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ABSTRACT 

The considerable amount of time typically spent at home in contemporary society underscores the 

importance of understanding the interaction between occupants and built environments and 

implementing this knowledge into design practice to ensure occupant satisfaction and adequate 

building performance. In recent decades, the concept of human-centered design, which optimizes 

the environment around the occupant’s capability and preferences/requirements rather than forcing 

the user to change their behavior to accommodate the design, has been attracting increasing interest 

within building domain. However, due to the overwhelming volume of information, the dynamic 

nature of the decision-making context, and the multi-disciplinary knowledge (and multi-

disciplinary stakeholders) involved in design knowledge management, the current practice of 

residential design tends to fall short of supporting well-informed decisions for creating an 

occupant-focused built environment. In this regard, this research aims to optimize the knowledge 

management of residential design in terms of knowledge explicitation, knowledge acquisition, 

knowledge representation, and knowledge communication in order to leverage knowledge in 

support of consistent and effective design decision-making, thereby maximizing design quality 

and improving occupant satisfaction. To accomplish this, the following four objectives targeting the 

optimization of the knowledge management process are pursued: (1) Develop a machine learning-

based framework using the virtual reality and design-of-experiments techniques to model the implicit 

relationship between human perceived experience and building design attributes, where the proposed 

data-driven predictive model is used to evaluate the affective quality of design alternatives based on 

their specific design settings. (2) Develop a residential design knowledge-based decision support 

system to capture knowledge of occupant requirements and their associated impacts on design criteria 

in order to tail design specifications for specific occupant groups and support a rational resource 
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allocation among specific design criteria. (This knowledge-based system aims to equips novice design 

practitioners with appropriate design knowledge and assist them in making user-centered design 

decisions consistently.) (3) Develop a domain ontology to formally represent the knowledge of 

human-centered residential design in a machine-readable format in order to promote knowledge reuse 

and sharing among design professionals and in computer-aided design systems, where the developed 

ontology is included in the knowledge-based decision support system as the knowledge resource input. 

(4) Develop an integrated framework for collaborative decision-making in residential design to 

anticipate and address potential design conflicts between stakeholders and to aid in developing 

consensus design solutions. The virtual reality technique is integrated with group decision-making 

models to eliminate barriers to knowledge communication and to the consensus-building process. 

Overall, this research optimizes knowledge management in residential built environment design, 

thereby enhancing the intelligent decision-making process and delivering a built environment that 

meets occupant expectations. 
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Chapter 1:  INTRODUCTION 

1.1 Background and Motivation 

The design of a building’s interior space has a significant impact on occupants’ wellness and 

productivity (Eberhard, 2009; Heydarian et al., 2017; Salleh, 2008; Sullivan & Chang, 2011). With 

the extensive time that people spend indoors, understanding the interaction between occupants and 

built environments, and then implementing this knowledge into built environment design, have the 

potential to improve both user satisfaction and building performance (Ergan et al., 2018; Heydarian 

et al., 2017). Specifically, accurately and thoroughly identifying user requirements in the early 

design phase can significantly increase user satisfaction by offering an accessible living experience 

while also decreasing costs by reducing the likelihood of rework, budget overruns, and even 

litigation issues. In this regard, human-centered design (HCD), which places the user at the core of 

the design process and optimizes the environment around the user's capabilities and needs rather 

than forcing the user to conform their behavior to the design, has been noted in a number of recent 

studies as a way of supporting a human-centered environment and enhancing overall user 

satisfaction (Harte et al., 2017). 

In the area of building design, HCD is regarded as a knowledge-intensive process involving 

stakeholders from different disciplinary backgrounds. In this context, built environment design can 

be defined as a series of complex and multidimensional decisions requiring knowledge from 

various disciplines such as architecture, engineering, environmental psychology, behavioral 

science, and even sociology (Chou & Ngo, 2016; Cimini et al., 2015; Dong et al., 2018; Ellsworth-

Krebs et al., 2019; Ergan et al., 2018; Hoisington et al., 2019; Lee & Park, 2011; Wang, 2021). 

These disciplines bring different information and different perspectives for addressing challenges 
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in the design of the built environment, where decision-makers are frequently confronted with an 

abundance of information and design options, such as the selection of façade designs (Heydarian 

et al., 2017) or the collocation of finishing products (Zhang et al., 2019). During design, this 

information and these design configurations, in turn, are encountered within the evolving context 

of social development and technological innovation (Lee & Ha, 2013; Wang et al., 2017). For 

instance, four-member households were the most common household size in Korea back in 1985, 

representing 25.3% of all households; while in 2019, one-member households became the most 

prevalent type in Korea, representing 36.9% of all households (Statistics Korea). This trend in the 

evolution of the household structure has been taken into consideration in apartment design in recent 

years as a way of preventing unnecessary remodelling by homebuyers and associated waste-

generation and pollution (Lee & Ha, 2013). Similarly, when making decisions concerning the 

design of the built environment, it is necessary to also acknowledge the changing context of 

knowledge acquisition and application, such as changes in demographic characteristics, lifestyle 

paradigms, climate, and the emergence of building technologies, equipment, and materials. 

Such a complex, knowledge-intensive process makes it difficult for design practitioners (e.g., 

homebuyers, designers) to make informed decisions in built environment design, and 

inexperienced decision-makers often struggle to accurately depict and comprehend all facets of 

design requirements and translate them into specific design solutions (McLoone et al., 2010). 

Likewise, due to the knowledge gap in human–building interaction and residential design, 

designers sometimes resort to making educated guesses about occupant capability and needs 

(Ielegems et al., 2016), resulting in deviations from the occupant's expectations and subsequently 

triggering design modifications and rework. In this regard, the client typically defers to the 

designer’s knowledge and experience with specific types of projects (Haddad, 2014). However, 
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even skilled designers are not always capable of retaining all relevant details, and must seek 

information from external sources. They routinely navigate the design rules, reconcile 

inconsistencies, and fill in gaps using common sense, though unaware of the complexity of their 

own mental processes during design development (Heylighen & Neuckermans, 2000). In such 

cases, the various modalities of architectural and design knowledge may not be fully utilized in 

practice, and the consistency of design decision quality, cannot be guaranteed (Gunda, 2008).  

On the other hand, the widespread implementation in architecture and construction of information 

and communication technologies (ICT), such as building information modelling (BIM), virtual 

reality (VR), and text mining among social media data, has provided building stakeholders with 

significant advantages in terms of information accessibility and exchange in building design and 

construction (Lu et al., 2015; Shin et al., 2008). At the same time, though, the emergence of this 

unconventional data and information makes knowledge search and acquisition in the design phase 

a time-consuming task. Identifying useful information from ICT applications can be a challenge 

for design practitioners, and the applicability of the knowledge available to the project at hand is 

not always intuitive (Huber, 2018; Wu et al., 2012). While data mining and knowledge discovery 

techniques are widely used in various domains to help extract useful information from data, there 

are relatively few studies dealing specifically with knowledge management for decision-making in 

built environment design (Piramuthu, 2005). These problems and challenges in the current practice 

of human-centered built environment design underscore the pressing need to leverage design 

knowledge from a variety of domains and data sources in support of consistent and effective design 

decision-making, and thereby improve the design quality in careful consideration of occupant 

preferences and demands. 
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1.1.1 Human-Centered Design in Built Environment 

Human-centered design (HCD), also referred to in the relevant ISO standards as “usability 

engineering”, is a design philosophy that places the user at the center of the design process and 

improves the usability of a system by emphasizing human factor knowledge and appropriate 

techniques (Harte et al., 2017; ISO 9241-210, 2019). The 2010 international standard ISO 9241-

210, it should be noted, uses the terms HCD and user-centered design (UCD) interchangeably 

(Harte et al., 2017). 

Over the past two decades, numerous attempts have been made within the building construction 

field to more accurately and explicitly define user requirements so that a more comfortable built 

environment can be achieved. For instance, Vischer proposed an environmental comfort model to 

categorize occupant requirements in built environments (Vischer, 2008b). In this model, three 

environmental comfort factors—namely, physical comfort, functional comfort, and psychological 

comfort—were proposed to describe the different human–building interactions and their impacts 

on human experience. Specifically, physical comfort represents a perception of well-being, 

functional comfort measures the extent to which the occupant can perform the desired activities in 

the space, and psychological comfort in the environment refers to affective and emotional needs, 

such as a sense of belonging, ownership, and control over the environment (Vischer, 2008a, 2008b). 

Likewise, Ellsworth-Krebs et al. (2019) identified factors—i.e., thermal comfort, tactile comfort, 

physiological comfort, odor and fresh air, mental well-being, companionship and contributory 

comfort, relaxation, control, visual comfort, acoustic comfort and familiarity—to extend the 

definition of home comfort beyond merely thermal and physical characterization (Ellsworth-Krebs 

et al., 2019). These frameworks provide a solid foundation for human-centered residential built 

environment design with regard to its root nature of requirement engineering that seeks to explore 
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and document the requirements and the extent to which they are being fulfilled by the design 

throughout the lifecycle of the building. 

Meanwhile, many researchers have noted the significance of knowledge and decision models 

developed in the context of human-centered residential design, which can play a critical role in 

improving design decision-making in consideration of users’ preferences and demands (Wang et 

al., 2017). For instance, Afifi et al. (2014) modelled the fall risk associated with staircase 

architectural design elements as the basis for recommending best practices for fulfilling the safety 

needs of older adults. (Afifi et al., 2014). Heydarian et al. (2017) proposed a data-driven model to 

optimize the design around the occupant’s behavior based on data collected on occupants’ lighting 

preferences. Moreover, Lee & Park (2011) suggested that cross-cultural adaptation should be 

emphasized in residential design to improve the user experience of the built environment based on 

an in-depth survey on the interrelationships between cultural differences and residential design. 

However, what is lacking is a consensus knowledge framework that could be referred to in human-

centered residential design. The design practitioner is thus required to have extensive experience 

and domain knowledge in order to effectively interpret research findings and integrate credible 

research evidence to support the implementation of relevant approaches in the design process due 

to the scattered and fragmented nature of HCD knowledge in the residential environment. In this 

regard, a knowledge-based framework that supports ready retrieval, reuse, and sharing of 

knowledge to support decision-making in human-centered residential design has yet to be explored. 

1.1.2 Knowledge Management  

Knowledge can be defined as the concepts, skills, experiences, and vision that provide a framework 

for creating, evaluating, and using information and knowledge management is concerned with the 
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explicit and systematic management of necessary knowledge and its associated processes of 

creation, collection, organization, communication, application, and exploitation (Apuvra & Singh, 

2011). Processing and integrating information from a variety of sources is the primary goal of 

knowledge management (Gao et al., 2018).  

In the context of architecture, engineering, and construction (AEC), much of the knowledge is 

experience-based and fragmented among a wide range of disciplines (Woo et al., 2004). Despite 

the use of explicit knowledge, i.e., codified knowledge that is easily articulated, written down, and 

formally transmittable in documents, the sharing of tacit knowledge that is embedded in personal 

experiences and perceptions among project stakeholders remains a challenge (Koskinen et al., 2003; 

Woo et al., 2004). In building design, for instance, only a minor portion of user needs derives from 

explicit knowledge that can be easily expressed and documented in checklists, guidelines, and 

regulations. Rather, most user needs and preferences, such as sensory needs and the desired 

affective experience of the built environment, are subjective, implicit, and much more difficult to 

ascertain or express (Ergan et al., 2019; Ielegems et al., 2016), and this remains a concern because 

implicit user needs have been widely identified as critical factors in making buildings more 

enjoyable and attractive for users (Ielegems et al., 2016). Design professionals may thus face a 

formidable barrier in understanding user requirements and effectively translating them into their 

designs, leading them to rely on their experience, professional intuition, and/or other forms of tacit 

knowledge to successfully complete design tasks (Woo et al., 2004). Due to the uniqueness and 

complexity of building projects, it is impossible to directly replicate best practices from the past 

(Ni et al., 2022). Currently, design practitioners still serve as the primary carriers of tacit knowledge 

in general practice. Thus, in the design of built environments, a knowledge framework for the 
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management and application of both explicit and tacit knowledge is required to facilitate 

knowledge utilization and provide greater insight into the knowledge creation process. 

According to the theory of knowledge creation (Nonaka & Takeuchi, 1995), the key to knowledge 

management lies in the mobilization of tacit knowledge and its conversion into explicit knowledge, 

which represents the knowledge externalization process in the socialization, externalization, 

combination, and internalization (SECI) model. During this process, tacit knowledge can be 

converted into explicit knowledge through conceptualization, visualization, metaphor, and analogy 

with the assistance of a variety of techniques. For instance, numerous researchers have highlighted 

expert systems and artificial intelligence (AI) as examples of the positive impact of information 

and communication technology (ICT) on the externalization and transfer of knowledge 

(Venkitachalam & Busch, 2012). 

In recent years, the effective use of knowledge management technologies is a consideration that 

has been garnering increasing attention within the AEC domain, as it is seen as a promising strategy 

for continuous improvement of building projects based on lessons learned (Kamara et al., 2002; 

Rezgui et al., 2010). These knowledge management-related studies have generally focused on 

translating personal knowledge into explicit information that can be effectively stored and reused 

to fill knowledge gaps across the building’s lifecycle, such as construction equipment selection 

(El-Tourkey et al., 2022), building material selection (Rahman et al., 2012), healthcare building 

evaluation (Guerrero et al., 2022), energy efficiency retrofit (Medal et al., 2021), and budget 

estimation for building restoration (Wang et al., 2008), to name a few. The prevalence of 

knowledge-based systems underscores the great potential of information techniques to advance 

knowledge in the design process and to leverage knowledge in addressing the design problem at 

hand (Verhagen et al., 2012). As such, it is reasonable to expect that the optimization of knowledge 
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management in built environment design will improve the knowledge intensive decision-making 

process and thereby improve the quality of design outcomes. In this research, then, several 

information technologies, including machine learning, virtual prototyping (i.e., VR), quality 

deployment function (QFD), decision-making models, and ontology, are adopted to establish a 

systematic knowledge-based framework for optimizing the knowledge management process in 

built environment design. 

