
 

 

 

 

 

 

 

 

A Knowledge-based Framework for Human-Centered Residential Built Environment Design  

 

by 

 

Yuxuan Zhang 

  

  

 

 

 

 

A thesis submitted in partial fulfillment of the requirements for the degree of 

 

 

Doctor of Philosophy 

 

In 

 

Civil (Cross-disciplinary) 

 

 

 

 

 

Department of Civil and Environmental Engineering 

University of Alberta 

 

 

 

 

 

 

 

  

 

 

© Yuxuan Zhang, 2022 



 

 

ii  

 

ABSTRACT 

The considerable amount of time typically spent at home in contemporary society underscores the 

importance of understanding the interaction between occupants and built environments and 

implementing this knowledge into design practice to ensure occupant satisfaction and adequate 

building performance. In recent decades, the concept of human-centered design, which optimizes 

the environment around the occupantôs capability and preferences/requirements rather than forcing 

the user to change their behavior to accommodate the design, has been attracting increasing interest 

within building domain. However, due to the overwhelming volume of information, the dynamic 

nature of the decision-making context, and the multi-disciplinary knowledge (and multi-

disciplinary stakeholders) involved in design knowledge management, the current practice of 

residential design tends to fall short of supporting well-informed decisions for creating an 

occupant-focused built environment. In this regard, this research aims to optimize the knowledge 

management of residential design in terms of knowledge explicitation, knowledge acquisition, 

knowledge representation, and knowledge communication in order to leverage knowledge in 

support of consistent and effective design decision-making, thereby maximizing design quality 

and improving occupant satisfaction. To accomplish this, the following four objectives targeting the 

optimization of the knowledge management process are pursued: (1) Develop a machine learning-

based framework using the virtual reality and design-of-experiments techniques to model the implicit 

relationship between human perceived experience and building design attributes, where the proposed 

data-driven predictive model is used to evaluate the affective quality of design alternatives based on 

their specific design settings. (2) Develop a residential design knowledge-based decision support 

system to capture knowledge of occupant requirements and their associated impacts on design criteria 

in order to tail design specifications for specific occupant groups and support a rational resource 
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allocation among specific design criteria. (This knowledge-based system aims to equips novice design 

practitioners with appropriate design knowledge and assist them in making user-centered design 

decisions consistently.) (3) Develop a domain ontology to formally represent the knowledge of 

human-centered residential design in a machine-readable format in order to promote knowledge reuse 

and sharing among design professionals and in computer-aided design systems, where the developed 

ontology is included in the knowledge-based decision support system as the knowledge resource input. 

(4) Develop an integrated framework for collaborative decision-making in residential design to 

anticipate and address potential design conflicts between stakeholders and to aid in developing 

consensus design solutions. The virtual reality technique is integrated with group decision-making 

models to eliminate barriers to knowledge communication and to the consensus-building process. 

Overall, this research optimizes knowledge management in residential built environment design, 

thereby enhancing the intelligent decision-making process and delivering a built environment that 

meets occupant expectations. 
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Chapter 1:  INTRODUCTION  

1.1 Background and Motivation 

The design of a buildingôs interior space has a significant impact on occupantsô wellness and 

productivity (Eberhard, 2009; Heydarian et al., 2017; Salleh, 2008; Sullivan & Chang, 2011). With 

the extensive time that people spend indoors, understanding the interaction between occupants and 

built environments, and then implementing this knowledge into built environment design, have the 

potential to improve both user satisfaction and building performance (Ergan et al., 2018; Heydarian 

et al., 2017). Specifically, accurately and thoroughly identifying user requirements in the early 

design phase can significantly increase user satisfaction by offering an accessible living experience 

while also decreasing costs by reducing the likelihood of rework, budget overruns, and even 

litigation issues. In this regard, human-centered design (HCD), which places the user at the core of 

the design process and optimizes the environment around the user's capabilities and needs rather 

than forcing the user to conform their behavior to the design, has been noted in a number of recent 

studies as a way of supporting a human-centered environment and enhancing overall user 

satisfaction (Harte et al., 2017). 

In the area of building design, HCD is regarded as a knowledge-intensive process involving 

stakeholders from different disciplinary backgrounds. In this context, built environment design can 

be defined as a series of complex and multidimensional decisions requiring knowledge from 

various disciplines such as architecture, engineering, environmental psychology, behavioral 

science, and even sociology (Chou & Ngo, 2016; Cimini et al., 2015; Dong et al., 2018; Ellsworth-

Krebs et al., 2019; Ergan et al., 2018; Hoisington et al., 2019; Lee & Park, 2011; Wang, 2021). 

These disciplines bring different information and different perspectives for addressing challenges 
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in the design of the built environment, where decision-makers are frequently confronted with an 

abundance of information and design options, such as the selection of façade designs (Heydarian 

et al., 2017) or the collocation of finishing products (Zhang et al., 2019). During design, this 

information and these design configurations, in turn, are encountered within the evolving context 

of social development and technological innovation (Lee & Ha, 2013; Wang et al., 2017). For 

instance, four-member households were the most common household size in Korea back in 1985, 

representing 25.3% of all households; while in 2019, one-member households became the most 

prevalent type in Korea, representing 36.9% of all households (Statistics Korea). This trend in the 

evolution of the household structure has been taken into consideration in apartment design in recent 

years as a way of preventing unnecessary remodelling by homebuyers and associated waste-

generation and pollution (Lee & Ha, 2013). Similarly, when making decisions concerning the 

design of the built environment, it is necessary to also acknowledge the changing context of 

knowledge acquisition and application, such as changes in demographic characteristics, lifestyle 

paradigms, climate, and the emergence of building technologies, equipment, and materials. 

Such a complex, knowledge-intensive process makes it difficult for design practitioners (e.g., 

homebuyers, designers) to make informed decisions in built environment design, and 

inexperienced decision-makers often struggle to accurately depict and comprehend all facets of 

design requirements and translate them into specific design solutions (McLoone et al., 2010). 

Likewise, due to the knowledge gap in humanïbuilding interaction and residential design, 

designers sometimes resort to making educated guesses about occupant capability and needs 

(Ielegems et al., 2016), resulting in deviations from the occupant's expectations and subsequently 

triggering design modifications and rework. In this regard, the client typically defers to the 

designerôs knowledge and experience with specific types of projects (Haddad, 2014). However, 
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even skilled designers are not always capable of retaining all relevant details, and must seek 

information from external sources. They routinely navigate the design rules, reconcile 

inconsistencies, and fill in gaps using common sense, though unaware of the complexity of their 

own mental processes during design development (Heylighen & Neuckermans, 2000). In such 

cases, the various modalities of architectural and design knowledge may not be fully utilized in 

practice, and the consistency of design decision quality, cannot be guaranteed (Gunda, 2008).  

On the other hand, the widespread implementation in architecture and construction of information 

and communication technologies (ICT), such as building information modelling (BIM), virtual 

reality (VR), and text mining among social media data, has provided building stakeholders with 

significant advantages in terms of information accessibility and exchange in building design and 

construction (Lu et al., 2015; Shin et al., 2008). At the same time, though, the emergence of this 

unconventional data and information makes knowledge search and acquisition in the design phase 

a time-consuming task. Identifying useful information from ICT applications can be a challenge 

for design practitioners, and the applicability of the knowledge available to the project at hand is 

not always intuitive (Huber, 2018; Wu et al., 2012). While data mining and knowledge discovery 

techniques are widely used in various domains to help extract useful information from data, there 

are relatively few studies dealing specifically with knowledge management for decision-making in 

built environment design (Piramuthu, 2005). These problems and challenges in the current practice 

of human-centered built environment design underscore the pressing need to leverage design 

knowledge from a variety of domains and data sources in support of consistent and effective design 

decision-making, and thereby improve the design quality in careful consideration of occupant 

preferences and demands. 
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1.1.1 Human-Centered Design in Built Environment  

Human-centered design (HCD), also referred to in the relevant ISO standards as ñusability 

engineeringò, is a design philosophy that places the user at the center of the design process and 

improves the usability of a system by emphasizing human factor knowledge and appropriate 

techniques (Harte et al., 2017; ISO 9241-210, 2019). The 2010 international standard ISO 9241-

210, it should be noted, uses the terms HCD and user-centered design (UCD) interchangeably 

(Harte et al., 2017). 

Over the past two decades, numerous attempts have been made within the building construction 

field to more accurately and explicitly define user requirements so that a more comfortable built 

environment can be achieved. For instance, Vischer proposed an environmental comfort model to 

categorize occupant requirements in built environments (Vischer, 2008b). In this model, three 

environmental comfort factorsðnamely, physical comfort, functional comfort, and psychological 

comfortðwere proposed to describe the different humanïbuilding interactions and their impacts 

on human experience. Specifically, physical comfort represents a perception of well-being, 

functional comfort measures the extent to which the occupant can perform the desired activities in 

the space, and psychological comfort in the environment refers to affective and emotional needs, 

such as a sense of belonging, ownership, and control over the environment (Vischer, 2008a, 2008b). 

Likewise, Ellsworth-Krebs et al. (2019) identified factorsði.e., thermal comfort, tactile comfort, 

physiological comfort, odor and fresh air, mental well-being, companionship and contributory 

comfort, relaxation, control, visual comfort, acoustic comfort and familiarityðto extend the 

definition of home comfort beyond merely thermal and physical characterization (Ellsworth-Krebs 

et al., 2019). These frameworks provide a solid foundation for human-centered residential built 

environment design with regard to its root nature of requirement engineering that seeks to explore 
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and document the requirements and the extent to which they are being fulfilled by the design 

throughout the lifecycle of the building. 

Meanwhile, many researchers have noted the significance of knowledge and decision models 

developed in the context of human-centered residential design, which can play a critical role in 

improving design decision-making in consideration of usersô preferences and demands (Wang et 

al., 2017). For instance, Afifi  et al. (2014) modelled the fall risk associated with staircase 

architectural design elements as the basis for recommending best practices for fulfilling  the safety 

needs of older adults. (Afifi et al., 2014). Heydarian et al. (2017) proposed a data-driven model to 

optimize the design around the occupantôs behavior based on data collected on occupantsô lighting 

preferences. Moreover, Lee & Park (2011) suggested that cross-cultural adaptation should be 

emphasized in residential design to improve the user experience of the built environment based on 

an in-depth survey on the interrelationships between cultural differences and residential design. 

However, what is lacking is a consensus knowledge framework that could be referred to in human-

centered residential design. The design practitioner is thus required to have extensive experience 

and domain knowledge in order to effectively interpret research findings and integrate credible 

research evidence to support the implementation of relevant approaches in the design process due 

to the scattered and fragmented nature of HCD knowledge in the residential environment. In this 

regard, a knowledge-based framework that supports ready retrieval, reuse, and sharing of 

knowledge to support decision-making in human-centered residential design has yet to be explored. 

1.1.2 Knowledge Management  

Knowledge can be defined as the concepts, skills, experiences, and vision that provide a framework 

for creating, evaluating, and using information and knowledge management is concerned with the 
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explicit and systematic management of necessary knowledge and its associated processes of 

creation, collection, organization, communication, application, and exploitation (Apuvra & Singh, 

2011). Processing and integrating information from a variety of sources is the primary goal of 

knowledge management (Gao et al., 2018).  

In the context of architecture, engineering, and construction (AEC), much of the knowledge is 

experience-based and fragmented among a wide range of disciplines (Woo et al., 2004). Despite 

the use of explicit knowledge, i.e., codified knowledge that is easily articulated, written down, and 

formally transmittable in documents, the sharing of tacit knowledge that is embedded in personal 

experiences and perceptions among project stakeholders remains a challenge (Koskinen et al., 2003; 

Woo et al., 2004). In building design, for instance, only a minor portion of user needs derives from 

explicit knowledge that can be easily expressed and documented in checklists, guidelines, and 

regulations. Rather, most user needs and preferences, such as sensory needs and the desired 

affective experience of the built environment, are subjective, implicit, and much more difficult to 

ascertain or express (Ergan et al., 2019; Ielegems et al., 2016), and this remains a concern because 

implicit user needs have been widely identified as critical factors in making buildings more 

enjoyable and attractive for users (Ielegems et al., 2016). Design professionals may thus face a 

formidable barrier in understanding user requirements and effectively translating them into their 

designs, leading them to rely on their experience, professional intuition, and/or other forms of tacit 

knowledge to successfully complete design tasks (Woo et al., 2004). Due to the uniqueness and 

complexity of building projects, it is impossible to directly replicate best practices from the past 

(Ni et al., 2022). Currently, design practitioners still serve as the primary carriers of tacit knowledge 

in general practice. Thus, in the design of built environments, a knowledge framework for the 
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management and application of both explicit and tacit knowledge is required to facilitate 

knowledge utilization and provide greater insight into the knowledge creation process. 

