
University of Alberta

ANALYSING OPENINGS IN TACTICAL SIMULATIONS

by

David Christopher Ferguson Rayner

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of
the requirements for the degree of Master of Science.

Department of Computing Science

©

Edmonton, Alberta
Fall 2008

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-47397-9
Our file Notre reference
ISBN: 978-0-494-47397-9

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par Plntemet, prefer,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Canada

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

'Openings' are strategies for playing the beginning of a game, and are often described as

sequences of low-level actions (as in chess, for example). This makes it easy to query

a database of recorded games for useful information, such as an opening's success rate,

popularity, and more.

'Tactical shooters' are video games featuring pseudo-realistic tactical simulations. Here,

openings are conventionally described using natural language, which is general enough to

capture an opening's individual variations but provides no formal means of recognising it.

Using Valve's Counter-Strike: Source as a research platform, this thesis describes the

use of cluster analysis over a database of recorded games to formally distinguish between

openings in tactical simulations. Empirical results reveal significant correlations between

openings and game outcomes. The same process is also shown to effectively model player

behaviour, and has potential future application to player classification and the development

of believable computer-controlled players.

Acknowledgements

I am grateful to:

My parents and family for pointing me forward;

My supervisor, Vadim Bulitko, for his insightful suggestions and patience beyond be­

lief. He has simultaneously given me guidance and the freedom to pursue topics I

found interesting;

Michael Bowling and Marcia Spetch for serving on my defense committee, for their

careful reading, and for their insightful feedback;

The members of the IRCL and CSAI research groups at the University of Alberta, for

sharing their ideas with me and listening to mine;

Countless friends and colleagues, some of whom provided direct feedback on this dis­

sertation, many of whom I bounced ideas off of, and all of whom kept me sane.

Table of Contents

1 Introduction 1
1.1 The Role of Openings 2
1.2 Tactical Shooters 3
1.3 Openings in Tactical Shooters 5
1.4 Discretising Opening Space 5
1.5 Summary 7

2 Related Work 8
2.1 Programming Tactical Behaviour 8

2.1.1 Preprogramming 8
2.1.2 Planning 10
2.1.3 Adapting 12
2.1.4 Case Study: The Counter-Strike: Source Bot 13

2.2 Believability Testing in Games 14
2.3 Computing Openings 15
2.4 Modelling Agent Motion 17
2.5 Summary 19

3 Trajectories 20
3.1 Defining Trajectories 20
3.2 Distance 23
3.3 Operations on Trajectories 24
3.4 Summarising Example 25

4 Problem Formulation 27
4.1 Discretisation 27
4.2 Prediction Task 29
4.3 Classification Task 31
4.4 Summary 33

5 Proposed Trajectory Models 34
5.1 Opening Book Approach 35

5.1.1 Representation 35
5.1.2 Derivation 36
5.1.3 Prediction 36
5.1.4 Classification 37

5.2 Markov Model of Trajectories '. 38
5.2.1 Representation 38
5.2.2 Derivation 39
5.2.3 Prediction 41
5.2.4 Classification 42

5.3 Nearest Neighbour Estimation 43
5.3.1 Representation 43
5.3.2 Prediction 44
5.3.3 Classification 45

5.4 Summary 45

6 Empirical Study 46
6.1 Counter-Strike: Source as an Experimental Platform 46

6.1.1 Game Dynamics 46
6.1.2 Gameplay Example 49
6.1.3 Description of Data 51

6.2 Categorical Analysis of Game Openings 51
6.2.1 Experimental Setup 51
6.2.2 Results for Human Play 52
6.2.3 Results for Computer Play 54

6.3 Empirical Results on the Prediction Task 55
6.3.1 Experimental Setup 55
6.3.2 Results 56

6.4 Empirical Results on the Classification Task 58
6.4.1 Experimental Setup 58
6.4.2 Results 58

6.5 Summary 60

7 Discussion 61
7.1 Limitations and Problems Encountered 61
7.2 Future Work 63

7.3 Summary 65

8 Conclusions 66

Bibliography 67

A Methods 73
A.l K-means Clustering 73
A.2 K-medoids Clustering 74
A.3 Cross-Validation 75
A.4 Measuring Entropy in Trajectory Data 76

B The Data 77
B.l Additional Details and Quality Control 77
B.2 Log Format 77

C Resources 80
C.l Experimental Environment 80
C.2 Statistical Utilities 80
C.3 Related Links 80

List of Tables

4.1 An example of a contingency table showing tallies of wins and losses under
two categories of openings (Bi and B2). The rightmost column cells contain
the total number of observations made for each of the two categories. . . . 28

6.1 Contingency tables for human players. The contingency table for openings
associated with the attacking and defending teams are shown on the left and
right respectively 52

6.2 Contingency tables for bot players. The contingency table for openings
associated with the attacking and defending teams are shown on the left
and right respectively 54

6.3 Experimental settings for models applied to the prediction task 55
6.4 Experimental settings for models applied to the classification task 58
6.5 Confusion matrices for if-means and if-medoids derived with K = 50

and 35 respectively, for the Markov Model with m = 40, and for nearest
neighbours with fc = 1 58

List of Figures

1.1 The Stonewall Attack is an opening in chess. It is characterised by stag­
gered pawns and a well-positioned bishop. Because the board is small and
chess has simple rules, chess openings are easy to describe as an assignment
of pieces to positions 2

1.2 Top-right, Bohemia Interactive's Operation Flashpoint has received atten­
tion in academia for its potential application to combat training. Bottom-
left, Destineer's Close Combat: First to Fight was developed with input
from trained marines to improve realism 3

1.3 The first-person perspective in Valve's Counter-Strike: Source [2004] pro­
vides additional information to players via a radar (top-left) that indicates
nearby combatants 4

1.4 A Voronoi tessellation discretises a metric space into unique regions as de­
fined by a set of "generating points" (indicated here with circles). A point
in space is included in a region if it is closer to that region's generating point
than any other generating point 6

2.1 Left, the state-space in a video game can be very large. Centre, a waypoint
graph can reduce the state-space and ease the computational burden of hav­
ing an agent decide upon its next action. Right, the waypoint graph can be
annotated with visibility information which, for example, may be useful in
identifying hiding spots in an environment 9

2.2 In STRIPS planning, low-level actions bear no explicit relationship to one-
another. Imagine a STRIPS planner tasked with bringing the world from the
state (Good dog) to a state specifying {Happy dog). It is up to the planner
to determine in which order the illustrated actions should be executed so
that (1) the preconditions of each successive action are met, and (2) the
eventual world state includes the literal (Happy dog) 10

2.3 In HTN planning, low-level actions are hierarchically composed by a de­
signer into abstract operators. For instance, the acquire cookie abstract op­
erator represents two successive low-level actions 11

2.4 Experimental set-up for the Turing Test, shown left, and for believability
testing, shown right. The Turing Test involves two-way communication
between the interrogator and correspondent. In believability testing, the
judges are restricted to making observations 14

2.5 An agent (the filled circle) sneaks up on a sentry (the open circle). An expert
in this environment would crawl whenever passing through the sentry's line
of sight. This feature is produced by the environment's geometry and can
be hard to represent; other tactical 'features', some incorporating temporal
events, can be even harder to represent 18

3.1 Intuitive examples of trajectories 21
3.2 Illustration of a sub-trajectory 22
3.3 Illustration of the result of concatenating two trajectories in R2 25
3.4 Pseoducode for the running concatenation algorithm 26
3.5 Illustration of the running concatenation algorithm 26

4.1 Illustration of a categorisation of an opening space. Categories are shown
separated by solid lines. A mapping that defines a good categorisation
has the effect of grouping similar behaviours and separating different be­
haviours, as shown 28

4.2 Illustration of a poor categorisation of an opening space. A poor categorisa­
tion can result in grouping conceptually different behaviours (such as stand­
still and rush attack (left)), and dividing conceptually similar behaviours
(here, for example, the area corresponding to rush attack (left) is broken
into two different categories) 29

4.3 A sketch of the trajectory prediction task. Left, a trajectory's initial seg­
ment is shown, its points occurring between time indices 1 and to. The
trajectory's actual continuation after u> is shown in grey, and a predicted
continuation, is shown with dashed lines. The predicted continuation is
scored in terms of its distance from the actual continuation 30

4.4 Heatmaps showing entropy in the moments prior to tactical conflict between
teams in Valve's Counter-Strike: Source. This figure illustrates some of the
differences between the decision making of humans (shown left) and bots
(shown right) 31

4.5 Experimental set-up for conventional believability testing, left, and the clas­
sification task, right. In conventional believability testing, a human judge
observes a controller and rates its believability, or human-likeness. In the
classification task, a mathematical model of play, stored on a computer, is
used to classify controller type 32

5.1 Sketches of different ways to model the generating mechanism for the tra­
jectories being followed in a spatial environment. Left, the trajectories
may be assumed to be following prototypes; middle, the trajectories may
be thought of as a series of probabilistic transitions between states (illus­
trated here with circles); or, as shown right, all observed trajectory data can
be retained to make generalisations using nearest neighbour estimation. . . 34

5.2 Illustration of a Voronoi tessellation 35
5.3 Comparative illustration of centroids and medoids in a constrained geomet­

ric environment. Left, the medoid of a set of trajectories will obey the geo­
metric constraints of the environment in which the set was generated. This
guarantee does not hold for a centroid over the same data, shown right,
which may end up passing through obstacles or violating other strategic or
environmental constraints 37

5.4 Illustration of a simple Markov model of trajectories with states represented
by circles and transition probabilities represented by labelled arrows. Here,
states are defined as S = {SiS2}, where Si = {Sj} and S2 = {S^, Sf};
the transition function P is defined as Px(l , 1) = 2/3 and P2(l , 2) = 1/3. 38

5.5 Constructing a Markov model, as described in Algorithms 5.2.1 and 5.2.2.
Here, «(1) = 1 and K(2) = 2 (i.e., the derivation will create 1 state for the
first time-step and 2 states for the second time-step) 41

5.6 Predicting with a Markov model of trajectories involves building a predicted
sequence of points by combining probabilistically weighted future points
defined by the model (left), which are then concatenated into a predicted
continuation (right) 42

5.7 Classifying with a Markov model of trajectories is the process of determin­
ing which of two models is more likely to have produced a query trajectory
X. On left, the superimposed model is determined to have a probability
of 1/5 of having generated X. The superimposed model on right has a
probability of 1/3 of having generated the same X 43

5.8 Examples of neighbourhoods using Euclidean distance in R2. The query is
represented by an open circle, and the shape of the other points indicates
their class. Shown left, a neighbourhood can consist of the nearest point to
the query (1-NN), or of several nearest points (i.e., 4-NN, shown middle).
Shown right, the makeup of a neighbourhood may not be as telling as the
distance between the query and the points in its neighbourhood 44

6.1 Plots showing the relationship between the ratio of teammates to opponents
and the probability of winning in dust2. The graph on the top shows re­
sults for human gameplay; the graph on the bottom shows results for bot
gameplay. The correlation is similar for both groups, and illustrates the
significance of losing a teammate 47

6.2 Overhead views of CSS's popular dust2 map. Left, the environment's graph­
ical properties are illustrated. Right, labels indicating key landmarks and
routes superimpose an illustration of the environment's geometric proper­
ties. The square region populated with five circles is the spawn area for
attackers; the square region populated with five squares is the spawn area
for defenders. The attacking team is tasked with attacking one of the sites
labelled A or B, and the defending team is tasked with defending them. . . 48

6.3 Illustration of the opening phase of a match in CSS's popular map dust2. At­
tackers are represented by filled circles, defenders by filled squares. Here,
a rush attack is launched via the tunnel, while the defense split their forces
between the middle and site A 49

6.4 Illustration of the 'middlegame' of a match in CSS's popular map dust2.
Choices made in the opening phase can strongly influence the later game.
Here, the attackers have developed a strong base near site B, putting the
defending team at a tactical disadvantage • 50

6.5 Illustration of prototype trajectories. Numbered circles indicate trajectories
followed by attackers, originating from the bottom of the map. Numbered

. squares indicate trajectories followed by defenders, originating from the top
of the map 52

6.6 Visualisation of locations visited when human players follow Oo and 03>
shown left and right respectively. Oo has higher visitation frequency to­
wards the top of the cropped region, while O3 has higher visitation fre­
quency towards the bottom-right 53

6.7 Illustration of prototype trajectories derived from bot data. Prototypes in­
dicated with numbered circles are derived from members of the attacking
team, while those indicated with numbered squares are derived from mem­
bers of the defending team 54

6.8 Prediction error for each of the four models. if-means and K-medoids are
shown top-left and top-right respectively; the Markov model and nearest
neighbour estimation are shown bottom-left and bottom-right respectively.
Error bars show standard error. 56

6.9 Qualitative examples of predicted continuations generated by a if-means
model with K = 41 and a K-medoids model with K — 33. These predic­
tions differ from the actual continuation (shown left) by the amount indi­
cated by the variable A 57

6.10 Qualitative examples of predicted continuations produced by the Markov
model with m = 13 and nearest neighbour estimation with k — 41. These
predictions differ from the actual continuation (shown left) by the amount
indicated by the variable A 57

6.11 Classification accuracy for each model, if-means and if-medoids deriva­
tion of prototypes are shown top-left and top-right, respectively; the Markov
model and nearest neighbour estimation results are shown bottom-left and
bottom-right respectively 59

A.l K-means iteratively refines K clusters (here, a point's shape indicates its
membership to one of (K — 3) clusters) which are defined by a centroid
point (illustrated here with an x). Each data point is initially assigned ran­
domly to a cluster (a). Next the centroid of each cluster is calculated (b),
and each point is moved to the cluster whose centroid is nearest (c). The
process repeats until converging on a locally optimal solution (d) 73

2 i^-medoids iteratively refines K clusters which are defined by a medoid.
Each data point is initially assigned randomly to a cluster (a). Next the
medoid of each cluster is calculated (b), and each point is moved to the
cluster whose medoid is nearest (c). The process is repeated (d) until con­
verging on a locally optimal solution 74

3 Visualisation of the cross-validation process 75
4 Example measurements of entropy for two different sets of observations. It

is worth noting that, even though there are fewer unique successors in the
figure on the left—2 as compared to 3—the entropy level is higher because
the transitions are less predictable 76

Chapter 1

Introduction

Openings are sequences of planned actions taken at the start of a game. Chess openings, for

example, have been studied for hundreds of years and are an important part of strategic play.

The Stonewall Attack is one such opening (Figure 1.1); it represents only a small subset of

the all board states at ply-5 (i.e., after White moves 5 times). Using algebraic notation, one

way to describe the Stonewall Attack is:

l.d4, 2.e3, 3.f4 4.c3 5.Bd3. (1.1)

Such a description leaves no ambiguity as to whether the Stonewall Attack has been exe­

cuted in a game or not. And since the notation (1.1) can be easily parsed by a computer

program, the opening's rate of success, use by notable players, and popularity with time can

easily be tracked in a computer database—this benefits players and historians alike.

Tactical shooters are a genre of computer game that takes place in computerised combat

simulations. To promote realism, these games typically define an enormous number of

states and accept a broad range of input. Consequently, as in real life, players can perform

what is effectively the same 'opening' in many different ways. This freedom of action

precludes the use of a conventional notation that can easily be parsed by computers.

This thesis presents an analysis of recorded human gameplay data for the purpose of

automatically discovering common openings in tactical shooters. The approach I investigate

involves grouping highly similar openings by means of cluster analysis, and using these

groupings to define prototype openings over which all other openings are assumed to be

individual variations. This process is shown to reveal meaningful statistically significant

correlations between the openings a player enacts and the outcome of a game.

1

a b c d e f g h

Figure 1.1: The Stonewall Attack is an opening in chess. It is characterised by staggered
pawns and a well-positioned bishop. Because the board is small and chess has simple rules,
chess openings are easy to describe as an assignment of pieces to positions.

1.1 The Role of Openings

Opening theory, the body of knowledge surrounding how to best play openings, is engaged

in a complementary relationship with artificial intelligence research. Well-specified open­

ings can be employed by a computer program that lacks the ability to focus its search of a

massive problem space, thereby saving time and programmer effort. Conversely, comput­

ers can be programmed to develop new openings, or even complete theoretical solutions

to games [Allis, 1988; Tesauro, 1995; Yang et al, 2001; Schaeffer et al, 2007]. As well,

computer databases of games can be categorised and annotated automatically (i.e., using

relatively simple algorithms) which can be useful in uncovering good openings to play.

Openings also serve as a unit of analysis for analysing gameplay. The study of a game's

openings can reveal how common tactics have evolved over time; for instance, while there

exist millions of well-defined chess openings, modern players are highly specialised and

employ a mere fraction of them in practice [Charness, 1991]. A game's openings can also

be used to describe the preferences of individual players. For example, knowledge of an

opponent's preferred openings can be used to create a stronger opposition.

2

Figure 1.2: Top-right, Bohemia Interactive's Operation Flashpoint has received attention
in academia for its potential application to combat training. Bottom-left, Destineer's Close
Combat: First to Fight was developed with input from trained marines to improve realism.

1.2 Tactical Shooters

Tactical shooters are a popular genre of computer video game in which teams of indepen­

dent entities compete in violent, pseudo-realistic virtual environments. Usually the entities

are human-controlled, but computer-controlled entities (or bots) can participate as well.

Culturally important (i.e., both immensely popular [Nielsen Media Research, 2007] and

the subject of ethnographical research [Vesterby, 2002]), tactical shooters juxtapose enter­

tainment and serious combat training. Commercial releases such as Bohemia Interactive's

Operation Flashpoint [2001a] and Destineer's Close Combat [2005a] (Figure 1.2)1 show

promise in simulating aspects of real-life combat training [Wray et al, 2004; Lewis and

Barlow, 2005], while input from trained combat personnel has gone into developing more

realistic commercial computer games [Tamte, 2004; Reike and Boon, 2008].

'The image in Figure 1.2, top-right, is cited after Bohemia Interactive Studio [2001b], and the image in
Figure 1.2, bottom-left, is cited after Destineer [2005b];

3

Figure 1.3: The first-person perspective in Valve's Counter-Strike: Source [2004] provides
additional information to players via a radar (top-left) that indicates nearby combatants.