1.2 Research Objectives 

The research presented herein is built upon the following hypothesis: 

"The application of information techniques and analytical decision models for human-centered 

residential built environment design can aid in acquiring, structuring, and explicitizing the design 

requirements and knowledge in a schematic representation so that they are easily understandable 

and accessible by design practitioners, thereby enhancing the efficiency and quality of design and 

improving occupants' satisfaction with the built environment." 

This research is predicated on the fact that the current practice of knowledge management and 

decision-making in built environment design cannot provide adequate design support in the context 

of multi-disciplinary knowledge and information overload to support effective human-centered 

design of the built environment. To address this gap, four research questions aimed at optimizing 

the knowledge management of decision-making processes in human-centered residential built 

environment design are explored in this study: 

(1) How can affective human experience knowledge be explicitly modelled for human-

centered residential design?  

(2) How can design specifications be tailored to the particular needs of the occupants? 



 

 

9 

 

 

(3) How can human-centered residential design knowledge be formally represented? 

(4) How can multiple stakeholders collaborate to make well-informed residential design 

decisions? 

To answer these questions, the following objectives (see Figure 1-1) are pursued in this research: 

1. Develop a VR- and design-of-experiments (DOE)-based framework for characterizing the 

relationship between human affective experience and building design attributes to predict 

the restorative quality of design with data-driven machine-learning models. 

2. Develop a knowledge-based decision support system (KBDSS) for residential design to 

capture diverse occupants' needs and tailor the design specifications to specific occupant 

clusters in order to support rational resource allocation and maximize occupant satisfaction. 

3. Develop a domain ontology to formally represent the knowledge of human–building 

interactions and built environment in a machine-readable format to promote knowledge 

reuse and sharing among design professionals and computer-aided design systems. 

4. Develop an integrated framework for collaborative decision-making in built environment 

design that eliminates communication barriers in the negotiation process and potential 

design conflicts toward consensus design solutions. 
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Figure 1-1 Research objectives 

These four objectives focus on improving the human-centered residential design decision-making 

by optimizing the various phases of knowledge management. Specifically, Objectives 1 and 2 focus 

on explicitizing and capturing knowledge related to the design requirements and their interrelations 

with built environment design settings. In Objective 1, the tacit experience of the built environment 

is explicitly associated with specific design settings and expressed in numerical models that can be 

stored and shared in documents. In Objective 2, a matrix based KBDSS is proposed to facilitate 

knowledge search and acquisition in residential design decision-making, where the results of 

Objective 1 are included in the knowledge base. Moreover, Objective 3 optimizes the knowledge 

storage component of the KBDSS developed in Objective 2 so that the developed knowledge 

representation can be reused and shared in a standard and machine-learnable format. Finally, 

Objective 4 improves the process of knowledge communication and group decision-making in built 
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environment design, where the knowledge acquired in Objectives 1 and 2 can be incorporated as 

supplemental information for further decision support.  

1.3 Thesis Organization 

This thesis consists of eight chapters. Chapter 1 presents the background and motivation of this 

research and briefly introduces human-centered design and knowledge management in the building 

domain. The hypothesis, research questions, and objectives of this research are also outlined in this 

chapter.  

Chapter 2 presents a VR-DOE-based framework to explore the feasibility of machine-learning 

models in describing the implicit relationship between occupants' affective experience (i.e., 

perceived restorativeness in environments) and built environment settings, thereby providing 

decision support for proactive architectural design analysis. This framework incorporates VR and 

DOE techniques to provide a controllable and validated experimental setting that enables the 

efficient and cost-effective collection of human experience data and balanced learning datasets. 

Furthermore, the performance (in terms of prediction of restorative quality) of the five selected 

machine-learning models—i.e., general regression neural network (GRNN), radial basis function 

neural network (RBFNN), support vector regression (SVR), and fuzzy inference system (FIS)—is 

compared and analyzed.  

Chapter 3 introduces an integrated KBDSS framework to equip novice design practitioners with 

appropriate design knowledge and assist them in making user-centered design decisions 

consistently. The proposed framework uses the quality function deployment approach, decision 

support analysis, and fuzzy set theory to comprehensively capture occupant requirements, translate 

them into quantifiable design specifications, and prioritize the design specifications based on 
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specific user characteristics, thereby enabling design decisions that improve satisfaction among a 

larger crowd. To illustrate the efficacy of such a decision support framework, a residential kitchen 

design case study is presented with the support of the developed KBDSS prototype. 

Chapter 4 proposes a domain ontology to formally represent the user-centered residential design 

knowledge in support of the effective use of knowledge-based systems. This ontology is developed 

based on the knowledge acquired from the literature review (encompassing research reports, 

building codes and regulations, design cases, and the findings of term extraction from social media 

data). It comprises seven core concepts—occupant-user, residential design, activity, physical 

comfort, psychological comfort, constraint, and usability performance—as well as the relations, 

properties, and axioms that define them, providing a formalized and standardized vocabulary for 

human-centered residential design. This work is expected to promote knowledge reuse and sharing 

among stakeholders and computer systems. 

Chapter 5 presents the integration of multi-user VR platforms and consensus models to facilitate 

knowledge comprehension and design conflicts in group decision-making as part of built 

environment design. A collaborative design support system is developed to provide a powerful 

visualization and consensus-based negotiation process by which for stakeholders to communicate 

their preferences and generate consensus design solutions that consider all decision-makers’ 

opinions in an iterative, interactive manner. 

Finally, the conclusions and research contributions are summarized in Chapter 6, in addition to a 

discussion of the study limitations and future research directions.  



 

 

13 

 

 

Chapter 2:  PREDICTION OF HUMAN RESTORATIVE EXPERIENCE FOR HUMAN-

CENTERED RESIDENTIAL ARCHITECTURE DESIGN1 

2.1  Introduction 

Currently intrinsic to our daily lives, stress has been identified as a critical health issue that affects 

multiple spheres of our society. For example, it entails high costs for healthcare systems, thus 

significantly affecting the economy (Taylor, 2006). The socio-urban context of extended periods 

of time spent indoors and increased urban densification has led researchers to investigate the 

significant impacts of built environments on our mental well-being and to explore how design can 

help mitigate urban stress (Zou & Ergan, 2019). Previous studies have found that poorly designed 

buildings can negatively affect a person’s psychological state by causing stress, anxiety, depression, 

and even violent behaviour (Eberhard, 2009; Salleh, 2008; Sullivan & Chang, 2011). Greater focus 

has been placed on the affective experience elicited by architectural design attributes within the 

domain of human-centered architectural design. Specifically, the restorative potential of built 

environments, i.e., the capability to reduce mental fatigue, improve productivity, and relieve stress, 

has attracted considerable interest in recent years (Yin et al., 2018). There is widespread agreement 

that particular design attributes of built environments can influence our mental resilience or foster 

restorative experiences (Huisman et al., 2012; Weber & Trojan, 2018). However, the relevant 

knowledge to support experience-focused architectural design is scattered across several 

disciplines, such as architecture, psychology, and sociology. In addition, the information available 

 

 

1 A version of this chapter has been published in Automation in Construction, as follows: Zhang, Y., Xiao. B., Al-

Hussein, M., and Li, X. (2022) “Prediction of Human Restorative Experience for Human-Centered Architectural 

Designs: An VR-DOE based Machine Learning Method.” Automation in Construction. 

https://doi.org/10.1016/j.autcon.2022.104189. 

https://doi.org/10.1016/j.autcon.2022.104189
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in the early design stage is often vague, incomplete, and inconsistent (Rezaee et al., 2015; Zhang 

et al., 2017). Moreover, analytical models and tools to facilitate the decision-making process in the 

early stages of the design of built environments focused on emotional wellness are still scarce. 

Under this circumstance, the designer is compelled to judge vaguely and subjectively the 

experience-related quality of the design alternatives. Therefore, how to reduce the uncertainty and 

subjective bias of human assessment while increasing efficiency in identifying the optimal design 

alternative regarding the quality of experience criteria has been an area of great interest among 

researchers.  

Among researchers in design domains, there is a common belief that measuring the user experience 

of a product is the foremost step in improving such experience (Zhang et al., 2017). If the complex 

nonlinear relationship between design attributes and quality of experience can be established using 

mathematical methods, then it is possible to identify the design alternative with the highest quality 

of affective experience while eliminating the influence of subjective assessment (Zhang et al., 

2017). Specifically, if we could construct prediction models that can be applied to forecast 

restorative experience values for each design alternative, the alternatives could be ranked by their 

restorative potential and thus the designer could detect faults, conduct further improvements, and 

make the appropriate decision on the design alternative, resulting in a more objective and efficient 

evaluation and development process in the early design stage.  

In the field of architectural design, attempts to use machine learning to predict building 

performance in aspects such as environmental comfort have been made along with the development 

of information and communication technology. It is believed that the convergence between design 

and machine learning can address multifactor problems by finding connections between variables 

(i.e., input, internal, and output variables) without explicit knowledge on the physical behaviour of 
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the system (Kim & Cho, 2000; Solomatine et al., 2008). Therefore, to evaluate the restorative 

quality of design alternatives in support of the decision-making process for the design of built 

environments focused on emotional wellness, this research aimed to develop machine-learning 

models to predict individual restorative experiences using design attributes. Evidently, success in 

obtaining a reliable machine-learning model depends heavily on the choice of input variables and 

the available dataset (Buragohain & Mahanta, 2008). The restorative experience addressed in this 

study can only be measured with people’s feedback; conducting such experiments on a large scale 

is usually time-consuming and expensive in terms of the massive effort required for participant 

recruitment and data collection (Patel et al., 2003). An optimization of data collection for training 

machine-learning models is necessary to maintain the quality of the dataset and eliminate the 

number of experiments conducted for data generation. Though several studies have associated the 

effect of design attributes on restorative quality of built environment, few discussions on the 

interaction effect of design attributes (i.e., the effect of one independent variable on an outcome 

depends on the state of another independent variable) are present in the literature. What’s more, 

earlier studies have demonstrated different prediction performances among various machine-

learning models (Chan et al., 2020; Delen et al., 2007; Diego-Mas & Alcaide-Marzal, 2016; Ling 

et al., 2014; Moro et al., 2014). These performance differences emphasize the impact of the 

problem context and provide a strong reason to test several techniques for developing machine-

learning models.  

In this regard, this study develops an integrated framework using non-immersive virtual reality 

(VR) and design of experiment (DOE) to leverage machine-learning techniques in predicting the 

restorative quality of the built environment. The proposed method is intended to optimize the data 

collection process and address the complexity and uncertainty in modelling the human affective 
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experience. The predictive performance of multiple machine-learning models is compared for 

further prediction model selection to support the decision-making in human-centered architectural 

design. This approach could greatly help designers and decision makers improve the efficiency of 

design, selection, and successive iteration processes by using a genetic algorithm that employs 

specialized knowledge (Park & Han, 2004). In addition, this study sought to identify the interaction 

effect of design attributes on the perceived restorative experience in the built environment, 

minimizing bias in estimating model parameters (Lavrakas, 2008).  

While a great number of studies related to restorative design have been conducted in the area of 

institutional construction (Gao & Zhang, 2020; Gulwadi, 2006; Nejati et al., 2016), there have been 

few empirical investigations into residential design, despite the fact that emotional support and 

relaxation are major functions of the home environment (Ellsworth-Krebs et al., 2019). As such, 

the focus of the present study is on residential buildings. Meanwhile, a generic kitchen model is 

used as a pilot study in our research since its essential functional elements (e.g., storage unit, stove, 

and oven) are generally the same among different households regardless of occupant differences 

in cultural background or personal preference. Thus, further investigation is needed on the affective 

needs for other building types. In addition, although this study aimed to quantify and represent the 

restorative experience of built environments using a single value, it cannot guarantee the superiority 

of a design. The quantitative value obtained by a predictive model is intended to be an indicator 

with the potential to evaluate the relative strength of a design alternative.  

The remainder of the present chapter is organized as follows. First, the literature pertaining to 

qualitative and quantitative research on affective design and machine-learning methods for 

affective experience modelling to clarify the point of departure. Second, the research methods and 

scope are described in Section 2.3. A detailed discussion on the non-immersive VR-DOE-based 
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method for data collection is illustrated in Section 2.4. Section 2.5 presents the data analysis and 

machine-learning models for restorative experience modelling. Section 2.6 discusses the 

experimental findings and the predictive modelling results. Finally, Section 2.7 concludes by 

highlighting the applicability and limitations of these research findings. 

2.2 Literature Review 

2.2.1 Affective Design in Built Environment  

Affective design usually focuses on the emotional and mental communication between the user 

and the products (Ng et al., 2012). For decades, efforts have been made to understand the 

correlation between built environments and corresponding human affective experience and utilize 

this correlation as a foundation for human-centered building improvement in architectural domains 

(Heydarian et al., 2017; Kim et al., 2017). According to Vischer’s environmental comfort model 

(see Figure 2-), psychological comfort is the highest level in the hierarchy for achieving occupant 

satisfaction, and it refers to a sense of belonging, ownership, and control over an environment in 

which stress also plays a critical role (Vischer, 2007, 2008a).  

 

Figure 2-1. Habitability pyramid (source: Vischer, 2007). 
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There is consensus among scholars that specific characteristics of architectural environments could 

help people in reducing anxiety and recovering from cognitive fatigue and stress, thus increasing 

the overall satisfaction level attributable to built environments. Previous studies showed that design 

attributes, such as interior colours, views (through windows), lighting, and layout of the room, can 

serve as significant predictors in assessing the satisfaction level in healthcare facilities 

(Chamilothori et al., 2019; Gao & Zhang, 2020; Harris et al., 2002; Nejati et al., 2016; Schweitzer 

et al., 2004). Various design elements in birthing centers, such as shapes and angles of walls, 

ceilings, and fixtures, were also found to be associated with women’s affective experience and birth 

outcomes (Kopec, 2017). The golden ratio design principle was also found to affect a person’s 

emotional response in an eye-tracking-based experiment (Tuszyńska-Bogucka et al., 2020). The 

above-mentioned findings, equally, provide concrete evidence for designers optimizing affective 

design. For instance, decorative fountains have been increasingly used in healthcare facilities, as 

they can serve as positive distractions that reduce patients’ stress levels (Shah & Gharbia, 1999). 

Many hospital designs integrate gardens or modify the traditional waiting area in terms of the 

general layout, colour scheme, or furniture in order to improve the mood, the physiological state, 

and the overall occupant satisfaction level. 