According to the theory of knowledge creation (Nonaka & Takeuchi, 1995), the key to knowledge 

management lies in the mobilization of tacit knowledge and its conversion into explicit knowledge, 

which represents the knowledge externalization process in the socialization, externalization, 

combination, and internalization (SECI) model. During this process, tacit knowledge can be 

converted into explicit knowledge through conceptualization, visualization, metaphor, and analogy 

with the assistance of a variety of techniques. For instance, numerous researchers have highlighted 

expert systems and artiýcial intelligence (AI) as examples of the positive impact of information 

and communication technology (ICT) on the externalization and transfer of knowledge 

(Venkitachalam & Busch, 2012). 

In recent years, the effective use of knowledge management technologies is a consideration that 

has been garnering increasing attention within the AEC domain, as it is seen as a promising strategy 

for continuous improvement of building projects based on lessons learned (Kamara et al., 2002; 

Rezgui et al., 2010). These knowledge management-related studies have generally focused on 

translating personal knowledge into explicit information that can be effectively stored and reused 

to fill knowledge gaps across the buildingôs lifecycle, such as construction equipment selection 

(El-Tourkey et al., 2022), building material selection (Rahman et al., 2012), healthcare building 

evaluation (Guerrero et al., 2022), energy efficiency retrofit (Medal et al., 2021), and budget 

estimation for building restoration (Wang et al., 2008), to name a few. The prevalence of 

knowledge-based systems underscores the great potential of information techniques to advance 

knowledge in the design process and to leverage knowledge in addressing the design problem at 

hand (Verhagen et al., 2012). As such, it is reasonable to expect that the optimization of knowledge 
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management in built environment design will improve the knowledge intensive decision-making 

process and thereby improve the quality of design outcomes. In this research, then, several 

information technologies, including machine learning, virtual prototyping (i.e., VR), quality 

deployment function (QFD), decision-making models, and ontology, are adopted to establish a 

systematic knowledge-based framework for optimizing the knowledge management process in 

built environment design. 

1.2 Research Objectives 

The research presented herein is built upon the following hypothesis: 

"The application of information techniques and analytical decision models for human-centered 

residential built environment design can aid in acquiring, structuring, and explicitizing the design 

requirements and knowledge in a schematic representation so that they are easily understandable 

and accessible by design practitioners, thereby enhancing the efficiency and quality of design and 

improving occupants' satisfaction with the built environment." 

This research is predicated on the fact that the current practice of knowledge management and 

decision-making in built environment design cannot provide adequate design support in the context 

of multi-disciplinary knowledge and information overload to support effective human-centered 

design of the built environment. To address this gap, four research questions aimed at optimizing 

the knowledge management of decision-making processes in human-centered residential built 

environment design are explored in this study: 

(1) How can affective human experience knowledge be explicitly modelled for human-

centered residential design?  

(2) How can design specifications be tailored to the particular needs of the occupants? 
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(3) How can human-centered residential design knowledge be formally represented? 

(4) How can multiple stakeholders collaborate to make well-informed residential design 

decisions? 

To answer these questions, the following objectives (see Figure 1-1) are pursued in this research: 

1. Develop a VR- and design-of-experiments (DOE)-based framework for characterizing the 

relationship between human affective experience and building design attributes to predict 

the restorative quality of design with data-driven machine-learning models. 

2. Develop a knowledge-based decision support system (KBDSS) for residential design to 

capture diverse occupants' needs and tailor the design specifications to specific occupant 

clusters in order to support rational resource allocation and maximize occupant satisfaction. 

3. Develop a domain ontology to formally represent the knowledge of humanïbuilding 

interactions and built environment in a machine-readable format to promote knowledge 

reuse and sharing among design professionals and computer-aided design systems. 

4. Develop an integrated framework for collaborative decision-making in built environment 

design that eliminates communication barriers in the negotiation process and potential 

design conflicts toward consensus design solutions. 
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Figure 1-1 Research objectives 

These four objectives focus on improving the human-centered residential design decision-making 

by optimizing the various phases of knowledge management. Specifically, Objectives 1 and 2 focus 

on explicitizing and capturing knowledge related to the design requirements and their interrelations 

with built environment design settings. In Objective 1, the tacit experience of the built environment 

is explicitly associated with specific design settings and expressed in numerical models that can be 

stored and shared in documents. In Objective 2, a matrix based KBDSS is proposed to facilitate 

knowledge search and acquisition in residential design decision-making, where the results of 

Objective 1 are included in the knowledge base. Moreover, Objective 3 optimizes the knowledge 

storage component of the KBDSS developed in Objective 2 so that the developed knowledge 

representation can be reused and shared in a standard and machine-learnable format. Finally, 

Objective 4 improves the process of knowledge communication and group decision-making in built 
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environment design, where the knowledge acquired in Objectives 1 and 2 can be incorporated as 

supplemental information for further decision support.  

1.3 Thesis Organization 

This thesis consists of eight chapters. Chapter 1 presents the background and motivation of this 

research and briefly introduces human-centered design and knowledge management in the building 

domain. The hypothesis, research questions, and objectives of this research are also outlined in this 

chapter.  

Chapter 2 presents a VR-DOE-based framework to explore the feasibility of machine-learning 

models in describing the implicit relationship between occupants' affective experience (i.e., 

perceived restorativeness in environments) and built environment settings, thereby providing 

decision support for proactive architectural design analysis. This framework incorporates VR and 

DOE techniques to provide a controllable and validated experimental setting that enables the 

efficient and cost-effective collection of human experience data and balanced learning datasets. 

Furthermore, the performance (in terms of prediction of restorative quality) of the five selected 

machine-learning modelsði.e., general regression neural network (GRNN), radial basis function 

neural network (RBFNN), support vector regression (SVR), and fuzzy inference system (FIS)ðis 

compared and analyzed.  

Chapter 3 introduces an integrated KBDSS framework to equip novice design practitioners with 

appropriate design knowledge and assist them in making user-centered design decisions 

consistently. The proposed framework uses the quality function deployment approach, decision 

support analysis, and fuzzy set theory to comprehensively capture occupant requirements, translate 

them into quantifiable design specifications, and prioritize the design specifications based on 



 

 

12 

 

 

specific user characteristics, thereby enabling design decisions that improve satisfaction among a 

larger crowd. To illustrate the efficacy of such a decision support framework, a residential kitchen 

design case study is presented with the support of the developed KBDSS prototype. 

Chapter 4 proposes a domain ontology to formally represent the user-centered residential design 

knowledge in support of the effective use of knowledge-based systems. This ontology is developed 

based on the knowledge acquired from the literature review (encompassing research reports, 

building codes and regulations, design cases, and the findings of term extraction from social media 

data). It comprises seven core conceptsðoccupant-user, residential design, activity, physical 

comfort, psychological comfort, constraint, and usability performanceðas well as the relations, 

properties, and axioms that define them, providing a formalized and standardized vocabulary for 

human-centered residential design. This work is expected to promote knowledge reuse and sharing 

among stakeholders and computer systems. 

Chapter 5 presents the integration of multi-user VR platforms and consensus models to facilitate 

knowledge comprehension and design conflicts in group decision-making as part of built 

environment design. A collaborative design support system is developed to provide a powerful 

visualization and consensus-based negotiation process by which for stakeholders to communicate 

their preferences and generate consensus design solutions that consider all decision-makersô 

opinions in an iterative, interactive manner. 

Finally, the conclusions and research contributions are summarized in Chapter 6, in addition to a 

discussion of the study limitations and future research directions.  
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Chapter 2:  PREDICTION OF HUMAN RESTORATIVE EXPERIENCE FOR HUMAN -

CENTERED RESIDENTIAL ARCHI TECTURE DESIGN1 

2.1  Introduction  

Currently intrinsic to our daily lives, stress has been identified as a critical health issue that affects 

multiple spheres of our society. For example, it entails high costs for healthcare systems, thus 

significantly affecting the economy (Taylor, 2006). The socio-urban context of extended periods 

of time spent indoors and increased urban densification has led researchers to investigate the 

significant impacts of built environments on our mental well-being and to explore how design can 

help mitigate urban stress (Zou & Ergan, 2019). Previous studies have found that poorly designed 

buildings can negatively affect a personôs psychological state by causing stress, anxiety, depression, 

and even violent behaviour (Eberhard, 2009; Salleh, 2008; Sullivan & Chang, 2011). Greater focus 

has been placed on the affective experience elicited by architectural design attributes within the 

domain of human-centered architectural design. Specifically, the restorative potential of built 

environments, i.e., the capability to reduce mental fatigue, improve productivity, and relieve stress, 

has attracted considerable interest in recent years (Yin et al., 2018). There is widespread agreement 

that particular design attributes of built environments can influence our mental resilience or foster 

restorative experiences (Huisman et al., 2012; Weber & Trojan, 2018). However, the relevant 

knowledge to support experience-focused architectural design is scattered across several 

disciplines, such as architecture, psychology, and sociology. In addition, the information available 

 

 

1 A version of this chapter has been published in Automation in Construction, as follows: Zhang, Y., Xiao. B., Al-

Hussein, M., and Li, X. (2022) ñPrediction of Human Restorative Experience for Human-Centered Architectural 

Designs: An VR-DOE based Machine Learning Method.ò Automation in Construction. 

https://doi.org/10.1016/j.autcon.2022.104189. 

https://doi.org/10.1016/j.autcon.2022.104189
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in the early design stage is often vague, incomplete, and inconsistent (Rezaee et al., 2015; Zhang 

et al., 2017). Moreover, analytical models and tools to facilitate the decision-making process in the 

early stages of the design of built environments focused on emotional wellness are still scarce. 

Under this circumstance, the designer is compelled to judge vaguely and subjectively the 

experience-related quality of the design alternatives. Therefore, how to reduce the uncertainty and 

subjective bias of human assessment while increasing efficiency in identifying the optimal design 

alternative regarding the quality of experience criteria has been an area of great interest among 

researchers.  

Among researchers in design domains, there is a common belief that measuring the user experience 

of a product is the foremost step in improving such experience (Zhang et al., 2017). If the complex 

nonlinear relationship between design attributes and quality of experience can be established using 

mathematical methods, then it is possible to identify the design alternative with the highest quality 

of affective experience while eliminating the influence of subjective assessment (Zhang et al., 

2017). Specifically, if we could construct prediction models that can be applied to forecast 

restorative experience values for each design alternative, the alternatives could be ranked by their 

restorative potential and thus the designer could detect faults, conduct further improvements, and 

make the appropriate decision on the design alternative, resulting in a more objective and efficient 

evaluation and development process in the early design stage.  

In the field of architectural design, attempts to use machine learning to predict building 

performance in aspects such as environmental comfort have been made along with the development 

of information and communication technology. It is believed that the convergence between design 

and machine learning can address multifactor problems by finding connections between variables 

(i.e., input, internal, and output variables) without explicit knowledge on the physical behaviour of 
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the system (Kim & Cho, 2000; Solomatine et al., 2008). Therefore, to evaluate the restorative 

quality of design alternatives in support of the decision-making process for the design of built 

environments focused on emotional wellness, this research aimed to develop machine-learning 

models to predict individual restorative experiences using design attributes. Evidently, success in 

obtaining a reliable machine-learning model depends heavily on the choice of input variables and 

the available dataset (Buragohain & Mahanta, 2008). The restorative experience addressed in this 

study can only be measured with peopleôs feedback; conducting such experiments on a large scale 

is usually time-consuming and expensive in terms of the massive effort required for participant 

recruitment and data collection (Patel et al., 2003). An optimization of data collection for training 

machine-learning models is necessary to maintain the quality of the dataset and eliminate the 

number of experiments conducted for data generation. Though several studies have associated the 

effect of design attributes on restorative quality of built environment, few discussions on the 

interaction effect of design attributes (i.e., the effect of one independent variable on an outcome 

depends on the state of another independent variable) are present in the literature. Whatôs more, 

earlier studies have demonstrated different prediction performances among various machine-

learning models (Chan et al., 2020; Delen et al., 2007; Diego-Mas & Alcaide-Marzal, 2016; Ling 

et al., 2014; Moro et al., 2014). These performance differences emphasize the impact of the 

problem context and provide a strong reason to test several techniques for developing machine-

learning models.  

In this regard, this study develops an integrated framework using non-immersive virtual reality 

(VR) and design of experiment (DOE) to leverage machine-learning techniques in predicting the 

restorative quality of the built environment. The proposed method is intended to optimize the data 

collection process and address the complexity and uncertainty in modelling the human affective 
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experience. The predictive performance of multiple machine-learning models is compared for 

further prediction model selection to support the decision-making in human-centered architectural 

design. This approach could greatly help designers and decision makers improve the efficiency of 

design, selection, and successive iteration processes by using a genetic algorithm that employs 

specialized knowledge (Park & Han, 2004). In addition, this study sought to identify the interaction 

effect of design attributes on the perceived restorative experience in the built environment, 

minimizing bias in estimating model parameters (Lavrakas, 2008).  

