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ABSTRACT 

Prestressed concrete (PC) highway bridges represent an integral part of the transportation network 

and contribute significantly to socio-economic development. However, highway bridges are 

susceptible to Deterioration and thus exhibit structural deficiency after years of service, especially 

in the cold climate of North America (e.g., Alberta, Canada) where the de-icing salt is used 

seasonally and can heavily corrode roads and bridges. To facilitate the reliability-based safety 

assessment for both intact (e.g., as-built) and corroded PC bridge girders, reliable load-carrying 

capacity prediction models are required as a fundamental ingredient including both mechanics-

based and data-based models.  

Firstly, a mechanics-based load-carrying capacity prediction model (i.e., a flexure-shear 

coupled fibre beam element) for intact PC girders was developed based on Timoshenko beam 

theory combined with multi-axial material models, as complementary to the conventional fibre 

beam elements without considering shear. The developed element was validated through a classic 

test series of shear-critical reinforced concrete (RC) beams from the literature and a PC girder 

recently tested under both shear-critical and flexure-dominated scenarios. Then, the developed 

element was applied to a representative nine-girder PC bridge in Alberta, Canada to study the 

bridge system behavior and load sharing of multi-girder bridges. 

Data-based shear capacity models for intact PC girders were then developed by adding 

probabilistic correction terms to existing deterministic design code models. In this research task, 

an experimental database containing 369 PC girders that failed in shear was compiled. Using the 

experimental database, shear capacity models from five concrete structure and bridge design codes 

were assessed, including ACI 318-19, AASHTO LRFD 2017, CSA A23.3:19, CSA S6:19 and fib 

MC 2010. Probabilistic correction terms were then calibrated and added to the design code models 



 

iii 

 

via Bayesian linear regression and Gaussian process regression approaches. The resulted models 

can benefit shear capacity predictions with better accuracy and precision, as well as 

reliability/fragility analysis of PC girders with the model error considered. 

Data-based load-carrying capacity models were also developed for corroded PC voided 

girders which are popular for short-span bridges in North America. Firstly, a 2D continuum-based 

FE model for corroded PC girders was developed and validated by existing experimental tests. 

Then, a virtual experimental database of 4,165 PC girder tests considering various design, loading, 

and corrosion conditions was generated based on the developed FE model. With the generated 

virtual experimental database, the probabilistic capacity reduction factor model and the load-

carrying capacity model were developed via Gaussian process regression to study the corrosion 

effects on capacity reduction and failure probability of corroded PC girders, respectively. 
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CHAPTER 1:  INTRODUCTION 

 

This research project focuses on the development and applications of mechanics- and data-based 

capacity models for intact/corroded prestressed concrete (PC) bridge girders. This chapter provides 

an overview of this research project by outlining the project background, problem statement and 

motivation, objective and methodology, novelty and significance, research assumptions, and thesis 

organization.  

1.1 Background 

Precast PC highway bridge girders have been extensively used as an integral part of the 

transportation network and contributed significantly to socio-economic development. It was 

reported that PC girder bridges constitute more than 50 percent of the bridge inventory in North 

America (Dunker and Rabbat 1993). This is mainly due to their great stiffness, ease of fabrication, 

and fast construction. Their safety and functionality have been a critical concern for bridge 

engineers and owners for years during bridge design, inspection, condition evaluation, and repair 

processes. To ensure safety of PC bridge girders, reliable capacity prediction, considering flexural 

failure, shear failure and a combination of two, plays an important role in engineering practice for 

structural design of new bridges and maintenance of existing ones.  

In design of new bridge girders, the flexural and shear capacities, which are defined as the 

ability of PC girders to resist failure in bending and shear, respectively, need to be checked under 

flexure-dominated and shear-critical load conditions. The mechanism of flexural failure has been 

well understood and the flexure capacity can be predicted with sufficient accuracy nowadays. On 

the contrary, shear failure mechanism is more complicated especially after the initiation of cracks, 
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and thus is less understood; furthermore, accurate shear capacity prediction of concrete members 

remains a challenge and thus models with large prediction scatter/errors are commonly used with 

conservation. The shear failure mechanisms can be broadly categorized into five types as shown 

in Figure. 1-1 mainly depending on the shear span to effective depth ratios (a/d). The five shear 

failure types are tied-arch action for deep beams with struts, shear compression failure mainly due 

to insufficient concrete strength, shear tension failure mainly due to insufficient anchorage/bond, 

diagonal tension failure mainly due to insufficient shear reinforcement, and web-crushing failure 

for thin-web girders. 

   

(a) (b) (c) 

  
(d) (e) 

Figure 1-1: Shear failure mechanisms (ASCE-ACI 426, 1973): (a) tied-arch action (a/d <1), 

(b) shear compression failure (1< a/d <2.5), (c) shear tension failure (1< a/d <2.5), (d) 

diagonal tension failure (2.5< a/d <6), and (e) web-crushing failure 

Even though PC girders were design with sufficient capacity, aging PC girders with 

possible Deterioration can lead to capacity degradation and it is not uncommon in engineering 

practice. Canadian Infrastructure Report Card (2019) reported that 38% of bridges in Canada were 

in fair/poor/very poor physical conditions compared with 60% in good/very good conditions. 

ASCE (2021) reported that 42% of all bridges in the United States are at least 50 years old, and 

7.5% of the nation’s bridge are considered structurally deficient. BRIME (2001) estimated that a 
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significant portion of the concrete highway bridges were affected by deterioration and thus 

considered to be substandard in Europe, e.g., 39% in France, 37% in Germany, 26% in Norway 

and 30% in the United Kingdom. There were also many reported catastrophic failure events of 

bridges due to deterioration effects, such as the collapse of the Lake View Drive Bridge in the US 

in 2005 (Harries 2009), the Saint Stefano Bridge in Italy in 1999 (Darmawan 2009), the Ynys-y-

Gwas Bridge in the UK in 1985 (Woodward and Williams 1988), and the Melle Bridge in Belgium 

in 1992 (Mathy et al. 1996). 

Among various causes of Deterioration for concrete bridge girders, chloride-induced steel 

corrosion has been identified as one of the most predominant reasons (Bhargava et al. 2011; Wang 

et al. 2014; Zhang et al. 2017a). During the corrosion process, steel turns into rust which has a 

relatively lower density, primarily leading to (1) cross-sectional area reduction in steel 

reinforcement and weakened material properties, (2) cracking and spalling of the concrete cover 

due to volume expansion that generates splitting stresses in concrete and altered material 

properties, and (3) bond deterioration between steel reinforcement and the surrounding concrete. 

As a result of these factors, corrosion can eventually lead to load-carrying capacity degradation 

and possible failure mechanism change under the same loading condition, as evidenced in many 

experimental and numerical studies (Darmawan and Stewart 2007; Coronelli et al. 2009; Guo et 

al. 2011; Wang et al. 2014; Zhang et al. 2017b). 

To provide reliable guidance for the design and management of both intact and corroded 

bridges, the prediction of load-carrying capacity with prevailing uncertainties considered is of 

significant importance since uncertainties are inevitable for safety assessment. Uncertainties may 

arise from material property randomness (Nowak and the Szerszen 2003), geometric defects, 

corrosion-induced defects for corroded structures, and more importantly, prediction model 



 

4 

 

 

inaccuracy that is often ignored assuming models are perfect (Yang et al. 2021). By developing 

probabilistic capacity prediction models with prevailing uncertainty considered, reliability analysis 

(considering the uncertainty in both loads/demands and resistance/capacity) or conditional 

reliability analysis at a given load level (without considering the uncertainty in loads/demands) 

can provide useful information in terms of probability of failure, which can help making rational 

decisions for bridge design and maintenance, repair or replacement.  

1.2 Problem Statement and Motivation 

To facilitate reliability-based safety assessment for both intact and corroded PC bridge girders, 

reliable capacity prediction models with prediction uncertainty/error probabilistically quantified 

are required as a fundamental ingredient. As mentioned earlier, for intact PC girders, the load-

carrying capacity is usually related to the flexure and shear capacities; the flexural capacity can be 

well predicted with satisfactory accuracy nowadays, while shear capacity prediction still remains 

as a challenging problem and is worth further investigation. For corroded PC girders, the load-

carrying capacity prediction become more difficult due to the possible corrosion-induced failure 

mode change. That is to say, a girder, which fails in shear under shear-critical loading in the pristine 

condition, can fail after years of corrosion due to reduced flexure capacity, or vise versa. Thus, the 

central problem to address in this thesis is to develop reliable capacity prediction models for 

intact/corroded PC bridge girders with particular emphasis on shear failure for intact PC girders 

and corrosion effect for corroded PC girders.   

Capacity prediction models can be broadly classified into mechanics-based (e.g., finite 

element models, analytical procedures with engineering simplifications) and data-based models 

(e.g., machine learning based models or some empirical models based on limited test data). More 

details on the classification and illustration of different model types can be referred to the literature 
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review in Chapter 2. Based on the literature review, the following three research gaps have been 

discovered for capacity prediction of intact/corroded PC girders that motivated the research work 

in this thesis: 

(1) Fibre beam element model represents a good balance between prediction accuracy and 

computational efficiency for frame elements, including PC girders. The performance of fibre beam 

element models has been verified by many researchers for flexure-dominated concrete members, 

while most of the existing fibre beam element are based on Euler-Bernoulli beam theory and fail 

to consider the flexure-shear coupling effect. This means that they are not applicable to PC girders 

under shear-critical loading scenarios. To this end, new flexure-shear coupled fibre beam element 

needs to be developed to better model PC girders. Such elements would be particularly useful for 

bridge system modeling, such as shear-connected multi-girder systems, and thus can be used to 

study the load-sharing behavior of multi-girder systems.  

(2) The capacity prediction models from design codes are well-suited for reliability-based 

safety assessment, in particular, for reliability-based code calibration and development, of PC 

girders due to their computational efficiency and wide use in engineering practice. However, the 

shear capacity prediction models from design codes were observed to exhibit large conservative 

bias and prediction scatter based on the preliminary accuracy assessment conducted in this thesis. 

Although being conservative should not be criticized for structural design purposes, the model 

error/uncertainty needs to be quantified for transparency and considered to benefit reliability 

analysis. In addition, previous studies on probabilistic shear capacity prediction only focus on 

reinforced concrete (RC) members, while more research work is needed for the probabilistic shear 

capacity prediction of PC girder. 
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 (3) Despite the limited efforts in experimental and numerical studies of corroded PC 

girders as reported in the literature, no probabilistic capacity models have been developed. This is 

in contrast to probabilistic capacity model development for corroded RC members, which is 

mainly due to the limited experimental work on corroded PC girders compared to relevant work 

on corroded RC members. The lack of capacity models for corroded PC girders hinders the 

quantitative condition assessment based on corrosion-induced reduction in load-carrying capacity 

and increase in probability of failure. To this end, further studies are required to address this gap 

for corroded PC girders.  

1.3 Objectives and Methodology 

The overall goal of this research project is to develop capacity prediction models for both intact 

and corroded PC girders with particular emphasis on shear failure for intact PC girders and 

corrosion effect for corroded PC girders. This can be divided into three sub-objectives with 

methodologies as detailed below: 

(1) Sub-objective #1: Mechanics-based shear capacity model using newly developed beam 

element for intact PC girders 

For this sub-objective, a new flexure-shear coupled fibre beam element is developed in an 

open-source finite element platform (i.e., OpenSees) to benefit the analysis of PC girders under 

shear-critical loading scenarios. To accomplish this sub-objective, relevant research work is 

conducted as follows: (a) implementing new multi-axial material model in OpenSees; (b) 

developing and implementing the new flexure-shear coupled fibre beam element in OpenSees; (c) 

validating the newly developed element using classical shear tests of RC beams in the literature 

and experimental tested PC girders at the University of Alberta; and (d) demonstrating its use by 

applying it to multi-girder bridge analysis to study the bridge system behavior and load sharing. 
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(2) Sub-objective #2: Experimental data-based shear capacity model for intact PC girders 

using probabilistic machine learning 

For this sub-objective, probabilistic shear capacity models are developed by taking 

advantage of experimental test data compiled from the literature and existing design code models, 

which will facilitate the future use of developed models. To accomplish this sub-objective, relevant 

research work is conducted as follows: (a) reviewing existing deterministic design code models; 

(b) compiling experimental database of intact PC girders that failed in shear; (c) assessing the 

accuracy of existing design code models probabilistically; (d) developing probabilistic models by 

adding probabilistic correction terms to existing deterministic models (i.e., design code models); 

and (e) demonstrating their use by applying the developed probabilistic models to conditional 

reliability (fragility) analysis of PC girders. Note that two probabilistic machine learning methods, 

including Bayesian linear regression and Gaussian process regression, are considered in this 

research project to construct the probabilistic models, which allow probabilistic description of 

remaining model errors.  

(3) Sub-objective #3: Simulated data-based load-carrying capacity model for corroded PC 

girder using Gaussian process regression (GPR) 

For this sub-objective, probabilistic load-carrying capacity prediction models are 

developed for corroded PC girders using simulated data from validated finite element models. To 

accomplish this sub-objective, relevant research work is conducted as follows: (a) developing and 

validating two-dimensional (2D) mechanics-based nonlinear finite element models for corroded 

PC girders; (b) generating virtual experimental database for corroded PC girders based on the 

developed finite element model considering different design, corrosion, and loading conditions 

(with both flexural-dominated and shear-critical loading scenarios considered); (c) developing 
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probabilistic load-carrying capacity prediction models for corroded PC girders based on the 

generated database; and (d) demonstrate its use by applying the developed probabilistic models to 

study how corrosion reduces the load-carrying capacity and increases the probability of failure for 

corroded PC girders. 

1.4 Novelty and Significance of Research 

In the sub-objective #1, a new flexure-shear coupled fibre beam element is developed as 

complementary to the conventional fibre beam elements which neglect the shear (deformation) 

and are thus not applicable to PC girders under shear-critical loading scenarios. The new beam 

element is then applied to comprehensively study the system behavior and load sharing of multi-

girder bridges under both flexure-dominated and shear-critical loading scenarios, where existing 

studies only focus on the bridge system behavior under flexure-dominated loading.  

In the sub-objective #2, experimental data-based shear capacity models for intact PC 

girders are developed using probabilistic machine learning. Despite the efforts devoted to RC 

members in terms of the probabilistic shear capacity model development, no existing model is 

available for PC girders. The developed probabilistic models in this thesis can fill this research 

gap and benefit shear capacity predictions with better accuracy and precision, as well as 

reliability/fragility analysis of PC girders with the model error considered. 

In the sub-objective #3, simulated data-based load-carrying capacity models for corroded 

PC girders are developed using Gaussian process regression. Due to the limited experimental data 

on the load-carrying capacity of corroded PC girders especially under shear-critical loading 

scenarios, no relevant work aimed to develop probabilistic models with prediction error quantified 

for corroded PC girders. The developed probabilistic models in this thesis can fill this research gap 
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and quantify the corrosion effect on PC girders in terms of reduction in load-carrying capacity and 

increase in probability of failure. 

1.5 Research Scope and Assumptions 

This thesis aims at developing reliable capacity prediction models for intact/corroded PC bridge 

girders with particular emphasis on shear failure for intact PC girders and corrosion effect for 

corroded PC girders. Main assumptions/limitations in this thesis are summarised as follows: 

1. The developed mechanics-based finite element (FE) models for intact and corroded PC 

girders are only appliable to bonded (pre-tensioned or post-tensioned) PC girders, since either 

perfect bonding (e.g., in the new flexure-shear coupled fibre beam element) or detailed bond-slip 

relationship (e.g., in the FE model for corroded PC girders) is utilized for the model development.  

2. The developed data-based models in this thesis are also only appliable to bonded (intact 

or corroded) PC girders, since unbonded PC girders are not included in both the experimental and 

simulated databases for intact and corroded PC girders, respectively. 

3. In the study of multi-girder PC bridge system, the torsion effects are neglected while the 

focuses are put on the flexural and shear behavior of girders and bridge systems. 

1.6 Organization of Thesis 

This thesis consists of eight chapters as follows: 

• Chapter 1 of this thesis is a brief introduction into the background, problem statement, 

motivation, objectives and methodology, novelty and significance of this research. 

• Chapter 2 provides a literature review regarding the relevant aspects related to the overall 

goal of developing probabilistic capacity prediction models for concrete girders. 

• Chapter 3 presents the development of mechanics-based shear capacity models for intact 

PC girders, i.e., the new flexure-shear coupled fibre beam element. 
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• Chapter 4 presents the application of the newly developed flexure-shear coupled fibre beam 

element to multi-girder bridge analysis. 

• Chapter 5 presents the development and demonstration of the experimental data-based 

shear capacity models for intact PC girders based on Bayesian linear regression. 

• Chapter 6 presents the development and demonstration of the experimental data-based 

shear capacity models for intact PC girders based on Gaussian process regression. 

• Chapter 7 presents the development and demonstration of the simulated data-based load-

carrying capacity models for corroded PC girders based on Gaussian process regression. 

• Chapter 8 concludes the thesis work with summary, conclusions, contributions, and 

highlights of this research, as well as the recommendation for future work. 
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CHAPTER 2:  LITERATURE REVIEW 

 

This chapter provides a literature review regarding the relevant aspects related to the overall goal 

of developing probabilistic capacity prediction models for prestressed concrete (PC) girders. Both 

deterministic and probabilistic capacity prediction models for PC girders are reviewed in this 

chapter with particular emphasis on shear capacity for intact PC girders and corrosion effect for 

corroded PC girders. 

2.1 Deterministic Capacity Prediction Models for PC Girders 

2.1.1 Flexural Capacity Prediction Models 

Reliable capacity prediction is of significant importance for bridge girder evaluation to ensure 

structural safety and make proper management decisions, which mainly contains flexural and shear 

capacity prediction for PC girders. It was shown that nowadays the flexural capacity of concrete 

members can be well predicted with reasonable accuracy over a wide range of cases (Tošić et al. 

2016). Thus, literature review on the flexural capacity prediction models is only briefly introduced 

as follows in this thesis. 

Existing flexural capacity prediction model can be broadly categorized into mechanics-

based finite element (FE) models (Coronelli and Gambarova 2004; Elghazy et al. 2018), and 

mechanics-based analytical models. FE models can be classified into models based on beam 

elements or continuum (e.g., quadrilateral/triangular and brick/tetrahedron) elements. For 

mechanics-based analytical models, the strain compatibility approach can be considered as the 

most well-received one, which has been adopted in many concrete structure and bridge design 

codes worldwide, e.g., ACI 318-19 (ACI 2019), AASHTO LRFD 2017 (AASHTO 2017), CSA 

A23.3:19 (CSA 2019), CSA S6:19 (CSA 2019), fib MC 2010 (fib 2010) and GB 50010-2010 



 

12 

 

 

(MOHURD 2010). This approach is based on the sectional analysis by satisfying stress equilibrium 

and strain compatibility conditions. For well-designed flexural-dominated concrete members that 

fail by concrete crushing after steel yielding, this approach has been validated by many researchers, 

which can provide satisfactory prediction results of flexural capacity (Tošić et al. 2016; Mast et al. 

2018). As such, prediction of the flexure capacity of PC girders rarely needs finite element models.  

2.1.2 Shear Capacity Prediction Models 

2.1.2.1 Intact PC girders 

Significant efforts have been devoted to the shear capacity prediction of concrete members among 

decades, leading to a wide variety of shear capacity prediction models, which can be broadly 

categorized into data-based (e.g., design code models) and mechanics-based models (e.g., finite 

element models). Generally, mechanics-based models are more functionally versatile with the 

ability to provide the structural behavior information during the whole loading process. In contrast, 

data-based models conventionally focus on only one quantity of interest. For example, the data-

based shear capacity prediction model is only capable to provide shear capacity prediction, while 

it is incapable to provide predictions on deformation or stress-strain state. However, data-based 

models are computationally more efficient compared with mechanics-based models, which is 

especially beneficial in reliability or probabilistic studies. 

Data-based models refer to those models mainly developed based on experimental database 

via regression approaches. Typical examples are the shear capacity prediction models from design 

codes which are also referred to as semi-empirical or simplified-mechanical equation models, e.g., 

ACI 318-19 (ACI 2019), AASHTO LRFD 2017 (AASHTO 2017), CSA A23.3:19 (CSA 2019), 

CSA S6:19 (CSA 2019), fib MC 2010 (fib 2010) and GB 50010-2010 (MOHURD 2010). Due to 

the simplified mechanics theories and elegant formulations, these models are readily 
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comprehensible to engineers and have been widely utilized in engineering practice. However, it 

was found that (Nakamura et al. 2013) these models conventionally exhibit inherent conservative 

bias and large prediction scatters. Although being conservative should not be criticized for 

structural design purposes, several research/engineering areas requires models with quantitative 

information about the conservatism or the model error (e.g., bias and scatter), such as more 

realistic/confident reliability analysis and performance-based design (Gardoni et al. 2002). Thus, 

the model error of these design code models needs to be quantified and improved. 

Mechanics-based models can be categorized into mechanics-based analytical models and 

FE models. Mechanics-based analytical models are generally more sophisticated than semi-

empirical equation models. Examples are the modified compression field theory (MCFT) family 

(Vecchio and Collins 1986; Vecchio 2000) and the soften truss model (STM) family (Hsu 1988; 

Belarbi and Hsu 1994; Pang and Hus 1996; Hsu and Zhu 2002). These models have been widely 

used for concrete members under shear-critical loadings because of their accurate predictability 

for the shear capacity. Specifically, based on the MCFT, the general method for shear design in 

CSA A23.3:19 (CSA 2019), CSA S6:19 (CSA 2019) and AASHTO LRDF 2017 (AASHTO 2017) 

are developed and well accepted in engineering practice. For instance, the design expressions 

based on MCFT were shown by Nakamura et al. (2013) to yield the most accurate shear capacity 

estimations for PC members that failed in typical shear failure modes compared with other design 

expressions.  

The abovementioned mechanics-based analytical models were mainly used to develop 

material stress-strain relationships of RC/PC panels/membrane elements. Thus, when applied to 

the shear capacity prediction of RC/PC girders, they are usually adopted as the concrete material 

models in FE models. Based on these mechanics-based analytical models, several nonlinear FE 
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software/platforms have been developed such as VecTor2 (Wong et al. 2013) based on the MCFT 

family and the SCS (Hsu and Mo 2010) based on the STM family. Additionally, mechanics-based 

analytical models can also be simplified to semi-empirical models for shear capacity prediction of 

RC/PC girders. For example, the shear capacity models from CSA A23.3:19 (CSA 2019) and 

AASHTO LRFD 2017 (AASHTO 2017) are developed based on the simplified MCFT.  

FE models can be broadly categorized into 1D fibre beam element models (Spacone et al. 

1996a, 1996b) and 2D/3D continuum-based solid element models (Vecchio 1989; Jnaid and 

Aboutaha 2016). 2D/3D continuum-based FE models are generally considered as more accurate 

than the analytical models and 1D fibre beam element models while relatively more 

computationally costly. When probabilistic/reliability analysis of large-scale structures is 

involved, 2D/3D continuum-based FE models can be impractical due to their computational cost. 

In contrast to the 2D/3D continuum FE approach, one distinguishing feature of the 1D fibre beam 

element approach is the use of simple material constitutive models (i.e., uniaxial stress-strain). 

Specifically, in the widely used 1D fibre beam element formulation (Spacone et al. 1996a, 1996b), 

the cross-section is discretized into concrete and steel fibres, and each fibre is assigned with a 

uniaxial stress-strain model. The fibre section compatibility is derived based on Euler-Bernoulli 

beam theory, in which a plane cross-section perpendicular to the neutral axis before deformation 

is assumed to remain perpendicular after deformation (i.e., shear deformation is neglected). As 

such, the coupled axial and flexural effects in slender beam members can be well captured with 

satisfactory numerical accuracy and high computational efficiency. In contrast, for members that 

involve non-negligible shear deformation, conventional fibre beam elements are not applicable 

and flexure-shear coupling effect need to be taken into account.  
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2.1.2.2 Corroded PC girders 

Compared with studies on flexural capacity prediction of corroded PC girders (Coronelli et al. 

2009; Castel et al. 2011; Wang et al. 2017a), research on shear capacity prediction of corroded PC 

girders is scarce. Belletti et al. (2020) developed nonlinear FE models for corroded PC girders 

without shear reinforcement based on the membrane elements in ABAQUS. Corrosion degree was 

defined as the average cross-sectional area reduction in steel bars due to corrosion. Based on the 

defined corrosion degree, key corrosion effects were modelled, i.e., reduced concrete compressive 

strength, deteriorated mechanical properties of prestressing strand, prestress force loss and bond 

degradation. An experimental test on naturally corroded PC girder was utilized to validate the 

developed FE model.  

Several studies have been conducted on shear capacity prediction models of corroded 

reinforcement concrete (RC) beams, mainly including data-based models (Lu et al. 2018; Fu and 

Feng 2021) and mechanics-based FE models (Potisuk et al. 2011). Fu and Feng (2021) developed 

a machine leaning based shear capacity model for corroded RC beams based on the gradient 

boosting regression tree method and the compiled experimental database of 158 shear tests of 

corroded RC beams. Based on the same experimental database, Lu et al. (2018) developed an 

empirical model for predicting the residual shear capacity of corroded RC beams. Potisuk et al. 

(2011) developed 2D continuum-based FE models for corroded RC beams with shear-dominated 

behavior, in which corrosion induced damages were considered including concrete cover spalling, 

uniform stirrup cross-sectional loss, localized stirrup cross-sectional loss and debonding of 

corrosion-damaged stirrups. Although PC girders and RC beams are similar in terms of structural 

behavior to some extent, the shear capacity prediction of PC girders differs from that of RC beams 

due to the utilization of high-tensile-strength strands and prestressing force. Thus, studies on shear 



 

16 

 

 

capacity prediction are required for corroded PC girders with well-consideration of unique features 

for PC girders. 

2.2 Uncertainty and Structural Reliability  

2.2.1 Aleatory and Epistemic Uncertainties 

For shear capacity prediction of both intact and corroded PC girders, uncertainties are inevitable. 

Hacking (1975) classified the source of uncertainties as either aleatory or epistemic. Aleatory 

uncertainty is due to the natural randomness and inherent variability of complex phenomena. As a 

result, these are uncertainties that cannot be reduced. Examples are the uncertainties inside material 

properties, geometric dimensions and loads. On the contrary, epistemic uncertainty arises from the 

lack of knowledge or the finite size of observation samples, which is also referred to as model 

uncertainty or model error. This type of uncertainty can be reduced with improved mathematical 

modeling or collection of additional samples.  

The aleatory uncertainty for PC girders has been studied and considered in reliability 

analysis by many researchers. Nowak and the Szerszen (2003) studied the uncertainties in material 

properties including the strength of concrete, reinforcing steel bars and prestressing strands. The 

bias factor (i.e., the ratio of mean strength to nominal value) and the coefficient of variation (COV) 

were summarized based on material test data provided by the industry. Ellingwood et al. (1980) 

studied the uncertainties in dimensions and geometry of PC girders, including sectional width and 

effective depth. MacGregor et al. (1997) summarized the typical statistical distributions to consider 

uncertainties in dead load, live load and impact load for PC girders.  

The epistemic uncertainty is another important aspect of uncertainties. It was shown that 

the approach of only considering the aleatory uncertainty may greatly underestimate the 

probability of failure (Gokkaya et al. 2016; Yang et al. 2021). For structural analysis of concrete 
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girders, the epistemic uncertainty mainly refers to the model uncertainty/error due to model 

inexactness (e.g., adopted idealizations and approximations, inexact model parameters due to finite 

size of experimental tests). The model uncertainty is conventionally considered as a multiplicative 

random variable, which can be obtained from comparison of experimental and model results. Somo 

and Hong (2005) analyzed the model uncertainties of several commonly referred models for 

predicting shear capacity of RC beams based on a compiled experimental database. Statistics of 

the model uncertainties (i.e., mean and COV) were obtained and compared based on the ratio of 

the test to predicted shear capacity. Similarly, Sykora et al. (2013, 2018) studied the model 

uncertainties in shear resistance models of RC beams from fib MC 2010 (fib 2010) and EN 1992-

1-1 (Eurocode 2 2004). 

2.2.2 Reliability Analysis 

In the presence of uncertainties, neither the load effects nor component/system resistance can be 

treated as deterministic for safety assessment. The probability of failure is always greater than zero 

and absolute safety for structures is impossible to achieve. With prevailing uncertainties 

considered, reliability analysis can be conducted to predict the failure probability of PC 

girders/bridges, based on which constructive guidance can be provided for design and maintenance 

purpose. 

Thoft-Christensen and Baker (2012) defined structural reliability as the probability that a 

structure will attain each specified limit state during a reference period. The limit state is the 

boundary between safety and failure. For a structural component or system, the load-carrying 

capacity, R, and the load effect, S, formulate the basic limit state function, g, as shown in Eq. (2-

1). 
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 ( ),g R S R S= −   (2-1) 

Thus, the negative value of g indicates the violation of the limit state, namely failure. The 

probability of failure, FP , can be expressed as shown in Eq. (2-2). 

 ( )0FP P g=    (2-2) 

Significant efforts have been devoted to reliability analysis of both intact (Nowak and Zhou 

1990; Tabsh and Nowak 1991; Du and Au 2005; Hamutçuoğlu and Scott 2009) and corroded 

(Stewart and Rosowsky 1998, Darmawan and Stewart 2007) concrete girders. Most of the studies 

focused on the flexural capacity limit state of concrete girders, while only a few took into account 

the moment-shear interaction (Hamutçuoğlu and Scott 2009). It was shown that the interaction of 

moment and shear plays an important role for failure states (Hamutçuoğlu and Scott 2009).  

2.3 Probabilistic Capacity Prediction Models for PC Girders  

To facilitate the consideration of both aleatory and epistemic uncertainties in reliability-based 

bridge assessment, probabilistic load-carrying capacity prediction models are required. To this 

end, several research were conducted for probabilistic capacity prediction of intact and corroded 

concrete members.  

2.3.1 Intact PC Girders 

Several studies on probabilistic shear capacity model development are existing for RC members. 

Yu et al. (2019) developed probabilistic shear capacity models for RC columns. New deterministic 

models for shear capacity were developed first based on some well-recognized shear mechanical 

theories (i.e., the variable angle truss-arch theory). Then the probabilistic distributions of unknown 

model parameters were estimated by Bayesian inference based on a compiled database of 

experimental tests. Ning and Li (2017, 2018) proposed probabilistic shear capacity models for 
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reinforced concrete (RC) beams without stirrups and squat walls, also following the scheme of 

first developing new deterministic models and then calibrating probabilistic models. 

To facilitate the use of the developed probabilistic models, instead of developing new 

deterministic shear capacity models, probabilistic correction terms can be added to existing 

models. One typical approach is to quantify the model error (i.e., prediction bias and scatter) of 

existing models as an independent random variable and use it as a probabilistic corrective factor 

(MacGregor et al. 1997; Del Vecchio et al. 2017; Sykora et al. 2018). However, this approach is 

based on the assumption that there is no systematic correlation between the model error and model 

parameters, but the model can actually be improved by correcting the potentially existing 

systematic error. Gardoni et al. (2002) developed probabilistic correction terms to the existing 

deterministic shear capacity models of RC columns. A polynomial function form containing a 

suitable set of model parameters was adopted for the probabilistic correction terms. Song et al. 

(2010) implemented and improved this probabilistic model framework to develop probabilistic 

shear capacity models for RC beams without stirrups. It was shown that the developed models not 

only corrected the inherent bias inside the existing models, but also decrease the prediction scatter 

significantly. 

Despite the aforementioned efforts on probabilistic shear capacity models of RC members, 

no relevant literature is available for PC girders. The shear behavior of PC girders differs from RC 

members due to the utilization of high-tensile-strength strands and higher-strength concrete in 

bridge girder constructions, as well as the application of prestressing force. Thus, probabilistic 

shear capacity models with quantified model uncertainties are required to be developed for PC 

girders. 
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2.3.2 Corroded PC Girders 

Similarly, despite the limited efforts devoted to probabilistic load-carrying capacity models for 

corroded RC members, no available research has been found for corroded PC girders. Choe et al 

(2008) developed a probabilistic shear capacity prediction model for corroded RC columns based 

on a compiled experimental database, which was used to estimate seismic fragility of corroded 

structures. Ma et al. (2013) developed a probabilistic flexural capacity prediction model for 

corroded RC beams on the basis of a compiled experimental database. Recognizing the limited 

data available from systematically tested corroded RC beams experimentally, Aslani and 

Dehestani (2020) developed a probabilistic model to predict the flexural capacity reduction as a 

function of corrosion degree, using the database generated from FE simulations. Note that these 

efforts were mainly devoted to corroded RC members, while no relevant work aimed to develop 

probabilistic models with prediction error quantified for corroded PC girders. This is possibly due 

to the limited experimental work on corroded PC girders especially for shear-critical loading test 

(Belletti et al. 2020; Wang et al. 2020), since the calibration of probabilistic models conventionally 

requires a large set of data. Thus, further studies are required to address this gap for corroded PC 

girders. 
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CHAPTER 3:   DEVELOPMENT OF MECHANICS-BASED FIBRE BEAM ELEMENT 

FOR PRESTRESSED CONCRETE BEAMS CONSIDERING FLEXURE-SHEAR 

COUPLING 

 

In order to consider the interactive behavior of flexure and shear, an enhanced displacement-based 

fibre beam element is developed by utilizing multi-axial material constitutive models for fibres, in 

particular, with the Modified Compression Field Theory (MCFT) for fibres representing concrete 

with smeared stirrups in reinforced and prestressed concrete (RC/PC) beams/girders. The potential 

shear-locking problem is avoided by adopting a mixed interpolation form with a bubble term for 

the displacement field, and the validity of the approach is verified by a classic example. The 

proposed element is first validated through a classic test series of shear-critical RC beams from 

the literature and then applied to a PC girder recently tested under both shear-critical and flexure-

dominated scenarios. It is shown that the proposed element can be used to predict the structural 

behavior of RC beams and PC girders satisfactorily, after enhancing the conventional fibre beam 

element by considering the coupling of flexure and shear. In addition, the proposed element 

provides a tool to predict both flexure and shear capacities of concrete beams with adequate 

accuracy. 

3.1 Introduction 

Reinforced and prestressed concrete (RC/PC) beams or girders are widely used structural 

components in building and bridge engineering. Under in-plane loading, their flexure and shear 

behaviors are of concern to structural engineers and analysts. A variety of engineering models for 

flexural and shear capacity predictions have been developed and used for design purposes (ACI 

2019; CSA 2019a; CSA 2019b; fib 2013). Compared to flexural behavior, shear behavior is more 
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complex and less understood due to the complex shear transfer mechanism, especially after 

concrete cracks. In addition, shear failure is typically more brittle compared with flexural failure 

and considered as a more consequential limit state. As such, accurate prediction of the nonlinear 

behavior of RC/PC beams considering the coupling or interactive behavior of flexure and shear is 

of significant value for reliable engineering design and assessment, e.g., particularly for newly 

designed beams with smaller shear span to depth ratios and/or existing beams with insufficient 

transverse reinforcement (e.g., due to inappropriate design or construction errors).  

 To understand the nonlinear behavior of concrete beams, finite element (FE) analysis has 

been shown to be a viable alternative to physical experiments. Different FE approaches have been 

proposed, including modeling using three-dimensional (3-D) or two-dimensional (2-D) continuum 

elements (Vecchio 1989; Belletti et al. 2013; Jnaid and Aboutaha 2016) and one-dimensional (1-

D) fibre beam elements (Spacone et al. 1996a; Spacone et al. 1996b). Among these types of 

elements, the 1D fibre beam element has been proved to be computational efficient with adequate 

accuracy (Ferreira et al. 2015) for flexure-behavior-dominated members, and can be used for finite 

element analysis (FEA) of large-scale frame-type structural systems and FEA-based probabilistic 

structural analysis. Furthermore, in contrast to the continuum FE approach, one distinguishing 

feature of the fibre beam element approach is the use of simple material constitutive models (i.e., 

uniaxial). Specifically, in the widely used 1-D fibre beam element formulation, the cross-section 

is discretized into material fibres, and each fibre is assigned with a uniaxial concrete or steel stress-

strain model. The fibre section compatibility is derived based on Euler-Bernoulli beam theory, in 

which a plane cross-section perpendicular to the neutral axis before deformation is assumed to 

remain perpendicular after deformation (i.e., shear deformation is neglected). As such, the coupled 

axial and flexural effects in slender beam members can be well captured with satisfactory 
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numerical accuracy and high computational efficiency. However, for members that involve non-

negligible shear deformation, the finite shear flexibility and strength need to be taken into account.  