Even though the qualitative evidence can provide designers with referable case studies and 

additional information, it is imperative that the designers have extensive experience and domain 

knowledge for interpreting the research findings and integrating credible research evidence in 

support of implementing relevant approaches in the design process. In this regard, many scholars 

have been attempting to quantitatively measure the effect of architectural design attributes on 

human experience. Ergan et al. (2018) conducted a crowdsourcing-based experiment to examine 

occupants’ emotional reactions to various design attributes, such as window design, ceiling height, 
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colour, and space layout; in the experiment, the participants were asked to select their preferred 

space in a pair of bipolar scales and rate the preferred space with a semantic value. To measure the 

human experience in a more objective manner, Ergan et al. (2019) also incorporated body area 

sensor networks (i.e., EEG, GSR, and PPG) to evaluate people’s experience related to stress and 

anxiety under predefined different design scenarios. Likewise, Martinez-Soto et al. used eye-

tracking data to investigate people’s reaction toward environment with different restorative 

potential. Gao and Zhang adopted the measure of physical measurement (i.e., skin conductance) 

and psychological scale to identify the patient’s experience toward design characteristics (Gao & 

Zhang, 2020).  

Overall, these studies have clearly indicated the quantitative relationship between architectural 

design attribute and human experience. Nevertheless, compared to other building design 

frameworks such as LEED and Living Building Challenge (LBC), affective design still lacks clear 

analytical models and tools for practical application in current practice. Many experiments in the 

context of affective design were usually conducted through a one-factor-at-a-time (OFAT) method-

based experiment design or by simultaneously altering multiple design attributes. This poses a 

challenge in interpreting the independent or interactive effects of the variable (i.e., design attribute) 

of primary interest. Thus, in this study, a machine-learning method trained by data collected using 

fractional factorial experiment design is used to model the relationship between restorative 

experience and design attributes to predict the restorative quality of design alternatives in support 

of the early design process.  
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2.2.2 Prediction Models for Affective Design  

Models are frequently referred to as efficient media for synthesizing and communicating 

knowledge during the design process. A model could be regarded as an abstraction used to explain 

concepts and their relationships, which are too complex to be otherwise illustrated; for example, 

the affective experience of architectural designs in this case (Teixeira et al., 2012). 

In design domains, numerous attempts have been made to model the relationship between design 

attributes and the user’s affective experience using machine-learning methods (Barnes & Lillford, 

2007). These models can be generally categorized as multiple linear regression, artificial neural 

networks (ANNs), support vector machines (SVMs), and fuzzy inference systems (FISs) (Chan et 

al., 2020). Specifically, multiple linear regression is widely used in the domain of affective 

modelling because of its easy implementation and interpretation (Lanzotti & Tarantino, 2008). 

Lanzotti and Tarantino applied logistic regression (i.e., a variant of linear regression) to predict 

users’ perceived  uality toward the interior design of trains (Lanzotti & Tarantino, 2008). Park et 

al. used linear regression models to model the user affective experience of mobile phones, which 

showed satisfactory performance in terms of goodness of fit (Park et al., 2013). However, this 

modelling was performed under the assumption that design attributes are linear with respect to a 

user’s affective experience (Chan et al., 2020). Thus, the uncertainty and bias in questionnaire data 

are typically neglected in the regression model. Compared with linear regressions, ANN models 

have been shown to be more capable of handling the nonlinear nature of human perception 

phenomena. Many neural networks have been adopted to depict the nonlinear relationship between 

user affective experience and product features for affective designs such as designs for motorcycle 

helmets, paddle tennis rackets, mobile phones, and office chairs (Chan et al., 2020; Fan et al., 2014; 

Yang & Shieh, 2010). For instance, a radial basis function was introduced by Chen et al. (2021) to 
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evaluate the cultural influence on affective experience. This function attempts to model data 

uncertainty by simulating the bell-shaped distribution in fuzzy-based systems. Similarly, Ling et 

al. (2014) incorporated a wavelet function-based ANN to perform an affective design for mobile 

phones. Although ANNs can capture the nonlinearity between affective experience and the related 

design attributes, the unexplained behaviour of the network, labelled the “black-box,” reduces trust 

in the solutions. In this regard, support vector regression (SVR), an extension of the SVM, is 

suggested as an alternative method for mapping the nonlinearity of feature space. The SVM is a 

popular machine-learning tool, first identified by Vapnik, who observed its excellent performance 

in solving sparse and noisy data that usually exist in real-world problems such as pattern 

recognition (Burges, 1998). In the design domain, SVR has been successfully adopted in predicting 

user affective responses based on product attributes (Fan et al., 2014; Yang & Shieh, 2010). Yang 

and Shieh (2010) employed SVR to develop a model for predicting consumer affective responses 

to product forms. Fan et al. (2014) proposed an SVR approach to model the relationship between 

design attributes and customers’ affective responses. 

Interestingly, Chan et al. (2020) reviewed the literature that reports on the use of ANNs and SVR 

for affective modelling and found that SVR models perform better overall compared with neural 

network models. Moreover, taking advantage of its interpretability with which the developed 

model can be interpreted, verified, and improved by human experts, FIS, also known as a fuzzy 

rule-based model, was introduced by Lai et al. (2006) in mobile phone design to handle the 

nonlinearity and fuzziness of human affective experience. Similarly, this fuzzy rule-based 

modelling approach was also adopted in designing cars and office chairs (Lin et al., 2007; Park & 

Han, 2004; Sutono et al., 2016).  
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In summary, this section provides a brief discussion of the general machine-learning methods used 

to determine the relationship between human affective experience and design attributes. Even 

though many studies address the customer’s affective needs for product designs, the relevant 

research in built environment design remains limited. Therefore, this study aims to assess the 

feasibility of using typical machine-learning models (i.e., linear regression, ANN, SVM, and FIS) 

in predicting human affective experience of built environment.  

2.3 Research Methods  

The primary objective of this study is to develop data-driven prediction models to evaluate 

restorative quality of design alternatives in support of the decision-making process for human-

centered architectural design. To achieve this goal, a careful feature selection and data collection 

is necessary to deliver meaningful predictive modelling results. Accordingly, the present study 

proposes an integrated VR-DOE-based machine-learning method to predict the restorative 

experience of the built environment. The data collection optimization was performed using the 

DOE method so that the input variable and data were properly selected to provide the most unbiased 

and precise results commensurate with the desired expenditure of time and effort. The use of DOE 

method also enables one to identify the output variation caused by the effect of the interaction 

among factors, providing researchers with a better understanding of the relationship between the 

restorative quality and the design attributes of the built environment, as well as explains more about 

the variability in the dependent variable (Lavrakas, 2008). Here, fractional factorial design was the 

DOE method used for experiment design, as it makes it possible to obtain a reasonable amount of 

training data through a fewer experiments number and screen the effect of each factor. Meanwhile, 

linear regression and three other machine-learning modelling methods (artificial neural network, 

support vector regression, and fuzzy inference system) are employed to develop models to predict 
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the restorative quality of a space, given its particular design attributes, and a comparative analysis 

of the performance of each predictive model is then conducted. In addition, this study incorporates 

relevant psychometric scales to scientifically measure the human-perceived restorativeness in 

virtual reality simulated environments, in order to maximize the utility of predictive models.  

The research methods are illustrated in Figure 2-2. The first and foremost step is to perform a 

comprehensive review of the available literature on architecture and psychology to identify the 

architectural design attributes that potentially influence the restorative- or stress-related human 

experiences (see Section 2.4.1). The second step is to design and perform experiments, to 

investigate human responses related to restorative experiences under various combinations of 

design attributes, and collect data. A two-level fractional factorial design is employed to generate 

various combinations of design attributes for the experiments (see Section 2.4.2), wherein the 

setting of each experimental run is generated in the form of a 360-degree panorama (i.e., VR image-

based models) using Autodesk Revit. This allows a careful yet effortless evaluation of the design 

model using any mobile or VR device (see Section 2.4.3). These VR image-based design models 

are then used in the experiment to assess the restorativeness of the built environment. Additionally, 

a questionnaire is developed using psychometric scales (i.e., perceived restorativeness scale and 

restoration-supportive built environment scale), based on the previously reported studies on 

perceived restorativeness (see Section 2.4.4) (Hartig et al., 1996; Hartig, Kaiser, et al., 1997; Hartig, 

Korpela, et al., 1997). Once the questionnaire and the VR panorama-based models for each 

experimental run are prepared and examined through a pilot test, the online experiment is launched 

through emails and social media platforms to collect data (see Section 2.4.5). The collected data 

are subsequently preprocessed, and the corresponding results are analyzed for statistical 

significance (see Sections 3.5.1 and 3.5.2). Once the input features are selected, multiple machine-
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learning models are used to predict the restorative qualities of the built environment using design 

attributes (see Section 2.5.3). Finally, a regression performance analysis of the developed 

predictive models is performed to identify the most appropriate models that can forecast the overall 

restorative quality of a built environment with several design alternatives.  

 

Figure 2-2. Research methods. 

2.4 Experiments Design and Data Collection for Human Restorative Experience  

2.4.1 Architectural Design Attributes 

Many architectural design attributes have been found to be related to human-perceived 

restorativeness in the built environment (Ergan et al., 2018; Gao & Zhang, 2020). It is generally 

believed that design attributes that support fascination, curiosity, or involuntary attention can be 
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credited for enhancing recovery from mental fatigue (Kopec, 2017).  Table 2-1 lists the eight 

architectural design attributes commonly related in the literature to restorativeness- and stress-

related experiences.  

Table 2-1. Architectural design attributes associated with human restorativeness- and stress-

related experience in the literature  

Architectural design 

attributes 

References 

Exposure to nature 

and indoor plant 

Bagot et al. (2015), Burnard & Kutnar (2015), Hartig & Evans 

(1993), Hipp et al. (2016), Iwata et al. (1997), Wells & Evans 

(2003) 

Presence/absence, 

dimensions, shapes of 

windows 

Collins (1976), Evensen et al. (2015), Hong et al. (2019), 

Nejati et al. (2016), Ozdemir (2010), Pati et al. (2008), Pohl 

(2011) 

Openness/Spaciousness 

of spaces 

Evans (2003), Lindal & Hartig (2013), Sadalla & Oxley 

(1984), Vartanian et al. (2015), Winchip et al. (1989) 

Lighting  Beute & de Kort (2014), Manav (2007), Nikunen et al. (2014), 

Nikunen & Korpela (2009) 

Finishing colour scheme Hall (1990), Hidayetoglu et al. (2012), Lamb et al. (2010), 

Macrae (2005), Meerwein et al. (2007), Michaelis (2011), Pile 

(1997), Rubert et al. (2007) 

Visual complexity Cassarino & Setti (2016), Jang et al. (2018), Orth & Wirtz 

(2014), Taylor (2006) 

Space layout Enquist & Arak (1994), Ergan et al. (2018), Finlay et al. 

(2010), Lindal & Hartig (2015), Oliva & Torralba (2001), 

Schweitzer et al.(2004) 

Spatial alignment Ergan et al. (2018), Gentner (1983), Michal & Lustig (2014) 

 

Window Designs and Access to Natural Elements 

Access to natural elements and the presence of windows are the components most frequently 

discussed in the study of human restorative experience in built environments. Research suggests 

that increased exposure to bright light effectively reduces depression and improves the mood of 

occupants, even for people hospitalized with severe depression (Hartig & Evans, 1993; Iwata et al., 
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1997; Wells & Evans, 2003). In this context, windows in built environment settings have been of 

great interest among scholars. Pati et al. indicated that the presence of windows has a positive 

impact on stress reduction, while Nejati supported that a window enhances the perceived quality 

of the overall experience of a physical environment (Nejati et al., 2016; Pati et al., 2008). Moreover, 

Lowenhaupt Collins pointed out that the perceived  uality of a window’s view is intimately related 

to the window’s dimension and shape (Pohl, 2011). Generally, higher occupant satisfaction and 

visual comfort are associated with higher window-to-wall ratio (i.e., 30%) than with a lower 

window-to-wall ratio (i.e., 15%), as showed in Hong et al. (2019). 

Spaciousness of Spaces 

The perceived spaciousness of an interior space has been correlated with a reduction in the feeling 

of stress and anxiety. Previous studies indicate that ceiling height, aspect ratio, and square footage 

are the main attributes that determine how people experience a space. That is, the larger the 

horizontal areas and the higher the ceiling height, the more spaciousness people perceive and, 

ultimately, the more comfortable they feel in the environment (Evans, 2003; Sadalla & Oxley, 1984; 

Vartanian et al., 2015; Winchip et al., 1989). 

Lighting 

Lighting has been considered a potential source of fascination to restore attention and promote the 

use of unintentional attention by augmenting one’s perception of the environment (Nikunen et al., 

2014). Both the illuminance level and the correlated colour temperature have been associated with 

attention restoration through the perception of brightness and the quality of colour environments 

(Manav, 2007). According to Manav, the colour temperature of 4000k was preferred to 2700K for 

the perception of comfort and spaciousness, while an illumination level of 2000 lx was preferred 
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to 500 lx for impressions of comfort, spaciousness, brightness perception, and colour saturation 

(Manav, 2007). 

Colour Scheme 

The choice of colours in architectural design plays a significant role in the process of attention 

restoration for individuals, as it is associated with one’s feeling of serenity or agitation, which in 

turn affects one’s stress level (Hall, 1990; Macrae, 2005; Pile, 1997). Generally, warm colour 

schemes involving shades of orange, yellow, and brown help people increase their awareness, 

whereas cold colour schemes, including shades of green, blue, and grey, help people focus on visual 

and mental tasks (Hidayetoglu et al., 2012).  

Visual Complexity 

Visual complexity is associated with visual attention and comfort with regard to the assumption 

that design attributes that enable one to capture involuntary attention can facilitate mentally 

restorative processes. The amount of detail in visual stimuli affects a person’s ability to be 

effortlessly attentive (Jang et al., 2018). In studies on visual perception (Taylor, 2006), people have 

shown a preference for designs with greater visual complexity.  