While a great number of studies related to restorative design have been conducted in the area of 

institutional construction (Gao & Zhang, 2020; Gulwadi, 2006; Nejati et al., 2016), there have been 

few empirical investigations into residential design, despite the fact that emotional support and 

relaxation are major functions of the home environment (Ellsworth-Krebs et al., 2019). As such, 

the focus of the present study is on residential buildings. Meanwhile, a generic kitchen model is 

used as a pilot study in our research since its essential functional elements (e.g., storage unit, stove, 

and oven) are generally the same among different households regardless of occupant differences 

in cultural background or personal preference. Thus, further investigation is needed on the affective 

needs for other building types. In addition, although this study aimed to quantify and represent the 

restorative experience of built environments using a single value, it cannot guarantee the superiority 

of a design. The quantitative value obtained by a predictive model is intended to be an indicator 

with the potential to evaluate the relative strength of a design alternative.  

The remainder of the present chapter is organized as follows. First, the literature pertaining to 

qualitative and quantitative research on affective design and machine-learning methods for 

affective experience modelling to clarify the point of departure. Second, the research methods and 

scope are described in Section 2.3. A detailed discussion on the non-immersive VR-DOE-based 
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method for data collection is illustrated in Section 2.4. Section 2.5 presents the data analysis and 

machine-learning models for restorative experience modelling. Section 2.6 discusses the 

experimental findings and the predictive modelling results. Finally, Section 2.7 concludes by 

highlighting the applicability and limitations of these research findings. 

2.2 Literature Review 

2.2.1 Affective Design in Built Environment  

Affective design usually focuses on the emotional and mental communication between the user 

and the products (Ng et al., 2012). For decades, efforts have been made to understand the 

correlation between built environments and corresponding human affective experience and utilize 

this correlation as a foundation for human-centered building improvement in architectural domains 

(Heydarian et al., 2017; Kim et al., 2017). According to Vischerôs environmental comfort model 

(see Figure 2-), psychological comfort is the highest level in the hierarchy for achieving occupant 

satisfaction, and it refers to a sense of belonging, ownership, and control over an environment in 

which stress also plays a critical role (Vischer, 2007, 2008a).  

 

Figure 2-1. Habitability pyramid (source: Vischer, 2007). 

óValueô added through process

óValueô calculated through 

measurement

óValueô based on necessity

Habitabilitythreshold

Discomfort

Psychologicalcomfort

Functionalcomfort

Physicalcomfort

Occupant satisfaction and wellbeing



 

 

18 

 

 

There is consensus among scholars that specific characteristics of architectural environments could 

help people in reducing anxiety and recovering from cognitive fatigue and stress, thus increasing 

the overall satisfaction level attributable to built environments. Previous studies showed that design 

attributes, such as interior colours, views (through windows), lighting, and layout of the room, can 

serve as significant predictors in assessing the satisfaction level in healthcare facilities 

(Chamilothori et al., 2019; Gao & Zhang, 2020; Harris et al., 2002; Nejati et al., 2016; Schweitzer 

et al., 2004). Various design elements in birthing centers, such as shapes and angles of walls, 

ceilings, and fixtures, were also found to be associated with womenôs affective experience and birth 

outcomes (Kopec, 2017). The golden ratio design principle was also found to affect a personôs 

emotional response in an eye-tracking-based experiment (TuszyŒska-Bogucka et al., 2020). The 

above-mentioned findings, equally, provide concrete evidence for designers optimizing affective 

design. For instance, decorative fountains have been increasingly used in healthcare facilities, as 

they can serve as positive distractions that reduce patientsô stress levels (Shah & Gharbia, 1999). 

Many hospital designs integrate gardens or modify the traditional waiting area in terms of the 

general layout, colour scheme, or furniture in order to improve the mood, the physiological state, 

and the overall occupant satisfaction level. 

Even though the qualitative evidence can provide designers with referable case studies and 

additional information, it is imperative that the designers have extensive experience and domain 

knowledge for interpreting the research findings and integrating credible research evidence in 

support of implementing relevant approaches in the design process. In this regard, many scholars 

have been attempting to quantitatively measure the effect of architectural design attributes on 

human experience. Ergan et al. (2018) conducted a crowdsourcing-based experiment to examine 

occupantsô emotional reactions to various design attributes, such as window design, ceiling height, 
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colour, and space layout; in the experiment, the participants were asked to select their preferred 

space in a pair of bipolar scales and rate the preferred space with a semantic value. To measure the 

human experience in a more objective manner, Ergan et al. (2019) also incorporated body area 

sensor networks (i.e., EEG, GSR, and PPG) to evaluate peopleôs experience related to stress and 

anxiety under predefined different design scenarios. Likewise, Martinez-Soto et al. used eye-

tracking data to investigate peopleôs reaction toward environment with different restorative 

potential. Gao and Zhang adopted the measure of physical measurement (i.e., skin conductance) 

and psychological scale to identify the patientôs experience toward design characteristics (Gao & 

Zhang, 2020).  

Overall, these studies have clearly indicated the quantitative relationship between architectural 

design attribute and human experience. Nevertheless, compared to other building design 

frameworks such as LEED and Living Building Challenge (LBC), affective design still lacks clear 

analytical models and tools for practical application in current practice. Many experiments in the 

context of affective design were usually conducted through a one-factor-at-a-time (OFAT) method-

based experiment design or by simultaneously altering multiple design attributes. This poses a 

challenge in interpreting the independent or interactive effects of the variable (i.e., design attribute) 

of primary interest. Thus, in this study, a machine-learning method trained by data collected using 

fractional factorial experiment design is used to model the relationship between restorative 

experience and design attributes to predict the restorative quality of design alternatives in support 

of the early design process.  
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2.2.2 Prediction Models for Affective Design  

Models are frequently referred to as efficient media for synthesizing and communicating 

knowledge during the design process. A model could be regarded as an abstraction used to explain 

concepts and their relationships, which are too complex to be otherwise illustrated; for example, 

the affective experience of architectural designs in this case (Teixeira et al., 2012). 

In design domains, numerous attempts have been made to model the relationship between design 

attributes and the userôs affective experience using machine-learning methods (Barnes & Lillford, 

2007). These models can be generally categorized as multiple linear regression, artificial neural 

networks (ANNs), support vector machines (SVMs), and fuzzy inference systems (FISs) (Chan et 

al., 2020). Specifically, multiple linear regression is widely used in the domain of affective 

modelling because of its easy implementation and interpretation (Lanzotti & Tarantino, 2008). 

Lanzotti and Tarantino applied logistic regression (i.e., a variant of linear regression) to predict 

usersô perceived quality toward the interior design of trains (Lanzotti & Tarantino, 2008). Park et 

al. used linear regression models to model the user affective experience of mobile phones, which 

showed satisfactory performance in terms of goodness of fit (Park et al., 2013). However, this 

modelling was performed under the assumption that design attributes are linear with respect to a 

userôs affective experience (Chan et al., 2020). Thus, the uncertainty and bias in questionnaire data 

are typically neglected in the regression model. Compared with linear regressions, ANN models 

have been shown to be more capable of handling the nonlinear nature of human perception 

phenomena. Many neural networks have been adopted to depict the nonlinear relationship between 

user affective experience and product features for affective designs such as designs for motorcycle 

helmets, paddle tennis rackets, mobile phones, and office chairs (Chan et al., 2020; Fan et al., 2014; 

Yang & Shieh, 2010). For instance, a radial basis function was introduced by Chen et al. (2021) to 
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evaluate the cultural influence on affective experience. This function attempts to model data 

uncertainty by simulating the bell-shaped distribution in fuzzy-based systems. Similarly, Ling et 

al. (2014) incorporated a wavelet function-based ANN to perform an affective design for mobile 

phones. Although ANNs can capture the nonlinearity between affective experience and the related 

design attributes, the unexplained behaviour of the network, labelled the ñblack-box,ò reduces trust 

in the solutions. In this regard, support vector regression (SVR), an extension of the SVM, is 

suggested as an alternative method for mapping the nonlinearity of feature space. The SVM is a 

popular machine-learning tool, first identified by Vapnik, who observed its excellent performance 

in solving sparse and noisy data that usually exist in real-world problems such as pattern 

recognition (Burges, 1998). In the design domain, SVR has been successfully adopted in predicting 

user affective responses based on product attributes (Fan et al., 2014; Yang & Shieh, 2010). Yang 

and Shieh (2010) employed SVR to develop a model for predicting consumer affective responses 

to product forms. Fan et al. (2014) proposed an SVR approach to model the relationship between 

design attributes and customersô affective responses. 

Interestingly, Chan et al. (2020) reviewed the literature that reports on the use of ANNs and SVR 

for affective modelling and found that SVR models perform better overall compared with neural 

network models. Moreover, taking advantage of its interpretability with which the developed 

model can be interpreted, verified, and improved by human experts, FIS, also known as a fuzzy 

rule-based model, was introduced by Lai et al. (2006) in mobile phone design to handle the 

nonlinearity and fuzziness of human affective experience. Similarly, this fuzzy rule-based 

modelling approach was also adopted in designing cars and office chairs (Lin et al., 2007; Park & 

Han, 2004; Sutono et al., 2016).  
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In summary, this section provides a brief discussion of the general machine-learning methods used 

to determine the relationship between human affective experience and design attributes. Even 

though many studies address the customerôs affective needs for product designs, the relevant 

research in built environment design remains limited. Therefore, this study aims to assess the 

feasibility of using typical machine-learning models (i.e., linear regression, ANN, SVM, and FIS) 

in predicting human affective experience of built environment.  

2.3 Research Methods  

The primary objective of this study is to develop data-driven prediction models to evaluate 

restorative quality of design alternatives in support of the decision-making process for human-

centered architectural design. To achieve this goal, a careful feature selection and data collection 

is necessary to deliver meaningful predictive modelling results. Accordingly, the present study 

proposes an integrated VR-DOE-based machine-learning method to predict the restorative 

experience of the built environment. The data collection optimization was performed using the 

DOE method so that the input variable and data were properly selected to provide the most unbiased 

and precise results commensurate with the desired expenditure of time and effort. The use of DOE 

method also enables one to identify the output variation caused by the effect of the interaction 

among factors, providing researchers with a better understanding of the relationship between the 

restorative quality and the design attributes of the built environment, as well as explains more about 

the variability in the dependent variable (Lavrakas, 2008). Here, fractional factorial design was the 

DOE method used for experiment design, as it makes it possible to obtain a reasonable amount of 

training data through a fewer experiments number and screen the effect of each factor. Meanwhile, 

linear regression and three other machine-learning modelling methods (artificial neural network, 

support vector regression, and fuzzy inference system) are employed to develop models to predict 
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the restorative quality of a space, given its particular design attributes, and a comparative analysis 

of the performance of each predictive model is then conducted. In addition, this study incorporates 

relevant psychometric scales to scientifically measure the human-perceived restorativeness in 

virtual reality simulated environments, in order to maximize the utility of predictive models.  

The research methods are illustrated in Figure 2-2. The first and foremost step is to perform a 

comprehensive review of the available literature on architecture and psychology to identify the 

architectural design attributes that potentially influence the restorative- or stress-related human 

experiences (see Section 2.4.1). The second step is to design and perform experiments, to 

investigate human responses related to restorative experiences under various combinations of 

design attributes, and collect data. A two-level fractional factorial design is employed to generate 

various combinations of design attributes for the experiments (see Section 2.4.2), wherein the 

setting of each experimental run is generated in the form of a 360-degree panorama (i.e., VR image-

based models) using Autodesk Revit. This allows a careful yet effortless evaluation of the design 

model using any mobile or VR device (see Section 2.4.3). These VR image-based design models 

are then used in the experiment to assess the restorativeness of the built environment. Additionally, 

a questionnaire is developed using psychometric scales (i.e., perceived restorativeness scale and 

restoration-supportive built environment scale), based on the previously reported studies on 

perceived restorativeness (see Section 2.4.4) (Hartig et al., 1996; Hartig, Kaiser, et al., 1997; Hartig, 

Korpela, et al., 1997). Once the questionnaire and the VR panorama-based models for each 

experimental run are prepared and examined through a pilot test, the online experiment is launched 

through emails and social media platforms to collect data (see Section 2.4.5). The collected data 

are subsequently preprocessed, and the corresponding results are analyzed for statistical 

significance (see Sections 3.5.1 and 3.5.2). Once the input features are selected, multiple machine-
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learning models are used to predict the restorative qualities of the built environment using design 

attributes (see Section 2.5.3). Finally, a regression performance analysis of the developed 

predictive models is performed to identify the most appropriate models that can forecast the overall 

restorative quality of a built environment with several design alternatives.  

 

Figure 2-2. Research methods. 

2.4 Experiments Design and Data Collection for Human Restorative Experience  

2.4.1 Architectural  Design Attributes 

Many architectural design attributes have been found to be related to human-perceived 

restorativeness in the built environment (Ergan et al., 2018; Gao & Zhang, 2020). It is generally 

believed that design attributes that support fascination, curiosity, or involuntary attention can be 
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credited for enhancing recovery from mental fatigue (Kopec, 2017).  Table 2-1 lists the eight 

architectural design attributes commonly related in the literature to restorativeness- and stress-

related experiences.  

