln[p%|£(%l%)] + constant (a-2)

where the constant is independent of the tru2 values of the parameters,
g -

A priori information about the experimental system is
embodied in the functional form of the p.d.f.'s in Equation A-1. In

the chromatographic system used here, the a priori information consists
of the following statements.

(a) Since there was no prior information about the parameters, the
prior p.d.f. of the parameters, p%(%) , is assumed to be uniform for

each parameter.

() The detector signal is the sum of the base-line noise and the peak
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function, and any noise with an amélitude that increases with increasing
signal amplitude is either absent or negligible.

(¢) . The base-line noise is a stationary random process with a
multivariate normal p.d.f. and a known power-density spectrum, C&(v) .
(d) The peaks being studied are accurately represented by Edgeworth's
form of the Gram-Charlier type-A series, and all cumulants above the
sixth are equal to zero. An accurate representation means that the
difference between the true peak function and the estimated peak

function is indistinguishable from the base-line noise.

With this prior information the M function becomes

® 2
M=1/f '—X(‘c’,)—;ai‘ﬂ— av (a-3)
=00 x

where X(v) is the Fourier transform of the chromatographic data and
F(v) the Fourier transform of the peak function:

F(v) = A(cosb + 7 sing) exp[—(chv)z/Z
(a-4)

+ K4(2ncv)4/24 - K6(2wcv)6/720]

where
3 5
e = -(Zntov) +.K3(2nov) /6 -4K5(2ncv) /120

V is frequency (Hz), 4 is area, to is retention time, ¢ is

width, and K3 to Ké are standardized cumulants. The elements of

the information matrix are given by Equation A-5.
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'w'::'lm'affvi aFt (v)
I., =] av (A-5)
Jk e CpV) Baj aak

where T indicates the complex conjugate. Predicted standard
deviations are defined as the square root of the diagonal elements

of the inverse of the information matrix. The M function can be
evaluated by use of a digital computer provided that, in the digitiza-
tion of the signal from the detector, the sampling interval is small
enough, and that the sampling time is long enough that the integral

in Equation A-3 can bé& replaced by a summation over a finite

frequency range.

Terminating Edgeworth's series at the sixth cumulant in
Equation A-4 1limits the range of peak shaées that this model can
accurately represent. One of the conditions on a peak model, if it
is to be a realistic representation of an actual peak, is that the
absolute value of the Fourier transform of the function at all
frequencies must be less than or equal to the value of the function at
zero frequency (37) . 1In the peak model defined by Equation A-4,
this condition means that the value of K:/Ks must be less than 1.6 .
When this condition is met, a plot of the absolute value of F)
against frequency has a peak-like profile with a maximum at zero
frequency. If KZ/K6 is greater than 1.2 , however, the peak will
have secondary maxima. ‘In the critical region where K:/KG is less
than 1.6 but greater than 1.2 , the shape of the absolute value of
F(v) changes rapidly with small changes in either K4 or K6 .
Figure 9 shows the time-domain difference between peaks with the

indicated values of individual cumulants and a Gaussian peak with
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cumulants that are all equal to zero. As this figure indicates, the
effect of the even cumulants on the shape of a peak is symmetric

about the mean, and the effect of the odd cumulants is not exactly

but nearly antisymmetric.

From Equation A-3 , when the g priori assumptions are true,
the minimum of M is the sum of a number.of random variables, each
of which is normal with unit variance. Twice the minimum value of M,
represented by the symbol & , has a chi-square distribution with
degrees of freedom equal to the number of data points less the sum
of the number of parameters being estimated (seven) and the number of
degrees of freedom lost by filtering (two, when the filter described
by Equation 88 is used). The mean or expected value of @ 1is equal
to the number of degrees of freedom, and if § is significantly
greater or less than expected, the a priori assumptions are unlikely
to be true. A graph of the error curve [x(t)ﬁf(t,g)], where g
represents the estimated values of the set of parameters, can be used
as a qualitative test of the peak-model assumption. If the peak model
is correct, the error curve in the region of a peak should be
indistinguishable from the base-line noise before and after the peak.
The curves in Figure 9 are error curves that would be obtained if

there were no base-line noise and if individual cumulant estimates were

in error.



APPENDIX II

MINIMIZATION

In this study the process of finding the minimum of the
M-function in Equation A-3 was started by finding crude initial
estimates of the parameters. The initial estimates of the cumulants
were zero. The approximate area, retention time, and width of the
peak were determined by use of the definitions in Chapter 1 after
subtracting a linear base line from under the peak. The end peints
of this base line were taken as the center of a five-point moving
average when, going downward on each side of the peak, the difference
between a data point and the preceeding moving average was less than
a preset value. After the initial estimates were obtained, the set
of data samples containing the peak was filtered, Fourier transformed,
and corrected for the distortion caused by filtering and interval-area
sampling. Then a parameter correction vector, é s was calculated as

outlined below, and the previous estimates were replaced by new ones:

Bas =8 + A, (a-6)

This procedure was repeated until a minimum of M was reached.

As a function of two parameters at a time, M makes a
surface that can be pictured as a distorted bowl. A contour of
constant height on this bowl would look like an elongated.and distorted
ellipse. The elongation was reduced and the accuracy of the computer
calculations was improved by transforming the parameters into a new

coordinate system in which the amount of information about each
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parameter is unity (38) :

= (.2 A-7
OL‘7 %J( JJ) ( )

172 (a-8)

1%, =I. (..I,.)"
gk “dkTdg “kk
A ball released on the M-surface would begin to roll down-

ward along the negative gradient towards the minimum. The computer

method based on this idea would use the following correction vector:

*
Ag=dg @) (2-9)
where
* M =1/2 -
93 aaj (Ijj) (a-10)

and d is the distance of the step along the gradient. Before the
process'is begun, a value for d must be found. An appropriate

step distance is difficult to f£ind, however, and a different value may
be needed for each new iteration. Moreover,the correction vector,

é* , May sometimes point nearly 90° away from the minimum (Figure ;O,
I) . In the method of scoring for parameters (39) , both difficulties
are reduced by assuminé that the M-surface, at point ,en . is
quadratic in the form it would have if the peak model were linear.

The first derivative of M (the gradient) and the assumed second
derivative (the information matrix) are calculated and the minimum of
the surface having these derivatives is used for the correction vector:

-1
g o

Often one side of the M-surface is steeper than the other.
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I

Figure 10. Visualizations of minimization surfaces:

I, effect of damping factor (schematic). The closed curves
are contours of constant value of M . Line OA is in the direction
of the negative gradient, -g* , at point 0; OB is the correction
vector, ,e; ; and OC is'the damped correction vector,,é; . The
dashed line is the locus of the damped correction vector as the damping
factor, p , goes from zero at point O to infinity at point B .

II, effect of step along damped correction vector. The

labels are as in I . The damped correction vector, line OC , can

easily be extended to point D which is closer to the minimum than

point C .
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If. the initial estimate is on the less steep side, the correction
vector, é; » may overshoot the minimum and arrive at a point even
higher than the starting point. The reciprocal of a.damping factor
added to the diagonal elements of the information matrix, ,E* ’
gives a correction vector that is between the negative gradient and

,9; in direction and less than ,\L‘\; in magnitude (38) (Figure 10, I):

* * -1
‘\A'p = - +1p I 2* (a-12)

where ¥ is a unit matrix and P a positive damping factor. As

the value of the damping factor approaches zero, the damped correction,
,é; » approaches the direction of the negative gradient, approaches
zero in magnitude, and the slope, 4 M/dp , approaches the square of
the length of the gradient, Ig*] 2 (40) . The best damping factor,
the value that gives the lowest value of M » was found by a method
similar to that used by Pitha and Jones (41) . sStarting with a trial
value (pl equal to 40 or the best value from the pPrevious iteration),
a secondé trial value, P, » was tried, which was the value that gave

the minimum of a quadratic function of 1n (p+0.1) fitted to M, (thg
initial value for which Py 1is equal to zero), Ml » and 4 M/d p

at p equal to zero. The third trial value was at the minimum of the
quadratic fitted to MO M and M2 . The fourth was fitted to the
lowest three previous values of Mp - In anomalous cases where the
extrapolated value of p was less than zero, arbitrary vaiues of p
were tried that were fractions or multiples of the best value of P
obtained so far. Further attempts after the second were stopped when

P Wwas greater than 105 or when the difference between the predicted

minimum of M and the actual value was less than 5% of the difference
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between the actual value and Mb . If an M% that was less than Mb

could not be found after four attempts, the lowest value of p was

divided by 10 until such a value could be found. Sometimes the
optimal value of the damping factor was difficult to find. More than
one minimum in the graph of M versus p occurred in some cases.
Figure 10, I shows a minimum along the dashed line at point C and

another between points C and O .

As the damping factor becomes small, the damped correction
vector, ,e; » becomes small and the decrease in M .also may become
small. The rate of convergence was greatly imporved at little cost
in computing time if a oné-dimension;l search was carried out for the

lowest value of M along the line defined by the damped correction

vector, ,é » when the angle between g and ép was less than 50°

e

(38) .

where d is the length of the step. The optimal value of the
stepping factor was found by a method similar to the method used to
find the optimal value of the damp;ng factor except that a quadratic
function of the stepping factor itself was used for extrapolation and
interpolation. Sometimes a step of 1000 times the length of the
damped step could be made. Such a step could be the equ;valent of
many iterations using the damped step alone. The circumstances where
a step along Ap is valuable occurs when the M-surface has a steeé
face that flattens out sharply, as when K4 and K6 are in or near

the critical region (Figure 10, II).
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Minimization processes can be terminated in a number of ways.
One of the more common methods is to stop when the greatest change of
the values of all of the parameters per iteration is less than a
specified constant. The basic criterion of a minimum, however, is
that the gradient g%) is zero at the minimum and the rate of change
of the parameters per iteratioh has no relation to the gradient. The
best criterion for accuracy is to stop when the length of the gradien;
is less than a constant. An economic criterion, as well as an
accuracy criterion for termination, based on the cost of computer time,
is usually necessary. One such method is to stop when the rate of
decrease of M per second of computation time or per iferation is less
than a given constant. Premature termination may occur with this
method when the rate of change of M per iteration is low in a
particular iteration due perhaps to difficulty in finding the optimal
damping factor. The influence of 5 few poor iterations on termination
can be minimized by adding fractions of the rates of decrease of M
per previous iterations to the rate for the current iteration. We use
the following algorithm. Starting with DO equal to MO ' Dn for
iteration »n is calculated from the formula

Dn =f Dn—l + Mn - Mn-l

where 7 is a positive constant less than one (0.1 was suitable).

Then, if ]g*l was less than a constant, @g , Oor if Qnﬂ%n was less
A

than a constant, @D , the process was temminated. The value 0.000i

was suitable for both constants.
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Computer programs were written in Fortran IV.and run on én
IBM 360-67 computer with the Fortran H compiler; 96K of storage was
required. The computation time for a single peak varied from a few
seconds to nearly one minute; in general, the computation time was
"inversely proportional to the width of the peak and increased when
the fit was poor. The computation times for the computer-generated
peaks, for which a good fit could always be obtained, were usually
about half the time required for a real peak with similar parameter

values. The median computation times for normal heptane and normal

octane were 4.5 and 4.2 sec.
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COMPUTER PROGRAMS

CONTENTS*
Main Programs Page
Ml. Estimation of Peak Parameters, 1, 6.a, 7.a, 7.b,
10, 13, 16, 17, 18, 21 . ¢ ¢ v v o o o o o o o« o o o o . 128
M2. Retention Index Measurement, 1, 6.a, 7.a, 7.b,
9, 13, 16, 17, 18, 21 e ¢ o o o o s o e e o s o e e o o 131
M3. Computer Generated Peaks, l, 6.a, 7.a, 7.b, 9,
11, 13,16, 17, 18, 20, 21, 22 '+ v 4 @ o o o o o o o o . 134
M4. Power-Density Spectrum Estimation, 12, 16, 17 . . . . . 139
M5. CorrelationS . v v o ¢ o ¢ o o o o o o o o o o o o o o 141
Subroutines
1. BAYES, 2,3,4, 6.b, 6.C, 23, 24 = v v v o o w e 144
2. INFORM & & v ¢ 4 o o o o o o o o o o o o o @ o o« o o . 149
3. DbaMP, 5 © e s e e 4 s s e s e e e s s s eee e e e 152
4. STEP, 2, 5, 6D ¢ & ¢ ¢ ¢ 4 o o o o o o o o o o o o . 155
5. DSIMQ © o o o o s o o s s e e o o s e o o 2 e e o o o 158
6@. DETECT, 8 ¢ ¢ ¢ ¢ o ¢ o o o o o o o o o o o o « o e o o 160
6b. TEST N
6¢c. PRIOR
7a. SET e o o @ o o o s o e s o s o o o o 6 o e a o o s e 162
7b. CONVRT
8.DPINIT......................... 163
9.FTPEAK(A,X)...................... 165
10. FTPEAK (A,X,Y) & ¢ ¢ ¢ 4 4 o o o o o o o o o« o o o o o 166

*
The numbers listed after each program or subroutine are the
subroutines called within that program.
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18. GRAPH, 19 & v v v v v v v 4 e e e e e
19, PLOT 4 4 v v v o e e et e e e e e e e e

20 RNG & e o e i i e e e ettt e e e e e e e e e e,

Library Subroutines

21. CH201A - provides date and time of day

22. Cs003a,C - provides random number from a uniform
distribution

23. (Cs0193,B,C - provides elapsed computation time

24. CS012A - matrix inversion

Output Examples
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Program M3 . . . . & i i i i i e e e e e e e e e e e e e
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PROGRAM M1
BAYESIAN ESTIMATION OF PEAK PARAMETERS

SINGLE PEAKS
PARAMETER ESTIMATES ARE LISTED IN THE ORNER: AREA,
RETENTION TIME,WIDTH, THEN THE THIRD TO SIXTH CUMULANTS.
THE PARAMETER HAVE DIMENSIONS OF THE IMPUT DATA.
IMPLICIT REAL=*8 (A-H,0-2)
INTEGER NAME(17), IP(5),NDATE(6)
REAL*L CGRAM
COMMON/DATA/X(512),W(257),CGRAM(2000)
COMMON/PARM/A(7),Y(7),Vv(7,7),PA(7),PV(7)
DIMENSION DIF(512),DX(257)
N=512
CALL CH201A(NDATE)
CALL SET

