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ABSTRACT 

An effective winter road maintenance (WRM) program is essential for cities that face severe winter 

conditions. Snowstorms create slippery road surface conditions (RSC) that disrupt traffic flows 

and endanger motorists. To combat this, municipalities use a variety of tools to improve the driving 

conditions such as applying anti-icing agents before snowstorms, de-icing and snow plowing 

operations during and after snowstorms. Although these tools are common, the degree to which 

they improve RSC and traffic safety is an area that has not yet been fully investigated. In this thesis, 

a safety assessment of achieving bare pavement conditions is studied by examining the 

interconnection between a multitude of key influencing factors including weather variables, 

maintenance operations, pavement frictions, and collision frequency in the event of a snowstorm. 

The primary objectives of this study were to better understand the roles of maintenance operations 

in improving winter road safety and restoring bare pavement after snowstorms. These objectives 

were achieved by employing a location-specific and event-based framework to investigate the 

impacts of the different weather variables as well as maintenance operations on pavement friction 

and collision counts during snowstorms in urban environments.  

Using multi-linear regression, it was shown that the total precipitation during snowstorms, 

extremely low temperatures, and the potential for black-ice formation all have a negative 

consequence on pavement friction. By comparison, snowplowing operations, application of anti-

icing agents, and the frequency of de-icing operations all have positive effects on improving 

pavement friction. 

Another important relationship explored was how pavement friction affected collision frequency, 

and for this, Negative Binomial regression models were used. The results of this investigation 

highlighted three ranges of pavement friction coefficients: pavement friction above 0.6, which led 
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to a significant reduction in collisions, pavement friction between 0.6 and 0.35, which had an 

insignificant reduction in collisions, and pavement friction below 0.35 that resulted in a significant 

increase in collisions. Furthermore, arterial roads were found to experience more collisions 

compared to collector roads which could possibly be attributed to their profoundly varying road 

characteristics such as higher traffic volumes, higher speed limits, and the difference in drivers’ 

behavior while traveling on them. 

After establishing that the pavement friction coefficient “G” can be explained using weather and 

maintenance operations data, and that pavement friction is a significant factor in influencing 

collisions during snowstorms, structural equation modeling (SEM) was used to simultaneously 

model the two relationships in one framework. By using pavement friction as a mediating variable, 

the indirect influences of the independent variables on road safety were identified. The findings 

suggest that precipitation, extremely low temperatures, and black-ice potentials all had indirect but 

significant negative effects on road safety. On the contrary, snowplowing and anti-icing operations 

were shown to have significantly improved road safety indirectly. 

The SEM model developed was used to demonstrate its key features by applying it to a 

hypothetical snowstorm scenario. The results of the analysis indicate that applying anti-icing 

agents onto roads before snowstorms could result in a 14% reduction in collisions, snowplowing 

operations can reduce collisions by 33%, and by combining the two tools together collisions can 

be reduced by up to 42%. These reductions in collisions can further increase exponentially with 

higher traffic exposure.  

The models developed and findings demonstrated in this thesis can help transportation agencies 

make more informed and timely decisions to reduce winter weather-related collisions while 

maximizing the efficacy of existing WRM services and resources. 
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1. INTRODUCTION 

This chapter offers an introduction to the thesis and is divided into four subsections. The first 

subsection is the background which explains and highlights the magnitude of the problem. In the 

second subsection, the research motivation and the limitations of the previous studies are discussed. 

The objectives and expected outcomes of this study are, then, presented in the third subsection. 

Finally, the fourth subsection sets out the thesis structure. 

1.1 Background 

With the globalization of world trade, billions of dollars worth of goods navigate their way around 

the world every day [1]. Depending on a solid infrastructure of maritime, aerial, and terrestrial 

transportation systems, the volume of world trade reached $18.89 trillion in 2019 and is expected 

to grow steadily according to the world trade organization [1]. Furthermore, the onset of lowered 

travel costs, readily accessible road networks, and the prevalence of more accessible modes of 

transportation have resulted in a massive increase in people’s travel demands. This is seen in the 

ever-increasing number of registered vehicles, and annual million vehicle kilometers traveled [2]–

[4]. Despite the concerted efforts of engineers and policy makers trying to maintain the safety and 

capacity of the transportation systems, the rapid increase in freight volumes and people’s travel 

demands have come at a cost. 

 In such a fast-paced world, the timely delivery, and efficient movement of goods and 

people on the transportation networks are extremely important. Events that cause delays on the 

networks put the system under massive strains and can create huge waves of economical losses 

that ripple throughout the world. This was recently magnified when unfavorable wind conditions 

caused the massive Ever Given container ship to run aground, and block the Suez Canal for six 

full days [5]. The blockage of such a vital maritime freight route resulted in delaying an estimated 

$9.6 billion worth of goods daily, and enormous losses to the world trade [6].  

 Likewise, as a result of the rapid increase in demand, the safety of passengers, drivers, and 

pedestrians was put to the test. With this increased exposure, road collision injuries have emerged 

as one of the major causes of death in the world for all age groups, and the leading source for 

deaths among children and young adults aged 5 to 29 years old [7]. According to the world health 

organization, 1.35 million people die annually on the road, and over half of these fatalities occur 
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to vulnerable road users [7]. The combined societal, hospitalization, and losses of labor costs due 

to collisions are estimated to take up to $1.8 trillion of the global economy between the years 2015 

to 2030 [8], not to mention the difficulty of losing loved ones or living with permanent injuries.  

Taking all of this into consideration, the inevitable need for innovative solutions to such 

problems has surfaced.  Municipalities and departments of transportation around the world started 

working together to create plans, and strategies to be better prepared for current and future 

challenges [9]–[13].  The goals of these plans are to improve the infrastructure to meet the growing 

demand, restore the movement on the transportation networks after natural or man-made events, 

and reduce the downtimes and delays caused, all while improving the safety and livability on the 

streets. 

On a national level, cities across Canada suffer from inclement weather conditions 

specifically during the winter seasons. Severe weather events characterized by low temperatures 

and visibility with a potential of freezing rain or snow create hazardous driving situations. In these 

conditions, drivers require longer stopping sight distances to be able to safely navigate the road 

network. In fact, reports have consistently shown an increasing trend in road collisions during the 

winter months [14]–[16]. Furthermore, the snow and ice left on the road in the aftermath of 

snowstorms can cause speed reductions, increased travel times, reduced highway capacity, and, in 

extreme cases, can lead to complete traffic lockdowns [16]–[20]. The financial losses due to 

weather-related traffic delays exceed $8 billion annually [21], while the yearly societal costs 

associated with weather-related collisions can reach up to CAD 1 billion [22]. 

The high economic impact associated with these adverse weather conditions has forced 

municipalities to progressively increase their investments in the winter road maintenance (WRM) 

programs. Canada and the United States spend over $1 billion and $2 billion, respectively each 

year on WRM [23], [24]. With such high levels of investment, municipalities have been 

increasingly exploring options to improve the overall performance of their maintenance programs 

with the primary goal of reducing the time to restore bare pavement conditions following a major 

snowstorm. It is, therefore, critical for municipalities to continuously explore ways to improve 

their decision-making processes while optimizing their maintenance programs over allocating 

additional resources. 
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In this regard, cities have initiated multiple programs to improve the safety, and mobility 

of their road network during the unfavorable weather conditions of its snowstorms [12]. Many of 

these initiatives fall under the ‘Vision Zero’ strategy [25], which is a multi-disciplinary campaign 

that started in Sweden, with the goal of eliminating fatal and major injury collisions from the roads 

[26]. It involves city planners, traffic engineers, law enforcement officers, and policy makers 

working together towards the common goals of this campaign. This is usually done through a 

process that mainly focus on two principles; continuously analyzing collision data, and 

implementing appropriate countermeasures that target collision prone sites. Since WRM can help 

achieve the goals of ‘Vision Zero’ a thorough evaluation of the WRM operations is needed.  The 

aim is to better understand the roles of the maintenance operations in improving winter road safety 

and restoring bare pavement after snowstorms.  

1.2 Research Motivation 

A WRM program usually encompasses the staff, equipment, material, and policies used in the 

maintenance operations which all work in harmony to clear snow and ice off the roads and restore 

mobility on road networks after snowstorms. Typically,  maintenance operations start with de-

icing, which is the application of sand and salt mixtures to fresh snow after storms to help break 

its bonds and restore some traction on the roads. The percentage of salt in the applied mixture 

depends on the ambient and road surface temperature where more salt is added at higher 

temperatures, while 100% sand mixtures are used at extremely low temperatures (below -15°C) 

[27]–[29]. Depending on the function and priority of each road, plowing operations start once the 

snow has reached a pre-set trigger depth [30].  

An alternative yet proactive method of road maintenance is to apply anti-icing chemicals 

to roads shortly before snowstorms are forecasted. This approach has been progressively adopted 

by several road jurisdictions. Anti-icing offers several advantages as it is anecdotally believed to 

restore bare pavement quicker and reduce the amount of material needed in de-icing. However, 

anti-icing application remains a controversial topic due to its environmental impacts, dependence 

on successful snowstorm forecasting [31], and the fact that its significance in improving pavement 

traction or traffic safety has not yet been thoroughly studied.  

Despite experiencing almost similar weather conditions during the winter, there is a great 

deal of variation between the practices used by different Canadian cities [32]. This is evident from 
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the different materials used and plowing policies adopted by each city. This lack of consistency 

among practices can be attributed to the fact that there is limited research on the influence of the 

different toolboxes used in WRM programs to improve pavement friction and road safety. 

In 2017, the city of Edmonton launched a pilot project by adding anti-icing to its WRM 

toolbox to test its impacts on improving pavement friction and road safety. In collaboration with 

the University of Alberta, collision data was collected from 100 arterial, and collector maintenance 

routes. Then, a before-and-after Empirical Bayes approach was adopted to study the added benefit 

of using anti-icing in improving road safety over conventional de-icing methods [33]. Even though 

the project showed great success in significantly reducing all types of collisions on all types of 

roads, the study had two major drawbacks. It was a macroscopic study where a lot of snowstorm 

events information was lost due to aggregation; and it failed to capture the additional advantage of 

using anti-icing, compared to the conventional de-icing operations in obtaining bare pavement.  

This research addresses the drawbacks of the previous studies, and the gap in the literature 

by employing an event-based and location-specific framework to look at snowstorms at a 

disaggregated level. Using friction and maintenance operations data as well as historical weather 

records and collision data, the microscopic analysis offered in this study is capable of isolating the 

conditions during individual snowstorm events rather than an aggregated analysis.  

1.3 Research Objectives 

Without a doubt, the WRM operations which are conducted every winter season help improve the 

safety and mobility of traffic on the road networks. Nevertheless, the impacts of the different tools 

used in the maintenance operations on improving the road surface conditions (RSC) and road 

safety have not been fully studied.  

Therefore, the primary objective of this thesis is a methodological advancement for conducting a 

thorough safety assessment of achieving bare-pavement conditions by investigating the effects that 

the different WRM operations have on RSC during snow storms. In completing this primary 

objective, several secondary objectives can also be addressed such as 

 Understanding the relationship between pavement friction and road safety in urban 

environments; 
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 Enumerating the benefits of the current WRM policies, strategies, and practices in 

improving pavement friction and road safety; and 

 Studying the mobility benefits of clearing snow and ice from the roads using the different 

WRM tools. 

 Completing the objectives of this research can help improve our understanding of winter 

road safety and the important role of road maintenance in winter cities. By modeling road safety 

using collision counts as indicators, and by modeling RSC using pavement friction coefficient as 

the response variables, the benefits of the different maintenance tools in achieving bare pavement 

and improving traffic safety during and after snowstorms can be quantified. Moreover, the results 

of the analysis can help municipalities and transportation agencies make more informed decisions 

and better plan their maintenance programs. The tools provided can also help the authorities 

determine the outcomes of forecasted weather events, justify the use of more aggressive measures, 

and help decide the best course of action to use their limited resources. 

1.4 Thesis Structure 

The thesis is divided into seven chapters. The first chapter offers an introduction that highlights 

the magnitude of the problem, and defines the motivation, objectives, and expected outcomes of 

the study.  

The second chapter gives a literature review of previous studies related to WRM, winter traffic 

safety, and the methodologies adopted in these studies.  

Chapter three describes the WRM program, and how the data needed for this study was collected 

from different sources, processed, filtered, and fused.   

Chapters four to six describe the different methodologies adopted to accomplish the goals of the 

study as well as include the results of each analysis.  