Space Layout 

The layout of space (i.e., symmetry of objects in the interior environment) has also been identified 

as an influential design attribute, altering environmental perceptions (Ergan et al., 2018). A 

symmetrical space layout increases the perceived quality of the environment and affects occupant 

satisfaction (Schweitzer et al., 2004). Enquist and Arak found that people appreciate greater 

symmetry and that symmetrical patterns hold an almost universal appeal for humans (Enquist & 

Arak, 1994; Lindal & Hartig, 2015).  
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Spatial Alignment 

Spatial alignment allows the brain to identify similarities and differences among elements, which 

effectively draws visual attention to one important region by enhancing that region’s visual 

saliency (Michal & Lustig, 2014). Based on their human experience and a built environment-

related experiment, Ergan et al. concluded that people associate the experience of pleasure and 

aesthetics with the presence of spatial alignment and show greater preference for aligned spaces 

(Ergan et al., 2018).  

Based on the literature review and given the context of this study, the following 10 design attributes 

that are typical of architectural design elements in residential environments were selected and 

investigated in this study: (1) room size, (2) rectangularity of room shape, (3) ceiling height, (4) 

light temperature, (5) visual complexity, (6) room layout symmetry, (7) window-to-wall ratio, (8) 

window aspect ratio, (9) finishing colour scheme, and (10) space alignment.  

2.4.2 Experiments Design 

Statistical experimental design is frequently performed in experiment planning, as it allows 

appropriate data to be collected and analyzed in order to deliver validated and objective conclusions. 

The present study endeavored to establish a ‘balanced’ dataset that comprehensively represents all 

sample populations for predictive model development so that the model can characterize the 

relationship based on the data rather than merely ‘memorizing’ the training data of over- or under-

represented populations (Vabalas et al., 2019). To obtain uniformly distributed data over the 

investigated attributes and reduce the total number of experiments (design alternatives) required, 

the fractional factorial design approach was employed in this study to develop a balanced dataset. 

Specifically, two levels were assigned to each design attribute, as presented in Table 2-2. It should 
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be noted that the space-A and space-B in the table are only meant to illustrate the different values 

of design attributes. The experiment aimed to gather response data from people regarding the extent 

of their perceived restorativeness in a setting that combines various interior design attributes. 

Compared to randomized controlled trial design, factorial design allows the researcher to 

comprehensively evaluate the influence of multiple attributes and detect interaction effects among 

these attributes (Baker et al., 2017). However, for a study with many independent variables, full 

factorial design can lead to an excessive number of experimental runs and data, i.e., in this study, 

1,024 experimental runs are required for full factorial design. In this context, fractional factorial 

design is considered a cost-efficient experiment design because it requires fewer experimental runs 

while maintaining the same level of statistical power (Collins et al., 2009). In this study, the 

restorative quality of each design alternative (experimental run) was evaluated by the participants, 

and a greater number of experimental runs would significantly affect the respondent’s cognitive 

burden and the relative costs associated with data collection. Thus, in this study, a 1/25 factorial 

experiment design was conducted to examine the effect of the 10 aforementioned architectural 

design attributes at a two-level resulting in 32 experimental runs, which supports the selection of 

input features for further predictive modelling (Antony, 2003). Table 2-3 presents the 32 

experimental runs (design alternatives) of this study, as generated by the Minitab statistics software. 

Each run represents a combinatorial design alternative modelled later using Revit and evaluated in 

the later experiment.  
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Table 2-2. List of attributes and their levels with two unlabelled design alternatives in the 

experiment 

Design attributes Space-A Space-B 

Room size  110 ft2 210 ft2 

Rectangularity of room shape  
Square  

 
Narrow Rectangle  

Ceiling height Slightly low  Slightly high 

Light temperature 

 
Warm-white 

 
Daylight 

Visual complexity 

 
Moderately low 

 
Moderately high 

Room layout symmetry 

 
Asymmetric 

 
Symmetric 

Window-to-wall ratio Slightly low Moderately high 

Window aspect ratio 

 
Verical  

 
Horizontal  

Finishing colour scheme 

 
Clean-White 

 
Modern Rustic 

Spatial alignment 

 
Unaligned 

 
Aligned 

  

W

L

W

L

w

H

w

H
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Table 2-3. Experimental runs of design alternatives selected by fractional factorial design 

Run 

Attributes 

Room 

size 

Rectangularity 

of room shape 

Ceiling 

height 

Light 

temperature 

Finishing 

colour 

scheme 

Window 

aspect 

ratio 

Window 

to wall 

ratio 

Room 

layout 

symmetry 

Visual 

complexity 

Space 

alignment 

1 210 ft2 
Narrow 

rectangle 
Low Daylight 

Modern 

rustic 
Horizontal Low Symmetric High Unaligned 

2 110 ft2 Square Low 
Warm-

white 

Modern 

rustic 
Vertical Low Asymmetric High Unaligned 

3 110 ft2 
Narrow 

rectangle 
High Daylight 

Modern 

rustic 
Horizontal Low Asymmetric High Aligned 

4 210 ft2 Square High 
Warm-

white 

Clean-

white 
Vertical High Asymmetric Low Unaligned 

5 110 ft2 
Narrow 

rectangle 
High 

Warm-

white 

Clean-

white 
Vertical High Asymmetric High Aligned 

6 110 ft2 
Narrow 

rectangle 
High 

Warm-

white 

Modern 

rustic 
Vertical Low Symmetric Low Unaligned 

7 210 ft2 
Narrow 

rectangle 
High 

Warm-

white 

Clean-

white 
Horizontal Low Symmetric Low Aligned 

8 110 ft2 Square High Daylight 
Clean-

white 
Vertical Low Asymmetric Low Aligned 

9 110 ft2 Square High 
Warm-

white 

Modern 

rustic 
Horizontal High Asymmetric Low Aligned 

10 110 ft2 Square Low 
Warm-

white 

Clean-

white 
Vertical High Symmetric Low Aligned 

11 110 ft2 
Narrow 

rectangle 
Low 

Warm-

white 

Modern 

rustic 
Horizontal High Symmetric High Aligned 

12 110 ft2 
Narrow 

rectangle 
Low 

Warm-

white 

Clean-

white 
Horizontal Low Asymmetric Low Unaligned 

13 110 ft2 
Narrow 

rectangle 
Low Daylight 

Clean-

white 
Vertical Low Symmetric High Aligned 

14 110 ft2 
Narrow 

rectangle 
High Daylight 

Clean-

white 
Horizontal High Symmetric Low Unaligned 

15 210 ft2 Square High Daylight 
Modern 

rustic 
Horizontal Low Asymmetric Low Unaligned 

16 210 ft2 Square Low Daylight 
Modern 

rustic 
Vertical High Asymmetric High Aligned 

17 210 ft2 Square Low Daylight 
Clean-

white 
Vertical Low Symmetric Low Unaligned 

18 110 ft2 Square Low Daylight 
Modern 

rustic 
Horizontal Low Symmetric Low Aligned 

19 210 ft2 
Narrow 

rectangle 
High Daylight 

Modern 

rustic 
Vertical High Symmetric Low Aligned 
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20 110 ft2 Square High 
Warm-

white 

Clean-

white 
Horizontal Low Symmetric High Unaligned 

21 110 ft2 
Narrow 

rectangle 
Low Daylight 

Modern 

rustic 
Vertical High Asymmetric Low Unaligned 

22 210 ft2 
Narrow 

rectangle 
High 

Warm-

white 

Modern 

rustic 
Horizontal High Asymmetric High Unaligned 

23 210 ft2 Square Low 
Warm-

white 

Clean-

white 
Horizontal Low Asymmetric High Aligned 

24 210 ft2 Square High Daylight 
Clean-

white 
Horizontal High Symmetric High Aligned 

25 110 ft2 Square High Daylight 
Modern 

rustic 
Vertical High Symmetric High Unaligned 

26 210 ft2 
Narrow 

rectangle 
High Daylight 

Clean-

white 
Vertical Low Asymmetric High Unaligned 

27 210 ft2 Square High 
Warm-

white 

Modern 

rustic 
Vertical Low Symmetric High Aligned 

28 210 ft2 
Narrow 

rectangle 
Low Daylight 

Clean-

white 
Horizontal High Asymmetric Low Aligned 

29 210 ft2 
Narrow 

rectangle 
Low 

Warm-

white 

Modern 

rustic 
Vertical Low Asymmetric Low Aligned 

30 210 ft2 Square Low 
Warm-

white 

Modern 

rustic 
Horizontal High Symmetric Low Unaligned 

31 110 ft2 Square Low Daylight 
Clean-

white 
Horizontal High Asymmetric High Unaligned 

32 210 ft2 
Narrow 

rectangle 
Low 

Warm-

white 

Clean-

white 
Vertical High Symmetric High Unaligned 

 

2.4.3 Virtual Reality Model Generation 

It would be impractical to provide 32 real room settings with defined design attributes for the 

purpose of the experiment. Thus, following the DOE results, each experimental run (design 

alternative) was represented in a VR-based 360-degree panoramic model (see Figure 2-3). The 

basic geometry, structure, and design setting of the virtual environment and objects (e.g., cabinet, 

countertop, sink, light fixture) were configured in a building information model in Revit (2019). 

Autodesk Cloud Rendering was then used to render the design into high-resolution stereo 
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panoramas that could be shared via a website URL. Participants could then use either a smartphone 

with cardboard VR viewer or a desktop to access the VR panorama.  

A number of studies have demonstrated that there is not a significant difference in terms of 

occupant perception between physical spaces and well-designed VR environments (Calogiuri et al., 

2018; Heydarian et al., 2015; Hong et al., 2019; Iachini et al., 2016; Zhang et al., 2020). Moreover, 

using VR models rather than static images to represent design configurations allows for a 

continuous stream of congruent stimuli that deliver a vivid illusion of reality to the participant. This 

has to do with the concept of “presence,” the subjective feeling of “being in a virtual environment,” 

which determines the effectiveness of a VR simulation. On the other hand, to ensure adequate 

visual fidelity among various VR display platforms (e.g., smartphone-based VR and desktop-VR 

paradigms), the devices used in the experiment (VR display type and resolution configurations) 

were recorded. Although the interaction fidelity and immersion level provided by the two display 

systems used are different, their influence on emotional elicitation may not be significant (Baños 

et al., 2004; Roettl & Terlutter, 2018; Srivastava et al., 2019; Terlutter et al., 2016; Voigt-Antons 

et al., 2020; Wilson Christopher J. & Soranzo Alessandro, 2015). Meanwhile, an assumption was 

made in this study that a satisfactory sense of presence provided by the VR model can ensure 

sufficient emotional stimulation of participants, since the emotional elicitation effect is strongly 

associated with the feeling of presence in a VR platform (Riva et al., 2007). Therefore, multiple 

questions adopted from Heydarian et al. (2015) assessing the realism of the VR environment 

compared to the physical world were included in the questionnaire in order to verify the validity of 

the developed VR model. 
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Figure 2-3. Screenshots of VR models for experimental runs. 

2.4.4 Design of Questionnaire  

During the experiment, participants were expected to assess the restorative quality of a room setting 

and describe their relevant experience by filling out a questionnaire, which consisted of two parts: 

(a) background questions and (b) restorative experience measurement. 

Background Questions  

Prior to the  uestions measuring one’s restorative experience, the  uestionnaire asked for 

demographic information, including age, gender, and education level, and past experiences with 

architectural design, virtual reality models, and built environments as settings for restorative 

experiences. The additional background questions regarding past experiences with architectural 

design, virtual reality models, and built environments were intended to examine the influence of 

these experiences on the interpretation of results pertaining to perceived restorativeness. Moreover, 

the Ishihara colour blindness test was added as a core module in the demographic information 

portion of the questionnaire to identify and eliminate the potential influence of participants with 

colour blindness. 
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Restorative Experience Measurement 

To measure the human-perceived restorativeness of the built environment in a reliable and 

quantifiable manner (Han, 2018), two self-reported restorativeness scales—the Perceived 

Restorativeness Scale (PRS) by Hartig et al. (1997) and the Built Environment Restoration Support 

Scale (BERS) by Fischl and Garling (2008)—were incorporated in this study as part of the 

questionnaire. Self-reported restoration experience assessment, as an explicit measure, has been 

widely used in studies on environmental restorativeness to  uantify individual’s psychological 

reactions (Han, 2018; Hartig et al., 1996; Pasini et al., 2014). Specifically, the selected self-reported 

scale, PRS, is one of the most widely used measures addressing the extent to which certain 

environmental settings have restorative qualities, and its validity has been proven by sufficient 

psychometric analysis in terms of content, construct, convergent, discriminant, and criterion-

related validity (Han, 2018; Hartig et al., 1996). This scale has been credited for its generalizability 

and sensibility in identifying differences in perceived restorativeness in a given environment on 

the part of participants of various ages, health levels, and nationalities. However, PRS is rarely 

used for indoor environments. In comparison, the BERS was explicitly proposed to assess the 

restorative quality of the built environment but rarely examined in previous studies. Since limited 

attempts have been made to examine the validity of the BERS, it was included in the questionnaire 

only as a supplemental measure to the PRS. 

In the PRS measurement, perceived restorativeness is assessed using four dimensions, namely, the 

feelings of “being away,” “fascination,” “coherence,” and “compatibility,” based on Kaplan and 

Kaplan’s Attention Restoration Theory (Herzog et al., 2003; Katz, 1991). Given this chapter’s 

focus, the interested reader can refer to the cited references (Hartig et al., 1997; Hartig & Staats, 

2003) for a detailed description of each restorativeness dimension. The PRS measurement 
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developed by Hartig et al. (Hartig et al., 1997; Hartig et al., 1997) uses either 26 or 16 items. This 

study adapted the 16-item method to make it more suitable for use in research contexts where the 

evaluated scenarios are indoor built environments (Hartig et al., 1997). As a result, 17 seven-point 

Likert-scale questions (see Table 2-4) were proposed in the questionnaire to measure the 

participants’ perceived restorativeness. Moreover, to measure restorative experience in a 

standardized, plausible, and relevant context, emotion-provoking methods that put participants 

under psychological stress before exposure to configured environmental settings have been 

commonly used in previous studies to ease the restoration effect measurement (Gao & Zhang, 2020; 

Ulrich et al., 1991). Thus, a scenario description adapted from Lindal and Hartig (2013) was 

provided to participants before moving on to the restorativeness measurement for the contextual 

stimuli control: Imagine it is afternoon. You are walking home from work alone. You are mentally 

exhausted from intense concentration at work, and you appreciate having a chance to stroll and 

recover. The purpose of this affective description was to specify a condition of directed attention 

fatigue and to emphasize for participants the range of variation in compatibility due to factors other 

than a change in the physical environment (Lindal & Hartig, 2013). 