READ IM SET INFORMATION AND NAME.
CARD 1- 1P(1),IP(2),1°(3),HLEVEL,FTEST
IP(1)(1X,11)-0UTPUT PARAMETER
=0 -MINIMUM OUTPUT
=3 =-MAXIMUM OUTPUT (SEE BAYES)
I1P(2)(11) - STATISTICS OUTPUT PARAMETER
=0 - NO OUTPUT
=1 OR 2 - GRAPH OF ERROR CURVE
=3 - AS FOR 2 PLUS REAL PARTS OF TRANSFORMED
DATA AND ERROR CURVE (SEE BAYES ALSO)
IP(3)(11) =-ANALYSIS CASES (SEE DETECT)
=0 HNO PRIOR INFORMATION
=1 PRIOR INFORMATION =-SMALL PEAKS
=2 PRIOR IMNFORMATION =-LARGE PEAKS
HLEVEL(F8.0)- PARAMETER FOR DPINIT
FTEST(F10.0) - TERMIMATION PARAMETER FOR BAYES
END OF SET MUST BE FOLLOWED BY A BLANK CARD,

READ(5,101) IP(1),1P(2),1P(3),HLEVEL,FTEST
IF(FTEST.LT.1.0D-06) FTEST=1.0D-03
IF(HLEVEL.LT.1.0D00) HLEVEL=5.0D00

READ IN INVERSE OF POWER-DENSITY SPECTRUM (SEE PROGRAM M4)

READ(5,105) (W(J),J=1,257)
CALL DCLPRT(257,W)

READ IN CHROMATOGRAM,

LAST CARD OF CHROMATOGRAM MUST BE FOLLOWED BY A BLANK CARD

IF LAST CARD FULL.
10 CALL DATARD(CGRAM,M, IERR,NORUN)

READ IN PEAK INFORMATION
CARD 1- NRUN,NOP,L1,L2, NAME
NRUN(12) -CHROMATOGRAM NUMBER
NOP(12) -PEAK NUMBER
IP(4,5)(214) - SAMPLE NUMBERS BETWEEN
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WHICH PEAK 1S LOCATED
NAME(17AL4) -NAME OF PEAK
CARD 2- PRIOR MEANS PA(1),1=1,7 (7F10.0)
CARD 3- PRIOR STANDARD DEVIATIONS
PV(1), 1=1,7 (7F10.0)
CARDS 2 AND 3 ARE OMITTED WHEN IP(3)=0
THE LAST SET OF PEAK IMFORMATION MUST BE FOLLOWED
BY A BLANK CARD.

20 READ(5,102) NRUN,NP,IP(L),1P(5), (NAM‘(I) 1=1,17)
IF(IP(S) EQ.0) GO TO 10
IF(1P(1).GT.0.AND, IERR.EQ.0) WRITE(6,999)
WRITE(6,202) MORUN,NP,IP(L4),1P(5),NAME,NDATE
GO TO 22

21 IF(IP(3).GT.0) READ(S,104) PA,PV
GO TO0 20

22 IF(I1ERR.GT.0) GO TO 21
IF(IP(3).EQ.0) GO TO 24
READ(5,104) PA,PV
WRITE(6,204) PA,PV

24 1PL=1P(4)

OBTAIN INITIAL ESTIMATES

CALL DETECT(IP,HLEVEL)
IFCIP(4).LT.0) GO TO 20
L=1P(5)-1P(4)+1

CONDITION THE DATA
CALL CONVRT(L)
OBTAIN ESTIMATES

CALL BAYES(IP,FTEST,P,FSM,SEC,DIF)
IF(1P(2).EQ.0) GO TO 20
IF(IP(2).LT.3) GO TO 28
DO 26 J=2,256
l=N+2-J
DX(J) =DSQRT(X(J)**x2+X(1)**2)
26 CONTINUE
DX(257)=DSQRT(X(257)**2)
28 CALL FTPEAK(A,X,DIF)
IFC(IP(2).LT.3) GO TO 50
DO 32 J=2,257
DIF(J)=DX(J)=-DIF(J)
32 CONTINUE
DIF(1)=0.0D00
DX(1)=0.0D00

PRINT OUT REAL PART OF FOURIER TRAMSFORM OF CHROMATOGRAM

CALL DCLPRT(257,DX)



000 oo

50

30

101
102

104
105

202

204
998

999

TABULATE REAL PART OF ERROR CURVE

CALL DCLPRT(257,DIF)

PRINT OUT GRAPH OF ERROR CURVE

CALL DIFFT(9,X)
TEMP=10.0D00*A(3) ’

IF(A(3).GT.10.0D00) TEMP=100.ODOOI

IF(A(3).LT.2.5D00) TEMP=30,0D00
KS=IDINT(A(2)=-TEMP)
KL=IDINT(A(2)+TEMP)

IF(KS.LT.1) KS=1

IF(KL.GT.L) KL=L

L=KL-KS+1

DO 30 J=1,L
I=1P4+KS=-1+J
K=KS+J

TEMP=CGRAM( )
RIF{JIZTEMP-X(K)

EMP
CONTINUE
WRITE(6,998)
CALL GRAPH(X,DIF,A,Y,W,L,300,2)
GO TO 20
FORMAT(1X,311,F8.0,F10.0)
FORMAT(212,214,17A8)
FORMAT(7F10.0)
FORMAT(8D10.5)
FORMAT(1HO,' RUN ',12,' PEAK
FORMAT(1X,1P7D15.5)
FORMAT(1H0)
FORMAT(1H1)
END

',12,216,23A5)
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PROGRAM M2
BAYESIAN ESTIMATION OF PEAK PARAMETERS
MULTIPLE ISOLATED PEAKS FOR RETENTlﬁN INDEX MEASUREMENT

PRINTS OUT SUMMARY OF RUN

IMPLICIT REAL=*8 (A-H,0-Z)

REAL*L CGRAM

COMMON/DATA/X(512),W(257),CGRAM(2000)
COMMON/PARM/A(7),Y(7),Vv(7,7),PA(T7),PV(7)

DIMENSION DIF(512),AP(5,7),SDA(5,7),T(5),SDT(5),AR(5)
1 »SDR(5),FS(5) .

INTEGER MAME(17),1P(5),NPT(5),NDATE(S)

N=512

CALL CH201A(NDATE)

CALL SET

PROGRAM PARAMETERS SAME AS FOR PROGRAM M1, EXCEPT REAL
PARTS OF DATA AND ERROR CURVE NOT PRINTED FOR 1P(2)=3

READ(5,1000) IP(1),I1P(2),1P(3),HLEVEL,FTEST
IF(HLEVEL.LT.1.0D00) HLEVEL=5.0D00
IF(FTEST.LT.1.0D-06) FTEST=1.0D-03
READ(5,1001) (W(J),d=1,257)

CALL DCLPRT(257,W)

10 10K=1
CALL DATARD(CGRAM,M, 1ERR,NORUN)

READ IN PEAK IMFORMATION
PEAK NUMBER (MP) - 1 - AIR PEAK, 2 - SOLVENT,

3 - NORMAL HYDROCARBON, &4 - COMPOUND WHOSE RETENTION
INDEX IS TO BE MEASURED, 5 = NORMAL HYDROCARRON

IF IP(5) FOR SOLVENT PEAX IS BLANK,

SOLVENT NOT ANALYZED

20 READ(5,1002) NRUN,NP,1P(L),1P(5),NAME
IECIP(5).EQ.0) GO TO 10
IF(IP(4).EN.0) GO TO 41
WRITE(6,999)
WRITE(6,2000) NORUM,NP, 1P(L4),1P(5),NAME, NDATE
GO TO 24
22 I1F(1P(3),6T.0) READ(5,1003)
GO TO 40
24 IF(1ERR.GT.0) GO TO 22
IF(IP(3).EQ.0) GO TO 26
READ(5,1004) PA,PV
WRITE(6,2002) PA,PV
26 CALL DETECT(IP,HLEVEL)
IFCIP(4).LT.0) GO TO 40
L=1P(5)-1P(4)+1
NPT(HP) =L
CALL CONVRT(L)
IPL=1P(L)
CALL BAYES(IP,FTEST,P,FSM,SEC,DIF)
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IFCIP(2).LT.3) GO TO 29
CALL FTPEAK(A,X)

CALL DIFFT(9,X)
KS=IDINT(A(2)-10.0D00*A(3))
KL=IDINT(A(2)+10.9D00*A(3))
IF(KS.LT.1) KS=1
IF(KL.GT.L) KL=L

L=KL-KS+1

DO 28 J=1,L
I=1PL+KS-1+J
K=KS+dJ

TEMP=DBLE(CGRAM(1))
DIF(J)=TEMP-X(K)
X(J)=TEMP
CONTINUE
CALL GRAPH(X,DIF,A,Y,W,L,300,2)
IFCIP(4).LT.0) GO TO &0
A(2)=A(2)+DFLOAT(IP4)-1.0D00
DO 30 J=1,7
AP(NP,J)=A(dJ)
SDA(NP,J)=Y(J)
CONTINUE
T(NP)=A(2)
SDT(NP)=V(2,2)
FS(NP)=FSM
IF(NP.LT.5) GO TO 20

ERROR OCCURS, SET SUMMARY DATA TO ZERO BUT COMTIMUE TO
ANALYZE OTHER PEAKS
GO TO 50
10K=-1
DO 42 J=1,7
AP(NP,J)=0.0D00
SDA(NP,J)=0.0D00
CONTINUE
NPT(NP)=0

SDT(NP)=0.0D00
FS(NP)=0.0D00
T(NP)=0.0D00
AR(NP)=0,0D00
SDR(NP)=0.0D00
GO TOo 20

CALCULATE SUMMARY DATA

50

52

IF(IOK.GT.0) GO TO 60
DO 52 J=1,5
T(J)=0.0D00
SDT(J)=0.0D00
AR(J)=0.0D00
SDR(J)=0.0D00
CONTINUE
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RETI1=0.0D00
SDRET=0.0D00
GO TO 70
°0 TOSTLLY 1,
DO 62 J=115
IF(NPT(J).EQ.0) GO TO 61
A(J)=SDT(J)
T(J)=T(J)-TO
SDT(J)=DSQRT(SDT(J)+SDN)

AR(J)=AP(J,1)/AP(3,1)
SDR(J)= DSQRT((SDA(J 1)/AP(J,1))**2+(SPA(3,1)/

1 AP(3, 1))**2)*AR(J)
61 CONTINUE
62 CONTINUE

SDT(1)=0.0D00

SDR(3)=0.0D00
XN=DLOG1O(T(4)/T(3))
XD=DLOG10(T(5)/T(3))
RETI=1.0D02*XN/XD+7.0D02
R1=XD/T(4)
R2=XN/T(5)
R7=(XN=-XD)/T(3)
SDRET=DSQRT(R1#*2*A(4)+R2**2%A(5)+R3**x2*A(3)
. +(R3+R1=R2)**2%A(1))*1.0D02/XD**2
c

70 WRITE(6,2003) NORUN,NDATE
NP=4
WRITE(6,2004) NP,RETI,SDRET
WRITE(6,2005)
WRITE(6,2006) ((1,(AP(1,d),Jd=1,7),T(1),AR(1),

1 NPT(I),I-I 5)

WRITE(6,2007)

WRITE(6,2008) ((1,(SDA(1,d),d=1,7),SDT(1),SDR(1),
1 FS(I),l =1,5)

GO TO 10 .

999 FORMAT(1H1)

1000 FORMAT(1X,311,F8.0,F10.0)

1001 FORMAT(8D10. 5)

1002 FORMAT(212,214,17A4)

1003 FORMAT(//)

1004 FORMAT(7F10.0)

2000 FORMAT(1HO,' RUN ',12,' PEAK ',12,216,23AL)

2002 FORMAT(' PRIOR INFORMATION - MEANS AND STD. DEVS.!

20021 /2(4X,1P3D15.5,0PL4F10.6/))
2003 FORMAT('IDATA SUMMARY RUN NUMBER ',12,80X,6A4)
2004 FORMAT('O RETENTION INDEX PEAK NO.',12,' =',F10.5

20041 ,19X,'STD. DEV. =',F10.6)

2005 FORMAT(' PEAK PARAMETERS', 74X, '"NET RETENTION RELATIVE

20051 AREA NO. POIMTS')

2006 FORMAT('0',13,1P3D15.5,0P4F10.6,F14.4,F14.8,110)

2007 FORMAT(' OPARAMETEQ STANDARD DEVIATIO“S' 8ux,

70071 'SUM OF SNUARED DEV.')

2008 FORMAT('0',13,1P3D15.5,0P4F10.7,F14.5,F14.9,1PD1L.14)
END
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PROGRAM M3

ANALYZES COMPUTER GENERATED PEAKS ADDED T0O REAL BASE
LINE NOISE. AS MANY TRIALS AS NESIRED MAY BE RUM OM THE
SAME SECTION OF BASE LINE. THE ARTIFICIAL PEAKS ARE
GENERATED FROM EDGEWORTH'S SERIES EXTENDED TO THE TENTH
CUMULANT. BASE-LINE SECTION LIMITED TO 512 POINTS.

AN INTERFERING PEAK WITH THE SAME SHAPE AND WIDTH AS THE
PRINCIPAL PEAK CAN BE INTRODUCED.