The seventh chapter highlights the main findings of the study, the research contributions and 

illustrates a number of future research directions. 
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2. LITERATURE REVIEW 

This chapter reviews previous studies related to winter road maintenance (WRM), road surface 

modeling, winter traffic safety, and their limitations. It is divided into four subsections. The first 

subsection discusses the efforts, and the different methodologies adopted for modeling the road 

surface. The second subsection shows the findings of previous research relating winter weather to 

road safety. The third shows the importance of the WRM operations. The final subsection gives a 

summary of the findings from the literature. 

2.1 Road Surface Conditions Modeling 

Monitoring and predicting road surface conditions (RSC) have been popular subjects of research 

as RSC plays a major role in determining the safety, free-flow speeds, and capacity of road 

networks [18], [34], [35]. In fact, Heinijoki et al. [36] found that drivers were not always able to 

correctly identify the RSC while driving where fewer than a third of drivers were able to identify 

the RSC correctly. What made matters worse, was that as RSC got poorer, the drivers reported 

observations deviated more from the true values.  For this reason and more, researchers have 

developed multiple ways to describe the RSC, and numerous methods to model them. 

With the widespread use of stationary and mobile road weather information systems 

(RWIS), RSC data became readily available for researchers to analyze. Generally speaking, RWIS 

sensors can describe the RSC as dry, moist, wet, ice-covered, or snow-covered in addition to their 

ability to read the road surface temperature. Gu et al. [37], [38] used mobile and stationary RWIS 

data to model and estimate the RSC in various weather conditions using surface temperature as a 

surrogate measure. In both studies, the authors deployed the geostatistical technique of regression 

kriging to describe the RSC using road surface temperature readings from RWIS. In the regression 

part of their analysis, they found that the longitude, altitude, slope, and vegetation index are all 

significant factors in describing the variation in the road surface temperatures. 

The Finnish government managed to formulate a model that can predict road surface 

temperature, road surface conditions, as well as the friction coefficient on roads [39]. Called 

RoadSurf, it was developed in 2000 and has been in operation since then. The model works on the 

principle of energy balance, by inputting the weather forecasts, several outputs can be obtained 

including road surface temperature and friction. In their study, the authors used linear regression 
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models that can predict the coefficient of friction using weather forecasts. Hippi et al. [40] 

explained the derivation of the surface friction models used in the RoadSurf model in a separate 

paper. They used independent variables like the temperature, equivalent water precipitation, as 

well as the thickness of the precipitated layers of snow, ice, and water in their analysis. However 

high the R2 values of the models they produced, these models could only predict the worst-case 

scenario of when the roads receive no treatment at all. This is because the impacts of the 

maintenance operations were never incorporated in their analysis. 

In another research, Feng et al. [41] used friction measurements to classify the RSC during 

snowstorms. In their study, the authors identified 7 road surface conditions, then developed binary 

logit models to determine, and categorize these conditions based on their probability of occurrence 

using the observed friction measurements. The logistic models developed were successful in 

accounting for the uncertainties and variations associated with the friction measurements. 

On a different note, Omer et al. [42] attempted to use road photography in the classification 

of winter RSC. In their study, the researchers mounted RGB cameras on regular vehicles to record 

and transfer road imagery to a central server. Then, a support vector machine algorithm trained in 

extracting the proper imagery and classification of surface conditions was used to interpret these 

surface conditions. Despite showing great potential, their model classified RSC into only 3 

categories which were bare, snow-covered, and tracks. Therefore, a high degree of uncertainty 

remained as each category could include a wide variety of surface conditions. 

Usman et al. [34], [35] attempted to describe the variation in RSC during each hour of the 

snowstorm using a friction surrogate measure, road surface index (RSI). Ontario maintenance 

personnel patrol the maintenance routes multiple times during snowstorms, and each time, they 

classify the RSC of the routes as one of 7 categories which are bare and dry, bare and wet, partly 

snow-covered, snow-covered, snow-packed, slushy, and icy. The authors used these discrete 

classifications and converted them into a continuous friction surrogate measure, RSI. RSI is a 

continuous variable that ranges from 1 to 0, with 1 being the best RSC. Hours of snowstorms with 

observed RSI were populated, then all hours with missing RSI information were estimated based 

on two assumptions: RSI at the hour right after the maintenance operations were conducted was 

0.45, and RSI varied linearly between the observed values. Although the assumptions used by the 
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authors can mask a lot of the information pertaining to the maintenance operations, the framework 

used paved a new way for modeling RSC using an event-based analysis. 

Even though many ways have been developed to describe and model RSC as discussed 

above, pavement friction remains the most accurate and objective measurement tool. Pavement 

friction is the resistive force to relative motion between the vehicles’ tires and the road surface 

[43], [44]. The value of the friction coefficient depends on several factors that include the 

pavement surface characteristics, vehicle operating parameters, tire properties, and weather 

conditions. Unlike the subjective discrete classifications used by RWIS measurements or video 

records, the friction coefficient is a continuous linear variable that can describe the RSC 

objectively. Friction coefficient values range from 0G and up to 1G or higher which makes its 

interpretation logical and easy. Friction coefficient values of 1G or higher represent the best road 

surface, and tire traction conditions, while values around the lower end of the spectrum represent 

worse pavement traction. When the friction coefficient reaches 0G, it is an indication of extremely 

slippery pavement surfaces where there is no tire traction recorded. 

In an early study conducted by Nixon et al. [44] in 1998, the authors suggested the use of 

friction coefficients as WRM indicators. In their analysis, and review of the literature, they 

indicated that the costs associated with buying the friction measurement devices, and friction 

coefficient data collection would offset the benefits it would return in material savings. In a worked 

example, a benefit to cost ratio of 3.38 was obtained in employing such a system to aid decision-

makers in identifying the amounts of materials to be used in the maintenance operations. 

Liu et al. [45] conducted a controlled experiment to study the effects of temperature and 

humidity on the coefficient of friction of icy roads. In their experiment, they simulated the 

conditions of icy rain and showers to imitate the traffic conditions during winter. Then, by 

manipulating the temperature and humidity, they plotted their relationships with their 

corresponding recorded friction coefficients. The range of temperatures they tested was from 0°C 

to -16°C, while the range of relative humidity they simulated was from 50% to 85%. Using the 

results from their tests, they formulated several regression models to predict the value of friction 

at icy RSC using temperature and humidity as independent variables. The results of their analysis 

showed that humidity is not a significant variable in describing the friction coefficient and that the 
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best fit models with the highest R2 values were obtained using the temperature as the main predictor 

in a one-dimensional non-linear model. 

In a controlled study on the University of Alberta test road facility, Salimi et al. [46] 

investigated the effects of snow, ice, speeds, temperatures, and the number of traffic passes on the 

friction as compared to bare pavement conditions. The results of the analysis showed that speeds 

had no significant effects on the variation of friction. However, it was reported that the friction 

dropped significantly once snow and ice were present on the pavement surface. It appeared that 

friction dropped by 55%, 69%, 75%, and 81% on surfaces covered by ice, light, moderate, and 

heavy snow respectively. Moreover, low temperatures and the number of passes were found as 

significant factors in reducing the friction. 

Table 1. A Summary of Road Surface Modeling Studies. 

Authors Study Area Methodology Findings Limitations 

Heinijoki et 

al. [36] 
Finland - 

Drivers are not capable of 

identifying how dangerous the 

RSC are by eye. 

- 

Gu et al. 

[37], [38] 
Edmonton 

Regression 

Kriging 

Modeled RSC using road 

surface temperature. 

Maintenance 

operations 

were not 

included. 

Hippi et al. 

[39], [40] 
Finland 

Linear 

regression 

Temperature, equivalent 

water precipitation, and 

thickness of snow layers are 

significant factors in 

predicting RSC. 

Maintenance 

operations 

were not 

included. 

Feng et al. 

[41] 
Ontario 

Binary logit 

models 

Described RSC using friction 

measurements. 
- 
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Omer et al. 

[42] 
Ontario 

Support vector 

machine 

algorithm 

Road photography can be 

used to categorize RSC. 

Only 3 

categories of 

RSC could be 

identified. 

Usman et 

al. [34], 

[35] 

Ontario 
Linear 

interpolation 

Described RSC using a 

continuous linear RSI 

depending on maintenance 

personnel observations. 

Impacts of the 

maintenance 

operations 

were assumed 

not deduced. 

Nixon et al. 

[44] 
- 

Benefit to cost 

ratio 

Investing in employing 

friction measurement devices 

can aid decision-makers in 

saving material. 

No realistic 

framework was 

provided. 

Liu et al. 

[45] 
Closed labs 

Linear 

regression 

Described pavement friction 

as a function of temperature. 

Controlled 

study and 

maintenance 

operations 

were not 

included. 

Salimi et al. 

[46] 
Edmonton 

Statistical 

comparisons 

Friction drops significantly on 

surfaces covered by ice and 

snow, and during extremely 

low temperatures. 

Controlled 

study and 

maintenance 

operations 

were not 

included. 

 

2.2 Winter Weather & Traffic Safety 

Due to the restricted visibility and slippery road surface conditions, driving during and after 

snowstorms can be very dangerous. The literature shows that weather variables that include 
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precipitation intensities, precipitation types, temperatures, wind speeds, and visibility can all 

influence traffic safety in the winter seasons [41]. 

Numerous countries studied the risk of collisions under deteriorating RSC. Earlier studies 

relied mostly on rudimentary methods such as collision trends and naïve before and after analyses 

in drawing conclusions rather than sophisticated statistical frameworks. In Germany [47], it was 

found that as roads got wetter, the collision risk increased. In France [47], a similar study was done 

on skid-prone sites, the study concluded that as the friction coefficient decreased, the collision 

proportion rose sharply. In Denmark [48], collision rates were found to be indirectly proportional 

to friction coefficients. 

Nordic countries’ researchers are among the most interested in the effects of WRM and the 

RSC on collision risk [36], [48]–[50]. Norrman et al. [49] studied collisions that occurred on 

slippery roads in southern Sweden. They attempted to associate collisions with different types of 

slippery RSC to come up with the risk of driving during these conditions. Although their study 

was not backed up statistically, they found that certain RSC were linked with higher collision risks. 

  The Ministry of Transport of Ontario conducted a field study to demonstrate how snowfall 

can lead to hazardous driving conditions [51]. In this study, a vehicle with an initial velocity of 80 

kilometers per hour was allowed to brake sharply to a complete stop in different environments 

representing different RSC. The stopping distances were recorded, and the pavement friction 

coefficients were measured after each attempt. The results showed a significant increase in the 

stopping distances as friction coefficients decreased. 

Table 2. Stopping Distances Versus Friction Coefficients [51] 

Road Condition Friction Coefficient Stopping Distance in Meters

Bare Pavement 0.7 35.9 

Snow Packed 0.276 91.2 

Snow Packed 0.184 136.8 

Bare Ice 0.128 196.6 

Bare Ice 0.125 201.4 



 

12 
 

 

One of the earliest attempts to understand the importance of friction and bare pavement in 

controlling the number of collisions was done by Preus in the early 1970s [52]. The author 

analyzed the safety benefits of using studded tires on winter streets as a means to increase vehicle 

traction on slippery surfaces. Unfortunately, the study was unsuccessful in obtaining a clear idea 

of the effects of this tire alteration because it was difficult to isolate the effects of a single factor 

due to the lack of sufficient data at the time. 

Since then, with the advancements in data collection technologies, numerous studies have 

been conducted to make better use of these datasets by employing different statistical techniques. 

Depending on the nature of the datasets, the level of aggregation, and the type of dependent 

variable that needed to be modeled, researchers used various statistical models to adapt to the data. 

In a review of the most popular statistical analysis methods used in traffic safety, Lord et al. [53] 

reported that the Negative Binomial, Negative Multinomial random-parameters bivariate, and 

zero-inflated Poisson and Negative Binomial models are the most widely used distributions in 

collision modeling. This is mainly due to the ability of these models to account for most of the 

confounding factors and inherent problems associated with collision data. 

In recent years, researchers tried incorporating the use of Tobit regression in modeling 

collision rates. Anastasopoulos et al. [54] conducted an aggregate collision modeling study on 5 

interstate highways in Indiana. Despite using aggregated collision data over 5 years, the authors 

were able to include variables describing the pavement condition by dividing the highways into 

337 homogeneous segments. The results of their analysis showed the significant positive effect of 

having better pavement friction in reducing collision rates. Chen et al. [55] conducted a similar 

study but using a disaggregated dataset on a select portion of highway I-25 in the state of Colorado. 