Table 2-1. Architectural design attributes associated with human restorativeness- and stress-

related experience in the literature  

Architectural design 

attributes 

References 

Exposure to nature 

and indoor plant 

Bagot et al. (2015), Burnard & Kutnar (2015), Hartig & Evans 

(1993), Hipp et al. (2016), Iwata et al. (1997), Wells & Evans 

(2003) 

Presence/absence, 

dimensions, shapes of 

windows 

Collins (1976), Evensen et al. (2015), Hong et al. (2019), 

Nejati et al. (2016), Ozdemir (2010), Pati et al. (2008), Pohl 

(2011) 

Openness/Spaciousness 

of spaces 

Evans (2003), Lindal & Hartig (2013), Sadalla & Oxley 

(1984), Vartanian et al. (2015), Winchip et al. (1989) 

Lighting  Beute & de Kort (2014), Manav (2007), Nikunen et al. (2014), 

Nikunen & Korpela (2009) 

Finishing colour scheme Hall (1990), Hidayetoglu et al. (2012), Lamb et al. (2010), 

Macrae (2005), Meerwein et al. (2007), Michaelis (2011), Pile 

(1997), Rubert et al. (2007) 

Visual complexity Cassarino & Setti (2016), Jang et al. (2018), Orth & Wirtz 

(2014), Taylor (2006) 

Space layout Enquist & Arak (1994), Ergan et al. (2018), Finlay et al. 

(2010), Lindal & Hartig (2015), Oliva & Torralba (2001), 

Schweitzer et al.(2004) 

Spatial alignment Ergan et al. (2018), Gentner (1983), Michal & Lustig (2014) 

 

Window Designs and Access to Natural Elements 

Access to natural elements and the presence of windows are the components most frequently 

discussed in the study of human restorative experience in built environments. Research suggests 

that increased exposure to bright light effectively reduces depression and improves the mood of 

occupants, even for people hospitalized with severe depression (Hartig & Evans, 1993; Iwata et al., 
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1997; Wells & Evans, 2003). In this context, windows in built environment settings have been of 

great interest among scholars. Pati et al. indicated that the presence of windows has a positive 

impact on stress reduction, while Nejati supported that a window enhances the perceived quality 

of the overall experience of a physical environment (Nejati et al., 2016; Pati et al., 2008). Moreover, 

Lowenhaupt Collins pointed out that the perceived quality of a windowôs view is intimately related 

to the windowôs dimension and shape (Pohl, 2011). Generally, higher occupant satisfaction and 

visual comfort are associated with higher window-to-wall ratio (i.e., 30%) than with a lower 

window-to-wall ratio (i.e., 15%), as showed in Hong et al. (2019). 

Spaciousness of Spaces 

The perceived spaciousness of an interior space has been correlated with a reduction in the feeling 

of stress and anxiety. Previous studies indicate that ceiling height, aspect ratio, and square footage 

are the main attributes that determine how people experience a space. That is, the larger the 

horizontal areas and the higher the ceiling height, the more spaciousness people perceive and, 

ultimately, the more comfortable they feel in the environment (Evans, 2003; Sadalla & Oxley, 1984; 

Vartanian et al., 2015; Winchip et al., 1989). 

Lighting 

Lighting has been considered a potential source of fascination to restore attention and promote the 

use of unintentional attention by augmenting oneôs perception of the environment (Nikunen et al., 

2014). Both the illuminance level and the correlated colour temperature have been associated with 

attention restoration through the perception of brightness and the quality of colour environments 

(Manav, 2007). According to Manav, the colour temperature of 4000k was preferred to 2700K for 

the perception of comfort and spaciousness, while an illumination level of 2000 lx was preferred 
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to 500 lx for impressions of comfort, spaciousness, brightness perception, and colour saturation 

(Manav, 2007). 

Colour Scheme 

The choice of colours in architectural design plays a significant role in the process of attention 

restoration for individuals, as it is associated with oneôs feeling of serenity or agitation, which in 

turn affects oneôs stress level (Hall, 1990; Macrae, 2005; Pile, 1997). Generally, warm colour 

schemes involving shades of orange, yellow, and brown help people increase their awareness, 

whereas cold colour schemes, including shades of green, blue, and grey, help people focus on visual 

and mental tasks (Hidayetoglu et al., 2012).  

Visual Complexity 

Visual complexity is associated with visual attention and comfort with regard to the assumption 

that design attributes that enable one to capture involuntary attention can facilitate mentally 

restorative processes. The amount of detail in visual stimuli affects a personôs ability to be 

effortlessly attentive (Jang et al., 2018). In studies on visual perception (Taylor, 2006), people have 

shown a preference for designs with greater visual complexity.  

Space Layout 

The layout of space (i.e., symmetry of objects in the interior environment) has also been identified 

as an influential design attribute, altering environmental perceptions (Ergan et al., 2018). A 

symmetrical space layout increases the perceived quality of the environment and affects occupant 

satisfaction (Schweitzer et al., 2004). Enquist and Arak found that people appreciate greater 

symmetry and that symmetrical patterns hold an almost universal appeal for humans (Enquist & 

Arak, 1994; Lindal & Hartig, 2015).  
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Spatial Alignment 

Spatial alignment allows the brain to identify similarities and differences among elements, which 

effectively draws visual attention to one important region by enhancing that regionôs visual 

saliency (Michal & Lustig, 2014). Based on their human experience and a built environment-

related experiment, Ergan et al. concluded that people associate the experience of pleasure and 

aesthetics with the presence of spatial alignment and show greater preference for aligned spaces 

(Ergan et al., 2018).  

Based on the literature review and given the context of this study, the following 10 design attributes 

that are typical of architectural design elements in residential environments were selected and 

investigated in this study: (1) room size, (2) rectangularity of room shape, (3) ceiling height, (4) 

light temperature, (5) visual complexity, (6) room layout symmetry, (7) window-to-wall ratio, (8) 

window aspect ratio, (9) finishing colour scheme, and (10) space alignment.  

2.4.2 Experiments Design 

Statistical experimental design is frequently performed in experiment planning, as it allows 

appropriate data to be collected and analyzed in order to deliver validated and objective conclusions. 

The present study endeavored to establish a óbalancedô dataset that comprehensively represents all 

sample populations for predictive model development so that the model can characterize the 

relationship based on the data rather than merely ómemorizingô the training data of over- or under-

represented populations (Vabalas et al., 2019). To obtain uniformly distributed data over the 

investigated attributes and reduce the total number of experiments (design alternatives) required, 

the fractional factorial design approach was employed in this study to develop a balanced dataset. 

Specifically, two levels were assigned to each design attribute, as presented in Table 2-2. It should 
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be noted that the space-A and space-B in the table are only meant to illustrate the different values 

of design attributes. The experiment aimed to gather response data from people regarding the extent 

of their perceived restorativeness in a setting that combines various interior design attributes. 

Compared to randomized controlled trial design, factorial design allows the researcher to 

comprehensively evaluate the influence of multiple attributes and detect interaction effects among 

these attributes (Baker et al., 2017). However, for a study with many independent variables, full 

factorial design can lead to an excessive number of experimental runs and data, i.e., in this study, 

1,024 experimental runs are required for full factorial design. In this context, fractional factorial 

design is considered a cost-efficient experiment design because it requires fewer experimental runs 

while maintaining the same level of statistical power (Collins et al., 2009). In this study, the 

restorative quality of each design alternative (experimental run) was evaluated by the participants, 

and a greater number of experimental runs would significantly affect the respondentôs cognitive 

burden and the relative costs associated with data collection. Thus, in this study, a 1/25 factorial 

experiment design was conducted to examine the effect of the 10 aforementioned architectural 

design attributes at a two-level resulting in 32 experimental runs, which supports the selection of 

input features for further predictive modelling (Antony, 2003). Table 2-3 presents the 32 

experimental runs (design alternatives) of this study, as generated by the Minitab statistics software. 

Each run represents a combinatorial design alternative modelled later using Revit and evaluated in 

the later experiment.  
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Table 2-2. List of attributes and their levels with two unlabelled design alternatives in the 

experiment 

Design attributes Space-A Space-B 

Room size  110 ft2 210 ft2 

Rectangularity of room shape  
Square  

 
Narrow Rectangle  

Ceiling height Slightly low  Slightly high 

Light temperature 

 
Warm-white 

 
Daylight 

Visual complexity 

 
Moderately low 

 
Moderately high 

Room layout symmetry 

 
Asymmetric 

 
Symmetric 

Window-to-wall ratio Slightly low Moderately high 

Window aspect ratio 

 
Verical  

 
Horizontal  

Finishing colour scheme 

 
Clean-White 

 
Modern Rustic 

Spatial alignment 

 
Unaligned 

 
Aligned 

  

W

L

W

L
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Table 2-3. Experimental runs of design alternatives selected by fractional factorial design 

Run 

Attributes 

Room 

size 

Rectangularity 

of room shape 

Ceiling 

height 

Light 

temperature 

Finishing 

colour 

scheme 

Window 

aspect 

ratio 

Window 

to wall 

ratio 

Room 

layout 

symmetry 

Visual 

complexity 

Space 

alignment 

1 210 ft2 
Narrow 

rectangle 
Low Daylight 

Modern 

rustic 
Horizontal Low Symmetric High Unaligned 

2 110 ft2 Square Low 
Warm-

white 

Modern 

rustic 
Vertical Low Asymmetric High Unaligned 

3 110 ft2 
Narrow 

rectangle 
High Daylight 

Modern 

rustic 
Horizontal Low Asymmetric High Aligned 

4 210 ft2 Square High 
Warm-

white 

Clean-

white 
Vertical High Asymmetric Low Unaligned 

5 110 ft2 
Narrow 

rectangle 
High 

Warm-

white 

Clean-

white 
Vertical High Asymmetric High Aligned 

6 110 ft2 
Narrow 

rectangle 
High 

Warm-

white 

Modern 

rustic 
Vertical Low Symmetric Low Unaligned 

7 210 ft2 
Narrow 

rectangle 
High 

Warm-

white 

Clean-

white 
Horizontal Low Symmetric Low Aligned 

8 110 ft2 Square High Daylight 
Clean-

white 
Vertical Low Asymmetric Low Aligned 

9 110 ft2 Square High 
Warm-

white 

Modern 

rustic 
Horizontal High Asymmetric Low Aligned 

10 110 ft2 Square Low 
Warm-

white 

Clean-

white 
Vertical High Symmetric Low Aligned 

11 110 ft2 
Narrow 

rectangle 
Low 

Warm-

white 

Modern 

rustic 
Horizontal High Symmetric High Aligned 

12 110 ft2 
Narrow 

rectangle 
Low 

Warm-

white 

Clean-

white 
Horizontal Low Asymmetric Low Unaligned 

13 110 ft2 
Narrow 

rectangle 
Low Daylight 

Clean-

white 
Vertical Low Symmetric High Aligned 

14 110 ft2 
Narrow 

rectangle 
High Daylight 

Clean-

white 
Horizontal High Symmetric Low Unaligned 

15 210 ft2 Square High Daylight 
Modern 

rustic 
Horizontal Low Asymmetric Low Unaligned 

16 210 ft2 Square Low Daylight 
Modern 

rustic 
Vertical High Asymmetric High Aligned 

17 210 ft2 Square Low Daylight 
Clean-

white 
Vertical Low Symmetric Low Unaligned 

18 110 ft2 Square Low Daylight 
Modern 

rustic 
Horizontal Low Symmetric Low Aligned 

19 210 ft2 
Narrow 

rectangle 
High Daylight 

Modern 

rustic 
Vertical High Symmetric Low Aligned 
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20 110 ft2 Square High 
Warm-

white 

Clean-

white 
Horizontal Low Symmetric High Unaligned 

21 110 ft2 
Narrow 

rectangle 
Low Daylight 

Modern 

rustic 
Vertical High Asymmetric Low Unaligned 

22 210 ft2 
Narrow 

rectangle 
High 

Warm-

white 

Modern 

rustic 
Horizontal High Asymmetric High Unaligned 

23 210 ft2 Square Low 
Warm-

white 

Clean-

white 
Horizontal Low Asymmetric High Aligned 

24 210 ft2 Square High Daylight 
Clean-

white 
Horizontal High Symmetric High Aligned 

25 110 ft2 Square High Daylight 
Modern 

rustic 
Vertical High Symmetric High Unaligned 

26 210 ft2 
Narrow 

rectangle 
High Daylight 

Clean-

white 
Vertical Low Asymmetric High Unaligned 

27 210 ft2 Square High 
Warm-

white 

Modern 

rustic 
Vertical Low Symmetric High Aligned 

28 210 ft2 
Narrow 

rectangle 
Low Daylight 

Clean-

white 
Horizontal High Asymmetric Low Aligned 

29 210 ft2 
Narrow 

rectangle 
Low 

Warm-

white 

Modern 

rustic 
Vertical Low Asymmetric Low Aligned 

30 210 ft2 Square Low 
Warm-

white 

Modern 

rustic 
Horizontal High Symmetric Low Unaligned 

31 110 ft2 Square Low Daylight 
Clean-

white 
Horizontal High Asymmetric High Unaligned 

32 210 ft2 
Narrow 

rectangle 
Low 

Warm-

white 

Clean-

white 
Vertical High Symmetric High Unaligned 

 

2.4.3 Virtual Reality Model Generation 

It would be impractical to provide 32 real room settings with defined design attributes for the 

purpose of the experiment. Thus, following the DOE results, each experimental run (design 

alternative) was represented in a VR-based 360-degree panoramic model (see Figure 2-3). The 

basic geometry, structure, and design setting of the virtual environment and objects (e.g., cabinet, 

countertop, sink, light fixture) were configured in a building information model in Revit (2019). 