A defining feature of the genre is the way in which players interact with the game world.

Each player controls one of several independent entities (or 'combatants'), which reacts

precisely to input from sensitive control devices. Rather than monitor their combatant's

precise location, heading and momentum, players see the game world through a graphi­

cal first-person perspective (Figure 1.3);2 aspects of the game world that are occluded by

obstacles or outside the field of view are unknown to the player. To provide a believable

simulation, the game world is updated rapidly,3 and good timing and precise reflex control

are vital. The number of openings defined by such a process can exceed 222.4

Beneath their graphical veneer, tactical shooters have many strategic elements in com­

mon with classic strategy games. Individual combatants resemble game pieces; they begin

play in predefined positions, they vie for positional development, they can be used to capture

(i.e., remove from play) other combatants, and they can themselves be captured. Conceptu­

ally, the opening lines of play tend to be even simpler than in classic strategy games.

2The image in Figure 1.3 is cited after Valve [2008].
3One source recommends a minimum of 66 updates per second [Invision Gaming, 2007]
4See Appendix B for additional details.

4

1.3 Openings in Tactical Shooters

Natural language is flexible and widespread, and captures all of the individual variations

of a particular opening that can occur in simulation space. Player communities typically

use natural language to describe openings. For example, Aaltonen [2005] contributes the

following description of opening play for Valve's Counter-Strike: Source:5

The longer route is ... right and through the set of double doors. The shorter

route runs parallel to the middle, between the bases. [Site] B is one of the

smallest and easiest to protect... while [site] A's openness is more difficult.

Unfortunately, natural language can be ambiguous, and can make incorrect assumptions

about a reader's experience. Indeed, descriptions such as the one above risk misinterpre­

tation, and can potentially leave out details that are important to effectively carrying an

opening out. Worst of all, supporting evidence for the execution of any one such opening is

necessarily anecdotal because there is no algorithmic way to recognise it in play.

A naive alternative is to describe openings as precise sequences of timed, low-level

actions. But players have neither the precise control nor the ability to monitor the low-

level variables involved in enacting these openings. Moreover, this approach would treat

as separate the thousands of variations over what many players would agree is the same

opening.

1.4 Discretising Opening Space

The preceding section describes how natural language can be interpreted by human play­

ers, if with some ambiguity, but not by automated systems. The simple alternative of using

low-level actions makes openings that are difficult for human players to act out and are too

specific to embody general gameplay knowledge. This implies a need for a new way to rep­

resent the openings in tactical shooters—in particular, a representation that accommodates

imperfect human reflex control while retaining a formal structure. This motivates discretis­

ing the opening space (Definition 1.4.1) of a game in such a way that each discretised

region contains all of the variations of a specific class of opening.
5For a graphical overview of the environment being described in this example, see Figure 6.2 on page 48.

5

Figure 1.4: A Voronoi tessellation discretises a metric space into unique regions as defined
by a set of "generating points" (indicated here with circles). A point in space is included in
a region if it is closer to that region's generating point than any other generating point.

Definition 1.4.1 (Opening Space). The opening space of a game contains all of the initial

sequences of actions that can possibly be executed over a fixed time-span.

For the purpose of analogy, suppose it were possible to map an opening space onto

a two-dimensional plane. Further, suppose that this projection retained the relative dis­

tance between openings. The problem of discretising this space into a set of regions, each

containing all individual variations of an opening, is akin to drawing lines on the plane to

distinguish the separate openings.

This thesis explores the use of cluster analysis as a heuristic tool for drawing these

lines, albeit in a multi-dimensional space. In particular, the clustering will have the effect

of dividing spatially related openings into groups. From each group, a representative point

can be identified, which can serve as a generating point for a Voronoi tessellation of the

space of all possible openings (Figure 1.4 shows an example in two-dimensional space).

6

1.5 Summary

This chapter introduced openings as planned sequences of actions taken at the start of a

game. I first illustrated that documented openings can have several benefits to the players

of many games: well-defined openings facilitate knowledge transfer and define a set of fea­

tures which can be used to describe individual play. Then I illustrated that tactical shooters

are poised to benefit from precisely defined openings, but present several challenges. These

include: (1) the lack of an unambiguous notation with which to describe play, (2) the hiding

of many important state variables from players, and (3) the difficulty for players in trying

to produce 'exact' action sequences. These observations motivate selectively discretising

the space of all possible openings into well-defined regions, so as to provide a consistent

notation with which to document the openings in these complex domains.

7

Chapter 2

Related Work

This chapter presents a survey of related work from a variety of fields. First I survey

computationally-driven tactical behaviour in games (i.e., methodologies and implemented

systems for generating realistic tactical behaviour). Next I survey work in believability test­

ing, the measurement of how life-like a computer-controlled character (or agent) is. Next,

although research into computing game openings has largely focussed on classic games,

several developments in this field bear mentioning. Finally, a treatment of research into

modelling the movements of goal-directed agents provides context for my research.

2.1 Programming Tactical Behaviour

The programming of realistic computerised tactical characters can be subdivided by method­

ology. Preprogramming involves procedurally defining behaviour as reactions to precon­

ditions; planning involves declaratively defining behaviour as states, actions, and goals;

and adapting agents employ machine learning to develop superior performance.

2.1.1 Preprogramming

Preprogramming,1 the process by which behaviour is defined as reactions to conditions,

may also be thought of as a process of annotation [Doyle, 1999]. When an agent comes

upon an annotation (i.e., when that annotation's preconditions are met), the agent reactively

executes a pre-specified set of instructions. A simple example of preprogramming might be

an agent that drinks from a cup of water until it is empty, then refills it at the sink.

'Preprogramming is also often referred to as scripting because the execution of preprogrammed instructions
resembles a stage actor's recitation of a written script.

8

Figure 2.1: Left, the state-space in a video game can be very large. Centre, a waypoint graph
can reduce the state-space and ease the computational burden of having an agent decide
upon its next action. Right, the waypoint graph can be annotated with visibility information
which, for example, may be useful in identifying hiding spots in an environment.

A popular type of annotation is a waypoint graph (Figure 2.1), which labels locations

(or waypoints) with information about what actions may be performed there [Liden, 2000].2

Recent literature on computerised combat often takes advantage of the popularity of way-

point graphs. Liden [2001; 2002] proposes automatically annotating waypoints with infor­

mation about which other waypoints there are lines of sight to, showing that this can reveal

the tactical uses of an environment. Because an untested waypoint graph might define paths

and lines of sight that are, in practice, inaccessible by an agent, Darken [2007] proposes

tasking the agents themselves with automatically exploring and annotating an environment.

Preprogramming can specify various other agent behaviours. Khoo and Zubek [2002]

use potential fields to guide agent motion; Barlow and Morrison [2005] preprogram realistic

battlefield stressors such as the effects of suppression fire and injury; and Liden [2003]

describes ways in which agents can be preprogrammed react to their own tactical errors.

Annotations can be arbitrarily complex and interrelated, and can cause seemingly intel­

ligent behaviour, but they are fragile in dynamic environments. If the aforementioned cup-

filling agent is placed in a world where cups can be stolen and sinks can begin to dispense

pink ooze, it must be redesigned with reactions to these new situations. Preprogramming

may also yield inexpert behaviour. Manninen [2001] observes that human expert players

learn all of the tactical "advantage points" in an environment; this expertise may come to

rival the expertise of the designer originally tasked with preprogramming an agent.

2Waypoint graphs are also used for planning paths to new locations—planning is covered in Section 2.1.2.

9

STRIPS Planning

Give dog
cookie

X
Get

cookie

Precondition:
(Good dog) and
(Cookie acquired)

Effect:
(Happy dog)

Open
bag

ZL
Effect:

(Bag open)

Precondition:
(Bag open) and
(Bag not empty)

Effect:
(Cookie acquired)

Figure 2.2: In STRIPS planning, low-level actions bear no explicit relationship to one-
another. Imagine a STRIPS planner tasked with bringing the world from the state
(Good dog) to a state specifying (Happy dog). It is up to the planner to determine in which
order the illustrated actions should be executed so that (1) the preconditions of each suc­
cessive action are met, and (2) the eventual world state includes the literal (Happy dog).

2.1.2 Planning

By specifying states, actions, and goals, designers can declaratively define a wide range of

behaviours. A simple example of planning is a Dog Training scenario: to reinforce good

behaviour, a trainer needs to alter the world state so that a good dog becomes a happy dog.

With sufficient world knowledge, a trainer can plan an action sequence to affect this change.

Various planning systems have been used to specify the behaviour of a variety of tactical

agents. These include systems that plan on the level of primitive actions, systems that plan

according to a hierarchical decomposition of a complex task, and hybrid approaches.

In STRlPS-style3 planning [Fikes and Nilsson, 1971] agents reason on the level of prim­

itive actions to determine how to bring the current world state to a goal world state (Fig­

ure 2.2). Orkin [2006] uses a variation of STRlPS-style planning called GOAP4 to achieve

realistic and critically acclaimed tactical behaviour in Monolith Productions' F.E.A.R. [2005].

The enemy agents in F.E.A.R. have a killEnemy goal which can be accomplished with the at-

tackFromCover action; a prerequisite of the attackFromCover action is that the agent takes

cover, which can be met by executing a gotoNode action.

3STRIPS stands for STanford Research Institute Problem Solver.
4 G O A P stands for Goal-Oriented Action Planning. GOAP uses a heuristic search to formulate plans and

accommodates other computational requirements met in developing real-time games [Orkin, 2004].

10

HTN Planning

Reward dog

I
Acquire
cookie

Open
bag

Precondition:
(Good dog)

Effect:
(Happy dog)

Precondition:
(Bag not empty)

Effect:
(Cookie acquired)

Task
Decomposition

Figure 2.3: In HTN planning, low-level actions are hierarchically composed by a designer
into abstract operators. For instance, the acquire cookie abstract operator represents two
successive low-level actions.

Hierarchical task network planning, or "HTN planning," refers to a planning approach

wherein tasks are hierarchically composed of simpler tasks (Figure 2.3). An overview of

HTN planning is presented in [Erol et al., 1994]. Hoang et al. [2005] successfully use HTN

planning to coordinate a team of agents in a tactical environment where the objective is

to capture and defend pre-set waypoints. This method of control is shown to outperform

approaches based on simple finite-state machines.

The SOAR cognitive architecture [Laird et al, 1987] incorporates a decision cycle that

resembles HTN planning: SOAR can specify abstract operators that are defined by a hi­

erarchical composition of increasingly concrete operators. However, the SOAR architec­

ture additionally can define new abstract operators whenever necessary in a process called

chunking. Laird [2001] contributes the SOAR-based Quakebot agent, which is shown to

benefit from chunking when anticipating its opponents in id Software's Quake II [1997]. In

particular, the Quakebot develops a variety of new anticipative measures that it caches for

quicker response times. SOAR has also been used as the underlying controlling mechanism

for Wray et al.'s MouTBot [2004], an agent designed to embody some of the essential

behavioural traits of characters in military training simulations.

11

Planning systems enable designers to implicitly specify an enormous range of behaviours.

However, defining appropriate actions and goals in highly interactive and dynamic settings

can be time consuming, especially as requirements change. An alternative is to have agents

discover for themselves which goals and actions are most appropriate, adapting through

autonomous exploration or by observing and imitating an ideal model of behaviour.

2.1.3 Adapting

A variety of machine learning techniques have been employed in an attempt to improve

upon or automatically learn new tactical behaviour. One growing body of research investi­

gates imitation learning wherein an agent is given data generated by some idealised model

agent, typically a human, and tasked with generating similar behaviours. Geisler [2002]

investigates imitation learning of some rudimentary aspects of combat control, includ­

ing agent movement, heading, and acceleration in Raven Software's Soldier of Fortune

II [2002]. Similarly, Zanetti and Rhalibi [2004] use neural networks to perform imitation

learning of an agent's movement and aiming behaviour in id Software's Quake III [1999].

Other research focusses on adapting to develop superior tactics; Cole et al. [2004] use

genetic algorithms to tune an agent's weapon selection and 'aggression' to attain better per­

formance in Valve's Counter-Strike [2000]. Darken et al. [2004] use agent-centred sensor

grids to guide agents to nearby cover; Paull and Darken [2004] extend this work by having

the sensor grid additionally discover annotated waypoints in an environment.

An additional body of work concerns the adaptive organisation of a team of agents.

Existing research is less concerned with the massive state-spaces team organisation might

imply. Instead, there is a focus on learning abstract behavioural parameters based sam­

ples taken from highly stochastic processes (these challenges are elucidated by Spronck's

RAGI 5 framework [2005]). Bakkes et a/.'s TEAM-2 [2005], an extension of Bakkes etaVs

earlier work [2004], learns to assign roles to agents on a team as conditioned on a general

representation of the world state. Smith etal.'s RETALIATE6 [2007] employs undiscounted,

on-policy Q-learning [Watkins, 1989] to adaptively learn which waypoints to direct agents

towards, conditioned on a world state defined by activity at those waypoints.

5RAGI stands for Reliable Adaptive Game Intelligence.
6RETALIATE stands for REinforced TActic Learning In Agent-Team Environments.

12

From a designer's perspective, adapting can be dangerous because it surrenders control

to a process that may not be fully understood. An adapting agent may develop strange or

poor behaviour that violates intended design. For example, an agent originally intended to

engage opponents may learn to hide from them as it adapts to avoid danger. Still, an adapt­

ing agent has the potential to discover intelligent new techniques that surprise its opponents

by extending its original programming.

2.1.4 Case Study: The Counter-Strike: Source Bot

Individually, most of the techniques described above do not constitute a complete, working

system. A complete, autonomous combat agent is a large undertaking, often involving in­

terplay between preprogramming, planning, and machine learning techniques to achieve ac­

ceptable performance. An example of such a system is the official computer-controlled op­

ponent (or bot) designed for Valve's Counter-Strike: Source [2004], (or CSS). Booth [2004]

contributes a discussion of the development of this critically acclaimed agent.

The CSS bot is preprogrammed with a navigation mesh1 enhanced with various annota­

tions.8 These annotations include whether a particular segment of the mesh is a valid hiding

spot, and whether it must be jumped across or crouched through. When isolated from team­

mates, the CSS bot moves slowly to generate less noise. The bot is also preprogrammed

with an awareness of approach points (i.e., directions from which enemies can appear) and

employs realistic view control to monitor these locations.

The CSS bot also incorporates planning. Its future actions are determined using scenario

objectives, or goals, that direct its future actions conditioned upon the current game state.

To plan efficient paths through the environment, the bot incorporates the time penalties

associated with having to jump or crouch over particular segments of the navigation mesh.

The CSS bot's adaptive behaviours include its annotation of the navigation mesh with

a decaying danger level that increases the perceived cost of entering an area. The bot's

morale increases when it is successful in play; high morale increases a bot's preference for

rush tactics. These measures ensure variable behaviour across subsequent rounds of play.
7A navigation mesh is similar to a waypoint graph, except that it specifies a discretisation of the entire

environment into non-overlapping regions. Its possible uses are identical to those described in Section 2.1.1.
8In new environments, the agent autonomously explores and annotates the environment on its own.

13

Correspondents Controllers

Figure 2.4: Experimental set-up for the Turing Test, shown left, and for believability testing,
shown right. The Turing Test involves two-way communication between the interrogator
and correspondent. In believability testing, the judges are restricted to making observations.

2.2 Believability Testing in Games

Human-likeness, or believability, is often emphasised over an accurate underlying model

of human cognition, both in designing tactical characters for computer video games and

training simulations [Wray et al., 2004; Livingstone, 2006]. Indeed, many of the techniques

described in the preceding section are intended to produce 'believable' behaviour. However,

Gorman et al. [2006a] point out, "a significant impediment to work in this field is the

lack of a formal, rigorous standard for determining how 'humanlike' an artificial agent is."

Believability testing [Livingstone and McGlinchey, 2004] studies attempt to objectively

measure the human-likeness of agents acting in virtual environments.

Believability testing resembles the Turing Test, proposed by Turing [1950] as a measure

of machine intelligence. The original Turing Test tasks a human interrogator with judging

whether a correspondent is human or machine via communication across a plain-text termi­

nal; artificial agents that fool the interrogator are said to have passed. Believability testing

similarly involves tasking human judges with rating the believability of an agent, but the

judges can only observe the agent acting in an environment (i.e., communication is one­

way, as illustrated in Figure 2.4). The following paragraphs describe existing research into

objectively measuring agent believability in games.

Laird and Duchi [2000] investigate how changing individual behavioural parameters,

ceteris paribus, affects the believability of the SOAR Quakebot (q.v. Section 2.1.2). The

14

study suggests trends in the importance of an agent's aiming skill (the precision with which

the agent can target and anticipate its opponent's movements), decision time (an 'allowance'

toward the number of computational cycles an agent may spend on planning per unit of

time) and tactical complexity (the range of different tactical behaviours enacted by the agent

during play). In particular, an agent given especially high aiming skill, especially low

decision time, or scarce tactics may have lower believability. Unfortunately, the study only

surveys eight judges and is considered preliminary by its authors.

Livingstone and McGlinchey [2004] investigate the respective believability of a hu­

man, a preprogrammed agent designed to appear human, and an imitation learning agent

trained on human data in the classic video game Pong. The judges were on average unable

to discern between humans and computer-controlled Pong bats. Some judges were, how­

ever, able to detect idiosyncracies among the players (i.e., "jerky and sudden movements")

but not all of them understood its connection to the imitation learning agent. Livingstone

and McGlinchey's observations highlight the subjective (and not necessarily accurate) per­

ception of human judges; the authors state that, "where different observers can have quite

different expectations, attempting to measure humanness may be fatally flawed."

Gorman et al. [2006b] investigate the believability of imitation learning agents trained

on the movement of human players in Quake II. Players' overall choice of paths are mod­

elled conditioned on their current power-ups (and, implicitly, which power-ups they likely

desire). On average, the judges were unable to discern between humans and computer-

controlled agents. As in Livingstone and McGlinchey's study, the judges detected idiosyn­

cratic behaviour, citing "unnecessary jumping" and "[shooting] for no reason" as hallmarks

of human behaviour. However, while the player movement in Quake II is significantly more

complex than in Pong, the subjectivity of the human judges must be weighed appropriately.