With the help of refined data collection methods, they were able to formulate a random-effects 

Tobit collision rate prediction model using real-time traffic and weather data. The random-effects 

Tobit model was able to account for the unobserved heterogeneity across observations, and space 

and time-varying variables like hourly traffic volume, wet surface conditions, and visibility. It 

should be noted that even though both studies used different levels of aggregation, they both 

concluded that RSC was a significant factor in influencing collision rates. 
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In a study done by Usman et al. [56], the authors explored the effect of aggregating time-

varying variables like precipitation, and RSC throughout a snowstorm event, and compared the 

results with a disaggregated 1-hour model. The results not only showed that aggregation could 

cause loss of information, and result in biased parameter estimates, it also showed that some 

statistically significant variables in modeling collisions become insignificant as a result of 

aggregation. These findings opened the door for more disaggregated traffic safety studies, and 

researchers from around the world took a special interest in this framework. 

Collision risk models are among the research areas that exploite real-time traffic and 

weather data. Using random forests, and Bayesian logistic regression, Theofilatos et al. [57] 

studied the factors that affect the collision likelihood and severity on two urban arterials in Greece. 

By including real-time traffic and weather data in their analysis, the authors found that weather 

variables had neither positive nor negative influence on determining the likelihood or severity of 

collisions. Nevertheless, real-time traffic volume and speed data had proven significant in 

explaining collisions. In another study done by Pham et al. [58] rear-end collision risk was assessed 

using several traffic, geometric and weather variables on a highway in Switzerland. A disaggregate 

5-min interval dataset was compiled and utilized to create clusters of non-collision traffic situations 

and pre-collision traffic situations. The results of the analysis accredited rear-end collisions mainly 

to the speed difference between the two lanes of the roadway, with little influence given to weather 

conditions. The insignificant influence of the weather variables on collisions that was reported in 

these two studies was mainly attributed to the mild winter conditions in the countries where the 

studies were conducted. 

Knapp et al. [20] performed a comprehensive study on the impacts of snowstorm events 

on traffic mobility, and safety in Iowa. In their study, severe snowstorm events on segments of 3 

national highways were defined and analyzed for their impacts on traffic volumes and collisions. 

Severe snowstorms were identified as hours when RWIS sensors on these segments recorded 

snowfall intensity of 0.2 inches per hour or more, wet pavement surface, below-freezing air, and 

pavement temperatures. Preliminary analysis of the data showed a dramatic increase in the hourly 

collision rate during these severe storms that reached an average of 1,303%. Furthermore, when 

collision counts during the identified severe snowstorms were modeled using a Poisson regression 

model, the exposure, snowstorm duration, and snowfall intensity were all found to be statistically 
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significant variables in increasing collision frequencies during snowstorms. Additionally, 

regression analysis showed statistically significant volume reductions whenever snowfall and wind 

gust speed increased. 

Perhaps the most established studies on the effect of RSC on road safety were done by 

Usman et al. [34], [35]. The authors compiled enormous weather, traffic, and collision datasets to 

conduct a disaggregate 1-hour collision frequency modeling on select 4 highway maintenance 

routes, then repeated the study on a larger scale of 31 highway maintenance routes in Ontario. By 

defining the start and end time of snowstorm events, they recorded weather variables such as 

precipitation, visibility, and temperature, as well as traffic volumes, RSC, and collisions that 

occurred during every hour of the defined snowstorm events. The results of the studies were 

consistent with previous studies which provided evidence that the RSC is among the most 

significant factors influencing the occurrence of collisions in countries with harsh winter weather. 

This proved, once again, the importance of the WRM operations in reducing collision counts and 

saving lives. 

Table 3. A Summary of Winter Weather & Collision Modeling Studies. 

Authors Study Area Methodology Findings Limitations 

Schulze et al. [47] 
Germany, and 

France 

Descriptive 

statistics 

Collision risk increased as 

roads got wetter, and 

friction coefficients 

decreased. 

No statistical 

methods were 

deployed. 

Hemdorff et al. 

[48] 
Denmark 

Descriptive 

statistics 

Collision risk increased as 

friction coefficients 

decreased. 

No statistical 

methods were 

deployed. 

Norrman et al. 

[49] 

Northern 

Sweeden 

Descriptive 

statistics 

Collision risk increased in 

certain road surface 

conditions. 

No statistical 

methods were 

deployed. 
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Comfort et al. 

[51] 
Ontario Descriptive 

statistics 

Stopping distances 

increased dramatically as 

friction coefficients 

decreased. 

No statistical 

methods were 

deployed. 

Preus [52] Minnesota - 
Inconclusive results due to 

lack of information - 

Anastasopoulos 

et al. [54] 
Indiana 

Tobit 

regression 

Segments with better 

pavement friction witnessed 

fewer collisions. 

Aggregate 

study 

Chen et al. [55] Colorado 

Random-

effects Tobit 

model 

Real-time weather and 

traffic data are significant 

factors in influencing 

collisions. 

Maintenance 

operations 

impacts were 

not included. 

Usman et al. [56] Ontario 

General 

Negative 

Binomial 

models 

Aggregating data can result 

in biased parameter 

estimates. 

- 

Theofilatos et al. 

[57] 
Greece 

Random 

Forests, and 

Bayesian 

logistic 

regression 

Weather variables were 

insignificant in influencing 

collisions. 

Mild winter 

conditions in 

Greece. 

Pham et al. [58] Switzerland 

Random 

Forests and 

Clustering by 

K-means 

Weather variables were 

insignificant in influencing 

collisions. 

Mild winter 

conditions in 

Switzerland. 

Knapp et al. [20] Iowa 
Poisson 

models 

Snowfall intensity was a 

significant variable in 

increasing collision counts. 

Maintenance 

operations 

impacts were 

not included. 
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Usman et al. [34], 

[35] 
Ontario 

Various 

generalized 

linear models 

Weather variables and RSC 

play a significant role in 

determining road safety 

during snowstorms. 

Maintenance 

operations 

impacts were 

assumed not 

deducted. 

 

2.3 Importance of Winter Road Maintenance (WRM) 

The deterioration of RSC and accumulation of snow during the winter seasons of northern 

countries not only increase the likelihood of collisions but also affects the mobility of traffic as a 

whole. For these reasons, understanding the importance of the multi-million WRM operations was 

essential. Ye et al. [59] conducted a study to quantify the overall societal welfare of winter 

maintenance operations in Minnesota. By incorporating factors such as safety, mobility, and fuel-

saving benefits. The authors estimated financial savings of over $220 million per winter season. 

They also calculated the benefit-to-cost ratio by including the total cost of the operations to be 6.2 

which showed the significant role of the WRM operations. 

 In another study, Kwon et al. [60] investigated the reductions of free-flow speeds, and the 

capacity of freeways that are associated with snowstorms. When compared with dry road surfaces, 

it was reported that the saturation flow rates can decrease by up to 25%, and free-flow speeds can 

decrease by up to 23% due to the accumulation of snow and other unfavorable RSC during and 

after snowfalls [18]. Without WRM operations, these reductions in capacities, and speeds can 

reduce the levels of service on the road network leading to increased traffic delays. 

In a different study, it was also suggested that WRM is vital in reducing collision risk [50]. 

This was shown by investigating collision frequencies during and after snowfalls. It was found 

that collision risks can increase by up to 12 times in the 2 hours before starting the maintenance 

operations. In Norway, a 20% reduction in collisions was reported after converting from unsalted 

to salted winter operations. 

Salami et al. [61] attempted to evaluate the effectiveness of the plowing and sanding 

operations in WRM by quantifying the improvement in the lateral coefficient of friction. 

Interestingly, it was found that sanding and plowing operations can have contradicting outcomes 
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depending on the condition of the road surface. Sanding seemed to significantly reduce pavement 

friction when used on a bare dry road surface, while plowing was ineffective in improving friction 

when done on ice-covered surfaces. On the other hand, when roads were covered with ice or snow, 

sanding significantly improved the pavement friction on these surfaces. Likewise, plowing was 

crucial in improving friction when the road surface was snow-covered. 

Attempting to understand the role of WRM on traffic safety, Gouda et al. [33] employed 

an Empirical Bayes framework to quantify the safety benefits of using anti-icing in winter 

maintenance operations. Their study focused on comparing anti-icing to the conventional de-icing 

methods on urban roads in Edmonton. Even though the project showed great success in 

significantly reducing all types of collisions, the study had two major drawbacks. It was a 

macroscopic study where a lot of information was lost due to aggregation, and it failed to identify 

the advantages that anti-icing operations have over de-icing operations. 

In the study done by Usman et al. [34], after showing that the RSI is a significant predictor 

of collision counts during snowstorms, the authors proceeded to show the importance of WRM 

operations in reducing collisions. Based on the assumption that maintenance operations improved 

the RSI of roads by an average of 0.8, the mean number of collisions at each hour of the event was 

calculated. On top of that, the predicted number of collisions was cut in half by reducing the bare 

pavement regain time from eight to four hours, which highlighted the value of speedy winter 

maintenance services. 

Table 4. A Summary of the Importance of WRM operations Studies. 

Authors Study Area Methodology Findings Limitations 

Ye et al. [59] Minnesota - 
WRM provides a benefit to 

cost ratio of 6.2 - 

Kwon et al. 

[18], [60] 
Ontario Synchro/VISSIM 

Snowstorms decrease flow 

rates and free-flow speeds 

by 25%, 23% respectively. 

The importance 

of WRM 

operations was 

not highlighted. 
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Wallman et 

al. [50] 
Norway Descriptive 

statistics 

Converting from unsalted 

to salted winter operations 

results in a 20% collision 

reduction. 

No statistical 

methodology to 

support the claim

Salami et al. 

[61] 
Edmonton Statistical 

comparisons 

Plowing and sanding are 

effective in improving 

pavement friction in 

specific conditions only. 

A controlled 

study, 

operational 

variations were 

not considered. 

Gouda et al. 

[33] 
Edmonton 

Empirical Bayes, 

and Negative 

Binomial models 

Application of anti-icing 

before snowstorms results 

in a significant reduction of 

collisions of all types and a 

decrease in injury severity. 

Aggregated 

study where the 

influences of 

WRM can be 

masked. 

Usman et al. 

[34] 
Ontario 

Various 

generalized linear 

models 

50% of snowstorm 

collisions can be avoided if 

the WRM response time 

was reduced from eight to 

four hours. 

Impacts of the 

maintenance 

operations on 

RSC were 

assumed. 

2.4 Summary 

This chapter gave an overview of studies that focused on RSC modeling, winter weather and road 

safety, and the benefits of the WRM operations. 

 Even though RSC has been modeled using various techniques and metrics, pavement 

friction remained the most accurate way to represent and model the road surface conditions. 

Several studies in the past attempted to model pavement friction; however, they had the limitations 

of assuming the influence that the WRM operations had on pavement friction, studied rural isolated 

highways, or drawing conclusions from controlled experiments. The analysis presented in this 

thesis addresses this problem by offering a pavement friction model that represents the RSC at an 
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operational level where the influences of the different tools of the maintenance operations were 

studied and quantified in an urban environment. 

 The influence of winter weather on road safety has also been studied multiple times in the 

past; nevertheless, there were significant limitations in these studies. Among these limitations are: 

the relationship between pavement friction and collision counts was not fully investigated, the 

studies aggregation level made it impossible to isolate the interactions that occur during individual 

snowstorm events, and the role of WRM operations in improving traffic safety remained unknown.  

By developing a proposed event-based and location-specific framework, the influence of pavement 

friction on deciding the road safety level can be readily identified. Furthermore, by using the 

Structural Equation Modeling (SEM) statistical technique, it will be possible to quantify the direct 

and indirect effects of the different weather and maintenance operations factors during snowstorms 

and their associated effect on winter road safety. 
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3. WINTER ROAD MAINTENACE PROGRAM & DATA 
DESCRIPTION 

This chapter describes the winter road maintenance (WRM) program, and how the data needed for 

this study was collected from different sources, processed, filtered, and fused. The chapter is 

divided into six subsections. The first subsection talks about the study area and describes how the 

WRM program operates in Edmonton. The following five subsections explain how the historical 

weather data was used to create events, how pavement friction and maintenance operations data 

and collision data were processed and filtered, then fused with the created events datasets. 

3.1 Study Area & Program Description 

The study area for this research is the city of Edmonton which is the fifth-largest city in Canada 

and the capital of the province of Alberta. The city has adverse weather conditions during the 

winter seasons with the daily average temperature reaching -10.4°C in January and could drop to 

-48.3°C on the coldest day of the year and the average snow depths during the winter months are 

as high as 17 cm [62].  