It is noteworthy that the developed questionnaire was reviewed by six researchers in the field of 

architectural design and ergonomics before being sent to prospective respondents. These 

researchers were asked to provide feedback on the visual noticeability of the design attributes as 

the visual stimulus component of the environmental settings, as well as on the validity of each 

questionnaire item in terms of wording, format, content, and clarity. Based on the researchers' 

feedback, the VR models and questionnaire were modified and finalized. 
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Table 2-4. Measurement items in questionnaire. 

Dimensions Questionnaire Items 

Perceived 

Restorativeness Scale 

(PRS) 

Being Away 
Spending time here gives me a break from my day-to-day routine. 

Being here helps me to relax my focus on getting things done. 

Fascination 

This place is fascinating. 

This place draws my attention without any effort on my part. 

My attention is drawn to many interesting features in this space. 

I want to get to know this place better. 

There is much to explore and discover in this space. 

Coherence 

There is too much going on in this space. 

This is a confusing place. 

There is a great deal of distraction in this space. 

It is chaotic in here. 

Compatibility 

This space fits my character. 

I can do things I enjoy in this space. 

Sometimes even a small space can feel like a whole world of its own. It can seem like 

it is enough room to become completely engaged in this space and not concern 

yourself with anything beyond its walls. 

It is easy to see how things are organized in this space. 

I could find ways to enjoy myself in a place like this. 

Built Environment Restoration Support 

Scale (BERS) 

Recall one of those times when you worked hard on a project that required intense and 

prolonged effort. Remember how it felt. You probably reached a point where you 

could tell that your ability to work effectively had started to decline and that you 

needed a break. You needed to do something during the break to restore your ability 

to work effectively on the project. Put yourself in that mindset now, and then please 

rate your satisfaction level toward the presented design as a setting in which to take a 

break and restore your ability to work effectively. 

 

2.4.5 Participant Recruitment and Data Collection 

Data collection was conducted via the Internet. Participants received an invitation letter through e-

mail that contained a link to the online questionnaire. Participants were invited to complete the 
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experiment voluntarily, and could withdraw at any time. A total of 32 VR models (one for each 

experimental run) were assessed in this study. Figure 2-4 shows the procedure for a single 

experimental session. After the introduction and background information section, participants were 

given 2 min to read a paragraph of affective text, i.e., stimulus material for eliciting stressful 

feelings (Gao & Zhang, 2020; Ulrich et al., 1991). Then, a 3-min non-immersive VR experience 

of the configured design was provided, where the exposure duration was determined in reference 

to previous lab-based human affective-related experiments (Abujelala et al., 2021; Chen et al., 2018; 

Ergan et al., 2019; Shemesh et al., 2016, 2017). Afterward, participants were asked to evaluate 

their perceived restorativeness experience by answering the next section of the questionnaire. An 

access link was made available in every question so that the participant could re-visit the VR 

environment as needed to reduce memory load and improve the accuracy of the affective judgment. 

Each experimental session took approximately 13–20 minutes on average to complete.  

 

Figure 2-4. Overview of a single experimental session. 

2.5 Data Analysis and Prediction  

Once the responses were collected through the experiments, data preprocessing and analysis were 

then performed to identify the meaningful input features for the development of prediction models. 

In this study, five machine-learning models, namely, linear regression, radial basis function neural 

network (RBFNN), general regression neural network (GRNN), SVR, and FIS, were developed to 
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predict the human restorative experience toward the built environment. Their predictive 

performance was also compared using performance metrics for further model selection. 

2.5.1 Data Pre-Processing 

Data preprocessing aimed to clear responses that did not meet certain criteria, such as incomplete 

responses, responses that were given too  uickly (“speeder” responses), inconsistent responses, 

and outlier responses (Curran, 2016; Meade & Craig, 2012). Specifically, to ensure the credibility 

of the experimental results, four indices—(a) total response time, (b) response patterns (i.e., 

LongString), (c) Mahalanobis distance, and (d) Cronbach’s alpha—were calculated based on the 

response data, and data cleaning was performed accordingly. For example, the speeder and 

inattentiveness responses can be easily identified through the respondents’ response times and 

patterns. The response time measures the total time needed by the respondent to complete the 

questionnaire. A much shorter response time indicates that the respondent may be speeding through 

questions and paying little attention to providing an assessment. The response pattern is analyzed 

to identify respondents’ careless responses (for example, a respondent who consistently provides 

the same answer). Following the method proposed by Johnson (Johnson, 2005), an index termed 

LongString was used to compute the maximum number of items with identical consecutive 

response on a single page (Curran, 2016; Johnson, 2005; Meade & Craig, 2012). As for the outlier 

responses, the Mahalanobis distance, denoted as MD in Equation 2-1, was computed for each 

response for the same design alternative, measuring the multivariable distance between each 

response vector and the mean of the sample vector, which indicates the individual responses outside 

the distribution. Moreover, with respect to the internal consistency of the measures, Cronbach’s 

alpha (see Equation 2-2) was estimated to reflect the extent to which the question was inter-

correlated in measuring the participants’ perceived restorative experience. In alignment with 
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previous works, a of at least 0.7 was also used in this study to indicate adequate internal consistency 

of responses (Tsang et al., 2017). 

𝑀𝐷2 = (𝑟 − �̂�)𝑇 ∙ 𝐶−1 ∙ (𝑟 − �̂�)  (2-1) 

where 𝑟 is the vector of the response; �̂� is the vector of mean value; and C is the covariance matrix 

of these two variables’ vectors.  

𝛼 =
𝑛

𝑛 − 1
(1 −

∑𝜎𝑖
2

𝜎𝑥2
)  (2-2) 

where 𝑛 is the number of responses; 𝜎𝑖
2 is the variance of questionnaire item i; and 𝜎𝑥

2 is the total 

variance of the questionnaire. 

 

2.5.2 Factorial Analysis 

To detect which architectural design attributes and which interactions between attributes influence 

one’s perceived restorativeness to the greatest extent, an analysis of variance (ANOVA) was 

performed on the remaining dataset (i.e., after data pre-processing) using Minitab 18 statistical 

software. The main effect of a design attribute was measured by the corresponding change in the 

output, i.e., the restorative experience associated with the change made at the level of that design 

attribute averaged over other design attributes. The interaction effect (i.e., two-way interaction 

between variables A and B) is defined as the average difference between the main effect by A at 

the high level of B and the effect of A at a low level of B. Note that the significance of a design 

attribute or its effect on restorative experience is determined by its p-value (Tauxe et al., 2006). 
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2.5.3 Predictive Modelling for Restorative Experience 

As reported in previous studies, prediction models developed using machine-learning methods may 

show different prediction performances under various problem contexts. To explore the capability 

of machine-learning models in affective modelling for built environments, linear regression and 

three other typical machine-learning methods (ANN, SVR, and FIS) were tested to develop the 

prediction models for human restorative experience. These three machine-learning models were 

adapted from a comprehensive literature review conducted by Chan et al. (2020) that examined 94 

research publications and summarized the machine-learning methods used to model the 

relationship between the affective quality of a product and its design attributes. Among the 

machine-learning methods discussed in the study by Chan et al., we focused on models with a 

lower variance capable of characterizing the relationship from a small dataset in order to mitigate 

the risk of overfitting (considering that it is impractical to conduct such data collection experiments 

on a large scale, given the associated cost and effort). As a result, three machine-learning methods 

were selected due to their generic applicability and their ability to handle noisy and nonlinear small 

datasets, as proven in previous studies (Chan et al., 2020).  

The inputs to the machine-learning models included the selected variables identified as statistically 

significant based on the factorial analysis in the previous step, while the output was the numeric 

measurement of the reported restorative experience. To begin, the dataset was divided into a 

training set and a validation set. The overall dataset was divided into training and testing sets based 

on the principle that the size of the dataset for machine learning should be roughly ten times the 

degrees of freedom in the model, which means approximately 100 sample points are needed for a 

10-variable model. Although we would like to have kept as many samples as possible in the training 

dataset to provide more features for training, an inordinately small testing set may have resulted in 
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unacceptably high variance in the performance assessment results. Thus, 100 responses (83%) were 

used for training and 20 responses (17%) for testing. Due to the limited sample sizes, k-fold cross-

validation was applied to the training set to mitigate the risk of overfitting and to enhance the model 

fitting and generalization. The training set was initially used to identify the optimal model 

parameter with 5-fold cross-validation. The parameter setting achieving good performance in 

minimizing the averaged 5-fold cross-validation error for both the training set and the testing set 

was determined to be the optimal solution. Subsequently, the parameters obtained were adapted in 

order to train/fine-tune a model using the entire training set (i.e., 100 responses). Accordingly, the 

trained models were evaluated on the validation set (i.e., 20 responses), and performance metrics 

of RMSE and R2 were used to evaluate the predictive performance of the models. All design and 

training of the machine-learning models was performed in MATLAB 2020b. It should be noted 

that the optimal parameters of each method were determined based on the best prediction 

performance via grid search in the parameter space after multiple trial-and-error tests. The 

following subsections describe the process of developing the machine-learning models.  

Linear Regression Model 

Linear regression model (see Equation 2-3) predicts the output, i.e., perceived restorativeness in 

the built environment, as a weighted sum of the input features. Each weight 𝜔𝑖 of the input features 

in the model can be determined by the least-squares method as well as maximum likelihood 

estimation. To maximize the precision of predictors in a model, insignificant variables were 

eliminated in a stepwise manner during the regression process. A threshold of 0.1 regarding the 

variables’ statistical significance (i.e., p-value < 0.1) was applied during the linear regression to 

avoid an underspecified regression model, in accordance with the limitation of the sample size and 

the subjective nature of self-reported surveys. All individual factors and the lower terms of 
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interaction factors with significant effects were included in the linear model to present the model 

hierarchy.  

𝑌 = 𝑓(𝑥) =  ∑𝜔𝑖𝑥

𝑛

𝑖=1

 

 (2-3) 

 

ANN Model 

To choose a neural network architecture, multiple factors are considered, such as a simple model 

architect, strong capability for nonlinear fitting, generalization for new data, and tolerance for small 

sample size and high noise by human subjectivity in an affective design. Inspired by previous 

studies and data characteristics (Chen & Yan, 2008; Chen et al., 2008; Chen et al., 2021b; Lin, 

2013; Tian et al., 2014; Wang et al., 2020), the radial basis function neural network (RBFNN) and 

the general regression neural network (GRNN) were used in this study because of their ability to 

achieve global optimization with strong robustness and fault tolerance (Chen et al., 2021b). At 

times, it should be noted, they have even demonstrated better accuracy and training speed than 

other neural networks with simple architecture, e.g., multilayer perceptron networks (Izonin et al., 

2021; Wu et al., 2012). Figure 2- shows their respective architectures. 

The RBFNN is a three-layer feedforward network that uses radial basis function as its activation 

function. The output of this result can then be expressed as a scalar function of input vectors, as 

shown in Equation 2-4. Here, 𝜑(𝑥, 𝑥𝑐) denotes the radial basis function whose output depends on 

the Euclidean distance to the center 𝑥𝑐. To calculate the center of the radial, the Gaussian function 

(see Equation 2-5) was used on each hidden unit as the transfer function. The value coming out of 

the hidden layer (i.e., radial basic layer) is multiplied by a weight associated with the node and 
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passed to the output layer. Then, the output layer accumulates up the weighted values and presents 

this sum as the network’s output.  

 

Figure 2-5. Architectures of the RBFNN and the GRNN. 

𝑌 = 𝑓(𝑥) =∑𝑤𝑗𝜑𝑗(𝑥, 𝑥𝑐)

𝑚

𝑗=1

  (2-4) 

𝜑(𝑥, 𝑥𝑐) = exp (−
‖𝑥 − 𝑥𝑐‖

2

2𝜎2
)  (2-5) 

where 𝑥𝑐 is the center vector; 𝑤𝑗 is the connection weight from the hidden unit to the output unit; 

𝜎 is the width of the Gaussian function; and ‖𝑥 − 𝑥𝑐‖ represents the distance input to the center of 

the basis function. 

The GRNN is a variation to the radial basis neural networks and consists of four parts: the input 

layer, the pattern layer, the summation layer, and the output layer. This model is known for its 

ability to achieve global optimization with strong robustness and fault tolerance. The mathematic 

representation of the GRNN can be seen into Equation 2-6, where 𝑤𝑘 is the activation weight of 

the pattern layer node 𝑘 and 𝐾(𝑥, 𝑥𝑘) is the radial basis function kernel. 

...

Input Layer Radial Basic Layer Output Layer

...

Input Layer Pattern Layer Summation Layer Output Layer

General Regression Neural NetworkRadial Basis Function Neural Network 
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𝑓(𝑥) =
∑𝑤𝑘𝐾(𝑥, 𝑥𝑘)

∑𝐾(𝑥, 𝑥𝑘)
 (2-6) 

During the network design and training process, the smoothing factor of the kernel functions to 

train these two neural networks was set at 0.3 as a trade-off between the model generalizability and 

the fast-changing function.  

SVR Model 

Support vector regression applies a line referred to as hyperplane to descript the trend of the data. 

Rather than minimizing the error between the observed and predicted values, SVR aims to fit the 

best line within a threshold value so that as many samples as possible can be included to enhance 

model reliability. To obtain the SVR model, the regression process can be formed as the 

optimization problem outlined in Equation 2-7 (Vapnik, 1995).  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒: 
1

2
‖𝜔‖2 (2-7) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 {
𝑦𝑖 − 𝜔𝑖 ∙ 𝜙(x) − 𝑏𝑖 ≤ ε

𝜔𝑖 ∙ 𝜙(x) + 𝑏𝑖 − 𝑦𝑖 ≤ ε 
 𝑖 = 1,2, … 𝑙

  

where 𝑦𝑖  is the observed output; weighted vector 𝜔𝑖  and bias 𝑏𝑖  are the parameters for the 

prediction of an observed data; and ε is the epsilon margin that serves as a threshold for the 

difference between the prediction and the observed outputs. 

