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ABSTRACT

Priority rules and traffic signs regulate the competition cf vehicles for space
and time at intersections without traffic signals. Potential vehicle conflicts may lead
to accidents. In many municipalities, intersections are ranked by the number of
accidents that occur annually, or by accident rates, which is usualily defined as the
number of accidents over million-entering-vehicles. The objective of these ranking
methods is to identify intersections with safety problems in order to determine
priorities regarding safety analysis and improvement measures.

This thesis summarizes the results of a research project that examined
traditional methods of intersection safety ranking and investigates the potential of
using delay as the underlying variable in accident prediction models. As delay is
experienced directly from the driver’s standpoint, it was postulated that delay could
be a better parameter in reflecting the risk-taking behaviour of drivers and therefore
might result in better accident prediction modelling results.

More than 21,000 vehicle arrivals were recorded and analyzed at 26 priority-
ruled T-intersections in Edmonton. The analysis results were also compared with
four years of accident data. Additional delay information was generated by a
simulation program. The complexity of accident analysis required non-standard
analytical techniques.

It was demonstrated that the most common method of ranking intersections
by accident ratios, based on the sum of entering volumes, had no theoretical
justification and little practical value. The method which related accident
frequencies to the product of conflicting traffic streams gave a good indication of
the degree of safety. The best model was derived on the basis of total delay as a

surrogate measure of the risk to which the drivers were exposed.
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1. INTRODUCTION

1.1 Problem Statement

Considerable effort has been directed towards the monitoring of roadway safety
Accident records are often used to determine prionties for safety improvements. The
success of a safety improvement program relies heavily on the techniques used in identifying
locations with high accident potential.

The parameters most commonly used to quantify non-safety are accident frequency
and accident rate. They reflect two different aspects of the situation of non-satety.
Nevertheless, safety improvement priority lists developed on the basis of these two
parameters often do not agree totally with each cther.

An alternate approach is to use accident prediction models to reflect the actual satety
condition. These accident prediction models require some knowledge about the study
locations, such as the amount of traffic or the geometric features of the study locations. Most
of the accident prediction models developed in the past, use some combinations of the sums
or products of traffic volumes as model parameters.

Accidents are events with a high degree of randomness with numerous factors
involved. Factors identified as possible contributors to accidents can be classified into three
main groups: driver factors, vehicle factors and environment factors. Driver factor is
generally considered the most significant of all contributing issues but also the least
predictable. A number of in-depth accident studies (Sabey & Staughten, 1975 and Sabey,
1983) undertaken by “"on-the-spot" multi-disciplinary investigation teams concluded that the
driver element was dominant in 95 % of roadway accidents.

As suggested by the in-depth accident studies, the driver factor appears to be the

major contributor to traffic accidents. It is therefore reasonable to assume that an accident
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prediction model would have good accident prediction abilities if it contains model
parameters that can reflect driver behaviour.

A parameter that is relatively easily to measure and can reflect driver behaviour well
is traffic delay experienced by the drivers. Delay is often used in other applications to reflect
driver behaviour. For instance, it is a primary parameter used in transportation planning
models to simulate the route selection characteristics of drivers. It is also used in a number
of intersection capacity analysis methods to reflect the perception of the drivers on the traffic
operations at the intersections. It is expected that delay can reflect the effect of human
elements in accidents more successfully than other typically used accident prediction

modelling parameters, such as traffic volumes.

1.2 Research Objectives

Delay, as a good measure of driver behaviour, has the potential to be a more
effective model parameter than the traditionally used traffic volume in accident prediction.
Therefore, the primary objective of this research is to investigate the potential of including
delay as one of the underlying variables in accident prediction models.

The secondary objective of the research is to examine the traditional methods of
intersection safcty ranking. A ranking list was developed based on the accident prediction
modelling results from the current study. The list was then compared to the ranking lists

developed by using the traditional intersection safety ranking methods.

1.3 Scope

To reduce the number of influencing vaniables in the accident prediction model, the
scope of the research was limited to T-intersections, the simplest type of intersection. Study
locations were chosen along 4-lane urban arterials at intersections with similar design

features to minimize the degree of variability within the data set. The analysis period for the
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study was limited to weekdays and took into account only daytime accidents. Traftic data
were collected at 26 locations on weekdays between 11 am. and 4 p.m., which was a period
of relatively stable traffic conditions and accident rates.

Field traffic volume, delay, and headway data wese collected in January and
February, 1990 at 26 selected study locations. Additional delay data were obtained through
computer simulation. A total of 3,795 accident records from 1985 to 1988 for 429

priority-ruled intersections were also obtained and analyzed.

1.4 Organization of the Thesis

Chapter 2 contains an in-depth summary of previous accident prediction modelling
efforts. The focus is on the accident prediction methodology used and the various safety and
model variables selected. A general discussion of accidents is included. The chapter also
includes a discussion of various techniques used in the research project for data encoding,
data simulation and statistical modelling.

Chapter 3 examines the general accident trends in the City of Edmonton between
1985 and 1988. Results of this preliminary analysis are used to determine the analysis period
for the study and to formulate the framework of the modelling process for the study.
Elements of the research framework, such as the data collection procedures, the critenia set
for the selection of study locations, analysis periods, and the different basic model
parameters, are discussed in detail.

Chapter 4 documents the development of various types of accident prediction
models. Explanations are given on the approach adopted in developing the model structures.

Chapter 5 compares the results of the various models developed. Different
approaches in ranking high accident locations are compared.

Chapter 6 summarizes the research findings. Conclusions and practical implications

of the study are provided.



Appendix A includes a paper by the researcher and his supervisor, Dr. Stan Teply, on
the application of KNOSIMO. KNOSIMO is a traffic simulation program that was used to
simulate traffic delays at the study locations.

Appendix B provides additional information on GLIM. GLIM is the statistical
analysis program used in the modelling process. The goodness-of-fit plots for all the models
are provided. A summary of parameter estimates for all the delay-based accident prediction
models is also provided.

Appendix C contains the correlation plots of selected parameters of the most suitable
models.

Appendix D contains a paper co-written by the researcher and his supervisor on the

findings of the research project.
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2. LITERATURE REVIEW

This chapter consists of four main sections. The first section contains the findings of’
a literature search on previous accident prediction studies. The focus is o the approaches
used to formulate accident prediction models.

The second section examines the concept of “Risk™ and “Exposure™  This concept
was used to formulate the accident prediction models in this research project.

The literature research also revealed that occurrences of traftic accidents were
affected by a multitude of factors, of which driver factors played a dominant role. Delay was
identified as the parameter that can be used to estimate the risk-taking behaviour of a driver.
A discussion on the vanous factors involved in accidents and the role of drivers in accidents
is included in the third section.

The last chapter concludes with a summary on three computer programs used in the
research. The Traffic Data Input Program (TDIP), (Kyte & Boesen, 1989), was used to
encode traffic data from video recordings. KNOSIMO (Grossmann, 1988), a traflic
simulation model, was used to simulate additional delay data for the study locations. The
Generalized Linearized Interactive Modelling (GLIM) program (Numernical Algorithms

Group, 1987), was used to determine the optimum accident prediction molel structures.

2.1 Previous Accident Prediction Approaches

An in-depth literature research was conducted on several previous accident
prediction modelling studies. Several accident prediction models have been developed in past
research projects to estimate traffic safety at roadway intersections. The most commonly
used predicting parameter in these models was traffic volume.

This section compares the different approaches and techniques used ‘n cight selected

research projects. The first three models discussed are simple models. The remaining five



models are more elaborate comprehensive accident prediction models developed for different

types of roadways.

2.1.1 Sum-of-entering-volume Models

Raff (1953) related accidents at intersections to the sum of the flows entering the
intersections. He found that the number of accidents per vehicle decreased as the sum-of-
entering-volume increased. A functional relationship was not provided in his study.
However, hc developed a measure to provide some means of comparison of traffic safety
between different types of accidents.

Grossman (1954) also defined exposure of accidents as the sum of flows at
intersection crossing points. Intersection crossing points were defined as locations where

two conflicting flows crossed each other.

2.1.2 Product-of-entering-volume Models

Tanner (1953), in a study of 390 accidents at 232 rural T-intersections in Great
Britain, found that the number of accidents was related to the square root of the product of
flows on the major and minor roads. The traffic flow parameter used was average daily (16
hours) traffic volumes.

McDonald (1953) studied 1,500 accidents at 150 intersections and defined a
relationship between annual number of accidents and the daily number of vehicles on major
and minor roads. The power of the volume parameter in the model was determined o be

approximately 0.5, which was similar to the findings in Tanner’s study.

2.1.3 Product-of-conflicting-volume Models
Hakkert & Mahalel (1978), studied accidents which occurred at 202 urban
intersections and 40 "interurban® intersections in Israel. Sixteen hour traffic counts were

collected on one weekday, generally between 6:00 am. and 10:00 pm. Two years of



accident records from 1971 to 1972 were used in the study. In lsrael, only accidents with

casualties were reported to the police. The study therefore reflected only those accidents
They concluded that vehicle exposure could be used as the basis tor accident

prediction. They concluded that the exposure at an intersection can be represented by the

sum of the products of flow at all contlict points where vehicle paths crossed or merged

2.1.4 Opportunity-based Regression Models for Signalized Intersections

Plass & Berg (1987), based on 50 case studies in Florida, U.S. A, proposed the use of
opportunity-based accident rate expressions to estimate safety at 3-legged amnd 4-legged
signalized intersections. One-year accident records were used for the study. Based on the
argument that different vehicles had different probabilities of getting involved in traflic
accidents, the researchers claimed that it was not appropriatc to usc
total-entering-vehicle-volume as an exposure measure.

Instead, they correlated accident types to vehicle movements. Expressions were

derived for the following types of accident opportunities:

° single-vehicle accident opportunities
. rear-end accident opportunities

° head-on accident opportunities

. angle accident opportunities

o sideswipe accident opportunities

Each accident opportunity type represented a particular type of accident with its own
specific combination of vehicle movements. This approach reflected the cause-and-effect
relationship of the events in an accident. The total number of accident opportunitics for an

intersection was calculated by adding the individual opportunity types for all approaches at

the intersection.



The opportunities were then used to calculate the opportunity-based accident rates.
Three different levels of aggregation were applied, using hourly volumes, peak/off-peak
volumes and average daily volumes. It was found that the level of aggregation of the model
could significantly affect the resulting accident rates. The researchers concluded that "hourly

traftic volumes may be necessary for reliable estimate of opportunity-based exposure levels."

2.1.5 Analytical Impedance Models for Rural 2-Lane Intersections

A study (Stanley Associates Engineering Ltd., 1983) on rural 2-lane 4-legged
intersections in Alberta, Canada, attempted to evaluate analytically, the quality of service of
4-legged intersections. The objective of the study was to formulate a simple mathematical
analytical model that utilized intersection turning conflict information to provide a measure of
quality of service for rural intersections without traffic signals.

Assuming random arivals of vehicles under a rural roadway setting, an impedance
index was developed to account for the interactions of vehicle arrivals. The technique
categorized contlicting traffic streams by the related non-priority movement types. Different
probabilities of impedance functions were developed using the applicable gap acceptance
criteria.

Using these probability functions, the volumes of traffic being impeded were
calculated for each non-priority movement type. The sum of the impeded traffic volumes for
all non-priority movements represented the total impedance index for the intersection. This

calculated level of impedance reflected the quality of service of the intersection.

2.1.6 Disaggregate Product-of-flow Regression Models for Signalized Intersections
Hauer, Ng and Lovell (1989), used traffic volumes and 3 years of accident records

collected from 145 locations in Toronto, Canada, to estimate safety at 4-legged signalized

intersections. Based primarily on the prior-to-collision movements of the vehicles involved in

accidents, 15 accident types were identified for each approach of an intersection.
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Accident prediction models were statistically developed using GLIM, which is a
generalized linear regression model (Numerical Algorithms Group, 1987). The structures of
the models generally consisted of the products of trattic volumes of colliding movements

Different models were developed to represent the a.m. peak, p.m. peak and ofti-peak
conditions. Most of the 15 model types were found statistically insigniticant tor all three
periods, except where accident frequencies were high. In the case where accident
frequencies were low, average daily traftic velume. were used in place of hourly volumes in

the model.

2.1.7 Product-of-flow Regression Models for Rural T-intersections

Pickering, Hall and Grimmer (1986), proposed models 1o predict traflic accidents at
300 rural T-intersections in 40 English counties. Their objective was to investigate the
relationship among accidents, traffic flow, geometric layout and other features such as traflic
speed and gradient.

Study locations were rural single carriageway roads with speed limits higher than 50
miles per hour. Four hour traffic turning counts were taken at each site to estimate the
average daily traffic volume. Adjustments were made to account for road-type, annual traflic
growth and monthly variation. Five years of accident records were used in their study.

Although geometric characteristics were included to help explain part of the variation
in the accident data, traffic volumes were the primary explanatory variables in the accident
prediction models. Accidents were classified by types of manoeuvre of the vehicles before
the collision. In total, 25 accident types were identified. For each accident type, an equation
was developed statistically using the GLIM regression modelling tool (Numerical Algorithms
Group, 1987) to relate accident frequencies to the related traffic volumes. Geometric factors

were subsequently added to the equations developed to account for between-sites variations.
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2.1.8 Regression-based Models for Roundabouts

Maycock & Hall (1984), using data from 222 roundabouts in England, developed
accident prediction models relating frequencies of various types of accidents at roundabouts
to a range of explanatory variables. The objective of the study was to relate accident
frequency to a range of explanatory variables for accident prediction at roundabouts.

Five years of accident records were used in the study. Sixteen hours turning counts
were taken during weekdays from April to June and from September to October. Hourly
counts and quarter-hour counts were taken in off-peak hours and peak hours, respectively.
The volumes collected were adjusted for traffic growth, vehicle type, day-of-week, and
monthly and yearly variation. Site attributes collected at each site included junction type,
speed limit and the geometry of the roundabout.

The models were developed based on pre-crash vehicle movements, using GLIM
(Numerical Algorithms Group, 1987) as the modelling too!. The following accident types

were categorized:

o entering circulating
° approaching

o single vehicle

. others

o pedestrian

The basic models were initially formulated to relate accident frequencies to the
corresponding traffic volumes. Geometric variables were subsequently added in the model

structures. Models were developed for both the peak and off-peak hours.



2.1.9 Overview of Different Approaches to Accident Prediction Modelling

Several main observations were noted in the review of previous accident prediction
studies.

First, most of the models attempted to model cause-and-consequence relationships in
the accident events by relating pre-crash vehicle manocuvres to the corresponding type off
accidents. This approach was logical and made intuitive sense.  In most ot these studies, the
approaches used in formulating the accident prediction models were based on the risk and
exposure concept. The risk and exposure concept is discussed in more detail in Section 2.2
of this chapter.

Second, the level of aggregation appeared to be critical in the formulation of an
accident prediction model. In some of the studies, specific models were developed tor peak
hour periods. Even quarter-hour traftic volumes were used by Maycock & Hall (1984) to
formulate accident prediction models for roundabouts. It appears that different accident
prediction models may be needed to model the safety conditions for diflerent times of day or

different days of the week.

Third, most models used the frequency of a particular type of accident as the
measure of non-safety.

Fourth, the GLIM regression modelling tool (Numerical Algorithms Group, 1987)
was used in a number of past studies. Further review on GLIM was carried out to examine
its applicability in the current research.

Fifth, all the previous studies reviewed used traffic volumes as the primary model
parameter in predicting accidents. It was decided that a general review on the nature of
accident occurrences be carried out and the possibility of using an alternative modecl
parameter be considered.

Sixth, the studies reviewed all have extensive data collection programs. Most of the

studies used three to five years of accident records accompanied by sizeable traffic counting

programs.



22 Risk and Exposure Concept
Most of the accident prediction models examined in the literature research were, in
one way or another, based on the concept of risk and exposure. Hauer (1982) made a clear

explanation of the corcept by relating it to the philosophy of chance:

A unit of cxposure corresponds to a trial.  The result of such a tnal is the occurrence or
non-occurrence of an accident (by tvpe. severity. cetc). The chance sct up is the transportation
system (physical facilitics. users. and environment) which is being examined and risk is the

probability (chance) of accident occurrences in a trial.

The following relationship represents the fundamental structure of a typical risk and

exposure accident prediction model:

NON-SAFETY

]

RISK X EXPOSURE, or
S = R X E,

- Measure of intersection non-safety during a period of time
= Measure of the risk presented to d ivers during the same period
E - Measure of exposure, i e., the number of drivers that are presented with the

accident risk during the same period

Under the risk and exposure accident prediction modelling approach, risk and
exposure are the independent variables used to predict intersection non-safety, the dependent
variable. The non-safety parameter is typically represented by the number of accidents. The
risk and exposure parameters are usually represented by some surrogates, which are
measured at the study location and used as inputs to the model in estimating the actual

number of accidents (i.e., non-safety) at the intersection.



Take as an example the throwing of a die. The chance of throwing a six in a number
of throws is equal to the chance of getting the number six in each throw multiplied by the
number of throws. Risk can be viewed as the chance of getting a six in one throw. Exposure
can be viewed as the number of throws performed. Non-satety. which is the outcome of a
combination of risk and exposure. can be viewed as the chance of getting at least a six once
after a given number of throws. In other words, based on the nisk and exposure concept, the
non-safety at an intersection is the product of the nisk presented to the vehicles entenng the
intersection and the exposure of the traffic with the nisk.

Details of the model structure as well as the forms and interactions of the vanous

parameters can be determined through the use of statistical modelling tools.

23 Driver Factors and Accidents

As suggested by Teply (1988), the complexity of the traftic system can be illustrated
by the system concept of Klebelsberg (19€2). Under the system corcept, the roadway tratlic
is considered an overall system which consists of sub-systems such as drivers, vehicles,
roadways, traffic controls and rules. These sub-systems exhibit various system functions
including driver behaviour and roadway conditions. The sub-systems and their functions
interact to form system states at different points in time, resulting in various traffic operating

conditions or traffic interactions, which may result in traffic conflicts and accidents.

2.3.1 Driver, Vehicle and Environment Factors

The traffic systems is a complex system in which several factors exist and interact
with each other. This multitude of factors can be categorized into threc major categories:
driver, vehicle and environment. Figure 2.1 illustrates the complexity of the interaction
among the three factors. It illustrates the role of the driver in the driving process.

Examples of driver factors are age, gender, driving experience, stress level and

fatigue. Vehicle factors include factors such as spray from tires, headlights, brakes,
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viewfield, mirror and vehicle stability. Typical environment factors are geometry of roads,

pavement marking, road surface conditions, weather conditions, surface texture, roadway

lighting and traffic conditions.

ENVIRONMENT

FACTORS

Roadway

Gescanet.ry

DRIVER

FACTIURS

Driver Goals and Anticipation

VEHICLE

PACTORS

Surface Conditions and
Forces due to
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Cont rol and
Pirectional
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e L
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Visual Memorv

H  rield

Traffic Sensory Perception & Analytical Decision Vehicle
[ onditionn Detection Information [P Operations Making & Response

I Processing Control

V'ehicle Response

Dynamics . 5
‘.