One approach to consider shear deformation is to use a predefined shear force-deformation 

model, which is aggregated to the conventional fibre-section or lumped in the ends of fibre beam 

elements (D'Ambrisi and Filippou 1999; Marini and Spacone 2006; Xu and Zhang 2012). However, 

this approach relies on the prior knowledge of the shear force-deformation relationship and 

oversimplifies coupling between shear and flexure. Besides this approach to consider the coupling 

effect in RC/PC beams, a variety of modified fibre beam elements have been proposed based on 

Timoshenko beam theory (i.e., considering uniform shear strain over the cross-section) or even 

generalized beam theories (i.e., considering torsion and warping). Filippou and Saritas (2006) 

proposed a mixed-formulation for fibre beam element based on Timoshenko beam theory to 

simulate the response of RC beams under the interaction of axial force, shear force, and bending 

moment. Mixed fibre beam elements, similar to force-based fibre beam elements, require fewer 

elements per beam compared with displacement-based beam elements and are free from the 

common problem of shear locking, i.e., underestimation of deformation due to spurious stiffness 

contribution in the beam element formulation (Bitar et al. 2018). However, additional iterations 

are needed for element state determination in mixed and force-based fibre beam elements; this can 

lead to additional computational cost and convergence issues (Saritas 2006). Ceresa et al. (2009) 

and Li et al (2016) utilized the displacement-based beam element based on Timoshenko beam 

theory with a focus on the nonlinear cyclic behavior of RC members. The FE formulation utilized 

in their fibre beam elements are based on the total form using secant stiffness, instead of the 

incremental form using tangent stiffness which is more efficient for general FE codes. In addition, 

Stramandinoli and Rovere (2012) and Feng et al. (2017; 2018) studied displacement-based 
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Timoshenko beam elements for nonlinear analysis of shear-critical RC beams within the context 

of tangent stiffness FE formulation. The basic idea behind these fibre beam element formulations 

is to incorporate a multi-axial constitutive model for concrete fibres, instead of the uniaxial 

constitutive laws in conventional fibre beam elements. As such, the coupling effect of flexure and 

shear can be obtained not only at the element level, but also at the material and section levels. For 

example, Feng et al. (2017) used a softened damage-plasticity model to represent the multi-axial 

constitutive behavior of concrete fibres, which shows the improvement for simulating the behavior 

of shear-critical RC beams compared with the conventional fibre beam element developed based 

on Euler-Bernoulli beam theory. 

When integrating multi-axial constitutive models with 1-D fibre beam element 

formulations, a wide variety of constitutive models for plain or reinforced concrete can be used. 

Multi-axial concrete constitutive models of different degrees of sophistication include plasticity-

based models (e.g., Yu et al. 2010a), damage-plasticity models (e.g., Yu et al. 2010b), fracture-

based models (e.g., Bažant and Oh 1983), fracture-plasticity models (e.g., Červenka and 

Papanikolaou 2008; ATENA 2020), and smeared crack models such as the softened truss model 

(STM) (Hsu and Zhu 2002) and the modified compression field theory (MCFT) (Vecchio and 

Collins 1986; Vecchio 2000). These smeared crack models have been widely used for shear-

critical members because of their simple interpretability and accurate predictability for the shear 

capacity of both RC and PC members.  Specifically, based on the MCFT, the general method for 

shear design in CSA A23.3:19 (CSA 2019a) and AASHTO LRFD 2017 (AASHTO 2017) are 

developed and well accepted by engineering practice. For instance, the design expressions based 

on MCFT were shown by Nakamura et al. (2013) to yield the most accurate shear capacity 

estimations for PC members that failed in typical shear failure modes compared with other design 
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expressions. It is also worth mentioning that the MCFT family forms the basis for a widely used 

nonlinear FE analysis software, VecTor2, which was developed for reinforced concrete membrane 

structures (Wong et al. 2013). The DIANA FEA software also adopted MCFT as the basis of the 

Total Strain Crack Models for concrete constitutive models (DIANA 2021). 

Motivated by the robustness of the MCFT theory for shear-critical components (e.g., in 

VecTor2) and the efficiency of the conventional 1-D fibre beam elements (e.g., in OpenSees), this 

study aims to develop a new flexure-shear coupled fibre beam element , by integrating the benefits 

of these two modeling techniques. This novel element can capture both flexure and shear 

deformations of RC/PC girders and thus is particularly useful for analyzing girders under shear-

critical loading. Compared with the widely used fibre beam element that accounts for flexure 

deformation only, the proposed element is capable of considering both flexure and shear 

deformations. Thus, it provides analysts and engineers with a reliable numerical tool for concrete 

girder behavior/failure analysis, particularly for girders under shear-critical loading. Compared 

with 2D/3D continuum FE elements currently used to capture both flexure and shear deformations, 

the proposed element is computationally more efficient, from which the FE-based reliability 

analysis and FE analysis of large-scale structures can benefit. To sum up, this new element enables 

more accurate and efficient capacity/performance assessment of RC/PC girders in engineering 

practice, particularly for shear-critical ones.  

To this end, as complementary to the conventional fibre beam elements without 

considering shear in OpenSees, which is adopted as the reference element for comparison purpose 

in this study, a new displacement-based fibre beam element is developed to consider the coupling 

effect of flexure and shear using the tangent stiffness formulation. The common issue of shear 

locking, associated with classic displacement-based elements, is also discussed by comparing the 
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mixed interpolation method and the reduced integration method. The proposed element is first 

validated through a classic test series of shear-critical RC beams obtained from the literature, and 

then applied to a bridge girder recently tested under both flexure-dominated and shear-critical 

loading conditions. Comparisons with numerical results from the reference element are also 

included to demonstrate the advantage of the proposed element.  

3.2 Flexural Shear Coupled Fibre Beam Element 

3.2.1 Element Formulation 

Under in-plane loading conditions, a straight concrete beam can be modeled using two-node beam 

elements. Each node contains three degrees of freedom (DOFs) as shown in Figure 3-1: the axial 

displacement along the beam axis (e.g., DOFs 1 2,u u ), the transverse displacement perpendicular 

to the beam axis (e.g., DOFs 1 2,v v ), and the rotation (e.g., DOFs 1 2,  ). The conventional fibre 

beam element, which is formulated based on Euler-Bernoulli beam theory, can be described by the 

displacement field vector, ( )xu , consisting of the longitudinal displacement field, ( )u x , and the 

transverse displacement field, ( )v x . In contrast, to consider the shear flexibility or the shear failure 

mechanism, the proposed element, which is formulated based on Timoshenko beam theory, 

contains the cross-section rotation field, ( )x , in addition to ( )u x and ( )v x , as shown in Eq. (3-

1). This is because of the difference between the slope of the transverse displacement and the cross-

section rotation, which is resultant from the non-zero shear strain. 

 ( ) ( ) ( ) ( ) , ,
T

x u x x v x=u   (3-1) 
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Figure 3-1: DOFs of the element in the local coordinate system and in the basic system  

The description of the displacement field using the nodal displacement vector requires a 

set of well-behaved shape functions. However, the classic Hermite shape functions, which are used 

for conventional displacement-based fibre beam elements, can lead to shear locking problems. In 

order to remedy the possible shear-locking problem, different techniques can be used, such as 

reduced integration and advanced shape functions of mixed interpolation with bubble terms 

(Ehrlich and Armero 2005). In this study, the bubble term with an interior DOF, 3 = rotation at 

the middle of the element as shown in Figure 3-1, is adopted and thus the displacement field is 

approximated per Eq. (3-2), 
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where L  is the undeformed element length. According to Timoshenko beam theory, which 

assumes that plane sections remain plane but not necessarily perpendicular to the neutral axis, the 
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generalized section strain vector, ( )s xε , containing three components, can be derived from the 

displacement field through compatibility conditions according to Eq. (3-3). 
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where ( )x  is the axial strain representing the longitudinal extension, ( )x  is the section 

curvature representing the flexural deformation, and ( )x  is the shear deformation. Substituting 

Eq. (2) into Eq. (3), the strain field can be expressed as Eq. (3-4). 
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where ( )L xB is the matrix relating the generalized section strain, ( )s xε , with the vector of element 

DOFs, 
e

u , including the nodal DOFs in the local coordinate system and the interior DOF. Under 

the assumption of small deformation, the nodal DOFs in the basic system, 
e , with the rigid-body 

displacement modes eliminated, can be expressed as Eq. (3-5). 
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Based on Eq. (3-4) and Eq. (3-5), the generalized section strain field can be expressed as 

Eq. (3-6). 

 ( )

( )

( )

( )

( )

1

2

2

3

3

1
0 0 0

1 1 4 8
0

1 1 2
0

2 2 3

s e

Lx
x

x x x
L L L L

x








 
   

     
    = = − − =              − − −

  

ε B    (3-6) 

According to the principle of virtual work, the element stiffness matrix 
e

K  and element 

force vector 
e

F  in the basic system can be obtained as Eq. (3-7) and Eq. (3-8), respectively, 

 ( ) ( ) ( )e T s

L
x x x dx= K B K B   (3-7) 

 ( ) ( )e T s

L
x x dx= F B F   (3-8) 

where ( )s xK  is the section stiffness matrix, and ( )s xF  is the section force vector, which will be 

determined in the following section state determination as follows. 

In the proposed fibre beam element, the fibre section is divided into uniaxial steel fibres 

representing the longitudinal steel reinforcement and multi-axial concrete fibres with uniform 

shear strain for 2-D concrete with smeared transverse steel reinforcement. The fibre strain vector 

at section height y , ( )  , ,
T

fib

xx xyx y  =ε , is obtained based on the plane section assumption, see 

Eq. (3-9), 
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where ( )yI  is the section kinematic (compatibility) vector,  is the shear coefficient (e.g., 

5 6 =  for rectangular cross-section of elastic beams). The section stiffness matrix ( )s xK  and 

section force vector ( )s xF  are determined according to Eq. (3-10) and (3-11), respectively, 

 ( ) ( ) ( ) ( )
( )

,s T fib

A x
x y x y y dA= K I D I   (3-10) 

 ( ) ( ) ( )
( )

,s T fib

A x
x y x y dA= F I σ   (3-11) 

where ( ),fib x yD  and ( ),fib x yσ are the tangent stiffness matrix and stress vector of the material 

fibre at location (x, y), respectively. Note that ( )  , ,
T

fib

xx xyx y  =σ contains the normal stress (

xx ) and shear stress component (
xy ), which is different from the uniaxial material fibre in 

conventional fibre sections, where only the normal stress ( xx ) is involved. 

3.2.2 Material Modeling 

As in continuum FE modeling of plane problems, the proposed fibre beam element requires 2-D 

material constitutive models for concrete in multi-axial fibre sections, instead of uniaxial material 

models for concrete as used in conventional fibre sections. They can be either reduced from classic 

3-D plasticity-based models (e.g., under the plane stress condition) or specialized 2-D models, 

such as the modified compression field theory (MCFT) for concrete structures. MCFT considers 

cracked concrete as an orthotropic material, which can be defined based on average stresses and 

strains in the principal directions over areas or distances large enough to include several cracks. 

The principal strain axes are assumed to coincide with the principal stress axes for concrete, and 

steel is perfectly bonded to concrete. A concise summary is presented here to provide context for 

the integration of the theory with the new element. Additional details can be found in Vecchio and 
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Collins (1986). Note that the crack checking procedure introduced in MCFT, which was to account 

the local stress variations across cracks, is avoided by utilizing average steel stresses and strains 

for reinforcement as recommended by Stevens et al. (1991). Note that the validation on the 

implementation of MCFT is conducted and summarized in Appendix A. 

3.2.2.1 Modified compression field theory 

In MCFT, given a strain state ( ), ,
T

xx yy xy  =ε , the principal strain vector ( )*

1 2 12, ,
T

  =ε  with

12 0 =  can be obtained, as per Eq. (3-12),  

 

2 2

2 2

2 2

cos sin sin cos

,  in which sin cos sin cos

2sin cos 2sin cos cos sin

   

   

     



 
 

= = − 
 − − 

ε Tε T   (3-12) 

where   is the angle between the first principal-axis and x-axis, which is obtained as shown in Eq. 

(3-13) by imposing 12 0 =  in Eq. (3-12). 

 
1

arctan
2

xy

xx yy




 
=

−
  (3-13) 

With the principal strain vector ( )*

1 2 12, ,
T

  =ε , the stress vector and tangent stiffness 

matrix in the principal directions for concrete can be obtained based on the uniaxial stress-strain 

relationship ( )   after considering effects of bi-axial stress states. As such, the following three 

different stress or strain states need to be considered: (1) Tension-Compression (T-C) state 

characterized by 1 0   and 2 0  , (2) Tension-Tension (T-T) state characterized by 1 0   and 

2 0  , and (3) Compression-Compression (C-C) state characterized 1 0   and 2 0  . 
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Under the strain states of T-T and C-C, concrete is assumed to behave independently in the 

two principal directions, and thus the principal stress components, 
1

c and 
2

c (with the 

superscript c denoting concrete), can be determined by Eq (3-14) where ( )   is the uniaxial stress-

strain relationship of concrete.  

 ( ) ( )1 1 2 2;c c     = =   (3-14) 

By contrast, under the strain state of T-C, compression-softening is introduced to account 

for the reduced principal compressive strength due to the co-existing principal tensile strain (

1 0  ) through a reduction factor   [30], as shown in Eq. (3-15),  

 ( ) ( ) ( ) ( )
( )1 1 2 1 2 1

1

1
; , ; ,

1 0.27 0.37

c c

c c

c

           
 

 = =  =
− +

  (3-15) 

in which,   is a function of the co-existing principal tensile strain 1 0  and the concrete 

compressive strain at peak stress ( c  < 0).  

With ( )1 1

c   and ( )2 2

c   defined above, together with a common assumption that the 

stresses and strains due to the Poisson effect could be neglected in a biaxial stress and strain 

condition (Hsu and Zhu 2002; Filippou and Saritas 2006; Ceresa et al. 2009; Li et al. 2016) the 

tangent stiffness matrix of 2-D concrete in principal directions, 
c

D , can be defined as Eq. (3-16), 

 

11 12

21 22

12

0

0

0 0

c c

c c c

c

E E

E E

G



 
 

=  
 
 

D   (3-16) 

where 1
11

1

c
c d

E
d




= ,  2

22

2

c
c d

E
d




= ,  

12 21 0c cE E= =  and the shear modulus 
( )

1 2
12

1 22

c c
cG

 

 

−
=

−
 [39] for 

orthotropic materials (e.g., concrete). As such, the principal stress increment d c
σ =  
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( )1 1 12, ,
T

c c cd d d   can be related to the principal strain increment ( )1 2 12d , ,
T

d d d   =ε   according 

to the incremental tangent constitutive equation as shown in Eq. (3-17). 

 d dc c  =σ D ε   (3-17) 

Thus, the material state determination for concrete can be conducted to obtain the stress 

vector 
c
σ = ( ), ,

T
c c c

xx yy xy   and the tangent stiffness matrix c
D  of concrete in the local coordinate 

system by Eq. (3-18) and Eq. (3-19), respectively. 

 
c T c=σ T σ   (3-18) 

 
c T c=D T D T   (3-19) 

The stress vector σ and the tangent stiffness matrix D for concrete with smeared steel (e.g., 

transverse steel in beams) can be obtained using Eq. (3-20) and Eq. (3-21), respectively, by 

aggregating the contributions from concrete and transverse steel. 

 

0

0

c v c

y yv 

 
 

= + = +  
 
 

σ σ σ σ   (3-20) 

 

0 0 0

0 0

0 0 0

c v c

y yvE

 
 

= + = +
 
  

D D D D   (3-21) 

where 
y yvA bs =  is the reinforcement ratio of transverse steel, defined as the ratio of the total 

area of transverse steel 
yvA  over the area formed by the cross-sectional width b  and the stirrup 

spacing s ; 
yv  and 

yvE  are the stress and tangent modulus of transverse steel. The stress vector 
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increment dσ = ( ), ,
T

xx yy xyd d d   of reinforced concrete with smeared steel can be related to the 

strain vector increment ( ), ,
T

xx yy xyd d d d  =ε via Eq. (3-22). 

 d d=σ D ε   (3-22) 

Note that in the aforementioned material strain vector ( ), ,
T

xx yy xy  =ε , the fibre strain 

components ( )  , ,
T

fib

xx xyx y  =ε  can be obtained for each multi-axial concrete fibre according 

to Eq. (3-9).  The unknown transverse strain 
yy can be obtained by imposing the internal 

equilibrium between stirrups and concrete in the transverse direction (y), namely 

0c

yy yy y yv   = + = . Alternatively, imposing 0yyd =  in Eq. (3-22) leads to the incremental 

transverse strain 
yyd  in Eq. (3-23).  

 
21 23

22

xx xy

yy

d D d D
d

D

 


+
= −   (3-23) 

Accordingly, the condensed material constitutive relationship for multi-axial concrete 

fibres with smeared steel can be obtained as shown in Eq. (3-24) and Eq. (3-25). 

 d d fib=σ D ε   (3-24) 

 

12 2312 21
11 13

22 22

32 21 32 23
31 33

22 22

D DD D
D D

D D

D D D D
D D

D D

 
− − 

 =
 

− − 
 

D   (3-25) 

where  d d ,d
T

xx xy =σ  and  d d ,d
T

fib

xx xy =ε represent the fibre stress increment and fibre 

strain increment, respectively, and D  is the condensed stiffness matrix for multi-axial concrete 

fibres with smeared steel.  
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In contrast to transverse reinforcement, longitudinal reinforcement in the multi-axial fibre 

sections for the proposed fibre beam element is modeled by uniaxial fibres in a discrete manner in 

the same way as in conventional fibre sections. Hence, the section stiffness matrix ( )s xK  and 

section force vector ( )s xF  in Eq. (3-10) and (3-11), can be rewritten as Eq. (3-26) and Eq. (3-27), 

respectively, by considering the contributions of longitudinal steel fibres (i.e., 
l

D  and 
l
σ ) and the 

multi-axial concrete fibres (i.e., D  and σ ) to ( ),fib x yD  and ( ),fib x yσ . 

 ( ) ( ) ( ) ( )
( )

( ) ( )
1

,

ln
s T T l l

i i i
A x

i

x y x y y dA y y A
=

= +K I D I I D I   (3-26) 

 ( ) ( ) ( )
( )

( )
1

,

ln
s T T l l

i i
A x

i

x y x y dA y A
=

= +F I σ I σ   (3-27) 

Here, 
0

l

l  
=  
 

σ and 
0

0 0

l

l E 
=  
 

D represent the stress vector and tangent stiffness matrix 

for the longitudinal reinforcement in the expanded form with 
l  and l lE d d = representing 

the stress and tangent modulus of longitudinal steel. l

iA represents the cross-sectional area of the 

i-th longitudinal reinforcement (i = 1, 2, …, 
ln , which indicates the number of longitudinal 

reinforcing bars).  

To summarize, in the context of MCFT, uniaxial constitutive material laws for concrete 

and steel are needed. This allows to take advantage of existing uniaxial material models or user-

defined stress-strain curve provided by material coupon tests. A short summary of the uniaxial 

models used in this study for the concrete beams/girders are presented next. 
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3.2.2.2 Uniaxial constitutive laws for concrete and steel 

A wide variety of uniaxial stress-strain behaviors of concrete under compression and tension are 

available in the literature. When no stress-strain ( c - c ) curve is provided by concrete 

compression tests, the constitutive equation for concrete stress-strain under compression suggested 

by Vecchio and Collins (1993), see Eq. (3-28), is adopted in this study, 

 

( )

( )

( )
( )

, with
1

1, 0
0.80 MPa /17, and, 

0.67 MPa 62,

c c

c c

c c

c c

c

c c c

f

f
f



  


  

 
 

 


=

− +

  
= − = 

 − 

  (3-28) 

where
cf   is the concrete compressive strength ( 0cf   ). For concrete subjected to tension, the 

stress-strain curve ( t - t ) is commonly assumed linear prior to cracking, followed by a linear 

decay curve to consider the tension-stiffening effect (Ian Gilbert 2007), see Eq. (3-29), 

 
( )

c t t cr

t c
cr t cr t cr

t

E

E
f

n

  


   




= 
− − 



  (3-29) 

where cr cr cf E = is the cracking strain corresponding to the tensile stress at cracking 

0.33cr cf f = (  in MPacf  ), and tn  (e.g., = 10) is the factor to consider the tension-stiffening 

effect.  

For reinforcing steel, a bilinear stress strain relationship ( s - s ) is assumed based on Eq. 

(3-30). 

 
( )

s s s y

s

yeff sh s y s y

E

E

  


    


= 

+ − 

  (3-30) 
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where sE  is the elastic modulus of steel; 
y  is the yield strain; shE  is the tangent modulus of steel 

in the linear hardening stage,  and 
yeff  is the reduced yield stress according to the average stress-

strain technique (Stevens et al. 1991; Li et al. 2016) to avoid crack checking in MCFT, and is 

defined in Eq. (3-31), 

 
75

yeff y crf
d

 = −   (3-31) 

where 
y  is the unreduced yield stress of steel, and d  is the diameter of reinforcement in mm. 

3.2.3 Finite Element Implementation 

The proposed element is implemented in the open-source finite element software framework, 

OpenSees, as complementary to the conventional fibre beam elements without considering shear. 

Figure 3-2 summarizes the typical FE formulation procedure for fibre beam element, including the 

state determinations at the structure, element, section, and material levels for the proposed element. 

At each level, the stiffness matrix and resisting stress/force vector are determined. In contrast to 

the formulation of the conventional fibre beam element, each fibre for concrete with smeared 

stirrups is represented by a condensed multi-axial constitutive model (e.g., MFCT), with both the 

normal and shear stress components. As such, the coupling effect of flexure and shear can be 

eventually achieved at the structural level. 

Specifically, at the fibre level, material state condensation is required for the multi-axial 

fibre of concrete with smeared steel to estimate the unknown transverse strain 
yy by imposing the 

aforementioned internal equilibrium 0c

yy yy y yvf  = + = . To this end, an iterative procedure, the 

dynamic relaxation method (Rericha 1991), is used. In this method, the transverse strain committed 

in the last load step n–1 is selected as the initial guess (at iteration k = 1) of the unknown transverse 
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strain, ( )
1

1
k

n n

yy yy 
=

−= . This initial guess is updated through the iterative equation  

( ) ( ) ( )
1k k k

n n n

yy yy yy cE  
+

= − , until ( )
1k

n

yy
+

 is significantly close to zero within a prescribed 

tolerance level. Here, cE  is the modulus of elasticity of plain concrete.  

 
Figure 3-2: Schematic view of the FE formulation of the new fibre beam element considering 

shear: DispBeamColumnFS 

Figure 3-3 shows the implementation of the proposed element in the OpenSees framework. 

With respect to the existing software architecture, a new sub-class of element (i.e., 

DispBeamColumnFS) is added for the proposed element. A new sub-class of nDMaterial in 

OpenSees (TransverseCondensation) is also added for the material state condensation. This new 

sub-class serves to interface 2-D material models, either newly added (i.e., ConcreteMCFT) or 

existing models, with the NDFibreSection that is used with the proposed element. Note that, the 

proposed element with the condensation procedure implemented, can work with other multi-axial 

material constitutive models (e.g., fracture-plasticity models and J2 plasticity models), in addition 

to the newly implemented MCFT material model.  
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Figure 3-3: Flow chart for the implementation of the new fibre beam element 

(DispBeamColumnFS) in the OpenSees Framework 

Additionally, as indicated in Figure 3-2, the interior DOF 3  can be statically condensed 

out in the basic system at the element level before assembly for the structure stiffness matrix. This 

is accomplished by using the element stiffness matrix 
e

K  in Eq. (3-7) together with Eq. (3-32), 
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  (3-32) 
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where iF  ( 1,2,3i = ) represents the non-trivial element end force associated to the i-th DOF of the 

beam in the basic system, and the imposed condition is that the force associated with the interior 

DOF equals to 0. As such, the condensed stiffness matrix can be obtained to relate nodal 

displacement increments and element force increments as shown in Eq. (3-33). 
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  (3-33) 

3.2.4 Verification of Shear Locking Free 

Verification is an essential step for FE implementation. For the newly implemented displacement-

based fibre beam element, the shear locking issue is examined here. For this purpose, the proposed 

element with mixed shape functions is used to model a classic example of a cantilever beam 

subjected to a transverse tip load. The material is considered as linear elastic orthotropic with an 

elastic modulus E = 200 GPa and zero Poisson’s ratio. According to Timoshenko beam theory, the 

exact analytical solution of the tip displacement is weaxct = 1.328mm. 

Figure 3-4 shows the comparison between the normalized tip displacements, obtained 

using the proposed DispBeamColumnFS elements with mixed interpolation and linear 

interpolation. It is observed that beam elements using linear interpolation suffers from severe 

shear-locking, leading to significant underprediction of tip displacement when the number of 

elements is small. This shear-locking issue can be remedied by mesh refinement, but a large 

number of elements is required (e.g., larger than 16 even for such an elastic beam). By contrast, 
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the mixed interpolation only requires one single element to predict the exact tip displacement for 

this classic numerical example, which verifies its effectivity in tackling shear locking issue. 

 
Figure 3-4: Comparison of normalized tip displacements for the classic numerical example of 

cantilever beam 

3.3 Application to Concrete Beams/Girders 

3.3.1 Shear-critical RC Beams 

Bresler and Scordelis (1963) tested twelve shear-critical RC beams to investigate their shear 

behavior. This series of tests represents a challenge for the numerical modeling community, with 

many FE formulations failing to provide reliable simulations (Vecchio and Shim 2004). Therefore, 

it has served as a benchmark in the literature for the numerical modeling of shear-critical RC beams 

and are thus used in this study to validate the proposed element. A total of twelve simply supported 

beams were tested under a concentrated load at mid-span as shown in Figure 3-5. Note that there 

were three different span length, namely series 1, 2 and 3, and four sectional dimensions, namely 

OA, A, B and C. The concrete and the steel properties for each beam are summarized in Tables 3-

1 and 3-2, respectively. The OA series did not contain transverse reinforcement, while the stirrup 

spacing for A, B and C series were 210 mm, 190 mm and 210 mm respectively. 
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Figure 3-5: RC beams tested by Bresler and Scordelis (1963) (Unit: mm) 

Table 3-1:  Concrete properties in RC beams tested by Bresler and Scordelis (1963) 

Beam OA1 OA2 OA3 A1 A2 A3 B1 B2 B3 C1 C2 C3 

cf  (MPa) 22.6 23.7 37.6 24.1 24.3 35.1 24.8 23.2 38.8 29.6 23.8 35.1 

c   0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 

 

Table 3-2:  Steel properties in RC beams tested by Bresler and Scordelis (1963) 

Bar type 

d (mm) 
As 

(mm2) 
yf

(MPa) 

uf

(MPa) 

sE

(MPa) 
sh sE E  

Nominal 

diameter 

Nominal 

area 

Yield 

strength 

Ultimate 

strength 

Elastic 

modulus 

Hardening  

ratio 

Stirrups  6.4 32 325 430 190,000 0.01 

Top reinforcement  12.7 129 345 542 201,000 0.01 

Bottom reinforcement  28.7 645 555 933 218,000 0.01 

 

As shown in Figure 3-6, the proposed element is used to model these twelve shear-critical 

RC beams. Each beam is meshed into six DispBeamColumnFS elements with five Gauss-Lobatto 

integration points for each element, and the cross-section is discretized into 20 concrete fibres 

(layers) in the depth direction and longitudinal steel fibres defined according to the reinforcement 

details. Note that the mesh size employed in this study was determined based on convergence 
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analysis. The multi-axial MCFT material is assigned to concrete layers, together with the uniaxial 

material models described before for concrete and stirrups. The FE analyses are carried out using 

displacement control and Newton–Raphson algorithm as the nonlinear solver. The numerical 

convergence criteria, NormDispIncr in OpenSees, is utilized by checking the Euclidean norm of 

the incremental displacement vector with a tolerance level of 0.001 based on convergence analysis.  

 
Figure 3-6: The developed fibre beam FE model for the RC beams 

For the purpose of comparison, the conventional fibre beam element without shear (e.g., 

DispBeamColumn in OpenSees) was also utilized to model the twelve RC beams, and is referred 

to as the reference element in this study. Figure 3-7 shows the comparison of the load-deflection 

curves obtained from the FE models using the proposed element, counterparts from the FE models 

using the reference element, and the experimental tests. Note that deflection of beams refers to the 

vertical displacement as measured in the test. 

It is shown that the proposed element with shear is capable of simulating the load-

deflection behavior of all twelve tested RC beams with satisfactory accuracy, particularly in terms 

of load-carrying capacity. In contrast, the reference element overestimates the load-carrying 

capacity, especially for the OA series of beams without stirrups, which were the most shear-critical 

of these tests. Additionally, the load-deflection curves simulated by using the reference element 

are far more ductile than the experimental results, while the results from the newly developed fibre 
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beam element considering shear do not exhibit such problems. This is because shear deformation 

is neglected in the conventional fibre beam element and thus the shear damage cannot be captured. 

 
(a)  

 
(b)  

 
(c)  
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(d)  

Figure 3-7: Comparison of the load-deflection curves: (a) OA series, (b) A series, (c) B series 

and (d) C series 

In contrast, the newly proposed element considers shear deformation and damage by 

utilizing the material model of MCFT, leading to better capture of the failure point of shear-critical 

beams compared with the conventional fibre beam element. Such an application study based on 

shear-critical RC beams reveals that the proposed element outperforms the reference element, 

which is widely used primarily for flexure-dominated beams or columns. It is observed that the 

obtained load-deflection curves from the FE models are slightly stiffer than the experimental 

results, especially for the specimens from Series A as also reported in (Feng et al. 2017). This can 

be partially attributed to the uncertainties in the tests (e.g., construction and measurement errors) 

and the imperfection of FE models. 

For each series of OA, A, B and C, the tested load-deflection curves become more flexure 

and ductile with the increasing shear span to depth ratios, namely, from series 1 to 3. The 

simulation results using the proposed element captured such a trend successfully as shown in 

Figure 3-7, indicating its capability as a reliable tool to simulate shear-critical RC beams with 

different shear span to depth ratios. 
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The accuracy of the predicted failure loads from the proposed element were also compared 

with some widely utilized shear capacity design code models, i.e., ACI 318-19 (ACI 2019), CSA 

A23.3:19 (CSA 2019a), fib MC 2010 (fib 2013) and GB 50010-2010 (MOHURD 2010). 

Specifically, the most advanced model from each code is utilized in this study, i.e., the general 

method in CSA A23.3:19, the Level Ⅱ approximation for members without shear reinforcement 

and the Level Ⅲ approximation for members with shear reinforcement in fib MC 2010. Note that 

the material strengths of steel and concrete use the tested values summarized in Tables 3-1 and 3-

2 without material reduction factors or other safety factors (e.g., load and resistance factors) for 

fair comparison. 

Table 3-3: Comparison of failure loads between tests, FE and analytical models 

Beam 
Failure Load (kN) tested predictedV V   

Test FE ACI CSA fib GB FE ACI CSA fib GB 

OA1 333.6 333.9 199.8 239.9 241.2 368.1 1.00 1.67 1.39 1.38 0.91 

OA2 355.9 365.0 218.8 246.0 247.4 378.3 0.97 1.63 1.45 1.44 0.94 

OA3 378.1 368.0 276.0 259.8 261.1 519.0 1.03 1.37 1.46 1.45 0.73 

A1 467.1 486.6 337.9 347.2 315.4 333.7 0.96 1.38 1.35 1.48 1.40 

A2 489.3 508.4 355.6 349.5 316.9 332.1 0.96 1.38 1.40 1.54 1.47 

A3 467.1 450.3 411.4 334.2 326.6 405.0 1.04 1.14 1.40 1.43 1.15 

B1 444.8 444.6 305.3 313.7 282.5 284.0 1.00 1.46 1.42 1.57 1.57 

B2 400.3 382.7 299.9 295.7 268.0 277.2 1.05 1.33 1.35 1.49 1.44 

B3 355.9 356.6 355.0 296.0 278.4 348.0 1.00 1.00 1.20 1.28 1.02 

C1 311.4 262.4 228.8 222.2 206.9 232.1 1.19 1.36 1.40 1.50 1.34 

C2 324.7 313.8 244.5 245.0 218.3 210.3 1.03 1.33 1.33 1.49 1.54 

C3 271.3 267.6 277.1 241.9 224.0 246.8 1.01 0.98 1.12 1.21 1.10 

Mean - - - - - - 1.02 1.34 1.35 1.44 1.22 

CV - - - - - - 0.06 0.15 0.07 0.07 0.22 

Table 3-3 summarizes the failure loads from the experiments and the predictions from 

various models. According to the test-to-prediction ratios of the shear capacity, 
tested predictedV V , the 

proposed element can predict the shear capacity of these twelve beams with a bias factor of 1.02 

and a coefficient of variation (CV) of 6%, which indicates better performance than those of the 
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design code models. This implies that the proposed element is more accurate and reliable in shear 

capacity prediction, which can be used when higher accuracy prediction is required (e.g., accurate 

evaluation of existing RC beams). However, by no means should FE models replace the design 

code models for design purposes. 

3.3.2 Flexure-dominated and Shear-critical PC Girders 

One PC bridge girder salvaged from a decommissioned bridge (in service 1990 - 2017) located on 

central Alberta, Canada, was tested to failure. Compared to other girders salvaged from this bridge, 

this girder is considered as a control girder as it was visually intact with no concrete spalling or 

evidence of steel corrosion. It was first tested to failure under four-point bending to evaluate the 

flexural behavior. After the flexure test, the girder was cut near one end and further tested under a 

single point load to evaluate the girder’s shear behavior. The proposed element is used to simulate 

the flexure and shear behavior of this girder with comparison to the tests in this section.  

3.3.2.1 Testing Summary 

The tested girder is 11000 mm long with a solid cross-section at both ends and a three-cell hollow 

cross-section in the middle (Figure 3-8). The cross-section is 1220 mm wide and 510 mm deep, 

and the diameter of the voids are 305 mm. Longitudinal reinforcement consisted of 20 prestressed 

seven-wire low-relaxation strands, seven 10M longitudinal reinforcement (5 G1012 and 2 G1013) 

and 4 25M reinforcement. The stirrups are made of 10M reinforcement. The nominal diameter of 

the 7-wire strands is 12.7 mm with a nominal area of 98.7 mm2. Note that the prestressing force in 

each strand was not explicitly measured, but back-calculated by inverse modeling using 2-D 

continuum FE (Huang 2020) based on the tested cracking load. The evaluated effective prestress 

forces were 74.9 and 64.2 kN for the flexure and shear girders, respectively. This represents 30% 

and 40% prestress loss compared to the designed effective prestress force for the same girder.   



 

48 

 

 

 
(a) 

 
 

(b) (c) 

Figure 3-8: Tested PC girder: (a) flexure test, (b) shear test, and (c) cross-section in the middle 

span (unit: mm) 

The girder was first tested to failure in a four-point bending using a 6000 kN loading frame 

and actuator as shown in Figure 3-8(a). The tested girder was simply supported on steel pedestals. 

Hollow structural sections (HSS), filled with concrete, were used to distribute load along the width 

of the girder. At each support, a neoprene pad was placed on top of the HSS to imitate the true 

bridge girder’s support conditions. The girder was tested to failure controlled by concrete crushing 

after reinforcement yielding as shown in Figure 3-9(a).  

After the flexural test, since the damage caused by the flexural test was concentrated at 

midspan, the tested girder was cut into a smaller, 3900 mm long, end section. Then this shorter 

girder was simply supported with a span of 3800 mm and tested under a single point load applied 

1000 mm away from one support, as shown in Figure 3-8(b). The failure was dominated by 

diagonal tension failure as shown in Figure 3-9(b). As such, these two girders well presented 
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flexure-dominated and shear-critical PC girders, and will be simulated using the newly developed 

fibre beam element with comparison to the tests.   

3.3.2.2 FE modelling and simulation results 

The proposed element is utilized to model both the flexural and shear test of this PC bridge girder. 

The PC girder is meshed into 36 and 38 beam elements respectively for the flexure and shear tests, 

with 5 integration points for each element, see Figure 3-10. Note that the variation of stirrup 

spacing along the length of the girder, i.e., 150 mms =  for region 1, 200 mms =  for region 2, 

250 mms =  for region 3 and 350 mms =  for region 4, is considered in the MCFT model, which 

allows to consider smeared stirrups. As such, MCFT material models for these four regions are 

defined with different reinforcement ratios of transverse steel,
y yvA bs =  used in Eq. (3-20) and 

(3-21) in the FE formulation, to consider four stirrup spacings. The cross-section is discretized into 

concrete fibres with an average mesh size of 10 mm 10 mm  and steel fibres to represent the 

longitudinal steels including both non-prestressed reinforcement and prestressed strand as shown 

in Figure 3-10. The FE analyses are all carried out in displacement control using Newton–Raphson 

algorithm to solve nonlinear algebraic equations. The NormDispIncr in OpenSees is utilized to 

  
(a) (b) 

Figure 3-9: Failure of the tested PC girder: (a) flexure test showing concrete crushing, and (b) 

shear test showing diagonal tension failure 
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determine if convergence has been reached. The tolerance is set as 0.001 for all specimens based 

on convergence analysis. 

 
Figure 3-10: FE models for the tested PC girder (Unit: mm) 

 
Figure 3-11: Stress-strain comparison between the material model and cylinder test for 

concrete in compression 

The values of key material parameters for concrete and steel used in the MCFT are 

determined based on the material coupon tests. To be specific, concrete cylinders, non-prestressed 
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steel coupons (e.g., M10, M25, stirrups), and prestressed strand coupons were extracted from the 

PC girder after the testing. As per ASTM C39/C39M-14 (ASTM 2014), ASTM A370-16 (ASTM 

2016), and ASTM A1061/1061M-16 (ASTM 2016), their coupon sizes are 100 mm × 200 mm, 

500 mm long (with the gauge length of 200 mm), 1000 mm long (with the gauge length of 610 

mm), respectively. The tested material properties are summarized in Table 3-4.  