THE SIMULATED CHROMATOGRAM CAN BE MULTIPLIED BY WHITE
NOISE TO SIMULATE JITTER, -

ERROR CURVE OF LAST TRIAL IN SERIES IS PLOTTED

IMPLICIT REAL*8 (A-H,0-Z) R
INTEGER 1P(5), NDATE(S)

REAL+L4 CGRAM,RET,DOWN,UP,RN(512),ALPHA

DIMENSION EX(512) AT(ll) DA(7), DV(7) VM(7),VV(7),
1 PINT(512) X2(257)

COMMON/PARM/A(7), Y(7) v(7,7),PA(7),PV(7)
COMMON/DATA/X(SIZ) W(257) CGRAM(ZOOO)

N=512

CALL SET

READ IN GENERAL PROGRAM PARAMETERS

READ(5,1001) IP(1),1P(2),1P(3),HLEVEL,FTEST
IF(HLEVEL LT.1.0D00) HLEVEL=S. ODOO
IF(FTEST.LT.1.00-06) FTEST=1.0D-03
IFCIP(2).LT.1) IP(2)=1

IP1=1P(1)

1P2=1P(2)

READ IM INVERSE-POWER-DENSITY SPECTRUM

READ(5,1002) (wW(J),d=1,257)
‘CALL DCLPRT(257,W)

READ IN BASE-LINE NOISE

5 CALL DATARD(CGRAM,M, |ERR, NORUN)
IF(IERR.GT..0) STOP 1

READ IN TRUE VALUES OF PARAMETERS. (TWO CARDS)
RETENTION TIME, A(2), MAY BE BLANK

10 READ(5,1003) (AT(1),1=1,7)
IF(AT(1).EQ.0.0D00) GO TO 5
READ(5,1003) (AT(1),1=8,11)
IF(1P(3).EQ.0) GO TO 11
READ(5,1003) (PA(1),1=1,7)
READ(5,1003) (PV(1),1=1,7)

11 CALL CH201A(MDATE)
IP(1)=1P1
1P(2)=1P2

READ IN EXPERIMENT PARAMETERS
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NEXP = NUMBER OF TRIALS TO BE MADE
INITIAL = INITIAL RANDOM NUMBER FOR RETENTION TIME
GENERATOR. (POSITIVE INTEGER)
IP4, IP5 = NUMBER OF DATA POIMTS LEFT AND RIGHT OF
RETENTION TIME TO BE USED BY ESTIMATOR
TOTAL NUMBER OF POINTS USED = [PL+[PS+1
SECMAX = IF TOTAL ELAPSED COMPUTUTATIOM TIME FOR THE

EXPERIMENT EXCEENS SECMAX, FURTHER TRIALS WILL
NOT BE MADE, BUT THE SUMMARY DATA
WILL BE PRINTED OUT

DOWN, UP = RANGE OF RETENTION TIMES.

ALPHA = PROPORTIONALITY FACTOR FOR MULTIPLICATIVE NOISE

NO NOISE ADDED IF ALPHA=0.0D00.
Z = INITIAL NUMBER FOR NORMAL-WHITE NOISE GENERATOR
(MULTIPLICATIVE MOISE) :
AREA OF INTERFERING PEAK RELATIVE

AS1 =
TO PRINCIPAL PEAK
AS2 = DIFFERENCE BETWEEN RETEMTION TIMES OF INTERFERIMG

AND PRINCIPAL PEAK IN UNITS OF
YIDTH OF PRINCIPAL PEAK
READ(5,1004) MEXP,IMITAL, Pk, |P5,SECMAX,DOWN, UP, ALPHA,
1 Z, ! S2
& ! HESLPE
BE Rt
WRITE(K,999) .
HWRITE(6,2000) ALPHA,Z,ASI,ASZ,NUATE,(AT(l),l=1,7),
1 NEXP,!NITIAL,IP&,IPS,SECMAX,DOWN,UP
WYRITE(6,2005) (AT(I),I=8,11)
IF(IP(3).6T.0) WRITE(6,2006) PA, PV
CALL CSO03A(INITAL)
TIME=0.,0D00
DO 12 1=1,7
DA(1)=0.0D00
DV(1)=0.0D00
VM(1)=0.0D00O
vv(l)=0.0D00
CONTINUE
FM=0.0D00

FM2=0.0D00
IEXP=1

NERATE WHITE NOISE 1F REQUIRED.

IF(Z.LT.1.0D000) GO TO 20

CALL RNG(N,RM,Z)

DO 14 J=1,N
RN(J)=ALPHA*RN(J)+1.0

CONTINUE

GENERATE RETENTIOM TIME,

20

CALL CS003C(DNWN,UP,RET,NRAND)
AT(2)=DBLE(RET)
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PA(2)=AT(2)
1P(4)=1DINT(AT(2))-1PY

IFCIP(L).LT.1) 1P(B)=1
IP(5)=IDINT(AT(2))+1P5

IFCIP(5).GT.N) 1P(5)=N

L=IP(5)-1P(4)+1
IFCCIP(1).GT.1).AND.(IEXP.GT.1)) WRITE(6,999)

C GENERATE TRUE PEAK
c

QOO

205

CALL FEPEAK(AT,X,EX)
IF(X(1).LT.1.0D00) GO TO 10
IFC(IEXP.EQ.NEXP) CALL DCLPRT(257,EX)
CALL DIFFT(9,X)
A(1)=0.0D00
A(2)=0.0D00
IF(AS1.6T.0.0D00) GO TO 210
DO 205 J=1,L
I=1P(4)-1+d4
PINT(J)=DBLE(CGRAM(1))
CONTINUE
GO TO 225

GENERATE INTERFERING PEAK IF REQUIRED

210

215

220
225

230
235

A(1)=AS1*AT(1)
A(2)=AT(2)+AT(3)*AS2
DO 215 J=3,7
A(J)=AT(J)
CONTINUE
CALL FTPEAK(A,PINT)
CALL DIFFT(9,PINT)
DO 220 J=1,L
I1=1P(L)-1+4 i . '
PINT(J)=PINT(I)+DBLE(CGRAM(I))
CONTINUE
A(2)=A(2)+1-1P(4)
AT(2)=AT(2)+1-1P(}L)
WRITE(6,2001) 1EXP,AT(2),RET,IP(4),1P(5),A(1),A(2)
IF(ALPHA.GT.0.0) GO TO 235
Do 230 J=1,L
I=1P(4)+J-1
TEMP=PINT(J)+X(1)
X(J)=TEMP
EX(J)=TEMP
CONTINUE
GO TO 250
DO 240 J=1,L
1=1P(4)+J-1
REMP=DBLE(RN(J))
TEMP=(PINT(J)+X(1))*REMP
X(J)=TEMP
EX(J)=TEMP
PINT(J)=PINT(J)*REMP



240 CONTINUE
c :
C OBTAIN INITIAL ESTIMATES (MODIFIED FORM OF DETECT)
c

250 CALL DETECT(IP,HLEVEL)
IFC(IP(L4).LT.0) GO TO 20
CALL CONVRT(L)
IFCIEXP.NE.NEXP) GO TO 255
AP(1)=3
1P(2)=3 »
255 CALL BAYES(IP,FTEST,P,FSM,SEC,X2)
IFCIP(L).LT.0) GO TO 32
DO 30 I=1,7 -
DACI)=DA(I)+A(1)-AT(1)
DV(1)=DV(I)+(ACI)=~AT(1))%=2
EXP=Y(1)*=%2
VM(1)=VM(1)+EXP
VV(I)=VV(I)+EXP**2
30 CONTINUE
FM=FM+FSM
FM2=FM2+FSM**2
32 TIME=TIME+SEC
IF(TIME.GT.SECMAX) GO TO 50
IFCIP(4).LT.0) GO TO 20
IFC(IEXP.GE.NEXP) GO TO 50
IF(IP(L).GT.0) 1EXP=IEXP+1
GO TO 20

PLOT ERROR CURVE FOR LAST TRIAL

QOO

50 CALL FTPEAK(A,X)
CALL DIFFT(9,X)
KS=IDINT(A(2)-10.0D00*A(3))
KL=1DINT(A(2)+10.0D00*A(3))
IF(KS.LT.1) KS=1
IF(KL.GT.L) KL=L
L=KL-KS+1
DO 28 J=1,L
I =KS+J-1 .
X(JI=EXC(1)=-X(1)
PINT(J)=PINT(!)
K=1+1P(4)-1
EX(J)=X(J)=PINT(J)
28 CONTINUE -
| CALL GRAPH(EX,X,PINT,A,Y,L,250,3)
¢
€ PRINT OUT SUMMARY OF EXPERIMENT

IFCIEXP.LT.2) GO TO 10
EXP=DFLOAT(IEXP)
EXP1=DFLOAT(I1EXP-1)
DO 52 1=1,7
DACI)=DA(1)/EXP
DV(1)=(DV(I)-EXP*DA(1)=**2)/EXP1

137
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VM(1)=VM(1)/EXP
V(L) =(VV(I)=EXP*VYM( 1 )*%x2)Y/EXPT "
Y(1)=DSQRT(DV(1))
VV(1)=DSQRT(YV(1))
IF(DV(1).GT.1.0D-20) DV(1)=VM(I)/DV(1)
PAC1)=DSQRT(VM(1))
IF(Y(1).GT.1.00-20) A(1)=DA(I)*DSQRT(EXP)/Y(1)
52 CONTINUE
FM=FM/EXP
FM2=(FM2-EXP+FM*x2)/EXP1
IF(FM2.GT.1.0D-20) FMS=(FM=-DFLOAT(IP(5)-1P(4)-7))/
1 DSQRT(EXP*xFM2)
TIME=TIME/EXP
WRITE(6,999)
WRITE(6,2000) ALPHA,Z,6AS1,AS2,NDATE, (AT(1),1=1,7),
1 NEXP,INITIAL,IP&,IPS,SECMAX,DOWN,UP
WRITE(6,2002) IEXP,FM,FM2,FMS, TIME
WRITE(6,2003)
WRITE(G6,2004) ((I;DA(I),Y(I),DV(I),A(I),PA(I),VM(I),
1 VW(1)),1=1,7)
GO TO 10
999 FORMAT(1H1)
1001 FORMAT(1X,311,F8.0,F10.0)
1002 FORMAT(8D10.5)
1003 FORMAT(7F10.0) .
1004 FORMAT(2|10,2|5,3F5.0,E10.2,F10.0,E10.2,F5.0)
2000 FORMAT(1HO, 'EXPERIMENT PARAMETERS',IPEIS.2,0PF15.0,
20001 1P2D15.2,20X,6AL/
20002 4X,1P3D15.5,0P4F10.6,13,18,214,3F6.0)
2001 FORMAT(1X,'EXP NO.',lh,lPDZZ.S,OPFlO.S,ZI10,1PD22.5,
20011 0PF15.5)
2002 FORMAT(IHO,'N=',l3,2X,'SUM OF SQUARES - MEAN =!',1Pnis.

20021 5,! VARIANCE =',D15.5," T =',D15.5,
20022 ' AVERAGE TIME(SEC.) =',0PF10.1)

2003 FORMAT('0',T25,'0BSERVED',T85, 'PREDICTED!/
20031 '0', 11X,'MEAN DEV.',8X,'STD. DEV.',7X,

20032'EFFICIENCY', 7X, 'STUDENTS T',15X,'STD. DEV.', 13X,

20033 'VAR.STD. OF VAR.')

2004 FORMAT(1HO,13,1P4D17.5,7X,3D17.5)

2005 FORMAT(43X,4F10.6)

2006 FORMAT(' PRIOR VALUES'/4X,1P3D15.5,0P4F10.6/

20061 'PRIOR STANDARD DEVIATIONS' /4X,1P3D15.5,0P4F10.6)
END
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PROGRAM My
ESTIMATES POWER-DENSITY SPECTRUM

GIVES PUNCHED CARD OUTPUT FOR USE IMN PEAK ESTIMATIONM
PROGRAMS (WITH AND WITHOUT GROUPING CORRECTION).

IMPLICIT REAL*8 (A-H,0-Z)

REAL*4 CGRAM(2000)

DIMENSION X(512),UX(512),W(512)

N=512

N2=256

K=257

FA=6.283185307179586/512.0D00

Z=1.0D000/510.0D00

READ IN ONE SET OF DATA (512 DATA POINTS).

4 CALL DATARD(CGRAM,M, |ERR,NRUN)
IF(1ERR.GT.0) STOP 1

FILTER WITH(-1/2,1,-1/2)
X(1)=0.0D00
L=N-1

DO 6 J=2,L
X(J)=DBLE(CGRAM(J)-0.SEOO*(CGRAM(J-1)+CGRAM(J+1)))
6 CONTINUE
X(H)=0,0D00

FOURIER TRANSFORM

CALL DFFT(9,X)
DO 8 J=2,N2

T=N+2-J

X(I)=(X(J)#%24X (1) #22) »Z
g ¢ovH e

X(K)=(X(K)**2)=Z
UX(K)=X(K)

SMOOTH WITH HANMNING SPECTRAL WINDOW (1/4,1/2,1/4)

VAR=X(2)

X(2)=0.75%X(2)+0.25%*X(3)

DO 10 J=3,N2
UAR=X(J)
X(J)=0.25D00*(VAR+X(J+1))+0.5D00+UAR
VAR=UAR .

10 COMTINUE
X(K)=0.5D00*(X(K)+UAR)

CORRECT FOR FILTERING AND GROUPING

DO 12 y=2,K
HC=(1.0D00-DCOS(FA*DFLOAT(J=1))**2
X(J)=X(J)/HC
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UX(J)=UX(J)/HC
W(J)=X(J)*(FA/(2.0D00*DSIN(FA*DFLOAT(J=-1)/2.0D00))

*%2)

12 CONTINUE

20

X(1)=X(2)
UX(1)=UX(2)
W(1)=W(2)
WRITE(6,2000)
CALL DCLPRT(K,UX)
WRITE(6,2001)
CALL DCLPRT(K,X)
WRITE(6,2002)
CALL DCLPRT(K,W)
DO 20 J=2,K
X(J)=1.0D00/X(J)
W(J)=1.0D00/W(J)
CONTINUE
X(1)=0,0D00
W(1)=0.0D00

PUNCH OUT DUPLICATES OF IMVERSE OF MOMGROUPED
AND GROUPED SPECTRA '

1000
2000
2001
2002

WRITE(7,1000) (X(J),J=1,K)

WRITE(7,1000) (X(J),J=1,K)

WRITE(7,1000) (W(J),J=1,K)

WRITE(7,1000) (W(J),d=1,K)

GO TO 4

FORMAT(8D10.5)

FORMAT('1RAW POWER-DENSITY SPECTRUM!')