& Display

Driver Physiological and Psychological State

Figure 2.1

Vehicle Type
and Condition

Interactions ar mg Drivexr, Vehicle and Environment Factors

2.3.2 Role of Drivers in Accident Occurrences

Several factors exist and interact to each other in a traffic system. Vehicle drivers, in

perceiving and responding to these factors while driving, play a particularly important role

within the system.
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In a number of in-depth accident investigation studies (Sabey & Staughton, 1975 and
Sabey, 1983), driver factors were found present in a majority of the accidents. Figure 22
(Sabey, 1983) illustrates that human factors were involved in approximately 95%, of the
accidents, and were identified as the sole cause in 65% of them.

Percentage Contributions

Road Road Vehicle
Environment User

1 l il
single factor 2% 65% 2%
double factors 24% 4%
treble factors 1%

l

double factors 1/2%

Total Percentage Contribution for Each Factor

26% 94% 8%
Figure 2.2 Roles of Driver, Vehicle and Environment Factors in Accident

Occurrence

Comparatively, environment and vehicle factors contributed respectively to 28% and
9% of the accidents. Environment and vehicle factors were found to be present in
approximately 30% of all human factor related accidents .

The in-depth accident investigation demonstrated that the human clement was

dominant in traffic accidents.
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2.3.3 Risk-taking Behaviour Of Drivers

The utility maximization theory (Blomquist, 1986) assumes that individuals pursue
multiple goals with limited resources. Each rational individual has goals that are
accompanied by some utilities, such as safety, economy, travel time, comfort, etc. An
individual, in attempting either consciously or subconsciously to maximize the total benefit or
utility to him, compares these goals against each other.

Under this theory, the behaviour of a driver can be explained by the concept of risk
compensation (Blomquist, 1986). For instance, the driver may compensate some of his
safety utilities for a gain in personal convenience or other personal goals that will bring
benefits or pleasure to himself.

Klebelsberg (1982) suggested that driver behaviour in a risk-taking situation is the
end-product of a process in which the driver evaluated and acted in response to the
subjective and objective risk. Subjective risk is the risk perceived by the driver, whereas
objeciive risk is the "actual risk" that is presented to the driver under a particular combination
of driver, vehicle and environment conditions.

In a situation where the subjective "perceived” risk to a particular driver is lower than
the objective "actual" risk, the driver expects the situation to be safer than it actually is and
may drive in an undesirably aggressive manner. As a result, more accidents than anticipated

are likely to occur.

2.3.4 Gap Acceptance

The risk-taking behaviour of drivers can be reflected by the gap-acceptance
charactenistics of drivers at intersections without traffic signals. Gap acceptance is the choice
of a driver, merging from a minor street to a major street or crossing another traffic stream,
to accept or reject the gaps available within the major street traffic stream. Critical gap is

defined as the gap, in seconds, which 50% of all drivers will accept.
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The actual mechanism behind the drivers' gap acceptance behaviour is complicated
and can be affected by several dniver. vehicle and environmental factors. Abou-Henaidy
(1993) concluded that drniver's gap acceptance behaviour, when making a major road left-

turn manoeuvre, was influenced by the following factors:

. gender

J presence of passengers in the tuming vehicle
. queue delay

. front delay

. gap size

. type of opposing vehicle

) opposing traffic flow

. width of cross street

° location of intersection

. number of rejected gaps

Abou-Henaidy (1993) concluded that the probability of a driver to accept a gap
decreased when the number of gaps previous rejected by the driver were fewer than 14,
whereas, the probability to accept a gap increased when the number of gaps previously
rejected exceeded 14. Abou-Henaidy also concluded that a driver was less likely to accept a
gap when the front delay was less than 30 seconds, but more likely when front delay
exceeded 30 seconds. It was also found that critical gap decreased with increasing traflic
volumes in the priority traffic stream, as well as with increasing traflic on the non-priority
traffic stream (Brilon, 1988).

The Alberta Traffic Signal Control Display Standardization and Guidelines (Alberta
Transportation, 1985) suggested that motorists in more populated communitics arc likely

more inclined to accept shorter gaps.
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Gap acceptance behaviour is therefore not necessarily constant. Instead, it often
reflects the drivers' risk-taking behaviour as a result of the prevailing traffic conditions and

"traffic pressure”.

2.3.5 Delay

As delay is a traffic parameter that can be directly experienced by the drivers, it can
make a better representation of the actual traffic conditions than traffic volumes. This
characteristic makes it possible for delay to be used in transportation planning models to
estimate the route choices of drivers within a roadway network.

At the operational level, delay is also an important parameter. Delay is used in both
the Canadian Capacity Guide for Signalized Intersection (Institute of Transportation
Engineers, 1984) and the Highway Capacity Manual (Transportation Research Board, 1985)
as one of the intersection operation evaluation criteria. The amount of delay experienced by
drivers at an intersection determines the quality of service provided by the facilities at that
location.

The effect of delay on drivers' gap acceptance behaviour reflects that drivers
probably evaluate the delay they experienced and compare that to the risk they have to take
in accepting gaps in the major traffic stream. This is reflected by the findings in Abou-
Henaidy's research (1993), which concluded that the gap acceptance behaviour of drivers
changed depending on the "traffic pressure" and the "patience level" of the drivers.

The findings, as summarized in Section 2.3.4, suggested that drivers' gap acceptance
behaviour was more cautious when delay was moderate. Drivers were less likely to accept a
gap when the front delay was less than 30 seconds or when the number of gaps rejected were
fewer than 14.

However, as delay and inconvenience to the driver increases, the gap acceptance

behaviour of the driver became more aggressive. Drivers were found more likely to accept a
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gap when the front delay exceeded 30 seconds. or when the number of gaps rejected
exceeded 14.
Evidently delay affects the nisk-taking behaviour of drivers. It is therefore postulated

that delay may be a better accident prediction parameter than traftic volumes.

24 Computer Programs

Three computer programs were used to undertake various analysis tasks in this

research project. This section provides a brief discussion on the three programs.

2.4.1 Statistical Analysis Program

The Generalized Linear Interactive Modelling (GLIM) package (Numerical
Algorithm Group, 1987), as used by Maycock & Hall (1984), Pickering et al (1986) and
Hauer et al (1989) in their studies, was used in the current study. GLIM was required for

this study because of the unique distribution of the accident data.

2.4.1.1 Nature of Accident Counts

The object of statistical modelling is to present a simplified representation of the data
population. In a typical statistical model, the vanation in the data is represented by the
systematic components, whereas the unexplained part of the data is treated as the random
component. The systematic components can be described by model parameters derived by
regression, while the random component can be represented by a probability distribution.

Literature review indicated that the within-site distribution of accidents at a particular
location follows the Poisson process (Abbes, Jarret & Wright, 1987 and Maycock & Hall,
1984):

P(ylx)= x e*, y=0,12..

y!

where



X = mean accident frequency at the site

y = number of accidents in a specific period of time

The mean accident frequency is itself a random variable that varies from site to site.
The between-site variation may be described by a gamma distribution (Abbes et al, 1987 and

Maycock & Hall, 1984):

P(x) = $ xl gtx
wI(s)
where
M = the mean of the distnbution
s = a parameter of the gamma distribution

The resulting sampling distribution over all sites will be (Abbes et al, 1987 and
Maycock & Hall, 1984):
Ply) = P(x) P(y | x) dx
which gives
Ply) = Disty) s * w’
I'(s)y! p+s uts

which is the negative binomial distribution.

2.4.1.2 Classical Linear Models

In the classical least-square regression approach, the general form of a multiple
linear regression model is as follows:

y = B+ Bixy+Bx+ ...+ €
where B3; is assumed independent and normally distributed with mean zero and variance &2,
Le.

e ~N(0,8%)



However, the negative binomial distribution of accident sampling data does not comply with
the normality assumption of the classical linear regression approach.

Further, Aitkin, Anderson, Francis and Hinde (1989), stated that for probability
distributions other than normal and extreme value, the representation of the model with an
additive error term € is not satisfactory, because € does not have any simple distrnbution.

Based on the above reasons, the classical linear regression approach is not

considered appropriate for accident data analysis.

2.4.1.3 Generalized Linear Models (GLM)

Generalized linear model (GLM), as proposed by Nelder & Wedderbum (1972), is a
generalized version of multiple linear regression. Instead of requining a restrictive normality
assumption, GLM can describe various error distributions in the exponential family. The
exponential families have a general format which includes distributions such as Normal,
gamma, Poisson, Chi-square and binomial.

The GLMs have the following structure (Numerical Algorithms Group, 1987):

yi = Mt g, i=1,2,...n
where
yi = set of independent variables

= observed value or data
L = systematic component

= fitted values or theoretical values

€; random component

A GLM can be defined by three components (Aitkin et al, 1989):

49 Probability distribution of y; , which represents the random component.

2) Linear predictor n; , which represents the systematic components of the

model by describing the linear regression function:

n; = 2 xi B
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where
Xij = model parameters
B3; = model coefficient estimates
3) Link function g(it) that relates the linear predictor n to the mean pu:
n; = g( i)

The classical linear model is a special case of the GLM with Normal probability
distribution, additive linear predictor and identity link function.

In application, model fitting depends on the form of the probability distribution. The
method of maximum likelihood is used in modelling data with various data distribution. "The
likelihood of a model is the probability with which it will occur calculated for a particular set
of parameter values." (Aitkin et al, 1989). The likelihood function is:

L(p..... o) = 7 flyi | 1,0)
where f{y; i , ¢) is the individual probability of obtaining the observation y;

The maximum likelihood estimate © of © is defined as the value of © for which

L(O ) = L(6) for all O's. It is obtained by equating the partial differentiates of the likelihood
function to zero. It can also be obtained by the method of iterative least squares (McCullagh

& Nelder, 1987).

2.4.1.4 Generalized Linear Interactive Modelling (GLIM)

In this research, Release 3.77 of the GLIM program developed by the Royal
Statistical Society was used in modelling GLMs. GLIM is specially designed to facilitate the
fitting of GLMs. GLIM is one of the few programs that can work with different kinds of
probability distributions. Users can specify their own "user-defined models." As a result,
models of considerable generality can be described. Examples are negative binomial,

censored exponential, Weibull, extreme value and logistic distributions (Gilchrist, Francis &

Whittaker, 1985).
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In the GLIM modelling process, the data y/'s are matched by a set of theoretical
values Li's (Numerical Algorithms Group, 1987). This is accomplished by defining a specific
GLM structure to specify the appropriate probability distribution, link predictor and link
function that are adequate for the set of data to be modelled.

Within GLIM, the method of maximum likelihood is used to select parameter
estimates that minimize the "deviance". Deviance is a measure of the goodness-of-fit in

GLIM. Its form depends on the distribution assumed.

2.4.1.5 Significance Testing, Goodness-of-fit and Parameter Estimates
To test for significance of GLM, it is necessary to take a closer look at the

probability density function. As previously mentioned, the exponential family distributions

have a general format of:

p(yi) = exp {[y0: - b(8)]/ ai(e) + c(vi.0)}
where
o = scale parameter

The mean and variance of the probability density function can be expressed in terms of 0,

and by the first and second derivative of the function: L
E(y) = I Ch
VAR(y) = b"(0)) . ai(®)

a(e ) is usually of the form @ /w;, where w; is called the prior weight. Therefore, the
variance function becomes:

VAR(y:) = b"(0). 8/ w;
During the process of model fitting, it is necessary to know the significance of extra
parameters for a model. The acceptability of the current model as compared to the full

model can be determined by comparing the likelihood of the current model (l.) to the
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likelihood of the full model (I) with the given data. This measure is called the “scaled
deviance”, S(c,f):

S(c.f)

I

-2 log (1/1)
= -2 [ log(le) - log(lp ]

Substituting for 1. and I the probability density function previously established with
the maximum likelihood estimates (MLE) of the parameters, the following is obtained
(Numerical Algorithms Group, 1987):

S(c,p) = 2 Z{yi(6; - 0:) + b(©) - b(6))} / ai(o)
where 6; and ©; are the MLE of i under the current and full models respectively. The

relation can be written as:;

S(c.f) = D(c,f) /o

where

D(c.f) = deviance of the current model relative to the full model
%) = scale parameter

For negative binomial distribution, the scale deviance is:

Scale Deviance = 2 > ylogy - _(y+s) log (y+s)

1 uts

In the negative binomial scaled deviance, all the parameters are known except s. To
calculate the scale deviance, it is necessary to assume different values for s before fitting and
find the s that gives the best scale deviance value. The scale deviance is distributed as A2
with t, - t,degree of freedom, where t; is the number of parameters estimated under model
i (Numerical Algorithms Group, 1987).

For parameter estimates within a model, the t distribution test can be used as an
approximation for the comparison between the parameter estimates and their standard errors,
as the t test is only an approximation for distributions other than Normal. An estimate that is

more than three times its standard error is usually significant (Numerical Algorithms Group,

1987).
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This section serves as a brief introduction to GL.M and the GLIM program. More
details about the GLIM statistical modelling approach can be found in the GLIM Manual -
Release 3.77 (Numerical Algorithms Group, 1987).

2.4.2 Video Traffic Survey Data Encoding Program

The Traffic Data Input Program (TDIP) (Kyte & Boesen, 1989), was used in this’
research project to encode the data collected in the video survey. Through TDIP, traflic
volumes and delay can be encoded directly from a video recording. The operator can place a
time stamp on each data entry by pressing a designated number key on the personal
computer keyboard to encode the data.

In encoding traffic volumes, the number keys on the personal computer keyboard can
be assigned for different traffic streams. The program allows the operator to record up o 4
traffic streams simultaneously. However, data recording for a maximum of 2 streams at onc
time is recommended.

In encoding delay, two number keys are required to record the arrival and departure
time of the vehicles. The time difference between the arrival and departure time stamped is
the delay experienced by the drivers. Some judgement is required to estimate the actual time
incurred to the drivers as it is necessary to take into consideration the time needed for
acceleration and deceleration when the vehicle is leaving and joining the queue. It is

recommended that the same operator be used in encoding delay data to maintain consistency

in data encoding.

2.4.3 Traffic Delay Simulation Program
The field collected delay data exhibited a high degree of variability. Because of the
time and budgetary constraints of this pilot research project, it was not practical to have an

extensive data collection program. To supplement the field data collected, a traffic simulation
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model, KNOSIMO (Grossmann, 1988), was used to estimate the delay at the study
locations.

KNOSIMO is a simulation computer program for intersections without traffic
signals. It was developed at the Ruhr University in West Germany for the West Germany
Federal Minister of Transport. The program is applicable for 3 or 4-legged single lane
roadways.

KNOSIMO is an event-oriented simulation program which requires a relatively short
time per simulation. The program is interactive and can be run on various types of personal
computers under the PC-DOS environment. The model consists of individual vehicles taking
certain actions at certain events. Vehicles are generated in the program using the
hyper-erlang probability distributions, which can represent partial constraint of single lane
traffic streams realistically.

The operations of non-priority stream manoeuvres are determined by using the
principle of gap acceptance. Different critical gaps, t.. and move-up times, t;, are used for
different types of roadway and traffic conditions. Once a particular set of t. and tr are
determined, they will be applied to each gap accepting operation according to an erlang
probability distribution to reflect the actual distribution of the two values among drivers.
During the simulation process, total delay and queue are constantly stored for each simulated
interval. Reports are available at the end of the simulation period.

A copy of the KNOSIMO program was obtained from Ruhr University. An English
translation of the User Manual (in German) was also prepared as part of this research.

Use of simulation models at low traffic volume locations can greatly reduce data
collection time. As most intersections without traffic signals have relatively low traffic
volumes, a simulation model can simulate a sufficiently long data collection period while
Keeping the various travel conditions stable to minimize variability in delay data.

Because of the ease of its application, the KNOSIMO program was chosen to

estimate traffic delays. However, the model at the present stage was only developed for
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2-lane roadways and was not readily applicable to multi-lane situations. To simulate trathe
conditions for multi-lane intersections. it was necessary to address the difterences in the
conditions considered in the program and at the studied locations. A paper wntten by Chan
& Teply (1992), described the modifications needed to apply the KNOSIMO program to an

urban 4-lane situation, and is included in Appendix A.



3. DATA COLLECTION

This chapter summarizes the selection of model parameters for each of the non-safety,
risk and exposure variables. The accident and traffic data provided by the City of Edmonton
was used tc determine the framework of the research project. This included the study scope,
analysis period and study locations. A detailed description of the data collection method is
provided in this chapter.

-~

3.1 Selection of Measures of Non-safety

3.1.1 Problems with Historical Accident Records

Most accident prediction models used historical accident records as the measure of
non-safety at the study locations. A number of problems in using accident records were
investigated. The biggest problem of using accident records is the low frequency of accident
occurrences, which often translates into significant fluctuations in accident trends. Accident
records for a number of locations over a relati<‘y short study period will be a set of data of
small numbers. Data with small numbers is difficult to analyze statistically. To compensate for
this, longer study periods are often used to create a more workable set of data.

However, the use of a longer study period also leads to other difficulties. Traffic and
roadway conditions often do not remain stable over an extended period of time, resulting in
additional variability in the accident data and making analysis more difficult.

The reporting criteria of accidents can also affect the validity of accident records. An
accident that does not involve injuries or fatalities is only reported when the minimum cost of
the property damage exceeds the regulated reporting criteria. As vehicle repair costs increase
with inflation, more traffic accidents will have damages above the reporting criteria and
become reportable. As Hauer et al (1989) stated, the "inflation that eats away at the value of

the dollar causes an inflation of reportable accidents".



There are limited alternatives to accident records. The common alternatives are trattic
conflicts and critical incidents. These alternatives also have some disadvantages and are

discussed in the following sections.

3.1.2 Traffic Conflict

There are many definitions for traffic conflict. The definition by Amundsen and

Hyden (1977) seemed to be inost appropnate:

a traffic conflict is an observablc situation in which two or more road uscrs approach cach
other in space and time to such an cxtent that there is a risk of collision if their movements

remain unchanged

However, many traffic conflict studies were based on different definitions of traffic conflicts.
For this reason, it was difficult to compare the results of one study to another.

The use of traffic conflict as a model parameter requires a large amount of data. The
method often relies on subjective interpretations by observers during the data collection and
encoding stages. Therefore, a high level of judgement by trained observers is required for
data collection and data encoding.

The biggest shortcoming is that the validity of relating traffic conflicts to accidents is
still unproven. The traffic conflict technique attempts to estimate the number of accidents
based on the assumption that a particular type of conflict will lead to a certain number of

related accidents. Williams (1981) concluded that the findings from various traffic conflict

studies on the ratio were contradicting.

3.1.3 Ciritical Incident
Critical incident is another alternative to accident records. Teply (1987), in a "before"

and "after" study on pavement markings, employed a critical incident technique to assess
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driver behaviour. Teply defined critical incidents as “driver actions which are inconsistent
with roadway design or traffic situations".

Data collection for the critical incident approach is also labour-intensive, as compared
to typical methods of traffic volume collection. Subjective judgement and interpretation by

the observer are needed to identify each critical incident type.