Table 3-4: Tested material properties  

Material Symbol Parameter 
Longitudinal 

Stirrups 
10M 25M Strand 

Steel 

yf   Yield strength (MPa) 417 413 1676.5 424 

uf  Ultimate strength (MPa) 670 640 1860 636 

y  Yield strain (MPa) 0.0021 0.0022 0.0085 0.0022 

sE  Elastic modulus (MPa) 198 203 196.5 196 

shE  Hardening modulus (MPa) 6.29 5.08 9.657 4.61 

Concrete 

cf   Peak compressive stress (MPa) –55.5 

uf  Ultimate compressive stress (MPa) –20.3 

c   Strain at peak compressive stress –0.0027 

u  Ultimate strain –0.0042 

 

For concrete in compression, based on material tests on cylinders extracted from the tested 

girders as shown in Figure 3-11, it is reasonable to assume the pre-peak compressive behavior can 

be simulated by a linear relationship, followed by a linear post-peak branch. The peak compressive 

stress cf   is set as –60 MPa to fit the material model well with the tested curves. The compressive 

strain (i.e., 0.0027c  = − ) corresponding to the peak compressive stress is obtained by the average 

value of the two tested batches. The ultimate compressive stress and the corresponding strain are 

also obtained by the average value of the two tested batches as –20.3 MPa and –0.0042, 
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respectively. For steel and concrete in tension, the typical uniaxial material models illustrated in 

previous section of uniaxial material models are employed. 

  
(a) (b) 

Figure 3-12: Load-deflection curves for: (a) flexure test, and (b) shear test 

For the purpose of comparison, the reference element is also utilized to model the PC girder 

for both flexure and shear tests, with the same uniaxial material models and mesh conditions as in 

the model using the proposed element. As shown by Figure 3-12, the simulation results from the 

proposed element agree well with the experimental results for both the flexure and shear tests. The 

cracking point, steel yield point, and ultimate strength are all captured well, indicating that the 

proposed element can be a reliable tool in predicting the behavior of PC girders for both shear-

critical and flexure-dominated scenarios. Note that accurate prediction of ultimate displacements 

is a challenging task for concrete structures (Vecchio and Shim 2004). The proposed element is 

significantly more accurate in predicting the ultimate displacement for the shear test, see Figure 3-

12(b). Compared with the error in predicting the ultimate displacement for the shear test using 

fibre beam element without shear, the small difference in the two predictions of the ultimate 

displacement for the flexure test in Figure 3-12(a) is considered as negligible. Note that only the 

monotonic loading behaviour is simulated and compared here. However, it is worth mentioning 
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that the proposed element can potentially be used with cyclic MCFT to simulate the cyclic 

behaviour, which is outside the scope of this study. 

Table 3-5: Comparison of failure loads between tests, FE and analytical models 

Models Tested FE ACI AASHTO CSA fib GB 

Flexure 

test 

Failure Load (kN) 636.7 632.3 670.0 667.0 665.4 675.3 674.0 

Test-to-prediction ratio - 1.01 0.95 0.95 0.96 0.94 0.94 

Shear  

test 

Failure Load (kN) 1406.2 1521.8 977.6 830.3 849.7 818.6 914.3 

Test-to-prediction ratio - 0.92 1.44 1.69 1.66 1.72 1.54 

The accuracy of the predicted failure loads from the proposed element is also compared 

with some widely utilized design code models as shown in Table 3-5. In addition to the concrete 

structure design codes, two highway bridge design codes, namely AASHTO LRFD 2017 

(AASHTO 2017) and CSA S6:19 (CSA 2019b), are also adopted for comparison. For shear 

capacity prediction, the most advanced model from each code is utilized for the tested PC girders, 

i.e., the detailed method in ACI 318-19, the general procedure in AASHTO LRFD 2017, the 

general method in CSA A23.3:19 and CSA S6:19, and the Level Ⅲ approximation in fib MC 2010. 

Note that the material strengths of steel and concrete take the tested values as summarized in Table 

3-4 without material reduction factors or other safety factors for fair comparison. It is shown that 

the proposed element can predict load-carrying capacities well under both the flexure- and shear-

critical scenarios. In contrast, the design code models can only obtain satisfactory predictions of 

load-carrying capacities for the flexure test, but poor predictions of the load-carrying capacities 

for the shear test. Thus, the proposed element is shown to be a simple but reliable tool to obtain 

satisfactory predictions for both tests. 

3.4 Summary 

In this study, an enhanced fibre beam element was developed and implemented considering 

flexure-shear coupling by utilizing multi-axial material constitutive models, as complementary to 
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the conventional fibre beam elements using uniaxial material models. Particularly, the proposed 

element was integrated with modified compression field theory (MCFT) to model RC/PC girders 

in this study. The proposed element was first validated through a classic series of shear-critical RC 

beams tested in the literature, and then applied to a PC bridge girder recently tested under both 

flexure- and shear-critical loading conditions. Comparison with the reference element showed that 

the proposed element was superior in predicting the load-deflection behavior of RC/PC girders 

under shear-critical scenarios. Particularly, the FE model can be used to predict the shear capacity 

of RC/PC girders more accurately than commonly used code-based models. Based on the proposed 

element and its validation and application study, the main conclusions can be withdrawn as follows: 

(1) The coupling of flexure and shear, achieved in MCFT at the material level and further 

considered at the fibre section and beam element levels, enables the proposed element to 

be used for simulating the structural behavior of both shear-critical and flexure-dominated 

RC/PC girders.  

(2) This study provides analysts and engineers with a reliable numerical tool for structural 

behavior analysis of RC/PC girders, as complementary to the widely used conventional 

fibre beam element.   

(3) The proposed element, with superior prediction of shear capacity for RC/PC girders 

compared to the design code models, provides an alternative model when high prediction 

accuracy is required. 

Compared with flexure capacity prediction, the shear capacity prediction using the design code 

models is significantly less accurate, i.e., with strong bias and large variation. This further 

highlights the value and need of the proposed element.  
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CHAPTER 4:  APPLICATION OF NEWLY DEVELOPED BEAM ELEMENT 

CONSIDERING FLEXURE-SHEAR COUPLING TO STUDY LOAD-SHARING 

BEHAVIOR OF MULTI-GIRDER PC BRIDGES 

 

This chapter aims to study the load-sharing or system behavior of multi-girder prestressed concrete 

(PC) bridges, using an efficient nonlinear analysis tool based on finite element (FE) modeling. A 

newly developed nonlinear beam element, which considers flexure-shear coupling, was adopted 

to model each girder and macro nonlinear elements were adopted to model the shear connectors 

between adjacent girders. The nonlinear analysis tool for multi-girder bridge systems was applied 

to study the system behavior and load sharing of the studied bridge under both flexure-dominant 

and shear-critical loading scenarios. The influence of shear connectors on load-carrying capacity 

and load sharing was quantified by comparing the bridge system behavior of shear-connected 

girders and that of dis-connected girders (with isolated individual girders). It is found that shear 

connectors play a significant role, but less under shear-critical scenarios than under flexure-

dominated scenarios. The influence of losing shear connectors (e.g., due to corrosion damage) and 

increasing shear connectors on the bridge system behavior was studied. The results indicated that 

one single shear connector loss can result in an overall load-carrying capacity loss up to 14.32% 

for the considered multi-girder bridge with five connectors between two adjacent girders, while 

adding more shear connectors between adjacent girders can improve the overall load-carrying 

capacity. 

4.1 Introduction 

Multi-girder concrete bridges, made from parallel precast girders/beams that are longitudinally 

connected to each other (AASHTO 2017; CSA 2019), represent a popular choice for short- to 
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intermediate-span bridges in North America (Dunker and Rabbat 1993; Barker and Puckett 2013). 

This can be attributed to their unique advantages, including ease of fabrication, and fast 

construction, which requires minimum poured-in-place concrete for the bridge superstructure. In 

contrast to bridges with cast-in-place decks that behave as an integral structural component (e.g., 

slab), multi-girder bridges distribute vertical loads transversely through continuous or discrete 

shear connection joints at intervals along the girder.  A variety of shear connection exist, including 

intermittent bolted shear connectors (Shah et al. 2007), continuous shear keys filled with grout 

(Hussein et al. 2018), transverse post-tensioning ties (Hansen et al. 2012), and an overlaid concrete 

structural slab (150 mm thick) (CSA 2019), depending on different girder types and design 

requirements. Multi-girder bridges offer convenience in construction and design, e.g., by treating 

the bridge superstructure as multiple bridge girders.  

However, design and analysis of multi-girder bridges has been the subject of numerous 

studies in the past. The majority of those studies (Barr et al. 2001; Song et al. 2003; Hughs and 

Idriss 2006; Semendary et al. 2017; Huang and Davis 2018) used linear elastic models to provide 

the theoretical basis for the use of the live load distribution factor or truck load fraction factor 

(AASHTO 2017, CSA 2019). Moreover, existing works (Barr et al. 2001; Song et al. 2003; Hughs 

and Idriss 2006; Huang and Davis 2018) usually focused on composite girder-slab systems, in 

which the load distribution was considered to be solely dependent on the slab. This is different 

from multi-girder systems without an overlaid concrete structural slab, in which load-sharing 

depends on the shear connection joints. Only a few studies (Semendary et al. 2017) focused on the 

bridges without slabs/overlays by explicitly modelling the shear connection system (e.g., 

continuous shear keys filled with grout), while studies on more bridges with different shear 

connection types are limited.  
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During the routine design process of multi-girder system, the load distribution factor needs 

to be used with restrictions although it provides an approximate way to consider load sharing or 

distribution among girders in load effect calculation. For example, parallel beams must have 

approximately equal stiffness (AASHTO 2017; CSA 2019). Nonetheless, load sharing can be 

different when nonlinearity takes effect in the primarily loaded girder, which will experience more 

stiffness degradation in the inelastic stage than other girders (Tu et al. 2019; Wang et al. 2021). 

Similarly, the live load distribution factor approach is not appropriate for load evaluation or 

performance assessment of aged bridges, in which girders can deteriorate to different degrees. As 

such, instead of decreasing load effects (e.g., maximum moment and shear) in a girder considering 

load-sharing, an alternative perspective is to increase the load-carrying capacity of a girder due to 

contribution of other girders by studying the behavior of multi-girder systems. 

 To study the load-carrying capacity of multi-girder systems, nonlinear FE models can be 

adopted, which requires explicit modelling of multiple PC girders and the connection joints 

between adjacent girders. Existing FE models for multi-girder bridges include three-dimensional 

(3-D) or two-dimensional (2-D) continuum-based FE models (Hossain et al. 2014; Leng et al. 2020) 

and one-dimensional (1-D) fibre beam element models (Song et al. 2002; Tu et al. 2019; Wang et 

al. 2021). However, nonlinear bridge girder system models using continuum-based FE are 

computationally prohibitive, and demanding in efforts in constitutive material model calibrations 

and simulation results interpretation.  In contrast, models using fibre beam elements are proved to 

be significantly more efficient and straightforward, and thus preferred by engineers for bridge 

girder system modeling (Ferreira et al. 2015). It is worth mentioning that existing FE-based 

analysis of bridge girder systems only focused on the bridge behavior under flexure-dominated 

loading scenarios. Nevertheless, the load-sharing behavior of multi-girder under shear-critical 
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loading scenarios is worth investigation to obtain a comprehensive understanding of the bridge 

girder system behavior. For this purpose, the newly developed beam element, which considers 

flexure-shear coupling (Liu et al. 2021), is an appropriate analysis tool in lieu of the conventional 

fibre beam elements (Spacone et al. 1996), where the shear deformation and/or flexure-shear 

coupling is neglected. 

 Furthermore, impact of shear connection joints on the system behavior of multi-girder 

systems needs to be studied, particularly for multi-girder bridge systems without non-composite 

topping or a composite structural slab. This is because steel shear connectors can be severely 

damaged due to water and corrosive chemicals accumulated between girders (Leng et al. 2020), as 

evidenced from a recently decommissioned nine-girder PC bridge (Huang et al. 2022) and many 

others in Alberta, Canada, where the de-icing salt (Ramseyer and Kang 2012) is used seasonally. 

Frequent observation of shear connection damage/loss during regular bridge inspections has raised 

serious concerns about the overall performance of bridge girder systems (Yuan and Graybeal 2016).  

To this end, the system behavior of a multi-girder PC bridge is studied based on nonlinear 

FE modeling using a recently developed nonlinear beam element that considers flexure-shear 

coupling. The multi-girder bridge system considered is based on a decommissioned nine-girder 

PC bridge, in which adjacent girders are connected by steel shear connectors. Its bridge girder 

system behavior is studied under both flexure-dominant and shear-critical loading scenarios. 

Additionally, the influence of shear connectors on load-carrying capacity and load sharing was 

studied considering two different settings: losing shear connectors in existing girders (e.g., due to 

corrosion damage) and increasing shear connectors in new designs. 
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4.2 Nonlinear FE Modelling of Multi-girder Bridge System  

4.2.1 Bridge Description 

A 27-year-old (in service from 1990 to 2017) single-span multi-girder bridge, called Tiger Lily 

bridge located near Barrhead in central Alberta, Canada, was decommissioned after failing a safety 

inspection. The bridge was 11m long, consisting of nine precast PC girders (referred to as G1 ~ 

G9) without additional wearing surface (e.g., concrete or asphalt overlay) simply supported on the 

abutments at both ends. Adjacent girders were tied to each other using five steel shear connectors 

located along the span as shown in Figure 4-1. The shear connects are denoted as C-G(n1)-G2(n2)-

N, where n1 and n2 are the ID of adjacent girders and N is the ID of shear connectors along 

longitudinal direction of the bridge.  

 
Figure 4-1: Schematic diagram of Tiger Lily bridge superstructure (dimension in mm) 

This bridge can be considered as a representative of multi-girder PC bridges for short and 

intermediate spans in Alberta (Alberta Transportation 2019). Corrosion-induced damage of shear 

connectors was observed for this bridge, which raised serious concerns about bridge safety, in 

addition other girder Deterioration (e.g., concrete cracking and spalling). Thus, the residual 

structural performance of the individual bridge girders was studied experimentally and numerically 

by the authors (Liu et al. 2021; Huang et al. 2022; Wu 2021).  This study will focus on the system 
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behavior and load sharing of multi-girder systems with discrete shear connectors, with particular 

emphasis on the effect of shear connector damage/loss while assuming PC girders were in pristine 

conditions. The ultimate goal of this specific research scope is to provide insight into system 

behavior, potentially guiding maintenance and rehabilitation of similar multi-girder PC bridges 

associated with damage/loss of shear connectors. 

 

 
(a) (b) 

Figure 4-2: Cross sections of SM-510: (a) interior girders, and (b) exterior girders (dimension 

in mm) 

The interior and exterior girders are of type SM-510 (Alberta Transportation 2019) with 

the cross-section and reinforcement details as shown in Figure 4-2 (a) and (b). The interior girder 

consists of 20 prestressed seven-wire low-relaxation strands with a nominal area of 98.7 mm2, 

seven 10M and four 25M longitudinal reinforcing bars with a nominal area of 100 mm2 and 500 

mm2 respectively. The exterior girder consists of 12 prestressed seven-wire low-relaxation strands, 

10 10M and four 25M longitudinal reinforcement. The effective prestress force is 107 kN per 

strand. The stirrups are made of 10M bars and their spacing varies along the longitudinal direction 

of the bridge as indicated in Figure 4-1. The steel and concrete material properties were tested after 

the bridge decommission and summarized in Table 4-1.  
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Table 4-1: Summary of tested material properties 

Material Parameter 10M 25M Strands 

Steel 

Yield strength (MPa) 417 413 1677 

Ultimate strength (MPa) 670 640 1860 

Elastic modulus (GPa) 198 203 197 

Concrete 

Compressive strength (MPa) 55.5 

Ultimate compressive strain (MPa) 20.3 

Strain at compressive strength 0.0027 

Ultimate strain 0.0042 

Density (kg/m3) 1980 

To study the system behavior and load sharing of the above multi-girder bridge, an efficient 

FE-based analysis model is developed as schematically shown in Figure 4-3. Modeling details are 

provided in the following two sub-sections.  

 
Figure 4-3: FE modelling for the Tiger Lily bridge (dimension in mm) 

4.2.2 Girder Modelling 

Both the newly developed flexure-shear coupled fibre beam element (i.e., the dispBeamColumnFS) 

in Chapter 3 and the conventional fibre beam element (i.e., the dispBeamColumn) are utilized to 

model the girders in this study. Each girder is meshed into 50 fibre beam elements with five Gauss-
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Legendre integration points. The cross-section is discretized into concrete fibres with an average 

mesh size of 10 mm  10 mm and steel fibres to represent the longitudinal steels including both 

non-prestressed mild steel and prestressed strands. Note that the mesh size employed in this study 

is determined based on convergence analysis. The FE analyses are all carried out in displacement 

control using Newton–Raphson algorithm to solve nonlinear algebraic equations. The 

RelativeNormDispIncr in OpenSees is utilized to determine if convergence has been reached. The 

tolerance is set as 0.01 for all FE simulations based on convergence analysis. Material models are 

the same as discussed in Chapter 3.  

4.2.3 Shear Connector Modelling 

Adjacent girders are tied to each other using five steel shear connectors along the longitudinal 

direction of the bridge to enable transverse load transferring/sharing. Each shear connector 

consisted of two ¾ A325 bolts and two A36 connector pockets as shown in Figure 4-4 (a) and (b). 

The connector pockets are embedded at the adjacent sides of two parallel girders and then bolted 

to each other. Severe deterioration and even complete damage/loss of shear connectors was 

observed for this bridge as shown in Figure 4-4 (c), which intrigued the study on load sharing 

analysis considering shear connector loss as presented later. 

The shear connection joints are used primarily to transfer vertical shear forces, so that 

adjacent PC girders can share a portion of wheel loads that are applied to one girder. Thus, they 

can be mechanically equivalent to vertical springs and modeled by macro elements with only 

vertical force-deformation relationships, instead of detailed micro modeling of the joint in the 

multi-girder bridge system for simplicity. Thus, in the multi-girder bridge model, macro elements, 

i.e., the zeroLength elements in OpenSees, are adopted to model the shear connectors between 

adjacent girders.   
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Figure 4-4: Shear connectors in: (a) plan view, (b) front view, and (c) engineering practice 

(deteriorated) (dimension in mm) 

To obtain the vertical force-deformation relationship, a detailed 3-D continuum-based FE 

model is developed for the shear connection joint to simulate its mechanical behavior during 

vertical load transferring process in a commercial FE software ABAQUS (2014) widely used for 

detailed modeling of bolted connections and other similar joints (Kim and Kuwamura 2007). The 

eight-node brick element with reduced integration C3D8R is adopted to model the bolts and 

connector pockets. Figure 4-5 (a) shows the finite element mesh of the developed model. Based 

on mesh convergence analysis for a balance between accuracy and efficiency, a mesh size of 3 mm 

  3 mm  3 mm is assigned to the bolts and their neighborhood areas in the connector pockets; 
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the remaining part in the connector pockets is meshed with a relatively larger size of 6 mm  6 

mm  6 mm. The material constitutive models for A325 bolt and A36 plate are the classical 

plasticity model with a von Mises yield surface, where the uniaxial stress-strain curves are obtained 

from the test results of other researchers (Kodur et al. 2012, Sajid et al. 2018) as shown in Figure 

4-6 together with the summarized key properties. The contacts between bolts and pocket plates, 

bolts and nuts, and the two pocket plates are modeled by the ‘general contact’ in ABAQUS to allow 

free separation or contact. The normal behavior is defined by the hard contact (ABAQUS 2014), 

while the tangential behavior is defined by Coulomb friction model with a friction coefficient of 

0.2 (Jiang et al. 2020). 

  
(a) (b) 

Figure 4-5: Shear connector modeling: (a) 3D FE model, and (b) contour results on the Von 

Mises stress 
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(a) (b) 

Figure 4-6: Stress-strain curves of: (a) A325 bolt, and (b) A36 steel 

The developed FE model for a shear connector is shown in Figure 4-5 (a), together with 

the loading and boundary conditions. The load is applied to a reference point, kinematically 

coupled to the nodes on the top side of the pocket plate on one girder (e.g., girder I), to simulate 

the vertical load transferred to the other girder (e.g., girder II). The out-of-plane deformations for 

the back of the pocket plate on girder I are constrained, i.e., uz = x = y = 0, where u is the 

translation,  is the rotation, subscriptions of x, y and z indicate the directions as shown in Figure 

4-5 (a). The front of the pocket plate on the girder II is fixed assuming that concrete restricts the 

deformation of steel pocket plate. This is to reflect the real boundary conditions of steel pockets 

provided by concrete when steel plates are embedded in concrete in engineering practice, i.e., the 

curling of thin-walled steel pockets will be restricted by the surrounding concrete. 

Based on the developed 3D FE model for the shear connector, the obtained load-

deformation relationship is shown in Figure 4-7. The contour results in terms of the Von Mises 

stress is also shown in Figure 4-5 (b). With the obtained load-deformation relationship (F - s), an 

analytical model described by Eq. (4-1) is developed and implemented as a uniaxial material in 

OpenSees, and used together with a macro element to model the vertical force-deformation 
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relationship of shear connectors in the multi-girder system. Note that the curve fitting process 

follows the same principles as utilized in the uniaxial material model development by Menegotto 

and Pinto (1973). 
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in which, 1 0.157s = mm, 2 2.54s = mm, 1 250.667F = kN, 2 254F = kN, and 1 0.0625b = , 2 0b = , 

1 3R = , 2 8R = , 0 1.365s = mm, 0

1 0F = kN and 0

2 235F =  kN are fitted values. 

 
Figure 4-7: Comparison of the vertical load-deformation relationship obtained from 3D FE 

model and fitted for the macro element to represent a shear connector 

4.3 Load-sharing Analysis of Multi-girder Bridge 

With the developed FE model for the Tiger Lily bridge, the system behavior is studied in this 

section with a particular emphasis on load sharing under two scenarios: flexure-dominated and 

shear-critical loadings. The CL-625 truck load (CSA 2019), as shown in Figure 4-8, is used as a 

reference load and applied to the bridge with the two wheel-line loads on G2 and G3, which 

represents a realistic loading position in the transverse direction when a truck is in one lane. The 
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truck position in the longitudinal direction differs for flexure-dominated and shear-critical loading 

scenarios as detailed later. After applying the dead load of self-weight calculated according to the 

tested concrete density of 1980 kg/m3, the reference truck load is applied with an increasing 

multiplier of  in the FE simulation to determine the ultimate load-carrying capacity of the multi-

girder system and to investigate load-sharing. For this purpose, in parallel, FE simulation is 

conducted for the multi-girder bridge without shear connectors, referred to as dis-connected girders 

(with isolated individual girders), and compared with the shear-connected multi-girder system.  

 
Figure 4-8: CL-625 truck load 

4.3.1 Flexure-dominated Loading Scenario 

The truck position in longitudinal direction for the considered flexure-dominated scenario is shown 

in Figure 4-9. This load position in this scenario is determined based on analysis of a single girder 

under CL-625 truck load to achieve the maximum bending moment. As such, the multiplier of  

applied to the reference truck load can be used as a measure of the load level, and its peak value 

refers to the load-carrying capacity related to flexure failure. The obtained load-deflection curves, 

measured by the load multiplier and the midspan displacement of G3, are shown in Figure 4-10.  
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Figure 4-9: CL-625 truck position in longitudinal direction for the flexure-dominated scenario 

 

 
 

Figure 4-10: Load-deflection curves 
Figure 4-11: Transferred load by each line of 

shear connectors 

It is shown that the load-carrying capacity of the shear-connected multi-girder system ( conP ) 

is significantly higher than the load-carrying capacity of the dis-connected multi-girder system 

( isoP ), which indicates the important role of shear connectors for load-carrying capacity under the 

flexure-dominated loading scenario. The ratio conP / isoP  = 3.14 quantifies the contribution of shear 

connectors or the other adjacent PC girders without being directly loaded by truck wheels. Note 

that in the multi-girder bridge model, the recently developed flexure-shear coupled fibre beam 

element (i.e., dispBeamColumnFS) was used. For the purpose of comparison, the conventional 
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fibre beam element (i.e., dispBeamColumn) that neglects shear deformation is also used for the 

above analysis. It can be seen that under this flexure-dominated loading scenario, no visible 

difference can be observed in the simulation result when using the conventional fibre beam element, 

which is sufficient for FE modeling of girders under flexure-dominated loading. 

For the shear-connected multi-girder system, the loads transferred by each line of shear 

connectors between two adjacent girders were obtained by summing up the forces transmitted in 

five shear connectors and summarized in Figure 4-11. It can be seen that the connectors between 

G3 and G4 transferred the highest load among all lines of connectors and thus most susceptible for 

structural damage due to repeated loading in this case. The plateau stage near the end of loading 

process in Figure 4-11 indicates that all shear connectors between G3 and G4 entered yielded. Note 

that after the sharp slope change, the transferred load still kept increasing (although it is neglectable) 

until the last connector yielded completely (i.e., entered the plateau stage as shown in Figure 4-7). 

The yield sequence of shear connectors between G3 and G4 follows C2, C3, C1, C4, and C5. This 

resulted in that afterwards no additional loads can be transferred from G3 to G4~G9 despite the 

increasingly applied external loads, indicating that the nonlinearity/plasticity plays an important 

role in the load transferring. In addition, the nonlinearity in terms of concrete cracking also 

influenced the load transferring as shown in Figure 4-11 by affecting the curve slope of C-G1-G2 

and C-G2-G3. The sequence of girder cracking follows G1, G9, G2, G3, G4, G5, G6, G7, G8.  

For the shear-connected multi-girder system, the load distributed to each girder was also 

obtained by summing up the vertical reaction forces at the end of each girder. The load percentage 

shared by each girder was summarized as shown in Figure 4-12 under different load levels, i.e.,  

= 1 (elastic stage), 3 (before any girder cracking), 7 (after all girder cracking), 11 (before any shear 

connector yielding) and 13.4 (failure state). It can be observed that the two exterior girders (G1 



 

70 

 

 

and G9) exhibit the largest load percentage due to their highest stiffness of exterior girders. With 

increasing load levels, the load percentage shared by each girder varies especially for G1 ~ G3 and 

G9, which is resulted from the nonlinearity(plasticity)-induced force redistribution. Specifically, 

among all interior girders that are identical, G2 and G3 take the most load share in the initial stage 

( =1 and 3) and in the failure state ( = 13.4) after shear connecters between G3 and G4 yielded; 

in contrast, G2 and G3 take the least load percentage for  =7 and 11 due to the decreased stiffness 

with the increase of cracking formation. 

  
Figure 4-12: Distributed load percentage of 

each girder under different load levels 

Figure 4-13: Maximum moment of each 

girder under different load levels 

This redistribution effect can also be reflected in terms of the maximum moment in each 

girder as shown in Figure 4-13. When the load level is relatively low (e.g.,  = 1), the maximum 

moment in G2 and G3 is largest among all the shear-connected girders, while with the increase of 

load levels, the differences between girders in terms of the maximum moment become 

significantly larger. This indicates that the nonlinearity plays an important role in internal force 

distribution and load sharing, while linear elastic assumption for load distribution factor can be 

unrealistic. This is because linear-elastic models underestimate the load-sharing capability of 
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adjacent girders, considering the reduced stiffness of girders due to plastic deformation (e.g., 

concrete cracking and strands yielding), and the yielding of the shear connectors. Note that the 

ultimate and strands yielding moment capacities of PC girders are indicated in Figure 4-13, with 

the ultimate moment (Mult) equal to1929 kN-m and 1534 kN-m and the strands yielding moment 

(My) equal to 1448 kN-m and 1825 kN-m for exterior and interior girders, respectively. Note that 

the Mult and My were obtained by single girder analysis under the dead load and the increasing 

truck load with the same longitudinal location as shown in Figure 4-9. In the shear-connected 

multi-girder bridge system, G1 reached the ultimate moment, while the G2 and G3 reached the 

strands yielding moment but not reached the ultimate moment. 

4.3.2 Shear-critical Loading Scenario 

The truck position in longitudinal direction for the considered shear-critical scenario is shown in 

Figure 4-14. This loading scenario is equivalent to the single point loading with a shear span to 

effective depth ratio (a/d) of 2.25 (i.e., the same as the shear test on single interior girder discussed 

before). As such, the multiplier applied to the reference truck load can be used as a measure of the 

load level, and its peak value refers to the load-carrying capacity related to shear failure. The 

obtained load-deflection curves, measured by the load multiplier and the loading point 

displacement of G3, are shown in Figure 4-15.  

It is shown that the load-carrying capacity of the shear-connected multi-girder system ( conP ) 

is still higher than that of the dis-connected multi-girder system ( isoP ) with the ratio conP / isoP  = 

1.47, while this ratio is relatively smaller compared with the ratio of 3.14 for the flexure-dominated 

loading scenario. This difference can be attributed to that the shear connectors play a less 

significant role for the considered shear-critical loading scenario. The bridge failed earlier due to 
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shear under the shear-critical loading scenario without yielding of shear connectors. This can also 

be reflected in the transferred loads by each line of shear connectors as summarized in Figure 4-

16. The connectors between G3 and G4 transferred the highest load among all lines of connectors 

similar to flexure-dominated loading scenario, all shear connectors remain elastic. 

 

 
Figure 4-14: CL-625 truck position in longitudinal direction for the shear-critical scenario 

 

  

Figure 4-15: Load-deflection curves 
Figure 4-16: Transferred load by each line of 

shear connectors 

Note that for the purpose of comparison, in addition to the multi-girder analysis using the 

recently developed flexure-shear coupled fibre beam element, the conventional fibre beam element 

that neglect shear deformation is also used. It can be seen that the FE models based on conventional 
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fibre beam element overpredicted the load-carrying capacity for both the shear-connected multi-

girder system and the dis-connected multi-girder system when loaded under a shear-critical 

loading scenario.  

 
 

Figure 4-17: Distributed load percentage of 

each girder under different load levels 

Figure 4-18: Maximum shear force of each 

girder under different load levels 

The percentage of the load shared by each girder is summarized in Figure 4-17 under 

different load levels, i.e.,  = 1, 5, 10, 15 and 20.8 (failure state). It can be seen that with the 

increasing load levels, the shared load percentage of each girder varies slightly, indicating that the 

nonlinearity-induced load redistribution plays a negligible role under shear-critical loading 

scenarios and thus models using linear elastic assumption is valid.  

The maximum shear force of each girder under different load levels is also summarized in 

Figure 4-18. Different from the flexure-dominated loading scenario, with the increasing load 

levels, the maximum shear force in G2 and G3 increase significantly faster compared with other 

girders. The shear-connected multi-girder system eventually failed in that the G2 and G3 reached 

the ultimate shear force (Vult) of the interior girder. This is because of the less significant role of 

shear connectors under this shear-critical loading scenario. Note that the Vult was obtained by single 
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girder analysis under the dead load and the increasing truck load with the same longitudinal 

location as shown in Figure 4-14. 

4.4 Effects of Shear Connector Damage 

Recognizing the importance of shear connectors on load sharing and load-carrying capacity of 

multi-girder bridges, this section studies the influence of single or multiple shear connector 

damage/loss (e.g., due to corrosion) on bridge system behavior.  Since the connectors between G3 

and G4 are shown to be critical in the system behavior of the multi-girder bridge for the two loading 

scenarios considered, the effects of shear connector damage/loss are studied.  

4.4.1 Single Shear Connector Loss 

By assuming one of the five connectors between G3 and G4 was damaged to complete loss, the 

multi-girder system is analyzed under the two loading scenarios. The loss in the load-carrying 

capacity due to shear-connector loss can be reflected by the change in the ratio (i.e., conP / isoP ) 

between those of the shear-connected and dis-connected multi-girder systems. Table 4-2 

summarizes conP / isoP for both flexure-dominated and shear-critical loading scenarios. It can be 

seen that shear connector loss has a more significant influence on bridges under flexure-dominated 

loading compared with those under shear-critical loading. The middle shear-connectors are more 

important for the flexure-dominated loading scenario, while the shear connector (C-G3-G4-5) 

close to wheel loading point for the shear-critical loading scenario considered is more important 

than others. One single shear connector loss out of the 40 shear connectors in this multi-girder 

bridge can result in a load-carrying capacity loss percentage (LPc) up to 14.32%. This indicates 

that shear connectors can play an important role in the load sharing and thus load-carrying capacity 

of shear connected multi-girder bridges. Given the fact that corrosion-induced deterioration and 
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damage/loss of shear connectors are widely observed for bridges during regular inspections, the 

potential safety issues resulted from shear connector damage/loss should raise concerns for 

evaluations of similar multi-girder bridges. 

Table 4-2: Effects of complete loss of a single shear connector between G3 and G4  

Loading scenarios 
No connector 

loss 

Loss of shear connectors of C-G3-G4-# 

1 2 3 4 5 

Flexure- 

dominated 

conP / isoP  3.14 2.90 2.76 2.69 2.79 2.93 

LPc (%) − 7.47 12.16 14.32 10.93 6.64 

Shear- 

critical 

conP / isoP  1.47 1.47 1.47 1.47 1.44 1.36 

LPc (%) − 0 0 0 2.08 7.09 

4.4.2 Multi Shear Connector Loss 

Similarly, by assuming loss of more than one of the five connectors between G3 and G4, the 

complete loss of two, three, and four shear connectors between G3 and G4 are also studied. The 

ratios for conP / isoP  under both flexure-dominated and shear-critical loadings are summarized in 

Tables 4-3, 4-4 and 4-5. As a result of the loss of two, three and four shear connectors between G2 

and G3, the maximum load-carrying capacity loss percentage (LPc)  can be 26.01%, 37.06% and 

44.42%, respectively, under the considered flexure-dominated loading scenario; while under the 

considered shear-critical loading scenario, the maximum load-carrying capacity loss percentage 

(LPc) can be 10.41%, 12.38% and 14.09%, respectively. It is worth mentioning that the loss of 

shear connectors between G3 and G4 naturally increase the load shared by G1, which relies on the 

shear connectors between G1 and G2. If the shear connectors between G1 and G2 were also 

damaged, the load-carrying capacity loss would be more significant.  
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Table 4-3: Effects of complete loss of two shear connectors between G3 and G4 

Loading scenarios 
Loss of shear connectors of C-G3-G4- #  

1 & 2 1 & 3 1 & 4 1 & 5 2 &3 2 & 4 2 & 5 3 & 4 3 & 5 4 & 5 

Flexure-dominated 
Pcon/Piso 2.48 2.47 2.57 2.69 2.32 2.42 2.55 2.34 2.48 2.58 

LPc (%) 20.94 21.26 18.22 14.19 26.01 22.71 18.72 25.36 21.05 17.74 

Shear-critical 
Pcon/Piso 1.47 1.47 1.44 1.36 1.47 1.43 1.36 1.42 1.45 1.31 

LPc (%) 0.05 0.01 2.11 7.10 0.01 2.27 7.07 3.43 1.07 10.41 

Table 4-4: Effects of complete loss of three shear connectors between G3 and G4 

Loading scenarios 

Loss of shear connectors of C-G3-G4-# 

1 & 2 

& 3 

1 & 2 

& 4 

1 & 2 

& 5 

1 & 3 

& 4 

1 & 3 

& 5 

1 & 4 

& 5 

2 & 3 

& 4 

2 & 3 

& 5 

2 & 4 

& 5 

3 & 4 

& 5 

Flexure-

dominated 

Pcon/Piso 2.08 2.17 2.30 2.12 2.26 2.34 1.97 2.11 2.20 2.13 

LPc (%) 33.64 30.70 26.74 32.32 28.05 25.50 37.06 32.73 29.89 32.02 

Shear-critical 
Pcon/Piso 1.47 1.44 1.36 1.42 1.36 1.31 1.41 1.35 1.31 1.29 

LPc (%) 0 1.70 7.10 3.04 7.26 11.02 3.99 7.96 10.69 12.38 

Table 4-5: Effects of complete loss of four shear connectors between G3 and G4 

Loading scenarios 
Loss of shear connectors of C-G3-G4-# 

1 & 2 & 3 & 4 1 & 2 & 3 & 5 1 & 2 & 4 & 5 1 & 3 & 4 & 5 2 & 3 & 4 & 5 

Flexure-dominated 
Pcon/Piso 1.74 1.87 1.95 1.90 1.76 
LPc (%) 44.42 40.35 37.82 39.48 43.84 

Shear-critical 
Pcon/Piso 1.38 1.34 1.31 1.29 1.26 

LPc (%) 5.82 8.91 10.84 12.25 14.09 

 

4.5 Effect of Retrofit with More Shear Connectors 

To further investigate the influence of shear connectors using the developed model for the multi-

girder bridge, this section examines the benefits of retrofitting with more shear connectors. 

Specifically, 5, 7, 9, 19, and 29shear connectors between adjacent girders are considered. Note that 

shear connectors are assumed to be installed uniformly along the bridge longitudinal direction for 

simplicity. The increase of the load-carrying capacity due to more shear connectors can be 

reflected by the change in the ratio (i.e., conP / isoP ) between those of the shear-connected and dis-

connected multi-girder systems. 

The influence of different amount of shear connectors on the ratio of conP / isoP  is 

summarized as shown in Figure 4-19. With the increase of shear connector amount, the conP / isoP  
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increased and eventually converged for both flexure-dominated and shear-critical loading 

scenarios. This indicates that the load-carrying capacity of shear-connected girder system can be 

improved by increasing the shear connector amount. The conP / isoP  for the shear-critical loading 

scenario was constantly much smaller than that for the flexure-dominated loading scenario, 

indicating again that the shear connector play a more significant role under flexure-dominated 

loading scenarios.  