FORMAT( 'OHANNED POWER-DENSITY SPECTRUM')
FORMAT('OGROUPED AND HANMNED POWER-DENSITY SPECTRUM!)

“END
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PROGRAM M5
DETERMINES CORRELATIOMS BETWEEN ERRORS OF PARAMETERS

ESTIMATED BY PROGRAM M2,

IMPLICIT REAL*8(A-H,0-Z)
DIMENSI10N A(4,16,7),8¢7),S(4,7),C(7,7)

OO0

READ IN PARAMETER VALUES

IND CODE NUMBER OF PEAK
1 - HORMAL HEPTANE (16 RUNS)

2 - NORMAL OCTANE (16 RUNS)

3 - 2,3,4-TRIMETHYLPENTANE (11 RUNS)

4 - TOLUENE (5 RUHNS)

‘A(1) 1S PEAK AREA DIVIDED BY WEIGHT OF COMPOMENT,.
A(2) IS NET RETENTIOM TIME.

LU | S [ [ I T

OOOOOOOOO O

READ(5,1000) (((ACIND,1,J)
READ(5,1000) ((A(3,1,d),d=
READ(5,1000) ((A(L,1,d),d=

[ B o B

NORMALIZE AREAS

OO0

DO 205 1=1,11
AREA=(A(1,1,1)+A(2,1,1)+A(3,1,1))*1.0D-05
A(1,1,1)=A(1,1,1)/AREA
A(2,1,1)=A(2,1,1)/AREA
A(3,1,1)=A(3,1,1)/AREA

205 CONTINUE

DO 210 1=12,16
AREA=(A(1,1,1)+A(2,1,1)+A(4,1,1))*1.0D-05
A(1,1,1)=A(1,1,1)/AREA
A(2,1,1)=A(2,1,1)/AREA
A(4,1,1)=A(L,1,1)/AREA

210 CONTINUE

13=1

14=16

IND=0

1 IND=IND+1
Go 10 (15,15,13,14,100),IND
13 14=11 .
GO TO 15
14 13=12
14=16
c
C OBTAIN MEANS
c
15 DO 25 1=1,7
B(1)=0.0D00
SCIND,1)=0.0D00
DO 20 J=1,7
C(1,J)=0.0D00
20 CONTINUE
25 CONTINUE
WRITE(6,2000) IND
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DO 35 I=13,14
WRITE(6,2001) 1,CACIND,I,4),d=1,7)

DO 30 J=1,7
B(J)=B(J)+A(IND,1,J)

30 COMTINUE
35 CONTINUE
DO 40 J=1,7
B(J)=B(J)/DFLOAT(14-13+1)
40 CONTINUE
WRITE(6,2002)

OBTAIN COVARIANCES

DO 55 I=13,14
DO 50 J=1,7
ACIND,1,J)=ACIND,1,J)=B(J)
DO 45 K=1,J
C(J,K)=C(J,K)+A(CIND,!,J)*ACIND,|,K)

L5  CONTINUE

50 COoN E .
55 conr?ﬁbgé?g’ZOOI) 1,C(ACIND,1,d),d=1,7)
DO 60 J=1,7
“SCIND,J)=DSQRT(C(J,J)/DFLOAT(IL=-13))
60 CONTINUE :
WRITE(6,2003)
DO 70 1=13,14
DO 65 J=1,7
ACIND,1,d)=ACIND,1,d)/SCIND,J)
65 CONTIMNUE
WRITE(6,2004) 1,(ACIND,!,J),d=1,7)
70 CONTINUE
WRITE(6,2005)
‘WRITE(6,2001) 1ND,(B(J),d=1,7)
WRITE(6,2006)
WRITE(6,2001) IND,(SCIND,J),d=1,7)
WRITE(6,2007)

OO0

c
C CALCULATE CORRELATIONS AND CORRECT FOR BIAS
c

DO 80 1=1,7
DO 75 J=1,1 .
C(1,d)=CC1,d)/(SCIND,1)*S(IND,J)*DFLOAT(I4=13))
C(1,J)=C(1,d)*(1.0D00+(1.0D00-C(1,d)**2)/
. (2.0D0O*DFLOAT(1L4=-13-3)))
75 CONTINUE
WRITE(6,2008) I,(C(1,d),d=1,1)
80 CONTINUE
GO TO 1
100 WRITE(6,2006)
WRITE(G,2001) (IND,(S(IND,J),d=1,7),IND=1,4)
WRITE(6,2009)
IND=0
106 IND=IND+1
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GO TO (101,102,103,104,105,200), IND
101 11=1

12=2

13=1

14=16

GO TO 110
102 12=3

I4=11

GO TO 110
103 11=2

GO TO 110
104 [1=1

12=4

13=12

14=16

GO TO 110
105 11=2

CALCULATE CORRELATIONS OF PARAMETERS BETWEEN
DIFFERENT PEAKS ON SAME CHROMATOGRAM

110 DO 120 1=1,7
B(1)=0.0D00
DO 115 J=13,14
BCI)=A(11,d,1)*A(12,4,1)+B(1)
115 CONTINUE
B(1)=B(1)/DFLOAT(14-13)
B(l)=B(l)*(1.0900+(1.0DOO-B(I)**2)/
1 (2.0D00*DFLOAT(I4=13-3)))
120 CONTINUE
WRITE(6,2010) t1,12,p»
GO TO 106
200 STOP
1000 FORMAT(7F10.0)
2000 FORMAT('1DATA SET',13,! NORMALIZED AREA!)
2001 FORMAT('0',14,F17.0,6F17.4)
2002 FORMAT('O DEVIATIONS FROM MEAN')
2003 FORMAT('O NORMALIZED DEVIATIONS')
2004 FORMAT('0',14,7F17.4)
2005 FORMAT('0 MEANS')
2006 FORMAT('O STAMDARD DEVIATIONS')
2007 FORMAT('O CORRELATIONS BETWEEN PARAMETERS OF SAME?,
20071 ' PEAK')
2008 FORMAT('0',10X,13,7F15.4/)
2009 FORMAT('OCORRELATIONS BETWEEM PEAKS')
2010 FORMAT('0',212,7F17.4)
END
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SUBROUTINE BAYES(!P,FTEST,P,FSM,SEC, X2)
ESTIMATES PEAK PARAMETERS
IP(1) IS OUTPUT PARAMETER : o
=0 - PRINTS FINAL ESTIMATES, 'SUM OF SNUARES',
DAMPING FACTOR, COMPUTATION TIME,
BUT NO HEADING
=1 - AS FOR 0, WITH HEADING
=2 - AS FOR 1, PLUS ESTIMATES AT EACH ITERATION
=3 - AS FOR 2, PLUS OUTPUT FROM DAMP AND STEP
FTEST = TERMINATION FACTOR
P = DAMPING FACTOR (RETURMED)
FSM = MINIMUM 'SUM OF SQUARES' (RETURNED)
SEC = ELAPSED COMPUTATIOM TIME (SECONDS)

X2 = WORK SPACE (257)

IMPLICIT REAL*8 (A-H,0-Z)

REAL*4 CGRAM
COMMOM/DATA/X(512),W{257),CGRAM(2000)
COMMON/PARM/A(7),Y(7),V(7,7),PAC7),PV(7)
DIMENSION DISPM(7,7),RHS(7),XX(7),BB(7,7),RR(7),
1 DIA(7),AM(7),AL(7),X2(1),C(7),CM(7)
INTEGER IP(5),PIVOT(7)

DATA N/512/,N2/256/,K/257/,DROP/0.1D00/
MTIME=2500000

CALL CSO019A(NTIME)

NIT=0

IND=0

IFCIP(1).GT.0) WRITE(6,1000)

DO 2 J=2,N2

I=N+2-4
X2(J)=W(J) % (X(J)+*2+X (1) **2)

CONTINUE

X2(RK)=W(K)*X(K)**2

CALL INFORM(O,FSP,X2,C)

FSM=FsSP

DESENT=FSP

GO T0 5

OBTAIN INFORMATIOM MATRIX (V) AND GRADIENT VECTOR (vY)

W N

4 CALL IMFORM(1,FSP,X2,C)
INTRODUCE PRIOR IMFORMATION, IF ANY, TO V AND Y

5 IF(1P(3).GT.0) CALL PRIOR
FSO=FSP -

GL=0.0D00
SCALE PARAMETER SPACE TO IMPROVE NUMERICAL PRECISION

DO 6 1=1,7
AL(1)=A(1)
AM(1)=A(1)
DIAC1)=1.0D00/(DSQRT(V(1,1)))
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YC1)=Y(1)*DIACL)
GL=GL+Y(])**2
6 CONTINUE
GS=-2.0D00=*GL
DO 9 1=1,7
DO 7 J=1,7
) V(1,d)=V(L,J0)*DIACT)*DIA(Y)
COMTINUE
CONTINUE
CALL CS019B(KTIME)
SEC=2.6D-5+DFLOAT(NTIME-KTIME)
P=0.0D00
IFC(IP(1).LT.2) GO TO 10
WRITE(6,999)
WRITE(6,1001) NIT,(A(C1),1=1,7),FSM,P,GL,SEC

W~

CALCULATE DAMPING FACTOR

10 CALL DAMP(IP,IND,P,FSP,GS,GAMMA)
IF(IND.GE.100) GO TO 30
Z=1.0D00+1.0D00/P
16 DO 18 1=1,7
vii,1)=Z
18 CONTINUE
CALL CS012A(V,DISPM,RHS,XX,7,BB,RR,PIVOT)

CALCULATE CORRECTION VECTOP AND NEW ESTIMATES

CL=0.0D00O
GAMMA=0.0D00
DO 22 I=1,7
CORR=0.0D0O
DO 20 J=1,7
CORR=CORR+Y(J)*DISPM(1,d)
20 CONTINUE
GAMMA=GAMMA+ CORR=Y(1])
CL=CL+CORR**2
CORR=CORR*DIA(1)
AC1)=AL(1)+CORR
C(1)=CORR
22 COMNTINUE
GAMMA=GAMMA/DSQRT(GL=*CL)
IF(DABS(1.0D00-GAMMA).GT.1.0D-05) GO TO 23
GAMMA=0.0D00
GO TO 24
23 GAMMA=DARCOS(GAMMA)*57.295779

TEST IF NEW ESTIMATES ARE REASONABLE

24 CALL TEST(IP)
IFCIP(4).LT.0) GO TO 60

OBTAIN 'SUM OF SQUARES' FOR NEW ESTIMATES
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CALL INFORM(2,FSP,X2,C)
IF(FSP.GE.FSM) GO TO 10
GAMAM=GAMMA

FSM=FSP

DO 26 1=1,7
AM(1)=A(1)
CM(1)=C(1)

26 CONTINUE
REPEAT WITH DIFFERENT VALUE OF DAMPING FACTOR

GO TO 10
30 NIT=NIT+1

STEP ALONG CORRECTION VECTOR IF NECESSARY

IF(GAMAM.LT.50.0D00) CALL STEP(IP,FSM,FSO,AL,AM,CM,
1 X2,A)
IFCIP(L4),LT.0) GO TO 60

END OF ITERATION - TEST FOR COMVERGEMNCE

32 IND=1
FSP=FSM
DO 34 1=1,7

AC1)=AM(1)

34 COMTINUE .
DESENT=DROP*DESENT+FSN-FSM
IF(DESENT/FSM.GT.FTEST) GO Tn 37
WRITE(6,100%4) -

GO TO 40

37 IF(GL.GT.FTEST) GO TO 35
WRITE(6,1012)

G0 TO 40

35 IF(NIT.LT.40) GO TO 36
IP(L4)=-2
YWIRITE(6,1005)

GO TO 50 °

36 IF(SEC.LT.60.0D00) GO TO &
IP(4)=-3
WRITE(6,1006)

GO TO 50

STATISTICS SECTION
IP(2) IS STATISTICS OQUTPUT PARAMETER
=0 - PRINTS OUT DEGREES OF FREEDOM (MNU),
NORMALIZED CHI*x2 (D)
=1 - AS FOR 0, RETURMNS DISPERSION MATRIX (V)
=2 - AS FOR 1, PRINTS SCALED GRADIEMNTS, SQUARE OF
SCALED GRADIENT LENGTH AND LEMGTH, STANDARD DEVIATIONS,
AND RELATIVE STANDARD DEVIATINMS. RETURNS
STANDARD DEVIATIONS IN Y AMD
CORRELATION MATRIX IN V.
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=3 - AS FOR 2, AND PRINTS OUT CORRELATIOM MATRIY.