3.1.4 Selection of Non-safety Measures

Accident record, despite its shortcomings, is preferable over traffic conflict and critical
incident techniques for the present study. The biggest advantage of accident record is that it is
an original source of data. Contrary to the traffic conflict and critical incident techniques, the
procedures for accident data collection and documentation are often well-established, thereby
minimizing additional data collection requirement. As well, accident record, being an original
source of traffic non-safety data, does not require any correlation parameters such as the
accident-to-conflict ratio.

Accident frequency was therefore chosen for use as the non-safety parameter in the

accident prediction model in this study.

3.2 Selection of Measures of Risk

3.2.1 Traffic Volume and Delay

At intersections without traffic signals, the gap acceptance characteristics of drivers
are closely related to the risk-taking behaviour of drivers. Two parameters, traffic volumes
and delay, were w'+ as the surrogates representing the risk presented to drivers in the
accident prediction models.

Traditionally, traffic volume is the most often used parameter in accident prediction.
Main road traffic volume is frequently used to represent the risk to the minor road traffic. An

advantage of using traffic volume as a risk parameter is that it can be easily collected.



Delay. on the other hand, may be a better risk surrogate measure because delay can be
experienced more directly by the minor street drivers. However, it is realized that delay data
is more difficult to collect than volume data. However, the use of a computer simulation
program such as KNOSIMO can significantly reduce data collection eflorts.

In this study, accident prediction models were developed using the volume and delay
data, respectively. Comparison of the models could determine whether delay or volume data

would result in a accident prediction.

3.2.2 Stopped Delay

The delay measure used in this study is "stopped delay". Stopped delay does not
consider the time lost in accelerating and decelerating the vehicle as part of the delay. At a
stop-controlled intersection, the delay experienced by a minor road vehicle driver is the delay
that he faces after the vehicle has come to a mandatory stop in front of the stopline. Stopped
delay which discounted the expected time lost in acceleration and deceleration can reflect a

more realistic delay situation to the drivers.

3.3 Selection of Measures of Exposure
Traffic volumes were used to reflect the exposure of the traffic that were faced with

the accident risk. Depending on the model structure, different combinations of traffic volumes

were used.

3.4 Relevant Accident Trends in Edmonton

The City of Edmonton's accident records were analyzed in establishing the research
framework, the scope of study as well as the analysis period. The City of Edmonton
Transportation Department maintains an accident inventory computer file that contained, at
the time of the study, all reportable on-street motor vehicle accidents in Edmonton from 1985

to 1988. A reportable accident is defined as "an accident involving property damage in excess
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of $500 and/or resulting in an injury, and not occurring on private property or off-highway"

(City of Edmonten Accident Decoding Manual, 1989).

A total of 3,795 reportable accident records from 1985 to 1988 for 429 intersections

without traffic signals were extracted from the computerized database. The 429 intersections

without traffic signals were selected from a Edmonton area map on the basis that the

intersections were not located at a traffic circle or a curve. Of the 429 intersections selected,

129 were 3-legged and 300 were 4-legged. Summaries of accident data for both types of

intersections are in Table 3.1.

Table 3.1 Accidents at 429 Selected Intersections Without Traffic Signals (1985-1988)
Number of Accidents (1985-1988) 3-lcgged 4-legged Total
Numbcr of interscctions 129 300 429
Total Numbecr of accidents 733 3062 3795
Average number of accidents in 4 years 5.7 10.2 38

In addition to the accident records, the following data were obtained:

1. Annual Meteorological Summary for the Edmonton Municipal Airport,

1985-1988. (Source: Environment Canada)

N

Arterial Roadway Construction Schedule, 1985-1988. (Source: City of

Edmonton Transportation Department, Design and Construction Branch)

3. Key and Regular Station Traffic Count Reports, 1985-1988, various count

station locations. (Source: City of Edmonton Transportation Department,

Transportation Planning Branch, Monitoring Unit)




3.5 Effects of Travel Conditions and Weather

3.5.1 Travel Conditions

The general accident trends for the 429 intersections are illustrated in Figures 3. 1a-t
Trends for accidents at 3-legged intersections are shown by a line profile on the same graphs.

Figure 3.1a indicates that accident trends remained relatively steady between 1985
and 1988. Very different trends were observed between daytime/night-time accidents and
weekday/weekend accidents. Figure 3.lc illustrates that there were morc accidents on
Fridays as compared to the other days of the week, especially Saturdays and Sundays. Figure
3.1d illustrates that accidents peaked during the peak hours. The proportion of accidents in
the daytime was significantly greater than that in night-time.

To examine in more detail the underlying trends between these time periods, the
accident records were categorized into four arbitrary modules to represent weckday/weckend

and daytime/night-time conditions, as summarized in Table 3.2.

Table 3.2 Accidents on Weekday/Weekend and in Day/Night

Number of Accidents (1985-1988) Wecekday Weekend Wecekly

MON-FRI SAT asd SUN

Daytime (6 amto 9 pm) 2814 (74%) 532 (14%) 3346 (88%)

Night-time (9 pm to 6 am) 272 (7%) 177 (5%) 449 (12%)

Daily 3086 (81%) 709 (19%) 3795 (100%)
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Differences in trends between weekday and weekend accidents, as well as between
daytime and night-time accidents are illustrated in Figures 3.2a-c and Figures 3.3a-c.

Figures 3.2a-c illustrates that approximately 12% of all accidents occurred in night-
time. However, when examining weekday accidents separately trom weekend accidents,
night-time accidents were found to occur much more frequently during weekends with 26%
being night-time accidents and only 9% of the weekday accidents being night-time accidents.

Observations made from a slightly different perspective revealed another aspect of the
accident trend. Figure 3.3a illustrates that, on the average, 19% of all accidents occurred on
the weekends. Further examination using Figures 3.3b-c indicated that only 16% of all
daytime accidents actually occurred on weekends, whereas approximately half (42%) of the
night-time accidents occurred on weekends.

Based on the observed accident trends, it is apparent that there are different accident
patterns between weekday and weekend and between daytime and night-time. The difference
in accident trends among the four patterns may be explained by the fact that the underlying
conditions within each time period may be significantly different from the others. Thesc time
periods can be considered as distinctive "travel condition modules" in that each has its own
individual characteristics in traffic, driver and environment factors and/or cenditions. These
factors may interact with each other within each module and create different traftic operation
and safety conditions. For example, during the moming peak hours, travellers are mostly
comprised of commuters who have similar home-to-work or home-to-school trip purposes
and similar trip destination locations. Traffic and ambient conditions are also similar.

Based on this argument, different accident prediction models should be developed for

each travel condition module because of the difference in accident experiences and underlying

travelling conditions.
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3.5.2 Weather Conditions

The winter and summer climate in Edmonton are very different. In the winter, the
treacherous roads and the cold temperatures have a significant effect on vehicle performance.
Accident occurrences peak in months with a considerable amount of snowfall. With in excess
of 4 months of winier each year, the drivers in Edmonton are relatively accustomed to the
winter driving conditions. Major roadways within the city are routinely snow-ploughed and
sanded. It was decided that the accident statistics for the entire year, including those that
occurred in the winter, would be included in the accident database for modelling.

‘Cumulated frequency curves as shown in Figures 3.4a to 3.4c were used to determine
graphically the 95th percentile daily accident levels for the 429 intersections without traffic
signals. The figures indicate that 95% of the intersections had 9 or fewer accidents per day
during the winter months from 1985 to 1988. The 95th percentile figure was approximately 6
accidents per day during the summer months.

The 3,795 accident records in the accident database were evaluated using the two
criterion developed above. The two 95th percentile criterion were exceeded 17 times
between 1985 and 1988. Of the 17 days with unusually high accident frequencies, the 9 days
with the highest daily accident frequencies occurred between November and February.
Almost all 9 days with the worst accident records had unusually heavy snowfalls and very
slippery road conditions. As a result they had a considerably higher number of accidents than
an average winter day. These accidents were considered to occur under "extreme winter
conditions". Under “‘extreme winter conditions”, road environments, vehicle performances
and fumes from the vehicle exhaust result in very poor driving situations. The weather on the
9 days with the worst accident records between 1985 and 1988 are summarized in Table 3.3.

Although only a few of these “extreme weather conditions” day were present in the
database, they could result in bias in the database because of their high frequencies. It is

necessary to ignore these accidents as they occurred as a result of "extreme winter
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conditions”. It is not the intention of this research project to model the effects of these special

weather conditions.

‘{ abie 3.3 Weathe: ¢ onditions for the 9 Days with the Worst Accident Records (1985-1988)

#of Snow Rain Temp Day of
Date accid {cm) (*C) Week Comment

11 86/03/24 a8 99 -5 MON | First dav of snow in 5 days. heavy snow

2 871229 19 52 r 9.6 TUE First day of snow in 5 davs, heavy snow, treezing rain

31 #8/11/12 15 32 -72 SAT Heavy snow slippery accidents mostly between 1:30
pm & 4:30 pm

31 R8/12/09 14 u -7.1 FRI Shippery, accidents mostly between 1:30 pm & 5:00 pm

51 85/11/16 12 20 -8.0 SAT Very slippery. quite heavy snow

0] 86/01/17 11 24 r 39 FRI Quite heavy snow. freczing rain thaw & free/e on
pavement

71 86/02/21 10 03 -18.6 FRI

K] R7712/02 10 -1.5 WED | Thaw and treeze on pavemnent

9 R7/12/18 1o 14 4.4 FRI Thaw and freeze on pavement

Adjustment factors were therefore applied to accidents that occurred during the 9

days with the worst accident records, to reduce the accident frequency to that comparable to

a 95th percentile probability accident frequency level of an average winter day. If the accident

frequency was higher on a particular day, a bigger adjustment factor was applied. For

example, for a particular day with 21 accidents, the adjustment factor would be 0.43

(9/21=0.43). Any accident that occurred on that day would be multiplied by 0.43.
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3.6 Selection of Analysis Period

General accident prediction models comparing traftfic safety over a wide variety of
conditions often have poor predictability. The poor predictability is due to severe variability in
the different underlying dniver, vehicle and environment conditions at the time of the accident.

However, there are some time periods when the factors affecting accident
occurrences are relatively stable. For modelling purposes, it is desirable to minimize the
variability of underlying conditions by focusing on a representative analysis period in which
the underlying conditions were relatively homogeneous. By selecting an =nalysis period with
relatively homogeneous travel conditions and charactenstics, varability in underlying
conditions can be reduced.

The analysis period selected for this study was the weekday daytime period, which
contained 74% of the accidents. The accident prediction models developed in the study

therefore were applicable to this weekday daytime analysis period only.

3.7 Selection of Data Collection Period

Considering the piloi study nature of this research project, an extensive data collection
and modelling program were not only impractical, but also deviated from the original
objective of the study. To minimize the efforts required in data collection, the following

requirements were considered in selecting the data collection penod:

1. It is in a time period when traffic conditions and accident trends are relatively

stable.

[\

It should be representative of the conditions of a period when most accidents

occur.

3. It should allow convenient data collection.
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In traffic capacity modelling, the analysis period represents the most critical hour of
system operation. In accident analysis, however, the criteria for analysis period selection is
quite different as traffic accidents happen at all times of the day. Sharp fluctuations in traffic
conditions during peak hours may not be the most appropriate analysis period.

Machine counts from two typical arterial roads are plotted in Figures 3.5a and 3.5b.
The <3lid lines in both figures represent the hourly volume from 1988 and 1989. The symbols
rcpresent counts from the years prior to 1988 and 1989. Although the two locations exhibit
ditferent degrees of changes in volume over the years, traffic volumes seem to be most stable
between 11 a.m. and 4 p.m., with differences averaging to a maximum of approximately 15%.

The daily and hourly traffic « .riations on various arterial roads are indicated in Figures
3.6a and 3.6b. Traffic volumes on arterials were found to be very stable from 11 am. to
slightly before 4 p.m.. In Figure 3.6b, the cluster of 4 lines at the bottom of the figure
represents the daily fluctuation of traffic from 11 am. to 4 p.m.. The 2 lines at the top of the
figures are for the 5 and 6 p.m. traffic. It shows that the daily variation of hourly traffic
volume is small in the early afternoon and the traffic is more unstable near the p.m. peak.

The observation suggests that traffic conditions were relatively stable during the early
weekday afternocn between 11 a.m. and 4 p.m.. 38 % of total accidents also occurred during
this time period. Therefore, the time period from Monday to Thursday between 11 a.m. and 4
p.m. was considered most appropriate for data collection because of its long duration, stable

traffic and safety conditions.

3.8 Selection of Study Locations

As indicated in Section 3.4, of the 429 intersections without traffic signals, 129 were
3-legged intersections and 300 were 4-legged intersections. It was demonstrated in Figure 3.1
that the annual, monthly, daily and hourly accident trends between the 3-legged and 4-legged
intersections were similar. The pre-crash manoeuvres and the driver’s behaviour leading to

the accidents were also similar between the two types of intersections. It was concluded that
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a study concentrating solely on 3-legged intersections (T-intersections) would reasonably
represent the conditions at intersections without traffic signals. Because of low accident
frequencies at the majority of the intersections, a random selection of study locations would
result in severe under-representation of high accident locations. Accordingly, study locations
were selected to provide good representation of sites with varying accident frequency records

The following criteria were used as a guideline in selecting the study locations:

1. Intersections with unusual geometric features were not used.

o

Only stop-controlled T-intersections were considered.

(7S]

Only locations with 4 lane main roads were considersd.
Locations with parking on the main road were not considered.
Intersections with oblique angles were not considered.

Offset T-intersections were not considered.

Locations with one-way main road traffic were not considered.

Intersections on slopes were not considered.

© ® N o o s

Locations with left turn restrictions were not considered.
10. Locations in a curve were not considered.
1. Locations with major construction between 1986 and 1988 were not considered

(records for 1985 construction locations were not available).

The above criteria were selected to minimize the variability within the data set so that
the analysis could be concentrated on the main objective of the study, which was to compare
the relative ability of volume and delay in estimating non-safety. Using the above criteria, 20
T-intersections without traffic signals were chosen. The locations of the selected sites are
listed in Table 3.4.

Collision diagrams were constructed for the 26 selected locations. Unusual accident
types were examined and, if necessary, discarded from the sample. For example, run-off-road

accidents might mean improper sanding or no snow ploughing at the minor road and should
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Table 3.4 Intersection Attributes at the 26 Study Locations

Site 1 Locations No. of Lanes | L.cﬂ—_1 Parking| Skaht | Access Comments
No. —-—> <—— Tum | Medlan on Line (see
Right | Lsft Lane Minor plan
Bound | Bound Street below)
1 41Ave/99St | 2 2 - - - - - |indusyiel
2 47 Ave /99 St |2 2 YES - PARK | POOR E Strip malt
3 | 51Ave/104 St 2 3 YES YES | PARK - AE | Restaurantplzza
4 51 Ave / 105 St 3 3 - YES - - E Gas bas,busy malt
S 62 Ave [ 122 St 3 2 YES YES - - - Residential
6 | 66Ave /99St I YES YES | PARK | POOR | AB |Pizzatiro store
7 | 91Ave/s0St 1 2 2 YES YES - - 8 |Motat
8 | 92Ave/ 1498t | 2 | 2 4 T - PARK - - | Resdental
9 [ 93Ave/SO st |8 1.2 YES YES - - AB |Bulb.service road
10 | 93Ave/178St | 2 | 2 YES | YES - - - | Residental
11 | 94Ave/149St | 2 | 2 - - PARK - B | Service road
12 | 95 Ave /175 St 2 2 YES YES - - - Residential
13 | 102 Ave/ 149 St 2 2 - - PARK | POOR - Adjacent 1o signals |
14 | 103 Ave/149St | 2 2 - - PARK - - | Adjacent 1o signals
15 | 115 Ave /149 St 2 2 - - - - o Small strip mall
16 | 116 Ave/ 142 St 2 2 - - - POOR - Busstop @ E
17 | 118Ave/130St | 2 2 - - PARK - 8D | Gas bas.apartment
18 | 127 Ave /78 St 2 2 - - PARK - - No lane marking
19 | 127 Ave /90 St 2 2 - - PARK - A Service road
20 | 127Ave/119St | 2 | 2 - - | pamx | PoOR| - |Resident
21 | 127 Ave /1225t | 2 2 1 - - | PAaRK | - - | Residental
22 | 128 Ave /66 St 2 2 - YES PARK - c Strip mall, cas dealer
23 | 134 Ave /127 St 2 2 YES - PARK - - Residental
24 | 137 Ave/ 108 St 2 2 YES YES - - AB | Resid/service road
25 | 137 Ave /111 St 2 2 YES YES - - AB | Resid/service road
26 | 137 Ave [ 135¢ st |2 i 2 | YES | YES N A8 | Residental
E Left Bound
MAJOR <=
ROAD -->
} Right Bound
C D

A B |Minor Road
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not be considered a candidate for study locations. After the collision diagrams were
constructed, an additional check was made to locate any unusual accident data that might
warrant further examination. Accident data for each intersection were plotted on a graph in a
cumulated accident frequency plot to reveal inconsistent accident history and unstable
accident trends.

To ensure that the 26 sites chosen were representative, the accident trends for the 26
sites were compared to the accident trends for all 129 T-intersections in the database. Figures
3.7ato 3.7e illustrate the results of the comparison. The two sets of data were very similar in

almost all aspects, indicating that the selected sites were representative of the other

T-intersections.
3.9 Data Collection Methods

3.9.1 Intersection Data
Site attributes recorded at each study location included: sightline, presence of adjacent

commercial access, adjacent parking, left-turn ba- and raised concrete median. The site

attributes recorded are summarized in Table 3.4.

3.9.2 Accident Data

Accident data used for analysis in this study were derived from the accident inventory
file of the City of Edmonton. The inventory file contained all reportable on-street motor
vehicle accidents in the City from 1985 to the present. Accident data between 1985 and 1988
for the 26 study locations were sorted from the accident records. Only accidents occurring

during the weekday daytime analysis period, i.e., from Monday to Friday between 6 a.m. and

9 p.m., were selected.
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Accident trends were used instead of actual annual accident numbers as the safety
parameter. The accident trends were obtained by determining the average number of
accidents over a 4 year period.

The accidents were further categorized into 4 non-priority movement types as well as
into pre-crash manoeuvre types for use in disaggregate accident prediction modelling,
following the methodology discussed in Chapter 4.

The average 4 year accident frequencies for all accidents and for each individual
non-priority manoeuvre accidents and rear-end / right-angle accidents are summarized in

Table 3.5.

3.9.3 Volume Data

Intersections without traffic signals often have much lower priority over signalized
intersections in the traffic counting program. Availability of volume data for the 26 study
locations were therefore limited. Moreover, counts were often collected during peak hours
only and counts were often collected over different years.

For modelling purposes, it is desirable to have comparable and current volume and
delay data collected simultaneously during the data collection period. Data collection was
carried out in January and February of 1990 at the 26 chosen locations in Edmonton. In total,
over 15 hours of real time events with 21,069 vehicle arrivals were analyzed and transferred
to a computer data base with the assistance of the Traffic Data Input Program (TDIP) (Kyte
& Boesen, 1989).

All data were collected on weekdays from Monday to Thursday, from 1 p.m. to 4
p.m., within the chosen data collection period. Data collection was carried out only on days
with normal winter conditions.