2.3 Computing Openings

After Lincke [2000], I divide the different kinds of opening analysis that has taken place

using computers into two categories. I distinguish between active book construction,

wherein a computer explores a game's state-space to discover and evaluate openings, and

passive book construction, wherein a computer analyses existing examples of gameplay.

15

Active book construction involves tasking a computer with building and evaluating

openings through its own internal representation of a game. A simple example of this might

be having an agent simulate play through all of the lines in a game of tic-tac-toe. From this

experience, the program could determine which action sequences lead to losses, wins, and

draws. This approach is possible in tic-tac-toe—and many other classic games—because

the state of the game has an unambiguous representation and simple, well-defined rules.

Research in active book construction may address how to best explore very large game

trees to create better opening books [Buro, 1999; Lincke, 2000], or how to develop complete

theoretical solutions over game trees. For instance, Selby [1999] contributes an optimal

solution9 to the opening (or pre-flop) of Texas Hold'em Poker, which Billings et al. [2003]

utilise in creating a strong poker-playing agent, PsOptil. Tesauro's [1995] TD-Gammon, a

reinforcement learning backgammon player, developed strong positional judgment that led

it to using unconventional opening plays that have since been adopted in human tournament

play. Both Yang et al. [2001] and Hay ward et al. [2005] have determined full solutions

to the game of Hex on reduced-size boards. And, more recently, Schaeffer et al. [2007]

contribute a full theoretical solution to checkers, the largest of such games to be solved

to date. All of these techniques have the advantage of not learning directly from human

expertise; they are free to develop techniques on their own, and without bias. However, in

general, these techniques are strongly reliant upon an unambiguous, easily represented state

space. As described in Section 1.3, this is atypical of computerised combat simulations.

Passive book construction involves the analysis of existing examples of play to discern

effective openings from ineffective openings. Passive book construction may be a viable

alternative to active book construction, especially in the absence of a clear or tractable way

to perform a search of a game's state-space. For instance, chess is an example of a classic

strategy game for which deep online search is restricted by a massive state space and the

real-time demands of tournament play. Hyatt [1999] looks into maintaining and evaluating

the openings in a large database of games to equip his chess-playing agent Crafty with a rich

library of openings as played by humans. An inherent challenge in maintaining such a large

database is that not all of the openings are necessarily good (humans often blunder) and

9Given a fully randomised rollout of cards after the pre-flop occurs, with no further betting.

16

moreover not all of the openings are compatible with Crafty's playing strengths. As a result,

Crafty evaluates openings by playing them. Hyatt points out that an opening associated

with a win is not as 'good' as an opening associated with a loss is 'bad' because of how

frequently human players blunder, especially under time pressure. This may also be true

in computerised combat simulations, whose real-time demands put players under duress.

Campbell et al. [2002] describe how the chess-playing computer program Deep Blue makes

use of a similar database of past games. Deep Blue assigns bonuses and penalties to the

openings available to it in its 'extended book' database, not by experience, but according to

fixed criteria; these include an opening's frequency of play, the ratings of players that used

the opening, the opening's historical recency, its rate of success in play, and past human

expert judgment on the quality of a move. In one of Deep Blue's 1997 games against Gary

Kasparov, this extended book helped Deep Blue to "[establish] a very comfortable position

from the opening" [Campbell, 1999].

2.4 Modelling Agent Motion

Modelling the movement of goal-directed agents is an active area of research with obvious

application to computerised combat simulations. Specific to the context of real-time strat­

egy games, Southey et al. [2007] employ Bayesian inference, hidden semi-Markov models,

and abstraction to probabilistically track agents that have only been partially observed but

have known motion models. An example of the type of problem that can be reasoned about

under Southey et a/.'s framework is as follows: upon witnessing a brief glimpse of an agent

crawling through the bushes, one may wish to determine a probability distribution over the

different starting and ending points that the agent is travelling between.

Ratliff et al. [2006] contribute maximum margin planning (or MMP), an imitation learn­

ing algorithm that automatically associates action costs with features based on examples

generated by an intelligent model agent (or expert). For example, one feature may be the

expert's distance from the wall when approaching a goal.10 If the expert stays close to walls,

an MMP learner will infer an increased cost for moving away from walls while attempting

similar tasks. However, MMP relies on an a priori definition of suitable features, which can

'"This example is due to my colleague Jeffery Grajkow&ki.

17

0
\

» c

\%
\
\

V

\

. . . . *

•

Figure 2.5: An agent (the filled circle) sneaks up on a sentry (the open circle). An expert
in this environment would crawl whenever passing through the sentry's line of sight. This
feature is produced by the environment's geometry and can be hard to represent; other
tactical 'features', some incorporating temporal events, can be even harder to represent.

be difficult to provide. In particular, some of the advantage points in computerised combat

simulations can be hard to 'featurise.' A simple example of this is illustrated in Figure 2.5,

which shows an example of features that expert players recognise but can be hard to define.

Bererton [2004] describes a novel spectrum of modelling techniques for efficiently solv­

ing multi-agent Markov decision processes (MDPs). These techniques range from describ­

ing such decision problems using linear programs (whose solution can be efficiently com­

puted) to increasingly expressive mixed integer program representations. Bererton's solu­

tion techniques are shown to be effective and efficient on a variety of tasks, and contribute to

a framework for solving so-called team-competition problems wherein one team of agents

chooses a cost function over an MDP which the competing team is tasked with solving. In

particular, Bererton shows his solution techniques to be applicable to robotic control in a

simplified game of paintball where unarmed robots attempt to navigate past armed sentries.

Gorman et al. [2006a] contribute a technique for imitation learning in Quake II. Their

approach is to develop a waypoint graph over the space in which combat occurs via K-

means clustering, and to use an inverse reinforcement learning algorithm to reward agents

18

for following the same paths as a human player.11 As the human player's path develops, the

reward associated with the waypoints he visits increases, which has the effect of eliminat­

ing from the agent's repertoire backtracking, local zigzags, and loops—behaviours that are

probably unimportant Quake II, but are conceivably important in general tactical settings.

2.5 Summary

This chapter surveyed related work in the following areas: computationally-driven combat

behaviour in computer simulations, including video games and training simulations; agent

believability testing, which aims to objectively measure agent realism; the computational

analysis of game openings, including active and passive book construction; and the mod­

elling of goal-directed agent motion. While revealing of a number of significant techniques

and discoveries in each area, this survey also shows that no prior work has specifically

addressed the problem of establishing well-defined opening theory for tactical shooters.

1' Another machine learning algorithm based on Bayesian inference learns which actions—turning, shooting,
etc.—to perform as the agent moves.

19

Chapter 3

Trajectories

Alice said, "Would you please tell me which way to go from here?"

"That depends a good deal on where you want to get to," said the Cat.

- Lewis Carroll's Alice in Wonderland

Trajectories are commonly used to describe moving points, but more generally can represent

changes in a vector variable over time. For instance, a trajectory can be used to describe

changes in the location of a ball as it rolls down a hill, changes in an athlete's heart-rate

during periods of exercise and rest, a sequence of board states in a game of chess, or the

spatial location of a character moving around in a computerised combat simulation.

This chapter provides a general formalism for spatial trajectories being observed at dis­

crete intervals. These concepts will serve as the core unit of analysis in the chapters that

follow. Here, the reader will be introduced to a notation with which to represent trajecto­

ries, a definition of the distance between trajectories, and simple operations with which to

manipulate trajectory data. This chapter concludes with a summarising example.

3.1 Defining Trajectories

Though trajectories are easy to grasp intuitively using diagrams such as those in Figure 3.1,

a formal definition and a notation with which to represent them is required. The formal

definition is precise, and a consistent notation will be helpful in describing algorithms that

manipulate trajectories.

20

4 -

3 -

2 -
/

1 -i I
1 , '

— i 1 r

-» s

4

3

2

1

, , , , r

2 3 4 5 6 7

(a) A loop in R2

I •
1 2 3 4 5 6 7

(b) A grid-world trajectory

Figure 3.1: Intuitive examples of trajectories.

Definition 3.1.1. A discrete trajectory X is a time-indexed set of points, {Xt : t G T},

where:

• Each Xt € Mn is a point in n-dimensional space, occurring at time-step t;

• T C {Z > 0} is a set of positive, integer-valued time indices.1

Note that, because each element in a trajectory is indexed by time* an object that remains

stationary for n time-steps will still be described by a trajectory containing n points.

If there is a constant difference between the adjacent indices in T, I will call X a

constant-interval trajectory2—otherwise I will call X a variable-interval trajectory.3

Finally, since trajectories are defined by a set of time-indexed points, I will use the notation

0 to denote the empty trajectory (i.e., a trajectory that contains no points).

Example 3.1.1. The following are a few examples of discrete trajectories:

. X = {(10,10)i,(10,10)2, (10,10)3};

Y = {(1,4,0)i, (3,2, 0)5, (5, 3,0)8, (6,4,0)10};

Z = {(56,67)!, (60,70)2, (65, 78)3, (69, 86)4}.

'When a trajectory is implicitly defined (e.g., by a mathematical equation or another continuous, ongoing
process), then T = {Z > 0}.

2Automated systems that monitor an easily observable process such as the state of a computer video game
often produce constant-interval trajectories.

3lt is sometimes difficult to take point measurements at constant intervals, for example in studies that involve
personal interviews or require mobile objects of variable speed to pass a waypoint.

21

Figure 3.2: Illustration of a sub-trajectory.

In some instances it may be desirable to refer to a sequence of contiguous points occur­

ring within a trajectory (Figure 3.2). This need motivates the following definition:

Definition 3.1.2. Let X = {Xt : t € T} be a trajectory. A sub-trajectory of X from a to

/?, where 0 < a < (3, is defined as follows:

X = {Xt:XtGX,a<t</3}

Example 3.1.2. The following are examples of sub-trajectories.

Let X = {(10,10)2, (20, 30)3, (30, 50)4},

- The sub-trajectory from 2 to 3 is X

- The sub-trajectory from 3 to 4 is X

= {(10,10)2,(20,30)3},

= {(20,30)3) (30,50)4}.

Let y = {(1,4,0)i, (3,2, 0)3, (5, 3,0)8,(6,4,0)io},

|5
- The sub-trajectory from 1 to 5 is Y = {(l ,4,0)i ,(3,2,0)3},

- The sub-trajectory at 8 is Y y8 = {(5,3,0)8}.

The definitions introduced in this section provide a basis for reasoning about and manip­

ulating individual trajectories. Since this study focusses on the analysis of a large volume

of trajectory data, a definition of how two trajectories differ from each other is required.

22

3.2 Distance

Distance is important in any classification or pattern recognition task, as well as in cluster

analysis wherein objects are grouped into related clusters. Indeed, distance plays a central

role in my study: because there are many individual variations over what players perceive to

be the 'same' path in computerised combat simulations, the question of whether two paths

are equivalent is one of distance.

Several techniques exist to determine the distance between two trajectories. In general,

the appropriateness of different distance measures for trajectory data is highly domain-

dependent. At one extreme, one can measure the distance between the individual line seg­

ments that make up trajectories, as considered by Lee et al. [2007]. But the necessary pre­

processing risks removing important points from a trajectory.4 Alternatively, one can mea­

sure distance by interpolating between points, as considered by Yanagisawa et al. [2003].

But this approach runs the risk of introducing superfluous5 points to a trajectory. This is

not to say that neither of these techniques is applicable. However, taking the simple Eu­

clidean distance between trajectories avoids these risks, is familiar, and is shown by Keogh

and Kasetty [2002] to be superior to a number of specialised competing distance metrics on

common time series (i.e., one-dimensional trajectory) datasets. This leads to the following

definition of distance.

Definition 3.2.1. Let X and Y be discrete trajectories through n-dimensional space such

that X = {Xt : t € T} and Y = {Yt : t € T} . (In general, let X? refer to Xt's coordinate

value along the d'th dimension.) The distance between X and Y is defined as follows:

> T I •

dist(X, Y) = , J2 E {Xt - Ytd) • (^D

For notation convenience, the following denotes the distance between two sub-trajectories:

dist(X,Y)
P

= dist [X
ex

p

a
(3.2)

4Pre-processing to remove points along which a trajectory does not change rapidly, according to the in­
formation theoretic minimum description length principle employed by Lee et al. [2007] may help to distill
important line-segment information, but subtle changes along a trajectory can be tactically vital.

5Trajectories recorded at discrete time intervals risk omitting local zigzags [Chandrasekaran et al, 2002]
that correspond to important terrain (strategically, physically, or otherwise).

23

3.3 Operations on Trajectories

My eventual goal is to present algorithms that manipulate the discrete trajectories that arise

from character movement in computerised combat simulations. This section defines and in­

troduces notation for a variety of operations on trajectories that will enable these forthcom­

ing algorithms to be described with precision. This section covers the addition, subtraction,

scalar multiplication, and concatenation of trajectories. With the exception of concatena­

tion, these operations are only defined for constant-interval discrete trajectories containing

the same number of points taken at the same time indices.

The addition, subtraction, and scalar multiplication operations on trajectories are anal­

ogous to operations of the same name over vector data. Given a group of trajectories, these

operations are necessary in tasks such as determining the group's arithmetic mean, or deriv­

ing a linearly weighted combination of the trajectories in the group, ideas that are explored

more in the next chapter.

Definition 3.3.1. Let X and Y be discrete trajectories, both containing m points along the

same time indices. That is, let X = {Xt : t € T} and Y = {Yt : t e T}, where \T\ = m.

The addition, subtraction, and scalar multiplication of trajectories are defined as follows:

• Addition: X + Y = {Zt : Zt = Xt + Yu t € T}.

• Subtraction: X - Y = {Zt : Zt = Xt - Yt, t e T}.

• Scalar Multiplication: cX = {Zt : Zt = cXt, teT}.

Example 3.3.1. Let X and Y be discrete trajectories, X = {(0,0)i, (10,10)2, (20,20)3}

and Y — {(10,10)i, (15,10)2, (20,10)3}. The following examples illustrate the use of the

operations described by Definition 3.3.1:

1. X + Y = {(10,10)i, (25, 20)2, (40, 30)3}.

2. X - 3Y = {(-30, -30) i , (-35, -20) 2 , (-40, -10) 3 }.

The concatenation operation can be visualised as connecting two pieces of rope at the

ends (Figure 3.3). This operation is useful for describing algorithms that construct trajecto­

ries in an incremental fashion (i.e., point by point). An example is shown in Section 3.4.

24

X X

Figure 3.3: Illustration of the result of concatenating two trajectories in M2.

Definition 3.3.2. Let X and Y be two arbitrary discrete trajectories, X = {Xt : t e T}

and Y = {Ys : s € S}. The concatenation of X and Y, denoted X o Y, is the result of

time-shifting the points in Y forward so that their time indices succeed the time indices of

the points in X, then unioning the result with X:

XoY = Xu{Zi: Zi+max{x) = Y,ie S}.

Addendum: The empty trajectory 0 is the concatenative identity for discrete trajectories

(i.e., the concatenation of 0 with any other trajectory X simply results in X):

Xo$ = $oX = X.

Example 3.3.2. Let X = {(0,0)i, (10,10)2} and Y = {(10,10)i}. The following exam­

ples illustrate the use of the concatenation operation defined by Definition 3.3.2.

1. X o Y = {(0, 0)i, (10,10)2, (10,10)3}.

2. Y o (Y o Y) = {(10,10)i, (10,10)2, (10,10)3}.

3. x - (y o y) = {(-10,-10)1,(0,0)2}.

3.4 Summarising Example

Although simple, the definitions, measurements, and operations introduced in this chapter

provide the foundation for a variety of general algorithms that can be used to manipulate,

scale, categorise, and model trajectory data, as the following chapters will demonstrate.

25

1. Initialise A to be the empty trajectory 0, and the current time index t to 0.

2. For as long as the recording process is taking place,

(a) Sample and scale by half values from the functions / and g:

F ^ 0.5 • {F1 = f{t)}.

G<-0 .5 -{Gi = S (i)} .

(b) Concatenate A with the result of adding the two scaled values:

A^Ao(F + G).

(c) Increment the time index:
t+-t + At.

Figure 3.4: Pseoducode for the running concatenation algorithm.

To provide practical summary of many of these concepts, Algorithm 3.4 describes a

practical example wherein a running concatenation of the average of two functions, / and

g, is kept. The algorithm has a simple design: at discrete time intervals of length At,

samples are taken from each of / and g and scaled by half. Their sum is then appended

onto the end of a discrete trajectory, A, as illustrated in Figure 3.5.

0 1 2 3 4 5

t

Figure 3.5: Illustration of the running concatenation algorithm.

26

Chapter 4

Problem Formulation

This chapter formalises the problem of discretising an opening space into categories that can

be used to detect correlations between openings and game outcomes. I will further argue

that an arbitrary discretisation of opening space is undesirable (i.e., each category should

model a particular opening line), and describe empirical tasks to test whether a discretisation

retains an accurate representation of the trajectories that players follow.

4.1 Discretisation

Recall that an individual player's opening space in a tactical shooter contains all of the

openings that can be executed by that player over a fixed timespan starting from the begin­

ning of the game. I argued in Section 1.3 that players do not treat an opening as a singular

action sequence with a predetermined outcome, but rather as a category of many similar ac­

tion sequences (i.e., there are categories of openings). I hypothesise that some categories of

openings in tactical shooters are more likely to produce wins; this can be stated as follows:

Hypothesis: Discretising the opening space of a tactical shooter into regions of

high similarity will reveal correlations between openings and game outcomes.

Such a discretisation may be defined by a mapping. In particular, let Q, be an opening space,

and B be a set (or "book") of categories of openings. Then, given the mapping:

categorise : Q, —> B, (4.1)

each Bj 6 B indexes an exclusive segment of opening space defined by the set:

{Oj G Q : categorise(%) = Bj}. (4.2)

27

Figure 4.1: Illustration of a categorisation of an opening space. Categories are shown
separated by solid lines. A mapping that defines a good categorisation has the effect of
grouping similar behaviours and separating different behaviours, as shown.

With a categorise function, it becomes possible to tally game outcomes by category

in a contingency table (Table 4.1). From here, testing the hypothesis that correlations exist

between openings and game outcomes can formalised as a chi-square test for independence.