The WRM crew in Edmonton must maintain the streets of the road network both during and 

after snowstorms. The two primary objectives of the maintenance program are to clear snow off 

the roads to restore mobility and to maintain the roads to bare pavement conditions within a certain 

number of hours after the end of snowfall. To achieve these goals, the maintenance operators have 

several tools under their disposal, which include de-icing and snowplowing operations while the 

application of anti-icing was briefly introduced between 2017 and 2019 then was discontinued. 

The city also adopts a transportation network priority hierarchy where certain roads receive 

maintenance more rapidly and frequently as summarized in Table 5. 

To conduct an event-based and location-specific microscopic analysis, multiple datasets 

from different sources had to be combined to create a series of centralized databases, where each 

includes certain information that serves the function of modeling specific variables as discussed in 

the subsequent sections. 
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Table 5. Transportation Network Priority Hierarchy Adopted by the City of Edmonton 
[63]. 

Priority 

Level Sublevels Roads Maintenance policy Clearing starts 

Priority 

1 A 

Prioritized 

sidewalks, trails, and 

bike routes 

Restore to a bare pavement 

standard within 24 hours 

from the end of snowfall. 

Once 2-3 cm of 

snow has 

accumulated. 

 B 

Freeways, arterials, 

business districts, 

busways 

Restore to a bare pavement 

standard within 36 hours 

from the end of snowfall. 

 

 C 
Bus stops adjacent 

to city property 

Restore to a bare pavement 

standard within 48 hours 

from the end of snowfall. 

 

Priority 

2 - 

Collectors, bus 

routes, transit parks, 

and ride access 

roads 

Restore to a bare pavement 

standard within 48 hours 

from the end of snowfall. 

Once 2-3 cm of 

snow has 

accumulated. 

Priority 

3 - 
Local industrial 

roadways 

Restore to a bare pavement 

standard within 5 days from 

the end of snowfall. 

Once 2-3 cm of 

snow has 

accumulated. 

Priority 

4 - 
Residential 

roadways, and alleys

Blade level snowpack, start 

within 48 hours after 

snowfall and complete in 5 

days. 

Once 5 cm of 

snowpack has 

formed. 

3.2 Weather Data 

Historical hourly weather data is recorded and stored on the province of Alberta website [64]. 

There are two weather stations within the city limits; namely Blatchford and South Campus 

weather stations which are shown in Figure 1. Hourly weather data from 2017 to 2019 were 
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downloaded and compiled from each weather station. The downloaded datasets include the 

following information: minimum and maximum air temperature, average air temperature, dew 

point temperature, average humidity, total equivalent precipitation in mm, average wind speed, 

and average wind direction. All of this information is recorded during each hour of the day. 

3.3 Pavement Friction and Maintenance Operations Data 

The maintenance operators conducted friction testing on 21 urban routes in the city during the 

winter seasons from 2017/18 to 2019/20. The city used the Vericom Brakemeter 4000 device to 

calculate the friction coefficient for each route. To calculate each friction coefficient value, the 

following standard procedure was used: 

1- The testing vehicle was mounted with the Vericom Brakemeter 4000 device, and the device 

was calibrated. 

2- The testing vehicle accelerated to a target speed of 30 ± 5 km/h, then brakes were applied 

fully until the vehicle came to a complete stop. 

3- The device automatically calculated and stored the friction coefficient using equation (1). 

𝑑
𝑣

2μg
 (1) 

where d is the stopping distance, μ is the coefficient of friction, v is the velocity at the time when 

braking started, and g is the gravitational acceleration constant. 

The 21 testing routes include 13 arterial segments and 8 collector segments from different 

areas and neighborhoods of the city. During friction testing runs in the two winter seasons of 

2017/18, and 2018/19, information about the status of the WRM operations on each route was 

recorded. Such information included whether anti-icing chemicals had been applied before/after 

the snowstorm and whether the road had been plowed. A total of 351 pavement friction records 

were collected in the three winter seasons. However, only the 234 records that were collected 

during the first two winter seasons included information about the status of the WRM operations. 

Figure 1 shows the 21 friction testing routes included in the study, and Table 6 gives a summary 

of information about the routes. 
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Figure 1. Weather Station Locations, and Friction Testing Routes 
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Table 6. A Summary of the 21 Friction Testing Routes. 

Route 

number 

Location Segment 

Length in 

Kilometers 

Route 

Classification 

1 Yellowhead Trail between 55 st and 82 st 3.07 Arterial 

2 82 st between Yellowhead Trail and 167ave 5.07 Arterial 

3 137 ave between 97 st and 127 st 3.23 Arterial 

4 132 ave between 113a st and 127 st 1.63 Collector 

5 Yellowhead Trail between 127 st and 142 st 1.55 Arterial 

6 142 st between 114 ave and Yellowhead 

Trail 

1.97 Arterial 

7 114 ave between 142 st and 170 st 3.24 Collector 

8 170 st between 69 ave and 114 ave 7.30 Arterial 

9 Callingwood Rd between 170 st and 184 st 1.65 Arterial 

10 69 ave between 170 st and 184 st 1.61 Arterial 

11 122 st between Whitemud Drive and 63 ave 1.82 Arterial 

12 Whitemud Drive between 75 st and 122 st 6.25 Arterial 

13 66/75 st between Millwoods Rd and 

Whitemud Drive 

4.28 Arterial 

14 Knottwood Rd 3.14 Collector 

15 50 st between Millwoods Rd and 38 ave 2.74 Arterial 

16 129 ave between 113a st and 127 st 1.63 Collector 

17 142 st between 137 ave and 167 ave 3.28 Arterial 

18 Saddleback Rd/19 ave 2.72 Collector 

19 184 st between Callingwood Rd and 69 ave 0.83 Collector 

20 Millwoods Rd between Knottwood Rd and 

50 st 

2.53 Collector 

21 38 st between 105 ave and 123 ave 2.12 Collector 
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3.4 Events Definition 

A critical part of the analysis depended on the definition of the snowstorm events. Using the hourly 

weather data, the start and end of a snowstorm are identified, as per the literature [30], [34], [35], 

[56], based on the following criteria:  

1- Snowstorm events start if the precipitation value during an hour is more than 0, and the 

average temperature during the same hour is equal to or less than 5°C, and 

2- Snowstorm events would continue until the precipitation stopped for 3 consecutive hours. 

A MATLAB code was developed and used to process the hourly weather data collected from 

the two weather stations (i.e., Blatchford and South Campus) using the conditions described above, 

and a dataset of all the snowstorm events that occurred during the period from 2017 to 2019 was 

compiled. Figures 2-4 illustrate the frequencies and severities of snowstorms during the study 

period. 

The final dataset included the following information about each snowstorm: start date and 

time of each event, duration of the event, average temperature, average dew temperature, total 

equivalent precipitation in mm, average humidity, average wind speed, and average wind direction 

during each event. 

 

Figure 2. Number of Snowstorm Events According to the Two Weather Stations. 
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Figure 3. Average Snowstorm Duration According to the Two Weather Stations. 

 

Figure 4. Average Total Equivalent Precipitation During Snowstorms According to the 

Two Weather Stations. 
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collected datasets include the date and time of each collision, number of vehicles involved, 

collision location (at a midblock, or an intersection), collision severity, and collision address.  

Collision data were processed and filtered for the purpose of this study as follows: 

1- Duplicates of the same collision record were filtered out using the police report number 

field. 

2- Collisions that occurred at an unknown location or ones that occurred in residential or local 

streets were filtered out using the location code. Only collisions that occurred in 

intersections or mid-blocks were kept. 

3- The remaining subset of filtered collisions was further filtered out using Esri’s ArcGIS [65], 

to keep only collisions that occurred on any of the 21 friction testing routes. 

The resulting dataset included a total of 3,853 collisions that occurred on the 21 friction testing 

routes throughout the study period. The breakdown of the annual collisions per friction route is 

shown in Figure 5, while the breakdown of the annual collisions per road type is shown in Figure 

6. 

 

Figure 5. Total Annual Number of Collisions per Route. 
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Figure 6. Total Annual Number of Collisions per Route Type. 
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ii- If plowing operations had not been conducted at the time of the friction testing 

record, then 4-hour dummy events with no precipitation were created. The 

assumption here was that the pavement friction coefficient could change and 

improve significantly once plowing operations start. 

All snowstorm events without friction coefficient records were filtered out of the analysis, 

leaving 351 snowstorm events. A subset dataset of the 234 snowstorm events that occurred during 

the first two winter seasons was separated to be used for friction modeling. These events include 

information about the status of the maintenance operations at the time of friction testing which is 

critical in describing and predicting pavement friction. The larger dataset was still used to associate 

the risks of collision occurrence at specific thresholds of pavement friction. The dataset that 

contains all the 351 events is to be called “Dataset 1”, and then the subset dataset that contains the 

234 events with maintenance information is named “Dataset 2”. Summaries of both datasets are 

shown in Tables 7 and 8.  

To create a dataset that would be useful in modeling collisions, information regarding both 

the maintenance operations and traffic data needed to be present. There was no traffic volume 

information available for the friction testing route number 17 (142 st between 137 ave and 167 

ave). Hence, snowstorm events that occurred on this route were discarded from the subset dataset, 

leaving 231 records to be used in quantifying the benefits of WRM operations in improving traffic 

safety. This dataset is to be called “Dataset 3”. A summary of Dataset 3 is shown in Table 9. 

Three additional variables were created and added to the three datasets; BI, T15, and I. BI 

is a dummy variable that describes the potential for black ice formation; taking a value of 1 when 

the average dew point temperature is within 2 degrees of the average ambient temperature during 

a snowstorm. T15 is a dummy variable that describes an event with an average temperature that is 

equal to or less than -15°C, while I is the precipitation intensity variable, which was obtained using 

equation (2). A flowchart that describes the sequence of how the datasets were created is shown in 

Figure 7. 

𝐼
P
𝐷

 (2) 

where P is the total equivalent precipitation in mm, and D is the total snowstorm event duration. 
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Figure 7. A Schematic Workflow of Data Processing. 
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Table 7. The Descriptive Statistics of the Full Dataset – Dataset 1. 

Variable Mean Minimum Maximum Range St. Deviation 

T -14.42 -31.05 0.68 31.73 7.588 

H 80.50 62.55 96.93 34.38 8.227 

P 1.83 0 11.8 11.8 2.643 

W 10.63 1.75 23.48 21.73 4.707 

D 11.49 4 40 36 9.573 

I 0.11 0 0.36 0.36 0.094 

T15 0.45 0 1 1 0.498 

Dew -17.35 -33.78 -2.96 30.82 8.053 

BI 0.23 0 1 1 0.419 

Arterial 0.77 0 1 1 0.424 

G 0.482 0.190 0.833 0.643 0.154 

Length 3.26 0.83 7.30 6.48 1.736 

ADT 25367.88 1433 74523 73090 23488.211 

MVK 37.19 0.95 170.09 169.14 48.156 

Collisions 0.30 0 11 11 0.898 
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Table 8. The Descriptive Statistics of the Subset Dataset - Dataset 2. 

Variable Mean Minimum Maximum Range St. Deviation 

T -17.40 -31.05 0.68 31.73 6.975 

H 77.69 62.55 94.66 32.11 7.870 

P 2.30 0 11.8 11.80 3.073 

W 10.96 1.75 23.48 21.73 4.789 

D 13.32 4 40 36 10.939 

I 0.12 0 0.36 0.36 0.108 

T15 0.64 0 1 1 0.482 

Dew -20.57 -33.78 -4.70 29.08 7.296 

BI 0.21 0 1 1 0.408 

Arterial 0.75 0 1 1 0.435 

AI 0.14 0 1 1 0.349 

Maint 0.36 0 1 1 0.479 

G 0.448 0.199 0.816 0.617 0.143 
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Table 9. The Descriptive Statistics of Dataset 3. 