A video camera was used to collect traffic data required for the analysis. Other than
providing an excellent permanent record, the videotaping approach was also economical as

only one person was required to operate the camera. After the camera was set up for
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recording, the camera operator would be free to record the attributes of the study area as well
as other observations.

The video camera was placed at a location where all the non-priority movements
could be recorded. In most cases, putting the camera at the minor road about 50 to 100m
from the intersection provided the best view of the T-intersection. Figure 3.8 illustrates the
location of the camera relative to the intersection. Because of the sub-zero outdoor
temperature in Edmonton in January and February, the camera was placed inside a car.
Placing the camera inside the car also allowed the videotaping to be carried out
inconspicuously. The length of recording at each location was approximately 45 minutes to 1
hour.

Data encoded from the video recording were traffic volumes, delays, vehicle
categories and headway distribution. TDIP was used to encode the data from the video traffic
survey.

The encoded volume data were then converted to an equivalent one-hour "design
hour” volume for comparison and modelling purposes. The adjusted traffic volumes for all

manoeuvres are summarized in Table 3.5.

3.9.4 Delay Data

As discussed in the previous section, delay data were also encoded from the video
recordings. The camera was placed at a location so that the entire queue length on the minor
road could be covered by the view field of the cam: «.

In encoding the delay data, some judgement was iequired to estimate the actual delay
time incurred to a driver. For instance, the time needed for acceleration and deceleration when
leaving and joining the queue was taken into consideration. As some degree of judgement
was needed in encoding delays, all delay data were encoded by the same person to provide

better consistency. The encoded delay data for each non-priority manoeuvre are summarized

in Table 3.5,



3.9.5 Simulated Delay

The delay data encoded from the videotape at each location displayed a high degree
of variability. Additional data were necessary to supplement the field delay data collected. A
number of calculation methods and simulation models were considered to estimate delays
based on the measured traffic volumes. It was found that the application of calculation
methods in realistic situations would not be satistactory because of the limitations as a result
of oversimplified assumptions.

Alternatively, simulation models, being microscopic in model nature, have the ability
to handle more complex traffic situations. They can greatly reduce data collection time
especially for low traffic volume situations. At most intersections without traflic signals,
traffic volume is relatively low. The use of a simulation model can simulate a sufliciently long
data collection period while keeping the various travel conditions stable.

Because of its ease of application and ability to simulate complex traflic interactions,
the KNOSIMO program (Grossmann, 1989) was chosen to estimate traffic delays. However,
the model was only developed for 2-lane roadways and was not readily applicable to multi-
lane situations. To simulate traffic conditions for multi-lane intersections, it was necessary to
address the difference in the conditions considered in the program and at the studicd locations.
A paper written by Chan and Teply (1991), described the modifications needed to apply the
KNOSIMO program to an urban 4-lane situation, and is included in Appendix A The

simulated delay data are included in Table 3.5.

3.10 Database

The non-safety, traffic volume and delay data are summuarized in a database, as shown
in Table 3.5. The database at this stage is ready for use in further analysis and accident

prediction modelling.
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4. ACCIDENT PREDICTION MODELS

At this stage of the research project, the framework of the research project
has been determined. In establishing the research framework, a preliminary analysis
on available accident and traffic records was carried out. as was discussed in detail in

Chapter 3. The major elements of the research framework are:

1. analysis period

9

study locations

)

parameters to collect

4. data collection method

Traffic volume and delay data were collected at 26 selected intersections. The
collected data were encoded with the use of the Traffic Data Input Program, TDIP
(Kyte and Boesen, 1989). Additional delay data was also simulated through the use
of the KNOSIMO simulation program (Grossmann, 1988).

With all the data in place, the next stage of the research was to determine the
model structures and formulate the actual accident prediction models by using the

various volume and deiay data collected, as well as the 4 years of accident records.

4.1 Application of the Risk and Exposure Concept
The risk and exposure concept were used in formulating the model structures.
The concept states that the non-safety at an intersection is the product of the risk

presented to the traffic entering the intersection and the exposure of the traffic with

the risk.
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Table 4.1 Risk and Exposure Concept
Safety = Risk X Exposure
Sum of Flow 1 Sum of all entering flows

Model

Product of Flow Major road flows Minor road flows
Model

mb&zi-y-based Average delay experienced by Non-priority flows
Models non-priority flows

A tostrated in Table 4.1, in the sum-of-flow model, safety is the number of

accidents which have occurred at an intersection. It is estimated by the total number
of vehicles entering the intersection. The total number of vehicles entering the
intersection can be regarded as an exposure parameter. Since the risk factor is not
dealt with, the sum-of-flow model should be considered as an exposure model

instead of a risk and exposure model.

In the other two accident prediction models, the risk and exposure parameters
are often represented by the major and minor road flows, or some combination of the
two flows. In a simple product-of-flow model, the major road flow is used as a
surrogate of risk to the merging minor road traffic. The minor road flow is the
measure of exposure for the traffic being presented with the risk of merging. In that
sense. the safety parameter in a simple product-of-flow model is restricted to
represent the non-safety situation for the minor road traffic only. Based on the same
concept, the simple product-of-flow model can be transformed into a simple

delay-based accident prediction model by using non-priority flow as the exposure



measure, and the average delay experienced by the non-prioritv flow as the risk
measure

Ti.. details of the model structure as well as the torms and interactions of the
various parameters was then determined through the use of statistical modelling
tools. The various non-safety, risk and exposure model parameters available for

modelling are summarized in Table 4.2.

4.2 Suztistical Model Structure Options

Literature research indicated that a non-standard statistical model would be needed
for accident prediciion modelling because of the negative binomual distiibution of
accident data samples. The GLIM program (Numerical Algorithm Group, 1987) is
capable of handling unique data distributions and has been successfully used in
numerous accident prediction modelling research projects. For this reason, the GLIM
program was chosen for this study.

The three components of a GLM, as described in Chapter 2, are the
probability distribution function of the data; a linear predictor that describes the
linear regression function; and a link function that relates the linear predictor to the
mean. It is possible to specify different models with ecither an additive or a

multiplicative link function.

4.2.1 Additive Model Structures

A model with an additive model structure can be formulated by using an
identity link function. The resulting mode! structure will be as follows:

S = a, +a, RiIE, + a, R;E; + a3 RiEx + .

wherg

S = measure of non-safety, the dependent variable



Table 4.2

Accident Prediction Model Parameters
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A e S S e R —

Parameter | Description

Moasuraes of non—safoty

po——

]
Sre
Sra

s3
sS4
ss
S7

Total number of accidents in 4 years

No. of roar—end coflisions over 4 years

No. of right—angle collisions over 4 years

No. of accidents related to main road right—turn movements over 4 years
No. of accidents related to minor road left—turn movements over 4 years
No. of accidents related to minor road right—tum movements over 4 years

No. of accidents related to main road left—turn movements over 4 years

v2
V3
Va4
V6
v7
vs

Volumo paramotem

Main road nghlbound through volume
Main road right—tum volume

Minor road let—tum volume

Minor road right—turn volume

Main road left—tum volume

Main road leftbound through volume

Delay parametcrs

D4
D6
D7

Average stopped delay for minor road left—tum flows

Average stopped delay for minor road right—tum flows

Average stopped delay for main road left—turn flows

/— v? 07
-

v2

. 1N

v4 Ve
D4 D6



Ri,Ei = model parameters, which can be the risk and exposure parameters

a; = coeflicients to be modelled by GLIM

4.2.2 Multiplicative Model Structures
A model with a multiplicative model structure can be formulated by using a

log-linear link function. The model structure below is a typical multiplicative model.

S = ay R{VES *a, ROV ES *a, RS™ES +

where

S = measure of non-safety, the dependent variable

R,.E, = model parameters, which can be the risk and exposure
parameters

a; = model coefficients to be modelled by GLIM

bi el = exponential coefficients to be modelled by GLIM

To specify a multiplicative model structure in GLIM, a log-transformation is
required to alter the non-linear model structure to linear. The log-linear link function
can then relate the transformed linear predictor to the transformed observed values.

The transform model structure is as follows:

log (S) = log(a;) + by*log(Ry) + ¢ *log(E;) + log(ay) + by*log(R,)
c2*log(E,) + ...

4.3 Level of Aggregation and Potential Model Parameters

In an accident prediction model, the main objective of the modelling process
is to provide satisfactory model prediction r¢sults that will match the observed values
in the field. In predicting accidents at a particular intersection, certain attributes of

the intersection, as required by the model structure, will be used. The resulting
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output of the model will be a predicted non-safety value. If the predicted non-safety
value matches well with the actual observed non-safety value, the model is
considered accurate.

The non-safety measure chosen has a primary effect on the set-up of the
model structure. Once a non-safety measure is chosen, the model parameters should
be selected accordingly so that they are relevant to the type of accident being
considered.

The literature research indicated that different levels of aggregation could be
used in accident prediction modelling. Some of the more aggregate models predicted
the number of daily accidents by using average daily traffic. Otler less aggregate
models predicted accidents during different peak hour periods %y using traffic
volumes of specific conflicting movements at the intersection. Attempts were made
in this research to try to use different levels of aggregation for fthe non-safety

measure.

4.4 Disaggregate Accident Prediction Model For Each Basic Accident Type

The modelling approach similar to that adopted by Pickering et al (1986) and
Hauer et al (1989) was used to examine the safety situation for each basic accident
type. Various types of accidents can be identified based on the pre-crash
manoeuvres of the vehicles involved in the collision. As shown in Figure 4.1, it is
possible to have 13 basic accidents types at a T-intersection. Table 4.3 illustrates the
frequencies of 13 basic accident types at the 26 study locations.

The problem that became immediately obvious was the low accident
frequencies for most of the basic accident types. For example, of the 129 accidents
that occurred at the 26 T-intersections, only 10 accidents were rightbound rear-end

collisions. Moreover, the right-bound rear-end collisions were absent in all but 4 of
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13 Basic Accident Types and Frequencics at 26 Study L.ocations
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the 26 study locations. It was concluded from this observation that. because of low
accident frequencies, it is unlikely that accident modelling for intersections without
traffic signals could be done for each discrete basic accident type. Therefore, no

models were developed at the basic accident type level.

4.5 Disaggregate Right-angle and Rear-end Accident Prediction Models

Accident data as recorded in police accident reports often categorize
accidents into distinctive descriptive accident types. Common types of accident
categories used in police accident reports are rear-end collisions, right-angle
collisions, accidents involving left-turning vehicles and head-on collisions.

Collision diagrams were drawn for all the accidents which occurred at the 26
study locations. It was found that most of the accidents could be grouped into two
accident types: rear-end collisions and right-angle collisions. Accident frequencies
for other accident types were low and were also difficult to classify into any
particular accident types. Figure 4.2 illustrates how the different types of accidents

can be grouped into the rear-end and right-angle collisions.

4.5.1 Rear-end Accident Prediction Model (Model 512)

A typical rear-end accident model (Model 512) has the following structure:

Sk = a+ an(V2*Vi) + a; Vy*Dy) + ay(Ve*De) + ax(Va*Dy)
where

Sk = number of rear-end collisions from 1985 to 1988
VD, = model exposure and risk parameters

a; = coefficients to be modelled by GLIM
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The first set of parameters, (V2*Vs), are products of the rightbound through
and right-turn volumes. It is used to predict the number of rear-end collisions which
may occur to the rightbound tratfic movements. The use of a product format
assumes that rear-end collisions for the rightbound traftic are related to the potential
conflicts between major road rightbound through traftic and major road right-turn
traffic.

Based on similar assumptions, the other three sets of parameters, (V4*D,),
(Ve*Dg) and (V1*D7), were developed for the rear-end collisions related to the other
non-priority flows. Delay and volume were used to represent risk and exposure for

the other three non-priority movements.

4.5.2 Right-angle Accident Prediction Model (Model 612)

A typical right-angle accident model (Model 612) has the following structure:

Ska = a + ao (Va*Dy) + a; (V7*D7) + a3 (Vo*Dy)

where

Sk = number of right-angie collisions from 1985 to 1988
V.,D, = model exposure and risk parameters

a; = coefficients to be modelled by GLIM

The first set of parameters, (V.*Ds), are products of the minor road left-turn
volumes and the delays experienced by that movement. Delay is used as a risk
measure for the non-priority movements. Traffic volume for the movement being
delayed is used as a exposure measure. Three sets of parameters are included in the

model: minor road left-turns (V4), minor road right-turns (V6), and major road left-

turns (V7).
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4.6 Disaggregate Non-priority Movement Accident Prediction Models

(Models 311 to 314)

At intersections without traffic signals, drivers in the non-priority traffic
stream have to use judgement to either reject or accept a gap. Focusing on non-
priority movements reflects a logical cause-and-consequence relationship and
therefcre have a potential for satisfactory accident prediction.

Table 4.4 illustrates the type of basic accident types that can be related to the
4 turning movements at a T-intersection. It can be seen from Table 4.4 that most
accident types relate predominantly to one turning movement, with the exemption of
rear-end collisions and accident types 6 and 7. Some interpretation was needed to
group these accidents under these 4 turning movements. As all four turning
movements do not have the first priority to carry out the manoeuvre, this approach
can be considered as the non-priority movement accident prediction approach.

The rightbound right-turn traffic was also considered a non-priority traffic
movement. A rightbound right-turn vehicle travelling on the far side will have to
yield to the traffic on the near side lane, before it can change lanes to make a right
turn manocuvre,

By grouping the basic accident types into four non-priority movement related
groups, the number of accident groups in the data can be reduced from 13 to 4,
resulting in higher accident frequencies for the non-priority accident types. However,
as seen in Table 4.4, accident frequencies are still low for two of the non-priority

movements.
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Table 4.4 Accident Categories By Non— Priority Movements
0 T T Nonprorty Movement Gatogories
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4.6.1 Major Road Right-turn Accident Prediction Model (Model 311)
The traffic movements related to the major road right-turn accident prediction
model are the major road through and right-turn volumes (refer to Figure 4.3a). This

modcl has the following structure:

S“{ — e al E} b3 R} <3
where
S number of accidents related to the major road right-turn

movement from 1985 to 1988

g

i, = exposure parameter for the major road right-turn traffic

i

R, risk parameter for the major road right-turn traffic

albded o coeflicients to be modelled by GLIM

The major road right-turn movement does not have conflicting movements
that are as obvious as the other non-priority movements. It is therefore difficult to
formulate a set of risk and exposure parameter to represent a cause-and-effect
relationship.

An attempt was made by using the major road right-turn traffic volume as the
exposure parameter and the major road leftbound through traffic volume as the risk
parameter.

The resulting accident prediction model (Model 311) for major road right turn

tratlic 1s as follows:

S: eV, v
where
S number of accideuts related to the major road right-turn

movement from 1985 to 1988
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V. = exposure parameter, represented by the volume of right-turn
tratfic
V., = risk parameter, represented by the volume of rightbound

through traffic on the major road

adbdcr coefTicients to be modelled by GLIM

4.6.2 Minor Road Left-turn Accident Prediction Model (Model 312)
The traffic movements related to the minor road left-turn accident prediction
model are the minor road left-turn traffic and the sum of the maior road traffic. Refer

to Figure 4 3b, this model has the following structure:

34 — e114 E4 b R4 cd
where
S, = number of accidents related to the minor road Ileft-turn

movement from 1985 to 1988

E, = exposure parameter for the minor road left-turn traffic
R; = risk paramcier for the minor road left-turn traffic
abbded o coefficients to be modelled by GLIM

The conflicting movements in this case are much more obvious. In this case,
the delays experienced by the minor road left-turn traffic are used as the risk
parameter. The minor road volume itself represents the exposure. The resulting

accideni prediction model (Model 312) for minor road traffic is as follows:

84 - e ad V.; b4 D.; AR
where
S == number of accidents related to the minor road left-turn

movement from 1985 to 1988
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exposure parameter, represented by the minor road lett-turn
traffic

risk parameter, represented by the delay experienced by the
minor road left-turn traftic

coetficients to be modelled by GLIM

Minor Road Right-turn Accident Prediction Model (Model 313)

The minor road right-turn model was developed based on the same

assumptions used for the minor road left-turn accident prediction model (see Figure

4.3c). The model (Model 313) has the following structure:

4.6.4

S()

where

S()

V(,

Dg

a6.b6h.c6 __

[{ b6 o
eV, D.

number of accidents related to the minor road right-turn
movement from 1985 to 1988

exposure parameter, represented by the volume of minor road
right-turn traffic

risk parameter, represented by the delay experienced by the
minor road right-turn traffic

coefficients to be modelled by GLLIM

Major Road Left-turn Accident Prediction Model (Model 314)

The major road left-turn model was also developed based on the same risk

and exposure concept using delay as a risk parameter (sec Figure 4.3d). The model

(Model 314) has the following structure:
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where
S, = number of accidents related to the major road left-turn

movement from 1985 to 1988

\% = exposure parameter, represented by the volume of major road
left-turn traftic

D, = risk parameter, represented by the delay experienced by the
major road left-turn traffic

a7b7.e7_

coefficients to be modelled by GLIM

4.7 Aggregate Accident Prediction Models With Volume based Parameters
The models developed up to this point are relatively disaggregate models. The
disaggregate models have low accident frequency. For this reason, the aggregate
approach will be used for the rest of the models to be developed  The safety
parameter in the models will be the number of accidents that occurred at the
intersection o " the 4 year period »f time from 1985 to 1988. The different models

developed have varying degrees of complexity in model s'ructures.

4.7.1 Sum-of-flow Accident Prediction Models (Models 111 to 112)

Two sum-of-flow model structures 'zere examined. The first once (Figure
4.4a) is a less complex model structure, with the non-safety parameter related
directly to zhe sum of all traffic movements entering the intersection. The structure

of the first sum-of-flow model (iModel 1§1)is:

S = agta; [ VatVaitVatV 1V Vy]

where

S = number of accidents from 1985 to 1988
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Vi = various trattic movement volumes

a; = coetlicient to be modelied by GLIM

In the second model, the sum of conflicting volumes of cach accident type is
added to form a separate model parameter. Coetlicients are developed separately for
each sum-of-flow parameter. For example, the first group of parameters,
[vatvitvitvatvg], represents the sum of the conflicting volumes involved with the
minor road left-turn movement, whereas the third group of parameters, {vaivaitvy],
represents the sum of the conflicting volumes involved with the major road lett-turn

movement. The structure of this model (Model 112)is:

S = ap + a; [VatrVa+ VbVt V] + a [VobVel t ai [ Vot Vit Vy|
where

S = number of accidents from 1985 to Y88

Vi = various traffic movement volumes

a; = coefficients o be modelled by GLIM

4.7.2 Product-of-tflow Accident Prediction Models (Models 121 to 124)

Four product-of-flow models with varying degrees of complexity were
developed. The models differ in the way the volume parameters were aggregated
within the model.