 
Figure 4-19: Influence of shear connector amount on the capacity ratio of Pcon/Piso 

4.6  Summary 

This chapter studied the system behavior and load sharing of multi-girder PC bridges based on a 

representative nine-girder PC bridge in Alberta, Canada. An efficient nonlinear analysis tool based 

on FE modeling was developed and applied to the considered bridge under both flexure-dominated 

and shear-critical loading scenarios. The influence of shear connectors on load-carrying capacity 

and load sharing  was quantified by comparing the bridge system behavior of shear-connected 

girders and that of dis-connected girders. In the end, the influence of losing (e.g., due to corrosion 

damage) and increasing (e.g., due to retrofit) shear connectors were studied by parametric analyses. 

Main conclusions and results in this study are summarized below. 



 

78 

 

 

(1) The new flexure-shear coupled fibre beam element is shown to provide satisfactory 

prediction results for girders/bridges under both flexure-dominated and shear-critical loading 

scenarios. On the contrary, the conventional fibre beam element model can only obtain satisfactory 

results under flexure-dominated scenarios, while significantly overpredicts the ultimate load-

carrying capacity under shear-critical scenarios due to the neglection of shear. 

(2) The ratio between load-carrying capacities from the shear-connected multi-girder 

system and the dis-connected multi-girder system ( conP / isoP )are 3.14 and 1.47 for flexure-

dominated and shear-critical loading scenarios respectively, which indicates that shear connectors 

and load sharing play more significant roles for flexure-dominated loading scenarios.   

(3) It is shown that the nonlinearity (e.g., concrete cracking and connector yielding) plays 

an important role in internal force distribution and load sharing, while linear elastic assumption 

for load distribution factor can be unrealistic. 

(4) Studies on the shear connector loss indicate that the shear connector loss has a greater 

influence on the shear-connected girder system under flexure-dominated loading compared with 

that under shear-critical loading. One single shear connector failure out of the 40 shear connectors 

in the studied bridge can result in a capacity loss up to 14.32%. 

(5) Studies on increasing shear connectors indicate that the load-carrying capacity of shear-

connected girder system can be improved by increasing the shear connector amount, while the 

shear connector still plays a less significant role under shear-critical loading with the increase of 

shear connectors.  
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CHAPTER 5: DATA-BASED SHEAR CAPACITY MODELS FOR INTACT PC 

GIRDERS BY BAYESIAN LINEAR REGRESSION 

 

Aiming at probabilistic error assessment of design code models for shear capacity prediction of 

prestressed concrete (PC) girders, this chapter compiled an experimental database containing 369 

PC girders that failed in shear. Using the experimental database, this chapter first assessed seven 

well-received shear capacity models from five concrete structure and bridge design codes, 

including ACI 318-19, AASHTO LRFD 2017, CSA A23.3:19, CSA S6:19 and fib MC 2010. In 

view of the fact that systematic error exists in those models, polynomial correction terms were 

calibrated for each model together with the remaining error quantified based on the compiled 

experimental database and Bayesian updating. The resulted models can be used for shear capacity 

predictions with better accuracy and, more importantly, with the model uncertainty quantified 

probabilistically. In the end, a case study of fragility analysis was conducted to show the benefits 

of the developed probabilistic models. 

5.1 Introduction 

Accurate capacity prediction of Prestressed concrete (PC) girders has been of a primary concern 

to structural engineers since they have been extensively used across the world and contribute 

significantly to the resilience of infrastructure system and socio-economic development. 

Compared with flexural capacity, predicting shear capacity remains a challenging task due to the 

complex load transfer and failure mechanism in concrete beam members under shear-critical 

loading, especially after concrete cracks are initiated (Tošic´ et al. 2016). To this end, significant 

efforts have been devoted to experimental and theoretical studies in the literature, leading to a wide 

variety of shear capacity prediction models for reinforced and prestressed concrete (RC/PC) 



 

80 

 

 

members. Examples include finite element (FE) models (Metwally 2012; Feng et al. 2017), 

mechanics-based analytical models (Wang et al. 2008; Bernardo et al. 2018), and simplified-

mechanical or semi-empirical models such as design code models (AASHTO 2017; ACI 2019; 

CSA 2019a; CSA 2019b; fib 2013). Compared with others, design code models are most widely 

utilized due to their simplicity and authority in engineering practice. However, unneglectable 

conservative bias and prediction scatter were observed for design code-based shear capacity 

prediction when compared to experimental database (Somo and Hong 2006; Nakamura et al. 2013; 

Tošic´ et al. 2016). 

Although being conservative implies more safety margin in structural design, 

quantification of the model error is desired for better alignment with the reliability-based limit-

state design philosophy (Holický et al. 2016). Based on the quantified model error, probabilistic 

shear capacity prediction model can be resulted by combing the original model and the quantified 

model error. This can benefit reliability analysis and probabilistic performance-based design 

(Gardoni et al. 2002) by enabling the consideration of all prevailing uncertainty/error sources. 

Compared with calibrating complete new probabilistic shear capacity models (Ning and Li 2018; 

Yu et al. 2019), the approach used in this study can take advantage of the prior knowledge on 

existing shear capacity models, and facilitate the utilization of resulted probabilistic models for 

engineers who are familiar with existing models, e.g., design code models. 

The traditional approach to quantify model uncertainty is by using a professional/corrective 

factor as an independent random variable (MacGregor et al. 1997; Del Vecchio et al. 2017) to 

consider the model inaccuracy. In this approach, it is assumed that there exists no systematic 

correlation between the model error and model parameters. Additionally, the statistics (i.e., mean 
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and coefficient of variation) and distribution type for the corrective factor were conventionally 

determined based on engineering judgment or limited experimental studies (Holický et al. 2016).  

To remedy the aforementioned issues of the traditional corrective factor approach, Gardoni 

et al. (2002) proposed a Bayesian probabilistic correction approach, which expressed the model 

error as a function of model parameters with a residual term. This approach can benefit the 

correction of the systematic error inherent in an existing model and improve its prediction 

precision. More importantly, according to Gardoni et al. (2002), it takes advantage of the 

experimental data to improve the existing design code models of RC columns, which can facilitate 

the application of the developed models for reliability analysis. Song et al (2010) followed this 

Bayesian probabilistic correction approach and developed probabilistic shear capacity models for 

RC beams without shear reinforcement. In spite of the efforts developed to model error 

quantification as a function of model parameters to RC members, limited studies are available for 

PC girders. Chehab and Eamon (2018) developed a regression-based corrective factor as a function 

of model parameters for the shear capacity prediction of PC girders. However, no  remaining model 

error is not quantified from a probabilistic point of view. In addition, the regression is based on a 

virtual experimental database generated by FE models rather than real experimental tests, which 

highly relies on the accuracy and versatility of the FE model.    

 Aiming at probabilistic error assessment and correction for shear capacity prediction of 

PC girders, this chapter compiled an experimental database containing 369 PC girders that failed 

in shear. Using the experimental data, this study first assessed the shear capacity models from five 

well-received concrete structure and bridge design codes using the conventional corrective factor 

approach. The design code models considered in this study include recommended models from 

ACI 318-19 (ACI 2019), AASHTO LRFD 2017 (AASHTO 2017), CSA A23.3:19 (CSA 2019a), 
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CSA S6:19 (CSA 2019b) and fib MC 2010 (fib 2013). Based on the same experimental database, 

Bayesian probabilistic polynomial correction approach was then used to develop probabilistic 

shear capacity models for PC girders. Comparisons with the original design code models showed 

the superiority of the resulted probabilistic models with improved accuracy and precision. In the 

end, a case study of fragility analysis was conducted to show the benefits of the developed 

probabilistic models. 

5.2 Experimental Database 

To evaluate the model errors of the existing deterministic models, as well as to further develop 

probabilistic shear capacity models, a comprehensive literature review was conducted to compile 

an experimental database of shear tests on PC girders/beams. The following criteria were used to 

select the test specimens from the literature.  

(1) The specimens are PC girders/beams that failed in shear. In other words, non-

prestressed specimens and specimens that exhibit failure modes other than shear failure are not 

considered. 

(2) The minimum shear span to effective depth ratio is 2.0. Specimens with shear span to 

effective depth ratio less than 2.0 are conventionally considered as deep beams and best designed 

by struct and tie models (AASHTO 2017). This is beyond the scope of this research project and 

thus not considered. 

(3) The specimens were subjected to static loading. Specimens subjected to moving loads 

are not considered. 

(4) The specimen information provided is sufficient for predicting the shear capacity by 

the design code models considered.   
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(c) (d) 

Figure 5-1: Distributions of four representative experimental variables: (a) concrete 

compressive strength for all girders, (b) shear span to effective depth ratio for all girders, (c) 

shear reinforcement index for PC girders with stirrups, and (d) normalized tested shear 

capacity for all girders 

As a result of the literature review and the selection criteria, a total of 369 PC girders that 

failed in shear reported from 1954 to 2018 was compiled, including 192 girders with stirrups and 

177 girders without stirrups. The detailed information of the 369 PC girders is provided in the the 

Appendix B. As a brief summary, Figure 5-1 presents the statistical information of the 

experimental database in terms of the four important quantities of shear-critical PC girders. They 

are the concrete compressive strength cf  , the shear span to effective depth ratio a d , the shear 

reinforcement index defined as ( )v yt v yt wf A f b s = , and the normalized shear capacity defined as 

0.25tested c wV f b d . Herein, a  is the shear span, d  is the effective depth, vA  is the area of shear 
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reinforcement, 
ytf  is the yield strength of shear reinforcement, wb  is the web width, and s  is the 

shear reinforcement spacing.  

As seen from bar plots, the experimental database has a good coverage of concrete grade, 

with tested compressive strength ranging from 12.1 MPa to 99.9 MPa and the majority of them 

ranging from 30 MPa to 50 MPa. The majority of PC girders tested have a shear span to effective 

depth ratio ranging from 2.0 to 4.0, which is typical for shear critical loading scenarios. The shear 

reinforcement index reflects both the amount and strength of shear reinforcement and has a wide 

range from 0.14 MPa to 15.72 MPa. The majority of normalized shear capacity is less than 1.0, 

which is to be expected because the normalization factor of 0.25 c wf b d  is generally utilized as the 

upper limit of shear capacity by design code models. These imply that the compiled database is a 

good representation of shear-critical PC girders in engineering practice and thus can be used to 

assess the design code models for shear capacity predictions. 

5.3 Shear Capacity Model Assessment 

5.3.1 Shear Capacity Models 

Shear capacity models from five concrete structure and bridge design codes are considered in this 

study, i.e., ACI 318-19 (ACI 2019), AASHTO LRFD 2017 (AASHTO 2017), CSA A23.3:19 

(CSA 2019a), CSA S6:19 (CSA 2019b) and fib MC 2010 (fib 2013). The simplified procedure in 

AASHTO LRFD 2017 and the simplified method in CSA S6:19 for shear capacity calculation are 

not applicable to prestressed members, and thus not considered in this study. Note that for shear 

capacity prediction based on the models considered in this study, the tested values for the concrete 

and steel material properties are used without material reduction factors or other safety factors 

(e.g., resistance factors) for fair comparison with the test results. It should be mentioned that there 
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are conventionally some restrictions for the application of simplified methods from design codes, 

such as the restriction on concrete and steel properties from ACI 318-19 and CSA A23.3:19. These 

restrictions are not considered in this study for existing design code model assessment and new 

probabilistic model development. This is to enable the development of probabilistic models 

without application restrictions to facilitate their application in engineering practice. The model 

error of existing design code models resulted from not following the application restrictions are 

expected to be learned and corrected in the following study of model error correction and 

probabilistic model development. 

The calculation procedure of considered design code models and the related parameters are 

summarized in Appendix C. It is worth mentioning that each design code includes more than one 

shear capacity models with different levels of simplification. Shear capacity models from the five 

design codes have different theoretical bases. The models from AASHTO LRFD 2017, CSA 

A23.3:19 and CSA S6:19 are developed based on modified compression field theory (MCFT) 

(Vecchio and Collins 1986). For members without shear reinforcement, the models in fib MC 2010 

are based on simplified modified compression field theory (SMCFT) (Bentz et al. 2006). While 

for members with shear reinforcement, the models in fib MC 2010 are based on a general stress 

field approach (Sigrist 2011) combined with SMCFT. The models from ACI 318-19 are based on 

a combination of truss analogy and empirical models (Zsutty 1968; Sigrist et al. 2013).  

The influence of internal forces under design load combinations at critical sections (i.e., 

uM , uV  and uN ) are considered in all the adopted design code models, i.e., the predicted shear 

capacity is a function of internal forces as ( , , )d u u uV f V M N= . However, for those girders tested 

to failure in labs, the concept of design load combination is usually neglected. In this study, the 
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related internal forces at critical sections are determined by imposing ( , , )u d u u uV V V M N= for the 

tested load condition of each girder specimen. 

5.3.2 Model Error Assessment 

Based on the compiled experimental database in this study, the error (e.g., bias and scatter) of the 

design code models considered are assessed in terms of the test-to-prediction ratio 
tested predictedV V , 

where testedV and 
predictedV are the tested and predicted shear capacity, respectively. The mean value 

of 
tested predictedV V  can represent the inherent bias while the coefficient of variation (COV) can 

reflect the prediction scatter. Note that for fib MC 2010, Level Ⅲ approximation and Level Ⅱ 

approximation methods are used for PC girders with and without stirrups, respectively.  

Figure 5-2 summaries the histograms of 
tested predictedV V  for the PC girders in the 

experimental database. It can be seen that although the detailed/general methods (see Figure 5-2 

(b) and Figure 5-2 (e)) perform better than simplified methods (see Figure 5-2 (a) and Figure 5-2 

(d)), all design code models exhibit significant conservative bias and relatively large prediction 

scatter. Detailed statistics, such as mean, COV, minimum, maximum, and the best-fitted 

distributions, of 
tested predictedV V are provided in Table 5-1. The least conservative model with the 

lowest mean value of 
tested predictedV V (1.535) is found to be the detailed method from ACI 318-19, 

which has a relatively low COV of 0.288. In contrast, the MCFT-based general procedure from 

AASHTO LRFD 2017 has the lowest COV value of 0.230. Note that the simplified methods in 

ACI 318-19 and CSA23.3:19 have large COV values, which indicate larger prediction scatter 

compared with other models. 
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The best fitted distribution of 
tested predictedV V , which is conventionally utilized as the 

corrective factor or professional factor (MacGregor et al. 1997; Del Vecchio 2017) to consider the 

model error in reliability analysis, is also provided as shown in the column of ‘Best fitted 

distribution’ in Table 5-1. The best-fitted distribution type is determined based on Kolmogorov-

Smirnov (K-S) tests (Massey 1951). It is shown that the lognormal and gamma distribution are the 

best two fitted distribution types. This is contradictory to the widely utilized normal distribution 

assumption for the professional factor (Nowak and Grouni 1983; MacGregor et al. 1997). The 

discrepancy between normal and the best fitted distribution can be significant as shown in Figure 

5-2.  

  
(a) (b) 

  
(c) (d) 
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(e) (f) 

Figure 5-2: Distributions of Vtested / Vpredicted for: (a) ACI 318-19 (Simplified method), (b) ACI 

318-19 (Detailed method), (c) AASHTO LRFD 2017, (d) CSA A23.3:19 (Simplified method), 

(e) CSA A23.3:19/S6:19 (General method), and (f) fib MC 2010 

Table 5-1: Assessment of different design code models in terms of Vtested / Vpredicted 

Model 
Statistics Best fitted 

distribution* 

p-value 

Min Max Mean COV Normal Best fitted 

ACI 318-19 (Simplified 

method) 
0.538 4.440 2.068 0.389 ( )6.289,0.329  

0.101 0.640 

ACI 318-19 (Detailed 

method) 
0.793 3.855 1.535 0.288 ( )20.391,0.270LN  N/A 0.579 

AASHTO LRFD 2017 

(General procedure) 
0.932 3.336 1.754 0.230 ( )19.542,0.090  

0.373 0.822 

CSA A23.3:19 

(Simplified method) 
0.587 10.647 2.831 0.534 ( )3.787,0.748  

N/A 0.374 

CSA A23.3:19/S6:19 

(General method) 
0.931 3.487 1.767 0.242 ( )20.542,0.235LN  0.083 0.719 

fib MC 2010 0.884 4.709 1.995 0.289 ( )20.652,0.278LN  N/A 0.464 

The p-values from K-S tests are also summarized in Table 5-1, which can represent the 

differences between the cumulative distribution functions from the observed samples and the 

assumed distribution type (i.e., normal, lognormal, gamma, Weibull distributions in this study), 

ranging from 0 to 1 (Massey 1951). The larger the p-value, the smaller the difference between the 

observed samples and the assumed distribution. If the p-value is less than a prescribed threshold 

(e.g., 0.01), usually referred to as the significance level, the hypothesis that the observed samples 

obey the assumed distribution type should be rejected. It can be seen from Table 5-1 that the normal 
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distribution assumption performs poorly despite its wide use. The N/A represents that the 

tested predictedV V  rejects the normal distribution assumption under a significance level of 0.01. 

5.3.3 Correlation Between Test-to-prediction Ratios and Model Parameters 

As shown in the previous section, the design code models considered exhibit significant 

conservative bias and prediction scatter. Although being conservative implies more safety margin 

in structural design, transparency in the model error is required. For example, unbiased strength 

prediction with quantified scatter (i.e., consideration of model error) is desired to benefit 

engineering practice for reliability analysis and probabilistic performance-based design. To this 

end, there are typically two approaches depending on whether the systematic correlation between 

the model error and model parameters exists. When this systematic correlation is not observed, the 

model error is typically considered as an independent random variable, such as the best fitted 

distribution provided for the 
tested predictedV V  in Table 5-1. Otherwise, the relationship between the 

model error and model parameters can be modelled using stochastic regression models (Gardoni 

et al. 2002).  

Taking the general method from CSA A23.3:19 for example, the model error observations 

(
tested predictedV V ) is correlated to the shear span to effective depth ratio a d  and shear reinforcement 

index ( )v yt v yt wf A f b s =  as shown in Figure 5-3. It can be seen that the model error exhibits a 

functional relationship with both a d  and 
v ytf . Similar systematic correlations have been 

observed for other design code models. Thus, such systematic error (trend) hidden can be learned 

as a regression function of model parameters and used to add correction terms to the code-based 

strength prediction models in this study. 
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(a) (b) 

Figure 5-3: Test-to-prediction ratios (Vtested / Vpredicted) as a function of: (a) shear span to 

effective depth ratio a/d, and (b) shear reinforcement index ρvfyt  

5.4 Model Correction and Probabilistic Prediction Models 

5.4.1 Model Development Procedure 

In order to improve the model accuracy and precision (i.e., reducing bias and scatter) to facilitate 

reliability assessment or fragility analysis of PC girders, probabilistic correction terms can be 

added to the adopted deterministic shear capacity models (i.e., the design code models considered). 

To construct a dimensionless model for the shear capacity V , the normalized quantity 

0.25 c wv V f b d=  is adopted. The natural logarithmic transformation is applied to the normalized 

shear capacities to make the model homoscedastic. The model function form is shown as Eq. (5-

1), 

 ( ) ( ) ( )ln , ln ,dv v  = + +      x Θ x x θ   (5-1) 

where ( ),v x Θ  is the normalized shear capacity prediction from the developed probabilistic model,  

( )dv x  is the normalized shear capacity prediction from the adopted deterministic design code 

model, ( ), x θ  is the correction term,  is a random variable with zero mean and unit variance, 
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and   is the standard deviation (SD) of  the remaining error in the shear capacity prediction model 

after correction. In this equation, x  is the vector of input variables that can affect the shear capacity 

predictions, e.g., material properties and geometric dimensions as indicated in Table 5-2, 

( ),=Θ θ  denotes the set of unknown model parameters. 

To construct the correction function ( ), x θ , a suitable set of explanatory functions 

( ) , 1,...,ih i p=x  are utilized to explore the sources of bias in the adopted deterministic model, 

where p  is the total number of explanatory functions, see Eq. (5-2). 

 ( ) ( )
1

,
p

i i

i

h 
=

=x θ x   (5-2) 

Song et al. (2010) found that the model error can be captured more effectively by applying 

natural logarithm transformation to the explanatory functions ( )ih x . This approach is adopted in 

this study and then a comprehensive set of explanatory functions to capture various possible 

sources of model error are selected as summarized in Table 5-2. 

Table 5-2: Selection of explanatory functions 

Explanatory functions (Possible) Sources of model error 

( )1 ln 1h e= =x  Independent of x  

( ) ( )2 lnh a d=x  Shear span to depth ratio 

( ) ( )3 lnh a L=x  Loading position 

( ) ( )4 ln wh h b=x  Sectional aspect ratio 

( ) ( )5 ln g wh a b=x  Maximum aggregate size 

( ) ( )( )6 ln lnl s ps wh A A b d= = +x  Tensile longitudinal steel ratio 

( ) ( )7 ln se puh f f=x  Percentage of effective prestress  

( ) ( )8 ln yt ch f f =x  Material strength 

( ) ( )9 ln lnv v wh A b s= =x  Stirrups ratio 
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Bayesian parameter estimation is adopted in this study to learn the values of the unknown 

model parameters ( ),=Θ θ . The well-known Bayesian updating rule is shown as Eq. (5-3), 

 ( ) ( ) ( )f L p=Θ Θ Θ   (5-3) 

where ( )f Θ  is the posterior probability distribution of unknown model parameters, ( )L Θ  is the 

likelihood function, ( ) ( )
1

L p d
−

 =
  Θ Θ Θ  is the normalizing factor, ( )p   is the prior 

probability distribution of unknown model parameters. It is not straightforward to compute the 

multifold integrals for obtaining the normalizing factor  , thus Markov Chain Monte Carlo 

(MCMC) sampling is utilized to obtain the posterior probability distribution of unknown model 

parameters ( )f Θ . To be specific, the No-U-Turn Sampler (NUTS) (Hoffman and Gelman 2014; 

Salvatier et al. 2016) is utilized in this study, which is a variant of Hamiltonian Monte Carlo and 

can achieve dramatically faster convergence for problems with large data size compared with 

traditional sampling methods. In addition, a non-informative prior distribution that follows a 

uniform distribution from positive infinity to negative infinity is adopted for the unknown model 

parameters, which is usually referred to as the flat distribution (Salvatier et al. 2016).  

In order to avoid loss of precision due to inclusion of unimportant explanatory functions 

and to avoid overfitting the data, Gardoni et al. (2002) proposed a stepwise procedure for removing 

insignificant explanatory terms from the bias-correction function ( ), x θ . When an unknown 

model parameter i  has the largest posterior COV after a Bayesian updating, its related 

explanatory function ( )ih x  is considered the least informative and then dropped from the bias 

correction function. Bayesian updating is performed again using this updated bias-correction 

function with fewer terms. It is suggested that this process should be repeated until such a removal 
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increases the posterior mean of   by an unacceptable amount, e.g., larger than 1% in this study,  

or until the largest posterior COV from i   is smaller than the posterior mean of  .  

 
Figure 5-4: Flowchart for the development and application of the probabilistic models  

The flowchart for the development and the potential applications of the probabilistic shear 

capacity models is shown in Figure 5-4. The posterior means of unknown model parameters 

( ),=Θ θ  are considered as the best-fitting parameters and can be substituted into Eq. (5-1), 

which leads to deterministic and probabilistic shear capacity prediction models by neglecting or 

considering the remaining model error, respectively. The resulted model has an elegant 

formulation by adding a polynomial correction term to the existing deterministic model, which 

facilitate the use of newly developed models.  

5.4.2 Model Correction Results 

Following the procedure introduced in the previous section, Bayesian updating with stepwise 

removing process is performed using the experimental data compiled. The posterior means of 

unknown model parameters survived are listed in Table 5-3. By substituting the posterior means 
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of survived unknow model parameters into Eq. (5-1), elegant probabilistic shear capacity models 

can be constructed and are summarized in Table 5-4. 

Table 5-3: Posterior means of θi and  after Bayesian updating with stepwise removing process 

Model 1  2  3  4  5  6  7  8  9    

ACI (Simplified) 1.263 − −0.281 0.249 − 0.259 0.210 −0.324 −0.085 0.260 

ACI (Detailed) 0.530 −0.171 −0.149 − − − − −0.087 − 0.246 

AASHTO 0.873 −0.356 − 0.059 − − −0.080 −0.205 −0.056 0.192 

CSA (Simplified) − −0.306 −0.299 0.570 −0.183 − − −0.533 −0.101 0.366 

CSA (Detailed) 0.900 −0.371 − 0.063 − − −0.078 −0.178 −0.043 0.197 

fib − −0.137 −0.324 0.147 −0.151 − − −0.230 −0.076 0.208 

Table 5-4: The resulted probabilistic models with correction terms to the existing design code 

model and remaining error 

Base model Resulted probabilistic model 

ACI 

(Simplified) 
( ) ( ) 0.281 0.249 0.259 0.ln , ln 1.263 ln ln l 21n ln ln l0 0.324 0.085 0.2 0n 6

ytse
d l v

w pu c

ffa h
v v

L b f f
  = + + + + +   


− − − x Θ x  

ACI 

(Detailed) 
( ) ( )ln , ln ln0.530 0.171 0 ln.149 0.087 0.n 246l

yt

d

c

fa a
v v

d L f
= + +       

− − −x Θ x  

AASHTO ( ) ( ) 0.873 0.356ln , ln ln 0.059 0.080 0.20ln 5 0.056 0.192ln ln ln
ytse

d v

w pu c

ffa h
v v

d b f f
 = + + +      − 

− − −x Θ x  

CSA 

(Simplified) 
( ) ( )ln , ln ln ln ln0.306 0.299 0.570 0.183 0.533 0ln ln ln.101 0.366

g yt

d v

w w c

a fa a h
v v

d L b b f
 = + +       

− − − − −x Θ x  

CSA 

(Detailed) 
( ) ( ) 0.900 0.371ln , ln ln 0.063 0.078 0.17ln 8 0.043 0.197ln ln ln

ytse
d v

w pu c

ffa h
v v

d b f f
 = + + +      − 

− − −x Θ x  

fib ( ) ( )ln , ln ln ln ln0.137 0.324 0.147 0.151 0.230 0ln ln ln.076 0.208
g yt

d v

w w c

a fa a h
v v

d L b b f
 = + +       

− − − − −x Θ x  

Table 5-5: Evaluation of the developed models in terms of Vtested / Vpredicted 

Model 
Developed model Original model (Table 2) 

Mean COV Mean COV 
ACI (Simplified) 1.0343 0.2700 2.0678 0.3894 

ACI (Detailed) 1.0304 0.2590 1.5346 0.2883 

AASHTO 1.0183 0.1929 1.7544 0.2298 

CSA (Simplified) 1.0662 0.3760 2.8308 0.5340 

CSA (Detailed) 1.0189 0.1968 1.7672 0.2415 

fib 1.0227 0.2175 1.9949 0.2899 

The deterministic predictions from the newly developed models are compared with the 

predictions from the original design code models as shown in Table 5-5. It is shown that the 
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developed models can not only correct the inherent bias successfully, but also decrease the 

prediction scatter significantly, indicating the improved accuracy and precision. 

  
(a) (b) 

  
(c) (d) 

 
 

(e) (f) 

Figure 5-5: Performance of the developed probabilistic models based on: (a) ACI 318-19 

(Simplified method), (b) ACI 318-19 (Detailed method), (c) AASHTO LRFD 2017, (d) CSA 

A23.3:19 (Simplified method), (e) CSA A23.3:19/S6:19 (General method), and (f) fib MC 

2010 
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The probabilistic predictions are also obtained for the PC girders in the compiled 

experimental database in order to further verify the performance of the developed probabilistic 

models. The mean values (i.e., 
p ) and confidence interval (i.e., 

p ±  , 
p ± 2 ) predicted by 

the developed probabilistic models are shown in Figure 5-5. Note that, for the purpose of 

visualization, the girders from the experimental database are indexed with an increasing ID 

according to the mean prediction 
p  by each of the developed probabilistic models. It is observed 

that the predictions from original design code models show significantly conservative bias. By 

contrast, the mean prediction curves of all developed probabilistic models successfully represent 

the central tendencies of the tested shear capacity. Furthermore, the majority of the tested shear 

capacity fall within one or two SDs for all the models, indicating the remarkable performance of 

the developed probabilistic models. 

  
(a) (b) 

Figure 5-6: Test-to-prediction ratios (Vtested / Vpredicted) as a function of: (a) shear span to 

effective depth ratio a/d, and (b) shear reinforcement index ρvfyt 

The systematic correlations between test-to-prediction ratios 
tested predictedV V  and model 

parameters are also studied for the developed models. Taking the developed mode based on the 

general method of CSA A23.3:19 for example, the test-to-prediction ratios as a function of the 
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shear span to effective depth ratio a d  and shear reinforcement index 
v ytf  are plotted as shown 

in Figure 5-6. It can be seen that no distinct systemic correlations can be observed, indicating that 

the systematic error hidden in the original design code models as shown in Figure 5-3 have been 

learned by the correction terms successfully. 

5.5 Application to Fragility Analysis 

The probabilistic shear capacity prediction models developed in this study can facilitate next-

generation reliability-based code calibration and probabilistic performance assessment of PC 

girders. As a case study, the probabilistic model developed based on correcting the shear capacity 

prediction model in CSA A23.3:19 is applied to the fragility analysis of a PC girder recently tested 

under shear-critical loading at University of Alberta (Huang 2020; Liu et al. 2021).  

This PC girder was tested with a span of 3800 mm under a single point load applied at 1000 

mm from one support as shown in Figure 5-7(a). The cross section is 1220 mm in width and 510 

mm in depth, having three voids with a diameter of 305 mm as shown in Figure 5-7(b). 

Longitudinal reinforcements consist of 20 prestressed seven-wire low relaxation strands with a 

diameter of 12.7 mm, seven 10M and four 25M mild steel bars. The stirrups are made of 10M 

reinforcement with a spacing of s  = 200 mm. The effective prestress force was 64.2 kN per strand. 

In order to assess the probabilistic shear capacity of the PC girder considering pertinent 

uncertainties in material and geometric properties, fragility analysis is conducted here. The 

statistical parameters for the material and geometric properties of the PC girder considered are 

summarized in Table 5-6.  
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(a) (b) 

Figure 5-7: Tested PC girder: (a) test setup, and (b) cross-section (units: mm) 

For a structural component, fragility analysis is defined as calculating the conditional 

probability of attaining or exceeding a prescribed limit state for a given condition (Gardoni et al. 

2002). Specifically, in this study the fragility is considered as the shear failure probability of the 

PC girder conditioned on a given shear demand; namely, the probability that the shear capacity 

( )C r is less than or equal to a certain shear demand ( )D s ,  as stated in Eq. (5-4),  

 ( ) ( ) ( ) 0F P C D = −  s r s s   (5-4) 

where r  is a vector of material and geometrical variables, and s  is an external load variable. As 

such, the fragility of the structural component can be used to interpret the probabilistic capacity of 

a PC girder.  

Fragility analysis is conducted based on direct Monte Carlo simulation with a large number 

of samples (i.e., 10 million) for each shear demand level ( )D s . For the purpose of comparison, 

the fragility analysis is also conducted using the original shear capacity model in CSA A23.3:19 

without considering model error/uncertainty.  
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Table 5-6: Statistical parameters for the material and geometric properties of the PC girder 

considered 

Parameters Nominal Mean COV Distribution Reference 

cf   (MPa) 35 48.3 0.12 Normal Nowak and Szerszen 2003 

ytf (MPa) 400 458 0.065 Normal Nowak and Szerszen 2003 

puf  (MPa) 1860 1943 0.025 Normal Nowak and Szerszen 2003 

pE  (GPa) - 195.8 0.02 Normal Mirza et al. 1980 

_ M10sE (GPa) - 200 0.033 Normal Mirza et al. 1980 

_ M25sE (GPa) - 200 0.033 Normal Mirza et al. 1980 

wb  - 308 0.04 Normal Nowak and Szerszen 2003 

d  - 433 0.025 Normal Nowak and Szerszen 2003 

 

 
Figure 5-8: Fragility curves for shear failure of the PC girder considered 

   
As shown in Figure 5-8, when model error/uncertainty is not considered, the shear failure 

probability of the PC girder considered for given loads (e.g., between 600 kN and 1200 kN) is 

significantly over-estimated due to the under-estimation of shear capacity. This is mainly because 

of the conservative bias inherent in the design code model. The comparison of the two fragility 

curves reveals the degree of conservatism related to the shear capacity prediction in the design 

code considered. To perform reliability-based code calibration and/or probabilistic performance 

assessment of PC girders, lack of inappropriate consideration of model error/uncertainty can lead 
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to unreliable safety assessment. As such, model error needs to be taken into account for reliability 

assessment in the design and management of PC girders, and the probabilistic models developed 

in this study can be used for this purpose. 

5.6 Summary 

This chapter compiled an experimental database containing 369 PC girders that failed in shear and 

assessed the shear capacity models from five widely utilized concrete structure and bridge design 

codes, i.e., ACI 318-19, AASHTO LRFD 2017, CSA A23.3:19, CSA S6:19 and fib MC 2010. It 

is shown that although the detailed/general methods perform better than simplified methods, all 

design code models exhibit large conservative bias and prediction scatter. It is shown that the 

detailed method from ACI 318-19 exhibit the least conservatism, while the general procedure from 

AASHTO LRFD 2017 has the lowest prediction scatter. In addition, the best fitted distributions 

for professional factors of each design code models are provided in this study to facilitate its 

utilization in reliability analysis. It was also found that the normal distribution assumption for 

professional factors performs poorly despite its wide use. 

In view of the fact that systematic error exists in those models, polynomial correction terms 

were calibrated for each design code model, together with the remaining model error quantification 

based on the compiled experimental database. The resulted probabilistic shear capacity prediction 

models have elegant formulations, which can facilitate their utilization in engineering practice. 

Both deterministic and probabilistic predictions can be obtained by neglecting and considering the 

remaining model error, respectively. Comparisons with original design code models showed that 

the developed models can not only correct the inherent bias successfully, but also decrease the 

prediction scatter significantly, indicating the improved accuracy and precision.  
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 In the end, a case study of fragility analysis is conducted to show the benefit of the 

developed probabilistic models. It was shown that not considering the model error can lead to 

unreliable safety assessment in the design and management of PC girders and thus model error 

needs to be taken into account for reliability assessment, for which the probabilistic models 

developed can be used. 
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CHAPTER 6:  DATA-BASED SHEAR CAPACITY MODELS FOR INTACT PC 

GIRDERS BY GAUSSIAN PROCESS REGRESSION 

 

To facilitate rigorous reliability/probabilistic studies considering model uncertainty, this chapter 

proposed a method to quantify the error or uncertainty of existing design code models and develop 

probabilistic models based on Gaussian process regression (GPR). This method leverages prior 

knowledge inherent in existing models and high-fidelity data such as experimental observations, 

by modeling the discrepancy between model predictions and high-fidelity data using a Gaussian 

process. In this method, the discrepancy is modeled by a stochastic function of model parameters, 

where the model form is not restricted to a specific function class as in polynomial regression 

analysis. The proposed method was then applied to the shear capacity prediction of prestressed 

concrete (PC) girders. The model error of shear capacity models from five well-received concrete 

structure and bridge design codes, i.e., ACI 318-19, AASHTO LRFD 2017, CSA A23.3:19, CSA 

S6:19 and fib MC 2010, were quantified using an experimental database. Accordingly, 

probabilistic shear capacity prediction models were developed, whose mean predictions 

outperformed the corresponding deterministic design code models in both accuracy and precision. 

The prediction performance was further illustrated using five PC girder tests initially excluded 

from the experimental database used for GPR model development. The significance of the model 

error quantified was also demonstrated using a case study of fragility assessment of PC girders, 

where the model uncertainty played a significant role among all uncertainty sources. 

6.1 Introduction 

Various models have been developed in structural and mechanical engineering to predict responses 

of interest or capacities against a certain failure mode. Those models play important roles in 
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engineering practice by providing guidance for design, maintenance, and retrofit. However, it is 

usually found that the developed models, particularly design code models, suffer from various 

degrees of inaccuracy when compared with high-fidelity model predictions or experimental results. 

Large prediction discrepancy (i.e., bias and scatter) can be expected for problems where the 

underlying physical mechanisms are complex or not well understood (Kennedy and O'Hagan 2001; 

Maupin and Swiler 2020), also known as model error or model uncertainty. 

A typical example in structural engineering is the shear capacity prediction of concrete 

members, which remains as a challenging task due to the complex load transfer and failure 

mechanism compared with flexural capacity prediction. To address this issue, recent decades have 

witnessed significant efforts devoted to understanding the shear behavior of concrete, including 

the development of the modified compression field theory (MCFT) (Sadeghian and Vecchio 2018) 

and the softened truss model (STM) (Hsu and Mo 2010). However, there is still not yet a 

universally accepted mechanism or theory for shear capacity prediction. Especially for design code 

models, it was shown that shear capacity prediction suffers from non-negligible prediction 

discrepancy compared with high-fidelity data such as experimental observations (Tošic´ et al. 

2016), which plays a significant role in the reliability analysis and code calibration of partial factors 

for semi-probabilistic design (Holický et al. 2016). In such instances, it is important to integrate 

existing models and high-fidelity data to develop probabilistic prediction models. It can leverage 

prior knowledge encoded in existing models and facilitate the utilization of well-received existing 

models (e.g., design code models) with model error considered, which  can eventually benefit 

reliability-based studies by considering all prevailing uncertainty sources. Conventionally, this 

task of developing probabilistic models can be accomplished by quantifying the model error of 
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existing models based on experimental data, while different approaches have been proposed by 

researchers. 

One traditional approach in structural engineering is to use an independent multiplicative 

random variable defined as the test-to-prediction ratio (MacGregor et al. 1997; Del Vecchio et al. 