IFCIP(2).LT.1) GO TO 50
DO 44 1=1,7
v(l,1)=1,0000
CONTINUE
CALL CSO012A(V,DISPM,RHS,XX,7,BB,RR,PIVOT)
DO 45 1=1,7
XX(1)=Y(1) '
Y(1)=DSQRT(DISPM(I,1))
CONTINUE
DO 48 1=1,7
DO 46 J=1,7
v(l,Jd)=nIsPM(l, J)/(Y(I)*Y(J))
COMNTINUE
CONTINUE
GS=0.0D00
DO 49 1=1,7
XXCIY=XX(1)*Y(1)*2.0D00
Y(I)=Y(1)*DIA(1)
IF(DABS(A(1)).GT.1.0D=5) RR(1)=Y(1)/DABS(A(1))
GS=GS+XX (1) *=*2
CONTINUE
GAMMA=DSQRT(GS)
CALL CSO019B(KTIME)
SEC=2.6D~05*DFLOAT(NTIME-KTIME)
WRITE(6,1001) NIT,(AC1),1=1,7),FSM,P,GL,SEC
IF(ID(Q) LT.0) GO TO 60
IFCIP(2).LT.2) GO TO 60
NU=IP(5)-1P(4)-7

DEV=1.0D01
IF(NU.GT.10) DEV=DSQRT(2.0N00*FSM)-

1 DSQRT(DFLOAT(MU*2-1))
WRITE(6,1013) XX,GAMMA,LGS
WRITE(6,1007) NU,DEV, (Y(l) 1=1,7)
WRITE(6,1008) FTEST RR
IF(IP(Z) LT.3) GO TO 60
WRITE(6,1009)

WRITE(G,IOIO) ((vet,d),d9=1,7),1=1,7)
CALL Cso019C
RETURN
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999 FORMAT(1H )

1000 FORMAT('ONIT',7X,'A1',13X,'A2',13X,'A3',10X,'Ah',8x,
10001'A5',8X,'A6',8X,'A7',10X,'FSM',16X,'P',QX,'TIME')
1001 FORMAT(1X,13,1P3D15.5,0P4F10.6,1PD15.6,010.2,D12.2,
10011 0PF7.2)

1004 FORMAT(10X, 'TERMINATED BY SLOW COMVERGENCE')

1005 FORMAT(10X, 'TERMINATED BY ITERATINON LIMIT!)

1006 FORMAT(10X,'TERMINATED BY TIME LIMITATION')

1007 FORMAT(' ESTIMATED STANDARD DEVIATIONS', 60X, 'Nu=',15,

10071 5X,'D=',1PD15.5/4X,3D15.5,0P4F10.6)
1008 FORMAT(' RELATIVE STANDARD DEVIATIOMS (PERCENT) ',66X,
10081 '"FTEST =',F10.7/4X,2P3F15.5,4F10.6)

1009 FORMAT(' CORRELATION MATRIX')

1010 FORMAT(1HO,20X;7F10.4)

1011 FORMAT(89X,1PD15.6,D10.2)

1012 FORMAT(10X,'TERMINATED BY SMALL GRADIENT')

1013 FORMAT(' SCALED GRADIENTS'/4X,1P3Nn15.2,4D10.2,2012.2)

END
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SUBROUTINE INFORM(IP,PHI,X2,C)

IP IS OPTION PARAMETER

X2

CALCULATION OF 'SUM OF SQUARES' WHEN CONTRIP

=0 - RETURNS INFORMATIOM MATRIX AND GRADIENT VECTOR
AND SUM OF SNUARED DEVIATIONS

=1 - RETURNS INFORMATION MATRIX AND GRADIENT ONLY

=2 - RETURNS SUM OF SQUARED DEVIATIONS ONLY

= WEIGHTED ABSOLUTE SQUARE OF DATA, USED IN
UTION FROM

FITTED PEAK IS NEGLIGIBLE (REAL PART OF NORMALIZED
PEAK IS LESS THAN EXP(-20) )

10

IMPLICIT REAL*8 (A-H,0-Z)
REAL*4 CGRAM :
COMMON/DATA/X(512),W(257), CGRAM(2000)
COMMON/PARM/A(7),Y(7),V(7,7),PA(7),PV(7)
DIMENSION EF(7),0F(7),X2(1),C(1)
DATA N/512/,N2/256/,M/7/,TWOP1/6.283185307179586/
IF(IP.EQ.2) GO TO 100 -
DO &4 I=1,M

Y(1)=0,0000

DO 2 J=1,M

V(1,J)=0.0D00

CONTINUE
CONTINUE
FA=TWOPI/DFLOAT(N)
FM=FA*(A(2)-1.0D000)

FS=FA*A(3)

IFCIP.NE.1) PHI=0.0000

DO 20 J=2,N2
S=DFLOAT(J-1)=*FS
$2=8*S
F=((-A(7)*S2/30.0D00+A(5))*S2/12.0D00-1.0D00)*

S2/2.9D00
IF(F.GT.-20.0D00) GO TO 7
IFCIP.NE.1) PHI=PHI+X2(J)
GO TO 18
IF(F.LE.1.0D01) GO TO 8
WRITE(6,1000) CACIL),IL=1,7)
GO TO 40 .
ALPHA=DEXP(F)
S3=52*S
SA=DFLOAT(J-1)=*FA
| =N+2-J
ARG=(-A(6)*32/20.0000+A(u))*53/6.0DOO—DFLOAT(J-

CF=DCOS(ARG)

SF=DSIM(ARG)

DPR=ALPHA*CF

DPI=ALPHA*SF

PR=X(J)-A(1)=*DPR

PI=X(1)-A(1)=DP]|

U=W(J)

IFCIP.NE.1) PHI=PHI+U*(PR*PR+P|*P])
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IF(IP.EQ.2) GO TO 18
EF(2)=0.0D00
0F(2)=-SA

EF(3)=((~A(7)*S2/20.0D00+A(5))*S2/6.0D00=1.0N00)*

S*SA
OF(3)=(-A(6)*S2/12.0D00+A(4))*S2*SA/2.0D00
EF(4)=0.0D00
OF(L4)=S3/6.0D0
EF(5)=S2%xS2/24,0D00
OF(5)=0.0D00
EF(6)=0.0D00
OF(6)=-S3%*S2/120,0D00
EF(7)=-S3%*S3/720.0D00
OF(7)=0.9D00
Y(1)=Y(1)+U*(PR*DPR+P|*DP]|)

U=UxALPHA
T=U*xALPHA
V(1,1)=Vv(1,1)+T
DO 12 K=2,M
Y(K)=Y(K)+U*(PR*(EF(K)*CF=-0F(K)*SF)
+PI*(NF(K)*CF+EF(K)=xSF))
V(K,K)=V({K,K)+T*(EF(K)*EF(K)+OF(X)*0F(K))

COMNTINUE
DO 14 K=4,M

v(3, K) =V(3, K)+T*(EF(3)*EF(Y)+0F(3)*0F(K))
COMTINUE

V(1,3)=V(1,3)+T*EF(3)
V(2,3)=V(2,3)+T*0F(2)*0F(3)
DO 16 K=5,M,2
1K=K=-1
V(i K)=V(1,K)+T*EF(K)
(2,1K)=V(2,1K)+T*0OF(2)*0F (1K)

conrTRUEHUE

CONTINUE
IF(IP.EQ.1) GO TO 28
PHI=2,0D00*PHI+X2(N2+1)
IF(IP.EQ.2) GO TO 40
V(4,6)=-V(5,5)*4.,0D00/5.0D00
V(5,7)=-V(6,6)*5.0D00/6.0D00
Y(1)=2.0D20*Y(1)
V(1,1)=2.0000+V(1,1)
FA=2.0D00*A(1)
FM=FA*A(1)
DO 34 I=2,M
Y(1)=FA+Y(1)
V(1,1)=FA+V(1,1)
V(l,1)=v(1,1)
VO, 1)=FM=V(1,1)
K=1+1
IF(K.EQ.(M+1)) GO TO 40
DO 32 J=K,M
V(l1,Jd)=FM=Vv(1,J)
V(J, 1)=v{t,J)



OO0

32
3y
40

. CONTINUE
CONTINUE
RETURN

DETERMINE IF 4'TH AND 6'TH CUMULANTS ARE

IN

CRITICAL REGION

100 T=A(5)*%2-1.6D00*A(7)

105

110
115

120

1000

IF(T.LE.0.0D00) GO TO 6
SA=1.0D00/(TWOPI *A(3))
IF(DABS(A(7)).GT.1.0D-10) GO TO 105
IF(A(5).LE.1.0D-10) GO TO 6
S=DSQRT(12.0D00/A(5))*SA
IF(S.GT.0.6D00) GO TO 6

GO TO 120

T=DSOQRT(T)

S=(A(5)-T)*15.0D00/A(7)
S2=(A(5)+T)*15.0D00/A(7)
IF(S.LE.0.0D00.AND.S2,.LE.0.0N0ON) GO TO 6
IF(S.GT.0.0D00.AND,.S2.GT.0.0D00) GO TO 110
S=DMAX1(S,S2)

GO TO 115 ,

S=DMIN1(S,S2)

S=DSQRT(S)*SA

IF(S.GT.0.6D00) GO TO 6
S=A(5)**2/1,6D00

C(7)=S-A(7)+C(7)

A(7)=s

GO TO 6 .
FORMAT(L4X,1P3D15.5,0P4F10.6)

END
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SUBROUTINE DAMP(1P,IND,P,FS,GS, GAMMA)

CALCULATES DAMPING FACTOR (P) FOR NEXT TRIAL
IF QUTPUT PARAMETER, iP(1), IS EQUAL T0O 3, PRINTS OUT
INFORMATION ON EACH TRIAL (SEE STATEMENT NUMBER 700)
IND = TRIAL NUMBER
FS = SUM OF SQUARES FOR P
GS = SLOPE OF FS(P) AT P=0
GAMMA = ANGLE BETWEEN SCALED CORRECTION VECTOR AND
NEGATIVE GRADIENT (DEGREES)

IMPLICIT REAL*8 (A-H,0-2)
DIMENSION A(9),B(3),X(3),F(3)
INTEGER 1P(5)
DATA N/3/,UP/1.0D01/,D0WN/1.0D-01/,H/1.00-01/,
. HL/=2.302585092994046/
IF(IND.GT.0) GO TO 10
PL=40.0D00
GO TO 100
10 IF(IND.EQ.1) GO TO 100
FSP=FS-FgQ
IF(FSP.GT.0.0D00) PBAD=P*0.95D00
IF(FSP.GE.FSM) GO TO 20
FSM=FSP
PM=pP
20 GO TO (100,200,300,400,700,700), IND

FIRST TRIAL - PREVIOUS VALUE

100 Fo=FSs

FSM=0.0D00
IF(PL.GT.1.0D037) PL=PL*DOWN

PM=PL
P=PL
PBAD=1,0D20

F(1)=0.0D00
X(1)=HL
IND=2

GO TO 900

C SECOND TRIAL - MINIMUM OF QUADRATIC
c

c
c
c

200 F(2)=FspP

X(2)=DLOG(P+H)

IFC(IP(1).GT.2) WRITE(6,1000) GAMMA,FSP,P,X(2)
B(3)=(F(2)=F(1)-H*GS*(X(2)-X(1)))/(X(2)-X(1))**2
B(2)=H*GS-2.0D00*B(3)*HL
B(1)=F(1)-B(2)*HL-B(3)#HL**2

I1ND=3

GO TO 500

THIRD TRIAL
300 IF(P.GT.1.0D05) GO TO 700
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F(3)=FSP

X(3)=XpP |

IFC(IP(1).GT.2) WRITE(6,1001) B(1),B(2),8(3),FP,IC,
1 GAMMA, FSP, P, XP

IND=4 )

GO TO 450

FOURTH TRIAL

iF(P.GT.1,0D05) GO TO 700
{FCIP(1).GT.2) WRITE(6,1001) B(1),2(2),8B(3),FP,IC,
1 ' GAMMA, FSP, P, XP
GAMMA = ANGLE BETWEEM SCALED CORRECTIOM YECTOR AND
NEGATIVE GRADIENT (DEGREES)

FP=F(1)
K=1
IF(F(2).LE.FP) GO TO 405
FP=F(2)
K=2
405 IF(F(3).LE.FP) GO TO 420
K=3
420 F(K)=FSP
X(K)=XP
IHD=5
450 DO 460 J=1,N
B(J)=F(J)
ACJ)=1.0D00
K=J+N
ACK)=X(J)
K=K+N
ACK)=X(J)*#2
469 CONTINUE

400

CALCULATE COMSTANTS OF QUANDRATIC

CALL DSIMO(A,B,N,IC)
ANALYZE CASES AND TAKE APPROPRIATE ACTIOM

IF(IC.GT.0) GO TO 700
560 FP=0.0D20
1£(B(3).GT.0.0D00) GO TO 510
:g(g(Z).GT.0.0) GO TO 505
503 P=PMxUP
XP=DLOG(P+H)
GO TO 800 . .
505 :g(B(l).LE.0.0DOO) GO TO 507
=2
GO TO 503
507 1C=4
GO TO 515
510 XP=-B(2)*0.5D00/B(3)
IF(XP.GT.HL) GO TO 520
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1C=5
515 P=P=DOWI
XP=DLOG(P+H)
GO TO 300
520 FP=B(1)+B(2)*XP+B(3)*XP*%2
IF(FP.LE.FSM) GO TO 525

1C=10
GO TO 700
525 IF(XP.LT.20.0D00) GO TO 530
1C=7
GO TO 503
530 P=DEXP(XP)~H
IC=0
IF(P.GT.1.0D-08) GO TO 800
P=1.0D-08
1C=6
PRINT OUT INFORMATION
B(1-3) = CONSTANTS OF QUADRATIC
FP = PREDICTED MINIMUM OF QUADRATIC
IC = ANALYSIS CASE CODE - SEE PROGRAM |TSELF

FSP = DIFFERENCE BETWEEN WEIGHTED 'SUM OF SQUARES'
AT P=0 AND AT THE CURRENT VALLE OF P

= CURRENT VALUE OF DAMPING FACTOR

LN(P+0.1)

700 I1FCIP(1).GT.2) WRITE(6,1001) B(1),8(2),B(3),FP,IC,
1 GAMMA, FSP, P, XP
IF(FSM.LT.0.0D00) GO TO 710
P=P*DOWN
IND=6
IF(P.LE.1.0D-10) GO TO 710
GO TO 900
710 P=PM
PL=PM
- IND=100
GO TO 900
800 IF(P.LT.PBAD) GO TN 900
P=PM*2,0D00
1C=8 _
1F(P.GE.PBAN) P=0.5D00*(PBAD+PM)
900 RETURN
1000 FORMAT(79X,F10.2,1PD15.6,2010.2)
1001 FORMAT(16X,1P3D15.2,D15.6,13,0PF10.2,1PD15.6,2010.2)
END

p
XP
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SUBROUTINE STEP(!IP,FSM,FSL,AL,AM,CM,GX2,A)

CALCULATES OPTIMAL VALUE OF STEP (S) ALONG DAMPED
CORRECTION VECTOR AND RETURNS MEW VALUES OF PARAMETERS
IF OUTPUT PARAMETER, 1P(1), EQUALS 3, IMFORMATION IS
PRINTED OUT AT EACH TRIAL (SEE STATEMENT NUMBER 400)

FSM = 'SUM OF SQUARES' AT S=1

FSL = 'SUM OF SQUARES' AT S=0

AL = PARAMETER YALUES AT S=0

AM = PARAMETER VALUES AT $=1

CM = CORRECTION VECTN g =1

GX2 = WEIGHTED ABSOLUTE SOUARE DATA
A = PARAMETER VALUES AT 0P TIM S

IMPLICIT REAL+*8 (A-H4,0-Z)

DIMENSION AL(7), CM(7) GX2(1),P(3),X(3),Y(3),0(9),AM(7),A(7)
INTEGER [P(5)

DATA N/7/,M/3/,UP/1.0D01/,D0OWN/1,0D-01/

INITIALIZE - TRY S = 2

SBAD=1.0D12
1C=0
XMAX=1,0D04
P(1)=0.0D00
X(1)=0.0D00
PM=FSM-FSL
P(2)=PM
X(2)=1.0000
SM=1.0D00
$=2.0000
IND=0

10 IND=IND+1
XMAX=XMAX=*1,0D02
IF(S.LT.SBAD) GO TO 12
S=SM=*2,0D00
1C=7
IF(S.GE.SBAD) S=0.5N00*(SBAD+SM)

CALCULATE HEW VALUES OF PARAMETERS AND 'SUM OF SNUARES',
PS IS THE DIFFERENCE BETWEEN THE 'SUM OF SNUARES'
AT S=0 AND AT THE CURRENT VALUE OF S.