Autodesk Cloud Rendering was then used to render the design into high-resolution stereo 
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panoramas that could be shared via a website URL. Participants could then use either a smartphone 

with cardboard VR viewer or a desktop to access the VR panorama.  

A number of studies have demonstrated that there is not a significant difference in terms of 

occupant perception between physical spaces and well-designed VR environments (Calogiuri et al., 

2018; Heydarian et al., 2015; Hong et al., 2019; Iachini et al., 2016; Zhang et al., 2020). Moreover, 

using VR models rather than static images to represent design configurations allows for a 

continuous stream of congruent stimuli that deliver a vivid illusion of reality to the participant. This 

has to do with the concept of ñpresence,ò the subjective feeling of ñbeing in a virtual environment,ò 

which determines the effectiveness of a VR simulation. On the other hand, to ensure adequate 

visual fidelity among various VR display platforms (e.g., smartphone-based VR and desktop-VR 

paradigms), the devices used in the experiment (VR display type and resolution configurations) 

were recorded. Although the interaction fidelity and immersion level provided by the two display 

systems used are different, their influence on emotional elicitation may not be significant (Baños 

et al., 2004; Roettl & Terlutter, 2018; Srivastava et al., 2019; Terlutter et al., 2016; Voigt-Antons 

et al., 2020; Wilson Christopher J. & Soranzo Alessandro, 2015). Meanwhile, an assumption was 

made in this study that a satisfactory sense of presence provided by the VR model can ensure 

sufficient emotional stimulation of participants, since the emotional elicitation effect is strongly 

associated with the feeling of presence in a VR platform (Riva et al., 2007). Therefore, multiple 

questions adopted from Heydarian et al. (2015) assessing the realism of the VR environment 

compared to the physical world were included in the questionnaire in order to verify the validity of 

the developed VR model. 
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Figure 2-3. Screenshots of VR models for experimental runs. 

2.4.4 Design of Questionnaire  

During the experiment, participants were expected to assess the restorative quality of a room setting 

and describe their relevant experience by filling out a questionnaire, which consisted of two parts: 

(a) background questions and (b) restorative experience measurement. 

Background Questions  

Prior to the questions measuring oneôs restorative experience, the questionnaire asked for 

demographic information, including age, gender, and education level, and past experiences with 

architectural design, virtual reality models, and built environments as settings for restorative 

experiences. The additional background questions regarding past experiences with architectural 

design, virtual reality models, and built environments were intended to examine the influence of 

these experiences on the interpretation of results pertaining to perceived restorativeness. Moreover, 

the Ishihara colour blindness test was added as a core module in the demographic information 

portion of the questionnaire to identify and eliminate the potential influence of participants with 

colour blindness. 
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Restorative Experience Measurement 

To measure the human-perceived restorativeness of the built environment in a reliable and 

quantifiable manner (Han, 2018), two self-reported restorativeness scalesðthe Perceived 

Restorativeness Scale (PRS) by Hartig et al. (1997) and the Built Environment Restoration Support 

Scale (BERS) by Fischl and Garling (2008)ðwere incorporated in this study as part of the 

questionnaire. Self-reported restoration experience assessment, as an explicit measure, has been 

widely used in studies on environmental restorativeness to quantify individualôs psychological 

reactions (Han, 2018; Hartig et al., 1996; Pasini et al., 2014). Specifically, the selected self-reported 

scale, PRS, is one of the most widely used measures addressing the extent to which certain 

environmental settings have restorative qualities, and its validity has been proven by sufficient 

psychometric analysis in terms of content, construct, convergent, discriminant, and criterion-

related validity (Han, 2018; Hartig et al., 1996). This scale has been credited for its generalizability 

and sensibility in identifying differences in perceived restorativeness in a given environment on 

the part of participants of various ages, health levels, and nationalities. However, PRS is rarely 

used for indoor environments. In comparison, the BERS was explicitly proposed to assess the 

restorative quality of the built environment but rarely examined in previous studies. Since limited 

attempts have been made to examine the validity of the BERS, it was included in the questionnaire 

only as a supplemental measure to the PRS. 

In the PRS measurement, perceived restorativeness is assessed using four dimensions, namely, the 

feelings of ñbeing away,ò ñfascination,ò ñcoherence,ò and ñcompatibility,ò based on Kaplan and 

Kaplanôs Attention Restoration Theory (Herzog et al., 2003; Katz, 1991). Given this chapterôs 

focus, the interested reader can refer to the cited references (Hartig et al., 1997; Hartig & Staats, 

2003) for a detailed description of each restorativeness dimension. The PRS measurement 
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developed by Hartig et al. (Hartig et al., 1997; Hartig et al., 1997) uses either 26 or 16 items. This 

study adapted the 16-item method to make it more suitable for use in research contexts where the 

evaluated scenarios are indoor built environments (Hartig et al., 1997). As a result, 17 seven-point 

Likert-scale questions (see Table 2-4) were proposed in the questionnaire to measure the 

participantsô perceived restorativeness. Moreover, to measure restorative experience in a 

standardized, plausible, and relevant context, emotion-provoking methods that put participants 

under psychological stress before exposure to configured environmental settings have been 

commonly used in previous studies to ease the restoration effect measurement (Gao & Zhang, 2020; 

Ulrich et al., 1991). Thus, a scenario description adapted from Lindal and Hartig (2013) was 

provided to participants before moving on to the restorativeness measurement for the contextual 

stimuli control: Imagine it is afternoon. You are walking home from work alone. You are mentally 

exhausted from intense concentration at work, and you appreciate having a chance to stroll and 

recover. The purpose of this affective description was to specify a condition of directed attention 

fatigue and to emphasize for participants the range of variation in compatibility due to factors other 

than a change in the physical environment (Lindal & Hartig, 2013). 

It is noteworthy that the developed questionnaire was reviewed by six researchers in the field of 

architectural design and ergonomics before being sent to prospective respondents. These 

researchers were asked to provide feedback on the visual noticeability of the design attributes as 

the visual stimulus component of the environmental settings, as well as on the validity of each 

questionnaire item in terms of wording, format, content, and clarity. Based on the researchers' 

feedback, the VR models and questionnaire were modified and finalized. 
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Table 2-4. Measurement items in questionnaire. 

Dimensions Questionnaire Items 

Perceived 

Restorativeness Scale 

(PRS) 

Being Away 
Spending time here gives me a break from my day-to-day routine. 

Being here helps me to relax my focus on getting things done. 

Fascination 

This place is fascinating. 

This place draws my attention without any effort on my part. 

My attention is drawn to many interesting features in this space. 

I want to get to know this place better. 

There is much to explore and discover in this space. 

Coherence 

There is too much going on in this space. 

This is a confusing place. 

There is a great deal of distraction in this space. 

It is chaotic in here. 

Compatibility 

This space fits my character. 

I can do things I enjoy in this space. 

Sometimes even a small space can feel like a whole world of its own. It can seem like 

it is enough room to become completely engaged in this space and not concern 

yourself with anything beyond its walls. 

It is easy to see how things are organized in this space. 

I could find ways to enjoy myself in a place like this. 

Built Environment Restoration Support 

Scale (BERS) 

Recall one of those times when you worked hard on a project that required intense and 

prolonged effort. Remember how it felt. You probably reached a point where you 

could tell that your ability to work effectively had started to decline and that you 

needed a break. You needed to do something during the break to restore your ability 

to work effectively on the project. Put yourself in that mindset now, and then please 

rate your satisfaction level toward the presented design as a setting in which to take a 

break and restore your ability to work effectively. 

 

2.4.5 Participant Recruitment and Data Collection 

Data collection was conducted via the Internet. Participants received an invitation letter through e-

mail that contained a link to the online questionnaire. Participants were invited to complete the 
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experiment voluntarily, and could withdraw at any time. A total of 32 VR models (one for each 

experimental run) were assessed in this study. Figure 2-4 shows the procedure for a single 

experimental session. After the introduction and background information section, participants were 

given 2 min to read a paragraph of affective text, i.e., stimulus material for eliciting stressful 

feelings (Gao & Zhang, 2020; Ulrich et al., 1991). Then, a 3-min non-immersive VR experience 

of the configured design was provided, where the exposure duration was determined in reference 

to previous lab-based human affective-related experiments (Abujelala et al., 2021; Chen et al., 2018; 

Ergan et al., 2019; Shemesh et al., 2016, 2017). Afterward, participants were asked to evaluate 

their perceived restorativeness experience by answering the next section of the questionnaire. An 

access link was made available in every question so that the participant could re-visit the VR 

environment as needed to reduce memory load and improve the accuracy of the affective judgment. 

Each experimental session took approximately 13ï20 minutes on average to complete.  

 

Figure 2-4. Overview of a single experimental session. 

2.5 Data Analysis and Prediction  

Once the responses were collected through the experiments, data preprocessing and analysis were 

then performed to identify the meaningful input features for the development of prediction models. 

In this study, five machine-learning models, namely, linear regression, radial basis function neural 

network (RBFNN), general regression neural network (GRNN), SVR, and FIS, were developed to 
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predict the human restorative experience toward the built environment. Their predictive 

performance was also compared using performance metrics for further model selection. 

2.5.1 Data Pre-Processing 

Data preprocessing aimed to clear responses that did not meet certain criteria, such as incomplete 

responses, responses that were given too quickly (ñspeederò responses), inconsistent responses, 

and outlier responses (Curran, 2016; Meade & Craig, 2012). Specifically, to ensure the credibility 

of the experimental results, four indicesð(a) total response time, (b) response patterns (i.e., 

LongString), (c) Mahalanobis distance, and (d) Cronbachôs alphaðwere calculated based on the 

response data, and data cleaning was performed accordingly. For example, the speeder and 

inattentiveness responses can be easily identified through the respondentsô response times and 

patterns. The response time measures the total time needed by the respondent to complete the 

questionnaire. A much shorter response time indicates that the respondent may be speeding through 

questions and paying little attention to providing an assessment. The response pattern is analyzed 

to identify respondentsô careless responses (for example, a respondent who consistently provides 

the same answer). Following the method proposed by Johnson (Johnson, 2005), an index termed 

LongString was used to compute the maximum number of items with identical consecutive 

response on a single page (Curran, 2016; Johnson, 2005; Meade & Craig, 2012). As for the outlier 

responses, the Mahalanobis distance, denoted as MD in Equation 2-1, was computed for each 

response for the same design alternative, measuring the multivariable distance between each 

response vector and the mean of the sample vector, which indicates the individual responses outside 

the distribution. Moreover, with respect to the internal consistency of the measures, Cronbachôs 

alpha (see Equation 2-2) was estimated to reflect the extent to which the question was inter-

correlated in measuring the participantsô perceived restorative experience. In alignment with 
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previous works, a of at least 0.7 was also used in this study to indicate adequate internal consistency 

of responses (Tsang et al., 2017). 

ὓὈ ὶ ὶǶϽὅ Ͻὶ ὶǶ  (2-1) 

where ὶ is the vector of the response; ‘Ƕ is the vector of mean value; and C is the covariance matrix 

of these two variablesô vectors.  
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  (2-2) 

where ὲ is the number of responses; „  is the variance of questionnaire item i; and „  is the total 

variance of the questionnaire. 