Variable Mean Minimum Maximum Range St. Deviation 

T -17.09 -31.05 1.85 32.9 7.358 

H 76.56 58.8 94.66 35.86 8.952 

P 1.93 0 11.8 11.8 2.972 

W 10.68 1.75 21.64 19.89 4.460 

D 16.45 4 98 94 15.672 

I 0.10 0 0.36 0.36 0.111 

T15 0.61 0 1 1 0.488 

Dew -20.48 -33.78 -6.58 27.2 7.578 

BI 0.14 0 1 1 0.351 

Arterial 0.74 0 1 1 0.437 

AI 0.14 0 1 1 0.346 

Maint 0.35 0 1 1 0.480 

G 0.448 0.199 0.816 0.617 0.144 

Length 3.32 0.83 7.301 6.476 1.642 

ADT 25339.45 1433 74523 73090 23406.75 

MVK 37.14 0.95 170.09 169.14 47.127 

Crashes 0.39 0 11 11 1.069 

 

T = Average temperature in Celsius; H = Average humidity in %; P = Total equivalent precipitation 

in mm; W = Average wind speed in km/hr; D = Total duration in hours; I = Precipitation intensity 

in mm/hr; T15 = Dummy variable describing events with an average temperature less than or equal 

-15°C; Dew = Average dew point temperature in Celsius; BI = Dummy variable describing the 
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potential for black ice formation; Arterial = Dummy variable describing the segment function; AI 

= Dummy variable describing the application of anti-icing; Maint = Dummy variable describing 

the plowing operations; G = Coefficient of friction; Length = Route length in KM; ADT = Average 

daily traffic on each route; MVK = Exposure variable, Million vehicle kilometer; 

Collisions/Crashes = Collision counts. 
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4. PAVEMENT FRICTION MODELING 

This chapter discusses the pavement friction model. Using a multi-linear regression model, the 

impacts of the different weather and maintenance operation variables on pavement friction were 

obtained. The chapter is divided into three subsections. In the first subsection a brief introduction 

about the goal of the analysis and the methodology used is provided; the linear regression 

methodology for pavement friction modeling is presented in the second subsection; while in the 

third subsection, the results and discussion of the developed model are illustrated. 

4.1 Introduction 

The primary goal of this analysis was to quantify the impacts of the different weather and 

maintenance operation variables on road surface conditions during snowstorms. There was an 

obvious linear trend between pavement friction and the rest of the independent variables, which is 

why multi-linear regression was deemed the best way to represent this relationship.  

 Although more sophisticated methodologies could have been used to study this interaction 

and result in better data fits such as geostatistical analysis [18], [37], [60] or machine learning 

algorithms [42], multi-linear regression had been preferred because of its ability to quantify and 

draw associations between the independent and response variables. Had the goal of this analysis 

been purely predictive, however, one of the pre-mentioned methodologies would have been more 

appropriate. 

 Multi-linear regression is a parametric statistical technique used to understand the effects 

of independent variables on a response variable by constructing a linear relationship between them 

[66]. It helps quantify the impact of each of the independent variables as well as the magnitude 

and significance of their impact on the dependent variable under study. Furthermore, the resulting 

model can be used to predict the average value of the response variable under certain conditions 

as described by the independent variables. This technique has been widely used in many fields as 

it is easy to formulate and, if properly specified, can result in models with a very good statistical 

fit and very high predicting powers. Multi-linear regression is used extensively in the field of 

transportation engineering. In transportation planning, it is mainly used in demand forecasting 

[67]–[69]; while in traffic engineering, its applications include traffic predictions, and speed and 

flow rate estimations [70]–[72]; it is also used in road surface modeling [39], [40], [45]. 
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4.2 Methodology 

Multi-linear regression models take the form of equation (3), where y is the dependent variable 

under study, β0 is the intercept or the mean value of the dependent variable when all predictor 

variables are equal 0, Xi is a vector of predictor variables, βi is a vector of regression coefficients. 

ε is an error term which is defined as the difference between the observed and expected values of 

the dependent variable, as per the model, at each observation. ε is a random variable that is assumed 

to be uncorrelated within observations, and to follow a normal distribution with parameters ε ~ N 

(0, σ2). The regression coefficient vector βi represents the marginal change in the dependent 

variable y per unit change in the predictor variable Xi when all other variables are kept constant.  

y = β0 + βi Xi + ε (3) 

Estimates of the regression coefficients were determined using the ordinary least square 

method. The method calculates the regression coefficients by minimizing the sum of the squares 

of the error terms. The sum of the squares of the error terms S is calculated as in equation (4), then 

using the partial derivatives of S with respect to the regression parameters, β0 and βi are calculated 

as in equations (5) and (6) respectively by simultaneously solving the resulting equations.  

𝑆 𝛽 , 𝛽 𝜀 𝑌 𝛽 𝛽 𝑋  (4) 

𝜕𝑆
𝜕𝛽

|𝛽 , 𝛽    2 𝑌 𝛽 𝛽 𝑋 0 (5) 

𝜕𝑆
𝜕𝛽

|𝛽 , 𝛽   2 𝑌 𝛽 𝛽 𝑋 0 (6) 

All the variables included in the final accepted model met a certain pre-set statistical 

significance level α. A t-test was conducted for all the independent variables used in the model, 

and variables with p-values of more than 0.05 were dropped using a backward stepwise variable 

selection. Finally, residual plots of all the selected predictor variables were examined to make sure 

that there were no patterns in the random error terms (i.e. homoscedastic errors). 

The overall goodness of fit of the model was judged using the coefficient of determination 

(R2). R2 measures the percentage of the variability in the dependent variable that is explained using 
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the independent variables and is equal to the ratio of the regression sum of squares SSreg to the 

total sum squares SYY. R2, SSreg, and SYY are calculated as in equations (7-9) respectively. SAS 

statistical software [73] was used for model calibration and processing. 

𝑅  
𝑆𝑆𝑟𝑒𝑔

𝑆𝑌𝑌
 (7) 

𝑆𝑆𝑟𝑒𝑔  𝑦 𝑦  (8) 

𝑆𝑆𝑟𝑒𝑔  𝑌 𝑦  (9) 

where yn, Yn, ȳ are the predicted, observed, and mean values of the dependent variable respectively. 

 In this analysis, Dataset 2 was used, the response variable under study was the coefficient 

of pavement friction “G”, while the independent variables (i.e., weather and maintenance) used to 

predict it are summarized in Table 8. 

4.3 Results & Discussion 

The results of the friction coefficient model are summarized in Table 10 and presented in equation 

10. As shown in the table, all the variables were statistically significant at the 99% confidence 

level. The model had an R2 of 0.7233 and an adjusted R2 of 0.716 which demonstrated a good fit 

[74], [75]. This indicates that the predictor variables included in the model can explain 72.33% of 

the variation of pavement friction during snowstorms. Residual plots for all the independent 

variables, shown in the appendix, were inspected, and no trends nor patterns were found, further 

confirming the validity of the developed model.  
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Table 10. The Results of the Pavement Friction Regression Model. 

Variable Parameter Estimate Standard Error t-value p-value 

Intercept 0.4444 0.0153 28.87 <.0001 

P -0.0086 0.0019 -4.44 <.0001 

T15 -0.1098 0.0129 -8.53 <.0001 

BI -0.1166 0.0159 -7.35 <.0001 

Arterial 0.0768 0.0117 6.59 <.0001 

AI 0.0577 0.0153 3.77 0.0002 

Maint 0.1484 0.0119 12.49 <.0001 

 

G = 

0.44 – 0.009 P – 0.110 T15 – 0.117 BI + 0.077 

Arterial + 0.058 AI + 0.148 Maint 
 

(10) 

 The model results show that the precipitation variable P had a negative effect on pavement 

friction. This is understandable because the snow that accumulates on the roads during snowstorms 

is the main factor that worsens the road surface conditions (RSC). Snow makes roads more slippery, 

and therefore, reduces the friction coefficient. Hence, it should be expected that snowstorms with 

more snowfall would result in lower friction coefficient values. The model predicts that the friction 

coefficient drops by -0.0086 for each 1 equivalent millimeter of precipitation. 

Temperature was also found to be a significant factor in predicting friction coefficients for 

the roads during snowstorms. The resulting model suggests that friction coefficient drops by an 

average value of -0.1098 in snowstorm events with an average temperature of equal to or less than 

-15°C. This finding is consistent with what had been found in prior studies attesting that the 

efficiency of salt in breaking up the bonds between snow and pavement decreases as temperatures 

decrease [27]–[29].  

The formation of black ice on road surfaces can be very dangerous as it makes the pavement 

surface extremely slippery. In fact, the model suggests that the friction coefficient during 
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snowstorms, when there is a possibility for black ice formation is, on average, 0.1166 less than 

snowstorms without the potential for black ice formation. 

Like many cities in North America, the City of Edmonton adopts a priority plan for the 

winter road maintenance (WRM) operations which gives precedence to roads based on their 

function [63]. Accordingly, arterial roads have better maintenance response times and receive de-

icing operations more frequently than collector roads. This was shown in the results of the model 

developed here as, on average, the friction coefficient on arterial roads is expected to be higher 

than collector roads subjected to the same snowstorm by 0.0768. 

The application of anti-icing chemicals before snowstorms has always been anecdotally 

associated with higher levels of service, and better overall RSC. The model finally confirms this 

notion with empirical evidence as it predicts that roads that receive anti-icing treatments before 

snowstorms shall have a 0.0577 better friction coefficient than their counterparts. 

Moreover, the model quantifies the impact of the plowing operations on pavement friction 

as it improves friction by 0.1484. This makes intuitive sense as plowing is essentially the main and 

most important maintenance operation tool for snow clearance. 

Finally, the model predicts that the average value of pavement friction on arterial roads is 

0.5212 when there is no precipitation, the temperature is above -15°C, the conditions for black ice 

formation are not met, and no maintenance operations are conducted. On the other hand, the model 

predicts that the average value of friction coefficient on collector roads under the same conditions 

is 0.4444. 

Interestingly, among all the variables included in the model, the plowing operations 

represented in the variable Maint had the highest impact on pavement friction. According to the 

model, plowing improves pavement friction by an average of 0.1484, which shows its utmost 

importance in restoring bare pavement conditions. In contrast, temperatures during snowstorms 

play a major role in worsening pavement friction. Road friction during snowstorms with average 

air temperatures below -15°C and dew point temperatures within 2 degrees of the air temperature 

is expected to drop by 0.2264. As such, decision-makers should pay extra attention to these 

snowstorms as these events would result in highly hazardous driving conditions for motorists. 
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The results of the model further suggest that there are two sets of variables that influence 

pavement friction during snowstorms. On one hand, there are the weather variables, represented 

by P, T15, and BI, which worsen the pavement friction coefficient on roads. These variables vary 

from one snowstorm to another depending on the weather forecast. On the other hand, there are 

the efforts of the maintenance operators, which are represented by the variables Arterial, AI, and 

Maint. Unlike the weather variables, the maintenance operation variables improve the pavement 

friction and can be controlled by decision-makers' policies.  
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5. TRAFFIC COLLISION MODELING 

This chapter discusses the collision count models. Collisions were modeled using Negative 

Binomial count models to understand the influences of the different predictor or independent 

variables on road safety. The chapter is divided into four subsections. In the first subsection, a brief 

introduction about the goals of the analysis and methodology used is presented, then the Negative 

Binomial methodology used for collision modeling is explained in subsection two. In the third 

subsection, the results and discussion of the developed models are illustrated. Finally, the fourth 

subsection shows how the created models can be used. 

5.1 Introduction 

Collisions are rare and random phenomena which can be modeled using discrete count 

distributions models [76], [77]. Safety performance functions (SPFs) are mathematical models that 

aim to explain some of the structured randomness in crash occurrence using various influencing 

variables [76], [77]. In order to construct good representative SPFs, a wide range of hierarchical 

models and methodologies have been developed. The most popular frameworks used in the 

literature to model collisions are Poisson and Negative Binomial models [53]. This is because these 

structures are easy to model and can account for the most common issues found in collision data.  

 Negative Binomial SPFs are more robust than the Poisson as they are capable of dealing 

with the overdispersion found in most collision datasets. Overdispersion occurs when the variance 

of the data is larger than the mean. Poisson models are structured such that the variance is assumed 

to be equal to the mean. If this assumption does not hold, biased parameter estimates will be 

generated leading to wrong conclusions and bad goodness of fit. Negative Binomial models are an 

extension of Poisson models where the variance, mean equality restriction is not assumed. Instead, 

Negative Binomial models allow the variance to exceed the mean by a factor of   (see equations 

11-19). By allowing the variance to deviate from the mean Negative Binomial SPF usually results 

in superior goodness of fit and more accurate inferences [53], [78]–[81]. Hence, Negative binomial 

models were used predominantly in this analysis. 

 Using SPFs, the relationship between the pavement friction coefficient with collision 

counts during snowstorms was examined. The main objectives of this analysis were to: understand 
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the influence of pavement friction on road safety, and establish pavement friction intervals where 

collision counts significantly increased and decreased. The first part of the analysis was conducted 

by including the pavement friction coefficient variable “G” as an independent variable that can 

explain collisions during snowstorms. 