Ideally, given an effective categorise function, each B; 6 B will index a set of conceptu­

ally similar openings (i.e., similar according to human intuition), as illustrated in Figure 4.1.

A poorly designed categorise function can result in each B, € B indexing a set of concep­

tually dissimilar opening behaviours, as illustrated in Figure 4.2. In the latter case, even if

significant correlations were to be uncovered, the categories would not provide an intuitive

explanation of the openings that were effective (or not) in play.

Wins Losses Observations

i»2
Totals

10
10
20

20
10
30

30
20
50

Table 4.1: An example of a contingency table showing tallies of wins and losses under two
categories of openings (Bi and B2). The rightmost column cells contain the total number
of observations made for each of the two categories.

28

Figure 4.2: Illustration of a poor categorisation of an opening space. A poor categorisa­
tion can result in grouping conceptually different behaviours (such as standstill and rush
attack (left)), and dividing conceptually similar behaviours (here, for example, the area
corresponding to rush attack (left) is broken into two different categories).

The question of categorisation accuracy is important and warrants the formulation of

an objective measure. The approach I explore is to treat a categorisation as a descriptive

model of play (i.e., a representation that approximately explains how openings are carried

out). This treatment enables the comparison of a categorisation to other (baseline) models

of opening trajectories. The following sections describe empirical tasks towards this end.

4.2 Prediction Task

The prediction task provides an objective measure of how accurately a model may be used

to forecast a partially completed opening trajectory. With reference to Figure 4.1, suppose

a particular discretisation of opening space defines a category of left-field rush attacks. If a

player is observed enacting half of a left-field rush, such a model might be used to infer this

player's future trajectory (in this case, the fully completed left-field rush).

Any model that excels at the prediction task has potential practical application. In

particular, prediction of a player's actions can be useful in creating adaptive computer-

controlled opponents, or in creating teammates who learn complementary behaviours, or in

generally developing more believable characters who play openings as humans do.

29

predicted continuation

actual continuation

Figure 4.3: A sketch of the trajectory prediction task. Left, a trajectory's initial segment is
shown, its points occurring between time indices 1 and u>. The trajectory's actual continua­
tion after to is shown in grey, and & predicted continuation, is shown with dashed lines. The
predicted continuation is scored in terms of its distance from the actual continuation.

Formal Task Specification

Let X be a constant-interval discrete trajectory containing m points. The initial segment

of X is the sub-trajectory from the initial point in X to an intermediate point 0 < to < m:

X = {Xt e X : t < to}.

The actual continuation of X from this initial segment is the remaining sub-trajectory:

X
UJ+l

= {XteX :t>uj}.

The objective of the prediction task is to recover a predicted continuation, C, that approx­

imates the actual continuation of X. C and the actual continuation of X are trajectories of

the same length (i.e., X o C has the same number of measurements as X). Specifically,

given a training set Ttrain> and a test set T t es t, a model is used to predict as follows.

1. Training Phase: A model B is constructed using the trajectories in T t rain.

2. Testing Phase: Given the initial segment of each T, € Ttest, ® is used to forecast C,

a predicted continuation of T;.

A model B's performance at this task is measured in terms of the average error (i.e., dis­

tance) between B's predicted continuation, C, and Tj's actual continuation:

err = dist C, T.
IT; |

uH-1

30

Figure 4.4: Heatmaps showing entropy in the moments prior to tactical conflict between
teams in Valve's Counter-Strike: Source. This figure illustrates some of the differences
between the decision making of humans (shown left) and bots (shown right).

4.3 Classification Task

The classification task measures how well the construction of a model retains the defin­

ing traits of two characteristically different groups of players. For example, suppose two

groups of players both use a similar set of openings, but with idiosyncratic differences. In

this study, these two groups are human-controlled characters and computer-controlled char­

acters playing in Valve' Counter-Strike: Source [2004]. The characteristic differences can

be visualised, as in Figure 4.4, in terms of the entropy with which players behave when

acting during the game's opening.1

While primarily motivated as an objective measure of the accuracy of a categorisation

of openings, models that excel in this task have practical application in other areas. For

instance, fraud detection (i.e., determining whether or not a player is cheating or using an

unsanctioned interface) may be possible through the recognition of certain kinds of play.

Also, by providing a comparison of computer control and human control, this task covers

new ground in believability testing: the convention is for human judges to rate the believ-

ability of an agent2 (Figure 4.5(a)), but I know of no prior research in programmatically

measuring believability (i.e., by automated means).

1 See Appendix A.4 for details on how entropy values are determined.
2Related work in believability testing is discussed in Section 2.2.

31

Controllers Controllers

(a) Believability testing. (b) Classification task.

Figure 4.5: Experimental set-up for conventional believability testing, left, and the classifi­
cation task, right. In conventional believability testing, a human judge observes a controller
and rates its believability, or human-likeness. In the classification task, a mathematical
model of play, stored on a computer, is used to classify controller type.

Formal Task Specification

Given a set of trajectories Thuman created by human players, a set of trajectories Tbot

created by computer-controlled characters, and a set of unlabelled test trajectories Ttest>
 a

model's ability at the classification task can be empirically measured as follows:

1. Training Phase: A model Bbot is constructed based upon the trajectories in Tbot>

and a model B>human is constructed based upon the trajectories in Thuman-

2. Testing Phase: For each trajectory T* € Ttest the model that best describes Tj is

used to label that trajectory.3

The mean frequency with which trajectories are correctly labelled is indicative of the

classification power of the model, but also of the behavioural differences between human

and computer players. A model that has been shown to excel at classification compared

to other models can provide valuable, automated feedback to a designer concerning how

significant the difference between human-controlled and computer-controlled play is.

3The mechanism for labelling differs with each model, as described in Chapter 5.

32

4.4 Summary

This chapter formalised the problem of distinguishing opening trajectories in combat simu­

lations via a categorise function. This function maps trajectories to categories, and implies

a discretisation of an opening space. This makes it possible to measure correlations between

trajectories and game outcomes, which is essential for meaningful post-game analysis.

To provide a measure of how well a categorise function models the underlying distri­

bution of trajectories, criteria (that it be able to predict and classify between different styles

of play) were described and formalised as empirical tasks. These criteria will facilitate a

comparison of a discretisation to other approaches to modelling trajectory data.

33

Chapter 5

Proposed Trajectory Models

Chapter 4 formulated the problem of discretising an opening space. This chapter introduces

the approach of deriving prototype trajectories, via cluster analysis, from a set of example

trajectories, T. To put into context the accuracy with which these prototypes model T's gen­

erating mechanisms, two additional models are introduced: (1) a probabilistic (Markovian)

model of transitions through discrete states, and (2) a model based on nearest neighbour

estimates. Sketches of these three techniques are shown in Figure 5.1.

In the following sections, each technique is described in terms of its formal representa­

tion, its derivation from sample trajectory data, and definitions of corresponding the predict

and classify functions that facilitate an empirical comparison of the three models.

Figure 5.1: Sketches of different ways to model the generating mechanism for the trajec­
tories being followed in a spatial environment. Left, the trajectories may be assumed to be
following prototypes; middle, the trajectories may be thought of as a series of probabilistic
transitions between states (illustrated here with circles); or, as shown right, all observed
trajectory data can be retained to make generalisations using nearest neighbour estimation.

34

Figure 5.2: Illustration of a Voronoi tessellation.

5.1 Opening Book Approach

This approach is based on modelling trajectories with a set of prototypes.1 The following

subsections describe such a model's mathematical representation, its derivation via cluster

analysis from a set of example trajectories T, and definitions of the predict and classify

functions that will facilitate an empirical comparison to the forthcoming baseline models.

5.1.1 Representation

Prototype modelling involves the definition of a set (or opening book) of K representative

trajectories in an opening space, fi. In general, any non-prototype trajectory (i.e., £lj €

Q, \ B) is assumed to be an individual variation of the prototype to which it is nearest.

Definition 5.1.1. An opening book of trajectories is simply defined by the set l e f i :

B = {Bi,B2, • •• ,BK},

As a means of discretising opening space, a trajectory £lj e Q is categorised as:

categorise(fij) = argmin(dist(Bj,f2j)), (5.1)
B^eB

which defines a Voronoi tessellation of a state-space, as illustrated in Figure 5.2.

'When the number of prototypes is as large as the number of elements in the dataset, this approach is
equivalent to nearest neighbour estimation with neighbourhoods of size one (see Section 5.3).

35

As stated in Section 4.1, tactical simulations accommodate countless variations over

conceptually similar trajectories. This approach is hypothesised to lead to greater data

efficiency by retaining a reduced set of prototypes that represent the complete dataset.

5.1.2 Derivation

I explore two approaches to deriving prototype trajectories via cluster analysis. These are

the K-means clustering algorithm, a simple and popular prototyping approach to clustering,

and the K-medoids clustering algorithm, a similar approach with potential benefits over K-

means. Each of these algorithms are described in greater detail in Appendix A.

Approach 1: Derivation by K-means

if-means partitions a set of elements into spatially related subsets by iteratively refining

a set of prototypes called centroids. To apply K-means clustering to trajectory data, the

notion of the centroid trajectory of a set of trajectories must be defined.

Definition 5.1.2. Let T be a set of n discrete trajectories, T = {Tj, T 2 , . . . , T n } , The

centroid trajectory of T results from uniformly combining each Tj e T:

c=£(iJJi)- <«)

This definition enables the general K-means algorithm to be applied over trajectory data.

Approach 2: Derivation by K-medoids

The K-medoids algorithm strongly resembles the K-means algorithm. Here, however, pro­

totypes must exist in the data (i.e., B C T), and are selected to minimise the average dis­

tance from points in the set. K-medoids can be less sensitive to outliers than K-means [Han

and Kamber, 2006] and, in the context of trajectory data, guarantees that the prototype obeys

the geometric constraints of the environment in which the set T was generated (Figure 5.3).

5.1.3 Prediction

Recall that the prediction task provides an objective measure of how accurately a model

may be used to forecast a partially completed trajectory, X. Performing this task with a set

of prototypes involves searching for the prototype with the closest initial segment to X.

36

medoid centroid

Figure 5.3: Comparative illustration of centroids and medoids in a constrained geometric
environment. Left, the medoid of a set of trajectories will obey the geometric constraints of
the environment in which the set was generated. This guarantee does not hold for a centroid
over the same data, shown right, which may end up passing through obstacles or violating
other strategic or environmental constraints.

Specifically, let X be a constant-interval discrete trajectory containing m points, and B

be a set of K prototypes. The first step is to locate the trajectory Bj 6 B whose initial seg­

ment is closest to X. This is B, = argmin (dist(Bj, X) 1. The next step is to determine
iGB

the actual continuation of Bj up to time-step m, which is
LU+l

Combining these steps

provides the following definition of prediction using a prototype model:

predict(X) = argmin (dist(Bj, X))
UJ+l

(5.3)

5.1.4 Classification

Recall that the classification task tests a model's ability to retain the characteristic traits of

a group of players. Here, given a query trajectory X to classify, the idea is to determine

which of two specialised prototype models contains the closest trajectory to X.

Specifically, let X be a constant-interval discrete trajectory, and Bhuman and Bbot be

prototype models derived from separate datasets of human and bot trajectory data. For each

g G {human, bot}, the closest trajectory to X is found (this is Y9 — min (d\st(X,Y)).

X is then associated with the model that produced the nearest Y9:

classify(X) — argmin (min (dist(Y, X))
g€{human,bot} V ^ B g

(5.4)

37

H >
1 2 3

Figure 5.4: Illustration of a simple Markov model of trajectories with states represented by
circles and transition probabilities represented by labelled arrows. Here, states are defined
as S = {S1S2}, where S\ = {S\} and S2 = {S^, <Sf}; the transition function P is defined
as Pi(l, 1) = 2/3 and P2(l , 2) = 1/3.

5.2 Markov Model of Trajectories

The Markov model provides a baseline for comparison against the prototype model's ac­

curacy in modelling T. It is based upon a Markov chain [Markov, 1971], which is a math­

ematical model of state transitions characterised by conditional independence of history,

transitions over discrete time-steps, and stochastic transitions between states; these charac­

teristics may lead to an appropriate representation of goal-directed trajectory data.

Specifically, the Markov model of trajectories is defined by time-organised states and

the probabilistic transitions between them. The derivation of such a model from data in­

volves clustering visitation locations at each time-step, the cluster centres defining states,

and inferring transition probabilities between states based on the paths of trajectories.

5.2.1 Representation

A Markov model of trajectories (Definition 5.2.1) is a Markov chain with additional

spatio-temporal information, as illustrated in Figure 5.4. Each state is situated in a par-

2 -

38

ticular point in space, and timing information is explicitly conveyed by subdividing the set

of states based on time.2

Definition 5.2.1. A Markov model of trajectories is the tuple (S, P), where:

• S = {Si, i>2,..., Sq} is a set containing sets of states subdivided by time index:

- Si G S is a set of states whose time index is i, and

- S3
{ G S% is a state with a location in Rn,

• P is a transition function, where Pt(i,j) gives the probability of transitioning from

state Sf to state •SL.j. As an additional notational convenience, P^ (i,j) gives the

probability of transitioning from state SI to state Sf+n over the course of n time-steps.

5.2.2 Derivation

Let T be a set of constant-interval discrete trajectories (Figure 5.5(a)). The derivation of a

Markov model of trajectories occurs in two phases. In the first phase a set of states S is

derived from T; in the second phase a transition function P is inferred to define transition

probabilities between each of the states in S.

Phase 1: Deriving States

The first phase in constructing a Markov model of trajectories is the derivation of states,

S, from trajectory data. In this derivation, the number of states per time-step is defined a

priori—the function K : N —> N defines the number of states at time t?

Let T be a set of trajectories, where an individual point occurring at time t along some

trajectory Tj G T is denoted Tj(£). The process of deriving states from trajectory data

is described in Algorithm 5.2.1: In step 1, the points occurring across all trajectories are

divided by time of occurrence (Figure 5.5(b)). In step 2, if-means clustering is performed

within the resulting sets (Figure 5.5(c)). Finally, in step 3, each S\ is defined by the centres

of the resulting clusters (Figure 5.5(d)).
2Timing information can be implied by the transition function; it is explicit here for notational convenience.
3The function n could be automatically derived using the Gap statistic [Tibshirani et al, 2001]; in this

study, however, K is hand-selected.

39

Algorithm 5.2.1 Markov state derivation.

1. For t from 1 to m, create a set Rt containing all points that occur at time t:

Ti€T

2. For t from 1 to m, apply if-means clustering with K — n(t) to Rt to derive a set of
clusters:

Gt = {Gf> • • -Gt }•

3. For each G\, define S\ to be a Markov state whose centre is the centroid of G\.

Algorithm 5.2.2 Markov transition probability inference.

1. For t from 1 to m, let Gt = {Gj,..., Gf} be as derived in Algorithm 5.2.1.

2. Infer Pt(i, j), the probability of a trajectory transitioning from each G\ to each GJ
t+1:

(a) For each G\, let T be the set of trajectories that pass through G\:

T <- {X e T : Xt € G\)

(b) For each GJ
t+1:

i. Let V be the trajectories in T that also pass through G3
t+1:

V^{XET:Xt+1EGl+1}.

ii. Define the transition probability with a frequentist ratio, Pt(i, j) m
\T\-

Phase 2: Inferring Transition Probabilities

The second phase of deriving a Markov model of trajectories lies in inferring the proba­

bilistic links between the individual states derived in the Phase 1. The points along each

trajectory in T can be mapped to one of the states defined in Algorithm 5.2.1 (Figure 5.5(d)),

and in this way each trajectory adds to a record of state transitions over time. By observ­

ing the frequencies of these transitions, transition probabilities can be inferred by taking

frequentist counts of the transitions between different clusters.

The process of inferring transition probabilities is described in Algorithm 5.2.2. Using

the same set T and the clustering G that was used earlier to derive states (step 1), the

algorithm counts the trajectories that pass through each cluster G\ at time t (step 2(a)). Next,

40

R, /?,

(a) (b)

-> o

(c) (d)

Figure 5.5: Constructing a Markov model, as described in Algorithms 5.2.1 and 5.2.2. Here,
«(1) = 1 and re(2) = 2 (i.e., the derivation will create 1 state for the first time-step and 2
states for the second time-step).

the algorithm counts the number of trajectories that pass through G\ and G\+l (step 2(b)).

These two counts form a frequentist ratio that determines the probability of transitioning

between states S\ and S3
t+l.

5.2.3 Prediction

To predict future points from a trajectory's initial segment, a Markov model of trajectories

can be used to define a probabilistically-weighted sequences of future points. Figure 5.6

illustrates how a trajectory that has been observed up to some nearby Markov state S can be

forecasted as the probabilistically-weighted successors of S (i.e. J2 {P{S, S') • S')). This
S'

process is formally described in Algorithm 5.2.3.

41

2 H

1 H

->• o

Figure 5.6: Predicting with a Markov model of trajectories involves building a predicted
sequence of points by combining probabilistically weighted future points defined by the
model (left), which are then concatenated into a predicted continuation (right).

Algorithm 5.2.3 Definition of predict(X) for Markov models of trajectories
Require: A Markov model M = (S, P).
Require: K is a function, K : N —> N

1. Locate the nearest state to X's terminal point at time ui:

i = argmm(Sl,Xul).

2. For t from 1 to m - w, iteratively construct a predicted continuation, R, by concate­
nating a probabilistically weighted sequence of the successors of S^,:

R+-Ro\ Y, P£\iJ)-Sl 'w+t

5.2.4 Classification

Classification with Markov models of trajectories involves determining each model's like­

lihood of having generated a given query. Specifically, let X be a constant-interval discrete

trajectory, and Mhuman and Mbot be Markov models of human and bot trajectories re­

spectively. For each g e {human, bot} and each Xt 6 X, let A9 indicate the nearest

simultaneously-occurring Markov state defined by the model M.g. X is then classified as:

' l*l-i
classify^) = argmax I \ \ P\t] {A9

t, A
9
+l) \ .

gG{human,bot} y t _ j
(5.5)

42

2 ^ X(l)
'4/5

1/5

^

-•X(2)

X(l)

X(2)

Figure 5.7: Classifying with a Markov model of trajectories is the process of determining
which of two models is more likely to have produced a query trajectory X. On left, the
superimposed model is determined to have a probability of 1/5 of having generated X.
The superimposed model on right has a probability of 1/3 of having generated the same X.