 

2.5.2 Factorial Analysis 

To detect which architectural design attributes and which interactions between attributes influence 

oneôs perceived restorativeness to the greatest extent, an analysis of variance (ANOVA) was 

performed on the remaining dataset (i.e., after data pre-processing) using Minitab 18 statistical 

software. The main effect of a design attribute was measured by the corresponding change in the 

output, i.e., the restorative experience associated with the change made at the level of that design 

attribute averaged over other design attributes. The interaction effect (i.e., two-way interaction 

between variables A and B) is defined as the average difference between the main effect by A at 

the high level of B and the effect of A at a low level of B. Note that the significance of a design 

attribute or its effect on restorative experience is determined by its p-value (Tauxe et al., 2006). 
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2.5.3 Predictive Modelling for Restorative Experience 

As reported in previous studies, prediction models developed using machine-learning methods may 

show different prediction performances under various problem contexts. To explore the capability 

of machine-learning models in affective modelling for built environments, linear regression and 

three other typical machine-learning methods (ANN, SVR, and FIS) were tested to develop the 

prediction models for human restorative experience. These three machine-learning models were 

adapted from a comprehensive literature review conducted by Chan et al. (2020) that examined 94 

research publications and summarized the machine-learning methods used to model the 

relationship between the affective quality of a product and its design attributes. Among the 

machine-learning methods discussed in the study by Chan et al., we focused on models with a 

lower variance capable of characterizing the relationship from a small dataset in order to mitigate 

the risk of overfitting (considering that it is impractical to conduct such data collection experiments 

on a large scale, given the associated cost and effort). As a result, three machine-learning methods 

were selected due to their generic applicability and their ability to handle noisy and nonlinear small 

datasets, as proven in previous studies (Chan et al., 2020).  

The inputs to the machine-learning models included the selected variables identified as statistically 

significant based on the factorial analysis in the previous step, while the output was the numeric 

measurement of the reported restorative experience. To begin, the dataset was divided into a 

training set and a validation set. The overall dataset was divided into training and testing sets based 

on the principle that the size of the dataset for machine learning should be roughly ten times the 

degrees of freedom in the model, which means approximately 100 sample points are needed for a 

10-variable model. Although we would like to have kept as many samples as possible in the training 

dataset to provide more features for training, an inordinately small testing set may have resulted in 
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unacceptably high variance in the performance assessment results. Thus, 100 responses (83%) were 

used for training and 20 responses (17%) for testing. Due to the limited sample sizes, k-fold cross-

validation was applied to the training set to mitigate the risk of overfitting and to enhance the model 

fitting and generalization. The training set was initially used to identify the optimal model 

parameter with 5-fold cross-validation. The parameter setting achieving good performance in 

minimizing the averaged 5-fold cross-validation error for both the training set and the testing set 

was determined to be the optimal solution. Subsequently, the parameters obtained were adapted in 

order to train/fine-tune a model using the entire training set (i.e., 100 responses). Accordingly, the 

trained models were evaluated on the validation set (i.e., 20 responses), and performance metrics 

of RMSE and R2 were used to evaluate the predictive performance of the models. All design and 

training of the machine-learning models was performed in MATLAB 2020b. It should be noted 

that the optimal parameters of each method were determined based on the best prediction 

performance via grid search in the parameter space after multiple trial-and-error tests. The 

following subsections describe the process of developing the machine-learning models.  

Linear Regression Model 

Linear regression model (see Equation 2-3) predicts the output, i.e., perceived restorativeness in 

the built environment, as a weighted sum of the input features. Each weight of the input features ‫ 

in the model can be determined by the least-squares method as well as maximum likelihood 

estimation. To maximize the precision of predictors in a model, insignificant variables were 

eliminated in a stepwise manner during the regression process. A threshold of 0.1 regarding the 

variablesô statistical significance (i.e., p-value < 0.1) was applied during the linear regression to 

avoid an underspecified regression model, in accordance with the limitation of the sample size and 

the subjective nature of self-reported surveys. All individual factors and the lower terms of 
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interaction factors with significant effects were included in the linear model to present the model 

hierarchy.  

ὣ Ὢὼ  ‫ὼ 
 (2-3) 

 

ANN Model 

To choose a neural network architecture, multiple factors are considered, such as a simple model 

architect, strong capability for nonlinear fitting, generalization for new data, and tolerance for small 

sample size and high noise by human subjectivity in an affective design. Inspired by previous 

studies and data characteristics (Chen & Yan, 2008; Chen et al., 2008; Chen et al., 2021b; Lin, 

2013; Tian et al., 2014; Wang et al., 2020), the radial basis function neural network (RBFNN) and 

the general regression neural network (GRNN) were used in this study because of their ability to 

achieve global optimization with strong robustness and fault tolerance (Chen et al., 2021b). At 

times, it should be noted, they have even demonstrated better accuracy and training speed than 

other neural networks with simple architecture, e.g., multilayer perceptron networks (Izonin et al., 

2021; Wu et al., 2012). Figure 2- shows their respective architectures. 

The RBFNN is a three-layer feedforward network that uses radial basis function as its activation 

function. The output of this result can then be expressed as a scalar function of input vectors, as 

shown in Equation 2-4. Here, •ὼȟὼ  denotes the radial basis function whose output depends on 

the Euclidean distance to the center ὼ. To calculate the center of the radial, the Gaussian function 

(see Equation 2-5) was used on each hidden unit as the transfer function. The value coming out of 

the hidden layer (i.e., radial basic layer) is multiplied by a weight associated with the node and 
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passed to the output layer. Then, the output layer accumulates up the weighted values and presents 

this sum as the networkôs output.  

 

Figure 2-5. Architectures of the RBFNN and the GRNN. 

ὣ Ὢὼ ύ• ὼȟὼ   (2-4) 

•ὼȟὼ ÅØÐ 
ᴁὼ ὼᴁ

ς„
  (2-5) 

where ὼ is the center vector; ύ is the connection weight from the hidden unit to the output unit; 

„ is the width of the Gaussian function; and ᴁὼ ὼᴁ represents the distance input to the center of 

the basis function. 

The GRNN is a variation to the radial basis neural networks and consists of four parts: the input 

layer, the pattern layer, the summation layer, and the output layer. This model is known for its 

ability to achieve global optimization with strong robustness and fault tolerance. The mathematic 

representation of the GRNN can be seen into Equation 2-6, where ύ  is the activation weight of 

the pattern layer node Ὧ and ὑὼȟὼ  is the radial basis function kernel. 

...

Input Layer Radial Basic Layer Output Layer

...

Input Layer Pattern Layer Summation Layer Output Layer

General Regression Neural NetworkRadial Basis Function Neural Network 
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Вὑὼȟὼ
 (2-6) 

During the network design and training process, the smoothing factor of the kernel functions to 

train these two neural networks was set at 0.3 as a trade-off between the model generalizability and 

the fast-changing function.  

SVR Model 

Support vector regression applies a line referred to as hyperplane to descript the trend of the data. 

Rather than minimizing the error between the observed and predicted values, SVR aims to fit the 

best line within a threshold value so that as many samples as possible can be included to enhance 

model reliability. To obtain the SVR model, the regression process can be formed as the 

optimization problem outlined in Equation 2-7 (Vapnik, 1995).  

ὓὭὲὭάὭᾀὩȡ 
ρ

ς
ᴁ‫ᴁ (2-7) 

ίόὦὮὩὧὸ ὸέ
ώ ‫Ͻ‰Ø ὦ ʀ

‫Ͻ‰Ø ὦ ώ ʀ 
 Ὥ ρȟςȟȣὰ

  

where ώ is the observed output; weighted vector ‫  and bias ὦ are the parameters for the 

prediction of an observed data; and Ů is the epsilon margin that serves as a threshold for the 

difference between the prediction and the observed outputs. 

The performance of the SVR model depends heavily on its parameters, such as the kernel function 

parameter, the regulation parameter, and the width of the epsilon-insensitive band. It is necessary 

to optimize the training parameters for better generalization performance and to eliminate the 

overfitting problem, given the limited sample size (Platt, 1999). During the training process, SVR 

employed a Gaussian function as the kernel function and the sequential minimal optimization 
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algorithm (SMO) to find the optimal solution. The best performance was found when the Kernel 

scale was 2.154 and Edsilon was 0.535. 

FIS Model 

To obtain a fuzzy inference system from the data, the foremost step is to divide the data space into 

fuzzy clusters. Following Park and Hanôs instruction, this study employed the fuzzy subtractive 

clustering algorithm (FSC), an unsupervised algorithm, to identify potential clusters among the 

input data (Park & Han, 2004). The FSC can automatically estimate a fair number of clusters based 

on the density (potential) of data points in a space where a cluster center is one of the clustered 

data (Bataineh et al., 2011; Chiu, 1994). Consequently, 10 rules (10 clusters) were generated based 

on the optimal combination of fuzzy clustering parameters. The local model of each rule was then 

expressed using the TakagiïSugenoïKang (TSK) model in a mathematical manner. The regression 

parameters of the local models were further determined by the linear least-squares estimation 

technique and represented as outlined in Equation 2-8.  

Ὂέὶ ὼɴ ὅȟὝὌὉὔ ὣ ὥ ὥὼ (2-8) 

where ὼ is the j th dimension of data point; M is the overall dimension of design elements (i.e., 

equal to 10 in this case); and ὥ are the regression parameters; ὅ refers to the kth cluster. 

Assessment of Prediction Performance  

The accuracy of the predictive result is reflected in the prediction error; thus, measuring and 

analyzing the magnitude of the prediction error is of great significance in terms of demonstrating 

the accuracy of the prediction result (Botchkarev, 2018). Root mean square error (RMSE) is a 

standard metric that expresses the average deviation between the predicted value and the observed 
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value, and it is commonly used to compare the performance of machine-learning regression models 

(Chen et al., 2021b; Yang & Shieh, 2010). However, it is difficult to ascertain the quality of a 

predictive model by merely looking at a singular value of RMSE. For instance, an RMSE value of 

0.4 alone does not intuitively indicate whether or not a model performs well in predicting 

restorative quality. This shortcoming can be addressed with the use of another performance 

indicator, R-squared (R2), which gives the percentage of output variance that can be explained by 

the independent variables in the model (Chicco et al., 2021). Compared to RMSE, R2 is more 

informative in indicating the model prediction performance, where an R2 value of 0.8 means that 

the evaluated model explains 80% of the variation within the data, regardless of the ranges and 

distributions of the ground truth values (Chicco et al., 2021). Therefore, in the present study, both 

RMSE and R2 were used to assess the goodness-of-fit of the prediction models, where a high R2 

value and a low RMSE in all possible regression methods is considered to be indicative of a better 

fit in modelling the relationship between perceived restorativeness and architectural design 

attributes.  

In addition, the scatterplots of the observed data against the predicted data were further employed 

to illustrate the distribution pattern of the prediction error, (i.e., a constant variance of error across 

the various levels of the dependent variable). In other words, the scatterplots of observed vs. 

predicted PRS scores in our study revealed whether the predictive model could perform 

equivalently in predicting various levels of dependent variables. For instance, the scatterplots of 

observed vs. predicted PRS scores in our study revealed whether the predictive model could 

perform equivalently in predicting various design settings with different PRS scores (Piñeiro et al., 

2008).  
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2.6 Results and Discussion 

A summary of the main findings from the experiment together with analytical results regarding 

predictive modelling are provided in the section. 

2.6.1 Demographic Characteristics 

A total of 144 participants took part in the experiment, and 120 responses (data points) were used 

for further data analysis and prediction model development after data cleaning has been carried out 

to remove any incomplete or unqualified responses. Data reliability was tested with Cronbach alpha 

and the result of 0.824 suggests a good internal consistency of survey responses, which means the 

online questionnaire results are able to reliably measure a personôs perceived restorative experience 

under specific interior design settings. The distribution of the participants in terms of demographic 

characteristics (age, gender, and education level) is outlined in Table 2-5. Participants were queried 

as to their background knowledge and relevant experience with respect to interior design, and only 

4.2% of participants stated they do not have any experience or knowledge of interior design. 

Moreover, more than 50% of participants had interior design experience or were familiar with the 

basic principle. In terms of virtual reality models, 70.8% of participants stated they have prior 

experience with VR techniques and gave the VR model a score of 5.43 out of 7 (SD=0.72) in terms 

of its sense of presence, indicating that the virtual model is an adequate representation of the 

physical environment for the purpose of measuring user experience (Heydarian et al., 2015). 

During the experiment, no significant differences were found for age, gender, and level of 

education, which suggests the demographic variables did not influence the responses in the present 

study. However, the attitude of a respondent with respect to whether or not the kitchen is a relaxed 

place in the home was found to be significantly associated with the result of the respondentôs 
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response for restorativeness measure (p-value = 0.03). This finding is consistent with previous 

research findings that a personôs previous experience or their environment-related attitude would 

influence their perception of the environment (Gunnarsson et al., 2017; Hartig, 2017).  
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Table 2-5. Demographic information of participants. 