The performance of the SVR model depends heavily on its parameters, such as the kernel function 

parameter, the regulation parameter, and the width of the epsilon-insensitive band. It is necessary 

to optimize the training parameters for better generalization performance and to eliminate the 

overfitting problem, given the limited sample size (Platt, 1999). During the training process, SVR 

employed a Gaussian function as the kernel function and the sequential minimal optimization 
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algorithm (SMO) to find the optimal solution. The best performance was found when the Kernel 

scale was 2.154 and Edsilon was 0.535. 

FIS Model 

To obtain a fuzzy inference system from the data, the foremost step is to divide the data space into 

fuzzy clusters. Following Park and Han’s instruction, this study employed the fuzzy subtractive 

clustering algorithm (FSC), an unsupervised algorithm, to identify potential clusters among the 

input data (Park & Han, 2004). The FSC can automatically estimate a fair number of clusters based 

on the density (potential) of data points in a space where a cluster center is one of the clustered 

data (Bataineh et al., 2011; Chiu, 1994). Consequently, 10 rules (10 clusters) were generated based 

on the optimal combination of fuzzy clustering parameters. The local model of each rule was then 

expressed using the Takagi–Sugeno–Kang (TSK) model in a mathematical manner. The regression 

parameters of the local models were further determined by the linear least-squares estimation 

technique and represented as outlined in Equation 2-8.  

𝐹𝑜𝑟 𝑥 ∈ 𝐶𝑘, 𝑇𝐻𝐸𝑁 𝑌𝑃𝑅 = 𝑎0 +∑𝑎𝑗𝑥𝑗

𝑀

𝑗=1

 (2-8) 

where 𝑥𝑗 is the jth dimension of data point; M is the overall dimension of design elements (i.e., 

equal to 10 in this case); and 𝑎0 are the regression parameters; 𝐶𝑘 refers to the kth cluster. 

Assessment of Prediction Performance  

The accuracy of the predictive result is reflected in the prediction error; thus, measuring and 

analyzing the magnitude of the prediction error is of great significance in terms of demonstrating 

the accuracy of the prediction result (Botchkarev, 2018). Root mean square error (RMSE) is a 

standard metric that expresses the average deviation between the predicted value and the observed 
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value, and it is commonly used to compare the performance of machine-learning regression models 

(Chen et al., 2021b; Yang & Shieh, 2010). However, it is difficult to ascertain the quality of a 

predictive model by merely looking at a singular value of RMSE. For instance, an RMSE value of 

0.4 alone does not intuitively indicate whether or not a model performs well in predicting 

restorative quality. This shortcoming can be addressed with the use of another performance 

indicator, R-squared (R2), which gives the percentage of output variance that can be explained by 

the independent variables in the model (Chicco et al., 2021). Compared to RMSE, R2 is more 

informative in indicating the model prediction performance, where an R2 value of 0.8 means that 

the evaluated model explains 80% of the variation within the data, regardless of the ranges and 

distributions of the ground truth values (Chicco et al., 2021). Therefore, in the present study, both 

RMSE and R2 were used to assess the goodness-of-fit of the prediction models, where a high R2 

value and a low RMSE in all possible regression methods is considered to be indicative of a better 

fit in modelling the relationship between perceived restorativeness and architectural design 

attributes.  

In addition, the scatterplots of the observed data against the predicted data were further employed 

to illustrate the distribution pattern of the prediction error, (i.e., a constant variance of error across 

the various levels of the dependent variable). In other words, the scatterplots of observed vs. 

predicted PRS scores in our study revealed whether the predictive model could perform 

equivalently in predicting various levels of dependent variables. For instance, the scatterplots of 

observed vs. predicted PRS scores in our study revealed whether the predictive model could 

perform equivalently in predicting various design settings with different PRS scores (Piñeiro et al., 

2008).  
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2.6 Results and Discussion 

A summary of the main findings from the experiment together with analytical results regarding 

predictive modelling are provided in the section. 

2.6.1 Demographic Characteristics 

A total of 144 participants took part in the experiment, and 120 responses (data points) were used 

for further data analysis and prediction model development after data cleaning has been carried out 

to remove any incomplete or unqualified responses. Data reliability was tested with Cronbach alpha 

and the result of 0.824 suggests a good internal consistency of survey responses, which means the 

online questionnaire results are able to reliably measure a person’s perceived restorative experience 

under specific interior design settings. The distribution of the participants in terms of demographic 

characteristics (age, gender, and education level) is outlined in Table 2-5. Participants were queried 

as to their background knowledge and relevant experience with respect to interior design, and only 

4.2% of participants stated they do not have any experience or knowledge of interior design. 

Moreover, more than 50% of participants had interior design experience or were familiar with the 

basic principle. In terms of virtual reality models, 70.8% of participants stated they have prior 

experience with VR techniques and gave the VR model a score of 5.43 out of 7 (SD=0.72) in terms 

of its sense of presence, indicating that the virtual model is an adequate representation of the 

physical environment for the purpose of measuring user experience (Heydarian et al., 2015). 

During the experiment, no significant differences were found for age, gender, and level of 

education, which suggests the demographic variables did not influence the responses in the present 

study. However, the attitude of a respondent with respect to whether or not the kitchen is a relaxed 

place in the home was found to be significantly associated with the result of the respondent’s 
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response for restorativeness measure (p-value = 0.03). This finding is consistent with previous 

research findings that a person’s previous experience or their environment-related attitude would 

influence their perception of the environment (Gunnarsson et al., 2017; Hartig, 2017).  
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Table 2-5. Demographic information of participants. 

  Number of 

participants 
Proportion 

Gender Female 34 28.33% 

Male 86 71.67% 

Age range 18–24 4 3.33% 

25–34 70 58.33% 

35–44 27 22.50% 

45–54 14 11.67% 

55–64 5 4.17% 

Education 

level 

Some college training but no 

degree 
13 10.83% 

High school degree or 

equivalent 

(e.g., GED) 

5 4.17% 

Bachelor’s degree 66 55.00% 

Graduate degree 36 30.00% 

 

2.6.2 Factorial Analysis of Design Attributes 

The Pareto chart in Figure 2- summarizes the top 20 input variables with significant main and 

interaction effects according to the results of the factorial analysis. The bars for each variable 

represent the absolute values of standardized effects of design attributes and their interactions on 

human-perceived restorative experience as measured by PRS and BRES. The reference line of 

1.982 is plotted to indicate the 95% significance level, meaning that if a bar crosses the reference 

line, this indicates that the variable is determined as being influential to the output change at a 

statistical significance level of 0.05 (p-value < 0.05). Therefore, at the protected significance level 

(i.e., 95% significance level), the main effects of window aspect ratio, room size, and light 

temperature were significantly influential to restorative experience results measured by both PRS 

and BERS, revealing the strong relationship between the design feature and human-perceived 
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restorativeness in environments. However, finishing colour scheme and ceiling height contribute a 

statistically significant difference to the result of PRS score, but fail the significance hypothesis 

test for the BRES measure, which may be explained by the expression of BRES leading the 

participant to focus more on assessing the feeling of “being away” and “fascination” in 

environments while neglecting the concept of “coherence.” Similarly, the difference in interaction 

effect of Rectangularity × Room layout symmetry according to PRS and BERS measures could 

also be explained the same way. The significant interaction effect of Rectangularity × Room layout 

symmetry was evident in terms of the output of “coherence” feeling in PRS measure (p-value < 

0.05); in contrast, the same interaction effect failed the hypothesis test for the BERS measure. For 

this reason, PRS is used as the only target output in the data analysis that follows. 

In terms of interaction effects, the six two-way interaction effects of Rectangularity × Room layout 

symmetry; Ceiling height × Window-to-wall ratio; Room size × Finishing colour scheme; 

Rectangularity × Light temperature; Room size × Visual complexity; and Light temperature × 

Window aspect ratio were identified as contributing to the results of PRS measure in the present 

study. Three examples of interaction effects with the most significant standardized effect are 

plotted in Figure 2-, illustrating the mean PRS score versus two levels of design attributes under 

different settings of other variables. As shown in Figure 2-a, if the ceiling height of a room is low, 

a low window-to-wall ratio (indicated by the black dashed line) is associated with a higher score 

of PRS and restorative experience, whereas in the scenario in which a room has a high ceiling, the 

participant found the high window-to-wall ratio offers a more restorative experience according to 

the PRS score. Likewise, in a rectangular kitchen, as depicted as the red line in Figure 2-c, the 

participant found the asymmetrical layout could provide them a more restorative experience in 

comparison to a symmetrical layout, although the symmetry of a space is usually positively 
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associated with higher perceived restorativeness in environments as shown in the case of square-

shape kitchen space. Moreover, looking at Figure 2-b, it is apparent that the room size has a 

significant influence on a person’s perceived restorativeness under a modern rustic colour setting. 

In contrast, the PRS score appeared to be less affected by room size when the colour scheme is 

clean-white. 

 

Figure 2-6. Pareto chart of the standardized effects for responses using PRS and BERS scales. 
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Figure 2-7. Plots for interaction effects of (a) Ceiling height × Window-wall ratio, (b) Room size 

× Finishing colour scheme, and (c) Room layout symmetry × Rectangularity. 

2.6.3 Comparison of Predictive Modelling Results 

Multiple machine-learning methods were applied using the response data to build the prediction 

model. As suggested by the factorial analysis results in Section 2.4.2 (i.e., that all design attributes 

should be incorporated into the linear model according to the significance level of effects and the 

model hierarchy), a total of ten design attributes—(1) room size, (2) rectangularity of room shape, 

(3) ceiling height, (4) light temperature, (5) visual complexity, (6) room layout symmetry, (7) 

window-to-wall ratio, (8) window aspect ratio, (9) finishing colour scheme, and (10) space 

alignment—were set as the dependent variable inputs for the other machine-learning methods. 

Moreover, the extent to which the participant believes a kitchen is a relaxed place is also included 

as a context input variable to assess the perceived restorative quality in environments during 

modelling as their significant correlation was argued by other scholars and supported by the result 

of the factor analysis in the present study. Meanwhile, as has already been noted in the factorial 

analysis (i.e., Section 2.6.2), the description used to measure BERS might cause the participant to 

focus more on the “being away” and “fascination” aspects while assessing the restorativeness of 
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the environments. The PRS score was used as the only target output for the predictive modelling. 

It should also be noted that PRS was more thoroughly examined for construct validity and 

generalizability compared to BERS. Also, PRS has more scale items to rate than BERS, which 

reduces the risk of internal inconsistency (Han, 2018). 

As a result, a total number of five predictive models were developed, of which the machine-

learning methods used to develop the models include linear regression, neural networks (i.e., 

GRNN and RBFNN), support vector regression (SVR), and fuzzy inference system (FIS). The 

comparison of their prediction performance using training and testing sets is shown in Table 2-6. 

It is apparent that three artificial intelligence methods, i.e., SVR, neural network, and FIS, all have 

better predictive performance than the linear regression. The R-squared value of linear regression 

indicates that this model is capable of explaining only 36.00% of the variation in human-perceived 

restorative experience in the validation set. However, some scholars have argued that the 

interpretation of R-squared value varies depending on the research area. Any study involving an 

attempt to predict human behaviour, such as in psychology, typically tends to yield lower R-

squared values in comparison to engineering problems due to the non-linearity of human nature, 

as previously discussed herein (Chin, 2010; Hair et al., 2011). Additionally, to obtain more in-

depth insight into the performance of GRNN, RBFNN, FIS, and SVR models, their respective best 

model structures and fitness plots were used to compare the prediction performance. Among the 

four prediction models, the GRNN and RBFNN neural networks have similar statistical 

performance in terms of low RMSE scores and high R-squared values. Comparing GRNN and 

RBFNN, the performance of the former is only slightly better. This result is consistent with the 

experiment conducted by Chen et al. (2021b), which studies the human emotional response to 

various aircraft cockpit designs. Moreover, since GRNN is a single-pass associative memory 
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feedforward neural network, its computation time for training is relatively shorter than that of other 

artificial neural networks.  

Figure 2- further demonstrates the scatterplots of observed data against predicted data using each 

of the four artificial intelligence models. The x-axis is the predicted PRS score by predictive model 

and the y-axis is the observed value. Therefore, the closeness of data points to the regressed 

diagonal line indicates the goodness-of-fit of the models. The plots for GRNN, RBFNN, and FIS 

(see Figure 2-a, 8b, 8c) are quite similar in terms of the slope of goodness-of-fit as well as the data 

pattern, and their predicted values are relatively close to the corresponding observed PRS values 

in comparison to those predicted by the SVR model (see Figure 2-d). While assessing the 

performance of models for their applicability in predicting the target output, it should be noted that 

both the average error of regression and the distribution or the pattern of prediction error should be 

taken into consideration. From these scatterplots, the residual distribution can be observed by 

measuring the distance from the data points to the diagonal line. Ideally, the distribution should be 

symmetrical around the diagonal line, indicating reliable standard errors of regression coefficients. 

However, as shown in the support vector regression scatterplot (Figure 2-8d), the distribution of 

data points indicates that the SVR model has relatively poor performance when predicting the cases 

with various PRS values, as these data points can be seen to be crowding below the diagonal line 

when PRS < 4 and gathering above the line when PRS > 4. Overall, GRNN, RBFNN, and FIS 

models perform reasonably well in predicting the PRS score of a room based on the design 

attributes when compared to linear regression and SVR models. The results also suggest that the 

GRNN model is superior to RBFNN and FIS in terms of PRS score forecasting among the 

validation datasets.  
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Table 2-6. Performance values of machine-learning methods. 

Machine-learning method 
RMSE R-squared 

Train Test Train Test 

Linear regression 0.4025  0.5214 60.91% 36.00% 

SVR 0.3742 0.3289 69.70% 73.19% 

Neural networks 
RBFNN 0.2676 0.2631 83.14% 82.85% 

GRNN  0.2670 0.2532 83.21% 84.11% 

FIS 0.2819 0.2922 81.29% 78.85% 

 

Figure 2-8. PRS values observed and predicted by four machine-learning models. 
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2.7 Conclusions and Future Work 

The affective experience of occupants is vital for the perceived usability of residential buildings 

and should be considered in the early design phases. Although many studies have attempted to 

identify the architectural design attributes that most influence the human affective experience, the 

fragmented and ambiguous nature of the relevant information makes its use in human-centered 

architectural designs challenging. This study aimed to construct prediction models that could be 

applied to forecast values of experiential quality for each residential design alternative in order for 

the design practitioner to easily capture the affective quality of the design and further improve user 

satisfaction with the design, regardless of the designer’s experience, skills, and subjective opinion. 