The first product-of-ti.:: model employs three groups of paramcters that
represent the sum of the product-of-flow for each non-priority movement type  The

model structure (Model 121) is shown as tollows:

S = ap + a) [Va*t Vot Vat Vb VT 4 ap [Ve* Vol ta, [V %, o

where
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S = number of accidents from 1985 to 1988
Vi, = various traffic volumes
a, coefficients to be modelled by GLIM

The second model groups all traffic volumes into two categories: minor road
traffic and major road traffic. The minor road traffic can be considered as the
exposure. The major road tratfic can be considered as the risk to the minor road

traffic. The model structure (Model 122) is shown as follows as well as in Figure

4.4b:
S = ap + a; [ (V2 Vit V+Vy) * (Va+Ve) |
where
S = number of accidents from 1985 to 1988
Vi == various traffic volumes
a; = coetticients to be modelled by GLIM

The third model has the same model parameters, except that the model
structure is multiplicative / exponent instead of the additive format of the second

model. The model structure (Model 123) is as follows:

S = e * (Vat+VatVa+Vy) 1 * (V4+Ve) ¥
where

S = number of accidents from 1985 to 1988
V, = various traffic volumes

a; = coeflicients to be modelled by GLIM

The tourth product-of-flow model (Mode! 124) has the most complex model

structure, indicated as follows:
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S _ e (V2) bl (V2) b2 (Vo) b3 (V1) b (V2+V) bs (Va+Vat Vo4 V) bo
where

S = number of accidents from 1985 to 1988

V; = various traffic volumes

ai.hi

= coeflicients to be modelled by GLIM

4.8 Aggregate Accident Prediction Models With Delay-based Parameters
(Models 211 to 216)
Six delay-based models were developed. In the six models, delay was used to
replace traffic volume as the risk parameter. The volume of the non-priority ratlic

was used as the exposure parameter.

4.8.1 Delay-based Accident Prediction Model 1 (Model 211)

The first delay-based model is a function of the sum of the risk and exposures
of the four non-priority movements. Delar is used as a surrogate of risk, whereas
volumes are being used as a surrogate for exposure. The model structure of the first

delay based model (Model 211) is linear in format and is shown below:

S = ao + ay (Vo*Vi) +a (Dy*Vy) 4 ai (D*¥Ve) +oay (D4*Vy)
where

S = total number of accidents from 1985 to 1988

Vi = exposure parameter, which is the various trattic volumes
D; = risk parameter, measured by the delay to drivers

a; = coefficients to be modelled by GLIM
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4.8.2 Delay-based Accident Prediction Model 2 (Model 212)
The second delay-based model simply grouped all parameters together and
formed thc product of all the parameters. The model structure is also additive, as

follows (Model 212):

S = ao + a) (V2*Vai*Di*Va*De* Vi *D7*Vy)

where

S = total number of accidents from 1985 to 1988

V; = exposure parameter, which is the various traffic volumes
D; = risk parameter, measured by the delay to drivers

a; = coefficients to be modelled by GLIM

4.8.3 Delay-based Accident Prediction Model 3 (Model 213)

The third delay-based model has a multiplicative model structure in the form
of a power function. The parameters in this model are similar to the first model,
except that the model structure is multiplicative instead of additive. The model

structure is shown as follows (Model 213):

S = e ™ (V2*Va) " (Ds*Vy) P2 (De* Vi) P (D7*V7) ™

where

S = total number of accidents from 1985 to 1988

Vi = exposure parameter, which is the various traffic volumes
D, = risk parameter, which is the delay to drivers

at.bi

coeflicients to be modelled by GLIM
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4.8.4 Delay-based Accident Prediction Model 4 (Model 214)

The fourth delay-based model is a variation of the third model. The power
function, instead of being applied to both the risk and exposure parameters, was
applied to the risk parameters only. The resulting model structure is as tollows

(Model 214):

S .. o0 (VS*V4*V(‘*V7)L-1 (V:M * D.‘h.‘ * Dhm * D7M)

where

S = total number of accidents from 1985 to 1988

Vi = exposure parameter, which is the various traftic volumes
D; = risk parameter, which is the delay to drivers

ai.bi.ci

coeflicients to be modelled by GLIM

4.8.5 Delay-based Accident Prediction Model 5§ (Model 2i5)
The fifth delay-based model is a variation of the previous model. In this

model, the power function is applied to the exposure parameters and not to the risk

parameters.
S _ et (VQ*D4*D(,*D7)h, (Vzcl * V“c.! * V"c.‘ * V7°")
where
S = t aber of accidents from 1985 to 1988
Vi = exposure parameter, which is the various traflic volumes
D; = risk parameter, which is the delay to drivers
ai.bi.ci

coefficients to be modelled by GLIM

4.8.6 Delay-based Accident Prediction Model 6 (Model 216)
The sixth delay-based model has a power function for all the pasameters. The

structure is shown below as well as in Figure 4 5 (Model 216):
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Figure 4.5 Parameters in Delay -based Model (Model 226)

S = ¢ ] (V2bl.v3cl) (D‘DZ‘V‘fI) (Dobf*‘vocl) (DyN*V-;“)

where S = total number of accidents from 1985 to 1983
v, := exposure parameter, which is the various traffic volumes
D, = risk parameter, which is the delay to drivers

be.cr = coefficients to be modelled by GLIM

S0



s

S - e (\’y:l\l*v}cl) (D4|‘2*\/v4c:) (D(‘hi*\;“ci) (1)71»3*\,7:4)
where

S = total number of accidents trom 1985 to 1988

Vi = exposure parameter, which is the various tratlic volumes
D; = risk parameter, which is the delay to drivers

bt.ci

= coefficients to be modelled by GLIM

4.9 Aggregate Accident Prediction Models With Simulated-delay-based
Parameters (Models 221 to 226)
The model structures of the simulated-ii. .. “ased models are identical to
that of the delay-based models. The simulated-drtov-based models were developed

using simulated delay data instead of field measuivid delay.

4.10 Summary
At this stage, all the accident prediction models have been developed.  The
models developed cover a wide combination of approaches with different salety

measures, degree of aggregation and level of complexity.
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. COMPARISON OF MODEL RESULTS AND PARAMETERS OF BEST
MODELS

This chapter discusses and compares the results of accident trend prediction
of the various models developed in the study by using gooduess-of-fit plots The best

models and their model parameters are compared to assess the adequacy ot the

traditional intersecticn safety ranking methods.

5.1 Rear-end and Right-angle Accident Prediction Models (Models S12 and

612)

Figures 5.1a and 5.1b illustrate the goodness-of-fit of the rear-end (Model
512) and right-angle (Model 612) accident prediction models  In the poodness-of-fit
plot, the y-axis represents the actual number of accidents at the intersection, which is
the average number of accidents that occurred during wecekday daytime between
1985 and 1988 The x-axis represents the number of accidents predicted by the
accident prediction model.

There are 26 data points in each goodness-of-fit plot.  Each data poimt
represents the result of accident prediction at a particular intersection. The position
of the data point indicates the success of the model in predicting the number of
accidents. The straight diagonal line in each graph represents the line of perfect fit.
A data point lying on the line of perfect fit means that the predicted number of
accidents is the same as the actual number of accidents that occurred. A data point
located below the diagonal line indicates that the number of accidents predicted by
the model is higher than the actual number of accidents observed

Accordingly, a model with the 26 data points located closely adjacent to the

best-fit line would have better accident trend prediction results than once with data
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points scattered far away trom the best-fit line  Models with higher r-square values
with their goodness-of-fit plots were identified as better accident prediction models

Both Figures 5.1a and 5.1b exhibit a significant degree of scattering of data
points. The scattering is more disperse for the rear-end accident prediction model.
Model 512. The resulting r-square values tor the rear-end and the right-angle
accident prediction models are 0.03 and 0.37, respeciively.  The results of accident
prediction is considered poor, especially for the rear-end accident prediction model

The poor predictability of the rear-end collision model may be due to the
inability of the model te reflect the causc-and-effect relationship in rear-end
collisions. Grouping accidents as rear-end collisions does not correlate accidents
directly to the traffic movements involved in tiie accidents

Comparatively, the right-angle accident model has better prediction results
than the rear-end accident model. The model groups together parameters that are
directly related to the pre-crash maneuvers of the vehicles involved in the collision,

The degree of disaggregation apparently has significant cffect on the
predictability of the models. As the total number of accidents that occurred at an
intersection have to be split between the rear-end and right-angle accident prediction
models, the resulting accident frequency in each model is lower. This is most
obvious in the rear-end coilision case, where there were no rear-end collisions from
1085 to 1988 at 9 of the 20 intersections.

Tables 5.1a and 5.1b summarize the GLIM program output results for the
rear-end and right-angle accident prediction models. The results indicate that the
parameter estimates for both models have high standard errors. For a negative
binomial accident data distribution, a parameter estimate is considered insignificant
unless it is three times greater than the standard error. Many paramcter estimates in

both the rear-end and right-angle accident predication models are insignificant.



Table 5.1a parameter Estimates for Rear-—-end Accident Prediction Model
(Model 512)

h

Model 512
i ) -(52-42 SFE =a+t a4 (VZ‘VJ) + al (VQ’DQ ) + 2, (VQ.DQ) + a, (V7.D7)

Deviance

!R—square t 0.03

#1 Coefficients in Parameters in Parameter Eslimates Standard Errors

_Model Structure | - GUIM Output

1 a %gm 8.44E 01 0.499

- R e - L e e e e S S B SR

2 a0 qil 5.870E-05 4.070E-05
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Table 5.1b Parameter Estimates for Right-angle Accident Prediction Model
(Mcdel 612)

Model 612

Deviance 14.21 R 2 (Va™DJ r (Va"Dy) + 2, (V6" De)

R-—-square 0.37
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5.2 Non-priority Movement Accident Prediction Models (Models 311 to 314)

Four models are developed for the four non-priority movements  at
T-intersections. Traffic volume and delay parameters are used to model the risk and
exposure aspects of the accidents related to each of the non-priority movements The
resulting structures of the models provide a logical cause-and-ettect relationship tor
each accident type.

The major problem of the approach is the low accident data density that
resulted from this level of disaggregation. The resulting accident densities are very
low because the total number of accidents 1s divided into 4 groups according to the
relevant non-priority movements.

In the major road right-turn model (Model 311), a total of IS5 accidents
occurred at 9 intersections over 4 years. The model has a r-square value of 0 10
There were no major road right-turn accidents at 17 intersections. Figure S 2a
illustrates the goodness-of-fit of the prediction results of Model 311

In the minor road left-turn model (Model 312), a total of 49 accidents
occurred at 22 intersections over 4 years. The model has a r-squarce value of 0.40.
Figure 5.2b illustrates the goodness-of-fit of the prediction results of Model 312

In the minor road right-turn model (Model 313). there were a total of 37
accidents at 17 intersections over 4 y.: s. The model has a r-squarce value of 0.69
Figure 5.2c illustrates the goodness-of-fit of Model 313.

Finally, in the major road left-turn model (Maodel 314), there was a total of 41
accidents at 18 intersectic-is over 4 years. The model has a r-square value of 0.10.
Figure 5.2d illustrates the goodness-of-fit of Model 3 14.

Parameter estimates were also found to be insignificant in all four modecls, as
indicated in Tables 5.2a to 5.2d.

Among the four non-priority accident prediction models, the models with the

best accident trend prediction results are the minor left-turn and minor road
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Table 5.2a Parameter Estimates for Major Road Right—turn
Accudcnt Predlc':on Model (Model 311)
Model 3N '
R : = e 13 (8 I3
Deviance ’ 21 §5: S5 e= VvV, VY,
R-—-square ' 0.10|
#1 Coelficients in Parameters in i Parameter Estimates Standard Errors
| ModetStructure | GUIM Output |
1] log(@d) %gm -3.563E400 4.157
2 b3 o1 ~1.450E 01 3.170E-01
3 <2 LA  5380E-01 | __6.710E-O1
Table 5.2h Parameter Estimates for Minor Road Left—turn
Accient Prediction Model (Model 312)
~ . T CLTTL 1, PR Tt T LT O L ettt S e g roeny et
Model 312
b B S, = ™ b ot
Devianco | 14.96] $TeT VT D
R-square | 040| e o )

#W Coefficionts in

Model Stmctur

Parameters in

e GUM Output

Parameter Estimates

Standard Errors

1 _log(ad) _%gm  2.820e—-01 4.180e-01
2 bsa 62 5.960e-01 1.8200—-01
_3 ec4 R —4.020e-01 2.130e-01
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Table 5.2¢ Parameter Estimates for Minor Road Right--turn
Accident Prediction Model (Model 313)
Model 313
Deviance w—1__3.07 Se =e® V"D,
R—square 0.69
#| Coefficientsin Parameters in Parametor Estimates Standard Errors
Model Structure GUM Output |
1 log(a6) L %gm s -_;3‘.‘68»45 4:00 9.370E - 01
2 b6 ~e_3 L 1.01"5_)E+OO 2.470E 01
3 - | 2420E-01 3.240€ - 01
Table 5.2d farameter Estimate @ bor %o Pload Left--turn
Accient Prediction Modar' (ftodel 314)
Model 314
Deviance 20.7; S = et Vs YD
rfi!_,—squai'e 0.10 e e, ]
#{ Coefficientsin Parameters in Parameter Estimates Standard Errors
Modei Structure GUMOutput |
1 log(a?) %gm _ ~1161E+00 8.990E - 01
b7 e4d %§70E-01 ~ 2“.3'/7()E -01
3 c7 r4 | 3890E-O1 3.630E-01

(370
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right-turn accident prediction models, with r-square values of 0.40 and 0.69
respectively.  The high r-square value for the right-turn accident model is mainly due
to the presence of a few data points with high accident frequencies at the upper right
hand corner of the figure. The actual data scattering would be extensive if these data
points were removed from the model, and would result in much worse r-square
values. The minor road left-turn model is therefore considered the best non-priority
movement  accident prediction model.  The model has the highest accident
frequencies and the least number of locations with no accident occurrences (empty
cells) during the study period.

The predictability of major road non-priority movement accidents is poor,
with r-square value of 0.10. The levels of priorities for the major road non-priority
movement are more difficult to distinguish than the other movements, which may
explain the poor predictability of the model. For example, a major road right-turn
movement otherwise is normally not required to yield priority to any other
movements. However, when a right-turn vehicle is required to change lanes to a
right-turn lane prior to making a right turn maneuver, the right turn maneuver is then
considered as a non-priority movement.

In general, non-priority movement accident prediction models provide poor
accident trend prediction due to low accident frequencies and the presence of a large
number of empty cells in the data base. An attempt to correlate the sum of the
various predicted non-priority movement accidents with the actual measured number
of accidents at the 26 study locations is unexpectedly successful with a r-square
value of 0.63. There are two possible explanations for this situation. First, the
over-prediction in one disaggregate model may be compensated by under-prediction.
Secondly, the erroneous categorization in one model compensates missed

categorization in the other three non-priority movement models.



5.3 Aggregate Accident Prediction Models With Volume-based Parameters

The models developed up to this point are relatively disagprepate models  In
these disaggregate models, the non-safety parameter is either divided into rear-end
and right-angle accidents, or into groups of accidents by non-priority movements
The advantage oi disaggregate models is that it is casier to model the actual
interactions in a sub-group of data that is more homogeneous. The categorization
and segmentation of the data results in a more homogeneous data base. However,
due to low accident frequencies, division of the database into smaller sub-groups has
created significant problems in modelling statistical information.  This resulted in
insignificant model parameters and poor accident trend prediction.

An aggregate modelling approach was used tor the remainder of the accident
prediction models, using the total number of accidents which occurred during

weekday daytime between 1985 and 1988 as the non-safety parameter in the model.

5.3.1 Sum-of-flow Accident Prediction Models (Models 111 and 112)

Two models (Models 111 and 112) were developed based on parameters
comprised of the sum of various entering flows. Both models have poor accident
predictability with r-square values of 0.12 and 0.21, as well as insignificant model
parameter estimates, as indicated in Table 5.3a.

Figure 5.3a illustrates the goodness-of-fit of Model |11, which uses the sum
of all entering flows as its only model parameter. It appears that the predicted
number of accidents at the 26 study locations does not correlate well to the measured
accident numbers, which indicates that the sum-of-flow approach is not appropriate

for accident prediction.
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Parameter Estimates for Sum-- of—-flow

Acmdent Prednctlon Model (Model 111)
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5.3.2 Product-of-flow Accident Prediction Models {Models 121 to 124)

Four models were developed based on parameters comprised of the products
of flows entering the intersection (Models 121 to 124). The four models contained
various levels of complexity in model structures. Models 121 and 122 have a linear
model form. whereas Model 123 and 124 have a multiplicative exponential model
form.

Models based on parameters comprised of the products of flows had much
better prediction power than those based on the sum of entering flows. All four
preduct-of flow models exhibit good accident predictability, with r-square values of
0.70 for Model 124 and 0.59, 0.59 and 0.60 for the other three models.

Table 5.3b indicates that the parameter estimates in the models are
insignificant with high standard errors, except for the model with the simpliest model
structure, Model 122, This model is the simple product-of-flow model which
correlates the actual number of accidents to the product of the major and minor road
traflic volumes. It appears that overly complicated model structures result in model
parameters that are statistically insignificant. The goodness-of-fit graph for Model
122 is illustrated in Figure 5.3b.

The trend prediction power of the simple product-of-flow model was only
slightly lower than that provided by the more complicated product-of-flow models.
However, unlike the more complicated models, all its parameters are statistically
siziniicant. It appears that an added level of model complexity did not improve the

accident predictability of the model.
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S.4 Aggregate Accident Prediction Models With Delay-based Paramcters

(Models 211 to 216, and 221 to 226)

Twelve delay-based models were developed. The first six models (Models
211 to 216) were developed by using the delay data collected at the study locations
The remaining six models (Models 221 to 226) wern fowvinaped by using the delay
data derived through the use of a simulation program, KNOSIz% . The structures of’
these 12 models are more complex than the models previously developed.

It appears that the simulated delay data produced better accident prediction
models than the measured delay data. The average r-square value for 4 accident
prediction models developed based on simulated delay data (Models 223 to 220) is
0.63. The average r-square value for 4 models developed based on measured delay
data (Models 213 to 216), with the same model structures, is lower at 0.56.

The improved predictability of the model developed by using the simulated
delay data may be due to the lower degree of variability within the simulated delay
data. Figures 5.4a and 5.4b illustrate the goodness-of-fit of the two complex
delay-based models, Models 216 and 226 (r-square values of 0.60 and 0.74)
However, as itidicated in Tables 5.4a and 5.4b, most parameters of this two complex
delay-based models are statistically insignificant with high standard crrors.

A comparison between the volume-based product-of-flow models and the delay-
based models indicates that the two groups of models both produce relatively high
levels of accident predictability. However, in general, it appears that models that
include delay parameters are slightly better in accident prediction than those of the

product-of-flow models which do not include delay parameters.

5.5 Simple Aggregate Accident Prediction Models
Of all the models developed through the statistical modelling process, only

one model (Model !22) contains parameters that are all statistically significant.
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Table 5.4a Parameter Estimates for Delay —~based (Measured Delay)
Accident Prediction Model (Model 216)
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Model 122 is a simple product-of-flow model. Parameters in the more complicated
models were found to be not significant in similar comparisons, although these
models have higher r-square values. Based on this observation, the more
complicated models should not be considered more favourable than the simpler
simple product-of-flow model, even thougii they gave marginally better accident
prediction results. The low accident frequencies at intersections without traffic
signals apparently limited the practical level of aggregation for modelling.