  Number of 

participants 
Proportion 

Gender Female 34 28.33% 

Male 86 71.67% 

Age range 18ï24 4 3.33% 

25ï34 70 58.33% 

35ï44 27 22.50% 

45ï54 14 11.67% 

55ï64 5 4.17% 

Education 

level 

Some college training but no 

degree 
13 10.83% 

High school degree or 

equivalent 

(e.g., GED) 

5 4.17% 

Bachelorôs degree 66 55.00% 

Graduate degree 36 30.00% 

 

2.6.2 Factorial Analysis of Design Attributes 

The Pareto chart in Figure 2- summarizes the top 20 input variables with significant main and 

interaction effects according to the results of the factorial analysis. The bars for each variable 

represent the absolute values of standardized effects of design attributes and their interactions on 

human-perceived restorative experience as measured by PRS and BRES. The reference line of 

1.982 is plotted to indicate the 95% significance level, meaning that if a bar crosses the reference 

line, this indicates that the variable is determined as being influential to the output change at a 

statistical significance level of 0.05 (p-value < 0.05). Therefore, at the protected significance level 

(i.e., 95% significance level), the main effects of window aspect ratio, room size, and light 

temperature were significantly influential to restorative experience results measured by both PRS 

and BERS, revealing the strong relationship between the design feature and human-perceived 
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restorativeness in environments. However, finishing colour scheme and ceiling height contribute a 

statistically significant difference to the result of PRS score, but fail the significance hypothesis 

test for the BRES measure, which may be explained by the expression of BRES leading the 

participant to focus more on assessing the feeling of ñbeing awayò and ñfascinationò in 

environments while neglecting the concept of ñcoherence.ò Similarly, the difference in interaction 

effect of Rectangularity × Room layout symmetry according to PRS and BERS measures could 

also be explained the same way. The significant interaction effect of Rectangularity × Room layout 

symmetry was evident in terms of the output of ñcoherenceò feeling in PRS measure (p-value < 

0.05); in contrast, the same interaction effect failed the hypothesis test for the BERS measure. For 

this reason, PRS is used as the only target output in the data analysis that follows. 

In terms of interaction effects, the six two-way interaction effects of Rectangularity × Room layout 

symmetry; Ceiling height × Window-to-wall ratio; Room size × Finishing colour scheme; 

Rectangularity × Light temperature; Room size × Visual complexity; and Light temperature × 

Window aspect ratio were identified as contributing to the results of PRS measure in the present 

study. Three examples of interaction effects with the most significant standardized effect are 

plotted in Figure 2-, illustrating the mean PRS score versus two levels of design attributes under 

different settings of other variables. As shown in Figure 2-a, if the ceiling height of a room is low, 

a low window-to-wall ratio (indicated by the black dashed line) is associated with a higher score 

of PRS and restorative experience, whereas in the scenario in which a room has a high ceiling, the 

participant found the high window-to-wall ratio offers a more restorative experience according to 

the PRS score. Likewise, in a rectangular kitchen, as depicted as the red line in Figure 2-c, the 

participant found the asymmetrical layout could provide them a more restorative experience in 

comparison to a symmetrical layout, although the symmetry of a space is usually positively 
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associated with higher perceived restorativeness in environments as shown in the case of square-

shape kitchen space. Moreover, looking at Figure 2-b, it is apparent that the room size has a 

significant influence on a personôs perceived restorativeness under a modern rustic colour setting. 

In contrast, the PRS score appeared to be less affected by room size when the colour scheme is 

clean-white. 

 

Figure 2-6. Pareto chart of the standardized effects for responses using PRS and BERS scales. 
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Figure 2-7. Plots for interaction effects of (a) Ceiling height × Window-wall ratio, (b) Room size 

× Finishing colour scheme, and (c) Room layout symmetry × Rectangularity. 

2.6.3 Comparison of Predictive Modelling Results 

Multiple machine-learning methods were applied using the response data to build the prediction 

model. As suggested by the factorial analysis results in Section 2.4.2 (i.e., that all design attributes 

should be incorporated into the linear model according to the significance level of effects and the 

model hierarchy), a total of ten design attributesð(1) room size, (2) rectangularity of room shape, 

(3) ceiling height, (4) light temperature, (5) visual complexity, (6) room layout symmetry, (7) 

window-to-wall ratio, (8) window aspect ratio, (9) finishing colour scheme, and (10) space 

alignmentðwere set as the dependent variable inputs for the other machine-learning methods. 

Moreover, the extent to which the participant believes a kitchen is a relaxed place is also included 

as a context input variable to assess the perceived restorative quality in environments during 

modelling as their significant correlation was argued by other scholars and supported by the result 

of the factor analysis in the present study. Meanwhile, as has already been noted in the factorial 

analysis (i.e., Section 2.6.2), the description used to measure BERS might cause the participant to 

focus more on the ñbeing awayò and ñfascinationò aspects while assessing the restorativeness of 
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the environments. The PRS score was used as the only target output for the predictive modelling. 

It should also be noted that PRS was more thoroughly examined for construct validity and 

generalizability compared to BERS. Also, PRS has more scale items to rate than BERS, which 

reduces the risk of internal inconsistency (Han, 2018). 

As a result, a total number of five predictive models were developed, of which the machine-

learning methods used to develop the models include linear regression, neural networks (i.e., 

GRNN and RBFNN), support vector regression (SVR), and fuzzy inference system (FIS). The 

comparison of their prediction performance using training and testing sets is shown in Table 2-6. 

It is apparent that three artificial intelligence methods, i.e., SVR, neural network, and FIS, all have 

better predictive performance than the linear regression. The R-squared value of linear regression 

indicates that this model is capable of explaining only 36.00% of the variation in human-perceived 

restorative experience in the validation set. However, some scholars have argued that the 

interpretation of R-squared value varies depending on the research area. Any study involving an 

attempt to predict human behaviour, such as in psychology, typically tends to yield lower R-

squared values in comparison to engineering problems due to the non-linearity of human nature, 

as previously discussed herein (Chin, 2010; Hair et al., 2011). Additionally, to obtain more in-

depth insight into the performance of GRNN, RBFNN, FIS, and SVR models, their respective best 

model structures and fitness plots were used to compare the prediction performance. Among the 

four prediction models, the GRNN and RBFNN neural networks have similar statistical 

performance in terms of low RMSE scores and high R-squared values. Comparing GRNN and 

RBFNN, the performance of the former is only slightly better. This result is consistent with the 

experiment conducted by Chen et al. (2021b), which studies the human emotional response to 

various aircraft cockpit designs. Moreover, since GRNN is a single-pass associative memory 
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feedforward neural network, its computation time for training is relatively shorter than that of other 

artificial neural networks.  

Figure 2- further demonstrates the scatterplots of observed data against predicted data using each 

of the four artificial intelligence models. The x-axis is the predicted PRS score by predictive model 

and the y-axis is the observed value. Therefore, the closeness of data points to the regressed 

diagonal line indicates the goodness-of-fit of the models. The plots for GRNN, RBFNN, and FIS 

(see Figure 2-a, 8b, 8c) are quite similar in terms of the slope of goodness-of-fit as well as the data 

pattern, and their predicted values are relatively close to the corresponding observed PRS values 

in comparison to those predicted by the SVR model (see Figure 2-d). While assessing the 

performance of models for their applicability in predicting the target output, it should be noted that 

both the average error of regression and the distribution or the pattern of prediction error should be 

taken into consideration. From these scatterplots, the residual distribution can be observed by 

measuring the distance from the data points to the diagonal line. Ideally, the distribution should be 

symmetrical around the diagonal line, indicating reliable standard errors of regression coefficients. 

However, as shown in the support vector regression scatterplot (Figure 2-8d), the distribution of 

data points indicates that the SVR model has relatively poor performance when predicting the cases 

with various PRS values, as these data points can be seen to be crowding below the diagonal line 

when PRS < 4 and gathering above the line when PRS > 4. Overall, GRNN, RBFNN, and FIS 

models perform reasonably well in predicting the PRS score of a room based on the design 

attributes when compared to linear regression and SVR models. The results also suggest that the 

GRNN model is superior to RBFNN and FIS in terms of PRS score forecasting among the 

validation datasets.  
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Table 2-6. Performance values of machine-learning methods. 

Machine-learning method 
RMSE R-squared 

Train Test Train Test 

Linear regression 0.4025  0.5214 60.91% 36.00% 

SVR 0.3742 0.3289 69.70% 73.19% 

Neural networks 
RBFNN 0.2676 0.2631 83.14% 82.85% 

GRNN  0.2670 0.2532 83.21% 84.11% 

FIS 0.2819 0.2922 81.29% 78.85% 

 

Figure 2-8. PRS values observed and predicted by four machine-learning models. 
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2.7 Conclusions and Future Work 

The affective experience of occupants is vital for the perceived usability of residential buildings 

and should be considered in the early design phases. Although many studies have attempted to 

identify the architectural design attributes that most influence the human affective experience, the 

fragmented and ambiguous nature of the relevant information makes its use in human-centered 

architectural designs challenging. This study aimed to construct prediction models that could be 

applied to forecast values of experiential quality for each residential design alternative in order for 

the design practitioner to easily capture the affective quality of the design and further improve user 

satisfaction with the design, regardless of the designerôs experience, skills, and subjective opinion. 

Such prediction models lay a foundation for developing analytical models and tools to facilitate 

the decision-making process at the early stages of design to ensure an emotional wellness-focused 

built environment. It should be noted that conventional machine-learning methods for affective 

design usually require large datasets for feature selection and to ensure the delivery of meaningful 

results. This can be time-consuming and expensive for studies with human subject. This work thus 

contributes to the body of knowledge on humanïbuilding interaction by introducing a non-

immersive VR-DOE-based machine-learning method that optimizes the data collection process and 

addresses the inherent complexity and uncertainty in modelling the affective experience. 

In this study, VR technologies were employed not only to produce a controllable and validated 

experimental environment, but also to demonstrate various combinations of design attributes and 

environment settings. This study also employed fractional factorial design for highly efficient 

experiment planning and screening for significant factors. The results show that an interiorôs 

spaciousness and colour scheme were the most noticeable and influential attributes in the human 

restorative experience, consistent with the findings from previous studies. In addition, significant 
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interaction effects were identified for Ceiling height × Window-to-wall ratio, Room size × 

Finishing colour scheme, and Room layout symmetry × Rectangularity of room shape, which had 

often been overlooked in previous studies. Moreover, five machine-learning models were proposed 

to represent the restorative experience in the built environment and compared in terms of their 

prediction performance. The results suggest that the GRNN model was superior in describing the 

nonlinear relationship between design attributes and human affective experience in comparison to 

the predictive models developed using the other four machine-learning methods, i.e., linear 

regression, fuzzy inference system, support vector regression, and RBFNN. Taken together, these 

findings add to the rapidly expanding field of human-centered environmental design and form a 

basis for the future development of a decision support system for designers in wellness-focused 

architectural design (considering that the relevant knowledge is scattered across several disciplines). 

Despite its valuable contributions, this study was subject to several limitations. First, the 

participants recruited were mostly characterized as highly educated and young, which may 

influence the generalizability of the results. Second, the factors related to personal subjective 

experience, such as cultural differences or preference bias toward specific design settings, should 

also be included in future studies to enhance the quality of affective modelling. Third, the feasibility 

of using human physiological responses, such as electrocardiogram (ECG), electroencephalogram 

(EEG), skin conductance (SC), or blood oxygen to measure human affective response toward 

environmental stimuli have been explored by many researchers (Abujelala et al., 2021; Ergan et 

al., 2019; Gao & Zhang, 2020; Ke et al., 2021; Shemesh et al., 2016; Zou & Ergan, 2019). Although 

the causal quantitative relationship between biosensing data and the perceived restorativeness is 

still under investigation and inconclusive (Abujelala et al., 2021; Zou & Ergan, 2019), it is still 

believed that the use of objective human physiological response measures in combination with self-
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reported restorativeness scales in future research would be of great help in eliminating the potential 

biases in self-report assessments and better understanding the complex interaction between built 

environment and human experience (Bratman et al., 2012). Likewise, further validation using 

actual residential design scenarios should also be carried out, whereby the restorative quality of 

design, evaluated using predictive models, could be analyzed based on the feedback provided by 

professional architects to improve the ecological validity of the predictive model. In addition, an 

assumption was made during the experiment that a satisfying sense of presence provided by VR 

models could promise sufficient emotional stimulus received by participants; to improve the 

accuracy of prediction results from the non-immersive VR-based method, further improvement of 

incorporating the variable of VR display platforms into analysis should be also investigated in 

future work. Overall, insights gained from further research are also expected to contribute to the 

early stages of projects by providing designers with more scientific feedback on their designs. 
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Chapter 3:  KNOWLEDGE -BASED DECISION SUPPORT SYSTEM FOR USER-

CENTERED RESIDENTIAL DESIGN 2 

3.1 Introduction  

Built environments markedly affect peopleôs productivity and well-being (Ellsworth-Krebs et al., 

2019; Ergan et al., 2019). Due to the extended durations that people spend indoors, user-centered 

design (UCD) has been increasingly considered a necessity in providing occupants with a 

comfortable living experience and realizing successful projects in architectural development 

(Abras et al., 2004; Heydarian et al., 2017). The home space, as a center of activities ranging 

from work and hobbies to leisure and any other activities related to human physiological needs, 

is where people spend much of their lives (Andargie et al., 2019). Thus, its definition extends 

beyond a ñroof over oneôs headò (Ellsworth-Krebs et al., 2019). User requirements for the 

residential environment have been increasing and diversifying in keeping with economic and 

demographic changes in recent decades and the rapid growth of the interior design service market 

globally.  