 To conduct the second part of the analysis, dummy variables of pavement friction were 

created at 0.05 increments. These dummy variables represent the upper and lower limits of road 

surface conditions where collisions become more and less likely to occur respectively. The 

significance of these dummy variables in influencing collision counts was tested one at a time until 

significant changes in collision risk were reported.  

5.2 Methodology 

To derive the Negative Binomial SPFs, the observed number of collisions per snowstorm Yn is 

assumed to follow a Poisson distribution with parameter 𝜃n; Yn| 𝜃n ~ Poisson (𝜃n) where 𝜃n is the 

mean number of collisions per snowstorm. The probability distribution function of Yn can then be 

described as shown in equations (11), and the expected value of the distribution and its variance 

are shown in equations (12,13) respectively. 

𝑃 𝑌|𝜃  
𝜃 𝑒

𝑌!
 (11) 

𝐸 𝑌|𝜃  𝜃 (12) 

𝑉𝑎𝑟 𝑌|𝜃 𝜃 (13) 

 The mean number of collisions per snowstorm 𝜃n is, then, assumed to follow a gamma 

distribution with a shape parameter k and scale parameter k/μ; 𝜃 ~ Gamma (k, k/μ) where μ is the 

predicted number of collisions per snowstorm. The probability distribution function of 𝜃 can be 

described as shown in equation (14), and the expected value of the distribution and its variance are 

shown in equations (15,16) respectively.  

𝑓 𝜃  

𝑘
𝜇  𝜃 𝑒

Γ k
 (14) 

𝐸 𝜃 𝜇 (15) 

𝑉𝑎𝑟 𝜃  
𝜇
𝑘

 (16) 
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 The resulting product of the two probability functions is a Negative Binomial distribution 

with a probability distribution function shown in equation (17), and an expected value and variance 

described in equations (18,19) respectively. 

𝑃 𝑌 |𝜇 , 𝑘  
Γ Y 𝑘
Y !  Γ k

 
𝑘

𝑘 𝜇
𝜇

𝑘 𝜇
 (17) 

𝐸 𝑌 𝜇 (18) 

𝑉𝑎𝑟 𝑌  𝜇
𝜇
𝑘

 (19) 

 The predicted number of collisions per snowstorm μi is assumed to be a function of 

independent variables that take the form as shown in Equation (20). μi is the collision count during 

each snowstorm which is the dependent variable under study, β0 is the intercept, Xi is a vector of 

predictor variables, βi is a vector of regression coefficients, and ε is an error term, which is a 

random variable that is assumed to follow a Negative Binomial distribution. The error term ε 

accounts for the randomness that is associated with the collision occurrence. The exposure and 

snowstorm duration terms were left outside of the exponential function because if either was equal 

to zero, then we would not expect any collisions to occur. 

μi = duration. 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 . 𝑒  (20) 

 The model’s regression coefficients were calibrated using the maximum likelihood 

estimation method, while the overall goodness of fit of the models were judged by comparing 

Pearson’s 𝑋  and the scaled deviance (SD) to the chi-square of α = 0.05; 𝑋. . Pearson’s 𝑋  and 

the SD are calculated for each created model using the equations (21,22) respectively. SAS 

statistical software was used for model calibration and processing [73].  

𝑃𝑒𝑎𝑟𝑠𝑜𝑛 𝑋  
𝑌 𝐸 𝜃

𝑉𝑎𝑟 𝑌
 (21) 

𝑆𝐷 2 𝑌  𝑙𝑛
𝑌

𝐸 𝜃
𝑌 𝑘 𝑙𝑛

𝑌 𝑘
𝐸 𝜃 𝑘

 (22) 

 All the variables included in the final models were ensured to meet a minimum pre-set 

statistical significance level of 0.05. t-tests were conducted for all the independent variables used 

in the models, and variables with p-values of more than 0.05 were dropped. 
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 Dataset 1 was used for this study where “Collisions” was the dependent variable, and the 

independent variables were all the other variables summarized in Table 7, in addition to the friction 

dummy increment variables previously described. Considering how pavement friction was shown 

to be correlated with the weather and maintenance operations variables in the previous chapter, a 

forward stepwise variable selection was opted this time. This was done to ensure that pavement 

friction was among the variables that remained in the final model while any other variable that 

might be correlated would be removed. 

5.3 Results & Discussion 

First, the relationship between pavement friction and road safety was hypothesized and tested. This 

was done by investigating the impacts and significance of the friction coefficient values on 

collision counts during snowstorms. The model shown in Table 11 and presented in equation (23) 

was created. 

 As shown in Table 11, all the variables were statistically significant at the 99% confidence 

level. Additionally, the dispersion parameter estimate was less than 1 which confirmed the 

presence of overdispersion within the data and justified the use of a Negative Binomial model in 

the analysis. The goodness of fit of the model was judged using the Scaled Deviance and Pearson’s 

chi-squared values. Since both, the Scaled deviance (178.1916), and Pearson’s chi-squared 

(342.8055) were less than 𝑋 347, 0.05  391.43 the model was considered a good fit for the 

data. 

Table 11. The Results of the First Collision Count Model. 

Variable Parameter Estimate Standard Error p-value 

Intercept -4.9063 0.6743 <.0001 

lnMVK 0.3357 0.1232 0.0064 

G -3.6712 0.9341 <.0001 

Arterial 1.7665 0.6729 0.0087 

Dispersion 0.7545 0.3081 - 
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Collision counts = 

7.4 𝑥 10 𝑫 .  𝑴𝑽𝑲 . . 𝑒𝑥𝑝 . 𝑮 . 𝒂𝒓𝒕𝒆𝒓𝒊𝒂𝒍  
 

(23) 

 The model suggests that collisions during snowstorms increase as the exposure variable 

lnMVK increases. This is intuitive and in line with previous studies [33]–[35] because when there 

is more traffic on the road, there are more chances for collisions to occur. Moreover, the pavement 

friction coefficient was found to be a significant factor in predicting collision counts. Since 

pavement friction is an indicator of road surface conditions (RSC), it was predicted that the number 

of collisions would decrease as pavement friction increased. In fact, previous studies reported 

similar results when modeling collisions using RSC indicators [34], [35]. Finally, Arterial roads 

were found to witness more collisions than collector roads which was attributed to the higher traffic 

volumes that these roads receive, the higher speed limits that they have, and the difference in 

drivers’ behavior while traveling on them.  

 Once pavement friction was found to have a significant impact on road safety, further 

analysis to establish pavement friction thresholds where roads are significantly safer or less safe 

was pursued. The upper bound of pavement friction that signifies unsafe driving conditions was 

established by creating SPFs using dummy variables that take the value of 1 whenever the friction 

coefficient was below a certain threshold. Unsafe driving conditions were defined in this context 

as the pavement friction coefficient value when a significant increase in collisions was predicted. 

Friction coefficient increments of 0.05 were used until the upper bound was reached. Similarly, 

the lower bound of pavement friction that signifies safe driving conditions or a significant 

reduction in collisions was evaluated. The results of the models created are shown in Tables 12 - 

14, and equations (24 - 26). 

Table 12. The Goodness of Fit Results of the Pavement Friction Thresholds Models. 

Model SD* Pearson’s 𝑿 𝟐 𝑿𝟐 𝟑𝟒𝟖, 𝟎. 𝟎𝟓  

1 186.469 334.678 392.5 

2 185.729 314.34 392.5 

3 179.609 304.086 392.5 
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Examining the results of the models summarized in Table 12, several findings can be 

deduced. Firstly, the goodness of fits of all three models included in this analysis were significant 

at the 95% confidence level. Secondly, the overdispersion assumption was confirmed in all the 

models as the dispersion parameters were all less than 1. Thirdly, the models showed three distinct 

ranges of pavement friction coefficients when it comes to road safety. The first range is when the 

friction coefficient is equal to or less than 0.35. In these conditions, the results showed that there 

was a significant increase in collisions. This means that the pavement friction coefficient value of 

0.35 signifies the start of dangerous driving conditions and that collisions are expected to increase 

exponentially at lower friction coefficients. The second range is when the friction coefficient is 

between [0.35, 0.6]. At this interval, driving conditions were relatively safer, however, there was 

not a significant reduction in collisions predicted. Finally, the third range is when the friction 

coefficient is more than or equal to 0.6. In these conditions, there was a significant decrease in the 

number of collisions as per the model. Similar to the first range, the trend of collision reduction 

continued at pavement friction values higher than 0.6. 

These results show that not only collisions are expected to increase whenever pavement 

friction on the roads decreases, but also that there are specific ranges of pavement friction where 

driving conditions can be considered safe or dangerous. Using the friction ranges established in 

the three models above, driving conditions can be categorized into three categories as shown in 

Table 15. Interestingly, the concluded driving categories are found in line with the standard 

categories of driving conditions that the city of Edmonton had previously set (Shown in Table 16) 

based solely on experience. In comparison, the new thresholds of categories that were established 

in this analysis would have the advantage of being backed by empirical data and statistical 

methodology in addition to field experience. 
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Table 13. The Results of the Analysis of the Pavement Friction Thresholds Models. 

Model 

Number 
Variable Estimate S.E. p-value 

1 Intercept -7.298 0.6837 <.0001 

 lnMVK 0.2821 0.1192 0.018 

 G1(=<0.35) 0.5857 0.2672 0.0284 

 Arterial 1.8213 0.6727 0.0068 

 T -0.0448 0.0162 0.0057 

 Dispersion 0.65 0.3 - 

2 Intercept -7.0015 0.6692 <.0001 

 lnMVK 0.2685 0.1201 0.0254 

 G2 (0.6-0.35) -0.135 0.2493 0.5882 

 Arterial 1.671 0.6748 0.0133 

 T -0.0532 0.0162 0.001 

 Dispersion 0.7466 0.3278 - 

3 Intercept -6.6797 0.6869 <.0001 

 lnMVK 0.2811 0.122 0.0212 

 G3 (>=0.6) -0.8426 0.4265 0.0482 

 Arterial 1.6326 0.67 0.0148 

 T -0.036 0.018 0.0463 

 Dispersion 0.7878 0.3256 - 
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Table 14. The Pavement Friction Thresholds Models. 

Model 

Number 
Equation Form 

Equation 

Number 

1 
Collision Counts = 

6.77 𝑥 10 . 𝑫 .  𝑴𝑽𝑲 . . 𝑒𝑥𝑝 .  𝑮𝟏  .  𝒂𝒓𝒕𝒆𝒓𝒊𝒂𝒍 .  𝑻  
(24) 

2 
Collision Counts = 

9.11 𝑥 10  . 𝑫 .  𝑴𝑽𝑲 . . 𝑒𝑥𝑝 .  𝑮𝟐  .  𝒂𝒓𝒕𝒆𝒓𝒊𝒂𝒍 .  𝑻  
(25) 

3 
Collision Counts = 

1.26 𝑥 10 . 𝑫 .  𝑴𝑽𝑲 . . 𝑒𝑥𝑝 .  𝑮𝟑  .  𝒂𝒓𝒕𝒆𝒓𝒊𝒂𝒍 .  𝑻  
(26) 

 

Table 15. The Three Categories of Driving Conditions as Per the Models. 

Pavement Friction 

Range 
Observations Comments 

G>=0.6 
Significant reduction in 

collisions 
Safe driving conditions 

G = [0.35, 0.6] 
Insignificant reduction in 

collisions 
Fair driving conditions 

G<=0.35 
Significant increase in 

collisions 

Dangerous/unsafe driving 

conditions 
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Table 16. The Old Driving Conditions Categories as Per the City. 

Pavement Friction Range Verdict 

G>=0.8 Excellent driving conditions 

G = [0.6, 0.8] Good driving conditions 

G = [0.4, 0.6] Fair driving conditions 

G<=0.4 Poor driving conditions 

 

5.4 Model Application 

To demonstrate how the created collision prediction model summarized in Table 11 and equation 

(23) can be used to estimate the safety outcome during a snowstorm, consider the following 

hypothetical scenario. Say a moderate to severe snowstorm event with a duration of 21 hours was 

expected to hit a highway in Edmonton with an average exposure of 37.19 million vehicle 

kilometers (MVK). The relationship between the number of predicted collisions during the 

hypothetical snowstorm and the expected value of pavement friction coefficient after using various 

winter road maintenance (WRM) operations on the two road types can be plotted as shown in 

Figure 8. 