2017; Sykora et al. 2018) to quantify the model error, which is also known as the professional 

factor. By adding this professional factor to the original model, probabilistic prediction models can 

be obtained to facilitate the consideration of model error. This approach assumes that the error is 

independent of model parameters and thus treated as random noise in model predictions. However, 

this assumption can be invalid and lead to unrealistic descriptions of model uncertainty. For 

example, it was shown that (Holický et al. 2016) the model error for design code-based shear 

capacity prediction of concrete sections can exhibit a functional relationship with several model 

parameters, such as the shear span to depth ratio and the amount of shear reinforcement.  

With more high-fidelity data available from physical experiments, existing design code 

models can be further refined by exploring the inherent structure in the model error. As such, 

another modern approach to consider model error is to develop a corrector function of model 

parameters using polynomial regression (Kennedy and O'Hagan 2001; Maupin and Swiler 2020). 

To this end, Bayesian linear regression (Box and Tiao 1992) was adopted by researchers to 

calibrate the model error as a polynomial function of model parameters (Gardoni et al. 2002). The 

quantified model error was usually referred to as the correction term and added to the original 

model to construct a new probabilistic prediction model. It was shown that (Song et al. 2010) the 

resulted probabilistic model can not only correct the inherent bias, but also decrease the prediction 

scatter and giving insights into the sources of model error. 
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In the Bayesian linear regression-based approach, a series of basis functions is selected as 

explanatory variables or regressors. Although the simple linear function can facilitate the 

comprehension and application for engineers, it can not be guaranteed that the target function is 

well modelled by this pre-selected class. This issue can be remedied by increasing the number of 

model parameters considered, but the possibility of running into overfitting also increases. To 

avoid the restriction of the function class, alternative stochastic regression approaches such as 

Gaussian process regression (GPR) (Williams and Rasmussen 2006) can be adopted, where a 

stochastic process governs the properties of functions without assuming specific function classes.  

Previous studies on GPR in structural engineering, as well as other machine learning 

approaches, mainly focused on developing prediction models based on data directly (Chou et al. 

2020; Naderpour and Mirrashid 2020; Prayogo et al. 2020; Zhang et al. 2020; Jiang and Liang 

2021; Yetilmezsoy et al. 2021). In contrast, this study developed a new method by combing 

existing models and experimental data based on GPR to develop probabilistic models with model 

error quantified. Namely, by adding the GPR-based quantified model error to the original model, 

the probabilistic prediction model was developed to benefit reliability analysis in engineering 

practice. The newly proposed method for probabilistic model development was then applied to the 

shear capacity prediction of prestressed concrete (PC) beams, which conventionally suffers from 

non-negligible prediction discrepancy and remains a challenging task. In the end, case studies of 

applications using the developed probabilistic model were performed to show the benefits of the 

developed models. 

6.2 GPR-based Probabilistic Model  

In many areas of scientific research, prediction models are widely utilized to describe processes 

and obtain quantities of interest as an efficient alternative to physical experiments. Those models 
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can be essentially considered as explicit or implicit mathematical expressions relating one or more 

quantities of interest (e.g., structural responses) to a set of model parameters  1 2, ,
T

Dx x x= x  

(e.g., structural dimensions and material properties), where D  is the total number of model 

parameters considered. 

When comparing the model predictions with experimental observations, model errors (i.e., 

bias and scatter) can be expected due to the adopted simplifications and assumptions in the models, 

especially for the problems with complex underlying physical mechanisms. Conventionally, the 

model error can be considered as a random variable   as shown in Eq. (6-1), 

 ( ) ( )R M = x x   (6-1) 

where ( )R x  is the real structural response estimated from experimental observations, ( )M x  is 

the predicted structural response from the existing model considered. Based on an experimental 

database, the statistic information for this random variable   can be quantified, e.g., distribution 

type and parameters. By adding this quantified model error term to the original models as a 

multiplicative factor, probabilistic prediction models are obtained with quantified model error to 

benefit reliability-based studies.   

This approach develops probabilistic prediction models by integrating existing 

deterministic models and the quantified model error. It can leverage prior knowledge encoded in 

existing models and facilitate the utilization of well-received existing models (e.g., design code 

models) with model error considered. However, this model error quantification approach highly 

relies on the assumption that there is no systematic correlation between the model error   and 

model parameters x . However, this assumption is often violated in engineering practice, 

especially when the models were developed empirically with limited observations or experimental 



 

107 

 

 

data. Due to the imperfection of developed prediction models, the prediction residual   can be 

correlated with model parameters x  with different degrees. For example, it was shown that 

(Holický et al. 2016) the model error for design code-based shear capacity prediction can exhibit 

a functional relationship with several model parameters including shear span to depth ratio and the 

amount of shear reinforcement. 

To consider the systematic correlation, in this study, the probabilistic model is also 

developed by combining existing models and the quantified model error but the model error ( ) x  

is considered as a function of model parameters based on GPR as shown in Eq. (6-2), where a 

stochastic process governs the properties of the function without assuming specific function 

classes. 

 ( ) ( ) ( ) ( ) ( )( ), ,R M GP m k = −x x x x x x   (6-2) 

Here, ( )m x  and ( ),k x x  are the mean and covariance function of a Gaussian process, 

based on which a Gaussian process is completely specified. The mean function is generally taken 

to be zero simplicity assuming that no prior information on the mean trend is available (Williams 

and Rasmussen 2006) as shown in Eq. (6-3) and squared exponential covariance function is 

adopted in this study as shown in Eq. (6-4). 

 ( ) 0m =x   (6-3) 

 ( ) ( ) ( )2 2

noise

1
, exp

2

T

i j f i j i j ijk   
 

= − − − + 
 

x x x x M x x   (6-4) 

Here, ix  and 
jx  are input vector pairs,  , 1,2, ,i j N   where N is the total number of 

input vectors, 
2

f , M  and 2

noise  are the hyperparameters of the covariance function, 
2

f  is the 
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signal variance, ( )
2

diag
−

=M l  is a symmetric matrix, ( )1, , Dl l= l  is a vector of characteristic 

length-scales, 2

noise  is the noise variance and 
ij  is a Kronecker delta, which is one if i j=  and 

zero otherwise. Note that considering 2

noise  in covariance functions enables the GPR to develop a 

model from training samples with random variations (e.g., the natural randomness in the compiled 

experimental database in this study), leading to a GPR-based model with more generalization 

capacities but without overfitting concerns. 

For each existing model considered, the hyperparameter values can be learned based on a 

compiled experimental database (i.e., training samples). With the learned hyperparameters, a 

Gaussian process model is developed for quantifying the model error ( ) x  as shown in Eqs. (6-

2) ~ (6-4). This learning process is achieved by the maximum a posterior (MAP) estimation 

(Salvatier et al. 2016) in this study. Based on the quantified model error ( ) x , the probabilistic 

prediction model ( )pM x  can be resulted by adding ( ) x  to the original model prediction ( )M x

as a correction term, see Eq. (6-5). 

 ( ) ( ) ( )pM M = +x x x   (6-5) 

For structural response prediction of new PC girders beyond the experimental database 

(i.e., testing samples), the prediction of correction term δ  can be obtained as the conditional 

distribution in Eq. (6-6). 

 ( )( ), , ,covN   δ X δ X δ δ   (6-6) 

where, 

 ( ) ( )
1

2

noise, , 
−

 
 = + δ Κ X X K X X I δ   (6-7) 
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 ( ) ( ) ( ) ( ) ( )
1

2

noisecov , , , ,
−

    
 = − + δ K X X K X X K X X I K X X   (6-8) 

Here, X  and X  are the input parameter matrices from training and testing samples, 

respectively, δ  and δ  are the vectors of correction term outputs for training and testing samples, 

respectively, I  is the identity matrix, ( ),K X X  is the covariance matrix evaluated at all pairs of 

testing and training points, and similarly for the other entries ( ),K X X , ( ), K X X  and 

( ), K X X .   

With the obtained correction term prediction δ  for testing samples, the structural response 

prediction from the developed probabilistic model can be obtained as shown in Eq. (6-9), 

 
p  = +*M M δ   (6-9) 

where 
p*M  is the vector of structural response predictions for testing samples from the developed 

probabilistic model, M  is the vector of structural response predictions for testing samples from 

the original model considered. 

6.3 Probabilistic Model Development for Shear Capacity Prediction of PC Girders 

Recent decades have witnessed significant efforts devoted to understanding shear behavior and/or 

predicting shear capacity of concrete beams. However, there is not yet a universally accepted 

mechanism or theory for shear capacity prediction. Compared with flexural capacity prediction, 

shear capacity prediction still remains a challenging task and suffers from non-negligible 

prediction model error nowadays. 

Data-based shear capacity models using machine learning approaches can be an attractive 

alternative and have been successfully applied to reinforced concrete (RC) beams/walls in recent 

years (Chou et al. 2020; Naderpour and Mirrashid 2020; Prayogo et al. 2020; Zhang et al. 2020; 
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Jiang and Liang 2021), while there is still a gap in the relevant research area for PC girders. In 

addition, instead of developing new models purely based on data from the ground up, prior 

knowledge inherent in existing models can be utilized by combining with the quantified model 

error. To this end, the proposed GPR-based approach of developing probabilistic prediction 

models is applied to the shear capacity prediction of PC girders. Specifically, five existing shear 

capacity prediction models for PC girders were considered in this study. The model error of 

considered models were qualitatively diagnosis first and then quantified based on a compiled 

experimental database of PC girders that failed in shear. GPR-based probabilistic shear capacity 

prediction models were then developed by combining the original existing model and the 

quantified model error. 

6.3.1 Shear Capacity Models and Experimental Database 

Among various types of the developed shear capacity prediction models by researchers, design 

code models might possibly be the most widely utilized worldwide due to their comprehensible 

simplicity, high computational efficiency and well-recognised authority. Shear capacity models 

from five concrete structure and bridge design codes are considered in this study, i.e., ACI 318-19 

(ACI 2019), AASHTO LRFD 2017 (AASHTO 2017), CSA A23.3:19 (CSA 2019a), CSA S6:19 

(CSA 2019b) and fib MC 2010 (fib 2013). Note that each design code includes more than one 

shear capacity models with different levels of simplification, while only the most advanced models 

from each design code are considered in this study. 

The compiled experimental database in Chapter 3 is utilized in this chapter to quantify the 

model error of considered shear capacity models and develop probabilistic prediction models 

based on Gaussian process regression. It is interesting to mention that some existing experimental 

databases are publicly available for RC beams that failed in shear such as the ACI-DAfStb database 
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(Reineck et al. 2013; Reineck et al. 2014). However, the shear behavior between RC and PC beams 

can differ from each other with the adoption of higher strength concrete and prestressed strands in 

PC girders. Thus, a new compiled experimental database in Chapter 3 for PC girders that failed in 

shear is utilized in this study. 

6.3.2 Model Error Diagnosis 

Based on the compiled experimental database, the performance of the considered shear capacity 

models is studied qualitatively in this section before the model error quantification. Note that the 

concrete and steel material properties are used as the tested values without material reduction 

factors or other safety factors for fair comparisons. The comparisons between tested and predicted 

shear capacity for each design code models are plotted in Figure 6-1. For the purpose of better 

visualization, a normalization factor of 0.25 c wf b d  is adopted to normalise the tested and predicted 

shear capacity in this study, where cf   is the concrete compressive strength, wb  is the web width, 

d is the effective depth. It can be seen that all design code models exhibit significant conservative 

bias. Large prediction scatter is also observed, which can play an important role in reliability 

analysis among all sources of uncertainties. 

To determine whether the model error can be considered as an independent random 

variable, the correlations between the model error and different model parameters are also studied. 

Correlation coefficients are first obtained and summarized in Table 6-1 to study the potential linear 

relationship between the model error observation 
tested predictedV V  and model parameters, where 

a d  is the shear span to effective depth ratio,  wb h  is the ratio between web width and sectional 

height, cf   is the concrete compressive strength, 
ytf  is the stirrups’ yield strength, 

( )l s ps wA A b d = +  is the tensile longitudinal steel ratio, sA and 
psA  are the areas of non-
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prestressed and prestressed tensile longitudinal steel respectively, v v wA b s =  is the stirrups ratio, 

vA  is the stirrups area, s  is the stirrups spacing, 
se puf f  is the ratio between effective stress and 

tensile strength of prestressed steel. 

  
(a) (b) 

  
(c) (d) 

Figure 6-1: Comparison between tested and predicted normalized shear capacity based on: (a) 

ACI 318-19, (b) AASHTO LRFD 2017, (c) CSA A23.3:19/S6:19, and (d) fib MC 2010 

Table 6-1: Correlation coefficients between Vtested / Vpredicted and model parameters 

Parameter a d  wb h  cf   ytf  
l  v  se puf f  

ACI  -0.166 0.095 -0.142 0.218 -0.022 -0.045 -0.103 

AASHTO  -0.342 -0.104 -0.097 0.012 -0.154 -0.447 -0.121 

CSA -0.336 -0.104 -0.103 0.012 -0.150 -0.441 -0.127 

fib -0.343 -0.187 0.212 0.136 -0.077 -0.539 0.064 
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(a) (b) 

  
(c) (d) 

Figure 6-2: Test-to-prediction ratios Vtested / Vpredicted as a function of shear span to effective 

depth ratio a/d from the original model of: (a) ACI 318-19, (b) AASHTO LRFD 2017, (c) 

CSA A23.3:19/S6:19, and (d) fib MC 2010 

It can be seen that the most two important influencing parameters are a d  and v , while 

other parameters exhibit relatively week linear correlations with the model error. Since the 

correlation coefficient only represents the linear correlation degree, scatter plots between the 

model error observation 
tested predictedV V  and model parameters are also obtained as shown in Figure 

6-2 and Figure 6-3 to study potential nonlinear correlations. It can be seen that the model error 

exhibits a functional relationship with both a d  and 
v ytf . Thus, it is not reasonable to assume 

the model error as an independent random variable, and such systematic error (trend) hidden 

should be learned as a regression function of model parameters as discussed in this study. 
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(a) (b) 

  

(c) (d) 

Figure 6-3: Test-to-prediction ratios Vtested / Vpredicted as a function of stirrups ratio ρv from the 

original model of: (a) ACI 318-19, (b) AASHTO LRFD 2017, (c) CSA A23.3:19/S6:19, and 

(d) fib MC 2010 

It is interesting to mention that although the correlation coefficient between 
tested predictedV V  

and v  is relatively small for ACI 318-19, there is an evident functional relationship between them 

as shown in Figure 6-3 (a). This is because the correlation coefficient can only indicate linear 

correlation degree which fails to detect the potential nonlinear correlation. 

6.3.3 Model Error Quantification 

To quantify the model error of the considered shear capacity models, GPR is adopted as discussed, 

see Eq. (6-10),   
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 ( ) ( ) ( ) ( ) ( )( ), ,tv v GP m k = −x x x x x x   (6-10) 

where ( )tv x  is the normalized shear capacity estimated from the experimental test, ( )v x  is the 

normalized shear capacity prediction from the shear capacity models considered. In this study, a 

comprehensive set of dimensionless model parameters are considered as shown in Eq. (6-11), 

  , , 35, 415, , ,
T

w c yt l v se pua d b h f f f f =x   (6-11) 

where the normalization factor for cf   of 35 MPa is the minimum concrete strength value specified 

by CSA S6:19 for prestressed members, the normalization factor for 
ytf  of 415 MPa is a typical 

yield strength of steel, e.g., the ASTM A572 Grade 60 steel. 

For each shear capacity model considered, based on the compiled experimental database 

(i.e., training samples), the optimal hyperparameters for each Gaussian process model are learned 

by the MAP estimation (Salvatier et al. 2016), and then the model error is quantified. The learned 

hyperparameters for each model are summarised in Table 6-2. 

Table 6-2: Learned hyperparameters values 

Models f   
noise   1l   2l  3l  4l  5l  6l  7l  

ACI 318-19 0.1966 0.0582 0.8793 0.2509 1.8073 6923.3 0.0465 0.0098 0.2460 

AASHTO LRFD 2017 0.2277 0.0697 3.5577 0.2647 3.5540 0.2530 0.0223 0.1038 0.7813 

CSA A23.3:19/S6:19 0.2422 0.0586 1.5354 0.8599 3.1666 6556.3 0.0277 0.0105 0.2433 

fib MC 2010 0.2130 0.0555 0.7455 0.3678 2.4820 8.6932 0.0271 0.0093 0.1904 

6.3.4 Probabilistic Prediction Models 

Based on the quantified model error ( ) x , the probabilistic shear capacity prediction model can 

be obtained by adding ( ) x  as a probabilistic correction term to the corresponding deterministic 

design code model, see Eq. (6-12), 

 ( ) ( ) ( )pv v = +x x x   (6-12) 
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where ( )pv x  is the normalized shear capacity prediction from the developed probabilistic model.  

It is interesting to note that both mean (deterministic) and distribution (probabilistic) 

predictions can be obtained by the developed model, which can benefit the shear capacity 

evaluation in engineering practice both deterministically and probabilistically. Based on the 

compiled experimental database, the mean predictions from the developed models are compared 

with the predictions from the original deterministic design code models in terms of test-to-

prediction ratio 
tested predictedV V  as shown in Table 6-3. It is shown that the developed models can 

not only correct the inherent bias of the original design code models successfully, but also decrease 

the prediction scatter significantly, i.e., the coefficient of variation (COV), indicating the improved 

accuracy and precision. 

Table 6-3: Evaluation of the developed models in terms of  Vtested / Vpredicted 

Models 
Original model Developed model 

Mean COV Mean COV 

ACI 318-19 1.535 0.288 0.999 0.100 

AASHTO LRFD 2017 1.754 0.230 0.998 0.111 

CSA A23.3:19/S6:19 1.767 0.242 0.999 0.105 

fib MC 2010 1.995 0.289 0.999 0.090 

The distribution predictions from the developed models including both the mean prediction 

(i.e., 
p ) and confidence interval (i.e., 

p  ±  ) are also obtained and shown in Figure 6-4, 

together with the predictions from each original deterministic design code model and the tested 

shear capacity. It is shown that the predictions from the original deterministic design code models 

show significant conservative bias. By contrast, the mean prediction curves of all developed 

models successfully represent the central tendencies of the tested shear capacity. Also, the majority 

of the tested shear capacity fall within the mean   1 standard deviation (SD) intervals for all the 



 

117 

 

 

models, indicating the capability of the developed models serving as reliable shear capacity 

prediction tool for PC girders.  

  
(a) (b) 

  
(c) (d) 

Figure 6-4: Performance of the developed probabilistic models based on: (a) ACI 318-19, (b) 

AASHTO LRFD 2017, (c) CSA A23.3:19/S6:19, and (d) fib MC 2010 
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(a) (b) 

  
(c) (d) 

Figure 6-5: Test-to-prediction ratios Vtested / Vpredicted  as a function of shear span to effective 

depth ratio a/d from the original and developed models based on: (a) ACI 318-19, (b) 

AASHTO LRFD 2017, (c) CSA A23.3:19/S6:19, and (d) fib MC 2010 

The systematic correlations between the model error observations (i.e., test-to-prediction 

ratios 
tested predictedV V ) and model parameters are also studied for the developed models. The test-

to-prediction ratios as a function of the shear span to effective depth ratio a d  and stirrups ratio 

v  are plotted as shown in Figure 6-5 and Figure 6-6, respectively. It can be seen that no distinct 

systemic correlations can be observed from the developed models, indicating that the systematic 

error hidden in the original design code models have been learned successfully by the correction 
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terms. This also implies that the model errors of existing design code models for shear capacity 

prediction mainly arise from these two variables: the shear span to effective depth ratio a d  and 

stirrups ratio v , and more experimental tests in this regard should be conducted to further verify 

this. 

  
(a) (b) 

  
(c) (d) 

Figure 6-6: Test-to-prediction ratios Vtested / Vpredicted as a function of stirrups ratio ρv from the 

original and developed models based on: (a) ACI 318-19, (b) AASHTO LRFD 2017, (c) CSA 

A23.3:19/S6:19, and (d) fib MC 2010 
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6.4 Application of the Developed Probabilistic Models 

To verify the benefits of the developed probabilistic shear capacity models, take the developed 

model based on fib MC 2010 for example, two case studies are conducted in this section, i.e., (1) 

shear capacity prediction for girders tested but not used earlier in the probabilistic model 

development and (2) fragility analysis to expose the importance of the model uncertainty in 

reliability analysis.  

6.4.1 Shear Capacity Prediction 

Five representative tested PC girders that failed in shear from three different research projects 

(Naito et al. 2005; Ramirez and Aguilar 2005; Liu et al. 2021) beyond the compiled experimental 

database are utilized as testing samples in this study. Note that these 5 girders are randomly 

selected from the available test dataset in the literature. A brief summary of the five PC girder tests 

is listed in Table 6-4. It can be seen that the five PC girders exhibit a good coverage of sectional 

and material properties, and thus can be considered as representative examples for shear capacity 

prediction. Note that the three research projects (Naito et al. 2005; Ramirez and Aguilar 2005; Liu 

et al. 2021) conducted more than five PC girder tests in total, while only PC girders that failed in 

shear are considered in this study. 

Table 6-4: Summary of the five PC girder tests considered 

No. Reference 
Specimen 

I.D. 

Cross 

section 
a d  wb h  cf   

(MPa) 

ytf  

(MPa) 
l  v  se puf f  

1 
Naito et al. 

(2005) 
Test 2 I 2.37 0.16 61.6 454 1.47% 1.90% 0.56 

2 
Naito et al. 

(2005) 
Test 4 I 2.37 0.16 63.3 454 1.47% 1.90% 0.54 

3 
Ramirez and 

Aguilar (2005) 

13.3-5.1-

326P 
I 3.59 0.21 92.0 586 6.14% 0.37% 0.82 

4 
Ramirez and 

Aguilar (2005) 

16.2-5.1-

326P 
I 3.59 0.21 111.4 586 6.14% 0.37% 0.82 

5 
Liu et al. 

(2021) 
N/A Box 2.31 0.60 55.5 424 3.01% 0.66% 0.35 



 

121 

 

 

The mean predictions from the developed model based on fib MC 2010 are listed in Table 

6-5 and compared with the predictions from the original deterministic model. It can be seen that 

the original deterministic model significantly under-predicts the shear capacities for all tested PC 

girders, while the mean predictions from the developed model exhibit satisfactory accuracy. The 

distribution predictions from the developed model are also summarised in Table 6-5. It can be seen 

that the tested shear capacity all falls within the mean   1 SD interval predicted from the 

developed model.  

Table 6-5: Shear capacity prediction comparison (kN) 

No. testedV  
Original model Developed model 

predictedV  
tested predictedV V  

predictedV  
tested predictedV V  

p p    

1 2151.5 1427.0 1.508 2128.9 1.011 [1747.8, 2510.0] 

2 2174.2 1413.1 1.539 2091.6 1.039 [1689.4, 2493.7] 

3 800.2 449.8 1.779 824.3 0.971 [382.4, 1266.2] 

4 955.9 455.0 2.101 793.1 1.205 [241.6, 1344.7] 

5 1036.2 603.2 1.718 891.1 1.163 [604.9, 1177.3] 

6.4.2 Fragility Analysis 

The developed probabilistic models enable the consideration of model error/uncertainty, and thus 

can facilitate probabilistic performance assessment of PC girders. As a case study, the developed 

model based on fib MC 2010 is applied to the fragility analysis of the No. 1 PC girder considered 

in this study, i.e., the Test 2 from Naito et al. (2005). 

Fragility analysis is conducted based on direct Monte Carlo simulation with a large number 

of samples (i.e., 10 million) for each shear demand level. For the purpose of comparison, the 

fragility analysis is also conducted using the original shear capacity model from fib MC 2010 

without considering model error/uncertainty. The statistical parameters for the material and 

geometric properties of the PC girder considered are summarized in Table 6-6. 
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Table 6-6: Statistical parameters of the PC girder considered 

Parameters Tested Nominal Mean CV Distribution Reference 

cf   (MPa) 61.6 55.1 60.3 0.09 Normal Nowak and Szerszen (2003) 

ytf (MPa) 453.7 420 465.1 0.04 Normal Nowak and Szerszen (2003) 

puf  (MPa) 1953.2 1860 1943 0.025 Normal Nowak and Szerszen (2003) 

pE  (GPa) 199.9 - 195.8 0.02 Normal Mirza et al. (1980) 

wb  177.8 - 179.6 0.04 Normal Nowak and Szerszen (2003) 

d  986.3 - 986.3 0.025 Normal Nowak and Szerszen (2003) 

 

 
Figure 6-7: Fragility curves for shear failure of the PC girder considered 

As shown in Figure 6-7, the shear failure probability curve obtained by the original design 

code model shows significant overestimation for given loads (e.g., between 1500 kN and 3000 kN) 

and exhibit narrower width compared with that of the developed model. This is due to the 

neglection of conservative bias and prediction scatter (i.e., model error/uncertainty) in the original 

design code model respectively, which plays a significant role among all uncertainty sources in 

this numerical example. In such cases, the neglection of model error can result in unrealistic 

reliability assessment results and eventually lead to inappropriate decision made for bridge design 

and management. Thus, the model error needs to be taken into account for reliability assessment 

of PC girders, and the developed probabilistic models in this study can be used for this purpose.  
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6.5 Summary 

A methodology to develop probabilistic models was proposed by integrating existing models and 

experimental database based on GPR in this study. The proposed methodology represents the 

model error by a stochastic function of model parameters, where the model form is not restricted 

to a pre-selected function class as in polynomial regression analysis. The probabilistic model is 

then developed by adding the GPR-based quantified model error to the existing model to benefit 

reliability-based studies in engineering practice.  

The proposed methodology was applied to developing probabilistic models for shear 

capacity prediction of PC girders. Firstly, the model errors from five concrete structure and bridge 

design codes were quantified, including ACI 318-19, AASHTO LRFD 2017, CSA A23.3:19, CSA 

S6:19 and fib MC 2010. Probabilistic shear capacity prediction models were then developed by 

combing the corresponding deterministic design code model and the GPR-based correction term. 

Comparison studies showed that the mean predictions from the developed probabilistic model 

outperformed the corresponding deterministic design code model in both accuracy and precision. 

It was also shown that the systemic correlation between the model error and model parameters in 

the original deterministic design code model has been learned successfully by the GPR-based 

correction term. 

The prediction performance was further illustrated using five PC girder tests randomly 

selected but initially excluded from the experimental database used for GPR. It was shown that the 

original deterministic design code model significantly under-predicts the shear capacity for all PC 

girders considered, while the predictions from the developed probabilistic model exhibit 

satisfactory accuracy and precision. In the end, a case study of  fragility analysis is conducted to 

show the benefit of the developed models in reliability assessment. It was shown that not 
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considering the model error can lead to unreliable results in bridge design and management. Thus, 

model error needs to be taken into account for reliability assessment, for which the developed 

probabilistic models can be used. 
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CHAPTER 7: DATA-BASED LOAD-CARRYING CAPACITY MODELS FOR PC 

VOIDED GIRDERS UNDER VARIOUS CORROSION CONDITIONS 

 

This chapter aims at developing data-based prediction models to quantify corrosion effects on 

load-carrying capacity of PC girders that are precast and standardized for short-span bridges. To 

develop data-based prediction models, generating sufficient data through physical experimental 

tests of full-scale corroded PC girders is prohibitively costly. Thus, a virtual experimental database 

is generated numerically using two-dimensional continuum-based finite element (FE) models for 

corroded PC girders, after being validated using 9 corroded PC girders tested in the literature with 

flexure or shear failure. To this end, a total of 4,165 PC girders under point loading are simulated 

to consider various design, loading, and corrosion conditions to estimate their load-carrying 

capacities. With this database, Gaussian process regression is used to develop (1) a capacity 

reduction model, and (2) load-carrying capacity prediction model. The application results of the 

two models enable engineers to quantify the corrosion effect on PC girders in terms of (1) reduction 

in load-carrying capacity and (2) increase in probability of failure.    

7.1 Introduction 

Highway bridges represent an integral part of the transportation network and contributes 

significantly to the resilience of infrastructure system and socio-economic development. The 

superstructure of bridges takes various forms, among which, prestress concrete (PC) girders have 

been commonly used and constitute more than 50% of the bridge inventory in North America 

(Dunker and Rabbat 1993). In particular, precast PC voided girders (with hollow cores) have been 

used extensively for short-span bridges in North America due to its ease of fabrication and fast 

speed of construction. This is well aligned with the concept of accelerated bridge construction and 
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thus many of precast PC girders have been standardized with typical cross-section designs for 

various span ranges. These standardized girders have sectional dimensions and steel arrangement 

with similar standard drawings provided by Ministries of Transportation across North America 

(e.g., Alberta Transportation 2019, California Department of Transportation 2014).    

However, compared to cast-in-place concrete girders, precast PC girders have shown more 

durability issues. For example, multi-girder bridges, which are made of parallel members with 

adjacent girders connected through grouted shear keys, are susceptible to Deterioration due to 

water and corrosive chemicals infiltration between girders. This issue is especially severe in the 

cold climate of North America (e.g., the province of Alberta in Canada) where de-icing salt 

(Ramseyer and Kang 2012) is used seasonally. Chloride-induced corrosion in stirrups, longitudinal 

mild steel bars and prestressed steel strands has been identified as one of the most predominant 

causes for bridge aging (Bhargava et al. 2011; Wang et al. 2014; Zhang et al. 2017a). During the 

corrosion process, steel turns into rust which has a relatively lower density, primarily leading to 

(1) cross-sectional area reduction in steel reinforcement and weakened material properties, (2) 

cracking and spalling of the concrete cover due to volume expansion that generates splitting 

stresses in concrete and altered material properties, and (3) bond deterioration between steel 

reinforcement and the surrounding concrete. As a result of these factors, corrosion can eventually 

lead to load-carrying capacity degradation and possible failure mechanism change, as evidenced 

in many experimental and numerical studies (Darmawan and Stewart 2007; Guo et al. 2011; Zhang 

et al. 2017b; Ye et al. 2018). 

To support corroded bridge management, fast screening for safety assessment requires 

convenient and efficient capacity prediction models of corroded concrete girders in engineering 

practice. Unlike physics-based computational models (e.g., continuum finite element models), 
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data-driven models based on simple empirical equations or machine learning are more well-

received because they can be used to predict load-carrying capacity of corroded PC girders simply 

by feeding the models with information related to girder condition as inputs. For this purpose, 

several models of this kind have been developed for corroded reinforced concrete (RC) beams (Lu 

et al. 2018; Fu and Feng 2021; Soltani et al. 2021) and PC girders (Kioumarsi et al. 2021). These 

models were limited to either flexure or shear failure, as conventionally considered for design of 

new RC beams or PC girders for flexure- or shear-critical loading scenarios. Note that the model 

proposed for capacity reduction of corroded PC girders (Kioumarsi et al. 2021) only considered 

flexure failure, while no existing model available of this kind considers shear failure. More 

importantly, the failure mechanism for corroded members can be altered by corrosion as pointed 

out in the literature (Ye et al. 2018; Huang et al. 2022): as an example, a PC girder with corrosion 

can fail in a ductile mode when loaded under shear-critical loading condition with a relatively 

small shear-span-to-effective depth ratio.  That said, it is desirable to use a load-carrying capacity 

model for safety assessment of corroded PC girders after considering both flexure and/or shear 

failure and other mechanisms (e.g., bond failure).   

Models invariably suffer from prediction error, and this is true for empirical or machine 

learning models, which are usually developed to achieve an overall balance between the prediction 

bias (accuracy) and variance (precision). Compared with detailed mechanics-based finite element 

(FE) models, they are cheap-to-evaluate but generally less accurate. Thus, it is important to 

quantify the prediction error, which is essential when the model developed based on a limited 

database is used in a probabilistic context such as reliability-based evaluation. To this end, many 

studies quantified the prediction error probabilistically when a model was developed to facilitate 

its application in engineering practice. Choe et al (2008) developed a probabilistic shear capacity 
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prediction model for corroded RC columns based on a compiled experimental database, which was 

used to estimate seismic fragility of corroded structures. Ma et al. (2013) developed a probabilistic 

flexural capacity prediction model for corroded RC beams on the basis of a compiled experimental 

database. Recognizing the limited data available from systematically tested corroded RC beams 

experimentally, Aslani and Dehestani (2020) developed a probabilistic model to predict the 

flexural capacity reduction as a function of corrosion degree, using the database generated from 

FE simulations. Note that these efforts were mainly devoted to corroded RC members, while no 

relevant work aimed to develop probabilistic models with prediction error quantified for corroded 

PC girders.  

To address the aforementioned gaps and needs identified for corroded PC girders, this 

chapter developed prediction models for load-carrying capacity of corroded PC girders based on a 

virtual experimental database generated through computer models considering the fact that 

experimental data in this regard is limited in the literature (Belletti et al. 2020; Wang et al. 2020). 

To this end, two-dimensional (2D) continuum FE models for corroded PC girders were firstly 

developed and validated using 9 corroded PC girders tested in the literature under either flexure or 

shear critical loading scenarios. Next, using the validated FE models, a total of 4,165PC girders 

under point loading were simulated to consider various design, loading, and corrosion conditions 

to estimate their load-carrying capacities. Subsequently, based on the generated database, the 

probabilistic capacity reduction factor model and load-carrying capacity prediction model were 

developed. The former model was used to study the corrosion-induced reduction effects, and the 

later model was used to study the corrosion effects on the probability of failure of corroded PC 

girders at given load levels when capacity is affected by corrosion. 
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7.2 Computer Experiments for Corroded PC Girders 

In many existing studies (Sharma et al. 2014; Su et al. 2017; Aslani and Dehestani 2020), computer 

experiments are used to generate data, which can be used to develop data-based prediction models, 

namely surrogate models relating the model output  to input variables. In this section, the FE model 

strategy in VecTor2, a nonlinear analysis software for concrete structures based on the Modified 

Compression Field Theory and the Disturbed Stress Field Model (Wong et al. 2013) is first 

described for corrode PC girder modeling. Before performing computer experiments for virtual 

experimental database generation, the used modeling techniques are applied to nine experimentally 

tested PC girders, to confirm their capability in simulating corroded PC girder behavior with 

flexure or shear failure, particularly the ultimate load-carrying capacities. 

7.2.1 FE modeling of Corroded PC Girders 

In 2D FE modeling of PC girders in VecTor2, the concrete is modelled by four-node plane-stress 

rectangular elements. The longitudinal reinforcement is represented using two-node truss bar 

elements, and the stirrups are smeared in the concrete according to the Modified Compression 

Field Theory and the Disturbed Stress Field Model. The bond-slip relationship between steel and 

surrounding concrete is modeled by the two-node zero-length link element in VecTor2. For 

concrete, the pre-peak and post-peak behavior (i.e., before and after the strain 0  at the peak stress 

cf  ) in compression are represented by the Hognestad model and the Modified Park-Kent model 

(Wong et al. 2013) as shown in Figure 7-1 (a), respectively. The tensile behavior of concrete is 

characterized by a linear branch before the cracking strain of cr , and the modified Bentz-2003 

model (Wong et al. 2013) as shown in Figure 7-1 (a) is used to consider tension-stiffening in 

concrete after cracking. The cracking stress crf  is estimated as 0.33 cf   according to the concrete 
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compressive strength cf   in MPa (Wong et al. 2013). For longitudinal reinforcement and stirrups, 

the Ductile Steel Reinforcement model (Wong et al. 2013) as shown in Figure 7-1 (b) is adopted 

to simulate the uniaxial stress-strain relationship with two linear branches characterized by the 

elastic modulus and the strain hardening modulus respectively before and after the yield strain of 

y . Relevant geometrical and material properties are determined according to the deterioration 

modeling proposed in the literature (Cairns et al. 2005; Castel et al. 2011; Zandi Hanjari et al. 2011; 

Kivell et al. 2015; Wang et al. 2017a; Wang et al. 2017b; Zhang et al. 2017a; Zhang et al. 2017b). 

  

(a) (b) 

Figure 7-1: Schematic diagrams of the considered uniaxial material model for: (1) concrete, 

and (2) steel 

The corrosion-induced deterioration in mechanical properties of corroded RC/PC 

structures has been extensively studied over the past decades (Cairns et al. 2005; Castel et al. 2011; 

Zandi Hanjari et al. 2011; Kivell et al. 2015; Wang et al. 2017a; Wang et al. 2017b; Zhang et al. 

2017a; Zhang et al. 2017b). Among various corrosion-induced Deterioration, the steel cross-

sectional area loss, prestress loss, steel ductility reduction, and bond loss are the principal factors 

leading to the structural degradation of corroded PC girders (Huang et al. 2022), and thus are 

considered in the FE modelling of corroded PC girders in this chapter. According to the literature, 
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the corrosion-induced modifications in these mechanical properties have been related to corrosion 

degree, which is defined as the average cross-sectional area loss   as shown in Eq. (7-1) . 

 
, , , ,

, ,

, ,

100%

c

p s v p s v

p s v
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A A

A


−
=    (7-1) 

where A  is the initial cross-sectional area of steel under uncorroded condition, cA  is the 

remaining cross-sectional area of corroded steel, and the subscripts of p, s and v denote prestressed 

strands, non-prestressed longitudinal reinforcement and stirrups, respectively.  