However, due to the vast body of knowledge regarding residential design with respect to 

architecture, technology, art, physics, and even psychology, many modalities of architectural and 

design knowledge are not fully utilized in practice, which results in an inadequate consideration of 

requirements and rough estimation during the early design stage (Ielegems et al., 2016). Moreover, 

limitations in the user experience and quality of information mean the user may fail to describe 

their actual needs (Kuo et al., 2009). Therefore, novice designers are regularly confronted with 

 

 

2 A version of this chapter has been submitted to Expert Systems with Applications. 
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knowledge dissymmetry and challenges in assessing the performance of design alternatives with 

regard to their capability of satisfying user requirements. This deficiency in knowledge 

management in residential design results in inefficient design selection, poor user satisfaction, and 

even the recurrence of mistakes on similar projects.  

To date, knowledge-based analytical models and decision support systems (DSSs) have attracted a 

lot of attention in academia and industry; however, few studies have proposed knowledge-based 

systems (KBSs) for residential design (Lee et al., 2008). The proposed systems typically emphasize 

the cost factor in design decisions and generally lack the ability to identify the most appropriate 

design by considering the numerous user requirements pertaining to UCD. Moreover, far too little 

attention has been given to adequately studying the potential user of the built environment at the 

initial stage of building design, such as who they are and what they need. This lack of attention 

may lead to incorrect assumptions in the design decision made and design developed (Martin et al., 

2012). This highlights a need, with respect to decision making, in current residential design 

regarding comprehensively explicating user requirements and determining the most appropriated 

design. This can be accomplished by synthesizing and analyzing a multitude of design criteria to 

adequately fulfill user requirements.  

In an effort to fill this research gap, this study proposes an integrated framework of a knowledge-

based decision support system (KBDSS) to optimize the decision-making process in user-centered 

residential design at an early stage. In this framework, a requirement conversion tool, quality 

function deployment (QFD), is adopted with DSS and fuzzy set theory to translate the user 

requirement into quantifiable design specifications (design criteria) to form design decision-

making into a multicriteria decision-making (MCDM) problem. Meanwhile, the proposed 

framework uses the Kano model and clustering techniques to segment the user group and, thus, 
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precisely assess to what degree user satisfaction is affected by particular design criteria (Atlason et 

al., 2018). Therefore, the proposed framework can help the design practitioner to consider how 

much resources to reasonably devote to improving a specific design criterion. Notably, decision 

makers in residential design, including novice design practitioners and homebuyers with less 

design experience, are potential users of this knowledge-based decision support tool. 

3.2 Related Work 

3.2.1 UCD for Built Environment  

UCD is a design philosophy that puts the user at the core of the design process. In the domain of 

the built environment, Vischer (2011) proposed that buildings should be designed to support the 

activities of the occupants. In this theory, the occupant (user) is regarded as an active agent and 

consumer whose relationship with the built environment is dynamic and interactive (Ruohomäki 

et al., 2015). This theory roughly matches an essential aspect of built environment design that 

focuses on resolving the functional and aesthetic requirements into a coherent whole by assembling 

the desired properties of specific design elements. 

Recognizing the influence of humanïbuilding interactions on occupants with regard to enhanced 

wellness and productivity (Ergan et al., 2018), several attempts have been made to adapt UCD 

methods in building design to achieve higher user satisfaction (Heydarian et al., 2017; Zhang et al., 

2019). For instance, Heydarian et al. (2017) incorporated user preference data for evaluating design 

alternatives with the objective of meeting end-user lighting preferences while reducing lighting-

related energy consumption in buildings. Nugroho and Ferdiana improved the design of residential 

facilities by identifying the privacy preferences of occupants and elucidating relationships between 

occupants and different design alternatives (Kurnianingsih et al., 2014). Likewise, to improve the 
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work environment around peopleôs needs, requirements, and preferences, Doshi and Clay (2017) 

adopted an empathetic, visual, and human-centered method to engage the user in analyzing the 

existing space for improvements in redesign.  

Overall, these studies partially indicate the typical activities for UCD, such as (1) explicitly 

understanding users (e.g., user personas) and the use scenario, (2) specifying the user requirement, 

(3) proposing design solutions, and (4) evaluating the design solutions against user requirements 

(Wallach & Scholz, 2012). However, the diversity of user needs and how to incorporate each userôs 

requirements in building design remain largely unresolved in practice (Afacan & Demirkan, 2010). 

Buildings are nowadays generally designed following codes and standards that are often based on 

generalizations with large margins of errors rather than being fitted to occupant behaviours and 

preferences (Heydarian et al., 2017). Accordingly, a systematic methodology for addressing the 

diverse user requirements and providing analytical models to assess the potential user satisfaction 

with the design alternatives is necessary for practical application in UCD. 

3.2.2 Knowledge-Based Decision Making in Building Domain 

Architecture, engineering, and construction (AEC) is a knowledge-intensive industry, where much 

of the knowledge is experience-based and fragmented among a wide range of disciplines (Woo et 

al., 2004). Along with the rapid advancement of building technology and materials development, 

it is challenging for designers and engineers to make rational decisions in the face of a seemingly 

endless source of data and information (Kazak & van Hoof, 2018). Accordingly, researchers 

suggested that the use of KBDSS could help decision makers integrate all design elements and 

explore their potential consequences in a given analysis (Hwang et al., 2018; Kazak & van Hoof, 

2018; Nielsen et al., 2016). Technically, KBDSS is an integration of an expert and decision-support 
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system, which consists of (1) a knowledge base containing expert knowledge for a particular 

problem domain, (2) an inference engine for generating inferences over the knowledge base, (3) an 

interactive user interface, and (4) a decision-support shell for helping decision makers compile 

useful information and data for effective decision making (Chung et al., 2016; Hwang et al., 2018).  

Owing to its superior flexibility and adaptability in accommodating changes in accordance with 

the problem context, KBDSS has been widely used to tackle a variety of tasks (Hwang et al., 2018). 

For instance, Hwang et al. (2018) developed a KBDSS for prefabricated prefinished volumetric 

construction (KBDSS-PPVC) to facilitate decision-making for PPVC implementation. Nasser et al. 

incorporated a KBS to support the implementation of six lean sigma principles applied to enhance 

the quality management performance for a healthcare environment (Al Khamisi et al., 2019). 

Likewise, KBDSS can address other decision-making problems across multiple stages of the 

building lifecycle, such as construction equipment selection (El-Tourkey et al., 2022), building 

material selection (Rahman et al., 2012), healthcare building evaluation (Guerrero et al., 2022), 

energy efficiency retrofit (Medal et al., 2021), and budget estimation for building restoration (Wang 

et al., 2008).  

Particularly, for handling requirement-engineering-related problems, (Singhaputtangkul et al., 

2013) proposed an integrated framework of KBDSS for the selection of building envelope 

materials. The QFD method was incorporated with a knowledge-based system to address common 

issues identified in the decision-making stage, such as an inadequate consideration of requirements 

and the lack of efficiency and consistency during decision making. This work provides valuable 

insight into the decision support method for requirement-oriented design for our study because 

there is a lack of instructional methodology in support of a knowledge-based decision making in 

current user-centered built environment design.  
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3.3 Proposed Integrative Method 

To understand the priorities of user requirements and match the appropriate design solution with 

the user characteristics and preferences in a formalized and specific manner, an integrated QFD-

based framework for developing a KBDSS in a user-centered residential design is proposed, as 

illustrated in Figure 3-1. In accordance with the HoQ architecture, this framework mainly consists 

of five phases, namely, (a) defining and collecting usersô requirements; (b) prioritizing user 

requirements per user clustering; (c) translating user requirements into design specifications and 

solutions; (d) identifying the relationship between design specifications and user requirements; and 

(e) establishing priority of design specifications for user clusters, along with a knowledge base 

system that stores relevant design knowledge. Meanwhile, three knowledge base modules, that is, 

KB-S, KB-R, and KB-U, are developed to support knowledge management in the decision-making 

process.  

 

Figure 3-1. QFD-based framework for development of knowledge-based decision support system 
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3.3.1 Knowledge Base for User-Centered Residential Design 

Multiple levels of knowledge, that is, ñknow-whatò and ñknow-how,ò are usually needed in the 

decision-making process. From the knowledge base structure in (Singhaputtangkul et al., 2013), 

three knowledge base modules are proposed to store the information regarding user requirements 

(KB-U), design specifications (KB-S), and their correlations (KB-R), which reveal how user 

requirements could be met by the design specifications. Notably, ñknow-whyò knowledge is also 

implemented in the knowledge base so that the system can provide the principles and mechanisms 

underlying the collected user requirements and design specifications for decision justification. For 

instance, for each identified design specification, detailed information is provided in terms of the 

application context, possible effect, and expected performance of the criteria as a decision guide. 

The data for the user centered residential design was mostly acquired from the Gemba visit, semi-

structured interviews, and social media, as discussed in the following section. 

3.3.2 Part A: Occupant requirements identification for residential environments (WHATs) 

In the present study, data from Gemba walk and social media analysis are used to identifying user 

requirements and enhance the coverage and completeness of knowledge (Chin et al., 2019). 

Gemba Visit  

Many existing studies have indicated that implicit or hidden requirements are more pertinent to 

users than explicit requirements and correspond to higher satisfaction levels (Chin et al., 2019). 

During the Gemba walk, the researcher observes how the occupant uses and interacts with the space 

and measures important dimensions for residential design, such as the area, layout, heights of 

working stations, and illuminance level, for further analysis. An interview should later be 

conducted with the primary user of the space to explore their subjective opinion of the current 
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design. The information from the Gemba step provides essential insight into the user requirements, 

and it is useful for interpreting the userôs voice for further analysis. 

Social Media Analysis 

To optimize user requirement collection, information from social media platforms is adopted as 

the main resource to determine the actual needs of users with low time expenditure (Lai et al., 

2006). In the present study, the information related to usersô requirements was extracted by 

keyword querying among multiple popular social media platforms for sharing ideas on home 

design, decor, and improvement. The researchers went through the posts individually to extract the 

information (i.e., sentences) related to specific residential design requirements. Special attention 

was given to the negative feedback on their current design. The querying process was stopped when 

a number of similar user requirement items was repeatedly identified in the search result, with new 

information only being occasionally obtained.  

Once the information on user requirements is collected, an affinity diagram method can be adopted 

to externalize the tacit knowledge underlying the raw information and cluster it into individual 

requirement items (Awasthi & Chauhan, 2012). Notably, query information should be screened 

more than once to identify the actual user needs behind the statement and maximally explore 

potential need items. 

3.3.3 Part B: Importance Weights Determination per User Clustering 

By generating a list of user requirement for residential design, a prioritization is performed, as 

illustrated in Figure 3-2. Generally, the relative weight for requirement prioritization (ύ Ȣ ) is 

determined by two factors: the opinions from the expert (ύ ) and the user groups (Ὧ Ȣ). This 

enables the DSS to adopt the knowledge from residential design professionals, who identify 
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essential and urgent requirements for a specific user group and incorporate the userôs preference to 

enhance their overall satisfaction (Kang et al., 2018). 

Further, user clustering is first performed based on the different satisfaction attitudes toward 

requirement fulfillment to segment the users and better tailor the userôs preference and features, 

enhancing their overall satisfaction. Requirement priority, rather than conventional demographic 

data, is used to segment user groups because (1) demographic information is sometimes too vague 

to give the designer insights into what the user wants or values, and (2) peopleôs lifestyle changes 

over generations in keeping with the development of information technology. From the increase in 

smart appliance usage to gender fluidity, demographic data are simply not enough to identify users 

with similar needs. Thus, the Kano model is adopted in this study to denote the individual userôs 

preference for each requirement item and user segmentation purposes. 

 

Figure 3-2. Prioritization of user requirements 
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Kano Survey Design 

The Kano model measures and classifies the user satisfaction level considering how well different 

design attributes (requirements) could satisfy user needs (Kano et al., 1984). To perform an 

effective user segmentation for depicting user personas, a Kano-model-based questionnaire is 

designed to measure peopleôs preferences toward different user requirements in residential design. 

The first part of the questionnaire contains general background information about the respondents, 

such as their family structure, physical ability, and typical usage scenario. The second is in the 

form of pair questions to collect satisfaction differences per user requirement items: one question 

is formulated in a positive manner (i.e., functional), whereas the other is formulated in a negative 

manner (i.e., dysfunctional), as shown in the example in Figure 3-3. Because the data gathered 

from respondents are used as training data for user clustering, Cronbachôs alpha is used to test the 

reliability of the survey; a value greater than 0.7 denotes that the data can be used for further 

clustering analysis.  

 

Figure 3-3. Example of the Kano questionnaire in the case study. 

Representative User Requirements Identification  

Due to the large number of user requirement items regarding Kano quality (i.e., functional and 

dysfunctional units of user requirements) and the limited response samples, principal component 






























































































































































































