The graph highlights the significance of the pavement friction coefficient in determining 

the safety outcome of snowstorms. As can be seen, the expected number of collisions during the 

hypothetical snowstorm increases exponentially as the pavement friction coefficient decreases 

which means that whenever the RSC deteriorates, road safety is compromised dramatically. 

However, relatively safer driving conditions can be restored swiftly once the WRM operations 

start and bare pavement is achieved.  

This can be shown numerically on the graph. On arterial roads, the expected number of 

collisions drops from 2.12 collisions per snowstorm at G = 0.1 to 0.49 collisions per snowstorm at 
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G = 0.5. On the other hand, the expected number of collisions drops from 0.36 collisions per 

snowstorm at G = 0.1 to 0.08 collisions per snowstorm at G = 0.5 on collector roads. 

Moreover, the inherent differences in road safety between arterial and collector roads are 

emphasized in this graph. Even after fixing the exposure on the two types of roads, the arterial 

road is shown to experience significantly more collisions than the collector road. At a similar 

average pavement friction coefficient G = 0.1, the expected number of collisions on the arterial 

road is 2.12 collisions per snowstorm, while on a similar collector road, 0.36 collisions per 

snowstorm are expected. This finding can justify, on a scientific basis, why arterials take 

precedence over collector roads in receiving the maintenance operations as per the transportation 

network priority hierarchy adopted by the city shown in Table 5.  

 

Figure 8. The Expected Number of Collisions During a 21-Hour Long Snowstorm
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6. QUANTIFYING THE IMPACTS OF WINTER ROAD 
MAINTENANCE OPERATIONS ON ROAD SAFETY 

This chapter describes how pavement friction and collision modeling were combined into a single 

hierarchical model. Using structural equation modeling (SEM) and path analysis, the direct and 

indirect effects of the different independent variables on road safety were summarized. The chapter 

is divided into four subsections. In the first subsection, a brief introduction about the goals of the 

analysis and methodology is provided. The SEM methodology is explained in the second 

subsection. In the third subsection, the results and discussion of the developed models are 

illustrated. Finally, the fourth subsection shows how the created models can be used. 

6.1 Introduction 

SEM is a statistical analysis technique that allows us to account for the interrelated dependencies 

between variables through a single hierarchical model. The path analysis, which is a part of SEM, 

takes into consideration the direct and indirect effects that the independent variables have on the 

dependent variable through mediator variables [82]. 

SEM is inherently different from regression analysis in that regression models are focused 

primarily on predicting the change in a certain phenomenon by constructing linear relationships 

between the dependent and independent variables [83]. Independent variables are principally 

added or removed from the model based on their contribution towards explaining the variation in 

the dependent variable. On the other hand, in SEM, models are formulated based on a prior 

assumption of causal effects between the independent and dependent variables. Additionally, SEM 

makes it possible to test several relationships at the same time. For these reasons, SEM requires a 

sample size of at least 200 records to report any significant results [84]. 

SEM allows researchers to add unmeasurable or observed variables into the analysis as 

latent variables [82], [85]. Because of this and its ability to account for mediating factors, it has 

been intensively used in a variety of fields including psychology, medicine, ecology, business and 

economics, as well as, engineering [86]–[90]. In traffic safety, SEM has been beneficial in helping 

understand the complicated relationships between driver, vehicle, and environment. Combining 

the capabilities of SEM of allowing latent and mediating variables in the analysis allowed 

researchers to uncover some important relationships such as the effects of increased accessibility, 
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blood alcohol level, variation in housing-employment balance, traffic congestion, and road 

geometric characteristics on traffic safety [90]–[93]. 

The main objective of this analysis was to study the direct and indirect effects that the 

different tools of winter road maintenance (WRM) have on collisions. Dataset 3 was used which 

included over 200 records (231 observations), the variable “Crashes” was the main dependent 

variable, while all the other variables summarized in Table 9 were assumed to have either a direct 

or an indirect effect on it through pavement friction “G”. The underlying assumption is that “G” 

is an endogenous variable which is influenced directly by both the weather and maintenance 

operations variables while all other variables are exogenous variables that are not influenced by 

any other variables in the analysis. Figure 9 shows the initial model specification as a path diagram. 

 

Figure 9. Initial Model Specification Path Diagram 

6.2 Methodology 

The software used to construct the SEM statistical models is MPlus version 6 [94]. The first 

dependent variable in this analysis was “G”. It was assigned to a Normal distribution variable 

formulated as Gi~N(�̅�, σ2), where �̅�  is the mean pavement friction during snowstorms, and σ2 is 

the standard deviation. �̅� is assumed to be a function as shown in Equation (27), where β0 is the 

intercept, Xi is a vector of predictor variables, βi is a vector of regression coefficients, and ε is an 
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error term which is a random variable that is assumed to follow a normal distribution. Estimates 

of the regression coefficients were determined using the ordinary least square method. 

G = β0 + βi Xi + ε (27) 

The second dependent variable in this analysis was “Crashes”. It was assigned to a count 

variable using a Negative Binomial distribution formulated as Yi~NB(μi, α), where Yi is the number 

of collisions that occurred during snowstorm i, μi is the mean collision count, and α is the 

overdispersion parameter. The mean collision count μi is assumed to be a function of independent 

variables and takes the form as in Equation (28).  

μi = 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 . 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 . 𝑒  (28) 

where μi is the collision counts during each snowstorm which is the dependent variable under study, 

β0 is the intercept, Xi is a vector of predictor variables which include all the variables in dataset 3, 

βi is a vector of regression coefficients, and ε is an error term, which is a random variable that is 

assumed to follow a Negative Binomial distribution. The parameters in the collision count model 

were estimated using the maximum likelihood with robust standard errors method. The indirect 

effects of the variables that describe pavement friction on collisions were calculated using the 

product of the parameter estimates [85], while their standard errors were calculated using the delta 

method [95]. 

 As with the previous analyses, all the variables included in the final models met a minimum 

pre-set statistical significance level of 0.1. t-tests were conducted for all the independent variables 

used in the models, and variables with p-values of more than 0.1 were dropped using a backward 

stepwise variable elimination. 

6.3 Results & Discussion 

After establishing that the pavement friction coefficient “G” can be explained using weather and 

maintenance operations data, and that pavement friction is a significant factor in influencing 

collisions during snowstorms, SEM was used to simultaneously model these two relationships in 

one framework. Multiple paths had been investigated starting from the general one shown in Figure 

9. Insignificant variables were removed from the analysis in a backward step elimination process 

until the final significant path was obtained. The resulting final path is shown in Figure 10, its 

associated parameter estimates are shown in Table 17, and the model is shown in equations 29,30.  
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Figure 10. The Significant SEM Model Path 

All the variables in the final model were at least significant on the 95% confidence level 

except lnMVK which was significant on the 90% confidence level. The goodness of fit of the model 

was evaluated by comparing the Akaike Information Criterion (AIC) and the Bayesian Information 

Criterion (BIC) of the fitted Negative Binomial model with a Poisson, and non-parametric models, 

where the best model is the one with the lowest AIC and BIC values. The AIC and BIC values of 

the Negative Binomial fitted model (AIC = -192.753, BIC = -144.559) were smaller than those of 

both the Poisson model (AIC = -174.699, BIC = -129.948), and the non-parametric model (AIC = 

125.116, BIC = 138.886), which confirmed the superior fit of the Negative Binomial model. 
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Table 17. The Results of the SEM Model. 

 Variable Parameter Estimate Standard Error p-value 

Effects on G P -0.005 0.002 0.004 

 T15 -0.127 0.016 <.0001 

 BI -0.144 0.019 <.0001 

 Arterial 0.087 0.012 <.0001 

 Maint 0.124 0.014 <.0001 

 AI 0.046 0.017 0.006 

Direct Effects on Crashes G -3.271 1.079 0.002 

 Arterial 1.801 0.741 0.015 

 lnMVK 0.25 0.147 0.089 

 lnD 1.103 0.177 <.0001 

Indirect Effects on Crashes P 0.016 0.008 0.044 

 T15 0.414 0.145 0.004 

 BI 0.472 0.164 0.004 

 Arterial -0.285 0.1 0.004 

 Maint -0.406 0.145 0.005 

 AI -0.151 0.074 0.04 

Intercepts G 0.441 0.016 <.0001 

 Crashes -5.11 0.832 <.0001 

Residual Variances G 0.006 0.001 <.0001 

Dispersion Crashes 0.953 0.437 0.029 
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G = 

0.44 – 0.005 P – 0.13 T15 – 0.14 BI + 0.09 Arterial + 0.05 

AI + 0.12 Maint 

(29) 

Collision Counts =  

𝟔 𝒙 𝟏𝟎 𝟑 𝑫 𝟏.𝟏𝟎 .  𝑴𝑽𝑲 𝟎.𝟐𝟓.  𝒆𝒙𝒑 𝟑.𝟐𝟕 𝑮 𝟏.𝟖𝟎 𝒂𝒓𝒕𝒆𝒓𝒊𝒂𝒍  
(30) 

The results of the model were in line with the previous analyses shown in this thesis. As 

previously concluded in the pavement friction regression model, weather and maintenance 

operation variables had significant effects on pavement friction. Moreover, the effects of pavement 

friction as well as exposure variables on collision counts during snowstorms were further 

consolidated as predicted by the collision count models. Therefore, and to avoid redundancy, the 

additional effects that the independent variables had on Crashes will be the sole focus of discussion 

in this section. 

 The model showed two types of variables. The first type was exogenous variables which 

were not influenced by any other variable in the analysis. These include P, T15, BI, Arterial, Maint, 

AI, T, lnMVK, lnD, and T. The second type was endogenous variables which depended on other 

variables in the analysis and were represented by G in the model. Although previous collision 

count models, presented in this study, were unsuccessful in finding a statistically significant 

relationship between most independent variables and collisions (possibly due to their small sample 

size), in this framework, pavement friction successfully mediated these relationships. In other 

words, the variables P, T15, BI, AI, and Maint were found to have an indirect effect on collisions 

through influencing the pavement friction coefficient variable G while exposure variables lnD and 

lnMVK had a direct effect on collisions. Additionally, the variable Arterial demonstrated two 

effects on collisions, a direct effect and an indirect effect through G. All these effects are discussed 

fully later. 

 The model successfully demonstrated the indirect effect of precipitation on collisions. 

Precipitation was found to have a statistically significant negative effect on collisions through 

pavement friction. This means that as precipitation during snowstorms increases, pavement friction 

worsens, which increases collision counts. This finding is in line with the conclusions of previous 

papers that studied the direct effect of precipitation on collisions [20], [34], [35], [56]. 
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 Similarly, temperature showed a statistically significant indirect effect on collisions 

through pavement friction. As expected, snowstorms with lower temperatures result in poorer road 

surface conditions (RSC), which in return, increases the risk of collisions as indicated by the model. 

Equally important, the formation of black ice on the road surface was confirmed to be a 

very dangerous phenomenon for drivers. Slippery conditions left by black ice, not only worsen 

pavement friction but also indirectly increase collision risks during snowstorms as shown by the 

model. 

The significant impacts of the WRM operations in reducing collision counts were seen in 

the indirect effects of anti-icing and plowing operations on collisions. Although both variables 

were found to have no statistically significant direct impacts on collisions (as reported previously 

in the thesis), using pavement friction as a mediator showed a positive indirect effect of both 

variables on collisions. This means that whenever anti-icing chemicals are applied, or plowing 

operations are conducted, both pavement friction, as well as road safety are shown to improve. 

This is the first time that the impacts of the different tools of the WRM program had been studied 

and quantified. 

 Interestingly, the variable Arterial was shown to have two different and conflicting effects 

on road safety, a direct and indirect effect through pavement friction. As discussed in the previous 

chapter, the higher traffic volumes that arterials receive, combined with the higher speed limits 

that they have, and the inherent difference in drivers’ behavior while traveling on them, all make 

them relatively more susceptible to collisions than collector roads. This effect was captured in the 

SEM model as a direct negative effect which shows the relatively higher risk of driving on arterial 

roads (compared to their collector counterparts). However, since arterial roads have better 

maintenance response times and receive de-icing operations more frequently than collector roads, 

they were found safer than collector roads indirectly through the mediator variable pavement 

friction. When combining the direct and indirect effects of the variable Arterial on collision counts, 

the total effect leaned towards increasing collisions due to the higher impact of the direct effects 

of the variable. This finding alone can justify why arterial roads should be prioritized over 

collectors in any WRM hierarchy plan. 
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6.4 Model Application 

To demonstrate how the SEM model summarized in Table 17 can be used to estimate the safety 

outcome of a snowstorm, consider the following hypothetical scenario. Say a moderate to severe 

snowstorm event with a duration of 21 hours was expected to hit the city. During the hypothetical 

snowstorm, the temperature is expected to drop below -15°C, total precipitation is forecasted to be 

5mm of equivalent snow, and the conditions suggest the potential formation of black ice on the 

roads. The relationship between the predicted number of collisions on arterials during this 

snowstorm and the exposure variable MVK can be plotted as shown in Figure 11. 