5.3 Nearest Neighbour Estimation

The fc-Nearest Neighbours (fc-NN) model provides another baseline for comparison against

the prototype model. Among the simplest of machine learning algorithms [Dasarathy,

1990], fc-NN is characterised as a lazy learning technique because it postpones data gen­

eralisation until a query is made [Aha, 1990]. It has wide applicability, for instance, in

recommender systems [Adomavicius and Tuzhilin, 2005], and typically performs well on a

variety of practical tasks [Michie etal, 1994].

In fc-NN a query is generalised by looking at the neighbourhood of nearest points that

surround it (i.e. a set containing fc of the closest points according to a distance metric,

as in Algorithm 5.3.1). This neighbourhood is then used to make claims about the query,

sometimes using distance weighting to reduce the influence of very distant neighbours.

5.3.1 Representation

Definition 5.3.1. A fc-NN model of trajectories is the tuple (T, fc,, <p), where:

• T is a set of discrete trajectories,

• fc e Z + is the size of neighbourhoods that will be expanded around a query trajectory,

<p is a distance-weighting parameter.

43

Algorithm 5.3.1 fc-NN algorithm.
Require: X is a query.

1. Initialise N to be the empty set: N <— {}.

2. Until \N\ = fc, add to iV the nearest trajectory Tj 6 T not already in iV:

iV <- N U < argmin(dist(X, T<))
I TiGT\AT

3. Return the set of neighbours N.

•

A'''

A

•
I
1
I

l

A

'A

•

Figure 5.8: Examples of neighbourhoods using Euclidean distance in R2. The query is
represented by an open circle, and the shape of the other points indicates their class. Shown
left, a neighbourhood can consist of the nearest point to the query (1-NN), or of several
nearest points (i.e., 4-NN, shown middle). Shown right, the makeup of a neighbourhood
may not be as telling as the distance between the query and the points in its neighbourhood.

5.3.2 Prediction

Recall that the prediction task tests a model's ability to predict the continuation of a query

trajectory X from its initial segment. Nearest neighbour estimates can be used to predict a

trajectory's continuation by linearly combining the actual continuations of the trajectories

whose initial segments neighbour the initial segment of X.

Specifically, let X be a constant-interval discrete trajectory of length m, whose initial

segment is known up to time-step to, and IK be a fc-NN model IK = (T, k, <p). X's neigh­

bourhood, N, is found based on initial segments (Algorithm 5.3.2). Next, distance weights

for each T e N are determined according to the distance-weighting parameter, <p:

dist(Q,T)-v
a(T)

^ d i s t C S . Q) - * '
SeN

(5.6)

44

Algorithm 5.3.2 Determining fc-NN based on an initial segment of X.
Require: X is a query.

1. Initialise iV to be the empty set: N <— {}.

2. Until |JV| = fc, add to N the nearest trajectory Tj <E T not already in N:

N *- N U \ argmin(dist (X, Tt))
I Tj€T\iV !

3. Return the set of neighbours N.

Finally, each T e iV is linearly combined with weights specified by a:

predict(Q)= (^ a (T) . T]
\T€N J

(5.7)

w + i

5.3.3 Classification

For Classification a neighbourhood is derived from the combined trajectory data to perform

a distance-weighted variation of a majority vote.

Let X be a constant-interval discrete trajectory, and DChuman = (Thumam k, ip) and

Kbot = (Tboti k,(p) be Markov models of human and bot trajectory generators respec­

tively. First, the data from both models is combined (i.e., Th U T6) and fc-sized neighbour­

hood is derived from the combined data. Each trajectory votes with distance-weighting

using its own label. The label with the highest tally is used to classify X:

classify(Q) = argmax I y . a(T)
ge{human,bot} \ T e (j v n T 9)

5.4 Summary

This chapter introduced an approach to discretising an opening space in a tactical shooter by

means of prototype modelling. For validation of this 'opening book' by empirical analysis,

two alternative models to serve as baselines were established, one based on states and prob­

abilistic transitions, and the other based on nearest neighbour estimates. The next chapter

describes an empirical study that will demonstrate that this proposed discretisation retains

an accurate representation compared to the baselines.

45

Chapter 6

Empirical Study

This chapter describes an empirical study of the three models described in Chapter 5. The

experimental platform is Valve's Counter-Strike: Source [2004], a tactical shooter in which

strategy is vital. Following a brief introduction to Counter-Strike, this chapter describes

results for the prediction and classification tasks, and results that demonstrate that a selective

discretisation of opening space can reveal significant correlations between a human player's

actions and the outcome of a game.

6.1 Counter-Strike: Source as an Experimental Platform

Counter-Strike: Source (CSS) is a computer video game that simulates combat in a spa­

tial environment with obstacles, overpasses, ramps, areas of dark and light, and realistic

physics. CSS ranks in the top ten of a 2007 Nielsen ranking of video games [Nielsen Media

Research, 2007] and the franchise has been a subject of study in tactical behaviour [Manni-

nen, 2001], network traffic analysis [Chang etal, 2002], and ethnography [Vesterby, 2002].

6.1.1 Game Dynamics

CSS gameplay involves competition between two teams; generally, one team assumes the

role of attacker and the other team assumes the role of defender. CSS focusses on realistic

combat (tactical errors are heavily penalised) and calculated strategic play (superior strategy

reliably leads to tactical dominance)—as shown in Figure 6.1, the loss of even a single

teammate is strongly correlated with a reduced probability of winning a match.

46

Pr(win) vs. Teammate to Opponent Ratio

5

1

0.8

0.6

0.4

0.2

0

i i i i

+ y

-
*

t

V
+ /

* /

/+

i i i i

+

Sampled Pr(win)
" "*y+ Cubic Regression Line -

I

+

i

-

-

-

-

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Teammate to Opponent Ratio

Pr(win) vs. Teammate to Opponent Ratio

1

0.8

0.6

0.4

0.2

0

^
•'+ +

+

i i i i i i i

/

Sampled Pr(win)
Cubic Regression Line •

i i i i = i i i

i

+

-

-

-

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Teammate to Opponent Ratio

Figure 6.1: Plots showing the relationship between the ratio of teammates to opponents
and the probability of winning in dustl. The graph on the top shows results for human
gameplay; the graph on the bottom shows results for bot gameplay. The correlation is
similar for both groups, and illustrates the significance of losing a teammate.

While not immersive in every respect,1 CSS's realism accommodates many real-world

military tactics (e.g., ambushes, rushes, flanking maneuvers, and tactical formations). En­

vironments are recycled across matches, which results in high player familiarity. Manni-

nen [2001] describes the result as "highly developed playing routines, such as common

tactics, specific roles of team members, and order of actions—in the extreme the game ses­

sion gives out the feel of observing robots doing their tasks." The result is the repeated

execution of specific openings, making CSS openings ideal for prototype modelling.

'Barlow and Morrison [2005] describe a variety of ways in which most combat simulations—including
Counter-Strike: Source—diverge significantly from realism.

47

Figure 6.2: Overhead views of CSS's popular dust! map. Left, the environment's graphical
properties are illustrated. Right, labels indicating key landmarks and routes superimpose
an illustration of the environment's geometric properties. The square region populated with
five circles is the spawn area for attackers; the square region populated with five squares is
the spawn area for defenders. The attacking team is tasked with attacking one of the sites
labelled A or B, and the defending team is tasked with defending them.

Typical of the genre, game state information comes to each player through a situated

view frustum that depicts the perspective of a specific game character (see Figure 1.3 on

page 4). As a result, players rarely know the state of the world or the locations of other

players, especially as the opening phase (Definition 6.1.1) of a game round develops.

Definition 6.1.1 (Opening Phase). I define the opening phase of a CSS game round to be

the time spanning from when players are first able to act to the moment tactical conflict

occurs (i.e., a player is damaged or eliminated from play) or to a specified time limit.

This study focusses on the CSS virtual environment (or map) called dust2, a popular

setting for tournament play (Figure 6.2). Attackers and defenders begin play within their

respective spawn areas (Definition 6.1.2). The attacking team attempts to transport an

explosive to one of sites A or B; the defending team tries to prevent this, and can win by

defusing a planted explosive. Either team can win by eliminating all of the opposition.

Definition 6.1.2 (Spawn Area). The spawn area is a region within which players are ran­

domly placed when a game begins. The players of opposing teams are typically spawned

far away from one-another, which allows for strategic development in the form of openings.

48

Figure 6.3: Illustration of the opening phase of a match in CSS's popular map dust2. At­
tackers are represented by filled circles, defenders by filled squares. Here, a rush attack is
launched via the tunnel, while the defense split their forces between the middle and site A.

6.1.2 Gameplay Example

The following example demonstrates important aspects of CSS gameplay during the initial

stages of a match. In particular, this example shows how a team's strategic choices can

translate into tactical advantages—or disadvantages. This example is divided into three

stages: (1) an initial stage wherein players load in their spawn locations, (2) a stage during

which each team executes an opening, and (3) a stage of tactical conflict.

Stage 1: Spawn and Freeze-time

When a match begins, the players of each team are randomly positioned in their respective

spawn areas (Figure 6.2, right). In dust2, the attacker spawn is located in the map's southern

region and the defender spawn is located in the map's northern region. After the players

have been positioned, a specified 'freeze-time' elapses. During this time players can trade

in-game currency for equipment upgrades, or formulate a strategy.

49

Figure 6.4: Illustration of the 'middlegame' of a match in CSS's popular map dustl. Choices
made in the opening phase can strongly influence the later game. Here, the attackers have
developed a strong base near site B, putting the defending team at a tactical disadvantage.

Stage 2: The Opening Phase

When the freeze-time elapses, the game is unpaused and the players can move. Due to the

distance between spawn locations in dust2, both teams act with limited information of their

opponents' activities.2 In Figure 6.3, all five attackers engage in a rush attack on site B

through the tunnel. Meanwhile, the defenders have split into two groups: two defenders are

sent to guard site B, while the remaining three move to watch the middle of the map.

Stage 3: Tactical Conflict

When the members of opposing teams come face-to-face, strategic choices made in the early

game translate into clear tactical advantages. In particular, the attackers have developed

positions near site B before an organised defense could be established (Figure 6.4).

2The dust2 map features a line of sight that runs vertically from the attacker spawn up towards the top of
the map; players can and occasionally do stop to attack each other from across the map.

50

6.1.3 Description of Data

The data consists of automatically sampled player locations3 from two sources. The first is

human gameplay (i.e., the only participants are human players).4 The second source is bot

gameplay, as carried out by Michael Booth's official CSS bots [2004],5 (see Section 2.1.4).

Obvious outliers have been removed from the human data (see Appendix B). The remaining

data consists of 264 human matches and 252 bot matches which contain a total of 2640 and

2520 recorded trajectories respectively, split between attackers and defenders.

6.2 Categorical Analysis of Game Openings

This section describes exploratory data analysis of the trajectories that arise from human

and bot behaviour in CSS. The objective is to analyse ways in which an individual player's

behaviour can influence the outcome of a game, and ways in which humans and bots differ.

6.2.1 Experimental Setup

Opening book models for the attacking and defending teams, labelled O ar>d D respectively,

are constructed using prototypes derived from if-means clustering6 with K = 5:

0 = { O o . O l , 0 2 , 0 3 , 0 4 },

• = { Do, Di, D2, D3, D4 }.

The selection of K = 5 maintains adequate sample sizes across categories while captur­

ing a variety of different trajectories that players follow. To create prototypes only out of

uninterrupted openings, those openings in the data containing less than 10 points were with­

held during model construction; the resulting set contains 175 human games (with 875 total

trajectories per team) and 169 bot games (with 845 total trajectories per team).

After model construction, every trajectory in the data—including any trajectory contain­

ing fewer than 10 points—is mapped to its associated prototype, and the end-game outcome

with which it is associated (win or loss) is tallied in a contingency table.
3The raw data contains additional information, including heading, weapon selection, etc. For a complete

description, refer to Appendix B.
4Gameplay logs were collected from a large competitive tournament called Fragapalooza [Fragapalooza,

2008] by the Alberta Ingenuity Centre for Machine Learning (AICML) in July 2006 and 2007.
5I wish to extend my gratitude to Stephen Hladky for collecting this data.
Prototypes imply a categorise function that discretises an opening space, as described in Section 4.

51

Figure 6.5: Illustration of prototype trajectories. Numbered circles indicate trajectories
followed by attackers, originating from the bottom of the map. Numbered squares indicate
trajectories followed by defenders, originating from the top of the map.

6.2.2 Results for Human Play

The results for human play reveal significant correlations between the trajectory an indi­

vidual player chooses to follow and the outcome of a game. A labelled illustration of the

resulting prototypes is presented in Figure 6.5, while the corresponding contingency tables

with entries for each prototype are presented in Table 6.1.

The prototypes cover a variety of different opening trajectories. Some of the trajectories

extend purposefully towards key strategic locations on the map (i.e., Oo> C>3> O2. a nd Do,

• 2 , O3), while others remain close to spawn areas, possibly indicative of a late start.

O i
Oo
O i
0 2
0 3
0 4

Total

Win
167
167
213
92
56

695

Lose
116
120
196
124
69

625

Total
283
287
409
216
125

1320

Win Rate
0.59
0.58
0.52
0.43
0.45
0.53

• i
• 0
• 1
• 2
• 3
D4

Total

Win
159
117
116
97
131
620

Lose
141
155
121
121
162
700

Total
300
272
237
218
293
1320

Win Rate
0.53
0.43
0.49
0.44
0.45
0.47

Table 6.1: Contingency tables for human players. The contingency table for openings asso­
ciated with the attacking and defending teams are shown on the left and right respectively.

52

Figure 6.6: Visualisation of locations visited when human players follow O o and 03>
shown left and right respectively. O o has higher visitation frequency towards the top of the
cropped region, while O 3 has higher visitation frequency towards the bottom-right.

The win rates are consistently close to average (i.e., there are no overwhelmingly 'good'

trajectories to follow); this is an expected result, as CSS is a professional offering for which

gameplay has been carefully engineered to be fair and balanced for both sides.

One striking result is how prototypes O o and O 3 produce significantly different7 out­

comes despite resembling one-another. Close inspection of the point locations at which

these trajectories begin (i.e., the locations within which players randomly spawn), as shown

in Figure 6.6, reveals that players who take one of O o o r O 3 and go on to win are signifi­

cantly8 more likely to have spawned further left than losing players. The location in which

a player randomly spawns may impact his ability to succeed with a particular opening.

Another striking result concerns the defender prototypes. Specifically, there is a signif­

icant difference9 between game outcomes resulting from Do and CI4, which are both char­

acterised by leftward movement. This may be because attackers tend to travel along the

extreme left and right sides of the map; defenders enacting EI4 may engage fewer attackers.

7Fisher's exact test for independence gives a two-tailed P value of 0.0003.
8 An unpaired i-test of the trajectories' initial x coordinates yields a two-tailed P value of 0.0170.
9Fisher's exact test for independence gives a two-tailed P value of 0.0487.

53

Figure 6.7: Illustration of prototype trajectories derived from bot data. Prototypes indi­
cated with numbered circles are derived from members of the attacking team, while those
indicated with numbered squares are derived from members of the defending team.

6.2.3 Results for Computer Play

The results for computer play, illustrated in Figure 6.7 and tabulated in Table 6.2, reveal

fewer unexpected correlations between individual agent behaviour and game outcomes.

However, Figure 6.7 highlights key differences between computer play and human play.

First, the bot defense strategies are shown to closely resemble human defense strategies,

while bot attack strategies involve significantly more travel through middle of the map (in

particular, bot strategies O3 and O4 constitute almost half the data for bots).

• i
• 0
• 1
• 2
• 3
• 4

Total

Win
103
180
72
143
112
610

Lose
122
194
75
166
93
650

Total
225
374
147
309
205
1260

Win Rate
0.46
0.48
0.49
0.46
0.54
0.48

Oi
Oo
O i
O2
Os
O4

Total

Win
93
82
74
193
208
650

Lose
96
64
75
191
184
610

Total
189
146
149
384
392
1260

Win Rate
0.49
0.56
0.50
0.50
0.53
0.52

Table 6.2: Contingency tables for bot players. The contingency table for openings associ­
ated with the attacking and defending teams are shown on the left and right respectively.

54

Model
Opening Book
Opening Book
Markov Model

fc-NN

Parameter Range
1 < K < 50
1 < K < 50
1 < m < 50
1 < k < 50

Cross-validation
10-fold
10-fold
10-fold
10-fold

Other
if-means derivation

X-medoids derivation
K{t) = y/\ + 500mt
a(T) = dist(T, Q) - 1

Table 6.3: Experimental settings for models applied to the prediction task.

Additionally, some of the defense strategies that appear analogous between the two

groups (e.g., human Do and hot Do; human D2 and hot D ^ have disparate win rates,

although the differences are not statistically significant. Testing with a larger dataset may

potentially reveal that openings that work well for humans do not necessarily work well for

bots—an observation Hyatt makes of human and computer chess players [1999].

The trajectories analysed in this section do not take into account the actions of oppo­

nents or teammates.10 Despite this, the results presented in this section demonstrate that

cluster analysis can be useful in revealing significant correlations between an individual

player's actions and his or her team's chances for success. However, it remains to be shown

whether these prototypes retain an accurate representation of the trajectories that actually

occur in play. The proceeding sections, wherein prototyping is compared to other modelling

approaches in tasks of prediction and classification, are designed to address this question.

6.3 Empirical Results on the Prediction Task

The prediction task is a test of a model's ability to estimate a complete trajectory from its

partial execution (see Section 4.2). The following sections detail the experimental setup

and results attained by each model on human trajectory data over a range of parameters.

6.3.1 Experimental Setup

Experiments are run over four models of trajectory data. Their settings are tabulated in

Table 6.3. In addition, to test a model's ability to predict every trajectory in the dataset,

ten-fold cross-validation is employed (see Appendix A.3) for each model.

Two prototype models are constructed (Section 5.1), one using K-means to derive pro­

totypes and one using K-medoids to derive prototypes. For each, the parameter K (indicat-

I0Opposing players often do interact in the opening phases of play in dust2 (refer to the footnote on page 50),
and teammates regularly influence one-another's behaviour when enacting cooperative strategies.