Two models with simple model structures were subsequently examined: the

simple product-of-flow model and the total-delay model.

5.5.1 Simple Product-of-flow Models

Two simple product-of-flow models are considered. The two models differ in
the way the conflicting flows are chosen. The first model uses the major road flow
and the minor road flow as the conflicting flows. The second model uses the priority
and non-priority flows as the conflicting flows. The priority flow is the sum of the
main road through traffic flow at the intersection. The non-priority flow is the sum
of all the turning traffic volumes at the intersection.

in both product-of-flow models, the major road flow or the priority flow can
be considered as the risk presented to the minor road flow or the non-priority flow.
The minor road flow or the non-priority flow, on the other hand, represents the
exposure parameter in the accident prediction model. The product of the risk and
exposure parameters is then related to the non-safety parameter of the intersection,
which is the number of accidents.

Figure 5.5a is a plot of the product of major and minor road flows against the
measured actual number of accidents. The r-square of the model is 0.59. A closer
examination on the scatter plot indicated a potential outlier at the upper right hand

corner of the graph. The data point corresponds to the 93 Avenue - 50 Street
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intersection, which has the highest accident frequency of the 26 intersections. This
data point, being so remote from the rest of the data points, creates an artificial
linearity effect. This increased the r-square value of the graph significantly. The
r-square value of the model is reduced to 0.41 with the outlier removed from the

data set (Figure 5.5b).

5.5.2 Simple Total-delay Model

Figure 5.6a illustrates the correlation between accidents and the total delay
experienced by the non-priority traffic flows. Total delay is a product of the traffic
volumes of the non-priority movements and the average delay occurred to the non-
priority movements. The r-square of the total-delay model is 0.38, which can
increase to 0.45 with the outlier at 93 Avenue - 50 Street removed from the database
Figure 5.6b).

The structures of the two models are nearly identical. Both models use non-
priority flow as the exposure parameter. The difference of the two models is in their
choice of the risk parameter.

In the total-delay model, the average delay experienced by the non-priority
stream traffic is used as the risk parameter, and the volume of the non-priority stream
is used as the exposure parameter. The product of non-priority traffic flow and the
average delay it experienced is the total delay experienced by the non-priority traffic
streams.

In the product-of-flow model, the major road flow is used as the risk
parameter, and the minor road flow is used as the exposure parameter. An
experiment with the use of different risk and exposure parameters with different
priority flow and non-priority flow combinations showed the same level of accident

prediction results.
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The total-delay model, with a r-square value of 0.45, has better accident

prediction results than the product-of-flow model, with a r-square value of 0.41.

5.5.3 Square Root of Product-of-flow and Total-delay Models

The square root of both the product-of-flow and the total-delay provided the
best prediction results (Figures 5.7 and 5.8). The r-square of the product-of-flow
model improved from 0.41 to 0.48 when the square root of the product-of-flow was
used instead of product-of-flow. When the square root of total-delay is used in the
total delay model, the r-square value improved from 0.45 to 0.54. Therefore, while
the total-delay model provides the best accident trend prediction, the model can be

further improved by using the square root of delay as the risk measure.

5.6 Ranking Comparison

Traditionally, traffic engineers rank intersections, from the safety point of
view, by measures such as accident frequency and accident rate. Accident rate is
typically derived by dividing accident frequency by the number of entering vehicles.

The models developed in this study can also be used to rank intersections by
their "relative degree of safety." In Figure 5.9, the goodness-of-fit plot of Model
226 is used as an example to show that an intersection can be considered "more
dangerous than average", if the actual number of accidents occurring at the
intersection is significantly higher than the predicted numoer of accidents. That is,
the accident frequency at that intersection is higher than what should be expected.
Ranking approaches using the accident frequency and accident rate ranking criteria
are used in selecting "dangerous accident locations".

An 95% significance envelop is placed in the goodness-of-fit graphs. If the

data point of a particular intersection is located above the significance envelop, the
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Figure 5.9 Approach in Determining “More Dangerous Than Average® Locations
(Model 216)

Table 5.5 Results of Intersection Ranking

Traditonal Ranking Based on Model Results

Site Ranking (see Figure 5.9 above for example)
Approaches
By By Simple Simple Complex | Complex
Accident | Accident | Total Product | Delay Product
Frequency| Rate Delay of Flow Based of Flow

Model Model Model Model

E Ave / 50 St 1 3 1 1 1
128 Ave/66 St 8 5 2 . 2 .
127 Ave/90 St 3 2 2 2 . .
118 Ave/130 St 8 7 2 2 . .
116 Ave/142 St 2 4 . . * .

| 127 Ave/78 St 13 1 . . »

* Average safety conditions
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actual accident trequency at that intersection would be significantly higher than
predicted. The intersection could be considered “more dangerous than average™

The results of the various ranking approaches are shown in Table 5.3 The
comparison indicates that ranking orders developed by the use of traditional
non-safety parameters such as accident frequency and accident rate, do not agree
well with that identified by the complex delay-based models. This is expected as the

three approaches measure different aspects of the intersection safety situation,

5.7 Comparison of Parameters in the Best Models

It is proposed in the previous section that an intersection is considered “more
dangerous than expectcd" if it has worse accident records than the other
intersections with similar intersection and traffic conditions. 1In the accident rate
ranking approach, the effect of exposure is not considered. An intersection may rank
high on the list due to high exposure with a high accident rate. The actual situation
at the intersection may be safer than average if the accident rate is lower than that of
other intersections with similar geometry and traflic exposure. Similarly, for the
accident frequency approach, a dangerous intersection may be low on the ranking list
due to insignificant exposure. The fact that an interscction does not show up as a
high accident frequency location because of low exposure does not mean that the
intersection is safe.

To gain understanding on why the traditional ranking approaches provide
different and contradicting ranking results, it is necessary to examinc the parameters
in the best models and compare them to accident frequency and accident rate; the
two parameters most often used in traditional ranking approaches. The following
model parameters are compared:

- accident frequency

- accident rates
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non-priority flow

priority flow

average delay to non-priority flow

combination of the above parameters

However, it should be noted that many agencies use annual accident
frecruency as the ranking parameter. Significant variability is expected when a short

analysis period such as one year is used.

5.7.1 Examination of Accident Frequency

Accident frequency is a measure of non-safety. It indicates the number of
acciderds to be expected at a location during a given period of time. Figures 5.10a
and 5.10b correlate the accident frequencies to the priority and non-priority traffic
flow, respectively, at the 26 study locations. It appears that accident frequency
(non-safety) is more directly affected by non-priority flow (exposure) and is
relatively insensitive to the priority flow (risk).

However, when the risk and exposure parameters are considered
simultaneously, the correlation is strong between accident frequency and the risk and
exposure measure. In Figures 5.11a and 5.i1b, accident frequency is compared to
the total delay as well as the product of priority and non-priority flow. The figures
indicate that if the risk and exposure parameters are considered as a whole, it will

provide a strong correlation to accident frequency.

5.7.2 Examination of Accident Rate
Accident rate, on the other hand, 1s a measure of risk. Provided that an

appropriate measure of exposure is used, accident rate indicates how dangerous it is
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for the traffic going through an intersection. Accident rate can be detined by the

following relationship:
ACCIDENT RATE = ACCIDENT FREQUENCY / EXPOSURIE:

Traditionally, the total tratfic volume entering the intersection is used as the
exposure measure for the accident rate parameter. As indicated in the previous
section, accident frequency is not sensitive to the priority flow but is strongly
correlated to the non-priority flow. The use of total entering flow is therefore
questionable especially for locations with high priority flows and low non-priority
flows. At those locations, the sum of entering flow is strongly correlated to the
priority flow, which is shown to have poor correlation with accident frequency.

Figure 5.12a indicates that accident rate is highly correlated to the non-
priority flow. Accident rate also tends to decreasc with an increase in priority flow,
as indicated in Figure 5.12b. The relationship, however, is not as strong as that of
the non-priority flow. Figure 5.12c illustrates that accident rates increase with an
increase in risk and exposure.

Nevertheless, the use of total-entering-flow as the exposure parameter does
not distinguish the risk involved for different traffic movements at an intersection. It
is intuitive that risks involved in traveling through a priority-controlled intersection

along a major road is less than that of merging from a side street into the major road.

5.7.3 Examination of Modified Accident Rate Parameters
Two accident rate parameters were examined: the priority flow accident rate

and the non-priority flow accident rate, as shown in the two equations below,

it

PRIORITY FLOW ACCIDENTS INVOLVING PRIORITY FIL.OW
ACCIDENT RATE PRIORITY FLOW

li

NON-PRIORITY FLOW ACCIDENTS INVOLVING NON-PRIORITY FLLOW
ACCIDENT RATE NON-PRIORITY FLOW
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One problem of using separate accident rates for priority and non-priority
flows is that it is difficult to categorize accidents under the two types of flows.
Figures 5.13a and 5.13b illustrate the effects of increase in priority flow on risk to
priority flow traffic and non-priority flow traffic. In Figure 5.13a, with higher non-
priority flows, the risk to priority; flow decreases slightly as the priority flow
increases. However, if the non-priority flow is low, the risk to priority flow remains
relatively unchanged over different priority flow ranges. In Figure 5.13b, it appears
that the risk to the low range non-priority flow increases slightly as the priority flow
increases. The risk to higher range non-priority flows, on the other hand, appears to
be relatively similar with different priority flows.

Figures 5.14a and 5.14b illustrate the effect of an increase in non-priority
flow on the risk to both the priority and non-priority flows. Figure 5.14a shows that
non-priority flow increase will result in an increase in risk to the priority flow. Figure
5.14b shows that increase in non-priority flow will result in a drop in risk to the non-

priority flow.

5.7.4 Summary of Review on Accident Parameters

The comparison of various accident parameters indicates that accident and
risk parameters, when being examined individually, do not give clear and consistent
trend indications in most cases. The lack of a consistent trend indication is an
evidence that other underlying factors may be present. Most accident parameters are
robust measures that can be affected by a number of factors. A single parameter,
when used on its own, is therefore not sufficient to explain the safety situation at an
intersection. Extra caution should be applied in using a single accident parameter to

determine the level of safety of an intersection.
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6. SUMMARY OF FINDINGS AND CONCLUSIONS

Accident occurrences are rare events with a great degree of randomness. Numerous
factors contribute to the occurrences of accidents. However, human tactors are generally
considered to be the major contributing elements.

An accident prediction model with strategically selected model parameters can
contribute significantly towards the understanding of the risk presented to the drivers at an
intersection. Past researchers have developed several accident prediction models. Most of
these models employed some combinations or products of trattic volumes as main model
parameters. Recognizing the role of human behaviour in accidents, it was hypothesized that
accident prediction might be better accomplished if the parameters in the accident prediction
model could reflect human behaviour better.

This research attempted to use delay experienced by motorists as a parameter in
accident prediction models to reflect the effect of driver behaviour. The main objective of this
research was therefore to compare the use of delay to the use of traffic volume in predicting
traffic accidents. The secondary objective of the research was to examine the traditional
methods of intersection safety ranking and compare that to the accident prediction modelling
results.

This chapter outlines the findings, main conclusions and the practical implications of

this research. Findings of the research are grouped into three main categories:

1. Accident Trends
2. Modelling Approaches

3. Accident Parameters



6.1

6.1.1
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Findings in Accidents

Findings in Literature Review

Driver factor is the major contributing factor to accidents. It was involved in more

than 94% of all roadway traffic accidents in a U.K. study.

The within site distribution of accidents at a particular location follows the Poisson
process. The between site variation may be described by a gamma distribution. The

resulting sampling distribution over all sites is a negative binomial distribution.

Findings in General Accident Patterns for the 429 Intersections Without Traffic

Signals in Edmonton

There was a significant degree of variability in the occurrences of accidents.

Accident records in the City of Edmonton Accident database appeared to be generally
reliable and valid in location, time, date and number of vehicles involved in accidents.
However, information on driving lanes and road surface conditions might be of

questionable accuracy.

Other than the average accident frequencies, accidents at 3-legged and 4-legged
intersections were generally very similar in nature in yearly, monthly, daily and hourly
trends. The trends were also similar in the type of pre-crash maneuvers and human

actions at time of collision, and severity.
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Accident occurrences generally peaked on Fndays and at peak hours during the
remaining days of the week. The p.m. peak periods had the highest frequency of

accidents.

Characteristics of accidents could be distinctively difterent, depending on the day of
the week and the time of day they occurred. Daytime accidents mostly occurred
(84% as compared to the average of 81%) on the weekdays, whereas a signiticant
amount of nighttime accidents (42% as compared to the average of 19%) occurred on

the weekend. On the weekends, 26% of the accidents occurred at night.

Findings in Specific Accident Statistics for 429 Intersections Without Traffic
Signals

Accident frequencies were low for intersections without traflic signals with an

average of 8.8 accidents/4 years from 1985 to 1988 for 429 intersections in

Edmonton.

Of the 429 intersections, the 4-legged intersections with 10.2 accidents/4 years had

almost twice as many accidents as the 3-legged intersections with 5.7 accidents/4

years.

The number of accidents in a year had remained relatively stable with less than 15%

overall annual fluctuations from 1985 to 1988.

Within a year, accidents peaked in November and February, and were also high in

June.
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Analysis on weekday daytime accidents indicated that, among the 429 intersections,
on the average there were 3.3 accidents/day during 5 winter months and 2.3

accidents/day during 5 summer months.

Of the 17 days with the highest accident frequencies between 1985 and 1988, the top
9 days were days with "severe winter driving conditions." These high accident
occurrence days coincided with unusually poor travel conditions such as first day of

snow, very slippery roadway surface and very heavy snowfall.

The most frequent types of pre-crash maneuvers were:

o left turn

. slowing/stopping

) improper lane change

° ran off road

. improper turns

. failed to yield to pedestrians

The most frequent types of human action involved were:

. stop sign violation
) lane changes
° skidding/swerving

o pedestrian crossing with right-of-way
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Findings in Accident Modelling
Findings Related to Model Framework and Scope

Based on the risk and exposure concept. non-safety at an intersection would be
considered to be related to the product of nsk presented to the motonists and the

number of motorists (exposure) that are exposed to such a risk.

Accident patterns at 3-legged and 4-legged intersections were highly comparable.
T-intersections were therefore chosen for the study to maintain data collection and

interpretation efforts at a manageable level.

For modelling purposes, sites of varying accident frequencies were selected to cover a
wide range of intersection non-safety conditions. Random selection would have

resulted in an over-representation of the low accident frequency locations.

Based on the travel condition modules identified from the accident and traflic
patterns, modelling efforts were concentrated on the weekday oft-pcak analysis
period to minimize variability in travel conditions. The analysis period encompasscd

from Monday and Friday between 6:00 a.m. and 9:00 p.m.

Data collection was carried out within a period from Monday to Thursday between
11:00 a.m. and 4:00 p.m.. With relatively steady traffic volumes and accident trends,

as well as the long duration of the period, this analysis period was ideal for data

collection.
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Findings Related to Model Structures and Parameters

Historical accident data were considered superior to other parameters such as traffic
conflict due to its well-established collection and documentation procedures as well as

its immediate availability and accessibility for retrieval.

Excluding multiple vehicle accidents and single vehicle accidents, 13 major basic
accident types were identified to be related to one or more non-priority movements at
a T-intersection. The most frequent cccident types were right-angle collisions,
rear-end collisions and left-turn-cross-path accidents. Disaggregating the non-safety
situations to a basic accident type level resulted in very low accident frequencies for

all basic accident types at most locations.

Attempts to further aggregate the accidents by non-priority movements resulted in
higher accident frequencies. However, difficulties were still experienced in relating

some accident types to non-priority movements.

The delay data collected from the field displayed a high degree of variability.

With minor input modifications, the KNOSIMO traffic simulation program was found

to generate reasonable results.

As accident data has a negative binomial distribution, typical classical regression
models, which are based on a normality assumption, are not suitable for accident data
analysis. The GLIM statistical analysis package can handle analysis for data set with

negative binomial distribution and was therefore used in this research.



6.2.3 Findings Related To The Modelling Resuits

1. The disaggregate accident prediction maodel tor rear-end collisions was found to have
very poor predictability with an r-square value of 0.03. This was probably duce to the
inability of the model to reflect the actual cause-and-ettect relationship in rear-end

collisions.

2. The disaggregate models for right-angle accidents also had rclatively poor
predictability. However, its r-square value of 0.37 was much better than the 0.03 of
the rear-end accident model. The better predictability was probably because it was

much easier to model the accidents with the more obvious conflicting traflic

movements.

3. Disaggregate models for each of the non-priority movernents were gencrally poor in
predictability, mainly because of low non-priority movement accident frequencies at
several study locations. The model with the best predictability was the minor road left

turn accidents model with an r-square value of 0.40.

4. The previous models had demonstrated that a highly disaggregated level of modelling
was not suitable for predicting accidents at intersections without traffic signals, where
accident frequencies were low. Aggregate accident pred.ction models using the total

number of accidents which occurred at a location was preferable.

5. The aggregate sum-of-flow accident prediction model had poor predictability with an

r-square value of 0.12.
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The aggregate product-of-flow accident prediction model had much better prediction

power with an r-square value of 0.59.

The use of non-priority flow and priority flow parameters instead of main road and
minor road flows resulted in better accident trend prediction in the product-of-flow

model

Aggregate delay-based models were slightly better in predicting accidents than the
aggregate product-of-flow models based on product of main road and minor road
flows. However, if non-priority and priority flows were used in the product-of-flow
model, both the total-delay and product-of-flow models had almost identical results in
accident prediction. From an accident prediction modelling standpoint, using
simulated delay or measured delay did not result in significant difference in accident

prediction model capability.

For the simpler model, comparison of model parameters to their standard errors
indicated that the parameters were significant. Parameters in the more complicated
models were found insignificant in similar comparisons. Based on this observation,
the more complicated models should not be considered more favourable than the
simpler models, although they did give marginally better accident prediction results.
The low accident frequencies presented a practical limit to the complexity of an
accident prediction model, and therefore restricted the level of aggregation for

modelling,

Two simple accident prediction models at aggregate level had been identified as
sound and practical. They were the product-of-flow (based on priority and non-

priority flows) and total-delay model. A trial by taking square roots of the
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product-of-flow and total-delay parameters indicated that the performance of the two
models could be enhanced with a power function rmodel format. The actual power

factor optirnal for the two models should be determined based on a larger databasc

size.

6.3 Findings in Accident Parameters

Further analysis on the two simpler models selected suggested that the accident arid
risk parameters examined did not provide clear trend indications in most cases. It was
concluded that a single parameter was riot capable to fully explain the non-safety situation as
there might be numerous underlying factors in accident occurrences. Extra caution should be
used in utilizing single accident parameters to determine the safety of intersections. Some of

the major trends between accident parameters of the preferred models are:

1. Accident frequencies correlated much better with non-priority flow than major road

flow.

o

Analysis using number of accidents over major road flow as a major road accident

risk parameter indicated that:

a. When non-priority flow was low, the effect of major road flow on major road

accident risk could not be identified.

b. When non-priority flow was high, major road risk decreased as major road

flow increased.