Such prediction models lay a foundation for developing analytical models and tools to facilitate 

the decision-making process at the early stages of design to ensure an emotional wellness-focused 

built environment. It should be noted that conventional machine-learning methods for affective 

design usually require large datasets for feature selection and to ensure the delivery of meaningful 

results. This can be time-consuming and expensive for studies with human subject. This work thus 

contributes to the body of knowledge on human–building interaction by introducing a non-

immersive VR-DOE-based machine-learning method that optimizes the data collection process and 

addresses the inherent complexity and uncertainty in modelling the affective experience. 

In this study, VR technologies were employed not only to produce a controllable and validated 

experimental environment, but also to demonstrate various combinations of design attributes and 

environment settings. This study also employed fractional factorial design for highly efficient 

experiment planning and screening for significant factors. The results show that an interior’s 

spaciousness and colour scheme were the most noticeable and influential attributes in the human 

restorative experience, consistent with the findings from previous studies. In addition, significant 
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interaction effects were identified for Ceiling height × Window-to-wall ratio, Room size × 

Finishing colour scheme, and Room layout symmetry × Rectangularity of room shape, which had 

often been overlooked in previous studies. Moreover, five machine-learning models were proposed 

to represent the restorative experience in the built environment and compared in terms of their 

prediction performance. The results suggest that the GRNN model was superior in describing the 

nonlinear relationship between design attributes and human affective experience in comparison to 

the predictive models developed using the other four machine-learning methods, i.e., linear 

regression, fuzzy inference system, support vector regression, and RBFNN. Taken together, these 

findings add to the rapidly expanding field of human-centered environmental design and form a 

basis for the future development of a decision support system for designers in wellness-focused 

architectural design (considering that the relevant knowledge is scattered across several disciplines). 

Despite its valuable contributions, this study was subject to several limitations. First, the 

participants recruited were mostly characterized as highly educated and young, which may 

influence the generalizability of the results. Second, the factors related to personal subjective 

experience, such as cultural differences or preference bias toward specific design settings, should 

also be included in future studies to enhance the quality of affective modelling. Third, the feasibility 

of using human physiological responses, such as electrocardiogram (ECG), electroencephalogram 

(EEG), skin conductance (SC), or blood oxygen to measure human affective response toward 

environmental stimuli have been explored by many researchers (Abujelala et al., 2021; Ergan et 

al., 2019; Gao & Zhang, 2020; Ke et al., 2021; Shemesh et al., 2016; Zou & Ergan, 2019). Although 

the causal quantitative relationship between biosensing data and the perceived restorativeness is 

still under investigation and inconclusive (Abujelala et al., 2021; Zou & Ergan, 2019), it is still 

believed that the use of objective human physiological response measures in combination with self-
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reported restorativeness scales in future research would be of great help in eliminating the potential 

biases in self-report assessments and better understanding the complex interaction between built 

environment and human experience (Bratman et al., 2012). Likewise, further validation using 

actual residential design scenarios should also be carried out, whereby the restorative quality of 

design, evaluated using predictive models, could be analyzed based on the feedback provided by 

professional architects to improve the ecological validity of the predictive model. In addition, an 

assumption was made during the experiment that a satisfying sense of presence provided by VR 

models could promise sufficient emotional stimulus received by participants; to improve the 

accuracy of prediction results from the non-immersive VR-based method, further improvement of 

incorporating the variable of VR display platforms into analysis should be also investigated in 

future work. Overall, insights gained from further research are also expected to contribute to the 

early stages of projects by providing designers with more scientific feedback on their designs. 

  



 

 

60 

 

 

Chapter 3:  KNOWLEDGE-BASED DECISION SUPPORT SYSTEM FOR USER-

CENTERED RESIDENTIAL DESIGN2 

3.1 Introduction 

Built environments markedly affect people’s productivity and well-being (Ellsworth-Krebs et al., 

2019; Ergan et al., 2019). Due to the extended durations that people spend indoors, user-centered 

design (UCD) has been increasingly considered a necessity in providing occupants with a 

comfortable living experience and realizing successful projects in architectural development 

(Abras et al., 2004; Heydarian et al., 2017). The home space, as a center of activities ranging 

from work and hobbies to leisure and any other activities related to human physiological needs, 

is where people spend much of their lives (Andargie et al., 2019). Thus, its definition extends 

beyond a “roof over one’s head” (Ellsworth-Krebs et al., 2019). User requirements for the 

residential environment have been increasing and diversifying in keeping with economic and 

demographic changes in recent decades and the rapid growth of the interior design service market 

globally.  

However, due to the vast body of knowledge regarding residential design with respect to 

architecture, technology, art, physics, and even psychology, many modalities of architectural and 

design knowledge are not fully utilized in practice, which results in an inadequate consideration of 

requirements and rough estimation during the early design stage (Ielegems et al., 2016). Moreover, 

limitations in the user experience and quality of information mean the user may fail to describe 

their actual needs (Kuo et al., 2009). Therefore, novice designers are regularly confronted with 

 

 

2 A version of this chapter has been submitted to Expert Systems with Applications. 
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knowledge dissymmetry and challenges in assessing the performance of design alternatives with 

regard to their capability of satisfying user requirements. This deficiency in knowledge 

management in residential design results in inefficient design selection, poor user satisfaction, and 

even the recurrence of mistakes on similar projects.  

To date, knowledge-based analytical models and decision support systems (DSSs) have attracted a 

lot of attention in academia and industry; however, few studies have proposed knowledge-based 

systems (KBSs) for residential design (Lee et al., 2008). The proposed systems typically emphasize 

the cost factor in design decisions and generally lack the ability to identify the most appropriate 

design by considering the numerous user requirements pertaining to UCD. Moreover, far too little 

attention has been given to adequately studying the potential user of the built environment at the 

initial stage of building design, such as who they are and what they need. This lack of attention 

may lead to incorrect assumptions in the design decision made and design developed (Martin et al., 

2012). This highlights a need, with respect to decision making, in current residential design 

regarding comprehensively explicating user requirements and determining the most appropriated 

design. This can be accomplished by synthesizing and analyzing a multitude of design criteria to 

adequately fulfill user requirements.  

In an effort to fill this research gap, this study proposes an integrated framework of a knowledge-

based decision support system (KBDSS) to optimize the decision-making process in user-centered 

residential design at an early stage. In this framework, a requirement conversion tool, quality 

function deployment (QFD), is adopted with DSS and fuzzy set theory to translate the user 

requirement into quantifiable design specifications (design criteria) to form design decision-

making into a multicriteria decision-making (MCDM) problem. Meanwhile, the proposed 

framework uses the Kano model and clustering techniques to segment the user group and, thus, 
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precisely assess to what degree user satisfaction is affected by particular design criteria (Atlason et 

al., 2018). Therefore, the proposed framework can help the design practitioner to consider how 

much resources to reasonably devote to improving a specific design criterion. Notably, decision 

makers in residential design, including novice design practitioners and homebuyers with less 

design experience, are potential users of this knowledge-based decision support tool. 

3.2 Related Work 

3.2.1 UCD for Built Environment 

UCD is a design philosophy that puts the user at the core of the design process. In the domain of 

the built environment, Vischer (2011) proposed that buildings should be designed to support the 

activities of the occupants. In this theory, the occupant (user) is regarded as an active agent and 

consumer whose relationship with the built environment is dynamic and interactive (Ruohomäki 

et al., 2015). This theory roughly matches an essential aspect of built environment design that 

focuses on resolving the functional and aesthetic requirements into a coherent whole by assembling 

the desired properties of specific design elements. 

Recognizing the influence of human–building interactions on occupants with regard to enhanced 

wellness and productivity (Ergan et al., 2018), several attempts have been made to adapt UCD 

methods in building design to achieve higher user satisfaction (Heydarian et al., 2017; Zhang et al., 

2019). For instance, Heydarian et al. (2017) incorporated user preference data for evaluating design 

alternatives with the objective of meeting end-user lighting preferences while reducing lighting-

related energy consumption in buildings. Nugroho and Ferdiana improved the design of residential 

facilities by identifying the privacy preferences of occupants and elucidating relationships between 

occupants and different design alternatives (Kurnianingsih et al., 2014). Likewise, to improve the 



 

 

63 

 

 

work environment around people’s needs, re uirements, and preferences, Doshi and Clay (2017) 

adopted an empathetic, visual, and human-centered method to engage the user in analyzing the 

existing space for improvements in redesign.  

Overall, these studies partially indicate the typical activities for UCD, such as (1) explicitly 

understanding users (e.g., user personas) and the use scenario, (2) specifying the user requirement, 

(3) proposing design solutions, and (4) evaluating the design solutions against user requirements 

(Wallach & Scholz, 2012). However, the diversity of user needs and how to incorporate each user’s 

requirements in building design remain largely unresolved in practice (Afacan & Demirkan, 2010). 

Buildings are nowadays generally designed following codes and standards that are often based on 

generalizations with large margins of errors rather than being fitted to occupant behaviours and 

preferences (Heydarian et al., 2017). Accordingly, a systematic methodology for addressing the 

diverse user requirements and providing analytical models to assess the potential user satisfaction 

with the design alternatives is necessary for practical application in UCD. 

3.2.2 Knowledge-Based Decision Making in Building Domain 

Architecture, engineering, and construction (AEC) is a knowledge-intensive industry, where much 

of the knowledge is experience-based and fragmented among a wide range of disciplines (Woo et 

al., 2004). Along with the rapid advancement of building technology and materials development, 

it is challenging for designers and engineers to make rational decisions in the face of a seemingly 

endless source of data and information (Kazak & van Hoof, 2018). Accordingly, researchers 

suggested that the use of KBDSS could help decision makers integrate all design elements and 

explore their potential consequences in a given analysis (Hwang et al., 2018; Kazak & van Hoof, 

2018; Nielsen et al., 2016). Technically, KBDSS is an integration of an expert and decision-support 
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system, which consists of (1) a knowledge base containing expert knowledge for a particular 

problem domain, (2) an inference engine for generating inferences over the knowledge base, (3) an 

interactive user interface, and (4) a decision-support shell for helping decision makers compile 

useful information and data for effective decision making (Chung et al., 2016; Hwang et al., 2018).  

Owing to its superior flexibility and adaptability in accommodating changes in accordance with 

the problem context, KBDSS has been widely used to tackle a variety of tasks (Hwang et al., 2018). 

For instance, Hwang et al. (2018) developed a KBDSS for prefabricated prefinished volumetric 

construction (KBDSS-PPVC) to facilitate decision-making for PPVC implementation. Nasser et al. 

incorporated a KBS to support the implementation of six lean sigma principles applied to enhance 

the quality management performance for a healthcare environment (Al Khamisi et al., 2019). 

Likewise, KBDSS can address other decision-making problems across multiple stages of the 

building lifecycle, such as construction equipment selection (El-Tourkey et al., 2022), building 

material selection (Rahman et al., 2012), healthcare building evaluation (Guerrero et al., 2022), 

energy efficiency retrofit (Medal et al., 2021), and budget estimation for building restoration (Wang 

et al., 2008).  

Particularly, for handling requirement-engineering-related problems, (Singhaputtangkul et al., 

2013) proposed an integrated framework of KBDSS for the selection of building envelope 

materials. The QFD method was incorporated with a knowledge-based system to address common 

issues identified in the decision-making stage, such as an inadequate consideration of requirements 

and the lack of efficiency and consistency during decision making. This work provides valuable 

insight into the decision support method for requirement-oriented design for our study because 

there is a lack of instructional methodology in support of a knowledge-based decision making in 

current user-centered built environment design.  
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3.3 Proposed Integrative Method 

To understand the priorities of user requirements and match the appropriate design solution with 

the user characteristics and preferences in a formalized and specific manner, an integrated QFD-

based framework for developing a KBDSS in a user-centered residential design is proposed, as 

illustrated in Figure 3-1. In accordance with the HoQ architecture, this framework mainly consists 

of five phases, namely, (a) defining and collecting users’ re uirements; (b) prioritizing user 

requirements per user clustering; (c) translating user requirements into design specifications and 

solutions; (d) identifying the relationship between design specifications and user requirements; and 

(e) establishing priority of design specifications for user clusters, along with a knowledge base 

system that stores relevant design knowledge. Meanwhile, three knowledge base modules, that is, 

KB-S, KB-R, and KB-U, are developed to support knowledge management in the decision-making 

process.  

 

Figure 3-1. QFD-based framework for development of knowledge-based decision support system 
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3.3.1 Knowledge Base for User-Centered Residential Design 

Multiple levels of knowledge, that is, “know-what” and “know-how,” are usually needed in the 

decision-making process. From the knowledge base structure in (Singhaputtangkul et al., 2013), 

three knowledge base modules are proposed to store the information regarding user requirements 

(KB-U), design specifications (KB-S), and their correlations (KB-R), which reveal how user 

requirements could be met by the design specifications. Notably, “know-why” knowledge is also 

implemented in the knowledge base so that the system can provide the principles and mechanisms 

underlying the collected user requirements and design specifications for decision justification. For 

instance, for each identified design specification, detailed information is provided in terms of the 

application context, possible effect, and expected performance of the criteria as a decision guide. 

The data for the user centered residential design was mostly acquired from the Gemba visit, semi-

structured interviews, and social media, as discussed in the following section. 

3.3.2 Part A: Occupant requirements identification for residential environments (WHATs) 

In the present study, data from Gemba walk and social media analysis are used to identifying user 

requirements and enhance the coverage and completeness of knowledge (Chin et al., 2019). 

Gemba Visit  

Many existing studies have indicated that implicit or hidden requirements are more pertinent to 

users than explicit requirements and correspond to higher satisfaction levels (Chin et al., 2019). 

During the Gemba walk, the researcher observes how the occupant uses and interacts with the space 

and measures important dimensions for residential design, such as the area, layout, heights of 

working stations, and illuminance level, for further analysis. An interview should later be 

conducted with the primary user of the space to explore their subjective opinion of the current 
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design. The information from the Gemba step provides essential insight into the user requirements, 

and it is useful for interpreting the user’s voice for further analysis. 