55

ing number of prototypes) is explored from 1 to 50 in increments of 1. A Markov model of

trajectories (Section 5.2) is explored with its state-size parameter m ranging from 1 to 50,

also in increments of 1 (this m affects the number of Markov states at time t according to

the function K(£) = y/1 + 500m£). Nearest neighbour estimation (Section 5.3) is similarly

explored for neighbourhoods of size 1 to neighbourhoods of size 50 in increments of 1; the

trajectories in each neighbourhood are uniformly weighted (i.e., a(T) = dist(T, Q)~'1).

6.3.2 Results

The Opening Book approach using if-means derived prototype trajectories quickly set­

tles on a prediction error of around 800 (Figure 6.8, top-left); the same approach using

if-medoids derived prototypes has similar results (Figure 6.8, top-right), maintaining a rel­

atively steady error rate of around 775 including and after K = 10.1! In general, derivation

using either technique (if-means or K-medoids) appears to yield similar results.

K-means Prediction Error K'-medoids Prediction Error

2500 " "

2000

1500

1000

500

:i
2500

2000

1500

1000

i

i

- 1
i

i

i

i

i

i

i

1

i

1 _

-

-

-

i

10 20 30 40

Number of Prototypes, K

Markov Model Prediction Error

50 10 20 . 30 40

Number of Prototypes, K

fc-NN Model Prediction Error

50

850

800

750

700

650

6 0 0

i

. 1"~~\.̂

0

i

T , .

,
10

1 I

„-\J/~/v---^+''\/n

20 30

Model Size, m

i

/ V r / v

40

I

-

-

_
'VI

860

800

750

700

650

6 0 0
50

1

- '

"

^J" ~~\S" Jt^~.

/"^

,.._

1 1

1.

1
-

-

10 20 30 40

Number of Neighbours, k

50

Figure 6.8: Prediction error for each of the four models, if-means and if-medoids are
shown top-left and top-right respectively; the Markov model and nearest neighbour estima­
tion are shown bottom-left and bottom-right respectively. Error bars show standard error.

"As K increases to the size of the dataset, any prototype model will eventually be equivalent to nearest
neighbour estimation with k = 1, which, as illustrated in Figure 6.8, produces results close to 775 as well.

56

Actual
Continuation

1

-
Initial

Segment

1

^

t\ //

•y

K-medoids
Prediction

(A = 575.76)

Figure 6.9: Qualitative examples of predicted continuations generated by a if-means model
with K — 41 and a K-medoids model with K = 33. These predictions differ from the
actual continuation (shown left) by the amount indicated by the variable A.

The Markov model and nearest neighbour estimation produce superior prediction ac­

curacy to the prototype models. The Markov model attains a best prediction accuracy of

646.89 at m = 13—the best of any of the four models (Figure 6.8, bottom-left). Nearest

neighbour estimation attains a best prediction accuracy of 678.27 at k = 9, after which the

prediction error increases with increasing values of k (Figure 6.8, bottom-right).

Qualitatively, each model tends to produce smooth trajectories that resemble actual

character movement within CSS. To provide intuitive examples of the relationship between

trajectories and the distances between them, Figures 6.9 and 6.10 illustrate predictions from

various paramaterisations of the models on an example initial segment.

I Actual vv '* '
J Continuation \ \ p V
itilBI \ \

Initial iniuai / j i
Segment l _ _ i c y

Markov
Prediction

(A = 1043.96)

i

\
1

1

i 1
i

fc-NN
Prediction

(A = 85fi 04)

•

\: : \
. - 1! \

... A 1 /
«'

" • *

Figure 6.10: Qualitative examples of predicted continuations produced by the Markov
model with m — 13 and nearest neighbour estimation with k = 41. These predictions
differ from the actual continuation (shown left) by the amount indicated by the variable A.

57

Model
Opening book
Opening book
Markov model

A;-NN

Parameter Range
1 < K < 50
1 < K < 50
1 < m < 50
1 < k < 50

Cross-Validation
10-fold
10-fold
10-fold
10-fold

Other
Jf-means derivation

K-medoids derivation
K(t) = y/1 + 500mt
a ^ ^ d i s t ^ Q) " 1

Table 6.4: Experimental settings for models applied to the classification task.

6.4 Empirical Results on the Classification Task

The classification task measures a model's ability to help discern the trajectory data pro­

duced by two different groups (see Section 4.3). The following sections describe the exper­

imental setup and present results comparing the empirical performance for each model.

6.4.1 Experimental Setup

The experimental settings, tabulated in Table 6.4, are the same as in the prediction task

(Section 6.3.1). Specifically, paramaters for each model are explored from 1 to 50, and

ten-fold cross-validation ensures that each model is tested on each trajectory at least once.

6.4.2 Results

Classification accuracy attained by the 'Opening Book' models, consisting of either K-

means or X-medoids derived prototypes, is shown to improve as K increases (Figure 6.11,

top). The performance of these two models is revealed to plateau early on with classifi­

cation accuracy just below 90%; the curvature of the plots suggest diminishing returns for

increasingly large values of K. The sample confusion matrices presented in Table 6.5, top,

reveal no strong biases in the models towards correctly identifying bot or human play.

K-Means Opening Book .RT-Medoids Opening Book
Class

Human
Bot

Correct Incorrect
767 108
775 70

Accuracy
87.7%
91.2%

Class
Human

Bot

Correct Incorrect
778 97
726 119

Accuracy
88.9%
85.2%

Markov Model Nearest Neighbour Estimation
Class

Human
Bot

Correct Incorrect
605 270
771 74

Accuracy
69.1%
91.2%

Class
Human

Bot

Correct Incorrect
875 72
826 19

Accuracy
92.2%
97.8%

Table 6.5: Confusion matrices for K-means and if-medoids derived with K = 50 and 35
respectively, for the Markov Model with m = 40, and for nearest neighbours with k = 1.

58

1

0.9

0.8

0.7

0.6

0.5

K-means Classification Accuracy

i i i i i i

^ | 1 -> ¥~

- r—-^~^
- /
-

i i i i i i

K-medoids Classification Accuracy

10 20 30

K

40 50

Markov Model Classification Accuracy

1

0.9

0.8

0.7

0.6

0.5

1 1 1

/
- /

/
" /
- 1

1 1 1

1 1

' -^—

1 1

1

—+-

1

1

0.9

0.8

0.7

0.6

0.5

Nearest Neighbours Classification Accuracy

i i i t i >

- - ^ - ^ . ^ _ _^_^_ ^

-

-

i i i i i i

10 20 30

m

40 50 10 20 30 40 50

Figure 6.11: Classification accuracy for each model, isf-means and K-medoids derivation
of prototypes are shown top-left and top-right, respectively; the Markov model and nearest
neighbour estimation results are shown bottom-left and bottom-right respectively.

The Markov model of trajectories has the least reliable classification accuracy (Fig­

ure 6.11, bottom-left). A sample confusion matrix (Table 6.5, bottom-left) reveals that this

inaccuracy is primarily due to the model's inability to correctly identify human play. When

the parameter m exceeds 5, the model's classification accuracy plateaus significantly. This

weak result is contrary to the Markov model's superior performance on the prediction task.

Nearest neighbour estimation has the best classification accuracy of any of the models

(Figure 6.11, bottom-right). This high level of performance may have been achieved due to

the regularity, or lack of noise, with which bots generate trajectories compared to humans.12

Classification accuracy deteriorates with increasing values of k, which runs contrary to the

earlier result that larger neighbourhoods can benefit prediction accuracy (Figure 6.8). The

confusion matrix for this approach (Table 6.5, bottom-right) reveals that the model reliably

identifies both bot and human play, with a slight bias towards correctly identifying bot play.

12The regularity of bot-generated trajectories compared to human-generated trajectories is supported by Fig­
ure 4.4 on page 31, which shows that bots favor specific channels of travel more than human players do.

59

6.5 Summary

This chapter detailed the results of three empirical studies. The first demonstrated that a se­

lective discretisation of an opening space (here, prototype modelling by means of iif-means

cluster analysis) can help to uncover significant correlations between individual player ac­

tions and game outcomes in tactical shooters. The second and third experiments explored

such a model's accuracy in comparison to baselines. The nearest neighbour approach main­

tained a representation that achieved better classification results, while the Markov model

demonstrated superior performance on trajectory prediction.

60

Chapter 7

Discussion

This chapter provides an overview of the limitations and potential future directions for

the work presented in this study. The limitations that will be described are largely data-

centric and focus on the dataset, how it was used, and the nature of the information that

could be discovered in it. Indications for future work from this research are various: the

consideration of additional distance metrics could prove beneficial, and there are potential

practical applications for the extensions of the techniques described in this study.

7.1 Limitations and Problems Encountered

Three primary limitations can be identified in this study. The first concerns the size of the

dataset that underwent analysis. The second is due to simplifying assumptions that were

made about CSS gameplay. And the third lies in the an inability to recognise the existence

of a causal relationship between openings and game outcomes.

Limitation 1: Dataset

There exists no formal mechanism with which to verify the quality of the gameplay data

used in this study, but there are strong supporting arguments in its favor. In particular,

Fragapalooza [2008] attendees are typically skilled players whose goal is to win the matches

they play; additionally, the games analysed in this study were played over a low-latency

local network connection. The quantity of gameplay examples is more concerning.

The relatively small size of the dataset precludes analysis of the joint strategies enacted

by a team of players, let alone the interplay between two competing teams. For an idea

61

of the data requirements necessary to perform this analysis, consider an over-simplified

opening book consisting of just 2 prototype trajectories. With 2 prototypes for each player

to choose from, a team of 5 identical players can act jointly in one of 6 unique ways. Two

of these teams competing against each other would be able to interact in 6 x 6 = 36 unique

ways. The results of the empirical study in Section 6.2 suggest that sample sizes in excess of

100 games are necessary to make statistically significant comparisons between individual

player choices in Counter-Strike: Source. An adequate sample of games in this simple

setting might exceed 3,600, significantly more than the current 264 in the dataset.

Limitation 2: Missing Gameplay Elements

By considering only spatial trajectories, I disregard several time-variable elements that may

be crucial to CSS gameplay. These elements include movement control variables and the

effects of weapons, equipment, and past rounds of play on the trajectories players follow.

A number of variables contribute to a player's maximum travel speed (i.e., the distance

between the points along the trajectories he or she produces). Players can increase their

character's maximum travel speed by having their character holster its primary weapon, a

riskier alternative to travelling with a weapon readied.1 Players can also make tradeoffs

between speed and stealth.2 While it is true that the spatial trajectories analysed in this

study imply speed by the distance between measurements, they omit the combination of

variables employed by a player to achieve that particular speed of travel.

A number of tactical variables can influence the trajectories players choose. A charac­

ter's equipment and weapon selection can dictate appropriate tactics, thereby influencing

the trajectory the controlling player chooses. Additionally, players can conceal their char­

acter's movement by covering an area with smoke or by blinding opponents,3 and whether

these specific tactics are successful or not can strongly influence a player's future trajectory.

Finally, winners in CSS are determined across multiple rounds of play—it is common for

teams to choose their strategies conditioned on the events of previous rounds of play.

'in CSS, players can choose to wield a weaker auxiliary weapon while carrying their primary weapon on
their shoulder. Doing so enables players to travel quickly at the risk of being caught offguard.

2Players can choose between crawling (which is silent and presents a smaller target, but slow), walking
(which is silent but slow), and running (which generates more noise, but enables a player to travel quickly).

3ln CSS the smoke grenade creates a visibility barrier that players can travel behind unseen. The flashbang
grenade blinds players (both teammates and opponents) whose view frustums are directed at it.

62

Limitation 3: Identifying a Causal Relationship

The analysis in Section 6.2 revealed correlations between game outcomes and the trajec­

tories followed by an individual player; whether this relationship is causal is difficult to

discern for two reasons. First, a player's spatial location may implicitly contain informa­

tion about the state of the game in which it occurs.4 For example, a trajectory leading deep

into enemy territory may only be possible when the area is poorly defended. Second, the

trajectory a player follows may be due to his/her expertise; expert players may be more

likely to win due to their expertise and not necessarily the trajectories they tend to choose.

7.2 Future Work

This section describes future areas of research related to this study. I consider distance

metrics beyond simple straight-line distance that might provide a better approximation to

the distance between points in an environment, other groups among which classification

based on trajectory data can be applied, and the implications of this study for the designers

of computer characters in tactical shooters and combat simulations in general.

Distance Measures

This study employed Euclidean distance to measure distance between points and trajecto­

ries (Section 3.2). However, in CSS and other tactical shooters, in which there are obstacles,

the 'travel' distance between two points can be strongly influenced by the environment. It is

possible that travel distance could be derived from data, by observing the routes players take

when travelling between points in different situations. It is also worth noting that Euclidean

distance is equally sensitive to distance along all axes, but in determining cluster mem­

bership, a distance metric that is variably sensitive along its axes—such as Mahalanobis

distance [1936]—can often be desirable. Intuitively, Mahalanobis distance is a metric for

which the locus of points considered equidistant from a centre may be ellipsoidal. The

distance from a cluster of trajectories with low variance among certain segments (e.g., tra­

jectories with a common source or bottleneck) may be appropriately measured in this way.

4I have attempted to mitigate this risk by cropping trajectories at an early cutoff of 10 points, but because
of the rich input CSS players receive (which includes aural as well as visual input) 1 cannot be certain that the
points along a trajectory do not imply more than mere location.

63

Additional Classification Tasks

There are numerous practical applications of techniques that can reliably classify play.

In this study, I explored the use of trajectory models to discern whether a trajectory was

human-generated or computer-generated. These results concerned two very different groups

that access the game using different interfaces, but the encouraging results suggest that it

may be possible to use precisely the same methods—without introducing any change to the

algorithms—to classify among other categories. For example, the ability to classify among

levels of expertise, based on in-game behaviour, has the potential to complement existing

online ranking systems which pit players against equally matched opponents. The abil­

ity to classify among cheaters and honest players has the potential to complement existing

anti-cheating systems—for example, players who use wallhacks (tools that allow players to

see through walls) exhibit idiosyncratic behaviours that include staring into solid walls or

reacting to opponents before they are visible [Carless, 2004]. Games like Turn 10 Studios's

Forza Motorsport 2 [2007] feature systems that model a player's behaviour for entertain­

ment purposes [Navarro, 2007]; these techniques may prove useful in similar endeavours.

Improving Bots

Despite its rich interactive experience, I have shown that certain elements of CSS gameplay

remain predictable (Section 6.3). It is interesting to consider this alongside the informed

opinion of Steven Polge, the designer behind the computer-controlled players in the popular

Unreal video game franchise [Baker, 2002]:

The definition of "indistinguishable from human opponents" is a moving

target, as games evolve to provide a richer interactive experience. It's not hard

to make an AI indistinguishable from a human for a simple game like Tic Tac

Toe. As the game becomes more complex, it gets harder.

Trajectory models similar to those used in this study can potentially assist bot decision

making during gameplay phases in which characters follow predictable routines.

64

7.3 Summary

This chapter described inherent limitations and future directions for my study. The majority

of the limitations indicate a shortage of player data. Additional data would enable the anal­

ysis of important gameplay elements that are not captured by spatial trajectories, including

weapon use, skill level, and interplay between teams. I also stressed that, while having

uncovered statistically significant correlations between opening trajectories and game out­

comes, this study has not identified a causal relationship between the two. Finally, I de­

scribed some potential areas of application and future research for the techniques explored

in this thesis, including the use of alternative distance measures, alternative classification

tasks, and improving bot behaviour by providing a better approximation to human play.

65

Chapter 8

Conclusions

In the communities surrounding tactical shooters, the widespread use of natural language

to describe openings causes ambiguity. Indeed, the evidence in support of any one opening

is necessarily anecdotal because there is no algorithmic way to recognise it. This problem

exists because these openings are not formally defined.

I presented a survey of related work on tactical behaviour in games, believability testing,

the computational analysis of openings, and modelling agent motion. This survey suggests

that no prior work addresses the problem of formally defining openings in tactical gameplay.

Towards solving this problem, I proposed deriving these definitions by clustering player-

generated trajectory data. To provide an objective measure of the quality of these defini­

tions, I proposed two empirical tasks: a prediction task wherein future points along a tra­

jectory are predicted from that trajectory's initial segment, and a classification task wherein

human trajectories are discerned from bot trajectories. Empirical results show that:

1. Cluster analysis over player-generated trajectory data reveals statistically significant

correlations between a player's actions and the outcome of a game.

2. Compared to baseline models, these definitions accurately model player motion in

that they can be used to predict and classify player-generated trajectory data.

This approach has exciting potential practical application to many related platforms, as well

as to player classification and the control of computer-controlled opponents and allies.

66

Bibliography

[Aaltonen, 2005] Christian Aaltonenn Aaltonen. Counter-Strike: Source Strategy Guide.
Accessed June 30 2008, http://aaltonen.us/2005/01/12/counter-strike-source-strategy-
guide/, January 2005.

[Adomavicius and Tuzhilin, 2005] Gediminas Adomavicius and Alexander Tuzhilin. To­
ward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art
and Possible Extensions. IEEE Transactions on Knowledge and Data Engineering,
17(6):734-749, 2005.

[Aha, 1990] David W. Aha. A Study of Instance-Based Algorithms for Supervised Learning
Tasks. PhD thesis, University of California, Irvine, 1990.

[Allis, 1988] Victor Allis. A Knowledge-Based Approach to Connect-Four - The Game is
Solved: White Wins. Master's thesis, Vrije Universiteit, Amsterdam, 1988.

[Arthur and Vassilvitskii, 2006] David Arthur and Sergei Vassilvitskii. How Slow is the
&-Means Method? In Proceedings of the 22nd Annual Symposium on Computational
Geometry (SCG-06), pages 144-153, New York, NY, USA, 2006. ACM.

[Baker, 2002] Tracy Baker. Game Intelligence: AI Plays Along. Computer Power User,
2(l):56-60, January 2002.