C. Regardless of the level of flow at the major road, major road accident risk

increased with an increase in non-priority flow.
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Analysis using the number of accidents over non-priority flow as a non-priority flow

accident risk parameter indicated that:

a. Regardless of the flow on the major road, non-priority accident risk decreased

with an increase in non-priority flow.

b. The effect of major road flow on non-priority accident risk could not be

identified.

The above trends between accident parameters were either not always consistent or
apparent, suggesting that other underlying factors might be present. As well, the non-
linear characteristics of some of the plots indicated complex interactions between the
parameters. This confirmed findings of Abou-Henaidy (1993) which indicated
changes in drivers' gap acceptz :~¢ behaviour under different road, traffic, vehicle and

delay conditions.

Main Conclusions

The pilot research project succeeded in demonstrating that, due to low accident

frequencies, a disaggregated level of modelling was not suitable for predicting accidents at

intersections without traffic signals. Two simple accident prediction models at aggregated

levels had been identified as optimal: the product-of-flow model and the total-delay model.

Both the product-of-flow model and the total-delay model performed well in

predicting accidents at intersections. The two models had very similar model structures. In

modelling the interaction between conflicting priority and non-priority flows at the

intersection, the two models both employed traffic volume and / or delay data related to the
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priority and non-priority flows as model parameters. The results of accident prediction from
the two models were almost identical.

The objective of developing a satisfactory accident prediction model can be met with
either one of these two models. The choice of which model to be used in a particular
application would depend on the specific application criteria.

Further analysis on the various accident parameters indicated that the underlying
causes of safety were too complicated for an aggregate two-parameter mode! to explain. For
example, consider the positive relationship between average delay and accident frequency, the
increase in average delay may be due to several underlying factors or a combination of several
factors.

As robust accident parameters can be influenced by more than one underlying factor,
a heavy reliance on a single parameter accident statistic will easily mask the true cause(s) of
the problem and will result in misleading conclusions. Therefore, in using single parameter
accident statistics such as accident frequency and accident rate to prioritize intersections for
safety improvements, the transportation engineer should be aware of the limitation of such a
ranking approach.

Application of the aggregate models in a more detailed microscopic level of analysis is
limited because of the robustness of the model parameters and the inability of the modecls to
represent the safety situations at a more disaggregate level. The simple product-of-flow and
total-delay models should be used primarily as a tool to indicate, on a comparative basis,

general safety expectancies at intersections to pre-qualify intersections for more detailed

safety analysis.

6.5 Practical Implications of Research Results
Either the product-of-flow or the total-delay accident prediction models can be used

to determine the average objective safety of a T-intersection without traffic signals. For
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locations identified with unexpectedly high accident experiences, a more detailed level of
analysis would be required to identify the actual safety problems and the underlying causes.

Increase in traffic safety can only be achieved if the right intersections are selected for
improvement and the improvements are effective. It is therefore crucial to know the
effectiveness of safety improvement measures under a particular combination of traffic and
roadway conditions.

Safety should also be considered at a system level and be included as part of the
transportation planning process. A system-wide measure of safety should be incorporated as
one of the measures of effectiveness in traffic models to determine safety implication of the
traffic system. In this respect, the effect of increased traffic on the traffic safety in the overall
traffic system can be determined quantitatively. Accident costs can be included in the benefit /

cost analysis in justifying for large scale traffic circulation changes or arterial upgrading.

6.6 Concluding Remarks

The research confirmed that a total-delay model could be used to predict accidents at
intersections without traffic signals. Accident prediction results of the model were found to
be almost identical to that of a product-of-flow model. Precautions for the application of both

models are:

1. The models were tested using a small data size of 26 intersections where 129
accidents occurred over 4 years. The research served to investigate only the potential

of the delay parameter in accident prediction.

9

The models were developed for weekday off-peak trave! conditions for priority-ruled

intersections. Application to other travel conditions has not been tested.
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The models were evaluated over a range of traffic volume from 200 to 400 vehicles
per hour for the priority flow (i.e.. main road through volumes). and trom 20 to 300
vehicles per hour for the non-priority flows (i.e., all four tuming volumes)

Transferability to intersections with heavier traffic volumes is not known.

The models were intended to be used as a robust guide t» pre-quality intersections for
further safety analysis. To achieve better understanding of the safety problem at the

intersection level, a more microscopic approach is recommended.
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SIMULATION OF MULTILANE STOP-CONTROLLED T-INTERSECTIONS
BY KNOSIMO IN CANADA

Paul L. Chan and Stan Teply

University of Alberta,
Edmonton, Alberta, Canada

1. SUMMARY

“This paper reports on an application of the KNOSIMO traffic simulation program for priority-
ruled intersections in Edmonton, Alberta, Canada. This University of Alberta study was
restricted to urban muldlane stop-controlled T- intersections and-its main objcctive was to
investigate the relationship between delays and safety. As a result, it required a reliable
representation of delays. A relatively large sample of delay data was collected, but it was
n:cessary to supplement it by simulation. The KNOSIMO program was validated and used to
that end.

The paper describes the experience with the program and comments on its applicability to
various conditions at the studied T- intersections.

2. DATA

Delay data, together with volume and headway information, were collected by using a video
camera in January and February 1990, at 26 T-intersections in Edmonton. The surveys were
limited to off- peak periods on weekdays with normal driving conditions. In total, over 15
hours of real time events with 21,069 vehicle arrivals were analyzed and transferred to a
computer data base with the assistance of the TDIP program [1].

The collected delay data had a high degree of variability. In order to improve the statistical
significance of the samples, more surveys would have bcen necessary. This approach,
however, was not considered practical.

To generate additiona! delay information, it was decided to employ the KNOSIMC simulation
model [2]. The data measared in the field were considered sufficient to test the suitabiliiy of the
program for the needs of the overall project.

3. THE KNOSIMO PROGRAM

KNOSIMO is a traffic model for intersections without traffic signals developed at Ruhr
University in Germany for the Federal Minister of Transport [2,3]. Itisa microscopic, event-
oriented simulation program and is applicable to 3- or 4-legged intersections. Shared and

134
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exclusive turning lane situations, as well as time-varying traffic demand and different vehicle

types can be considered.

The vehicles are gencrated in the program using hyperlang headway distributions, calibrated to
German conditions to realistically represent single lane traffic streams. The operation of non-
priority traffic maneuvers is determined from gap acceptance principles using erlang
distributions. The grogram is interactive regarding data input and file handling operations.

4. DIFFERENCES IN APPLICATION CONDITIONS

In order to simulate traffic conditions for multilane intersections, it was necessary to address
the differences in the conditions considered in the program and at the studied locations.

The investigation started from the premise that the program itself would not need modifications
and that the input values could be appropriately adjusted.

4a. Geometric features, critical gaps and move-up times

The differences in geometric features between the KNOSIMO and the studied intersections are
illustrated in Figure 1. They imply the need for a different application of the critical gap and
move-up time criteria {4]. The critical gaps and move-up times used in KNOSIMO are for 2-
lane conditions but longer time periods are required to cross a multilane roadway. Moreover,
the critical gaps and move-up times used in KNOSIMO were calibrated for driver behaviour in
Germany. Whether and how these critical gaps could be transferred to North American

conditions was unknown.

Unfortunately, the scope of the overall project did not allow a detailed investigation of these
problems. To accommodate them, higher main road speeds were used to raise the critical gaps
used by the program. For all approaches, test results showed that a 10 km/h higher main road
speed gave better delay predictions.

4b. Headway distribution

KNOSIMO "feeds” traffic from one- lane approaches only. This was a serious problem
because the headway distributions for the two- to three- lane intersection approaches included
in the study were different. While on single lanes zero headways are not possible, and the
number of very short headways is small, they frequently occur on multilane roadways.
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Figure 1: Comparison of intersection conditions in Edmonton and in the
KNOSIMO program

The most important parameters are the values of critical gaps which are normally in the range
from 4 to 10 seconds. The availability of headways above the critical gap value presents the
“practical headway" for the non-priority traffic, and the number of these headways in the traffic
stream on the main road determines capacity and delays on the minor road.

In comparing measured muldlane headways to KNOSIMO headways in the range grcaicr than
4 seconds, it was found that the difference was relatively consistent. Figure 2 shows that, for
headways greater than 4 seconds, an equivalent "one-lane volume” of 400 vph in the
KNOSIMO program can be used to approximate the actual headway distribution ata muitilane
approach with a volume of 690 vph. Figure 3, which includes thinieen intersection approaches,
exhibits a linear relation between the single lane and multilane distributions.This lincar
transformation was employed for input volume conversions.

4c. Traffic interactions

The way individual traffic movements influence cach other at a multilane intersection is
different than at a 2-lane roadway. For this reason, conflicting volumes for certain non-
priority maneuvers needed further adjustments.

It was found, for example, that when the full “eastbound" through volume uscd for the
*northbound"” right-tum mancuver from the minor road, delays was overestimated. This
maneuver was only slightly affected by the inside lane of the main road traffic. As aresult,
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only the curb-lane volume was applied, but since it already represented a one-lane situation, it
was not adjusted further to an equivalent one-lane volume.

Nevertheless, for the "northbound" left-turn traffic from the minor road, it was necessary to
keep the full volume of the eastbound” traffic. To represent the actual conflicting "westbound®
through traffic volume from the right, only the inside lane volume was used.

As a result, it was necessary to run the KNOSIMO program twice with somewhat different
volumes in order to obtain proper delay generating situations.

4d. Effect of platooning

In an urban setting, priority intersections are frequently close to signalized intersections. The
operation of these signals which creates platoons in the traffic stream can have a considerable
effect on non- priority movements at intersections without signals. The platooning effect
diminishes gradually with increasing distance downstream because of platoon dispersion.

No adjustments to the KNOSIMO input were made to accommodate these effects.
Nevertheless, the results obtained from the KNOSIMO runs were comparcd to the measured
delays, and are discussed in the next section of this paper.

4e. Type of delay

KNOSIMO calculates the average overall delay experienced by the drivers which includes ime
needed to decelerate and accelerate. The field delay data, however, were recorded as stopped
delay. To modify the field data, the "zero- volume delays” (11 seconds for minor road left
turns a=d 10 seconds for other movements) were added to make them compatible with delays
generated by KNOSIMO.

§. RESULTS AND EVALUATION

The measured and the KNOSIMO generated delays for all of the three non- priority maneuvers
at the studied T-intersections are compared in Figure 4. Considering the muitiplicity of
conditions and the differcnces among the three movements, the graph exhibits a rcasonable
degree of trend consistency. On average, however, the KNOSIMQ generated delays are about
35% shorter than those measured. The underestimation of the actual delay is especially severe
for higher values.
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The fit, however, was quite different for individual movements. This was not surprising, since
each non-priority maneuver depended on different exposure to other traffic streams, degree of
priority and gap acceptance conditions which are discussed below.

Sa. Comparison by the type of movement

The simulation results for the left- turn maneuver from the minor road were only about 11% lower
than the measured delays in the range below 40 seconds. Above that value, however, KNOSIMO
underestimated actual delay by about 60% (Figure 4).

For the right-turn movement for the minor road, KNOSIMO underestimated the actual dclay quite
significantly. The average was about 40% for shorter delays to over 100% for delays longer than
20 seconds. The discrepancy, however, was caused in part by the previously discussed volume
adjustrment, which was probably somewhat cxaggerated, and partly by the impact of different sight
distances and other local conditions. For instance, the two locations with the longest measured
delays for minor road right-turners had sight distance problems.

The simulation results for left-turn movement from the main road across the path of the
opposing main road wraffic stream were very satisfactory for delays under 20 seconds. On
average, they were only 8% lower than the measured values. The underestimation beyond 20
seconds, however, was higher.

§b. Comparison by volumes on the main road

Figures S illustrates the trend of increasing delay to minor road left-turners with increasing
conflicting priority volumes. The confiicting traffic was taken as the sum of the main road
volumes in both directions.

The underestimation, again, is noticeable and, as would be expected, the simulated values are
more consistent than the measured data. The relatively constant randomness of the difi re wes
along all volume ranges Suggests that the discrepancies cannot be explained ' C:fferent
volume categories. Similar trends were observed for minor road right- turners «nd - 5iyid road
left- tumers.

Figure 6 shows that the m:casured probability of short headways is higher for approaches with
higher traffic volumes. As a result, there are less of the available headways, resulting in longer
delays. The mode of the distribution shifts to the left with decreasing volumes which means
that there were less followers in the traffic stream.
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Figure 6 Comparison of short headway distributions for various
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§c. Comparison by distance from upstream traffic signals

It was observed that headway distributions at intersections with low volumes were almost
unaffected by the distance to the nearest traffic signal. The relative uniformity of the
distributions was interesting.

The greatest impact of distance on headway distributions was for intersections with medium
volumes between 400 to 700 vph, as illustrated in Figure 7. Similar to Figure 6, the mode of
the distributions is shifted to the left with increasing distance from traffic signals. This shift
indicates a substantial reduction of the proportion of short headways resulting from platoon
dispersion. Examination of headway distribution data at other locations with high volumes
exhibited a similar, but less pronounced, mode shift.

The time shift between the arrivals of the main platoons in the two opposing traffic streams on
the main road also influenced non-priority mancuvers. Delays for minor road left- turners were
much longer if the two platoons in the opposite directions on the main road arrived in a

staggered fashion.

Figure 8 shows the effect of the volume in both main road directions on available headways for
left- turn traffic from the minor road. The low points on the graph indicate that at these
locations there were lcss available gaps than at the high point locations. The intersections in
these two groups are significantly different. For example, two of the four low points represent
a street (99th Street) with short blocks, close spacing of waffic signals, high level of business
activity and more trucks, compared to the street with five of the scven high point locations
(149th Street).

6. COMPARISON WITH HIGHWAY CAPACITY MANUAL

All of the 26 locations were also analyzed using the 1985 Highway Capacity Manual (HCM)
(5] method. The outcome was compared with the results of the simulation and surveys.

HCM gives reserve capacity as the output for each non-priority mancuver and relates its value
to a particular 1zvel of Service. There is no direct link to the corresponding delay. Brilon [4]
estimated the upper delay limits for dif: ferent reserve capacity levels and Tracz (6] defined a set
of functions representing the relationship between reserve capacity and delay. These suggested
transformations, together with the correlation of the measured delay to the calculated rescrve
capacity of each non-priority maneuver are shown in Figure 9.
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In order to convert the HCM reserve capacity levels to delay, the suggested limits were applied,

but the results did not agree well with the measured delay. The minor road left tums, with
relatively low reserve capacities, were an exception. For the other two non-priority mancuvcers,
with reserve capacities often over 400 vph, the measured delays are considerably higher than
the suggested delay levels. It appears, from this limited evidence, that the HCM method
provides only a general indication of the degrce of difficulty in making a non-priority
maneuver. Figure 9 shows that similar measured delays do not necessarily coincide with
similar reserve capacity. Moreover, definitive trends for all three movements are noticeble,
different from the relationships proposed by Brilon and Tracz. It scems that a rclationship
based on a single average delay for all mancuvers may not be appropniate.

Another comparison showed that KNOSIMO generally gives good estimates when compared
to the measured delay, except in cases when the reserve capacity is below 100 vph, or for the

right turns from the minor road, possibly becausc the problems of our liberal input
modification.

7. CONCLUSIONS

Traffic volumes, sight distance, degree of platooning generated by upstream signals, and other
conditions at the 26 studied T-intersections varied considerably. Although many of these
variables could not be considered in the KNOSIMO program and its application, the results of
the verification were considered very satisfactory. As a consequence, KNOSIMO was used to
generate additional information for the main part of the project, i.e. an investigation of the
relationship between delay and safety.

Adjustment of arrival volumes and speeds o: e main road proved to be a good instrument to
account for the effect of local geometric conditions and, possibly, for the different driver
behaviour. These adjustments successfully affected main road arrival hcadway distribution and
minor road gap acceptance in the critical ranges.

Naturally, this study had a number of limitations. The major constraint was the fact that the
verification of the KNOSIMO program formed only a minor objective of the overall project.
Nevertheless, the study demonstrated that KNOSIMO is a sufficiently robust investi gation tool
and can be forced by relatively simple input adjustments to perform well in a varicty of
conditions. Additional output information on queues provided by the program was found
useful, although it was not employed in this project. '
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GLIM PROGRAM LISTING FOR MODEL 122

— SIMPLE PRODUCT—OF—-FLOW MODEL

$units 26

$data site s v2 v3 v4 v6 v7 v8 d4 d6 d7 sa sb

$dinput 19

$yvariate s

$Scalc c1=v24+v3+v7+v8

$calc e2=v4+v6

Scalce=el®e2

$mac m1 Scalc %fv=%lp $endmac

$mac m2 $calc %dr=1 $endmac

$mac m3 $calc %va=%fv* (% +%d)/%d $endmac

$mac md Scalc %di=2*(%yv* Dlog(%yvi%oiv)—(Toyv+ %d)* Zlog((Zeyv + % d)(7ofv+ %d)))

$condmac

$own m! m2 m3 md4
$calc %lp=%log(%yv+15)
$calc %d=4

$fite
$displaymerd
$calc %d=3 $fit.
$displaymerd
$calc %d=2 $fit.
$displaymerd
Scalc %d=1 $fit.
$displaymerd
$calc %d=.75 $fit.
$displaymerd
$calc %d=5 $fit.
$displaym=rd
$calc %d= 25 $fit.
Sdisplaymerd
$stop
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GLIM PROGRAM LISTING FOR MODEL 216

—~ COMPLEX DELAY—-BASED MODEL

Sunits 26

$data site sv2v3 v4 v6 v7 v8 d4 d6 d7sasb
$dinput 19

$yvariate s

$calc el =%log(v3)

$aalc e2=%log(v4)

$calc e3=%log(v6)

$calc ed=%log(v7)

$calc r1=%log(v2)

$calc r2=%log(d4)

$calc r3=%log(d6)

$calc rd=%log(d7)

$mac m1l Scalc %fv=%exp(%lp) $cndmac
$mac m2 $calc %dr=1/%fv $endmac
$mac m3 $calc %va = %fv*(%fv+ %d)/%d $endmac
$mac m4 Scalc %di=2°(%yv* %log(%yv/%fv) —(Zeyv + %d)* Zlog((Zyv + %d) (% fv + Tod)))
$endmac

$own m1 m2 m3 m4

Scalc %lp=Zlog(%yv+1.5)

$calc %d=4
$hitrl+r2+r3+rd+el+e2+e3+ed
$displaymerd

$calc %d=3 $fit.

$displaymerd

$calc %d=2 $fit.

Sdisplaymerd

$calc %d=1 $fit.

$displaymerd

$calc %d=.75 $fit.

$displaymerd

Scalc %d=5 $fit.

$displaymerd

Scalc %d=.25 $fit.

$displaymerd

$stop



Modcl Paramcters — Models 311 to 314

Model
No.