 

Figure 11. The Expected Number of Collisions on Arterials During a 21-Hour Long 

Snowstorm  

The graph highlights the role of the WRM operations in improving traffic safety during 

snowstorms. According to the graph, the expected number of collisions on arterials that do not 
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receive any maintenance operations is significantly higher than on roads that receive plowing or 

anti-icing operations. During a moderate to severe snowstorm that lasts 21 hours with weather 

conditions as described above, the expected pavement friction coefficient on arterial roads that 

receive no maintenance operations would be 0.232, which would result in 1.72 collisions per 

snowstorm at 150 MVK.  Arterial roads with the same exposure where they receive anti-icing, 

plowing, or both would have varying pavement friction coefficients of 0.278, 0.356, and 0.402, 

respectively. This will result in a significantly fewer expected number of collisions of 1.48, 1.15, 

and 1 collisions per snowstorm, respectively.  

The significance of the WRM operations can be further emphasized if we calculate the 

expected percent of collision reduction that is associated with deploying each tool of the 

maintenance operations. Using the same hypothetical snowstorm described above, the expected 

reduction in collisions per snowstorm on arterials where anti-icing chemicals have been applied is 

14%. Plowing operations would reduce the expected number of collisions per snowstorm by 33%. 

Ultimately, combining the two tools would further reduce the expected number of collisions per 

snowstorm by 42%.  

The expected reductions in collisions can be translated into dollar values. On average, there 

are 80 snowstorms per year in Edmonton. Assuming that at least 20 of them would be as severe as 

the hypothetical example, then it can be assumed that 14.4 collisions per arterial road per year 

would be eliminated from the roads when WRM operations are conducted (reduction of 0.72 

collisions per snowstorm multiplied by the number of similar severe snowstorms per year). 

Assuming that there are at least 100 arterial roads in Edmonton and that the average cost of 

property damage only collisions in Alberta is $10,900 [96], it can be demonstrated that WRM 

directly saves over $15 million annually from road safety alone. 

It is also worth noting that the expected percent of collision reduction and the expected 

financial savings would increase exponentially if roads with higher exposure were selected or if 

more severe snowstorms were forecasted, or more severe collisions were considered. 
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7. CONCLUSIONS  

This chapter summarizes all the major findings of the thesis, identifies the limitations, and provides 

an insight into future research directions. The chapter is divided into four subsections. The first 

subsection gives an overview of the thesis, the second subsection provides a summary of all the 

key findings, the third subsection illustrates the research contributions, and the final subsection 

shows the limitations and future research. 

7.1 Overview of Thesis 

There is a need to quantify the benefits of different maintenance operations tools in achieving bare 

pavement and improving road safety. This will potentially improve decision-making in choosing 

the appropriate winter maintenance strategies and optimizing limited resources. This thesis 

presents a data-driven and evidence-based framework for predicting the variation in the coefficient 

of pavement friction on winter roads and understanding the impacts of the winter road maintenance 

(WRM) program in improving pavement friction and road safety during snowstorms. The 

framework used is an event-based and location-specific methodology that serves to isolate the 

events of interest in a disaggregated analysis. 

 Several data sources were combined to conduct such a microscopic analysis. Historical 

weather data was collected and processed, then, snowstorm events were defined and created. Using 

the timestamps of the start of snowstorms and their durations, maintenance operations data, friction 

testing data, and collision data were merged with the snowstorm datasets to create a series of 

unified databases for the study. 

7.2 Summary of Key Findings 

The work in this thesis focused on understanding the importance of WRM operations in improving 

road surface conditions (RSC) and road safety during snowstorms. This was addressed by pursuing 

three objectives: 

Pavement Friction Modeling 

Firstly, multi-linear regression was used to model the response variable “G” which stands for the 

pavement friction coefficient on roads during snowstorms. The developed model used a 

combination of weather variables and maintenance operations variables to explain the variability 

in the coefficient of friction for urban roads during snowstorms. As evident from the R2 value of 
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0.7233, the model had high explanatory and predicting powers and was found to be a good fit for 

the data.  

The results showed that the plowing operations during snowstorms and the application of 

anti-icing chemicals before snowstorms had a statistically significant impact on improving the 

friction coefficient on winter roads. Moreover, the frequency of applying the de-icing chemicals 

and the response time of the maintenance operators to start plowing roads were also found to be 

significant factors in predicting pavement friction. Contrarily, precipitation, extremely low 

temperatures, and the potential for black ice formation all had statistically significant negative 

effects on pavement friction.  

Traffic Collision Modeling 

Likewise, the impacts of pavement friction and the WRM program on traffic safety were studied 

using safety performance functions or collision prediction models. Several models were created 

using different statistical modeling techniques, each tailored to explain certain aspects of the 

driving conditions and collision occurrence during snowstorms.  

 The preliminary models showed a strong statistically significant relationship between 

pavement friction and road safety. This was demonstrated multiple times as collision counts were 

always found to increase whenever pavement friction declined. Further, it was shown that the risks 

of driving during snowstorms vary dramatically depending on the friction coefficients on the roads. 

According to the models, collisions were expected to significantly decrease whenever pavement 

friction was above 0.6, while at conditions where pavement friction deteriorated to below 0.35, 

collisions were predicted to significantly increased. These findings, as documented in the thesis, 

along with the pavement friction prediction model can be used to predict and assess the safety of 

arterial and collector roads during snowstorms.  Also, by adopting a minimum pavement friction 

value of 0.35 as the threshold for safe driving, these findings could prove invaluable in decision-

making. If a severe snowstorm event is forecasted, and the friction coefficient on the roads is 

predicted to drop below this value, aggressive proactive measures could be taken to mitigate the 

effects of such snowstorms. These measures could include the use of anti-icing chemicals before 

the snowstorm, increasing the frequency of the de-icing operations, or requesting additional 

plowing resources depending on forecasted snowstorms severities. Furthermore, the cut-off values 

for each level of service category of driving conditions could be used as performance indicators 
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by the WRM operators. By calculating the average times in which the road network remained at 

each category of the defined levels of service, the performance and effectiveness of the program 

can be evaluated and compared with previous years or even other jurisdictions. 

Quantifying The Impacts of WRM Operations on Road Safety 

Structural equation modeling (SEM) and path analysis statistical techniques were used to combine 

the different relationships established to describe pavement friction and collision occurrence into 

one model that can tell the whole story. SEM allowed us to investigate the direct and indirect 

relationships between the independent variables and road safety. By using pavement friction as a 

mediating variable, the indirect influences of the independent variables on road safety were 

identified. It was revealed that precipitation, extremely low temperatures, and the black ice 

potentials all had indirect significant negative effects on road safety. On the contrary, plowing 

operations and the application of anti-icing were shown to have significantly improved road safety 

indirectly. Interestingly, one variable in particular (Arterial) appeared to have both a direct and an 

indirect relationship with collisions. By examining the magnitude of both impacts, the resulting 

total effect leaned towards increasing collisions. Had SEM not been implemented and used in this 

study, these significant indirect impacts would have remained hidden, and the influences of the 

different tools of WRM on road safety would have continued to be unknown to date. 

It is worthwhile mentioning that SEM helped improve our understanding of how the 

different variables can affect road safety during snowstorms either directly or indirectly. 

Snowstorms can now be viewed as closed systems where inputs of variables are added to impact 

the driving conditions and result in an outcome of collisions. In the framework described, 

exogenous variables, which include weather, maintenance operations, and exposure variables are 

added to the system and allowed to interact. This interaction results in an immediate impact on the 

system which can be observed as a decline in the pavement friction coefficient. Ultimately, this 

causes the deterioration of the RSC which could result in unfavorable outcomes which is the 

occurrence of collisions. Different inputs to the system could influence the outcomes in different 

ways. Some inputs directly increase the chance of collisions while others only influence collisions 

indirectly by affecting the driving conditions. Additionally, some variables could have both effects 

as depicted in an easy-to-understand diagram. 
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7.3 Research Contributions 

The methodological framework constructed, and the models developed in this thesis have various 

academic and practical contributions. The findings can help transportation agencies make more 

informed decisions to promote an efficient mobilization of existing WRM services and resources 

while improving the safety of the traveling public during the winter months. Furthermore, the work 

presented in this thesis has, methodologically and practically, contributed the followings: 

 Quantified the benefits that the different tools used in WRM have in improving RSC 

and traffic safety. Very limited research attempted to answer this question of 

understanding how WRM operations help improve RSC and traffic safety. All the studies 

that attempted to understand the influence of WRM have been conducted in a controlled 

manner. The work shown in this research directly answers this question by showing how 

plowing, anti-icing, and salting and sanding operations contribute to improving driving 

conditions during snowstorms. 

 Illustrated the weather factors that significantly affect RSC and urban road safety 

during snowstorm events. Previously, the research done in this area has been limited to 

lab experiments, controlled field studies, or rural highways where the driving behavior and 

conditions are inherently different. The work in this research focused on urban arterial and 

collector roads within the limits of the city of Edmonton. In a city with such adverse 

weather conditions, all the weather variables that can significantly influence pavement 

friction and traffic safety have been identified. Furthermore, using weather and 

maintenance operations factors, models were created that can predict how severe 

snowstorms can worsen driving conditions by compromising pavement friction. 

 Established ranges of pavement friction coefficients where roads were significantly 

safer or more dangerous for drivers. The city has historically adopted pavement friction 

coefficient ranges where roads were deemed safe or unsafe for driving which was based 

mainly on experience. In this research, scientifically backed new ranges were proposed. 

 Justified the hierarchical priority plan most cities use in prioritizing arterial roads 

over collectors. Historically, cities maintain arterial roads more rapidly and frequently 

when compared to collectors. This was mainly done because arterials carry more traffic 

volumes. In return, this has resulted in that arterials have, on average, better pavement 

friction than collectors. It was shown in this research that despite receiving more 
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maintenance and having better than average pavement friction, arterials remain more 

vulnerable to winter collisions than collector roads.  

 Quantified the direct and indirect effects of different factors on road safety during 

snowstorms using the statistical technique of SEM. There has been very limited research 

that deploys this statistical analysis technique in the field of road safety. In this research, 

SEM was utilized, and its capabilities of obtaining the direct and indirect effects of weather 

and maintenance operations variables in influencing collisions. Without using SEM, the 

effects of the different tools of the WRM operations on road safety would have remained 

unknown. 

 Constructed an event-based and location-specific framework that can isolate the 

weather, maintenance operations, and RSC during the time of snowstorms. Advanced 

the use of the event-based and location-specific framework that was previously shown in 

the literature by incorporating more datasets into the analysis and asking different research 

questions. 

7.4 Limitations & Future Research 

The event-based and location-specific study presented herein is disaggregate and microscopic in 

nature that aims to isolate and analyze the conditions of each individual snowstorm. For this reason, 

the analysis was very reliant on the high granularity of data, and due to the occasional lack of 

supporting datasets, several assumptions had to be made. For instance, the actual timing of the 

plowing maintenance operations had to be assumed in several snowstorm events. Whenever this 

assumption was made, it was based on the city’s snow clearing policy and the recorded RSC during 

the pavement friction testing. In addition, the annual average daily traffic volumes were used as a 

surrogate traffic demand measure in lieu of the actual traffic volumes during snowstorms which 

were not recorded. 

The work can be extended in several directions. Since the framework presented could 

easily be replicated and expanded to include more variables and effects that influence pavement 

friction and road safety during snowstorms, more frequent data collections accompanied by larger 

pavement friction testing routes as well as traffic counting on shorter intervals would be 

recommended. These would result in a more refined and conclusive analysis and a better 

understanding of the winter maintenance operations’ effects on road safety. The framework 
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provided can also be used to study how adverse weather conditions during snowstorms or similar 

events can increase delays on the road network, and how it affects driving behavior and trends. 

Moreover, equipping the pavement friction testing vehicle with GPS trackers and onboard 

cameras that can record the RSC could be very beneficial. The combination of video footage and 

GPS timestamps can help create geocoded maps of the RSC during snowstorms which in return 

can result in modeling of the RSC over two analysis domains - space and time.  
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