12 DO 15 J=1,N
A(J)=AL(J)+S*CM(J)
15 CONTIHUE
16 CALL TEST(I1P)
IFCIP(4).LT.0) GO TO 405
CALL INFORM (2,FS,GX2,Q)
PS=FS-FSL
IF(PS.GT.0.0D00) SBAD=S*0.95D00
17 IF(FS.GE.FSM) GO TO 30
FSM=FS
PM=PS
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SM=S
DO 20 J=1,7
AM(J)=A(J)
20 CONTINUE
30 GO TO (100,200,200,200,400), IND

FIRST TRIAL, S = 2. P(1-3) AND X(1-3) ARE STORED VALUES OF
ATTEMPED S AND THE RESULTING PS.

100 I1FCIP(1).GT.2) WRITE(6,1009) PS,S
P(3)=PS
X(3)=s
GO TO 300

SUBSEQUENT TRIALS

200 1F(IP(1).GT.2) WRITE(6,1001) Y(1),Y(2),Y(3),PQ,IC,PS,S
IF(DABS((PS-PQ)/PS).LE.1.0D-03) GO TO 405

REPLACE S GIVING GREATEST PS WITH CURRENT VALUE OF S

208 PQ=P(1)
K=1 '
IF(P(2).LE.PQ) GO TO 210
PQ=P(2)
K=2
210 IF(P(3).LE.PN) GO TO 215
K=3
215 P(K)=PS
X(X)=s

300 DO 310 J=1,M
Y(J)=P(J) -
Q(J)=1.0D00
K=J+M
Q(K)=X(J)
K=K+M
Q(K)=X(J)**2

310 COMTIMUE

CALCULATE COMSTANTS OF QUADRATIC

CALL DsIMQ(Q,Y,M,I1C)
ANALYZE CASES AND TAKE APPROPRIATE ACTION

IF(1C.GT.0) GO TO 320
PQ=0.0D00

IF(DABS(Y(3)).GT.1.0D0-20) GO TO 330
1C=5
IF(Y(2).GT.0.0D00) GO TN 320

315 SSS¥6UP0

320 §=SM*05wn
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GO TO 10
S=-0.5N000*Y(2)/Y(3)
IF(Y(3).6T.0.00N0) GO TO 350
IF(S.GT.SM) GO TO 340

1C=2

GO TO 315

1C=3

GO TO 320

IF(Y(2).LT.0.0D00) GO TO 360
1C=4

GO TO 320

IF(S.LT.XMAX) GO TO 370

1C=6

S=XMAX

GO TO 10
PQ=Y(1)+S*(Y(2)+S*Y(3))

GO TO 10

PRINT OUT INFORMATI!ON

Y

(1-3) = CONSTAMTS OF NQUADRATIC

PQ = PREDICTED MINIMUM OF QUADRATIC

IC

p
S

500
405
1000
1901 .

ANALYSIS CASE CODE (SEE PROGRAM ITSELF)
DIFFERENCE BETWEEN SUM 0OF SQUARES AT S=0
AND AT CURRENT VALUE OF S

= CURRENT VALUE OF STEP FACTOR

S

IFCIP(1).GT.2) WRITE(6,1001) Y(1),Y(2),Y(3),Pn,IC,PS,S
RETURN

FORMAT(89X,1PD15,.6,D10.2)
FORMAT(11X,1P3D20.2,D015.6,13,n15.6,D10.2)

END
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SUBROUTIME DSIMQ(A,B,N,KS)

SOLUTION OF SIMULTANEOUS LIMNEAR EQUATINONS AxX=3
DOUBLE PRECISION FORM OF SIMQ IM IBM SCIENTIFIC
SUBROUTINE PACKAGE VERSION 111
N - NUMBER OF EQUATIONS AND VARIABLES
A - N BY N MATRIX OF COEFFICIENTS.
DESTROYED IN COMPUTATION,
B - VECTOR OF ORIGIMNAL CONSTANTS.
REPLACED BY SOLUTION - X.

0 - NORMAL SOLUTION

KS
1 - EQUATIONS ARE SINGULAR, SOLUTION NOT FOUMD,

IMPLICIT REAL*8 (A-H,0-2)
DIMENSION A(1),B(1)
TOL=0.0D00
KS=0
Jd=~-N
DO 65 J=1,N
JY=J+1
JJd=JdJ+N+1
BIGA=3.0D00
'T=l]d-d
DO 30 1=J,N
1J=1T+]
IF(DPABS(BIGA)-DABS(A(IJ))) 20,30,30
29 BIGA=A(1J)
tMAX=1
30 CONTINUE
IF(DABS(BIGA)-TOL) 35,35,L0
35 KS=1
GO TO 100
L) 11=d+N%x(J=-2)
IT=1MAX~J
DO 59 K=dJ,N
11=11+N
12=11+1T
SAVE=A(11)
AC11)=A(12)
A(12)=SAVE
50 A(11)=AC11)/BIGA
SAVE=B( IMAX)
B(IMAX)=B(d)
B(J)=SAVE/BIGA
1F(J-N) 55,70,55
55 10S=N*(J-1)




60
65
70

80
100

DO 65 1X=JY,N
1XJ=1QS+1X

1 T=Jd=-1X

N0 60 JX=JY,N
IXJIX=N*(JX-1)+1X
JUX=1XJX+IT
ACIXIX)=ACTIXJIX)-(ACIXJ)*A(JJIX))
BCIX)=B{1X)=(B(J)*A(IXJ))
NY=N-1

IT=N=*N

DO 380 J=1,NY

1A=IT~J

IB=N=-J

IC=N

DO 80 K=1,J
B(I1B)=B(1B)-A{1A)=*B(IC)
IA=1A-N

IC=1C-1

RETURN

END
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SUBROUTINE DETECT(!P,HLEVEL)

PROVIDES INITIAL VALUES NF PARAMETERS ENR PAYES
REMOYE STATEMENTS NUMBERED 1000 TO 1004
WHEN USED WITH PROGRAM M3,

OOOOO

IMPLICIT REAL+8 (A-H,0-2)

REAL*lL CGRAM
COMMON/DATA/X(512),%(257),CGRAM(2000)
COHMON/PARM/A(?),Y(7),V(7,7),PA(7),PV(7)
IMTEGER IP(5)

N=512

M=1P(5)-1P(4)+1

o
C TRANSFER DATA

1000 L1=1P(4)
1001 DO 1 J=1,M
1002 I=L1-1+J
1003 X(J)=DBLE(CGRAM(1))
1004 CONTINUE
L1=M+1
DO 2 J=Li1,N

- X(J)=0.0000

rann®

GO TO 00,200,300),KP

C CASE 0 NO PRIOR |[MFORMATION

C USES APPROXIMATE AREA, RETENTION TIME, AND WINPTH PROYINED
C BY DPIMIT, SETS CUMULANTS TO ZERO

c

100 CALL DPINITCIP,HLEVEL)
IFCIP(4).LT.0) GO TO 51
DO 11 J=4,7
A(J)=0.0D00
11 CONTINUE
GO TO 490

CASE 1 PRIOR INFORMATION=- SMALL PEAKS
USES PRIOR MEANS AS INITIAL ESTIMATES

OO0

200 DO 21 u=1,7
A(J)=PA(J)
21 CONTINUE
GO TO 32
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CASE 2 PRIOR [IHFORMATION- LARGE PEAKS
USES APPROXIMATE AREA, RETENTION TIME, AND WINTH AND
PRIOR MEANS FOR THE CUMULANTS

300 CALL DPINIT(IP,HLEVEL)
IFCIP(4).LT.0) GO TO 51
DO 31 J=4,7
A(J)=PA(J)
31 CONTINUE
32 DO 33 J=1,7
IF(PV(J).GT.0.0D00) PV(J)=1.0D00/PV(J)*=*2
33 CONTINUE

ENTRY TEST(IP)
SETS 1P(4) TO -1 IF PARAMETER VALUES ARE UMREASOMASLE

400 IF(A(1).LT.0.0D00) GN TO 42
I1£(A(2).LT.0.0D00) GO TO 42
IF(A(2).GT.DFLOAT(M)) GO TO 42
1F(A(3).LE.0.5D00) GO TO 42
IF(A(3).GT.(DFLOAT(M)/6.9D00)) GO TO 42
GO TO 51

42 WRITE(6,201) (1,A(1),1=1,7)
1P(L4)=-1
GO TO 51

ENTRY PRIOR
INTRODUCES PRIOR [INFORMATIOM

DO 50 J=1,7
Y(J)=Y(J)-(A(J)=-PA(J))*PV(J)
V(J,Jd)=V(J,Jd)+PV(J)
50 CONTINUE .
51 RETUR!N
201 FORMAT(1HO,'*xx**ERROR SURROUTINE TEST-UMREASOMABLE?!,
2011 ' ESTIMATES'/'0'",7(" A',11,'=',1PD12.5))
END
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SUBROUTINE SET

c
C CALCULATES FILTER AND GROUPIMG CORRECTION
C IF GROUPING CORRECTION NOT RENUIRED (FILTER CORRECTION
C ONLY, FOR USE WITH PROGRAM M3) REPLACE STATEMENT
C NUMBER 1000 BY:
c HC(J)=1.0D00/(1.0D0N-DCOS(2.0N00*VAR))
c
c
IMPLICIT REAL*8 (A-H,0-Z)
REAL*L CGRAM
COMMON/DATA/X(512),%(257),CGRAM(2000)
DIMENSION HC(257)
DATA N/512/,N2/256/,K/257/,P1/3.141592653589793/
FA=P1/512.0D00
HC(1)=0.9D00
DD 2 J=2,K
VAR=FA*DFLOAT(J-1)
1000 HC(J)=VAR/(2.0D00*DSIN(VAR) **3)
2 CONTINUE
GO TO 10
c .
ENTRY COMNVRT(L)
C
C FILTERS DATA, FOURIER TRANSFORMS, AND APPLIES CORPEGTIONM
c
M=L-1
VAR=X(1)
X(1)=0.0000
DO 4 \J=2,M
FA=X(J)
X(J)=X(J)=0.5D00*(VAR+X(J+1))
VAR=FA
4L CONTINUE

X(L)=0.0D00
CALL DFFT(9,X)
00 6§ J=2,N2
1=N+2-4
X(J)=X(J)*HC(J)
XC1)=X(1)=*HC(J)
6 CONTINUE
X(K)=X(K)*HC(K)
10 RETURN
END
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SUBROUTINE DPINIT(IP,HLEVEL)

RETURNS INITIAL ESTIMATES OF A(1),A(2),A(3)
LEVEL, 1S HEIGHT AT WHICH INTEGRATION IS TO BEGIN

IF ERROR OCCURS, IP(4) IS SET 7O -1

IMPLICIT REAL*8 (A-H,0-2)
REAL*L CGRAM
COMMON/DATA/X(512),%W(257),CGRAM(2100)
COMMON/PARM/A(T7),Y(7),¥(7,7),PA(T7),PV(7)
INTEGER IP(5)
N=IP(5)-1P(L)+1
DO 1 J=1,3
A(J)=0.0D00
1 CONTINUE

FIND MAXIMUM

F=X(1)
M=1
DO 2 J=2,H
IF(X(J).LT.F) GO TO 9
F=X(J)
- M=Jd
9 CONTINUE
2 CONTINUE

FIND END OF LEADING AND TAILING TAIL

IF((M.LT.9).0R.(M.GT.(N-9))) GO TO 8

B2= (X(M+1)+X(M+2)+X(M+3)+X(M+h)+X(M+5))*0,2000
Bl= (X(M-1)+X(M-2)+X(M-3)+X(M-h)+X(M-S))*0.2000
K=M+1

L=N-6

DO 3 J=K,L

B2=82+0.2D00*(X(J+5)~X(J))
IF((X(J)-B2).LE.HLEYEL) GO TO &4
3 CONTINUE
GO TO 8
L K2=J+3
L=M-7
DO 5 J=1,L
K=M=-J
B1=B1+0.2D00*(X(K-5)=X(K))
IF((X(K)-B1).LE.HLEYEL) GO TO 6
5 CONTINUE
GO TO 8
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C CALCULATE LINEAR BASE LINE UNDER PEAK AND PARAMETERS

c

6 K1=K-3

SLOPE=(B2~B81)/DFLOAT(K2~-K1)
L=K2-3
DO 7 J=K,L
P=X(J)~-SLOPE*DFLOAT(J-K1)~-B1
A(1)=A(1)+P
D=DFLOAT(J=M)
A(2)=A(2)+P+D
A(3)=A(3)+P*D**2
CONTINUE
A(2)=A(2)/A(1)
P=A(3)/A(1)-A(2)**2
IF(P.GT.1.0D-20) A(3)=DSORT(P)
A(2)=A(2)+DFLOAT(M) _
GO TO 10

8 WRITE(6,102)

IP(h)==-1

10 RETURN
132 FORMAT(1H0, '*xx** ERROR SUBROUTIME NPIMIT = !

'"PEAK WIDER THAM DATA')
END
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SUBROUTINE FTPEAK(A,X)

GENERATES FOURIER TRANSFORM OF A PEAK IN THE FORM OF
EDGEWORTH'S SERIES USING UP TO THE SIXTH CUMULANT.