Corrosion in prestressed strands can lead to prestress force loss as a direct result of the 

strand area loss (Castel et al. 2011; Zhang et al. 2017a) and degradation of steel material properties, 

such as the yield strength, elastic modulus, and ductility (Zhang et al. 2017b). Based on previous 

experimental and numerical research (Castel et al. 2011; Zhang et al. 2017a),  the remaining 

prestress force in corroded strands, c

pF , was found to be proportional to the remaining cross-

sectional area c

pA per Eq. (7-2), 

 
c eff c

p p pF A=   (7-2) 

where eff

p is the effective prestress in uncorroded strands. Based on experimental studies (Zhang 

et al. 2017b; Wang et al. 2017a), corrosion has little effect on the yield strength and the elastic 

modulus, but can significantly decrease the ductility of strand. It was found that the ultimate strain 

for corroded strands ( c

pu ) decreases linearly with the corrosion degree (
p ) when 

p is lower than 

a critical value ( c = 11%), following ( )c

pu pu pu py p c     = − − . Thus, the ultimate strength of 

corroded strands is reduced accordingly with ( )c

pu pu pu py p cf f f f  = − − . To account for the 



 

132 

 

 

ductility loss, the uniaxial stress-strain law proposed for corroded strand steel (Zhang et al. 2017b; 

Wang et al. 2017a), as shown in Eq. (7-3), is used in this study to relate its stress   and strain , 
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  (7-3) 

where 
pE , 

py , 
pu , 

pyf  and 
puf  are the elastic modulus, yield strain, ultimate strain, yield 

strength, and ultimate strength of uncorroded strands. Note that when 
p exceeds c , the strands 

become brittle with the ultimate strain equal to the yield strain. 

Corrosion also reduces the ductility of non-prestressed longitudinal reinforcement and 

stirrups (Cairns et al. 2005; Zandi Hanjari et al. 2011) and such effect can be  considered by a well-

received equation as shown in Eq. (7-4), 

 , , 1 , ,100c

su vu su vu s v su vu   = −    (7-4) 

where ,

c

su vu  and  
,su vu  denote the ultimate strain of corroded and uncorroded steel respectively, 

and the subscripts “su” and “vu” refer to longitudinal steel reinforcement and steel stirrups 

respectively. 1  is an empirical coefficient taking a value of 0.017 as suggested by Zandi Hanjari 

et al. (2011). 

Another principal factor causing structural degradation is the bond loss for prestressed steel 

strands and longitudinal steel bars. To consider the bond loss for prestressed strands, Wang et al. 

(2017b) improved the fib Model Code (fib 2010) for the bond stress-slip relationship prestressed 

strands, and proposed a model bonding between corroded strands and concrete, as shown in Eq. 

(7-5) . 
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in which 
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 , ,max0.4c c

p f p =   (7-7) 

Here, , 1.25p max cf = (MPa) (Wang et al. 2017b; Belletti et al. 2020) and ,max

c

p  represent 

the maximum bond stress for stands before and after corrosion; ,

c

p f is the corrosion-affected 

residual bonding stress due to friction.  The slip parameters ( 2s  and 3s ) are barely affected by 

corrosion and determined as 2 3 mms = , and 3s  = half of the distance between concrete gear and 

the adjacent wires (Wang et al. 2017b; Belletti et al. 2020), which is equivalent to the distance 

between ribs of the deformed bar. 

Similarly, the bond stress-slip relationship ( )s  of corroded non-prestressed longitudinal 

steel bars (Kivell et al. 2015; Huang et al. 2022) is considered as shown in Eq. (7-8). 

 

( )

( )

0.4

,max 1 1

,max 1 2

2
,max ,max , 2 3

3 2

, 3

0c

s

c

s

c c c

s s s f

c

s f

s s s s

s s s

s s
s s s

s s

s s






  



  

  


=  −
− −  

−
 

  (7-8) 
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7.6

,max ,max1.2 sc

s se
 −

=   (7-9) 



 

134 

 

 

 

( )

( )

,max

,max

,

,max

,max

0.26 13 0% 3%

0.65 3% 13%

0.65 0.06 100 13 13% 20%

0.23 20%

c

s s s

c

s sc

s f c

s s s

c

s s

  

 


  

 

 +  


 
= 

− −    




  (7-10) 

Here, 
,maxs  and ,max

c

s  represent the maximum bond stress for non-prestressed steel before 

and after corrosion; ,

c

s f  is the corrosion-affected residual bonding stress due to friction. Note that 

,maxs  can be estimated based on the reinforcement bar diameter ( sd ) and the concrete compressive 

strength ( cf  ) as per, ( ),max 20 4 30s s cd mm f MPa = − (MPa). The slip parameters are estimated 

as 1 30cs f MPa= (mm), 2 3 mms = , and 3s  = the lug spacing of deformed steel bars (Wong et 

al. 2013). It is worth mentioning that stirrups are smeared in the concrete assuming perfect bonding 

in this study. 

7.2.2 Modeling and Validation of Tested Corroded PC Girders 

7.2.2.1 Corroded PC girder with shear failure 

Limited corroded PC girders were tested to shear failure in the literature (Belletti et al. 2020; Wang 

et al. 2020) and rarely sufficient information was provided for numerical modeling and model 

validation. After thorough review of the literature, a 10-year naturally-corroded pre-tensioned PC 

girder tested by Belletti et al. (2020) is studied in this section. The PC girder contained  no shear 

reinforcement as shown in Figure 7-2(a), and it failed in shear during the experimental test. After 

the damaging test, the strands were extracted and the corrosion degrees were measured. The strands 

were corroded to different levels as grouped into five different categories with the corrosion 

distribution visually shown in Figure 7-2(b). The 2D continuum-based FE model is then developed, 

as shown in Figure 7-2(c), to simulate the structural behavior of this tested PC girder using the 
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aforementioned modeling strategy. The tested material properties for steel and concrete before 

corrosion and the calculated material properties after corrosion are summarized in Table 7-1 and 

7-2, respectively. The mesh size is determined as 25 mm × 25 mm based on a mesh sensitivity 

analysis to achieve a balance between computational accuracy and efficiency. 

 
(a) 

 
(b) 

 
(c) 

Figure 7-2: Tested PC girder (Belletti et al. 2020): (a) specimen under three-point bending and 

cross section, (b) strand corrosion distribution, and (c) 2D continuum-based FE model 

The load-deflection curve of the corroded PC girder is simulated using the aforementioned 

corrosion-affected properties, and compared to the experimental results, as shown in Figure 7-3.  

To emphasize the corrosion-induced structural degradation, Figure 7-3(a) also reports the load-

deflection curve simulated using the uncorroded material properties in Table 1 when assuming no 
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corrosion. It is observed that corrosion greatly affects the structural behavior of the PC girder, 

particularly the ultimate load capacity and deformation capability. Moreover, the load-deflection 

curve predicted from the developed 2D FE model considering corrosion agrees well with the tested 

result. Note that average effective prestress 1101.3 MPaeff

p =  as estimated according to Belletti et 

al. (2020) is used in this study.  

It is worth mentioning that the concrete splitting zone in the PC girder as indicated in Figure 

7-2(c) has negligible influence on the PC girder behavior, as mentioned earlier regarding the 

principal corrosion-related factors leading to structural degradation. To further confirm this, 

corrosion-induced concrete splitting is considered in the FE model using the approach proposed 

by Coronelli and Gambarova (2004) by using a reduced concrete strength of 12.9MPa (Belletti et 

al. 2020). The simulated load-displacement curves with and without modelling this concrete 

splitting zone are compared as shown in Figure 7-3, confirming that corrosion-induced concrete 

splitting can be neglected.  

Table 7-1: Tested material properties of uncorroded steel and concrete for PC girder tested in 

Belletti et al. (2020) 

Material Property Bottom Top 

Steel 

Nominal diameter ,p sd d  (mm) 12.5 5 

Nominal area ,p sA A  (mm2) 93 19.6 

Yield strength ,py syf f  (MPa) 1,580 435 

Ultimate strength ,pu suf f  (MPa) 1,860 500 

Elastic modulus ,p sE E (MPa) 195,000 200,000 

Ultimate strain ,pu su   (%) 5 18 

Average effective prestress 
eff

p  (MPa) 1,101.3 - 

Concrete 
Compressive strength cf   (MPa) 43.65 

Modulus of elasticity cE  (MPa) 35,137 
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Table 7-2: Summary of strand corrosion degrees and material properties after corrosion for the 

PC girder tested in Belletti et al. (2020) 

Corrosion category 
Not  

corroded 

Localized  

pits 

High- 

density 

pits 

Uniform  

corrosion 

High  

corrosion 

Tested average remaining area c

pA  (mm2) 93.00 91.71 87.83 82.94 74.80 

Tested corrosion degree p  (%) 0 1.39 5.56 10.82 19.57 

Calculated ultimate strain c

pu  (%) 5 4.47 2.88 0.88 0.81 

Calculated ultimate strength c

puf  (MPa) 1,860 1,825 1,718 1,584 1,580 

Calculated maximum bond stress 
,max

c

p (MPa) 8.26 8.26 8.26 4.68 1.67 

Calculated residual friction stress 
,

c

p f  (MPa) 3.30 3.30 3.30 1.87 0.67 

In addition, Figure 7-4 shows the cracking pattern predicted from the 2D FE model and the 

experimental test, where the red zone in Figure 7-4 (a) represents the cracked region with the color 

depth indicating the crack width. Their comparison indicates that the developed 2D FE model can 

accurately simulate failure (i.e., typical shear tension failure) of the corroded PC girder, which is 

brittle instead of ductile when the girder is uncorded.  Due to more severe corrosion in the left half-

span, the failure initiated in the left half-span as expected. Overall, the FE model for the corroded 

PC girder can simulate the degraded behavior (e.g., stiffness, ultimate load capacity, and shear 

failure) reasonably well. 

  
(a) (b) 

Figure 7-3: Load-displacement curves at loading point: (a) full scale plot, and (b) zoom in plot 



 

138 

 

 

 

 
(a) 

 
(b) 

Figure 7-4: Cracking pattern of the corroded PC girder from: (a) FE prediction, and (b) 

experimental test (Belletti et al. 2020) 

7.2.2.2 Corroded PC girder with flexure failure 

Zhang et al. (2017a) tested eight nominally identical bonded post-tensioned PC girders, see Figure 

7-5(a) for the specimen dimensions and loading position, under eight different strand corrosion 

degrees (i.e., 0%, 12.1%, 19.5%, 27.0%, 46.0%, 61.7%, 73.7%, 84.7%). These girders with 

increasing corrosion degrees are referred to as G1, G2, G3, G4, G5, G6, G7, and G8, respectively.  

The material properties for steel before corrosion was tested (Zhang et al. 2017a) and summarized 

in Table 7-3, and are used for modeling the PC girder under no corrosion (i.e., G1) and calculating 

the corrosion-affected properties in this study as summarized in Table 7-4. Note that the modulus 

of elasticity for concrete was not reported and is estimated by 4500c cE f =  (MPa) (CSA 2019) 

here. It is worth mentioning that the corrosion-induced prestress force loss was measured in the 

experiment (Zhang et al. 2017a) and the prestress force loss was proportional to the strand cross-

sectional area reduction due to corrosion. This further confirms the accuracy of using Eq. (7-4) to 

consider the corrosion effect on prestress force in strands. 
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(a) 

 

(b) 

Figure 7-5: Tested PC girders (Zhang et al. 2017a): (a) specimen under four-point bending and 

cross section, and (b) 2D continuum-based FE model 

The same FE modeling strategy as described and used earlier is employed to model these 

considered eight PC girders, as shown in Figure 7-5(b). Similarly, a mesh sensitivity analysis is 

conducted to determine the FE discretization size as 20 mm × 20 mm. Note that the anchorages 

for post-tensioned strands are modelled explicitly to ensure no slippage at anchorages using quasi-

rigid (with high stiffness and strength) elements surrounding strands and perfect bonding. The 

developed 2D continuum-based FE model is used to simulate the structural behavior of these 

corroded PC girders.  
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Table 7-3: Tested material properties of uncorroded steel for PC girders tested in Zhang et al. 

(2017a) 

Property Φ15.2 Strands Φ12 Mild steel Φ8 Mild steel 

Nominal diameter ,p sd d  (mm) 15.2 12 8 

Nominal Area ,p sA A  (mm2) 140 113 50.3 

Yield strength ,py syf f  (MPa) 1830 335 235 

Ultimate strength ,pu suf f  (MPa) 1910 425 310 

Elastic modulus ,p sE E (MPa) 195000 210000 210000 

Ultimate strain ,pu su   (%) 2.9 20 20 

Effective prestress 
p  (MPa) 1385.7 - - 

Table 7-4: Summary of  the strand corrosion degrees and material properties after corrosion for 

PC girders tested in Zhang et al. (2017a) 

Specimen G1 G2 G3 G4 G5 G6 G7 G8 

Tested corrosion degree p  (%) 0 12.1 19.5 27.0 46.0 61.7 73.7 84.7 

Tested concrete strength cf   (MPa) 34.1 32.4 32.4 34.3 33.7 33.7 33.7 33.7 

Tested effective prestress force pF   (kN) 194 177 160 143 110 76 53 29.7 

Calculated ultimate strain 
c

pu  (%) 2.9 0.94 0.94 0.94 0.94 0.94 0.94 0.94 

Calculated ultimate strength 
c

puf  (MPa) 1910 1830 1830 1830 1830 1830 1830 1830 

Calculated maximum bond  

stress ,max

c

p  (MPa) 
7.2994 3.5538 1.4841 0.6125 0.0651 0.0102 0.0025 0.0007 

Calculated residual friction  

stress ,

c

p f  (MPa) 
2.9198 1.4215 0.5937 0.2450 0.0260 0.0041 0.0010 0.0003 

Figure 7-6 presents the comparison between the FE-predicted and experimental load-

deflection curves, with those for G1, G3, G5, G7 in Figure 7-6 (a) and G2, G4, G6, G8 in Figure 

7-6 (b). The critical limit states (e.g., wire rupture, concrete crushing, yielding) are indicated on 

the curves as well.  
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(a) (b) 

Figure 7-6: Load-deflection curves at mid-span for: (a) G1, G3, G5 and G7, and (b) G2, G4, 

G6 and G8 

 

 
Figure 7-7: Comparison between the tested and predicted ultimate load capacities 

Overall, the simulation results agree well with the experimental results. The degradation of 

post-cracking stiffness, ultimate load capacity, and failure mechanisms (or limit state exceedance) 

with the increasing strand corrosion degree is well captured. The deformation capability, as 

indicated by the ultimate displacements, is not as well captured as other quantities, especially  for 

corroded PC girders with large corrosion degrees, which are dominated by strand rupture failure 

type. Accurate prediction of ultimate displacement is considered challenging due to the experiment 

uncertainties particularly inside the ultimate strain of corroded strands. Nevertheless, the ultimate 
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load capacities of the tested corroded PC girders are predicted reasonably well as shown in Figure 

7-7. 

7.2.3 Virtual Experimental Database 

The FE model strategy validated for corroded PC girders is used to simulate PC girders for a virtual 

experimental (numerical) database generation. A total of 4,165 corroded PC voided girders is 

simulated for the load-carrying capacity under a point load considering various design, loading, 

and corrosion conditions. Standardized precast PC voided girders that have been designed and 

used extensively for short-span bridges in North America are considered. Specifically, five girder 

types from the standard drawings archived for PC voided girders in Alberta (Alberta 

Transportation 2019) are used, namely 11m SM-510, 9.14m SL-510, 6m SL-510, 8.53m SC-510 

and 6m SC-510 (see Table 7-5).  The cross-sections for the standard PC voided girders considered 

are all 1206mm in width and 510mm in depth with three voids of 250~300mm in diameter, with 

the cross-section dimension and reinforcement details in Appendix D. They are regarded as 

representative voided girder cross-sections for precast PC bridge constructions; for example, the 

sectional type of SIV-48 from the standard drawings for PC voided girders in California, US 

(California Department of Transportation 2014) has similar sectional dimensions to these 

considered in this study. 

Table 7-5:  Summary of standardized PC girders considered in the database generation 

Girder type 

Nominal material properties Tensile steel area Compressive steel area Stirrups 

Concrete 

strength 

(f'c) 

MPa 

Tensile 

strength of 

strands (fpu) 

MPa 

Yield 

strength of 

mild steel 

(fsy,vy)  

MPa 

Strands 

(Ap) 

mm2 

Mild 

steel  

(As) 

mm2 

Strands 

(Ap) 

mm2 

Mild 

steel  

(As) 

mm2 

Area 

(Av) 

mm2 

Spacing 

(s) 

 (mm) 

11m SM-510 

(with 25M) 
35 1860 400 1579.2 

200 

(2200) 
394.8 500 400 150~350 

9.14m SL-510 50 1860 400 1680 2200 560 500 400 150~300 

6m SL-510 50 1860 400 1120 200 560 500 400 150~300 

8.53m SC-510 35 1860 400 1381.8 200 394.8 500 400 150~350 

6m SC-510 35 1860 400 789.6 200 394.8 500 400 150~350 
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Table 7-6:  Summary of random material property considered in the database generation 

Material property 
Nominal 

(MPa) 

Mean 

(MPa) 
COV Distribution Reference 

Concrete compressive strength (fc’) 35 48.3 0.12 Normal Nowak and Szerszen (2003) 

Tensile strength of strands (fpu) 1860 1943 0.025 Normal Nowak and Szerszen (2003) 

Yield strength of mild steel (fy) 400 458 0.065 Normal Nowak and Szerszen (2003) 

Table 7-7:  Summary of the corrosion degrees considered in the database generation 

Corrosion degree 
Corrosion degree for longitudinal steel ηv (%) 

0 5 10 15 20 25 30 35 40 

Corrosion degree 

for stirrups ηl (%) 

0          

5          

10          

15          

20          

25          

30          

35          

40          

The nominal tensile strength of prestressed strands and yield strength of mild steel are 

1860MPa and 400MPa respectively for all the archived standard PC voided girders in Alberta. The 

effective prestress is typically around 60% of the tensile strength of strands for all the above 

standard girders considered. The nominal concrete compressive strength for these girders is either 

35MPa (e.g., for SM-510 and SC-510) and 50MPa (e.g., SL-510). Note that the true values of 

concrete and steel strength differ from the nominal values in engineering practice, and thus the 

material variability (see Table 7-6) is considered in the virtual experimental design for 11m SM-

510 to have a good coverage of different material properties according to Latin Hypercube 

Sampling (LHS) with 20 variants. While for the other girders, only the mean values of the material 

properties for the sake of data generation efficiency. 
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Different corrosion conditions are considered in terms of the corrosion degrees for 

longitudinal steel (i.e., prestressed strands and mild steel) and stirrups. In the real world, exact 

description of the corrosion levels of PC girders can be complicated; for practical reasons, 

corrosion is assumed uniform along the whole girder length, except that the corrosion degrees for 

longitudinal steel ηl  and transverse steel ηv are distinguished from each other. This is to consider 

the fact that stirrups are critical for shear capacity and easier to get corroded. Thus, during the 

database generation, it is assumed that the corrosion degree of stirrups is larger than that of 

longitudinal steel, i.e., ηv = ηl + η with η ranging from 0 to 20% as shown in Table 7-7. This 

leads to 35 combinations of corrosion degrees for longitudinal and transverse steel (stirrups), 

which is applied to all PC girders simulated in the virtual experimental design. 

Table 7-8:  Summary of the simulated corroded PC girders in the virtual experimental design 

matrix 

Girder type 
Material properties 

(fc’, fpu , fy) 

Corrosion degree 

combinations 
Point load position No. of girders 

11m SM-510 20 variants 35 1m, 2m, 3m, 4m, 5m 3500 

11m SM-510 

(with 25M) 
Mean values 35 1m, 2m, 3m, 4m, 5m 175 

9.14m SL-510 Mean values 35 1m, 2m, 3m, 4m 140 

6m SL-510 Mean values 35 1m, 2m, 3m 105 

8.53m SC-510 Mean values 35 1m, 2m, 3m, 4m 140 

6m SC-510 Mean values 35 1m, 2m, 3m 105 

In addition to the consideration of different design and corrosion conditions, different 

loading positions are considered to cover both shear-critical and flexure-dominated loading 

scenarios. As such, the point load position varies from 1m away from the support to approximately 

the midspan for each girder, as summarized in the virtual experimental design matrix in Table 7-

8.A summary on the input and output parameters of the generated virtual experimental database is 

included in Appendix E. 
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7.3 Probabilistic Capacity Reduction Factor Model 

7.3.1 Model Development 

To guide fast screening of bridge girder conditions, the knowledge about load-carrying capacity 

reduction due to corrosion can be beneficial. To this end, with the generated virtual experimental 

database, a probabilistic capacity reduction factor model is developed first, to predict the ratio 

between load-carrying capacities from the corroded and intact PC girders as shown in Eq. (7-11),  

 ( )
( )

( ; 0)l v

P
R

P  
=

= =

x
x

x
  (7-11) 

where ( )R x  is the load-carrying capacity reduction factor, ( )P x  and ( ; 0)l vP  = =x  are the 

load-carrying capacities from the corroded and uncorroded PC girders respectively, x  is the vector 

of predictors, containing important influencing factors related to the design, corrosion and loading 

conditionsas shown in Eq. (7-12), 

 , , , , , , , , ,
35 1860 400

T

pu yc
l v p s v

f ffa L

d h MPa MPa MPa
    

 
=  
 

x    (7-12) 

where  and l v  refer to corrosion degrees for longitudinal and transverse steel respectively; a d  

is the shear span to effective depth ratio used to indicate the load position; and the other predictors 

are related to the girder design, such as L h  (h = 510mm) denoting the girder length to sectional 

height ratio, and 
p ps wA b d = , s s wA b d = , and denoting the tensile strands ratio, 

tensile mild steel ratio and stirrups ratio, with wb , d , and s  indicating the web width, effective 

depth and stirrup spacing. 

Among a wide variety of machine learning techniques, Gaussian process regression 

(Yetilmezsoy et al. 2021; Olalusi and Awoyera 2021) is adopted here for its probabilistic feature 

v v wA b s =
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with prediction uncertainty and nice properties in nonlinear function representation (e.g., without 

specifying the function form explicitly). As shown in Eq. (7-13), the load-carrying capacity 

reduction factor is modeled by a stochastic Gaussian process, 

 ( ) ( ) ( )( ), ,R GP m k x x x x   (7-13) 

where, ( )m x  and ( ),k x x  are the mean and covariance function of the Gaussian process. 

The mean function is used to represent the prior information about the general trend but is generally 

taken to be zero when no such information is available (Williams and Rasmussen 2006). The kernel 

covariance function specifies the statistical correlation between two points in the predictors’ space 

and the squared exponential covariance function is a common use. Thus, a zero-mean function is 

used as shown in Eq. (7-14) and squared exponential covariance function is adopted in this study 

as shown in Eq. (7-15). 

 ( ) 0m =x   (7-14) 

 ( ) ( ) ( )2 2

noise

1
, exp

2

T

i j f i j i j ijk   
 

= − − − + 
 

x x x x M x x   (7-15) 

in which, x  and x  are input vector pairs; 2

f , M  and 2

noise  are the hyperparameters of the 

covariance function to be estimated during the model training process. Specifically, 2

f  is the 

signal variance, ( )
2

diag
−

=M l  is a symmetric matrix defined by a vector of characteristic length-

scales ( )1, , Nl l= l  , 2

noise  is the noise variance and 
ij  is a Kronecker delta. Note that considering 

2

noise  in covariance functions enables the GPR to develop a model from training data with random 

variations, leading to a GPR-based model with more generalization capacities but with little 
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overfitting concerns. For more details about GPR modeling, readers of interest can refer to 

Williams and Rasmussen (2006). 

To train and test the above GPR model, the generated database is split into two subsets for 

training and testing purpose, which composes 80% and 20% of the total database, respectively. 

Based on the training database, the unknown hyperparameters in the Gaussian process regression 

model are learned by the maximum a posterior (MAP) estimation (Salvatier et al. 2016) and 

summarized in Table 7-9. 

Table 7-9: Summary of the learned hyperparameter values 

Hyperparameter σ
f
 σ

noise
 l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 

Value 0.311 0.023 0.123 0.981 3.158 65.9 9.379 3.680 0.685 0.273 0.081 2.693 

Based on the obtained hyperparameter values, the probabilistic prediction of capacity 

reduction factor for PC girders not observed in the training set, R  (e.g., PC girders from the 

testing database or others not in the database) can be obtained by the conditional Gaussian 

distribution in Eq. (7-16). 

 ( )( ), , ,covN   R X R X R R   (7-16) 

in which 

 ( ) ( )
1

2

noise, , 
−

 
 = + R Κ X X K X X I R   (7-17) 

 ( ) ( ) ( ) ( ) ( )
1

2

noisecov , , , ,
−

    
 = − + R K X X K X X K X X I K X X   (7-18) 

Here, X  and X  are the input parameter matrices for data points in the training dataset 

and unobserved points, respectively, R  and R  are their corresponding capacity reduction 

factors, respectively, I  is the identity matrix, ( ),K X X  is the covariance matrix with its entries 

as ( )*,k x x evaluated at all pairs of data points in X  and X , and similarly for the entries in 



 

148 

 

 

( ),K X X , ( ), K X X  and ( ), K X X . Thus, Eq. (7-16) can be used to predict the capacity 

reduction probabilistically given x, including the mean (i.e., R ) and standard deviation.   

 
(a) 

 
(b) 

Figure 7-8: Performance of the developed capacity reduction factor model over: (a) training 

dataset, and (b) testing dataset 

The developed probabilistic capacity reduction factor model is assessed against both 

training and testing databases as shown in Figure 7-8. Both the mean prediction (i.e., R ) and 95% 

confidence interval prediction (i.e., R  ± 2 R ) are reported. Note that for visualization purpose 

in these plots, the PC girders from the virtual experimental database are indexed with an increasing 
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ID according to the mean prediction R  by the developed probabilistic model. It is shown that the 

developed model performs equally well for both training and testing datasets. The mean prediction 

curves obtained from the developed model successfully represent the central tendencies of the 

virtually tested results. Also, the majority of the virtually tested results fall within the mean   2 

standard deviation (SD) intervals, indicating that the developed model can serve as a reliable 

capacity reduction factor prediction tool for corroded PC girders. Specifically, 3099 out of 3237 

points (i.e., 95.7%) and 761 out of 809 points (i.e., 94.1%) fall within the 95% confidence interval 

for the training and testing database, respectively, which agrees well with the statistical 

significance of prediction uncertainty.  For practical use, the mean + 2 standard deviation (SD) can 

be used for the capacity reduction to be conservative. 

7.3.2 Application  

Based on the developed capacity reduction factor model, parametric analysis is conducted in this 

section to study the effects of different model parameters on the capacity reduction factor through 

mean prediction approach. Take the simply supported 11m SM-510 girder under single point 

loading as a case study, the influence of different model parameters is studied in the one-at-a-time 

manner, i.e., varying the value of one model parameter while fixing the value of other parameters 

at a time.  Unless otherwise specified, when studying the effects of other parameters, the fixed 

values for a d , L h , 
p , s , v , 35cf  , 1860puf , and 1860yf are 2.25, 21.569, 1.161%, 

0.147%, 0.373%, 1.38, 1.045, and 1.145 respectively based on the sectional properties and the 

mean value of material properties for the 11m SM-510 girder. Note that due to the length 

limitation, only representative parameters that have relatively large variability in engineering 

practice are discussed in this section. Studies on  other parameters are included in Appendix F. 
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7.3.2.1 Shear span to effective depth ratio 

The influence of shear span to effective depth ratio a d  is studied by varying its value from 2.25 

to 11.25 with an increment of 2.25, which represents varying the shear span from 1m to 5m with 

an increment of 1m. Two corrosion scenarios are considered including v l =  and 20%v l = +  

to study the influence of a d  on the corrosion-induced capacity reduction factor of  .., which is 

shown in Figure 7-9 (a) and Figure 7-9 (b), respectively.  

  
(a) (b) 

Figure 7-9: The influence of shear span to effective depth ratio a/d on corrosion-induced 

capacity reduction: (a) ηv = ηl, and (b) ηv = ηl + 20% 

It is shown that the capacity reduction factor decreases (i.e., more reduction) with the 

increase of the corrosion degree ( ,l v  ) as expected. The influence of a d  on the capacity 

reduction is observed to be correlated with the corrosion degree without exhibiting an obvious 

tendency for both of the scenarios of v l =  and 20%v l = + . In addition, by comparing Figure 

7-9 (a) and Figure 7-9 (b), the capacity reduction from the corrosion scenario of 20%v l = +  is 

larger than that from the corrosion scenario of v l =  especially for the loading scenarios of a d  

= 2.25 and a d  = 4.5, where the shear failure dominates and the stirrups ratio plays an important 
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role. This conclusion can also be observed in the following studies on other parameters, while 

repeated discussions are avoided in the following parametric studies due to the length limitation.  

7.3.2.2 Tensile strands ratio 

The influence of tensile strands ratio 
p  is studied by varying its value from 0.6% to 1.3% with 

an increment of 0.175%, which covers the range of 
p  for all virtually tested girders, i.e., from 

0.573% to 1.260%. Two loading scenarios (i.e., 2.25a d =  and 11.25a d =  to represent shear-

critical and flexure-dominated loadings) are considered to study the influence of 
p  on the 

capacity reduction factor as shown in Figure 7-10 (a) ~ (b). The corrosion degrees for longitudinal 

steel and stirrups are considered to be the same. 

It can be seen that for both the scenarios considered, the capacity reduction factor increases 

(i.e., less reduction) by increasing 
p  without significant correlation effects with the corrosion 

degree ( ,l v  ). For the flexure-dominated loading scenario of 11.25a d = , this indicates that 

increasing the tensile steel and the prestress force can reduce the corrosion-induced capacity loss. 

While for the shear-critical loading scenario of 2.25a d = , this indicates that increasing the 

prestress force can reduce the corrosion-induced capacity loss, since it is shown in the following 

section that increasing the tensile steel only (i.e., without increasing the prestress force) has little 

effects on the corrosion-induced capacity reduction factor. In addition, the influence of 
p  is 

slightly more important for the scenario of 11.25a d =  compared with the scenario of 2.25a d =  

especially when the corrosion degree is large. This can be attributed to that longitudinal strands 

and prestress force play a more important role in flexural capacity compared with shear capacity. 
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(a) (b) 

Figure 7-10: The influence of tensile strands ratio ρp on corrosion-induced capacity reduction: 

(a) a/d = 2.25, and (b) a/d = 11.25 

7.3.2.3 Tensile mild steel ratio 

The influence of tensile mild steel ratio s  is studied by varying its value from 0.1% to 1.7% with 

an increment of 0.4%, which covers the range of s  for all virtually tested girders, i.e., from 

0.145% to 1.662%. Two loading scenarios (i.e., 2.25a d =  and 11.25a d = ) are considered to 

study the influence of s  on the capacity reduction factor as shown in Figure 7-11 (a) ~ (b). The 

corrosion degrees for longitudinal steel and stirrups are considered to be the same. 

It is shown that the s  has a more significant influence for the scenario of 11.25a d =  

compared with the scenario of 2.25a d =  since longitudinal steel play a more important role in 

flexural capacity compared with shear capacity. For the scenario of 11.25a d = , the capacity 

reduction factor increases (i.e., less reduction) with the increase of s . This indicates again that 

increasing the tensile steel can reduce the corrosion-induced capacity loss for flexure-dominated 

loading scenarios. 



 

153 

 

 

  
(a) (b) 

Figure 7-11: The influence of tensile mild ratio ρs on corrosion-induced capacity reduction: (a) 

a/d = 2.25, and (b) a/d = 11.25 

7.3.2.4 Stirrups ratio 

The influence of stirrups ratio v  is studied by varying its value from 0.3% to 0.7% with an 

increment of 0.1%, which covers the range of  v  for all virtually tested girders, i.e., from 0.373% 

to 0.654%. Two loading scenarios (i.e., 2.25a d =  and 11.25a d = ) are considered to study the 

influence of v  on the capacity reduction factor as shown in Figure 7-12 (a) ~ (b). The corrosion 

degrees for longitudinal steel and stirrups are considered to be the same. It is shown that the v  

has a slightly larger influence for the scenario of 2.25a d =  compared with the scenario of 

11.25a d =  because stirrups play a more important role in shear capacity compared with flexural 

capacity. Despite this slight difference, the influence of v  is observed to be relatively small for 

both the considered scenarios compared with other model parameters. 
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(a) (b) 

Figure 7-12: The influence of tensile mild ratio ρv on corrosion-induced capacity reduction: (a) 

a/d = 2.25, and (b) a/d = 11.25 

7.4 Probabilistic Load-carrying Capacity Model 

7.4.1 Model Development 

To facilitate reliability-based evaluation of bridge girder conditions, a model for predicting the 

load-carrying capacity of corroded PC girders will be needed. To this end, with the generated 

virtual experimental database, a probabilistic load-carrying capacity model ( )P x is developed,  as 

shown in Eq. (7-19), 

 ( ) ( )0.25 c wP f b d C= x x   (7-19) 

where ( )C x  is the normalized ultimate load-carrying capacity, the normalizing constant 

0.25 c wf b d is conventionally used as the upper limit of shear capacity by design codes (AASHTO 

2017; CSA 2019), x  is the vector of predictors, containing important influencing factors related 

to the design, corrosion and loading, i.e., , , , , , , , , ,
35 1860 400

T

pu yc
l v p s v

f ffa L

d h
    

 
=  
 

x . Similarly, 

GPR is adopted to develop a probabilistic model for the normalized load-carrying capacity of 

corroded PC girders as shown in Eq. (7-20). 
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 ( ) ( ) ( )( ), ,C GP m k x x x x   (7-20) 

The learned hyperparameter values based on the training dataset are summarized in Table 

7-10. 

Table 7-10: Summary of the learned hyperparameter values 

Hyperparameter σ
f
 σ

noise
 l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 

Value 0.168 0.009 0.092 0.883 2.738 29.19 2.506 3.414 0.881 1.116 2.245 2.396 

Based on the learned GPR, the performance of the developed probabilistic load-carrying 

capacity model is assessed against both training and testing datasets as shown in Figure 7-13. Both 

the mean prediction and the 95% confidence interval prediction. It is shown that the developed 

model performs equally well for both training and testing datasets. The mean prediction curves 

successfully represent the central tendencies of the virtually tested results, while the majority of 

the virtually tested results fall within 95% confidence intervals. Specifically, 3164 out of 3332 

points (i.e., 95.0%) and 774 out of 833 points (i.e., 92.9%) fall within the 95% confidence interval 

for the training and testing database, respectively. For practical use, the mean + 2 standard 

deviation (SD) can be used for the load-carrying capacity to be conservative. However, the 

probabilistic capacity model developed allows reliability analysis, or conditional reliability 

assessment of PC girders given a certain load level, rendering insights into the increase in 

probability of failure due to corrosion.   
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(a) 

 
(b) 

Figure 7-13: Performance of the developed load-carrying capacity model over: (a) training 

dataset, and (b) testing dataset 

7.4.2 Application in Conditional Reliability Analysis 

Based on the developed probabilistic load-carrying capacity model, the probabilistic load-carrying 

capacity can be calculated after considering the uncertainties in material and geometrical 

properties in the PC girder, in addition to the model  prediction uncertainty (error). The resulted 

probabilistic capacity curve can be used to determine the conditional probability of attaining or 

exceeding a prescribed limit state for a given loading condition (Gardoni et al. 2002), i.e., 

conditional reliability analysis (or fragility analysis as widely used in earthquake engineering). 
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This application is to study the influence of corrosion on the conditional probability of 

failure under given (deterministic) load levels. To this end, the random variables with statistics 

summarized in Table 7-11 are considered. Direct Monte Carlo simulation is used with a large 

number of samples (i.e., 1 million) to obtain the load-carrying capacity under two loading scenarios: 

shear-critical and flexure-dominated loading scenarios with 2.25a d =  and 11.25, respectively. 

Note that the large sample size of 1 million is utilized to guarantee a satisfactory accuracy when 

the failure probability is small, i.e., the failure probability with a mean and COV value of 10-4 and 

0.1. The corrosion degrees for longitudinal steel and stirrups are considered to be the same.  

Table 7-11: Summary of the statistic parameters 

Parameter Nominal Mean COV Distribution Reference 

f ’
c
 35 48.3 0.12 Normal Nowak and Szerszen (2003) 

f
pu

 1860 1943 0.025 Normal Nowak and Szerszen (2003) 

f
y
 400 458 0.065 Normal Nowak and Szerszen (2003) 

bw − 309 0.04 Normal Nowak and Szerszen (2003) 

d − 444.5 0.025 Normal Nowak and Szerszen (2003) 

As shown in Figure 7-14, the conditional probability of failure (i.e., fragility) curves shift 

to the left with the increase of corrosion degree for both shear-critical and flexure-dominated 

loading scenarios. This means that for a given load level, the probability of failure would increase. 

Based on the obtained curves, the conditional probability of failure under the ultimate limit state 

(ULS) loads, 298.6 kN for the shear-critical loading scenario with 2.25a d =  and 233.4  kN for 

the flexure-dominated loading scenario with 11.25a d = , are summarised in Figure 7-15 for PC 

grinders with different corrosion degrees. Note that when the conditional probability failure is 

equal to zero, it is indicated as a small value (i.e., 10-10) to facilitate the plot in logarithmic scale. 

More details for the calculation of ULS loads can be found in Appendix G. It can be seen that with 
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the increase of corrosion degree, the conditional probability of failure under the ULS load level 

(i.e., the “1  ULS load” in Figure 7-15) increases from 0 to 0.37 and 0.15 for the shear-critical 

and flexure-dominated loading scenarios, respectively. When the load level is increased by a factor 

of 1.5 to the level of “1.5  ULS load”, the conditional probability of failure also increases as 

expected. The obtained conditional failure probability curves can be used to facilitate the 

reliability-based safety assessment of corroded bridges with the measured corrosion degree and 

the designed load level in engineering practice. 