[Bakkes et al, 2004] Sander Bakkes, Peter Spronck, and Eric Postma. TEAM: The Team-
oriented Evolutionary Adaptability Mechanism. In Entertainment Computing - ICEC
2004, Third International Conference, pages 273-282, Endhoven, the Netherlands,
September 2004.

[Bakkes et al, 2005] Sander Bakkes, Pieter Spronck, and Eric Postma. Best-Response
Learning of Team Behaviour in Quake III. In Proceedings of the Nineteenth Interna­
tional Joint Conference on Artificial Intelligence (IJCAI-05), Workshop on Reasoning,
Representation, and Learning in Computer Games, 2005.

[Barlow and Morrison, 2005] Michael Barlow and Peter Morrison. Challenging the Super
Soldier Syndrome in 1st Person Simulations. In Proceedings of SimTecT 2005 Confer­
ence, Sydney, Australia, May 2005.

[Bererton, 2004] Curt Bererton. Multi-Robot Coordination and Competition Using Mixed
Integer and Linear Programs. PhD thesis, Robotics Institute, Carnegie Mellon Univer­
sity, Pittsburgh, Pennsylvania, August 2004.

[Bermejo and Cabestany, 2001] Sergio Bermejo and Joan Cabestany. Oriented Principal
Component Analysis for Large Margin Classifiers. Neural Networks, 14(10): 1447-1461,
December 2001.

[Billings et al., 2003] Darse Billings, Neil Burch, Aaron Davidson, Robert C. Holte, and
Jonathan Schaeffer. Approximating Game-Theoretic Optimal Strategies for Full-scale
Poker. In Proceedings of the Eighteenth International Joint Conference on Artificial
Intelligence (IJCAI-03), pages 661-668, Acapulco, Mexico, August 2003.

67

http://aaltonen.us/2005/01/12/counter-strike-source-strategy-

[Bohemia Interactive Studio, 2001a] Bohemia Interactive Studio. Operation Flashpoint:
Cold War Crisis. Codemasters, http://www.flashpointl985.com/, August 2001.

[Bohemia Interactive Studio, 2001b] Bohemia Interactive Studio. Op­
eration Flashpoint Photos from Action. Accessed June 30 2008,
http://www.flashpointl985.com/photos/photos.html, 2001.

[Booth, 2004] Michael Booth. The Official Counter-Strike Bot. In Proceedings of the
Game Developers' Conference (GDC-04), 2004.

[Buro, 1999] Michael Buro. Toward Opening Book Learning. International Computer
Chess Association (ICCA) Journal, 22(2):98-102, 1999.

[Campbell et ah, 2002] Murray Campbell, A. Joseph Hoane, and Feng-hsiung Hsu. Deep
Blue. Artificial Intelligence, 134(1-2):57-83, 2002.

[Campbell, 1999] Murray Campbell. Knowledge Discovery in Deep Blue. Communica­
tions of the ACM, 42(11):65-67, 1999.

[Carless, 2004] Simon Carless. Gaming Hacks. O'Reilly Media, Inc., 2004.

[Chandrasekaran et ah, 2002] Balakrishnan Chandrasekaran, John R. Josephson, Bonny
Banerjee, Unmesh Kurup, and Robert Winkler. Diagrammatic Reasoning in Support
of Situation Understanding and Planning. In Proceedings of the 23rd Army Science
Conference, 2002.

[Chang et ah, 2002] Francis Chang, Wu-chang Feng, Wu-chi Feng, and Jonathan Walpole.
Provisioning On-line Games: A Traffic Analysis of a Busy Counter-Strike Server. In
Proceedings of the 2nd ACM SIGCOMM Workshop on Internet Measurment, pages 151-
156, Marseille, France, 2002. ACM.

[Charness, 1991] Neil Charness. Knowledge and Search in Chess. Towards a General
Theory of Expertise, pages 39-63, 1991.

[Cole et ah, 2004] Nicholas Cole, Sushil J. Louis, and Chris Miles. Using a Genetic Algo­
rithm to Tune First-Person Shooter Bots. In Proceedings of the International Congress
on Evolutionary Computing, pages 139-145, Portland, Oregon, 2004. IEEE Press.

[Darken et ah, 2004] Christian Darken, David Morgan, and Gregory Paull. Efficient and
Dynamic Response to Fire. In Proceedings of the AAAI Workshop on Challenges in
Game AI, 2004.

[Darken, 2007] Christian Darken. Level Annotation and Test by Autonomous Exploration.
In Proceedings of the Artificial Intelligence and Interactive Digital Entertainment Con­
ference (AIIDE-07), Stanford, California, 2007.

[Dasarathy, 1990] Belur V. Dasarathy. Nearest Neighbor (NN) Norms: NN Pattern Classi­
fication Techniques. IEEE Computer Society Press, Los Alamitos, 1990.

[Destineer, 2005a] Destineer. Close Combat: First to Fight. 2K Games and Macsoft,
http://xbox.ign.com/objects/673/673931.html, April 2005.

[Destineer, 2005b] Destineer. Close Combat: First to Fight Combined Arms Video. Ac­
cessed June 30 2008, http://hlfallout.filecloud.com/files/file.php?file_id=1247, 2005.

[Doyle, 1999] Patrick Doyle. Virtual Intelligence from Artificial Reality: Building Stupid
Agents in Smart Environments. In Working Notes of the 1999 AAAI Spring Symposium
on Artificial Intelligence and Computer Games, 1999.

[Erol et ah, 1994] Kutluhan Erol, James Hendler, and Dana S. Nau. Semantics for Hier­
archical Task-Network Planning. Technical report, University of Maryland at College
Park, College Park, MD, USA, 1994.

68

http://www.flashpointl985.com/
http://www.flashpointl985.com/photos/photos.html
http://xbox.ign.com/objects/673/673931.html
http://hlfallout.filecloud.com/files/file.php?file_id=1247

[Fikes and Nilsson, 1971] Richard Fikes and Nils J. Nilsson. STRIPS: A New Approach
to the Application of Theorem Proving by Problem Solving. In William Kaufmann,
editor, Proceedings of the 2nd International Joint Conference on Artificial Intelligence
(IJCAI-71), pages 608-620, 1971.

[Fragapalooza, 2008] Fragapalooza. http://fragapalooza.com, 2008.

[Geisler, 2002] Benjamin Geisler. An Empirical Study of Machine Learning Algorithms
Applied to Modeling Player Behavior in a 'First Person Shooter' Video Game. Master's
thesis, Department of Computer Sciences, University of Wisconsin-Madison, 2002.

[Gorman et al, 2006a] Bernard Gorman, Christian Thurau, Christian Bauckhage, and
Mark Humphrys. Bayesian Imitation of Human Behavior in Interactive Computer
Games. In Proceedings of the 18th International Conference on Pattern Recognition
(ICPR 06), pages 1244-1247, Washington, DC, USA, 2006. IEEE Computer Society.

[Gorman et al., 2006b] Bernard Gorman, Christian Thurau, Christian Bauckhage, and
Mark Humphrys. Believability Testing and Bayesian Imitation in Interactive Computer
Games. In Simulation of Adaptive Behaviour (SAB-06), pages 655-666, Rome, Italy,
September 2006.

[Grajkowski, 2006] Jeffery Grajkowski. Unofficial Definition of CSViz Logfile Format.
Accessed June 30 2008, http://www.cs.ualberta.ca/ csviz/technical/logformat.txt, 2006.

[Graphpad Software, Inc., 2005] Graphpad Software, Inc. Graphpad QuickCalcs: Free
Statistical Calculators. Accessed June 30 2008, http://www.graphpad.com/quickcalcs/,
2005.

[Han and Kamber, 2006] Jiawei Han and Micheline Kamber. Data Mining: Concepts and
Techniques, 2nded. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, March
2006.

[Hastie et al., 2001] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements
of Statistical Learning. Springer, August 2001.

[Hayward et al., 2005] Ryan Hayward, Yngvi Bjornsson, Michael Johanson, Morgan Kan,
Nathan Po, and Jack van Rijswijck. Solving 7x7 Hex with Domination, Fill-in, and
Virtual Connections. Theoretical Computer Science, 349(2): 123-139, 2005.

[Hoang et al., 2005] Hai Hoang, Stephen Lee-Urban, and Hector Munoz-Avila. Hierarchi­
cal Plan Representations for Encoding Strategic Game Al. In Proceedings of the Arti­
ficial Intelligence and Interactive Digital Entertainment Conference (AIIDE-05). AAAI
Press, 2005.

[Hyatt, 1999] Robert M. Hyatt. Book Learning: A Methodology to Tune an Opening Book
Automatically. International Computer Chess Association (ICCA) Journal, 22(1):3—12,
1999.

[id Software, 1997] id Software. Quake II.
http://www.idsoftware.com/games/quake/quake2/, December 1997.

[id Software, 1999] id Software. Quake III.
http://www.idsoftware.com/games/quake/quake3-arena/, December 1999.

[Invision Gaming, 2007] Invision Gaming. Counter-Strike: Source Tickrate. Accessed
June 30 2008, http://www.invision-gaming.co.uk/Counter-Strike-Source/CSS-Tickrate-
61.html, 2007.

[Kaufman and Rousseeuw, 1990] Leonard Kaufman and Peter J. Rousseeuw. Finding
Groups in Data: An Introduction to Cluster Analysis. John Wiley & Sons, Inc., New
York, NY, USA, 1990.

69

http://fragapalooza.com
http://www.cs.ualberta.ca/
http://www.graphpad.com/quickcalcs/
http://www.idsoftware.com/games/quake/quake2/
http://www.idsoftware.com/games/quake/quake3-arena/
http://www.invision-gaming.co.uk/Counter-Strike-Source/CSS-Tickrate-

[Keogh and Kasetty, 2002] Eamonn Keogh and Shruti Kasetty. On the Need for Time Se­
ries Data Mining Benchmarks: A Survey and Empirical Demonstration. In The 8th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
July 2002.

[Khoo and Zubek, 2002] Aaron Khoo and Robert Zubek. Applying Inexpensive AI Tech­
niques to Computer Games. IEEE Intelligent Systems, 17(4):48-53, 2002.

[Kohavi, 1995] Ron Kohavi. A Study of Cross-Validation and Bootstrap for Accuracy
Estimation and Model Selection. In Proceedings of the Fourteenth International Joint
Conference on Artificial Intelligence (IJCAI-95), pages 1137-1145, 1995.

[Laird and Duchi, 2000] John E. Laird and John C. Duchi. Creating Human-Like Synthetic
Characters with Multiple Skill Levels: A Case Study using the SOAR Quakebot. In AAAI
2000 Fall Symposium Series: Simulating Human Agents, November 2000.

[Laird etal, 1987] John E. Laird, Allen Newell, and Paul S. Rosenbloom. SOAR: An
Architecture for General Intelligence. Artificial Intelligence, 33(l):l-64, 1987.

[Laird, 2001] John E. Laird. It Knows What You're Going To Do: Adding Anticipation
to a Quakebot. In Jorg P. Muller, Elisabeth Andre, Sandip Sen, and Claude Frasson,
editors, Proceedings of the Fifth International Conference on Autonomous Agents, pages
385-392, Montreal, Canada, 2001. ACM Press.

[Lee etal., 2007] Jae-Gil Lee, Jiawei Han, and Kyu-Young Whang. Trajectory Clustering:
A Partition-and-Group Framework. In Proceedings of the 2007 ACM SIGMOD Interna­
tional Conference on Management of Data, pages 593-604, Beijing, China, June 2007.

[Lewis and Barlow, 2005] Edward Lewis and Michael Barlow. The Use of Games to Inves­
tigate Tactical Decision-Making. In Proceedings of SimTecT'2005 Conference, Sydney,
Australia, May 2005.

[Liden, 2000] Lars Liden. The Integration of Scripted and Autonomous Behaviors Through
Task Management. In Artificial Intelligence and Interactive Entertainment: Papers from
the 2000 AAAI Symposium, pages 51-55, 2000.

[Liden, 2001] Lars Liden. Using Nodes to Develop Strategies for Combat with Multiple
Enemies. In Artificial Intelligence and Interactive Entertainment: Papers from the 2001
AAAI Symposium, pages 59-63, 2001.

[Liden, 2002] Lars Liden. Strategic and Tactical Reasoning with Waypoints. In AI Game
Programming Wisdom. Charles River Media, 2002.

[Liden, 2003] Lars Liden. Artificial Stupidity: The Art of Intentional Mistakes. In AI
Game Programming Wisdom II. Charles River Media, 2003.

[Lincke, 2000] Thomas R. Lincke. Strategies for the Automatic Construction of Opening
Books. In Tony Marsland and Ian Frank, editors, Proceedings of the Second Interna­
tional Conference on Computers and Games, Lecture Notes in Artificial Intelligence,
pages 74-86. Springer-Verlag, 2000.

[Livingstone and McGlinchey, 2004] Daniel Livingstone and Stephen J. McGlinchey.
What Believability Testing Can Tell Us. In Proceedings of the Conference on Game
AI, Design and Education (CGAIDE-04), November 2004.

[Livingstone, 2006] Daniel Livingstone. Turing's Test and Believable AI in Games. Com­
puters in Entertainment, 4(1):6, 2006.

[MacQueen, 1967] James B. MacQueen. Some Methods for Classification and Analysis
of Multivariate Observations. In Proceedings of the 5th Berkeley Symposium on Math­
ematical Statistics and Probability, volume 1, pages 281-297. University of California
Press, 1967.

70

[Mahalanobis, 1936] Prasanta C. Mahalanobis. On the Generalized Distance in Statistics.
In Proceedings of the National Institute of Science (India), volume 12, pages 49-55,
Calcutta, India, 1936.

[Manninen, 2001] Tony Manninen. Virtual Team Interactions in Networked Multimedia
Games - Case: "Counter-Strike" - Multi-player 3D Action Game. In The 4th Annual In­
ternational Workshop on Presence (PRESENCE-01), Philadelphia, Pennsylvania, 2001.

[Markov, 1971] Andrey Markov. Extension of the Limit Theorems of Probability Theory
to a Sum of Variables Connected in a Chain. In Ronald Howard, editor, Dynamic Prob­
abilistic Systems (Volume I: Markov Models), pages 552-577. John Wiley & Sons, Inc.,
New York City, 1971.

[Michie et al, 1994] Donald Michie, David J. Spiegelhalter, and Charles C. Taylor, editors.
Machine Learning, Neural and Statistical Classification. Ellis Horwood, Upper Saddle
River, NJ, USA, February 1994.

[Monolith Productions, 2005] Monolith Productions. F.E.A.R.: First Encounter Assault
Recon. Vivendi Universal, http://whatisfear.com/, 2005.

[Navarro, 2007] Alex Navarro. Forza Motorsport 2 for Xbox 360 Review. Accessed June
30 2008, http://www.gamespot.com/xbox360/driving/forzamotorsport2/review.html,
May 2007.

[Nielsen Media Research, 2007] Nielsen Media Research. Playstation 2 Accounted
for 42 Percent of Video Game Play in June. Accessed June 30 2008,
http://www.nielsen.com/media/2007/pr_070726.html, 2007.

[Orkin, 2004] Jeff Orkin. Symbolic Representation of Game World State: Toward Real-
Time Planning in Games. In Proceedings oftheAAAl Workshop on Challenges in Game
Al, 2004.

[Orkin, 2006] Jeff Orkin. Three States and a Plan: The A.I. of F.E.A.R. In Proceedings of
the Game Developers' Conference (GDC-06), San Jose, California, March 2006.

[Paull and Darken, 2004] Gregory H. Paull and Christian J. Darken. Integrated On- and
Off-Line Cover Finding and Exploitation. In Proceedings of GAME-ON 2004, 2004.

[Ratliff et al, 2006] Nathan D. Ratliff, J. Andrew Bagnell, and Martin A. Zinkevich. Maxi­
mum Margin Planning. In Proceedings of the 23rd International Conference on Machine
Learning (ICML-06), pages 729-736, New York, NY, USA, 2006. ACM Press.

[Raven Software, 2002] Raven Software. Soldier of Fortune II. Activision,
http://www.soldier-of-fortune.com/, May 2002.

[Reike and Boon, 2008] Zeid Reike and Michael Boon. Postmortem: Infinity Ward's Call
of Duty 4. Game Developer, March 2008.

[Schaeffer et al., 2007] Jonathan Schaeffer, Neil Burch, Yngvi Bjornsson, Akihiro Kishi-
moto, Martin Muller, Robert Lake, Paul Lu, and Steve Sutphen. Checkers is Solved.
Science, pages 1144079+, July 2007.

[Selby, 1999] Alex Selby. Optimal Heads-up Preflop Poker. Accessed June 30 2008,
http://www.archduke.demon.co.uk/simplex/, 1999.

[Smith et al., 2007] Megan Smith, Stephen Lee-Urban, and Hector Munoz-Avila. RETAL­
IATE: Learning Winning Policies in First-Person Shooter Games. In Proceedings of
the Nineteenth Innovative Applications of Artificial Intelligence Conference (IAAI-07),
pages 1801-1806, 2007.

[Southey etal, 2007] Finnegan Southey, Wesley Loh, and Dana Wilkinson. Inferring
Complex Agent Motions from Partial Trajectory Observations. In Proceedings of the
Twentieth International Joint Conference on Artificial Intelligence (IJCAI-07), 2007.

71

http://whatisfear.com/
http://www.gamespot.com/xbox360/driving/forzamotorsport2/review.html
http://www.nielsen.com/media/2007/pr_070726.html
http://www.soldier-of-fortune.com/
http://www.archduke.demon.co.uk/simplex/

[Spronck, 2005] Peter Spronck. A Model for Reliable Adaptive Game Intelligence. In
Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence
(IJCAI-05), Workshop on Reasoning, Representation, and Learning in Computer Games,
2005.

[Tamte, 2004] Peter Tamte. GameSpy: Close Combat: First to Fight - Vol #1
(PC). Accessed June 30 2008, http://pc.gamespy.com/pc/close-combat-first-to-
fight/531637pl.html, July 2004.

[Tesauro, 1995] Gerald Tesauro. Temporal Difference Learning and TD-Gammon. Com­
munications of the ACM, 38(3):58-68, March 1995.

[Tibshirani et al, 2001] Robert Tibshirani, Guenther Walther, and Trevor Hastie. Estimat­
ing the Number of Clusters in a Dataset via the Gap Statistic. Journal of the Royal
Statistics Society (Series B), pages 411^123, 2001.