Paramcters

Paramcter
Estimatcs

Standard

Errors

311 Model for Main Road Right Turn Movements:

Zogrm
el
rl

-3.563E+00
-1.450E-01
5.380E-01

4.157
3.170E-01
6.710E-01

312 Model for Minor Road Left Turn Movement:

Jegm
e2
r2

2.820E-01
5.960E-01
—-4.020E-01

4.180E-04
1.820E~-81
2.130E-3%

—

313 Model for Minor Road Right Turn Moveme«nt:

—

-3.684E+00

1.019E+00
2.420E-01

9.370E-01%

2470E-01
3.240E-01

] 314 Model for Main Road Left Turn Movement:

I

Tegm
cd
4

!

i
!
[

1
~1.161E+00
2.870E-01 |
3.890E—01 |

8.990E-01
2370E-01 |

3.630E-01 |
i

Deviance

21.65

14.96

13.07

20.73
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Modcl Parameters — Models 111-112, 121 -124

R{odcl Parameters ‘ Parameter Standard
No. Estimates Errors Deviance

111 Sum of Flow Model 1. 25.53
1 %egm 1.736E+00 1.837E+00

2 c 2.820E-03 1.400E-03

112 Sum of Flow Model 2: 1 no3
1 %gm 1.604E+00 1.582E+00

2 el -5.290E-03 5.570E-03

3 €2 -5.160E-02|  3.500E-02

4 e3 6600E-02, 3.720E-02 |

121  Product of Flow Model 1 I B L Y4
1 %gm 1.715SE+00 6.180E-01

2 el —4.580E-06 5.200E-05

3 e2 8.420E-05 9.590E-05

4 e3 9.970E-05 5.540E-05
1122 Product of Flow Model 2 I e v
‘I 1 %gm 2.189E+00 6.690E-01
2 e _48%E-05|  1310E-05 |
{123  Productof FlowModel3 | 1109
1 | %gm ~2515E+00|  1.903E+00

2 el 2.870E-~-01 2.710E-01

3 e2 5.790E:9_1~ '_13_4:0!:‘—':9“! . l

124 Product of Flow Modet4 =~ 1 8.95
1 % gm —-1.561E+00 2.567E+00
‘ 2 el 3.543E+00 8.208E+00

i3 €2 —-1.050E-02 1.440E-01

4 1 €3 4350E-01|  2870E-01 |

5 ed 4.000E-01 2.950E-01

6 e5 -3.162E+00 8.478E+00

7 e6 -2490E-01| 1806E+00 |




Modecl Parameters — Models 221 - 226

—

|

: Model | Parameters

Parameter Standard
No. Estimates Errors
221 Declay (ssimulated) Based Model 1:
1 Jogm 1533E400|  6.590E-01
2 @3 2780E-05|  1.050E-04
3 g4 ~1.790E-03|  3.000E-03
4 q6 2100E-02|  1.600E-02
5 q7 1090E-02!  8.290E-03
222 Delay(simulated) Based Model 2:
1 | %gm 4560E+00:  7.850E-01
| 2 e 7330E-131 _ 3.880E-13
223 Delay (simulated) Based Model 3:
1 %gm ~9.M0E-01}  1.245E+00
2 ql 3850E-02.  2.180E-01
3 9890E-03!  6.800E-02
I 4 1 g 2280E-01;  2.800E-01
i s g4 | 2410E-01. _ 2.230E-01
| 224 Delay (simulated) Bascd Model 4:
1 | %gm —270TE+00|  2.676E+00
2 e 1720E-01;  4520E-02
3 .0 4520E-01  4.7S0E-01
AT ¢ ~1290E-01;  1400E-01
s 1 ;3] -3540E~01'  4870E-0
| 6 . r4 | 150E-01i 4930E-0l
215 Delay (simulated) Based Model 5:
21 %gm —99S0E-01{  7.560E-01
2 r 2950E-02|  6.020E-02
3 el 42:0E-02|  2.630E-01
4 e2 -2.830E-02|  1320E-01
5 e3 3830E-01|  2.940E-01
6 ed 3.070E-01!  2.500E-01
226 Delay (simulated) Based Model 6:
T ] agm Z3.020E400]  3.062E+00
2 rl 4250E—01!  S.440E-01
3 r2 1.520E-03|  2.140E-01
4 r3 ~1.160E-01|  5.420E-01
5 r4 ~1.350E-01|  S5.660E-01
6 el ~5940E-03| 2970E-01
7 e2 -2.050E-03|  1990E-01
8 e3 3970E-01|  3.260E-01
9 c4 3490E-01|  2.760E-01

Deviance

12.04

19.10

11.38

9.81

9.22

8.86
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APPENDIX C

Correlation Plots of Parameters
in the Best Models
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Traffic Safety at Intersections Without Traffic Signals
Paul Chan® and Stan Teply
BACKGROUND

Considerable efforts have been directed towards the monitoring of roadway safety through
accident record-keeping. Statistical data are used in determining priorities for the allocation of
resources for safety improvements. This approach to traffic safety may be termed "reactive®. On
the other hand, methods which identify locations with higher accident poteatial in advance on the
basis of indirect measures, may allow a timely action before the accident issue becomes cntical,

i.e. they are proactive.

In both instances, the success of a safety improvement program relies heavily on the technique
used in identifying locations with higher accident potential. Accident statistics are frequently used
directly to determine locations that are "more dangerous than average”. The most often cmployed
parameters related to safety are accident frequencies and accident rates. They reflect two
different aspects of the actual safety situation and safety improvement priority lists developed on
the basis of each of them often do not agree well with each other.

A proactive traffic safety approach begins with a review of appropriate measures of safety. The
difficulty lies in the fact, that although the number of accidents and the associated human suffering
and economic loss is enormous, the number of comparable acCidents is statistically small. The
intricacies of small-number statistics require a scientific approach to build a sound knowledge
foundation for safety engineering. This paper and the underlying rescarch are an attempt to

contribute toward that goal.

A good accident prediction model can significantly enhance the understarding of traffic
operations at a location and the risk to which drivers are exposed. Most of the models developed
in the past use some combinations of the sums or products of traffic volurnes as independent

parameters.

Accidents are events with a high degree of randomness. Human factor is gencrally considered the
most significant of all contributing issues but also the least predictable. Driving a vehicle is a
complex task involving perception, information processing, evaluation, decision-making, attitudes,
emotions and skills. In-depth accident studies (Sabey and Staughten 1975, 1983) by "on-the-
spot” investigation teams indicated that the human element was dominant in 95% of roadway
accidents. The other system components are usually grouped in two categories: vehicle and

environment.



Since human factors are major contributors to accidents, it fotllows that 2 model which includes
some representation of driver behavior, or a parameter which influences human behavior, would
have a better chance of correctly estimating the degree of safety. Based on this hypothesis, we
have decided to investigate the impact of delay on safety, with a focus on the location ranking. In
order to reduce the number of influencing variables, the scope of this research was limited to T-

intersections, the simplest intersection type.
ACCIDENT DATA

A total of 3795 accident records from 1985 to 1988 for 429 priority-ruled intersections were
obtained from the City of Edmonton Accident Inventory File. Of the 429 intersections sclected,
129 are 3-legged and 300 are 4-legged.

In general, accident records in the City of Edmonton Accident Database appeared reliable and
valid in location, time, date and number of vehicles involved in accidents. However, information
on driving lanes and road surface conditions may be of questionable accuracy.

General Trends

Overall, accident frequencies were low with an average of 8.8 accidents/4 years from 1985 to
1989 for the 429 intersections. However, the average was 10.2 accidents/4 years for 4-legged
intersections and 5.7 accidents/4 years for 3-legged intersections. There was also a significant
degree of variability in the occurrences of sccidents, probably due to the low accident frequencies.

Other than the low average accident frequencies, accidents at 3-legged and 4-legged intersections
were very similar in nature in yearly, monthly, daily and hourly trends; and in types of pre-crash
mancuvres and human actions at time of collision, as well as severity (Figures 1.2 to 1.f).

The number of accidents in a year had remained relatively stable with less than 15% overall annual
fluctuations from 1985 to 1989. Within a year, accidents peaked in November and February, and
were also high in June. Analysis on weckday daytime accidents for the 429 intersections indicated
that, on the average, there were 3 3 accidents/day during S winter months and 2.3 accidents/day
during § summer months in the database.

At a daily level, accident occurrences generally peaked on Friday and during the day at the peak
hours. The p.m. peak had the highest frequency of accidents.
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Travel Condition Modules

Characteristics for accidents that occurred in the weekday/weekend and in daytime/nightime were
found to be distinctively different. Daytime accidents mostly occurred (84% as compared to the
average of 81%) on the weckdays, whereas a significant amount of nightime accidents (42% as
compared to the average of 19%) occurred on the weekend. On the weekends, 26% of the

accidents occurred at night.

It appears that there were a number of different time periods in which accidents were significantly
different. The distinctive difference in accident trends among the different patterns may be
attributed to the fact that the underlying conditions within each module were significantly different

from each others.

These time periods can be considered as unique " travel condition modules " in which each
module consisted of a different combination of driver, vchicle and environment factors and
resulted in different prevailing conditions from a traffic operation and safety standpoint.

ACCIDENT PREDICITON MODELLING
Risk and Exposure Coniept

Formulation of ‘¢ acridem prediction model was based on the risk and exposure concept. Hauer
(1982) made » ciear o%( . 2ation of the concept of risk and exposure by relating it to the
philosophy ot chuss

* A unit of exposure corresponds to a tral. The result of such a trial is the occurrence or
non-occurrence of an accident (by type, severity, etc). The chance set up is the
transportation system (physical facilities, users, and ‘environment) which is being examined
and nsk is the probability (chance) of accident occurrences in a tnal”.
The following relationship represents the fundamental structure of a typical risk and exposure
accident prediction model:

SAFETY = RISK x EXPOSURE
or

S=RxE,
where
S = Moecasure of intersection safety during a period of time
R= Measure of the average risk pre. ~ted to drivers during the same period of
time
E= Exposure, i.c. the number of drivers that are presented the risk during the

same period of time
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Data Collection

Based on the travel condition modules identified from the accident and traffic patterns, modelling
efforts were concentrated on the weekday off-peak time period to minimize vanability in travel
corditions. The selected module encompassed the period between 1 p.m. and 4 p.m. from
Monday to Thursday. Over 38% of the total accidents occurred within this module. With
relatively steady traffic volumes and accident trends, as well as the long duration of the module,
this module was ideal for data collection.

As accident patterns at 3-legged and 4-lcgged intersections were found to be highly comparable.
T-intersections were therefore chosen for the study to maintain data collection and interpretation
efforts at a manageable level. Sites of varying accident frequencies were selected to avoid over-

representation of low accident frequency locations.

Delay data, together with volume, headway and site attributes information, were collected by
using a video camera in January and Febr.ary 1990, at 26 priority-ruled T-intersections in
Edmonton. The surveys were limited to the off-peak periods on weekdays with normal dniving
conditions. Figure 2 summarizes the survey conditions and the accident, delay and volume data
collected for the 26 study locations.

Delay and volume data collected were transferred to a computer databasc with the assistance of
the TDIP program (Kyte and Boesen 1989). The delay data collected had a high degree of
variability. The KNOSIMO simulation model (Grossmann 1988) was employed to generate
additions! Celay information to complement the measured delay data In applying the KNOSIMO
model, modifications were made et the data input level so that the program was applicable for
urban 4 lane conditions (Chan and Teply 1991). Figures 3 and 4 compare the intersection
conditions assurned in the KNOSIMO program and at the 26 study locations.

Analytical Approach

The within site distributior. - ©2ccidents at a particular location follows the Poisson process. The
between site variaiion may oe descriibed by a gamma distribution.  The resulting sampling
distribution over all sites is a negative binomial distribution (Maycock and Hail 1984).

Since accident data have a negative binomial distribution, typical classical regression models,
which were based on a normality assumption, were not suitable for accident data analysis. The
GLIM statistical analysis packaye (Payne 1987) can handle analysis ior d. - sef - .= negative
binomial distribution and was therefore used in this research.
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FIGURE4 INTERSECTION CONDITIONS FOR THE STUDY LOCATIONS
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Model Formulation

Excluding multiple vchicle accidents and single vehicle accidents, there were 13 major types of
accidents that can be associated with one or more non-prionty movements at intersections

without traffic signals (Figure 5).

There were altogether 129 accidents for the 26 study locations from 1985 to 1989, The most
frequent accident types were right-angle collisions, rear-end collisions and lefl-turn-cross-path
accidents. However, the frequencies for most accident types are low at several intersections.

Attempts to further aggregate the accidents by non-priority movement types were onyy mildly
successful, as it was difficult to categorize some of the accidents by non-priority movement types.

Model Development

Four groups of accident prediction models were developed by using the GLIM analysis package:

a. Disaggregate accident prediction models for rear-end and right-angle collisions

b. Disaggregate accident prediction models for cach non-priority traffic movements

c. Aggregate accident prediction models based on sum-of-flow and product-of-flow
approaches

d. Aggregate accident prediction models based on different combinations of traffic

volumes and delays parameters

Table 1 summarizes the parameters used in the various accident prediction models. A total of 26
models were developed. Table 2 summarizes some selected examples of model form of the 26

models.
MODEL COMPARISON

Comparison on accident trend prediction was made on the four groups of accident prediction
models developed. It was found that models formulated at a more aggregate level provide better
trend prediction results than the disaggregate models. The best accident prediciion models were
the product-of-flow models and the delay-based models.
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TABLE 1 ACCIDENT PREDICTION MODEL PARAMETERS
- - -
Paramectcr Description
S Overall safety (Objective safety) at an interscction
= Expected no. of accidents over a 4 years period
Src No. of rear—cad collisions over 4 years
Sra No. of right—angle accidents over 4 years
S3 No. of accidents (over 4 years) related to main road right—turn mavements
S4 No. of accidents (over 4 years) related to minor road left—turn movements
S6 No. of acidents (over 4 years) related to minor road right—turn movements
s7 No. of accidents (over 4 years) related to major road left—turn movements
v2 Main road through volume from left of minor road
V3 Main road right—turn volume
v4 Minor road left—turn volume
V6 Minor road right—turn volume
v7 Main road left—turn volume
v8 Main road through volume from right of minor road
D4 Average stopped delay (¢ minor road left—turn flows
D6 Average stopped delay for minor road right—turn flows
D7 Average stopped delay for main road left—turn flow
TABLE 2 SELECTED EXAMPLES OF MODEL FORMS

Sum-—of-#f.

S =

lent Prediction Model:

ag + ay [v2+v3+v‘+v6+v7+va)

Product—of

—Flow Accident Prediction Model:

S =

e 20 (v 4vyevaevg) 21 (V44Ve) a2

Dclay—base

d Accident Prediction Model:

S =

.bO (vzbl.VJCI) (D‘b2.v‘c2) (06b3.v6C3) (D7b‘.v7c4)
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Rear-end and Right-angle Accidents

Accident prediction models for rear-end accidents were found to have poor predictability, which
was probably because the model could not refect the actual cause and effect relationship present

in rear-end accidents Models for right-angle accidents had better predictability.

Disaggregate Models by Non-priority Movements

Disaggregate models for each of the non-priority movements were generally poor in predictability,
mainly due to low accident frequencies within t+=2 disaggregate models. The model with the best

predictability was the minor road lefi-turn accidents model.

Sum-of-flow Models

Models based on parameters compnised of the sum of entering flows had poor predictability. As
illustrated in Figure 6, there was no obervable trend in correlating accident frequencies to the sum

of the traffic volumes entering the intersection.
Product-of-flow Models

Models based on parameters comprised of the products of conflicting flows had much better
prediction power. Figure 7 illustrates the result of accident trend prediction for a simplistic basic
product-of-flow model. The trend prediction power of the simple model was only slightly lower
than that provided by much more complicated product-of-flow models. It appeared that an added
level of model complexity did not result in a corresponding improvement in predictability.

Delay-based Models

Models based on both traffic volume and delay parameteis were slightly better in predicting
accidents than those based on product-of-flow parameters. Figure 8 shows the accident trend
prediction result of a fuli dviay-bzsed mode! with several model parameters.

It did not appear to be significantly different when simulated delay was used instead of measured

delay for modelling.

177



Loe of petlect Gt

S S e S e L] e S R Shaulh Alagn
o 2 4 [ ] 19 12 14 1s 1 20
FREDICIYD @ OF ACCURNTS

FIGURLE 6 PREDICTION RESU! ™S OF SUM-OF-FLOW MODEL

ACTUAL # OF ACCINENTS

20-4 i -]
16
12:

tine of perfect it

B At aumn Al et Shteh At S S SR

o 2 4 6 13 10 ¥} 14 14 18 20
FREMCTED @ OF ACCTDENTS

FIGURE 7 PREDICIION RESULTS OF PRODUCT-OF-FLOW MODEL

ACTUAL @ OF ACCITRENTS

20 °
4

18

16

14

line of pesfect Gt

=Y T Y v L4 'Y—ﬂ_“f_v‘-'r.""_r‘""—’" e e

0 2 4 (] ) 10 12 14 1% 18 20
PRELACTED # OF ACCITANTS

FIGURE 8 PREDICTION RESULTS OF DELAY—BASED MODIL



FINDINGS

Levei of Aggregation

For the simpler accident prediction models, comparisen of model parameters 1o their standad
errors indicated that the parameters were significant  iicwever, pardmeters in the more
complicated medels were found to be not significant in sinular companisions Rased on this
observation, the more complicated models should not be considered more favourable than the
simpler models, even though they did give marginally better acaident prediction results . The low
accident frequencies at priority-ruled intersections apparently limited the practical level of

aggregation for modelling.

Product-of-flow Model vs. Total-delay Model

The delay-based model was more compact and provided a better defined accrdent trend prediction
than the product-of-flow model In both models, accident frequencies increased at a slower rate
than the total delays or the product-of-flow (Figures 9 and 10)

The square root of both product-of-flow and the total delay provided the best acadent prediction
results (Figures 11 and 12)
Other Accident Parameters

Further analysis on the model parameters of the product-of-flow and total delay models indicated
that accident and risk paramcters, when being examined individually, did not give clear trend
indications in most cases. The lack of trend indication was an evidence that other underlymng

factors may be present.

Some of the major observed trends were:.
a. Accident frequency correlated better with non-priority flow than major road flow

b. Overall accident rate parameters which use cither product-of-flow or total delay as the
exposure unit were found to be peor as they were not sensitive to any other measures

c. Correlation of various accident rates to either the major road flow or the non priosity flow

were generally inconclusive.
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Most accident parameters are robust measures that are affected by a number of factors A single
parameter, when used on its OwT, Wwas not sufficient to explain the whole relavonshup It
confirmed that extra caution should be applied in using a single accident parameter to deterrane

the safety of an intersection

CONCLUSIONS

This pilot research project had demonstrated that a highly disaggregated level of modelling was
not suitable for predicting accidents at priority-ruled intersections It showed that the sum of
entering flows was not a good basis to determine accident rates and the priorities among accident
locations

Two relatively simple models at aggregate level had been identified as sound and practical. the
product-of-flow model and total-delay model  Although both performed well and the difference
in accident predictive power was small, the total-delay model was shightly better and showed more
compact prediction trends.

Since only T-intersections with a limited range of weekday off-peak traftic and accident data were
investigated, caution in the applications of specific results was advised. Nevertheless, the models
can serve as comparative tools to indicate safety expectancy at intersections without traffic

signals.
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