  
(a) (b) 

  
(c) (d) 

Figure 7-14: Fragility curves with different corrosion degrees (η): (a) a/d =2.25 with linear 

scale for the y-axis, (b) a/d =11.25 with linear scale for the y-axis, (c) a/d =2.25 with 

logarithmic scale for the y-axis, and (d) a/d =11.25 with logarithmic scale for the y-axis 
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(a) (b) 

Figure 7-15: Failure probability of corroded girders under ULS loads: (a) a/d =2.25, and (b) 

a/d =11.25 

7.5 Summary 

In this chapter, data-based prediction models for load-carrying capacity of corroded PC voided 

girders were developed to facilitate their fast screening and reliability-based evaluation. Firstly, a 

2D continuum-based FE model for corroded PC girders was developed and validated by existing 

experimental tests. Then, a virtual experimental database of 4,165 PC girder tests considering 

various design, loading, and corrosion conditions was generated based on the developed FE model. 

With the generated virtual experimental database, the probabilistic capacity reduction factor model 

and the load-carrying capacity model were developed via Gaussian process regression to study the 

corrosion effects on capacity reduction and failure probability of corroded PC girders, respectively. 

Main conclusions and results in this chapter are summarised as below.  

(1) Comparisons between experimental and numerical results indicated that the developed 

2D FE model can serve as a reliable tool to simulate the residual behavior and failure modes of 

corroded PC girder, and provide satisfactory prediction results for the ultimate load carrying 

capacity under both shear-critical and flexure-dominated scenarios.  
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(2) The developed probabilistic capacity reduction model and the load-carrying capacity 

model showed equally well performance for both training and testing datasets. The mean 

prediction curves obtained from the developed model successfully represent the central tendencies 

of the virtually tested results with the majority of the virtually tested results falling within the mean 

  2 standard deviation (SD) intervals. 

(3) Parametric study for the influence of different model parameters on the corrosion-

induced load-carrying capacity reduction showed that increasing the tensile steel and the prestress 

force can reduce the corrosion-induced capacity loss under flexure-dominated loading scenarios, 

while increasing the prestress force can reduce the corrosion-induced capacity loss under shear-

critical loading scenarios.  

(4) Conditional reliability analysis showed that for both shear-critical and flexural-

dominated loading scenarios, the failure probability of PC girders increases with the increase of 

corrosion degree. The obtained conditional failure probability curves can be used to guide the 

reliability-based bridge management with the measured corrosion degree and the designed load 

level in engineering practice. 
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CHAPTER 8:  CONCLUSIONS AND RECOMMENDATIONS 

8.1 Summary and Conclusions 

To facilitate reliability-based safety assessment of both intact and corroded prestressed concrete 

(PC) bridge girders, reliable mechanics-based FE models and data-based capacity prediction 

models with probabilistic quantification of model uncertainty/error were developed and applied to 

PC bridge girders in this thesis. To this end, this thesis research was divided into three sub-

objectives, namely mechanics-based shear capacity models for intact PC girders, experimental 

data-based shear capacity models for intact PC girders, and simulated data-based load-carrying 

capacity models for corroded PC girders. As such, conclusions are organized according to these 

three sub-objectives. 

8.1.1 Sub-objective #1 

In this sub-objective, a new flexure-shear coupled fibre beam element was developed based on the 

Timoshenko beam theory by utilizing multi-axial material constitutive models. The developed 

element was validated through a classic test series of shear-critical reinforced concrete (RC) beams 

from the literature and a PC girder recently tested under both shear-critical and flexure-dominated 

scenarios. Then, the developed element was applied to a representative nine-girder PC bridge in 

Alberta, Canada to study the bridge system behavior and load sharing of multi-girder bridges. Main 

conclusions and findings are summarized as follows. 

(1) This thesis provides analysts and engineers with a reliable numerical tool for structural 

behavior analysis of RC/PC girders, as complementary to the widely used conventional fibre beam 

element. 

(2)  Compared with traditional fibre beam element, it is shown that the developed flexure-

shear coupled fibre beam element is superior in predicting the load-deflection behavior of RC/PC 
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girders under shear-critical scenarios. Also, the developed FE model can be used to predict the 

shear capacity of RC/PC girders more accurately than commonly used code-based models. 

(3) The bridge system behavior analysis shows that the nonlinearity (e.g., concrete cracking 

and connector yielding) plays an important role in internal force distribution and load sharing, 

while linear elastic assumption for load distribution factor can be unrealistic. It is also shown that 

the shear connector failure has a greater influence on the shear-connected girder system under 

flexure-dominated loading compared with that under shear-critical loading. One single shear 

connector failure out of the 40 shear connectors in the studied bridge can result in a capacity loss 

up to 14.32%. 

8.1.2 Sub-objective #2 

In this sub-objective, an experimental database containing 369 PC girders that failed in shear was 

compiled and utilized to probabilistically assess five widely utilized concrete structure and bridge 

design codes, i.e., ACI 318-19, AASHTO LRFD 2017, CSA A23.3:19, CSA S6:19 and fib MC 

2010. In view of the fact that systematic error exists in those models, probabilistic correction terms 

were developed for each design code model through Bayesian linear regression and Gaussian 

process regression. The resulted probabilistic shear capacity prediction models were then applied 

to the fragility analysis of PC girders. Main conclusions and findings are summarized as follows. 

(1) The assessment of shear capacity models from design codes indicates that although the 

detailed/general methods perform better than simplified methods, all design code models exhibit 

large conservative bias and prediction scatter. It is shown that the detailed method from ACI 318-

19 exhibit the least conservatism, while the general procedure from AASHTO LRFD 2017 has the 

lowest prediction scatter. 
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(2) Comparisons show that the developed probabilistic model for intact PC girders 

outperformed the original design code model in both accuracy and precision. It is also shown that 

the systemic correlation between the model error and model parameters in the original design code 

model has been learned successfully by the developed probabilistic correction term. 

(3) Fragility analysis results indicate that not considering the model error can lead to 

unreliable safety assessment in the design and management of PC girders and thus model error 

needs to be taken into account for reliability assessment, for which the probabilistic models 

developed in this study can be used. 

8.1.3 Sub-objective #3 

In this sub-objective, probabilistic prediction models for load-carrying capacity of corroded PC 

voided girders were developed. Firstly, a 2D continuum-based FE model for corroded PC girders 

was developed and validated by existing experimental tests. Then, a virtual experimental database 

of 4,165 PC girder tests considering various design, loading, and corrosion conditions was 

generated based on the developed FE model. With the generated virtual experimental database, the 

probabilistic capacity reduction factor model and the load-carrying capacity model were developed 

via Gaussian process regression to study the corrosion effects on capacity reduction and failure 

probability of corroded PC girders, respectively. Main conclusions and findings are summarized 

as follows. 

(1) Comparisons between experimental and numerical results indicates that the developed 

2D FE model for corroded PC girders can serve as a reliable tool to simulate the residual behavior 

and failure modes of corroded PC girders. 

(2) Parametric study for the influence of different model parameters on the corrosion-

induced load-carrying capacity reduction shows that increasing the tensile steel and the prestress 
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force can reduce the corrosion-induced capacity loss under flexure-dominated loading scenarios, 

while increasing the prestress force can reduce the corrosion-induced capacity loss under shear-

critical loading scenarios. 

(3) Conditional reliability analysis shows that for both shear-critical and flexural-

dominated loading scenarios, the failure probability of PC girders increases with the increase of 

corrosion degree. The obtained conditional failure probability curves can be used to guide the 

reliability-based bridge management with the measured corrosion degree and the designed load 

level in engineering practice. 

8.2 Contributions and Highlights 

The contributions and highlights of the research work in this thesis are summarised as follows: 

(1) A new flexure-shear coupled fibre beam element was developed in this thesis, which 

provides analysts and engineers with a computational efficient and accurate numerical tool for the 

behavior/failure analysis of PC girders. 

(2) The system behavior and load-shearing of multi-girder PC bridges were studied under 

both flexure-dominated and shear-critical loading scenarios. The influence of losing (e.g., due to 

corrosion damage) and increasing (e.g., due to retrofit) shear connectors were also studied by 

parametric analyses. The insights gained from this study can provide guidance for future design 

and construction of multi-girder bridges. 

(3) An experimental database containing 369 PC girders that failed in shear was compiled, 

based on which the model errors for shear capacity models from ACI 318-19, AASHTO LRFD 

2017, CSA A23.3:19, CSA S6:19, and fib MC 2010 were quantified. These quantified model errors 

can be used as professional or corrective factors in reliability analysis or reliability-based code 

calibration of PC girders for analysts and engineers. 
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(4) Probabilistic shear capacity models for intact PC girders were developed, which can 

benefit shear capacity predictions with better accuracy and precision, as well as reliability/fragility 

analysis of PC girders with the model error considered. 

(5) Probabilistic load-carrying capacity models for corroded PC girders were developed 

and applied to study how corrosion reduces the load-carrying capacity and increases the probability 

of failure for corroded PC girders. The resulted conditional failure probability curves can be used 

to guide the reliability-based bridge management with the measured corrosion degree and the 

designed load level in engineering practice. 

8.3 Recommendations for Future Work 

The presented work is limited in various aspects, and thus recommendations for future work are 

suggested as follows: 

(1) The bonding between concrete and steel in the developed fibre beam element is 

assumed to be perfect, which limits its application to corroded RC/PC girders where the bond-slip 

plays an important role. The developed fibre beam element can be further enhanced in its 

formulation to consider bond-slip and thus applicable for corroded RC/PC girders. 

(2) The developed fibre beam element only focuses on the monotonic behavior of RC/PC 

girders. With the adoption of cyclic MCFT material model, the developed fibre beam element can 

be extended to simulating the cyclic behavior of RC/PC members.  

(3) The model error of developed FE models for both intact and corroded PC girders are 

neglected in this thesis. Although sufficient accuracy has been proved by comparison with 

experimental tests, systematic analysis/quantification of the model error from FE models are 

needed in the future to better serve FE-based reliability analysis.  
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(4) As an important ingredient in reliability-based safety assessment of bridges, this thesis 

focuses on probabilistic capacity model development. Its integration into reliability-based safety 

assessment framework where the uncertainty in loads is also considered and its application for 

reliability-based bridge evaluation will be the next step following this research project.  
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APPENDIX A: IMPLEMENTATION AND VALIDATION OF THE MCFT 

MATERIAL MODEL IN MATLAB 

In order to consider the coupling effect of shear and flexural behavior in reinforced concrete  or 

pre-stressed concrete girders, a well-recognized material constitutive model, the modified 

compression field theory (MCFT), can be used. Before integrating it into the finite element 

formulation of the new fibre beam element, the MCFT is implemented in MATLAB and applied to 

reproduce the response of the specimen PV20 (as shown in Figure A-1(a)) from Vecchio and 

Collins (1986) to verify that the MCFT is well understood and implemented correctly by the 

author. As shown in Figure A-1(b), the predicted strain-stress curve agrees well with the prediction 

results from Vecchio and Collins (1986). The MCFT material model is then implemented in 

OpenSees and work together with the new flexure-shear coupled fibre beam element. The utilized 

MATLAB code is attached in this appendix. 

 

 

(a) (b) 

Figure A-1: Reproduce of the response for the specimen PV20: (a) specimen PV20 after 

failure (Vecchio and Collins 1986), and (b) comparison of the predicted stress-strain curves 
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clear all 
clc 
%% 
%From stress to strain(in mm, N and MPa, tension is positive, compression is negative) 
smx=47; 
smy=44; %crack control parameters, from paper in section "examples of prediction 
response"  
epsilon1=[0.067*10^(-3),0.5*10^(-3),1*10^(-3),1.5*10^(-3),2*10^(-3),3*10^(-
3),5*10^(-3),7*10^(-3),7.5*10^(-3)]; %from paper in Table 2 
theta=[44.9,42.8,42.0,41.6,41.4,41.3,37.9,36.3,36.3]; %from paper in Table 2 
fsy=[1.6,46,97,148,198,293,297,297,297]; %from paper in Table 2 
fx=0; 
fy=0; %pure shear 
Rx=0.0179;  %from paper in Table 1 
Ry=0.0089; 
fyx=460; 
fyy=297; 
fc_prime=-19.6; 
epsilonc_prime=-0.0018; 
Ec=2*fc_prime/epsilonc_prime; %equation from paper 
fcr=0.33*(-fc_prime)^0.5; 
Es=200000; %Not found in the paper, 200GPa is assumed 
Aa=6; %Maximum aggregate size, from paper in section of "experimental program" 
 
for i=1:length(epsilon1) 
    stheta=1/(sind(theta(i))/smx+cosd(theta(i))/smy); 
    w(i)=epsilon1(i)*stheta;  
    fc1(i)=fcr/(1+(200*epsilon1(i))^0.5);  
    vcimax(i)=(-fc_prime)^0.5/(0.31+24*w(i)/(Aa+16)); 
    kk=1.64-1/tand(theta(i)); 
    if kk<0 
        kk=0; 
    end 
    fc1_max(i)=vcimax(i)*(0.18+0.3*kk^2)*tand(theta(i))+Ry*(fyy-fsy(i)); 
    fcy=fy-Ry*fsy(i); 
    vxy(i)=(fc1(i)-fcy)/tand(theta(i)); 
    fc2(i)=fc1(i)-vxy(i)*(tand(theta(i))+1/tand(theta(i))); 
    Ratio(i)=fc2(i)/fc_prime; 
    fc2_max(i)=fc_prime/(0.8-0.34*epsilon1(i)/epsilonc_prime); 
    epsilon2(i)=epsilonc_prime*(1-(1-fc2(i)/fc2_max(i))^0.5); 
    fc2_check(i)=fc2_max(i)*(2*epsilon2(i)/epsilonc_prime-
(epsilon2(i)/epsilonc_prime)^2); 
    
epsilony(i)=(epsilon1(i)+epsilon2(i)*(tand(theta(i)))^2)/(1+(tand(theta(i)))^2); 
    fsy_check(i)=Es*epsilony(i); 
    if fsy_check(i)>fyy 
        fsy_check(i)=fyy; 
    end 
    epsilonx(i)=epsilon1(i)+epsilon2(i)-epsilony(i); 
    fsx(i)=Es*epsilonx(i); 
    if fsx(i)>fyx 
        fsx(i)=fyx; 
    end 
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    fcx(i)=fc1(i)-vxy(i)/tand(theta(i)); 
    fx(i)=fcx(i)+Rx*fsx(i); 
    deta_fc1=fc1(i)-Ry*(fyy-fsy(i)); 
    if deta_fc1<=0 
        vci(i)=0; 
        fci=0; 
    else 
        Cc=deta_fc1/tand(theta(i))-0.18*vcimax(i); 
        if Cc<=0 
            fci=0; 
            vci(i)=deta_fc1/tand(theta(i)); 
        else 
            AAA=0.82/vcimax(i); 
            BBB=1/tand(theta(i))-1.64; 
            fci=(-BBB-(BBB^2-4*AAA*Cc)^0.5)/(2*AAA); 
            vci(i)=(fc1(i)+deta_fc1)/tand(theta(i)); 
        end 
    end 
    fsycr(i)=fsy(i)+(fc1(i)+fci-vci(i)*tand(theta(i)))/Ry; 
    fsxcr(i)=fsx(i)+(fc1(i)+fci+vci(i)*tand(theta(i)))/Rx;  
    Gamma_xy(i)=2*(epsilonx(i)-epsilon2(i))/tand(theta(i)); 
end 
 
%% 
%From strain to stress  
for i=1:length(Gamma_xy) 
    theta_prime(i)=(atan(Gamma_xy(i)/(epsilony(i)-epsilonx(i))))/2*180/pi; 
    Ep1(i)=(epsilonx(i)*(tand(theta_prime(i)))^2-
epsilony(i))/((tand(theta_prime(i)))^2-1); 
    Ep2(i)=epsilonx(i)+epsilony(i)-Ep1(i); 
    Fc1(i)=fcr/(1+(200*Ep1(i))^0.5); 
    Fc2_Max(i)=fc_prime/(0.8-0.34*Ep1(i)/epsilonc_prime); 
    Fc2(i)=Fc2_Max(i)*(2*Ep2(i)/epsilonc_prime-(Ep2(i)/epsilonc_prime)^2); 
    Vxy(i)=(Fc1(i)-Fc2(i))/(tand(theta_prime(i))+1/tand(theta_prime(i))); 
    Fcx(i)=Fc1(i)-Vxy(i)/tand(theta_prime(i)); 
    Fcy(i)=Fc1(i)-Vxy(i)*tand(theta_prime(i));   
    Fsx(i)=Es*epsilonx(i); 
    if Fsx(i)>fyx 
        Fsx(i)=fyx; 
    end 
    Fsy(i)=Es*epsilony(i); 
    if Fsy(i)>fyy 
        Fsy(i)=fyy; 
    end 
    Fx(i)=Fcx(i)+Rx*Fsx(i); 
    Fy(i)=Fcy(i)+Ry*Fsy(i); 
end 
 
Xx=[0,0.12,0.60,1.15,1.71,2.29,3.50,5.70,8.06,8.80]*10^(-3); %MCFT from paper 
Yy=[0,1.31,1.65,2.11,2.56,3.03,3.95,4.37,4.55,4.53]; 
Xx1=[0,Gamma_xy]; 
Yy1=[0,Vxy]; 
plot(Xx1,Yy1,'-','linewidth',0.5) 
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hold on 
plot(Xx,Yy,':','linewidth',2) 
box on; grid on; 
xlabel('Shear strain', 'fontsize', 12) 
ylabel('Shear stress (MPa)', 'fontsize', 12) 
legend('MCFT in Matlab','Vecchio and Collins (1986)','Location','southeast') 
filename = 'Jack'; 
W=4; H=3; 
set(gca, 'fontsize', 12); 
set(gcf, 'PaperUnits', 'inches'); 
set(gcf, 'PaperSize', [W H]); 
set(gcf, 'PaperPositionMode', 'manual'); 
set(gcf, 'PaperPosition', [0 0 W H]); 
print('-depsc','-r800',filename); 
print('-dtiff','-r800',filename); 
saveas(gcf, [filename,'.fig']); 
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APPENDIX B: SUMMARY OF THE COMPILED EXPERIMENTAL DATABASE 

The detailed information of the 369 PC girders that failed in shear is listed in Table A-1 with the 

following information. The related references are also provided in the end. 

Specimen I.D.: specimen’s identification reported in the original references 

Cross section: I means I-shaped section, T means T-shaped section, R means rectangular section 

cf  : concrete compressive tested by cylinder specimens, in MPa 

a d : shear span to depth ration 

wb h : web width to overall depth ratio   

v ytf :  shear reinforcement index
v yt wA f b s= , in MPa  

se puf f : percentage of effective prestress to tensile strength in tensile prestressing strands  

s yA f : tensile non-prestressing steel index, in kN  

ps puA f : tensile prestressing strand index, in kN 

testv : normalized tested sectional shear strength 0.25tested c wV f b d=   

Table A-1: Experimental database of PC girders that failed in shear  

Specimen I.D. 
Cross 

section 
cf   

(MPa) 
a d  

wb h  v ytf  

(MPa) 
se puf f  s yA f  

(kN) 

ps puA f  

(kN) 
testv  

Brandes and Kurama 2018 

UP4-0-2 R 79.8 2.0 0.66 2.29 0.58 0 367.56 0.29 

UP4-50-2 R 83.5 2.0 0.66 2.29 0.56 0 367.56 0.28 

UP4-100-2 R 85.6 2.0 0.66 2.29 0.54 0 367.56 0.28 

UP5-0-2 R 71.1 2.0 0.66 2.29 0.56 0 367.56 0.33 

UP5-50-2 R 69.1 2.0 0.66 2.29 0.55 0 367.56 0.35 

UP5-100-2 R 72 2.0 0.66 2.29 0.55 0 367.56 0.31 

CT4-0-2 R 66.8 2.0 0.66 2.29 0.41 0 367.56 0.27 

CT4-50-2 R 70.1 2.0 0.66 2.29 0.39 0 367.56 0.29 

CT4-100-2 R 69.8 2.0 0.66 2.29 0.37 0 367.56 0.26 

Chehab et al. 2018 

1-1 I 52 2.8 0.17 2.28 0.72 0 2763.25 0.59 
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1-2 I 54 3.4 0.17 2.28 0.72 0 2763.25 0.47 

1-3 I 59 3.4 0.17 0.86 0.72 0 2763.25 0.42 

2-1 I 63 2.0 0.17 0.86 0.59 0 2763.25 0.53 

 2-2 I 63 2.8 0.17 0.86 0.59 0 2763.25 0.46 

2-3 I 63 3.5 0.17 0.86 0.59 0 2763.25 0.30 

Shen et al. 2015 

S30-1A R 35.4 3.8 0.52 0 0.58 169.95 172.98 0.25 

S50-1A R 52.6 3.8 0.52 0 0.58 169.95 172.98 0.19 

S70-1A R 68.3 3.8 0.52 0 0.58 169.95 172.98 0.16 

S30-2A R 34.9 4.0 0.52 0 0.58 339.90 172.98 0.27 

S50-2A R 57.1 4.0 0.52 0 0.58 339.90 172.98 0.23 

S70-2A R 67.3 4.0 0.52 0 0.58 339.90 172.98 0.19 

S30-1B R 36.7 3.8 0.52 0 0.58 169.95 172.98 0.30 

S70-1B R 67.3 3.8 0.52 0 0.58 169.95 172.98 0.17 

Wilder et al. 2015 

B101 I 77.5 3.1 0.11 1.64 0.62 0 1894.77 0.54 

B102 I 77.5 3.9 0.11 1.64 0.62 0 1894.77 0.46 

B103 I 77.5 3.9 0.11 0 0.62 0 1894.77 0.38 

B104 I 88.9 3.1 0.11 1.64 0.31 0 1894.77 0.35 

B105 I 88.9 3.9 0.11 1.64 0.31 0 1894.77 0.32 

B106 I 88.9 3.9 0.11 0 0.31 0 1894.77 0.23 

B109 I 89.3 3.6 0.11 0 0.62 0 947.39 0.21 

Lee et al. 2010 

C40P2S10 I 45.4 2.6 0.17 1.12 0.54 3092.93 2099.36 0.65 

C40P2S13 I 45.4 2.6 0.17 1.98 0.54 3092.93 2099.36 0.71 

C60P1S10 I 73.4 2.6 0.17 1.12 0.49 3092.93 1049.68 0.38 

C60P2S10 I 73.4 2.6 0.17 1.12 0.54 3092.93 2099.36 0.47 

C60P2S13 I 73.4 2.6 0.17 1.98 0.54 3092.93 2099.36 0.53 

C80P2S10 I 84.9 2.6 0.17 1.12 0.54 3092.93 2099.36 0.38 

C80P2S13 I 84.9 2.6 0.17 1.98 0.54 3092.93 2099.36 0.46 

Saqan and Frosch 2009 

V-4-0 R 52.1 3.3 0.50 0 0.65 0 735.02 0.09 

V-4-0.93 R 52.7 3.0 0.50 0 0.65 248.21 735.02 0.11 

V-4-2.37 R 53.4 3.1 0.50 0 0.65 632.54 735.02 0.12 

V-7-0 R 54.5 3.3 0.50 0 0.38 0 1286.29 0.13 

V-7-1.84 R 53.1 3.1 0.50 0 0.38 491.08 1286.29 0.15 

V-7-2.37 R 53.1 3.1 0.50 0 0.38 632.54 1286.29 0.14 

V-10-0 R 51.7 3.3 0.50 0 0.27 0.00 1837.56 0.14 

V-10-1.51 R 51.7 3.1 0.50 0 0.27 403.01 1837.56 0.14 

V-10-2.37 R 51.7 3.1 0.50 0 0.27 632.54 1837.56 0.15 

Heckmann and Bayrak 2008 

CB-60-1 I 84.8 2.2 0.18 0.98 0.62 0 4777.66 0.52 

CB-60-2 I 87.6 2.2 0.18 0.98 0.62 0 4777.66 0.50 

CB-70-1 I 83.4 2.2 0.18 0.98 0.62 0 4777.66 0.52 

CB-70-4 I 85.7 2.2 0.18 0.98 0.61 0 4777.66 0.50 
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CB-70-5 I 86.2 2.2 0.18 0.98 0.60 0 4777.66 0.48 

CB-70-6 I 88.3 2.2 0.18 0.98 0.59 0 4777.66 0.51 

CC-70-1 I 73.8 2.2 0.18 0.98 0.59 0 6615.22 0.61 

CC-70-2 I 73.8 2.2 0.18 0.98 0.59 0 6615.22 0.67 

CC-65-3 I 73.8 2.2 0.18 0.98 0.55 0 6615.22 0.63 

CC-65-4 I 73.8 2.2 0.18 0.98 0.55 0 6615.22 0.65 

CC-60-1 I 73.8 2.2 0.18 0.98 0.51 0 6615.22 0.62 

CC-60-2 I 73.8 2.2 0.18 0.98 0.51 0 6615.22 0.62 

CD-70-1 I 73.8 2.2 0.18 0.98 0.59 0 6615.22 0.66 

CD-70-2 I 73.8 2.2 0.18 0.98 0.59 0 6615.22 0.67 

CD-65-3 I 73.8 2.2 0.18 0.98 0.55 0 6615.22 0.64 

CD-65-4 I 73.8 2.2 0.18 0.98 0.55 0 6615.22 0.66 

CD-60-1 I 73.8 2.2 0.18 0.98 0.51 0 6615.22 0.66 

CD-60-2 I 73.8 2.2 0.18 0.98 0.51 0 6615.22 0.68 

De Silva and Witchukreangkrai. 2006 

IPRC-1 I 41.8 3.0 0.30 1.32 0.59 1413.72 639.77 0.50 

IPRC-2 I 49.3 3.0 0.30 0.73 0.59 1413.72 639.77 0.39 

IPRC-3 I 45 3.0 0.30 1.06 0.59 1413.72 639.77 0.41 

IPRC-4 I 43.2 3.0 0.30 1.32 0.59 2621.96 639.77 0.51 

Teoh et al. 2002 

A6-8 I 93.9 2.7 0.21 0.44 0.60 593.33 1116.00 0.17 

A3-8 I 88.9 2.7 0.21 0.44 0.32 593.33 1116.00 0.16 

B6-4 I 42.9 2.7 0.21 0.42 0.60 593.33 1116.00 0.30 

B6-12 I 99.9 2.7 0.21 0.79 0.60 593.33 1116.00 0.17 

B6-8 I 92.1 2.7 0.21 0.64 0.60 593.33 1116.00 0.21 

B3-8 I 84.3 2.7 0.21 0.64 0.32 593.33 1116.00 0.15 

Alshegeir and Ramirez 1992 

 I-3A  I 60.7 2.4 0.21 0.92 0.65 0 1638.75 0.34 

 I-4A I 60.7 2.3 0.21 1.26 0.67 0 1638.75 0.47 

 II-1A I 61.7 2.2 0.17 1.26 0.65 0 2458.12 0.50 

Rangan 1991 

Ⅱ-1 I 45 2.5 0.10 9.15 0.67 910.00 484.76 1.13 

Ⅱ-2 I 31.5 2.5 0.10 15.47 0.67 910.00 484.76 1.35 

Ⅱ-3 I 44.6 2.5 0.12 8.03 0.67 910.00 484.76 1.07 

Ⅱ-4 I 43 2.5 0.12 13.17 0.67 910.00 484.76 1.07 

Ⅲ-1 I 40 2.5 0.11 8.88 0.67 737.10 692.52 0.99 

Ⅲ-2 I 37 2.5 0.11 14.77 0.67 737.10 692.52 1.14 

Ⅲ-3 I 39 2.5 0.13 7.61 0.67 737.10 692.52 0.94 

Ⅲ-4 I 37 2.5 0.12 13.35 0.67 737.10 692.52 1.20 

Ⅳ-1 I 37.1 2.6 0.10 15.72 0.67 150.15 1246.54 1.22 

Ⅳ-2 I 33 2.6 0.10 9.15 0.67 150.15 1246.54 1.20 

Ⅳ-3 I 36 2.6 0.12 13.54 0.67 150.15 1246.54 1.34 

Ⅳ-4 I 28.7 2.6 0.12 8.14 0.67 150.15 1246.54 1.41 

Hartman et al. 1988 

1-1 I 77.9 3.0 0.09 0 0.61 0 527.11 0.31 
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1-2 I 77.9 3.0 0.09 0.85 0.61 0 527.11 0.30 

1-3 I 77.9 3.0 0.09 1.51 0.61 0 527.11 0.32 

2-1 I 74.5 3.3 0.09 11.07 0.55 142.88 1581.34 0.97 

2-2 I 74.5 3.3 0.09 13.84 0.55 142.88 1581.34 1.06 

2-3 I 74.5 3.3 0.09 13.84 0.55 142.88 1581.34 1.04 

Kaufman and Ramirez 1988 

Ⅰ-2 I 57.5 2.4 0.21 1.04 0.65 0 1604.56 0.45 

Ⅰ-3 I 57.7 2.4 0.21 0.90 0.67 0 1604.56 0.31 

Ⅰ-4 I 57.7 2.4 0.21 1.04 0.68 0 1604.56 0.34 

Ⅱ-1 I 62.7 2.5 0.17 1.04 0.66 0 2406.84 0.31 

Robertson and Durrani 1987 

1 T 41.6 3.5 0.15 0 0.54 0 551.27 0.54 

3 T 46.1 3.5 0.15 0.95 0.51 0 551.27 0.55 

4 T 44.1 3.5 0.15 0.95 0.57 0 551.27 0.62 

5 T 44.6 3.5 0.15 0.90 0.57 0 551.27 0.62 

6 T 41.9 3.5 0.15 0.24 0.56 0 551.27 0.62 

7 T 43.0 3.5 0.15 0 0.50 0 551.27 0.54 

8 T 39.4 3.5 0.15 0.72 0.57 0 551.27 0.71 

10 T 42.0 3.5 0.15 0.72 0.56 0 551.27 0.68 

11 T 41.8 3.5 0.15 1.43 0.56 0 551.27 0.71 

12 T 41.5 3.5 0.15 0.41 0.58 0 551.27 0.63 

13 T 41.3 3.5 0.15 0.41 0.56 0 551.27 0.58 

Elzanaty et al. 1986 

CW1 I 76.5 2.9 0.11 0 0.47 92.48 1282.86 0.39 

CW3 I 76.5 5.0 0.11 0 0.46 92.48 1282.86 0.33 

CW2 I 76.5 3.8 0.11 0 0.47 92.48 1282.86 0.35 

CW4 I 78.6 3.8 0.11 0 0.48 0 1282.86 0.35 

CW5 I 77.9 3.8 0.11 0 0.47 504.43 1282.86 0.34 

CW7 I 77.6 3.8 0.11 0 0.50 92.48 890.87 0.29 

CW6 I 77.9 3.8 0.11 0 0.35 92.48 1282.86 0.31 

CW9 I 61.0 3.8 0.11 0 0.35 92.48 1282.86 0.36 

CW8 I 41.4 3.8 0.17 0 0.35 92.48 1282.86 0.31 

CI1 T 76.5 7.8 0.21 0 0.47 92.48 1282.86 0.22 

CI3 T 76.5 4.0 0.21 0 0.47 92.48 1282.86 0.34 

CI2 T 76.5 5.8 0.21 0 0.47 92.48 1282.86 0.32 

CI4 T 78.6 5.8 0.21 0 0.48 0 1282.86 0.30 

CI5 T 77.9 5.8 0.21 0 0.47 504.43 1282.86 0.33 

CI7 T 77.6 5.8 0.21 0 0.50 92.48 890.87 0.23 

CI6 T 77.9 5.8 0.21 0 0.35 92.48 1282.86 0.25 

CI9 T 61.0 5.8 0.21 0 0.35 92.48 1282.86 0.32 

CI8 T 41.4 5.8 0.21 0 0.35 92.48 1282.86 0.46 

CW10 I 73.1 3.8 0.11 4.78 0.34 92.48 1282.86 0.51 

CW11 I 55.8 3.8 0.11 4.78 0.33 92.48 1282.86 0.60 

CW12 I 40.0 3.8 0.11 4.78 0.34 92.48 1282.86 0.76 

CW13 I 72.4 3.8 0.11 4.78 0.47 92.48 1282.86 0.54 



 

193 

 

 

CW14 I 73.8 3.8 0.11 6.83 0.48 92.48 1282.86 0.55 

CW15 I 70.3 3.8 0.11 4.78 0.49 92.48 890.87 0.46 

CW16 I 73.1 3.8 0.11 4.78 0.47 504.43 1282.86 0.55 

CW17 I 69.6 3.8 0.11 2.17 0.47 92.48 1282.86 0.44 

CI10 T 73.1 5.8 0.21 3.98 0.34 92.48 1282.86 0.42 

CI11 T 55.8 5.8 0.21 3.98 0.34 92.48 1282.86 0.50 

CI12 T 40.0 5.8 0.21 3.98 0.34 92.48 1282.86 0.67 

CI13 T 72.4 5.8 0.21 3.98 0.47 92.48 1282.86 0.47 

CI14 T 73.8 5.8 0.21 6.37 0.48 92.48 1282.86 0.49 

CI15 T 70.3 5.8 0.21 3.98 0.49 92.48 890.87 0.37 

CI16 T 73.1 5.8 0.21 3.98 0.47 504.43 1282.86 0.49 

CI17 T 69.6 5.8 0.21 1.81 0.47 92.48 1282.86 0.40 

Xuan 1986 

PSN 1 -0 T 36.1 2.9 0.17 0 0.70 565.50 360.95 0.62 

PSN2-WD T 38.1 2.9 0.17 1.29 0.70 565.50 360.95 0.68 

PSN3-D2 T 33.3 2.9 0.17 1.65 0.70 565.50 360.95 0.92 

PSN4-WDH T 31.5 2.9 0.17 1.30 0.70 565.50 360.95 0.93 

PSN5-S6M T 32.5 2.9 0.17 1.18 0.70 565.50 360.95 0.93 

PSN6-WS T 34.3 2.9 0.17 1.37 0.70 565.50 360.95 0.88 

Lyngberg 1976 

2A-3 I 32.6 2.8 0.20 4.31 0.50 408.41 1249.55 0.96 

2B-3 I 33.9 2.8 0.20 3.41 0.50 407.79 1249.55 0.94 

3A-2 I 31.1 2.8 0.20 3.51 0.51 822.98 833.04 0.97 

3B-2 I 27.5 2.8 0.20 3.31 0.51 824.21 833.04 0.97 

4A-1 I 31.5 2.8 0.20 3.39 0.52 1299.86 416.52 0.92 

4B-1 I 30.4 2.8 0.20 3.49 0.50 1305.48 416.52 0.92 

Mahgoub 1975 

A1 I 41.2 3.0 0.25 0 0.56 0 316.54 0.43 

A5 I 44.5 2.0 0.25 0 0.55 0 316.54 0.50 

A6 I 47.2 3.0 0.25 0 0.55 0 316.54 0.41 

A12 I 29.2 3.5 0.25 0 0.44 0 316.54 0.42 

B1 I 37.0 4.0 0.17 0 0.39 0 316.54 0.37 

B3 I 46.4 2.0 0.17 0 0.45 0 316.54 0.50 

B10 I 39.8 3.5 0.17 0 0.49 0 316.54 0.43 

C1 I 40.0 2.0 0.25 0 0.58 0 316.54 0.63 

C11 I 36.0 4.0 0.25 0 0.43 0 316.54 0.30 

D3 I 42.6 3.0 0.17 0 0.43 0 316.54 0.33 

D4 I 41.2 4.5 0.17 0 0.40 0 316.54 0.27 

E1 I 51.3 3.0 0.25 0 0.43 0 316.54 0.30 

E2 I 42.2 2.0 0.25 0 0.33 0 316.54 0.36 

E3 I 44.6 2.0 0.25 0 0.51 0 316.54 0.71 

E4 I 40.0 4.0 0.25 0 0.51 0 316.54 0.30 

E6 I 40.0 3.0 0.25 0 0.62 0 316.54 0.47 

F2 I 39.4 4.0 0.17 0 0.46 0 316.54 0.32 

F4 I 39.5 2.0 0.17 0 0.58 0 316.54 0.68 
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F5 I 42.1 4.5 0.17 0 0.33 0 316.54 0.24 