A SEVEN PARAMETERS

X PEAK (512 POINTS)

IMPLICIT REAL*8(A-H,0-Z)
DIMENSION X(512),A(7)
DATA N/512/,N2/256/,K/257/
FA=6.283185307179586/512.9000
FS=FA+A(3)
FM=FA*(A(2)-1.0D00)
X(1)=A(1)
DO 10 J=2,N2
I=N+2-J
S=DFLOAT(J-1)*FS
S2=S=S
F=((-A(7)*S2/30.0D00+A(5))+S2/12.0000-1.0D00)
1 *$2/2.0D00

IF(F.GT.-20.0D00) GO TO 2

X(J)=0,0D00
56'i=°s°°°°
2 18 (FY. 6%, 1.0D00) GO TO 20
ALPHA=A(1)*DEXP(F)
ARG=(~A(6)*S2/20,0N00+A(L))*S*S2/6.0D00
-DFLOAT(J-1)*FM
X(J)=ALPHA*NCOS(ARG)
X(1)=ALPHA*DSIN(ARG)
6 CONTINUE
10 CONTINUE
X(K)=0.0D00
I FCDABS(X(N2))+DABS(X(K-2)).GT.0.0D00) WRITE(6,1000)
RETURN
20 WRITE (5,1001)
X(1) = 0.0D00

RETURN
1000 FORMAT(' **+xx WARNING - SUBROUTIME FTPEAK - ',

19001 'PEAK 1S ALIASED')
1001 FORMAT ( ' **xx+ ERRNOR - SUBROUTIME FTPEAK - ',
10011 "BAD PARAMETERS')

END X
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SUBROUTINE FTPEAK(A,X,Y)

GEMERATES FOURIER TRANSFORM OF A PEAK IN THE FORM OF
EDGEWORTH'S SERIES USING UP TO THE SIXTH CUMULAMT.
FOR USE WITH PROGRAM M1 -
Y =REAL PART 0OF PEAK FOR OUTPUT PURPOSES
(257 OR MORE POINTS)

IMPLICIT REAL*8(A-4,0-Z)
DIMENSION A(C1),X(1),Y(1)
DATA N/512/,12/255/,%K/257/
FA=6,283185397179536/512.9D00
FS=FA*A(3)
FM=FA*=(A(2)-1.9D00)
X(1)=A(1)
Y(1)=A(1)
no 19 J=2,N2
|=N+2~-J
S=NFLOAT(J=-1)=%FS
$2=8=*§
F=((-A(7)%S2/30.0D09+A(5))*52/12.0D00-1.9Nn00)
1 *S52/2.0D30
I€(F.GT.-20.0D0N) GO TO 2
X(J)=0.0D00
X(1)=9.9D00
Y(J)=0.0D0O
0 TO 6
2 IF(F.GT.0.9D000) GO TO 20
ALPHA=A(1)=*DEXP(F)
ARG=(-A(6)*S2/20.0D00+A(L4))*S*S2/6.0D0J
1 =DFLOAT(J=-1)*FM
X(J)=ALPHA*DCOS(ARG)
X(1)=ALPHA*DSIMN(CARG)
Y(J)=ALPHA
6 CONTINUE
10 CONTIMUE
X(K)=0.0D00
Y(K)=0.0D0O
IF(DABS(X(H2))+DABS(X(K=2)).GT.0.9D00) WRITE(6,1000)
GO TO 25
20 WRITE (6,1001)
X(1) = 0.0D0O

25 RETURN
1000 FORMAT(' #xxxx WARMING - SUBROUTIME FTPEAK - ',

19001 'PEAK IS ALIASED')
1001 FORMAT ( ' #xxxx ERROR - SUBRNUTINE FTPEAK - !,

10011 'BAD PARAMETERS')
END
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SUBROUTINE FEPEAK(A,X)

GENERATES FOURIER TRANSFORM OF A PEAK |M THE FORM OF
ENDGEVYORTH'S SERIES USING UP TN THE TENTH CUMULANT,

FOR USE WITH PROGRAM M3

IMPLICIT REAL*3(A-H,0-Z)
DIMENSION A(1),X(1)

DATA N/512/,M2/256/,K/257/
FA=6.283185307179586/512.0D00

FS=FA*A(3)
FM=FA*(A(2)-1.0D00)
X(1)=A(1)
DO 10 J=2,N2
|=N+2-J
S=DFLOAT(J-1)=*FS
S2=S=*S
F= ((((-A(ll)*SZ/G0.0D00+A(9))*52/56.0008-A(7))
1 *52/30.0000+A(5))*52/12.0000-1.0000)*82/2.00

IF(F.GT.-20.0D00) GO TO 2
X(J)=0.0D00
X(13=0.,0D00
GO TO 6
2 IF(F.GT.0.0D20) GO TO 20
ALPHA=A(1)=*DEXP(F)
ARG= (((-A(10)*S2/72.0DN00+A(8))*S2/42.0N00-A(6))
1 *S2/20.0D0N+A(L))*S*S2/6, )N00-DELOAT(J=-1) *FM
X(J)=ALPHA*DCOS(ARG)
X(1)=ALPHA*DSIN(ARG)
6 CONTINUE
10 COMTINUE
X(K)=0.0D00
IF(DABS(X(%2))+DABS(X(K-2)).GT.0.0D90) WRITE(6,1000)
GO TO 25
20 WRITE (6,1001)
X(1) = 0.0D00

25 RETURN
1000 FORMAT(' x#xxx WARMING - SUBROUTINE FEPEAK - ',

10001 '"PEAK 1S ALIASED!')
1001 FORMAT ( ' #x*xx ERPOR - SUBROUTINE FEPEAK - ',
10011 "BAD PARAMETERS!')

END
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SUBROUTINE DFFT(LOG2N,X)

FOURIER TRANSFORM OF REAL DATA IN NDNUBLE PRECISIOM

X(N=2**L0OG2Y POINTS) IS REPLACEN BY ITS COMPACT STORED
FOURIER TRANSFORM. THE REAL PART FRNOM FRENUENCY F=0 TO
1/2 IS STORED AS X(J) FROM J=1 TN M/2+1. THE IMAGINARY
PART FROM F=1/N TN 1/2-1/M IS STORED FROM J=N RACKWARDS
TO J=N/2+2. SINCE X IS REAL, THE IMAGINARY PART OF ITS

TRANSFORM 1S ZERO AT F=0 AMD F=1/2 (IN UMITS NF THE
SAMPLING INTERVAL).

U2POF'R?, FERNONTORI IR TRTEN "ED EROYARGET OF PuYSICS,

IMPLICIT REAL*8 (A-H,0-2)
DIMENSION X(1)
INTEGER J,JN,K,KN,HN,N OVER 2
P1=3.141592653589793
N=2+%*(LOG2N-1)
CALL DRSBO(LOG2N,X)
CALL DRSBO(LOG2MN-1,X(1))
CALL DRSBO(LOG2N-1,X(N+1))
CALL D MR FT(LOG2N-1,X(1),X(N+1))
N OVER 2=N/2+1
DO 100 J=2,N OVER 2
K=N+2-J
JN=J+N
KN=K+M
XR=(X(J)+X(K))*0.5D00
X1=(X(JN)=X(KN))=*0.5D00
YR=(X(JN)+X(KN))*0.5D00
YI=(X(K)=X({J))*0,5D00
ARG=PI «DFLOAT(J=-1)/DFLOAT(N)
C=NCOS(ARG)
S=NSIH(ARG)
T=YR*C+Y[ =S
YI=Yl*C=-YR=%S
YR=T
X(J)=XR+YR
X(K)=XR-YR
X(KM)=X1+Y1
X(JN)=YI1=X]
100 CONTINUE
XR=X(1)+X(N+1)
YR=X(1)=-X(N+1)
X(1)=XR
X(N+1)=YR
RETURN
END
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SUBROUTINE DIFFT(LOG2N,X)

INVERSE FOURIER TRANSFORM IN DOURLE PRECISION
INVERSE OF DFFT, APPLICATIOMN OF DEFT AND DIFFT IN
SEQUENCE RESULTS I THE ORIGIMAL DATA.

MODIFIED FROM PROGRAM ORTAIMNED FROM DEPT. OF PHYSICS,

u.

10

100

OF A., EDMONTON, WRITTEN BY G, SANDE,

IMPLICIT REAL*8 (A-4,0-27)
NDIMENSION X(1)
P1=3,141592653589793
N=2xx(LOG2N-1)
N OVER 2=N/2+1
N2=2=%N
FAC=1.9D00/DFLOAT(N2)
Do 10 J=2,H
1=N2+2-4
X(J)=FAC*X(J)
X(1)==FAC*X(I)
CONTINUE
DO 100 J=2,N OVER2
K=N+2-4
JN=J+N
KN=K+N
AR=X(J)+X(K)
AL=X(KN)=-X(JN)
BR=X(J)=X(K)
Bl=X(JM)+X(KN)
ARG=PI*NDFLOAT(J-1)/DFLOAT(N)
C=DCOS(ARG)
S=DSIN(ARG)
T=BR*C+B[=*S
Bl1=B|*C-BR=*S
BR=T
X(J)=AR-BI
Y(K)=AR+BI
X(JMN)=BR+A]
X(¥N)=BR-Al
COMTINUE )
AR=X(1)+X(N+1)
BR=X(1)~-X(M+1)
X(1)=FAC=*AR
X(MN+1)=FAC=*BR
CALL DMRFT(LOG2M-1,X(1),X(MN+1))
CALL DRSBO(LOG2M-1,X(1))
CALL DRSBO(LOG2N=~1,X(N+1))
CALL DRSBO(LOG2M,X)
RETURN
END
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SUBROUTINE D MR FT(LOG2N,X,Y)

MIXED RADIX OMNE DIMENSIONAL FOURIER TRANSEORM
IN DOUBLE PRECISIOM
MODIFIED FROM PROGRAM OSTAINED EROM NDEPT. OF PHYSICS,
U. OF A., EDMONTON, WRITTEM BY G. SANDE.
IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION X(1),Y(1)
INTEGER JJ,J0,J1,J2,43,N,Mb
REAL=*3 ARG,CI,CZ,CB,l0,l1,IZ,IB,RO,RI,RZ,RB,SI,SZ,SB,

INTEGER A,B,C,D,E,F,6,H,1,J,K,L,M,N,PS,CS,DS,ES,FS,qS,
.HS,IS,JS,KS,LS,MS,AL,BL,CL,DL,EL,FL,GL,HL,lL,dL,KL,
«LL,ML,S(13),U(13)

EQUIVALENCE (BS,S(2)),(CS,S(3)) (ns,s(4)),(ES,S(5)),

. (FS,S(6)),(6S,S(7)), (HS,S(8)),( S,8(2)),(048,8(19)),

. (KS,S(11)),(LS,S(12)),(Ms,5(13) ,(AL,UC1)), ("L, UC2)),
- (CL,U(3)),(DL,UCL)), (EL,UC5)),( L,U(6)),(6L,U(7)),

- (HL,U(8)),(1L,U(9)), (JL,U(10)), KL,U(11)),
«(LL,U(12)),(ML,U(13))

!
)
F
(

N=2+x0G2N
IF (LOG2N.LE.1) GO TO 500

DO 400 K=2,L0G2N,2
M=2%%x(LOG2N=K)
MY =4 *M
DO 300 J=1,M
ARG=6.28318530717958G*DFLOAT(J-1)/DFLOAT(MQ)
C1=DCOS(ARG)
S1=DSIN(ARG)
C2=C1*C1-S1=%S1
S2=C1*S1+C1=%S1
C3=C2%*C1-S52+S1

S3=C2*S1+S2xC1
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290
300
400
500

600
700

800

DO 200 |=My N My
JO=1+J-My
J1=J0+M

\J"-JI‘PM

J3=4
QO-X(J0)+X(J2)

R1=X(J0)=X(J2)
10=Y(JO)+Y(J2)
11=Y(J0)-Y(J2)
R2=X(J1)+X(J3)
R3=X(J1)-X(J3)
12=Y(J1)+Y(J3)
13=Y(J1)-Y(J3)

X(J0)=RI+R2

Y(J0)=10+]2

IF(J.EQ.1) GO TO 100
X(J2)=(R1+13)*C1+(11-R3)=*S1
Y(J2)=(11-R3)*C1-(R1+13)*S1
X(J1)=(RO-R2)*C2+(10~12)*S2
Y(J1)=(10-12)*C2-(R0O-R2)*S2
X(J3)=(R1-13)*C3+(11+R3)=S3
Y(J3)=(11+4R3)*C3~(R1-13)=S3

GO TO 200
CONTIMUE
X(J2)=R1+13
Y(J2)=11-R3
X(J1)=R0-R2
Y(J1)=10~-12
X(J3)=R1~-13
Y(J3)=11+R3
CONTINUE
CONTINUE
CONTINUE
CONTIMUE

IF (LOG2N.EQ.LOG2N/2%2) GO TN 700
DO 5920 I=1,N,2

RO X(l)+X(|+1)

RI=X(1)-X(1+1)

10=Y(1)+Y(1+1)

11=Y(1)-Y(1+1)

X(1)=R0O

Y(1)=10

X(1+1)=R1

Y(I+1)=11

CONTINUE

CONTINUE

MS=N/2

ML=N

DO 8090 K=2,12

J=14-K

S(J)=1

U(J)=S(J+1)

IF(S(J+1).GT.1) S(J)=S(J+1)/2
CONTINUE
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900

AL=

BS

JJ=0

Do
no
DO
DO
DO
DO
NO
DO
DO
no
DO
No
Do

900
900
990
300
900
309
200
900
ano
900
9090
900
300

A=1,AL
B=A,BL,BS
c=B,CL,CS
D=C,NL,DS
ED,EL,ES
F=E,FL,FS
G=F,GL,GS
H=G,HL,HS
=H,1L,1S
J=1,JL,Js
K=J, KL, KS
L=K,LL,LS
=L, ML, MS

=

JJd=JJ+1

IF (JJ.LE.M) GO TO 900

T=X(JJ)
X(JJ)=X(M)
X(M)=T
T=Y(JdJ)
Y(JJ)=Y(M)
Y(M)=T
CONTINUE
RETURN

END
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SUBRCUTINE D RS BO(LOG2N,X)

REVERSE SUBSCRIPT BIT ORDER
MODIFIED FROM PROGRAM OBTAINED FROM DEPT. .OF PHYSICS,
U. OF A,, EDMONTOHN, WRITTEM BY G. SANDE.