[Turing, 1950] Alan. M. Turing. Computing Machinery and Intelligence. Mind,
59(236):443-460, October 1950.

[Turn 10 Studios, 2007] Turn 10 Studios. Forza Motorsport 2. Microsoft Game Studios,
http://www.forzamotorsport.net/, May 2007.

[Valve, 2000] Valve. Counter-Strike.
http://www.steamgames.com/v/index.php?area=app&AppId=10&cc=CA, November
2000.

[Valve, 2004] Valve. Counter-Strike: Source.
http://www.steamgames.com/v/index.php?area=app&AppId=240&cc=CA, November
2004.

[Valve, 2008] Valve. Counter-Strike: Source Screenshots. Accessed July 28 2008,
http://www.steamgames.com/v/index.php?area=fhumbnails&AppId=240, 2008.

[Vesterby, 2002] Tore Vesterby. Speak Softly and Carry a Big Gun: A Case Study of
Professional Danish Female Counter-Strike Players. Master's thesis, The IT University
of Copenhagen, 2002.

[Watkins, 1989] Christopher Watkins. Learning from Delayed Rewards. PhD thesis, Uni­
versity of Cambridge, England, 1989.

[Wray et al., 2004] Robert E. Wray, John E. Laird, Andrew Nuxoll, Devvan Stokes, and
Alex Kerfoot. Synthetic Adversaries for Urban Combat Training. In Proceedings of the
Sixteenth Innovative Applications of Artificial Intelligence Conference (IAAI-04), pages
923-930, San Jose, California, 2004. AAAI Press.

[Yanagisawa et al, 2003] Yutaka Yanagisawa, Jun-ichi Akahani, and Tetsuji Satoh. Shape-
Based Similarity Query for Trajectory of Mobile Objects. In Proceedings of the 4th In­
ternational Conference on Mobile Data Management (MDM-03), pages 63-77, London,
UK, 2003. Springer-Verlag.

[Yang et al., 2001] Jing Yang, Simon Liao, and Mirek Pawlak. On a Decomposition
Method for Finding Winning Strategy in Hex Game. In The International Conference on
Application and Development of Computer Games in the 21st Century, pages 96—111,
2001.

[Zanetti and Rhalibi, 2004] Stephano Zanetti and Abdennour El Rhalibi. Machine Learn­
ing Techniques for FPS in Q3. In Proceedings of the 2004 ACM SIGCHI International
Conference on Advances in Computer Entertainment Technology (ACE-04), pages 239-
244, New York, NY, USA, 2004. ACM.

72

http://pc.gamespy.com/pc/close-combat-first-to-
http://www.forzamotorsport.net/
http://www.steamgames.com/v/index.php?area=app&AppId=10&cc=CA
http://www.steamgames.com/v/index.php?area=app&AppId=240&cc=CA
http://www.steamgames.com/v/index.php?area=fhumbnails&AppId=240

Appendix A

Methods

This appendix provides a brief overview of some of the methods employed in this study.

A.l i^-means Clustering

The if-means clustering algorithm (Algorithm A.1.1), due to MacQueen [1967], partitions

points into spatially related subsets called clusters. A cluster is defined by its centroid

(Definition A. 1.1); a point belongs to the cluster whose centroid is nearest, if-means opti­

mises the centroids's positions to minimise the mean squared distance between a centroid

and its assigned points. This is achieved with an iterative process until convergence.1 Hastie

et al. provide a good introduction to the if-means algorithm [2001, p.461].

p p
*"• n

A A

(a) (b) (c) (d)

Figure A.l: if-means iteratively refines if clusters (here, a point's shape indicates its mem­
bership to one of (if = 3) clusters) which are defined by a centroid point (illustrated here
with an x). Each data point is initially assigned randomly to a cluster (a). Next the centroid
of each cluster is calculated (b), and each point is moved to the cluster whose centroid is
nearest (c). The process repeats until converging on a locally optimal solution (d).

Definition A.l.l (Centroid). The centroid of a set of points G in n-dimensional space is

the point c G Rn that minimises the mean squared distance between c and each g 6 G.2

'Convergence does not guarantee optimality, as the ii"-means algorithm can get caught in local optima. The
implementation of fc-means and fc-medians tested convergence over 20 random restarts.

2 A familiar example of a centroid is G's arithmetic mean in Euclidean metric space.

73

Algorithm A.l.l K-means clustering.
Require: D is a set of point objects in Rn.
Require: K is a positive integer.

1: Randomly divide D into K non-intersecting subsets Gi, G2,... ,Gk (Figure A. 1(a)).
2: repeat
3: for i from 1 to K do
4: Define Cj to be the centroid of the corresponding cluster Gi (Figure A. 1(b)).
5: end for
6: for all d G D do
7: Assign d to the cluster Gi with the nearest centroid Cj (Figure A. 1(c)).
8: end for
9: until each of the K centroids converge (Figure A. 1(d)).

K-means is quick and efficient in practice [Michie et at, 1994], but Arthur and Vas-

silvitskii [2006] show that pathological worst-case point arrangements can result in super-

polynomial run-time. Additionally, as Bermejo and Cabestany [2001] point out, outliers

can have a disproportionate effect on centroids due to the squaring of distance values.

A.2 if-medoids Clustering

An alternative to If-means is if-medoids [Kaufman and Rousseeuw, 1990]. As with K-

means, if-medoids is efficient in practice, but can additionally be less sensitive to outliers.

This reduced sensitivity is due to the difference between minimising the mean error between

a set of points and their prototype (as is done with if-medoids) and minimising the the mean

squared error between a set of points and their prototype (as is done with if-means).

• -<5) .@ J a

Q A

•

A A A

A

A A (A) A
A v—' A

(a) (b) (c) (d)

Figure A.2: if-medoids iteratively refines K clusters which are defined by a medoid. Each
data point is initially assigned randomly to a cluster (a). Next the medoid of each cluster
is calculated (b), and each point is moved to the cluster whose medoid is nearest (c). The
process is repeated (d) until converging on a locally optimal solution.

The .fsf-medoids algorithm (Algorithm A.2.1) resembles If-means except that, instead

of specifying a centroids as cluster centres, it specifies medoids (Definition A.2.1). Hastie

et al. provide a good introduction to the if-medoids algorithm [2001, p.468].

74

Definition A.2.1 (Medoid). The medoid of a set of points G in n-dimensional space is the

point m e G whose mean distance3 from the other points g G G is minimised:

argmin \ dist(m, <7)/|G| . (A.l)
meG

 WG

Algorithm A.2.1 The if-medoids Clustering Algorithm
Require: D is a set of point objects in W1.
Require: K is a positive integer.

1: Randomly divide D into K non-intersecting subsets Gi, G2, ...,Gk (Figure A.2(a)).
2: repeat
3: for i from 1 to if do

4: Define m* to be the medoid argmin V^ dist(rrii,g) (Figure A.2(b)).

5: end for
6: for all rf G D do
7: Assign d to the cluster Gi with the nearest medoid m; (Figure A.2(c)).

end for
until each of the K medoids converge (Figure A.2(d)).

Compared to K-means, the if-medoids algorithm requires more computation time due

to the additional effort of locating the medoid in the data [Han and Kamber, 2006].

A.3 Cross-Validation

Train (90%;

• • •

Trial 1 Trial 2 Trial 3 Trial 10

Test (10%)

Figure A.3: Visualisation of the cross-validation process.

In ten-fold cross-validation [Kohavi, 1995], a model is repeatedly trained on 90% of the

data and tested on the remaining 10%. The process begins anew for each of ten trials so

that the model is tested on every element in the dataset at least once (Figure A.3).

Since \G\ is a constant, it can be removed from Equation A.l, as applied in Algorithm A.2.1.

75

Observed
32/1

EntropyfA) « 0.9043 EntropyfAj = 0.6469

Figure A.4: Example measurements of entropy for two different sets of observations. It is
worth noting that, even though there are fewer unique successors in the figure on the left—2
as compared to 3—the entropy level is higher because the transitions are less predictable.

A.4 Measuring Entropy in Trajectory Data

Intuitively, information entropy is a measurement of unpredictability. Entropy is used in

this study to visualise some of the differences between human- and computer-generated

trajectories in specific discrete locations. The less predictable players' forthcoming actions

appear, the higher the entropy value associated with those players' locations.

Measuring entropy in trajectory data requires a uniform discretisation of an environ­

ment into a uniform grid.4 Each grid cell keeps a record of successor grid cells (i.e., cells

that players were observed travelling to) given as S\,S2,- • • ,sn, and sampled transition

probabilities derived from how often a successor was observed being travelled to relative

to other successors, P(s\), P(s2), • • •, P(sn)- With these variables, the entropy associated

with a particular grid cell is given as:

X>(*0l°g2
i=\

1
P(Si)

(A.2)

Example entropy values are shown in Figure A.4, which illustrates differences in computed

values for two different sets of observations. Heatmaps depicting entropy values in Valve's

Counter-Strike.-Source can be found in Figure 4.4 on page 31.

4Environments can also be discretised in three or more dimensions and into non-uniform segments, depend­
ing on how the trajectories are realised in the environment.

76

Appendix B

The Data

The Counter-Strike: Source [Valve, 2004] (CSS) human player data in this study was col­

lected from a large competitive tournament called Fragapalooza [2008] by the Alberta In­

genuity Centre for Machine Learning (AICML) on July 2006 and July 2007. This appendix

provides additional details on the quality control and formatting of these logs.

B.l Additional Details and Quality Control

The number of unique positions in the logfiles provides a very conservative approximation

of the number openings that can possibly be enacted in CSS; since players visit 28974

unique positions during the opening phases of play, and there are 5 players per team, there

may be approximately 289745 « 222 unique ways for such a team to open a game.

Some game logs were removed from the dataset, and are characterised as follows:

• One or both teams do nothing for the duration of a round.

• Fewer than five players per team are connected for the match's duration.

• Someone damages his/her teammates before 10 point measurements are taken.

• The game stops before an outcome can be determined.

Omitting these logs provides no guarantees of quality, but provides some assurances and

succeeds in removing obvious outliers from the datasel.

B.2 Log Format

Listing 1 displays the definition of the logfile format in which the logfiles were recorded by

the AICML [Grajkowski, 2006]. Note that spatial trajectory data represents only a fraction

of the type of data stored in these logfiles. Listing 2 displays a sample logfile.

77

Listing 1 Logfile Specification
(this specifies the frame number for following position updates)
#<#frame number>

(notices that will probably only appear once)
! <notice>[,<args>[,...]]
ROUND_START,<mapname>
FREQUENCY,<#update frequency>
TICKRATE,<#tickrate>
ROUND_END,<#winning team>,<# win type>

win types:
1: bomb explodes
7: bomb defused
8: counter-terrorists shot all the terrorists
9: terrorists shot all the counter-terrorists
10: round draw

*<event>[,<args>[,...]]
KILL,<#frame>,<#victim id>,<#attacker id>,<#weapon>, \

<#victim pos.x>,<#victim pos.y>,<#victim pos.z>, \
<#attacker pos.x>,<#attacker pos.y>,<#attacker pos.z>

HURT,<#frame>,<#victim id>,<#attacker id>,<#weapon>,\
<#victim pos.x>,<#victim pos.y>,<#victim pos.z>, \
<#attacker pos.x>,<#attacker pos.y>,<#attacker pos.z>

QUIT,<#frame>,<#player id>
ERROR
SHOT
ZOOM
BOMB_PLANT,<#frame>,<#site>,<#something?>, <#pos.x>,<#pos.y>
BOMB_PICKUP,<#frame>,<#player id>
BOMB_DROPPED,<#frame>,<#player id>,<#pos.x>,<#pos.y>,<#pos.z>
THROW,<#frame>, <#player id>,<#weapon>,<#pos.x>,<#pos.y>,<#pos.z>
DETONATE, <#frame>,<#player id>,<#weapon>,<#pos.x>,<#pos.y>, \

<#pos.z>
ROUND_NOTE,<#first frame>, <#display length>,<#pos.x>,<#pos.y>, \

<String note>
HOSTAGE_FOLLOWS,<#frame>,<#player id>,<#hostage id>
HOSTAGE_STOPS_FOLLOWING,<#frame>,<#player id>,<#hostage id>
HOSTAGE_HURT,<#frame>,<#player id>,<#hostage id>
HOSTAGE_KILLED,<#frame>,<#player id>,<#hostage id>
HOSTAGE_RESCUED,<#frame>,<#player id>, <#hostage id>,<#site id>
HOSTAGE_CALL_FOR_HELP,<#frame>,<#hostage id>
HOSTAGE_RESCUED_ALL,<#frame>

(player position updated)

<#player id>, <name>, <network id>,<#team>,<#weapon>,<#health>,
<#pos.x>,<#pos.y>,<#pos.z>,<#angle.x>,<#angle.y>,<#angle.z>

(hostage position update)
<#hostage id>,,<#pos.x>,<#pos.y>,<#pos.z>

78

Listing 2 A Sample CSV File
!VERSION,120
!ROUND_START,de_dust2
!FREQUENCY,4 5
'TICKRATE,100.000002
#45
18, [name],STEAM_0:1:9531171, 2, 12, 100,-64 8,-824, 135, 0,46,0
34,[name],STEAM_0:1:10535659,3,28,100,160,2304,-126,0,-104,0
24, [name],STEAM_0:0:51148 62,2,5, 100,-552,-920, 149, 0,53,0
25, [name],STEAM__0:0:11810900,3,28, 100, 160, 2144,-126, 0,-180, 0
22, [name],STEAM_0:0:3296685,2, 12,100,-552,-824,133,0, 11, 0
36, [name],STEAM_0:1:2599255, 2, 12, 100,-552,-736, 135,0, 1, 0
26, [name],STEAM_0:1:200791,3, 28,100, 256, 2144,-126, 0,-103,0
28, [name],STEAM_0:0:7643029,3,28,100,352, 2144,-126, 0,-15, 0
2 9, [name],STEAM_0:1:4118538, 2, 12, 100,-648,-736, 138, 0,0,0
33,[name],STEAM_0:0:4548289,3,28,100,448,2144,-126,0,-15,0
*BOMB_PICKUP,4 6,22

#6525
25, [name],STEAM_0:0:11810900, 3, 28, 48, -1350, 2266, 3, 0, 115,0
22, [name],STEAM_0:0:32 9 6685, 2, 12,100,-1611,2 652,3,0,-5 6,0
2 9, [name],STEAM_0:l:4118538,2,5,26,-1975, 165 9, 32, 0, 35, 0
*HURT,6543,25,22,12,-1355,2269,3,-1611,2652,3
#6570
25, [name],STEAM_0:0:11810900,3,28, 2 9,-1430, 2305, 4, 0, 119,0
22, [name],STEAM_0:0:3296685,2, 12, 100,-1611,2 652,3, 0,-5 6,0
29, [name],STEAM_0:1:4118538,2,5,26,-1977, 1663,32,0,36,0
*HURT,6577,22,25,28,-1611,2652,3,-1437, 2313, 5
*KILL,6577,22,25,28,-1611,2652,67,-1437,2313,5
#6615
2 5 , [n a m e] , S T E A M _ 0 : 0 : 1 1 8 1 0 9 0 0 , 3 , 2 8 , 2 9 , - 1 4 7 5 , 2 3 6 8 , 5 , 0 , 1 1 5 , 0
2 9 , [name] , S T E A M J D : 1 : 4 1 1 8 5 3 8 , 2 , 5 , 2 6 , - 1 9 9 2 , 1 7 4 9 , 3 2 , 0 , 3 6 , 0
6 6 6 0
25, [name],STEAM_0:0:11810900, 3, 14, 29,-1514, 2450, 11,0, 111,-0
29, [name],STEAM_0:1:4118538,2, 5,26,-1959, 1838, 1,0, 53,0
#6705
25, [name],STEAM_0:0:11810900, 3, 14, 29,-1550, 2551, 7, 0,85,0
2 9, [name],STEAM_0:l:4118538,2,5,26,-1943, 1855,1,0, 57, 0
#6750
25, [name],STEAM_0:0:11810 900, 3,14,29,-1553, 2 654, 2, 0,37,0
2 9, [name],STEAM_0:1:4118538, 2, 5, 26,-1943, 1855, 1,0, 57, 0
#6795
25, [name],STEAM_0:0:11810900, 3, 14, 29,-14 64, 2731, 3,0, 16, 0
2 9, [name],STEAM_0:1:4118538, 2,5, 26,-1929, 1858, 1,0, 61,0
#6840
25, [name],STEAM_0:0:11810900,3,14, 29,-1367, 2745, 5, 0,-123,0
2 9, [name],STEAM_0:1:4118538, 2, 5, 26,-1875, 18 97, 5, 0, 61, 0
!ROUND_END,2,1, #Target_Bombed

79

Appendix C

Resources

This appendix contains information on select resources related to my thesis. Specifically,

it describes the hardware and software I used to develop my results, pointers to the online

services used to perform statistical analysis, and web addresses to directly related content.

C.l Experimental Environment

My experimental platform consists of two machines that were provided by the IRCL re­

search group. The first machine, 'compeer', is an AMD Athlon 64 X2 Dual Core Processor

4400+, and was used to develop the results in both Figure 4.4 and Section 6.2. The second

machine, 'crestomere', is an AMD Athlon MP 1800+ (dual core) and was used to develop

the results in Sections 6.3 and 6.4. Both machines ran Java version "1.5.0_06".

C.2 Statistical Utilities

The statistical analysis in this dissertation was assisted by some publically available online

resources. In particular, I would like to acknowledge the use of Graphpad Software, Inc.'s

free statistical calculators [2005], which were used to develop the categorical data analysis

and the i-test comparison of mean values that were presented in Section 6.2.

C.3 Related Links

The following web pages may indicate future developments or errata related to this thesis:

1. The author's web page: http://www.cs.ualberta.ca/~rayner/

2. The author's research group web page: http://ircl.cs.ualberta.ca/

3. The CSAI research group web page: http://ircl.cs.ualberta.ca/games/cs/

80

http://www.cs.ualberta.ca/~rayner/
http://ircl.cs.ualberta.ca/
http://ircl.cs.ualberta.ca/games/cs/