G3 R 43.6 2.0 0.67 0 0.51 0 316.54 0.27 

G6 R 39.8 3.0 0.67 0 0.53 0 316.54 0.19 

Bennett and Balasooriya 1971 

3A2 I 41.7 3.4 0.10 8.68 0.54 16.81 375.24 1.17 

2A3 I 33.8 2.3 0.10 8.68 0.57 16.81 375.24 1.67 

2B2 I 43.0 2.3 0.10 8.68 0.48 16.81 375.24 1.63 

2B3 I 43.9 2.3 0.10 8.68 0.56 16.81 375.24 1.62 

2B4 I 38.1 2.3 0.10 8.68 0.28 16.81 375.24 1.45 

2B5 I 39.0 2.3 0.10 8.68 0.12 16.81 375.24 1.36 

3C2 I 33.2 3.4 0.10 8.68 0.47 16.81 375.24 1.59 

3C3 I 33.6 3.4 0.10 8.68 0.36 16.81 375.24 1.63 

3C4 I 30.5 3.4 0.10 8.68 0.27 16.81 375.24 1.29 

3C5 I 31.6 3.4 0.10 8.68 0.12 16.81 375.24 1.08 

3D1 I 44.3 3.4 0.10 13.01 0.46 16.81 375.24 1.35 

3D2 I 44.3 3.4 0.10 8.68 0.48 16.81 375.24 1.21 

3D3 I 40.3 3.4 0.10 5.79 0.44 16.81 375.24 1.21 

3D4 I 39.4 3.4 0.10 4.33 0.46 16.81 375.24 1.08 

3E3 I 40.7 3.4 0.15 5.79 0.47 16.81 375.24 1.03 

2F1 I 39.2 2.2 0.06 7.43 0.60 16.81 500.33 1.44 

2F2 I 39.2 2.2 0.06 7.43 0.58 16.81 500.33 1.41 

2F3 I 39.2 2.2 0.06 7.43 0.41 16.81 500.33 1.26 

2F4 I 40.0 2.2 0.06 7.43 0.26 16.81 500.33 1.13 

Hanson and Hulsbos 1964 

F-X1-Ist I 45.9 3.4 0.17 0.84 0.37 0 1091.32 0.45 

F-1-Ist I 47.0 2.1 0.17 1.34 0.38 0 1091.32 0.83 

F-2-Ist I 45.2 2.8 0.17 0.84 0.35 0 1091.32 0.57 

F-3-Ist I 47.2 2.8 0.17 0.58 0.36 0 1091.32 0.55 

F-4-Ist I 43.7 3.5 0.17 0.80 0.39 0 1091.32 0.56 

F-5-Ist I 44.2 3.5 0.17 0.56 0.35 0 1091.32 0.47 

F-6-Ist I 43.0 7.1 0.17 0.32 0.36 0 1091.32 0.29 

F-7-Ist I 45.6 4.2 0.17 0.67 0.38 0 1091.32 0.41 

F-8-Ist I 47.4 4.2 0.17 0.39 0.37 0 1091.32 0.37 

F-9-Ist I 45.9 6.3 0.17 0.70 0.37 0 1091.32 0.36 

F-10-Ist I 48.6 4.9 0.17 0.33 0.37 0 1091.32 0.33 

F-11-Ist I 41.6 4.9 0.17 0.46 0.36 0 1091.32 0.41 

F-12-Ist I 44.8 5.6 0.17 0.29 0.36 0 1091.32 0.33 

F-13-Ist I 44.5 5.6 0.17 0.41 0.34 0 1091.32 0.35 

F-14-Ist I 46.6 6.3 0.17 0.26 0.37 0 1091.32 0.31 

F-15-Ist I 39.9 7.1 0.17 0.23 0.32 0 1091.32 0.28 

F-16-Ist I 46.2 7.8 0.17 0.32 0.36 0 1091.32 0.27 

F-19-Ist I 51.1 3.5 0.17 1.07 0.37 0 1091.32 0.50 

F-X1-2nd I 45.9 3.4 0.17 0.84 0.37 0 1091.32 0.53 

F-1-2nd I 47.0 2.1 0.17 1.34 0.38 0 1091.32 0.89 

F-2-2nd I 45.2 2.8 0.17 0.84 0.35 0 1091.32 0.69 
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F-3-2nd I 47.2 2.8 0.17 0.58 0.36 0 1091.32 0.69 

F-4-2nd I 43.7 3.5 0.17 0.80 0.39 0 1091.32 0.59 

F-5-2nd I 44.2 3.5 0.17 0.56 0.35 0 1091.32 0.49 

F-7-2nd I 45.6 4.2 0.17 0.67 0.38 0 1091.32 0.59 

F-8-2nd I 47.4 4.2 0.17 0.39 0.37 0 1091.32 0.51 

F-9-2nd I 45.9 6.3 0.17 0.70 0.37 0 1091.32 0.32 

F-10-2nd I 48.6 4.9 0.17 0.33 0.37 0 1091.32 0.39 

F-11-2nd I 41.6 4.9 0.17 0.46 0.36 0 1091.32 0.45 

F-12-2nd I 44.8 5.6 0.17 0.29 0.36 0 1091.32 0.36 

F-13-2nd I 44.5 5.6 0.17 0.41 0.34 0 1091.32 0.34 

F-14-2nd I 46.6 6.3 0.17 0.26 0.37 0 1091.32 0.32 

F-19-2nd I 51.1 3.5 0.17 1.07 0.37 0 1091.32 0.51 

Evans and Schumacher 1963 

S2 R 38.8 2.4 0.33 0 0.11 0 531.09 0.43 

S3 I 37.1 4.0 0.17 0 0.19 0 294.25 0.37 

S4 I 34.9 4.0 0.17 0 0.08 0 661.36 0.56 

S5 I 35.2 4.0 0.17 0 0.18 0 400.74 0.49 

S7 I 33.8 3.4 0.17 0 0.16 0 524.05 0.66 

S8 I 28.6 5.4 0.17 0 0.32 0 401.65 0.39 

S9 I 30.5 5.0 0.16 0 0.24 0 525.65 0.52 

S10 I 30.5 5.5 0.11 0 0.23 0 525.25 0.53 

S11 I 32.6 5.4 0.16 0 0.34 0 293.82 0.38 

S12 I 32.6 5.4 0.12 0 0.25 0 400.64 0.45 

S13 I 36.0 5.4 0.11 0 0.32 0 295.64 0.49 

S14 I 30.3 4.5 0.17 0 0.18 0 525.65 0.51 

S15 I 27.9 4.5 0.17 0 0.33 0 296.25 0.48 

S16 I 34.0 4.5 0.17 0 0.25 0 400.34 0.44 

S17 I 37.4 4.4 0.11 0 0.15 0 524.10 0.34 

S18 I 30.0 4.5 0.11 0 0.23 0 400.64 0.46 

S19 I 30.0 3.7 0.17 0 0.18 0 522.95 0.49 

S20 I 28.1 4.5 0.11 0 0.35 0 295.45 0.52 

S21 I 28.1 3.7 0.17 0 0.37 0 293.82 0.58 

S22 I 24.0 3.6 0.11 0 0.17 0 524.10 0.54 

S24 I 36.9 3.7 0.11 0 0.30 0 295.64 0.45 

S25 I 36.9 3.7 0.17 0 0.23 0 401.65 0.44 

S26 I 35.5 3.8 0.11 0 0.22 0 399.46 0.42 

S27 I 35.4 2.8 0.17 0 0.16 0 525.65 0.58 

S29 I 28.5 2.8 0.17 0 0.20 0 401.65 0.69 

S30 I 35.2 2.8 0.17 0 0.36 0 293.82 0.65 

S32 I 32.2 2.8 0.11 0 0.28 0 295.45 0.60 

S34 I 33.9 2.8 0.10 0 0.20 0 401.65 0.73 

S35 I 39.3 2.7 0.11 0 0.15 0 525.06 0.70 

S36 I 35.7 2.7 0.10 0 0.50 0 129.20 0.42 

S42 I 43.6 4.0 0.35 0 0.14 0 399.94 0.42 

S43 I 48.3 4.2 0.37 0 0.10 0 523.45 0.35 
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S44 I 32.5 2.7 0.10 0 0.43 0 118.16 0.47 

S46 R 33.0 4.7 0.52 0 0.45 0 117.40 0.25 

S48 R 33.0 5.0 0.52 0 0.54 0 116.49 0.28 

S49 I 36.3 2.8 0.11 0 0.36 0 295.45 0.47 

S50 I 39.6 3.0 0.12 0 0.37 0 293.97 0.53 

S51 I 36.5 2.7 0.11 0 0.37 0 295.78 0.48 

S52 I 33.9 2.7 0.10 0 0.34 0 295.86 0.64 

S53 I 37.9 2.8 0.10 0 0.34 0 295.45 0.51 

S54 I 36.3 2.8 0.10 0 0.36 0 295.45 0.45 

MacGregor et al. 1960 

B.14.34 I 18.2 3.5 0.26 0 0.45 0 205.31 0.43 

B.14.41 I 19.9 3.6 0.25 0 0.45 0 274.50 0.71 

BW.14.34 I 25.0 3.5 0.25 0 0.49 0 274.50 0.47 

BW.14.38 I 21.4 3.6 0.25 1.15 0.45 0 287.42 0.57 

BW.14.58 I 21.8 3.6 0.24 0.56 0.39 0 455.85 0.67 

BW.14.60 I 20.9 3.6 0.24 0.56 0.39 0 455.85 0.67 

BW.18.15S I 52.6 7.0 0.25 0.95 0.41 0 271.99 0.13 

C.13.23 I 25.7 2.6 0.15 0 0.47 0 205.31 0.59 

CW.13.28 I 29.9 2.8 0.15 2.82 0.46 0 457.78 0.93 

CW.14.17 I 21.6 3.4 0.15 0 0.47 0 143.71 0.54 

CW.14.22 I 32.1 3.6 0.14 1.93 0.46 0 287.42 0.68 

CW.14.23 I 18.5 3.4 0.15 0 0.47 0 143.71 0.65 

CW.14.37 I 22.3 3.6 0.14 1.44 0.45 0 287.42 0.93 

CW.14.39 I 20.8 3.6 0.15 1.15 0.45 0 287.42 0.82 

CW.14.47 I 17.5 3.6 0.14 0.95 0.44 0 287.42 1.09 

CW.14.50 I 16.5 3.5 0.15 1.24 0.46 0 287.42 1.14 

CW.14.51 I 22.5 3.6 0.15 0.68 0.45 0 407.41 0.89 

CW.14.54 I 22.8 3.6 0.15 5.74 0.42 0 407.41 0.92 

Sozen et al. 1959 

B.11.20 I 31.2 5.3 0.25 0 0.47 0 209.82 0.20 

B.11.29 I 28.9 5.4 0.25 0 0.49 0 266.84 0.28 

B.11.40 I 31.0 5.4 0.25 0 0.47 0 400.82 0.32 

B.12.10 I 38.6 3.2 0.26 0 0.48 0 137.25 0.17 

B.12.12 I 31.5 3.2 0.25 0 0.49 0 137.25 0.21 

B.12.14 I 26.5 3.2 0.25 0 0.48 0 137.25 0.27 

B.12.19 I 19.9 3.2 0.25 0 0.48 0 137.25 0.37 

B.12.26 I 30.8 3.6 0.25 0 0.44 0 259.11 0.35 

B.12.29 I 28.8 3.7 0.25 0 0.46 0 280.55 0.42 

B.12.34 I 33.3 3.5 0.26 0 0.43 0 388.11 0.38 

B.12.35 I 22.1 3.6 0.26 0 0.46 0 280.55 0.47 

B.12.50 I 20.3 3.5 0.25 0 0.46 0 333.83 0.52 

B.12.61 I 20.5 3.6 0.25 0 0.46 0 400.82 0.55 

B.13.16 I 38.2 2.7 0.25 0 0.50 0 199.85 0.31 

B.13.26 I 31.7 2.8 0.25 0 0.49 0 266.84 0.43 

B.13.41 I 29.8 2.8 0.24 0 0.47 0 400.82 0.51 
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B.21.26 I 30.8 5.3 0.25 0 0.24 0 280.55 0.19 

B.22.09 I 43.6 3.3 0.25 0 0.24 0 140.27 0.14 

B.22.23 I 35.3 3.6 0.25 0 0.21 0 280.55 0.25 

B.22.30 I 19.1 3.5 0.26 0 0.23 0 194.61 0.35 

B.22.41 I 18.7 3.6 0.26 0 0.20 0 259.11 0.41 

B.22.65 I 12.1 3.6 0.26 0 0.24 0 259.11 0.41 

B.22.68 I 18.4 3.6 0.25 0 0.24 0 400.82 0.48 

C.12.09 I 44.5 3.3 0.15 0 0.49 0 137.25 0.27 

C.12.18 I 36.6 3.7 0.15 0 0.46 0 206.29 0.41 

C.12.19 I 41.6 3.6 0.15 0 0.44 0 259.11 0.41 

C.12.32 I 25.0 3.7 0.16 0 0.43 0 248.74 0.48 

C.12.33 I 37.7 3.6 0.16 0 0.47 0 411.48 0.50 

C.12.40 I 16.5 3.7 0.15 0 0.47 0 206.29 0.61 

C.12.44 I 19.9 3.8 0.15 0 0.41 0 274.69 0.55 

C.12.50 I 20.8 3.6 0.15 0 0.46 0 333.83 0.68 

C.12.57 I 21.4 3.6 0.15 0 0.47 0 400.82 0.90 

C.22.29 I 17.2 3.5 0.15 0 0.25 0 123.84 0.40 

C.22.31 I 18.6 3.3 0.15 0 0.24 0 205.31 0.49 

C.22.36 I 22.8 3.5 0.16 0 0.24 0 273.37 0.36 

C.22.39 I 14.8 3.5 0.15 0 0.23 0 187.89 0.37 

C.22.40 I 31.9 3.7 0.15 0 0.36 0 411.48 0.46 

C.22.46 I 21.8 3.6 0.15 0 0.23 0 333.83 0.46 

C.22.62 I 14.2 4.0 0.16 0 0.23 0 248.74 0.60 

C.22.73 I 20.1 3.6 0.15 0 0.22 0 467.82 0.54 

Hernandez 1958 

G5 I 22.3 3.6 0.14 1.17 0.45 0 287.42 0.93 

G6 I 20.8 3.6 0.15 0.97 0.45 0 287.42 0.82 

G7 I 32.1 3.6 0.14 1.55 0.46 0 287.42 0.68 

G10 I 17.5 3.6 0.14 1.56 0.44 0 287.42 1.09 

G13 I 21.6 3.4 0.15 0.48 0.47 0 143.71 0.54 

G14 I 21.4 3.6 0.25 0.58 0.45 0 287.42 0.57 

G20 I 16.5 3.5 0.15 1.89 0.46 0 287.42 1.14 

G21 I 18.5 3.4 0.15 0.57 0.47 0 143.71 0.65 

G28 I 26.7 3.6 0.25 0.79 0.46 0 275.58 0.46 

G29 I 29.9 2.8 0.15 2.28 0.46 0 275.58 0.93 

G34 I 27.0 2.9 0.15 2.28 0.46 0 275.58 0.86 

Zwoyer and Siess 1954 

S-1 R 25.0 4.3 0.50 0 0.04 0 187.89 0.13 

S-3 R 29.6 4.2 0.50 0 0.10 0 187.89 0.12 

S-4 R 21.3 4.9 0.50 0 0.48 0 469.73 0.29 

S-5 R 43.2 4.7 0.50 0 0.43 0 469.73 0.20 

S-6 R 55.1 4.8 0.50 0 0.46 0 469.73 0.17 

S-7 R 24.5 4.6 0.50 0 0.43 0 469.73 0.31 

S-8 R 42.2 4.8 0.51 0 0.02 0 406.75 0.11 

S-9 R 32.8 4.8 0.50 0 0.24 0 406.75 0.20 
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S-10 R 39.9 4.8 0.50 0 0.30 0 406.75 0.19 

S-11 R 17.8 4.4 0.50 0 0.15 0 187.89 0.16 

S-12 R 32.8 4.8 0.50 0 0.13 0 406.75 0.18 

S-14 R 32.1 4.8 0.50 0 0.55 0 375.79 0.24 

S-15 R 19.9 4.7 0.50 0 0.37 0 187.89 0.20 

S-16 R 24.3 4.8 0.50 0 0.37 0 187.89 0.17 

S-18 R 28.6 4.7 0.50 0 0.25 0 249.81 0.13 

S-19 R 26.5 4.7 0.50 0 0.25 0 187.89 0.14 

S-20 R 36.9 4.6 0.50 0 0.26 0 187.89 0.11 

S-22 R 38.8 6.7 0.50 0 0.24 0 515.18 0.13 

S-23 R 30.1 6.7 0.50 0 0.50 0 411.48 0.18 

S-24 R 20.0 6.4 0.50 0 0.47 0 515.18 0.26 

S-25 R 20.0 6.4 0.50 0 0.46 0 274.69 0.19 

S-26 R 21.6 6.0 0.50 0 0.24 0 240.49 0.13 

S-27 R 23.1 6.4 0.50 0 0.25 0 172.09 0.09 

S-28 R 23.9 4.4 0.50 0 0.25 0 156.93 0.15 

S-29 R 22.9 3.2 0.50 0 0.47 0 343.08 0.43 

S-30 R 23.1 3.2 0.50 0 0.48 0 274.69 0.37 

S-31 R 16.8 3.2 0.50 0 0.48 0 308.88 0.48 

S-32 R 23.1 3.2 0.50 0 0.47 0 240.49 0.34 

S-33 R 23.4 4.5 0.50 0 0.44 0 343.08 0.28 

S-34 R 40.0 4.5 0.50 0 0.46 0 343.08 0.18 
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APPENDIX C: SUMMARY OF THE CALCULATION PROCEDURE AND THE 

RELATED PARAMETERS OF THE CONSIDERED SHEAR CAPACITY MODELS 

The calculation procedures of considered shear capacity prediction models are summarized in 

Figure C-1, and the related parameters are listed in Table C-1 for the purpose of comparison. It is 

worth mentioning that each design code includes more than one shear capacity models with 

different levels of simplification. As shown in Figure C-1, ACI 318-19 contains two models with 

different approaches to obtain the concrete contribution cV . As also indicated in Table C-1, ACI 

318-19 is the only design code that explicitly considers different types of concrete contributions, 

i.e., flexure-shear capacity ciV  and web-shear capacity cwV . AASHTO LRFD 2017, CSA A23.3:19 

and CSA S6:19 contain two models each, while fib MC 2010 contains three models for members 

with shear reinforcement in addition to two models for members without shear reinforcement. Note 

that the general methods from CSA A23.3:19 and CSA S6:19 are essentially the same. 

As can be seen in Figure C-1, the shear capacity dV  generally considers the contributions 

from concrete, shear reinforcement, and prestress force. Among these three components, the 

contribution from prestress force distinguishes the shear capacity models for RC members and 

those for PC members. For ACI 318-19 and fib MC 2010, the contribution from prestress force is 

considered implicitly, i.e., in the calculation of web-shear capacity cwV  for the detailed method of 

ACI 318-19, and in the calculation of longitudinal strain at mid-depth x  for fib MC 2010. Apart 

from similar consideration of prestress force effect in AASHTO LRFD 2017, CSA A23.3:19 and 

CSA S6:19,  an additional contribution component from prestress force is considered explicitly in 

the shear capacity prediction models, by taking the vertical component of effective prestress force 
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(e.g., sinp pV N = ) in d c s pV V V V= + + .  Here,  cV  and sV  denote the contributions from concrete 

and shear reinforcement, respectively. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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(e) 

Figure C-1: Summary of the shear capacity models considered: (a) ACI 318-19, (b) AASHTO 

LRFD 2017, (c) CSA A23.3:19, (d) CSA S6:19, and (e) fib MC 2010 

Table C-1: Parameters in the shear capacity models considered 

Symbol Parameter ACI 
AAS 

HTO 

CSA 

A23 

CSA 

S6 
fib 

ag Maximum size of coarse aggregate  √ √ √ √ 

Aps Area of prestressed longitudinal tension reinforcement √ √ √ √ √ 

Apv Area of prestressed transverse reinforcement      

As Area of non-prestressed longitudinal tension reinforcement √ √ √ √ √ 

Asb Area of bend-up non-prestressed reinforcement      

Av Area of shear reinforcement √ √ √ √ √ 

bw Web width √ √ √ √ √ 

d 
Distance from extreme compression fibre to centroid of longitudinal 

tension reinforcement 
√ √ √ √ √ 

dp 
Distance from extreme compression fibre to centroid of prestressed 

reinforcement 
√     

dv Effective shear depth  √ √ √  

ep  Distance from center of gravity to centroid of prestressed reinforcement     √ 

Ep Modulus of elasticity of prestressed reinforcement  √ √ √ √ 

Es Modulus of elasticity of non-prestressed reinforcement  √ √ √ √ 

fc’ Cylinder concrete compressive strength √ √ √ √ √ 

fcr Concrete cracking strength    √  

fpc Compressive stress in concrete at centroid of cross section  √     

fpo 
Stress in prestressed reinforcement when strain in the surrounding 

concrete is zero 
 √ √ √  

fpu Tensile strength of prestressed reinforcement √     

fse Effective prestress in prestressed reinforcement √     

fy Yield strength of non-prestressed reinforcement √     

fyt Yield strength of shear reinforcement √ √ √ √ √ 

h Sectional height  √ √ √  

Mcre Moment causing flexural cracking at section due to external loads √     

Mmax Maximum moment at section due to externally applied loads √     

Mpd Bending moment at section due to prestressing     √ 

Mu Bending moment at section √ √ √ √ √ 

Np Effective prestress force √ √ √ √ √ 

Nu Axial force at section  √ √ √ √ 

s Stirrups spacing √ √ √ √ √ 

sz Crack spacing parameter  √ √ √  

Vci Flexure-shear capacity √     

Vcw Web-shear capacity √     

Vdl Shear force at section due to dead load √     

Vi Shear force at section due to externally applied loads  √     

Vu Shear force at section √ √ √ √ √ 
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zp  
Distance from centerline of compressive chord to centroid of prestressed 

reinforcement 
    √ 

zs 
Distance from centerline of compressive chord to centroid of non-

prestressed reinforcement 
    √ 

α  Angle between prestressed reinforcement and longitudinal axis  √ √ √ √ √ 

β The factor accounting for shear resistance of cracked concrete  √ √ √ √ 

εx Longitudinal strain at mid-depth of the member  √ √ √ √ 

θ Angle of inclination of diagonal compressive stresses to longitudinal axis   √ √ √ √ 

λ The factor to account for lightweight concrete √ √ √ √  
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APPENDIX D: SECTIONAL INFORMATION OF THE CONSIDERED GIRDER TYPES 

IN THE VIRTUAL EXPERIMENTAL DATABASE 

In the generated virtual experimental database for corroded prestressed concrete voided girders, 

the sectional information of the considered girder types is summarized in Figure. D-1. For the steel 

arrangement of the archived standard PC voided girders in Alberta, a typical convention is to have 

two tensile mild steel bars, five compression mild steel bars, four prestressed strands located at the 

four corners used as longitudinal reinforcement to facilitate the stirrups placement, and more 

tensile mild steel and prestressed strands depending on the span length of girders. For the 

considered girder types with spans ranging from 6m to 11m, the tensile prestressed strand ratio 

p p wA b d =  ranges from 0.573% to 1.26%, where pA  is the area of tensile prestressed strands, 

wb  is the web width, and d  is the effective depth, while the tensile mild steel ratio s s wA b d =  

ranges from 0.145% to 1.662%, where sA  is the area of tensile mild steel.  Note that the 11m SM-

510 girder in the standard drawing does not contain 25M longitudinal bars, while additional four 

25M bars were typically used to control long-term deformation of girders in engineering practice 

as observed  (Liu et al. 2021; Huang et al. 2022) . Thus, 11m SM-510 girder with additional four 

25M longitudinal steel bars is also considered in in the virtual experimental database. Regarding 

transverse reinforcement for the archived standard PC voided girders, four-legged stirrups with 

10M mild steel are used as a typical convention. The considered girder types covered a 

representative stirrup spacing range from 150 mm to 350 mm, with the transverse reinforcement 

ratio v v wA b s =  ranging from 0.373% to 0.654%, where vA  is the total area of the four-legged 

stirrup, s  is the stirrup spacing. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure D-1: Girder types of the virtually tested girders: (a) 11m SM-510, (b) 11m SM-510 

(with 25M), (c) 9.14m Type SL-510, (d) 6m Type SL-510, (e) 8.53m Type SC-510, and (f) 6m 

Type SC-510 
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APPENDIX E: SUMMARY OF THE GENERATED VIRTUAL EXPERIMENTAL 

DATABASE 

A total of 4,165 virtual experimental tests on corroded prestressed concrete voided girders are 

obtained with various design, loading and corrosion conditions. Due to the length limitation, only 

a template for the input (e.g., material properties, sectional dimensions and corrosion degrees) and 

output (i.e., load-carrying capacity) parameters of the generated virtual experimental database is 

provided in this appendix, where f'c is the concrete compressive strength in MPa, fpu is the tensile 

strength of strands in MPa, fsy is the yield strength of mild steel in MPa, bw is the web width in 

mm, h is the sectional height in mm, d is the effective depth in mm, a is the shear span in mm, Ap  

is the tensile strands area in mm2, As is the tensile mild steel area in mm2, Av is the stirrups area in 

mm2, s is the stirrups spacing in mm, ηl is the corrosion degree for longitudinal steel, ηv is the 

corrosion degree for stirrups, and P is the load-carrying capacity in kN. 

Table E-1: Template for the input and output parameters of the virtual experimental database 

f'c fpu fsy bw h d a Ap As Av s ηl ηv P 

53.2 1876 480 306 510 444 1000 1579 200 400 200 0 0 818.7 

53.2 1876 480 306 510 444 1000 1579 200 400 200 0.05 0.05 775.6 

53.2 1876 480 306 510 444 1000 1579 200 400 200 0.10 0.10 746.8 

53.2 1876 480 306 510 444 1000 1579 200 400 200 0.15 0.15 605.2 

53.2 1876 480 306 510 444 1000 1579 200 400 200 0.20 0.20 541.8 

… … … … … … … … … … … … … … 

… … … … … … … … … … … … … … 

… … … … … … … … … … … … … … 

48.3 1943 458 456 510 450 3000 789.6 200 400 300 0 0.20 697.9 

48.3 1943 458 456 510 450 3000 789.6 200 400 300 0.05 0.25 659.6 

48.3 1943 458 456 510 450 3000 789.6 200 400 300 0.10 0.30 639.7 

48.3 1943 458 456 510 450 3000 789.6 200 400 300 0.15 0.35 527.7 

48.3 1943 458 456 510 450 3000 789.6 200 400 300 0.20 0.40 502.3 
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APPENDIX F: PARAMETRIC STUDIES ON MATERIAL PROPERTY-RELATED 

PARAMETERS 

The influence of material property-related parameters on the capacity reduction factor is studied 

in this appendix. Same to the parametric study on other parameters, the influence of different 

model parameters is studied in the one-at-a-time manner by taking the simply supported 11m SM-

510 girder under single point loading as a case study. Unless otherwise specified, when studying 

the effects of other parameters, the fixed values for a d , L h , p , s , v , 35cf  , 1860puf , and 

1860yf are 2.25, 21.569, 1.161%, 0.147%, 0.373%, 1.38, 1.045, and 1.145 respectively based on 

the sectional properties and the mean value of material properties for the 11m SM-510 girder.  

F.1 Normalized Concrete Strength 

The influence of normalized concrete strength 35cf   is studied by varying its value from 1.0 to 

1.8 with an increment of 0.2. This represents varying cf   from 35MPa to 63MPa to cover the 2 

standard deviation (SD) interval of concrete strength value as summarized in Table 7-6, i.e.,  from 

36.7MPa to 59.9MPa. Two loading scenarios (i.e., 2.25a d =  and 11.25a d = ) are considered 

to study the influence of 35cf   on the capacity reduction factor as shown in Figure F-1(a) ~ F-1(b). 

It is shown that the 35cf   plays a significant role in the capacity reduction for all considered 

scenarios, while its influence is correlated with the corrosion degree ( ,l v  ) without exhibiting an 

obvious tendency.   
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(a) (b) 

Figure F-1: The influence of normalized concrete strength f’c/35 on corrosion-induced capacity 

reduction: (a) a/d = 2.25, and (b) a/d = 11.25 

F.2 Normalized Tensile Strength of Strands 

The influence of normalized tensile strength of strands 1860puf  is studied by varying its value 

from 0.98 to 1.10 with an increment of 0.03. This represents varying puf  from 1822.8MPa to 

2046.0MPa to cover the 2 SD interval of tensile strength value as summarized in Table 7-6, i.e., 

from 1845.9MPa to 2040.2MPa. Two loading scenarios (i.e., 2.25a d =  and 11.25a d = ) are 

considered to study the influence of 1860puf  on the capacity reduction factor as shown in Figure 

F-2(a) ~ F-2(b).  

It is shown that compared with 35cf  , the influence of 1860puf  is relatively smaller. This 

is considered to be resulted from that the varying range of 1860puf  (i.e., from 0.98 to 1.10) is 

smaller compared with that of 35cf   (i.e., from 1.00 to 1.80). It is to be expected that the influence 

of 1860puf  would increase with the increase of its varying range. However, it would be unfair 

for comparison purpose and unreasonable in engineering practice to increase the varying range of 

1860puf . This is because that the 2D interval of material property values is applied to guide the 
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varying range selection for both 35cf   and 1860puf , while the 2D interval represents a 95% 

confidence level and can be regarded as a reasonable range to consider the material property 

variability in engineering practice. 

2.25a d =

 
 

(a) (b) 

Figure F-2: The influence of normalized tensile strength of strands fpu/1860 on corrosion-

induced capacity reduction: (a) a/d = 2.25, and (b) a/d = 11.25 

F.3 Normalized Yield Strength of Mild Steel 

The influence of normalized yield strength of mild steel 400yf  is studied by varying its value 

from 0.9 to 1.3 with an increment of 0.1. This represents varying yf  from 360MPa to 520MPa to 

cover the 2 SD interval of yield strength value as summarized in Table 7-6, i.e., from 398.5MPa 

to 517.5MPa. Two loading scenarios (i.e.,  and 11.25a d = ) are considered to study the influence 

of 400yf  on the capacity reduction factor as shown in Figure F-3(a) ~ F-3(b). Similarly to the 

preceding discussion, the influence of 400yf  is relatively small compared with that of 35cf  , 

which can be attributed to that the varying range of 400yf  (i.e., from 0.9 to 1.3) is smaller 

compared with that of 35cf   (i.e., from 1.0 to 1.8). 
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(a) (b) 

Figure F-3: The influence of normalized yield strength of mild steel fy/400 on corrosion-

induced capacity reduction: (a) a/d = 2.25, and (b) a/d = 11.25 
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APPENDIX G: ULTIMATE LIMIT STATE (ULS) LOAD CALCULATION FOR 11M SM-

510 GIRDER FROM THE TIGER LILY BRIDGE 

In this appendix, the ultimate limit state (ULS) load is calculated based on the Canadian highway 

bridge design code CSA S6:19 (CSA 2019) by considering the ULS combination 1 of dead load 

and CL-625 truck load. Note that for the PC girder under the flexure-dominated loading scenario 

of 11.25a d = , it is assumed that the moment is the dominant internal force when calculating the 

ULS load. The ULS moment is calculated first, then the equivalent ULS load is obtained under the 

single point loading with 11.25a d = . While for the PC girder under shear-critical loading 

scenario of 2.25a d = , it is assumed that the shear force is the dominant internal force.  

G.1 Flexure-dominated Loading Scenario 

The ULS combination 1 of dead load and CL-625 truck load from CSA S6:19 is adopted to 

calculate the ULS loading effects in terms of moment. The dead load is considered to be resulted 

from the self weight of the girder which can be simplified as uniformly distributed loading as 

shown in FigureG-1. The factored moment as a function of the position for the considered section 

(x) resulted from the dead load can then be calculated based on Eq. (G-1). Note that in this study, 

the moment is considered to be positive if the bottom side of the girder is in tension state.  

( )
( )2

2
D D

q Lx x
M x 

−
=                                                   (G-1) 

Here, ( )DM x  is the factored moment resulted from the dead load, x is the distance between the left 

support and the considered section, 1.10D =  is the dead load factor, c cq A=  is the uniformly 

distributed load resulted from the self-weight, c  = 1980 kg/m3 is the weight density of concrete, 

cA  is the cross-sectional area, and L  is the girder length.  
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Figure G-1: Schematic view of the 11m SM-510 girder under dead load 

The axle loads of CL-625 truck (i.e., whole truck load) is considered for the live load 

applied to the bridge as shown in Figure G-2, i.e., the Tiger Lily bridge with nine shear-connected 

SM-510 girders as shown in Figure 6-1 and Figure 6-2. The truck load fraction factor (also referred 

to as live load distribution factor in AASHTO LRDF 2017) is then applied to calculate the 

distributed moment for one interior 11m SM-510 girder.  

 
Figure G-2: Schematic view of the 11m SM-510 girder under live load 

The factored moment resulted from the live load of CL-625 truck is a function of both the 

position of the considered section (i.e., x) and the longitudinal position of truck (i.e., x’) as shown 

in Figure G-2. Influence line analysis is adopted to calculate the factored moment resulted from 

the live load by applying a unit load as shown in Figure G-3. The moment resulted from this unit 

load can be obtained by Eq. (G-2), 
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( )
( ) 0

,

1

x
L x x x

L
M x x

x
x x x L

L


−  

 = 
  −   

  

                                                 (G-2) 

where ( ),M x x  is the moment resulted from the applied unit load, x  is the distance between the 

left support and the position of loading. 

 
Figure G-3: Schematic view of the 11m SM-510 girder under unit single point load 

The factored moment resulted from the live load can then be obtained by applying 

influence line analysis results as shown in Eq. (G-3) , 

( )

( )

( ) ( )( )

( ) ( )( ) ( )( )

( )( ) ( )( )

1

1 2

1 2 3

2 3

, 0 3.6m

, , 3.6 3.6m 4.8m

, , 3.6 , 4.8 4.8m 11m

, 3.6 , 4.8 11m 11.4m

,

L DLA M

L DLA truck

L DLA truck

L DLA truck

L L DLA truck

PM x x x

PM x x P M x x x

PM x x P M x x P M x x x

P M x x P M x x x

M x x P

  

  

  

  

  

  

   + −   

    + − + −   

   − + −   

 = ( )( ) ( )( ) ( )( )

( )( ) ( )( )

( )( )

( )( ) ( )( )

2 3 4

3 4

4

4 5

, 3.6 , 4.8 , 11.4 11.4m 14.6m

, 4.8 , 11.4 14.6m 15.8m
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L DLA truck

L DLA

M x x P M x x P M x x x

P M x x P M x x x

P M x x x

P M x x P M x x x

  
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  

 

    − + − + −   
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 −  

   − + −   

( )( )5 , 18 22.4m 29mtruck P M x x x



















  −  

   (G-3) 

where 1.7L =  is the live load factor, DLA  is the factor to consider dynamic load allowance,

0.35truck =  is the calculated truck load fraction factor for moment distribution, 1P , 2P , 3P , 4P , 

and 5P  are the axel loads of CL-625 truck as shown.  
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The total factored ULS moment ( ),TM x x  resulted from the ULS combination 1 can then 

be obtained by combing ( )DM x  and ( ),LM x x  as shown in Eq. (G-4). The 3D plot of ( ),TM x x  

is presented in Figure G-4. The maximum moment is observed to be 636.67 kN.m, which occurs 

when 5.46x =  and 9.06x = . The ULS load for the 11m SM-510 girder under single point loading 

with 11.25a d =  (i.e., shear span a = 5 m) is then calculated as
max11 30 233.44kNTP M= = . 

( ) ( ) ( ), ,T D LM x x M x M x x = +                                       (G-4) 

 
Figure G-4: 3D plot of the total factored ULS moment 

G.2 Shear-critical Loading Scenario 

Similarly, the factored shear force resulted from the dead load ( )DV x  can be obtained based on 

Eq. (G-5). 

( )
( )2

2
D D

q L x
V x 

−
=                                                 (G-5) 

The influence line analysis is then adopted to calculate the factored shear force under the 

live load of CL-625 truck load. The shear force resulted from the unit load can be obtained by Eq. 

(G-6). 
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x
x x L
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
−  

 = 
 −  



                                         (G-6) 

Based on the influence line analysis, the factored shear force resulted from the live load 

can be calculated based on Eq. (G-7). 

( )

( )

( ) ( )( )

( ) ( )( ) ( )( )

( )( ) ( )( )

1

1 2

1 2 3

2 3

, 0 3.6m

, , 3.6 3.6m 4.8m

, , 3.6 , 4.8 4.8m 11m

, 3.6 , 4.8 11m 11.4m

,

L DLA truck

L DLA truck

L DLA truck

L DLA truck

L L DLA tr

PV x x x

PV x x PV x x x

PV x x PV x x PV x x x

PV x x PV x x x

V x x

  

  

  

  

  

  

   + −   

    + − + −   

   − + −   

 = ( )( ) ( )( ) ( )( )

( )( ) ( )( )

( )( )

( )( ) ( )( )

2 3 4

3 4

4

4 5

, 3.6 , 4.8 , 11.4 11.4m 14.6m

, 4.8 , 11.4 14.6m 15.8m

, 11.4 15.8m 18m

, 11.4 , 18 18m 22.

uck

L DLA truck

L DLA truck

L DLA truck

PV x x PV x x PV x x x

PV x x PV x x x

PV x x x

PV x x PV x x x

  

  

  

    − + − + −   

   − + −   

  −   

   − + −   

( )( )5

4m

, 18 22.4m 29mL DLA truck PV x x x  


















  −  

 (G-7) 

where 0.37truck =  is the calculated truck load fraction factor for shear force distribution. 

The total factored shear force ( ),TV x x  resulted from the ULS combination 1 can then be 

obtained by combing ( )DV x  and ( ),LV x x  as shown in Eq. (G-8). The 3D plot of ( ),TV x x  is 

presented in Figure G-5. The maximum shear force is observed to be 270.42 kN.m, which occurs 

when 11x =  and 14.59x = . The ULS load for the 11m SM-510 girder under single point loading 

with 2.25a d =  (i.e., shear span a = 1 m) is then calculated as 
max11 10 298.57kNTP V= = . 

( ) ( ) ( ), ,T D LV x x V x V x x = +                                              (G-8) 
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Figure G-5: 3D plot of the total factored ULS moment 

 

 