REAL*8 T,X
DIMENSION X(1)

INTEGER JJ

INTEGER A,B,C,D,E,F,G,H,1,J,K,L,M,MN,BS,CS,NS,ES,FS,GS,
-HS,1S,JS,KS, LS, MS,AL,BL,CL,DL,EL,FL,GL,HL,IL,JL, KL,
+LL,ML,NL,S(15),U(1h)

EQUIVALENCE (BS,S(2)),(CS,S(3)),(NS,s(4)),(ES,S(5)),

. (FS,s(6)),(GS,5(7)),(HS,S(3)),(15,5(9)),(JS,S(10)),
.(KS,s(11)),(LS,S(12)),(MS,S(13)),(NS,S(1L)),

. (AL,U1)),(BL,U(2)),

- (CL,U(3)),(DL,U(L)),(EL,U(5)),(FL,U(6)),(GL,U(7)),
«(HL,U(8)),(1L,U(9)),(JL,u(10)), (KL, U(11)),
<(LL,UC12)),(ML,UCLI3))(HNL,U(1YL))

HS=2#**(L0OG2N-1)

NL=2=*NS

DO 100 K=2,13

J=15-K

U(J)=S(J+1)

S(J)=1

. IF(S(J+1).GT.1) S(J)=S(J+1)/2

100 CONTINUE

AL=BS

Jd=0

DO 200 A=1,AL
‘DO 200 B=A,BL,BS
Do 200 C=8,CL,CS
Do 200 b=C,DL,DS
DO 200 E=D,EL,ES
DO 200 F=E,FL,FS
DO 200 G=F,GL,GS
DO 200 H=G,HL,HS
DO 200 t1=H,IL,IS
DO 200 J=1,JL,dS
DO 200 K=dJ,KL,KS

DO 200 L=K,LL,LS
DO 200 M=L,ML,MS
DO 200 N=M,ML,NS
Jd=JdJ+1
IF (JJ.LE.N) GO TO 200
T=X(JJ)
X(JJ)=X(N)
X(N)=T

200 COMTINUE
RETURN
END
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SUBROUTINE DATARND(X,N,ERPOR,NRUN)

READS IN ONE RUN OF DATA
CARDS, READ ACCORDING TO FORMAT STATEMENT NUW°ER 101,
CONSIST OF AN ID HUMBER, A CARD SEQUENCE NUMRER(STARTING
FROM 1),AND TEN DATA NUMBERS.,
LAST CARD OF RUN MUST BE BLANK,
LAST TWO CARDS OF SET MUST BE BLANK. STOPS WHEN IMITIAL
CARD OF RUN IS BLANK, OR WHEM RUNS ARE MIXED.
WHEN ERROR 11l CARD SEQUENCE, SETS ERROR=L.0.
COUNTS THE NUMBER OF POINTS IM SET,N.
REMOYE STATEMEMT NUMBER 1000 IF PRINT OUT NOT NESIRED
INTEGER ERROR
DIMENSION X(1)
ERROR=0
DO 1 J=1,10
X(J)=0.0
1 CONTINUE
READ(5,101) MNRUM,LT, (X(1),1=1,10)
IF(LT.EQ.N) STOP
no 2 1=2,10
IF(X(1).EQ.0.D0) GO TO 8
2 CONTINUE
WRITE(6,102) NRUN
WRITE(6,106) LT,(X(1),1=1,10)
DO 7 J=2,200
L=10=J
K=L-9
DO 3 I=K,L
X(1)=0.0
3 CONTINUE
REAN(5,191) MORUN,LTI,(X(1),1=K,L)
IF(LTI.GT.0) GO TO 10
N=L
50 TO 9
10 IF(MORUN.EQ.NRUN) GO TO &4
WRITE(6,103)
WRITE(6,106) LT,(X(1),1=K,L)
STOP 3
b IF(LTI.GT.LT) GO TO 5
WRITE(6,104)
ERROR=4
WRITE(6,106) LT, (X(1),1=K,L)
GO TO 9
5 LT=LTI
DO 6 1=K,L
IF(X(1).EN.2.0) GO TN 8
6 CONTINUE
1000 WRITE(6,106) LT, (X(l) 1=K,L)
7 CONTIMNUE
8 MN=1-1

WRITE(6,106) LT, (X(I1),1=K,N)
9 RETURNM
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101 FORMAT(12,4X,14,10F7.0)

102 FORMAT(1HO, 'RUN NUMBER ',15//) ,

103 FORMAT(1H0,10X, "ERROR SUBROUTIME DATARD - RUNS MIXEN")
104 FORMAT(1HO0, 10X, 'ERROR SUBRQUTIME NATARD - ',

1041 "DATA CARD SENUENCE?')

106 FORMAT(11X,18,10F10.0)
END
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SUBROUTINE DCLPRT(N,X)

C PRINTS OUT N DATA POINTS IN 8 COLUMNS
c
IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION X(1)
N8=N/8
L=N8=7
WRITE(6,100)
DO 1 1=1,N8
K=1+L
WRITE(6,101) ((J,X(J)),d=1,K, N3)
1 CONTINUE
L=MON(N, 8)
IFCL) 4,4,2
2 CONTINUE
I=N-L+1
DO 3 J=I,N
WRITE(6,102) J,X(J)
3 CONTINUE
4 RETURN
100 FORMAT(1HO)
101 FORMAT(38(1X,1%4,1PD11.3))
102 FORMAT(113X,14,1PD11.3)
END
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SUBROUTIME GRAPH (A,B,C,D,E,N,M,IC)

PLOTS FIVE VECTORS ON ONE GRAPH,
EACH VECTOR HAVING ITS OWN SCALE.
N IS THE LENGTH OF THE VECTORS
M IS THE NUMBER OF LINES GRAPH EXTEMDS
IN THE X-DIRECTION
IC IS THE NUMBER OF CURVES TO RE PLOTTED
ON THE ONE GRAPH
WRITTEN BY W, VANDENBORN

REAL=*8A,B,C,D,E
INTEGER *2 IPT(5), IRL, IPL(110)
DIMENSION A(1),B(1),C(1),n(1),E(1), SCALE(5), BNT(S5),
1 BP(10)
DATA 'PT/'.', l+l' l*" l#l' l%l/' lRL/' l/
IF(IC.GT. 5 .OR. IC .LT.1) @GO TO 200
=6
GO TO (25,20,15,19,5) ,IC
5 CALL PLOT(E,SCALE,BOT,!,N)
10 CALL PLOT(D,SCALE,BOT, I,N)
15 CALL PLOT(C,SCALE,B0T,1,N)
20 CALL PLOT(B,SCALE,BOT,I,N)
25 CALL PLOT(A,SCALE,BOT, I,N)
DO 50 1I=1,IC
IM=5-1C+]
DO 48 J=1,10
L8 BP(J) = BOT(IM) + J*SCALE(IM)
WRITE (6,1001) IPT(1),BOT(IM). BP

1001 FORMAT (3X,A1,1P11E10.2,/)

50 CONTINUE
WRITE(6,1003)

1003 -FOR’qAT'(Sx"ol-o.-...-o'o.o.o.-c-'.ooo.-..ol-.-ooi"I

10031 lol..aoooooo ® o @ 000000 ® o0 000000 ® oo 00000 0 ¥ 4

10032 '0...'-o.ol.o-......‘lootoﬂnoooo')

ISKIP =N/M+1
1X=0



55
60
65
70
75
80

1004

90
1006

100

150
200

1005
10051

N0 100 J=1,N,ISKIP

1=6

DO 55 I1=1,110

IPLCIT) =IBL

GO TO (80,75,70,65,60),IC
I=1-1

IPL(INT((SNGL(E(J))-BOT(I))/SCALE(I)*10.0+1.5))=IPT(S)

=1-1

IPL(INT((SNGL(D(J))-BOT(l))/SCALE(l)*10.0+1.5))=IPT(h)

I=1-1

lPL(INT((SNGL(C(J))-BOT(I))/SCALE(I)*10.0+1.5))=1PT(3)

i=1-1

IPL(INT((SNGL(B(J))-BOT(I))/SCALE(l)*10.0+1.5))=lPT(2)

I=1-1_

IPL(INT((SNGL(A(J))-BOT(I))/SCALE(l)*10.0+1.5))=lPT(1)

IX =1X+1

IF (IX (EQ. 5) GO Tn 99
WRITE(6,1004) IPL

FORMAT ( 8X,'.',119A1, '.')
GO TO 100

WRITE (6,1005) [PL,J
FORMAT (  8X,'-', 110A1, -, 1)
1X=0 .

CONTINUE

WRITE(6,10¢3)

RETURN

WRITE (6,1005)

FORMAT (' IMPROPER USE OF GRAPH- ',
'MUMBER OF CURVES 1S IMVALIDY)

GO TO 150

END
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SUBROUTINE PLOT (X, SCALE,BOT,I,N)

PROVIDES SCALES FGR EACH CURVE
WRITTEN BY W. VANDENBORN

REAL *3 YMAX ,YMIN, X

IN GRAPH SUBROUTIME

DIMENSION X(1),SCALE(5),80T(5)

I=1-1
YMIN=X(1)
YMAX=X(1)
DO 5 J=2,H

FECYMIN (GT. X(J))  YMIM=X(J)
TF(YMAX JLT. X(J))  YMAX=X(J)

5 COMTINUE
YMA =SNGL(YMAX)
YML = SNGL(YMIN)
SCALE(!l)= (YMA=YM1)/10,
B=10,**( INT(ALOGLO(SCALE(!
SCALE(}1) = FLOAT(INT(SCALE
SCALE(!) = 2.9*B*SCALE(1)
IF(SCALE(1).0T.(YMA-YM1)) S
IF(5.0*SCALE(I).GT. (YMA-YM]
IF(YMI.LT.2.0) GO TO 10

n
)
(

)
!

C
)

))
Y/ (Px2.2) +1.0))

ALE(I)=SCALE(!
)

)/12.°
SCALE(1)=3CALE(

1)/

BOT{1)=SCALE(1)*"LOATCINT(Y"I/SCALE(1)))

GO TO 100

10 BOT(1)=SCALE(1)*FLOAT(INT(YMI/SCALE(1))~1)

100 RETURN
END
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SUBROUTINE RNG(N,R,Z)

GENERATES N PSEUDO-RANDCM VARIARLES R FRNOM A MORMAL
DISTRIBUTION WITH ZERO MEAMN AND UMIT VARIANCE. N MUST
BE EVEN, R IS COMPUTED FROM TWO VARIABLES TAKEN EROM A
UNIFORM DISTRIBUTION (0,1) USING TYE METHOD OF BOX AMD
MULLER, ANN. OF MATH.STAT., 12, (1958), P.g819.

THE UNIFORM DISTRIBUTION 1S GENERATED BY A SHUFFLED
MULTIPLICATIVE COMGRUENTIAL METHON.

MACLAREN AND MARSAGLIA,J. OF THE ASS.FNR COMP, MACH.,
12, (1958), P. 83

Z IS INITIAL IMNTEGER OF THE UNIFORM NDISTRIRUTION
(DOUBLE PRECISION)

DIMENSION R(1),U(100)
REAL G,F,Z*38
INTEGER K,L,J,N

GENERATE THE NUMBERS FROM A UNIFORM DISTRIBUTION

DO 10 J=1,100
Z=DMOD(101.0%2+1,0,100000000.0)
U(J)=SNGL(Z)

10 CONTINUE

DO 20 J=1,H ,
Z=DMOD(101.0+Z+1.0,100000000.0)
K=IDINT(Z)
L=MOD(K,103000)/1000+1
R(J)=U(L)*1.9E-8
UCL)=3NGL(Z)

20 COMTINUE

COMPUTE THE NUMBERS FROM A NORMAL NDISTRIRUTION

DO 30 J=1,N,2 _
G=6.2831853+R(J+1)
F=SQRT(=2.0*ALOG(R(J)))
R(J)=FE*COS(G)
R(J+1)=F*SIN(G)

30 CONT!NUE

RETURN

END
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Typical Output of Program M2
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Typical Output of Program M3
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TABLE VII

Values of Parameters Used in Program M5 +to Obtain
the Data for Tables IV, V, and VI
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(Continued)

TABLE VII

!
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TABLE VIII
Parameters of Power-Density Spectra

Used to Determine the Intensity of Jitter?

With Thermal Conductivity Detector as Source

Mean W, T, c;zb c;ib
(mv) (uv2) (sec) (uv2/Hz) (uv2/Hz)
0.008 94 241 0.011 0.021
0.084 18 234 0.020 0.015
4.1 230 243 0.27 0.13
8.5 330 244 0.90 1.05
30.1 4100 242 9.9 12.7

With Mercury Cell as Source

5.1 1800 242 4.3 2.4
12.0 83 240 1s. 19.
16.8 64000 241 24. 33.
27.0 89000 176 79. 114.
33.7 53000 240 .- 113. 178.

aGraphs of the power-density spectra of both sources show
that the spectra were roughly proportional to the signal mean at low
frequencies. (This is indicated also by the increase of power with
increasing mean.) Jitter and dead-time variations account for only a
small fraction of the increase at low frequencies. Therefore, the
increase at low frequencies, which is where the noise is most intense,

must be due to the integrator.

bPower density at 1/2 and 1/4 in reduced frequency units.