Social Media Analysis 

To optimize user requirement collection, information from social media platforms is adopted as 

the main resource to determine the actual needs of users with low time expenditure (Lai et al., 

2006). In the present study, the information related to users’ requirements was extracted by 

keyword querying among multiple popular social media platforms for sharing ideas on home 

design, decor, and improvement. The researchers went through the posts individually to extract the 

information (i.e., sentences) related to specific residential design requirements. Special attention 

was given to the negative feedback on their current design. The querying process was stopped when 

a number of similar user requirement items was repeatedly identified in the search result, with new 

information only being occasionally obtained.  

Once the information on user requirements is collected, an affinity diagram method can be adopted 

to externalize the tacit knowledge underlying the raw information and cluster it into individual 

requirement items (Awasthi & Chauhan, 2012). Notably, query information should be screened 

more than once to identify the actual user needs behind the statement and maximally explore 

potential need items. 

3.3.3 Part B: Importance Weights Determination per User Clustering 

By generating a list of user requirement for residential design, a prioritization is performed, as 

illustrated in Figure 3-2. Generally, the relative weight for requirement prioritization (𝑤𝑎𝑑𝑗.𝑢𝑟) is 

determined by two factors: the opinions from the expert (𝑤𝑢𝑟) and the user groups (𝑘𝑎𝑑𝑗.). This 

enables the DSS to adopt the knowledge from residential design professionals, who identify 
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essential and urgent re uirements for a specific user group and incorporate the user’s preference to 

enhance their overall satisfaction (Kang et al., 2018). 

Further, user clustering is first performed based on the different satisfaction attitudes toward 

re uirement fulfillment to segment the users and better tailor the user’s preference and features, 

enhancing their overall satisfaction. Requirement priority, rather than conventional demographic 

data, is used to segment user groups because (1) demographic information is sometimes too vague 

to give the designer insights into what the user wants or values, and (2) people’s lifestyle changes 

over generations in keeping with the development of information technology. From the increase in 

smart appliance usage to gender fluidity, demographic data are simply not enough to identify users 

with similar needs. Thus, the Kano model is adopted in this study to denote the individual user’s 

preference for each requirement item and user segmentation purposes. 

 

Figure 3-2. Prioritization of user requirements 
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Kano Survey Design 

The Kano model measures and classifies the user satisfaction level considering how well different 

design attributes (requirements) could satisfy user needs (Kano et al., 1984). To perform an 

effective user segmentation for depicting user personas, a Kano-model-based questionnaire is 

designed to measure people’s preferences toward different user re uirements in residential design. 

The first part of the questionnaire contains general background information about the respondents, 

such as their family structure, physical ability, and typical usage scenario. The second is in the 

form of pair questions to collect satisfaction differences per user requirement items: one question 

is formulated in a positive manner (i.e., functional), whereas the other is formulated in a negative 

manner (i.e., dysfunctional), as shown in the example in Figure 3-3. Because the data gathered 

from respondents are used as training data for user clustering, Cronbach’s alpha is used to test the 

reliability of the survey; a value greater than 0.7 denotes that the data can be used for further 

clustering analysis.  

 

Figure 3-3. Example of the Kano questionnaire in the case study. 

Representative User Requirements Identification  

Due to the large number of user requirement items regarding Kano quality (i.e., functional and 

dysfunctional units of user requirements) and the limited response samples, principal component 



 

 

70 

 

 

analysis (PCA) is applied to the Kano survey responses to achieve a better user clustering analysis 

result (Alsayat & El-Sayed, 2016). In the present study, PCA is performed to identify the 

representative user requirement items that account for most of the variance for performing further 

clustering analysis. Accordingly, trivial user requirement items, for which the accumulated 

correlation (i.e., factor loading) for all components is less than 0.5, are removed sequentially, 

according to the rotated component matrix (Kuo et al., 2012)  

User clustering  

After salient user requirement items are identified, user segmentation can then be performed by 

grouping users with similar requirement priorities. A particle swarm optimization (PSO) clustering 

algorithm is adopted in the proposed framework to find groups of users with similar preference 

(Van Der Merwe & Engelbrecht, 2003). This algorithm reduces the effect of initial conditions (i.e., 

the number of clusters) and delivers more accurate clustering results than traditional K-means 

method. In the PSO-based clustering analysis, the final cluster number is determined by the trial-

and-error optimization results and expert judgment of the sample distributions within the clusters. 

The user personas can then be developed in accordance with the particular preference toward the 

requirement denoted by the Kano attributes and specified typical user characteristics summarized 

from survey data (Tu et al., 2010). 

Relative weight calculation for prioritizing user requirements 

For each user cluster, the relative weights of the user requirements are calculated from the 

original criteria weights (𝑤𝑢𝑟) generated by the pairwise comparison among user requirements and 

the adjustment coefficient (𝑘𝑎𝑑𝑗. ), which is assigned based on its Kano quality, as outlined in 
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Equation 3-1 (Kang et al., 2018). The calculation of these two indices is presented in detail in the 

following sections. 

𝑤𝑎𝑑𝑗.𝑢𝑟 =
𝑤𝑢𝑟 ∙ 𝑘𝑖

∑ 𝑤𝑢𝑟 ∙ 𝑘𝑖
𝑛
𝑖=1

(3 − 1) 

where 𝑤𝑎𝑑𝑗. is the final adjusted weight for the user requirement, 𝑤𝑢𝑟 is the raw relative 

weight estimated from the AHP matrix, and 𝑘𝑖 is the adjustment coefficient according to its Kano 

quality classification. 

a) Relative Weight Estimated by Fuzzy AHP 

In obtaining the opinion of residential design professionals on the prioritization of user 

requirements, the expert is required to compare the relative importance of user requirements for a 

given user persona, which is represented in a fuzzy pairwise comparison matrix. To generate a 

collective decision form a group of experts, the geometric mean method (see Equation 3-2) is used 

to accumulate the individual’s pairwise comparison matrix of user re uirements (Chen et al., 2007). 

Then, a logarithmic fuzzy preference programming (LFPP)-based method (Wang & Chin, 2011) is 

adopted to address the fuzzy AHP priority of the user requirements. This method formulates the 

fuzzy weight derivation as a logarithmic nonlinear programming problem, generating a unique 

optimal crisp priority vector for fuzzy pairwise comparison matrices. It has been proven to address 

the significant drawbacks in previous fuzzy AHP prioritization, such as producing a conflicted 

priority result of a fuzzy pairwise comparison matrix or leading to distinct conclusions (Wang & 

Chin, 2011). By solving the nonlinear priority optimization model (Equations 3-3 and 3-4) 

proposed in the LFPP-based method, the relative weight of user requirements can be calculated 

based on the collective pairwise comparison matrix (Wang & Chin, 2011). 
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𝑙𝑖𝑗 = (∏𝑙𝑖𝑗𝑘

𝐾

𝑘=1

)

1
𝑘

, 𝑚𝑖𝑗 = (∏𝑚𝑖𝑗𝑘

𝐾

𝑘=1

)

1
𝑘

, 𝑢𝑖𝑗 = (∏𝑢𝑖𝑗𝑘

𝐾

𝑘=1

)

1
𝑘

(3 − 2) 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐹 =  (1 − 𝜆)2 +𝑀 ∙∑ ∑ (𝛿𝑖𝑗
2 + 𝜂𝑖𝑗

2 )

𝑛

𝑗=𝑖+1

𝑛−1

𝑖=1

(3 − 3) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

{
  
 

  
 𝑥𝑖 − 𝑥𝑗 − 𝜆 ln (

𝑚𝑖𝑗

𝑙𝑖𝑗
) + 𝛿𝑖𝑗 ≥ ln 𝑙𝑖𝑗 , 𝑖 = 1,… , 𝑛 − 1; 𝑗 = 𝑖 + 1,… , 𝑛

−𝑥𝑖 + 𝑥𝑗 − 𝜆 ln(
𝑢𝑖𝑗

𝑚𝑖𝑗
) + 𝜂𝑖𝑗 ≥ − ln𝑢𝑖𝑗, 𝑖 = 1,… , 𝑛 − 1; 𝑗 = 𝑖 + 1,… , 𝑛

𝜆, 𝑥𝑖 ≥ 0, 𝑖 = 1,… , 𝑛 
𝛿𝑖𝑗 , 𝜂𝑖𝑗 ≥ 0, 𝑖 = 1,… , 𝑛 − 1; 𝑗 = 𝑖 + 1,… , 𝑛

 

𝑤𝑢𝑟𝑖 =
exp(𝑥𝑖

∗)

∑ exp(𝑥𝑗
∗)𝑛

𝑗=1

, 𝑖 = 1,… , 𝑛 (3 − 4) 

where triple (𝑙𝑖𝑗, 𝑚𝑖𝑗 , 𝑢𝑖𝑗)  represents the expert’s judgement of the fuzzy relative 

importance of 𝑖 th over 𝑗 th user requirements, 𝐾  is the number of expert, 𝜆  is the minimum 

membership degree to which the priority vector satisfies each fuzzy pairwise comparison, 𝛿𝑖𝑗 and 

𝜂𝑖𝑗 are non-negative deviation variables that are introduced to prevent 𝜆 from taking a negative 

value, M is a specified sufficiently large constant, and 𝑥𝑖
∗ (i = 1..., n) is the optimal solution to this 

model. 

b) Adjustment Coefficient Estimation by the Kano Model 

On the other hand, the user satisfaction factor is considered in determining the priority of a user 

requirement by including an adjustment coefficient (i.e., 𝑘𝑖 in Equation 3-1). This coefficient is 

assigned based on the Kano attribute of the user requirements. These are determined based on the 

Kano questionnaire response as outlined in Figure 3- , and the categories include “attractive 

re uirement (AR),” “one-dimensional re uirement (OR),” “must-be re uirement (MR),” 
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“indifferent re uirement (IR),” “reverse re uirement (RR),” and “ uestionable re uirement (QR).” 

This evaluation table is adopted from Pouliot’s model, which slightly differs from the standard 

Kano evaluation tables. This evaluation table considers uncertainty factors: someone may have not 

fully understood the questionnaire, and the proposed requirement may be the opposite of what they 

want. When conflicted responses are obtained in the Kano  uestionnaire (i.e., “like” and “like” for 

both functional and dysfunctional questions), such user requirements would be classified as QR, 

which needs to be examined carefully by the researcher. 

Because the Kano attributes of user requirements are determined on a group basis, the satisfaction 

and dissatisfaction indexes (SI and DI in Equations 3-5 and 3-6) are introduced by estimating the 

distribution of Kano attributes in each category for a given requirement to address the variance 

within one cluster (Berger et al., 1993). According to the value distributions in Table 3-1, the 

indexes of SI and DI together determine the collective Kano attributes of the given user requirement 

(Avikal et al., 2020).  

 

Figure 3-4. Categorization of Kano attributes on user requirement. 
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Like it QR AR AR AR OR
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Dislike RR RR RR RR QR

Notes:  AR: attractive requirement, OR:one-dimensional requirement, MR: must-be requirement, 

IR: indifference requirement, RR: reversal requirement, and QR: questionable requirement.
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In the proposed DSS, attention is primarily given to MR, followed by AR, OR, and lastly, IR; thus, 

their adjustment coefficients for user requirement prioritizations could be set as 6, 4, 2, and 1, 

respectively (Chen & Chuang, 2008). 

𝑆𝐼 =
𝐴𝑅 + 𝑂𝑅

𝐴𝑅 + 𝑂𝑅 + 𝐼𝑅 +𝑀𝑅
(3 − 5) 

𝐷𝐼 =
𝑀𝑅 + 𝑂𝑅

(𝐴𝑅 + 𝑂𝑅 + 𝐼𝑅 +𝑀𝑅)(−1)
(3 − 6) 

Table 3-1. Collective Kano attribute of user requirement based on SI and DI index 

              SI Value 

DI Value 
[0, 0.5] [0.5, 1] 

[−0.5, 0] IR AR 

[−1, −0.5] MR OR 

 

3.3.4 Part C: Residential Design Specification Development (HOWs) 

The next step in HoQ, after analyzing the user requirements, focuses on residential design 

specifications. This step aims to develop a decomposition that comprehensively outlines all relative 

design specifications for fulfilling user requirements in residential design. These design 

specifications could be engineering and/or ergonomic characteristics (walkway width, for example), 

referring to the parameter that the residential designer can actually control and make decisions on. 

Typically, they are qualitatively or quantitively measurable so that designers can determine 

whether the user’s needs are fulfilled. The list of residential design specifications could be 

generated through brainstorming among design experts on the research team after a comprehensive 

literature review on design guidelines, articles, and previous design cases. Specifically, the team 

would refer to each user requirement and translate it into a list of design specifications from a 
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technical perspective (Marsot, 2005). These design specifications should be grouped according to 

the design elements, such as the layout and light designs, which can be efficiently edited and 

updated for knowledge management (Singhaputtangkul et al., 2013). 

In addition, the intercorrelations between design specifications should be recognized (using Table 

3-2) to highlight the potential conflicts and tradeoffs at the early design phase, thus eliminating the 

risk of rework or design changes (Bouchereau & Rowlands, 2015). For instance, the “walkway 

width” in the kitchen design may be slightly negatively related to the design specification of 

“working surface area” due to the overall space limitation. Thus, the corresponding grid space 

between these two design specifications should be marked as “Weak+ve.” 

To estimate the effect of the intercorrelations on the relative importance of the design specifications, 

a distance-based method proposed by Iqbal et al. (2016) is adopted to calculate the correlation 

magnitude (see Equations 3-7 to 3-12). This method translates the correlation strength of each 

design specification item into a distance index 𝑁𝑗
′. A value of 𝑁𝑗

′ closer to 0 implies that this design 

specification is strongly correlated with other items, whereas a value closer to 0.5 implies that this 

design specification may be independent of other design specifications or that there are both 

negative and positive correlations associated with this design specification. According to Iqbal et 

al. (2016), Equation 3-13 is used to re-evaluate the importance of design specifications, given the 

original relative weights delivered from the user requirement prioritization and the normalized 

distance by roof matrix correlations. 
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Table 3-2. Linguistics–symbolic–numeric scale for pairwise intercorrelations between design 

specifications 

Linguistic Numeric scale 

Strong synergies +ve 0.9 

Weak synergies +ve 0.3 

Weak opposites –ve −0.3 

Strong opposites –ve −0.9 

 

𝑅𝑗
′ = [𝑟𝑖,𝑗

′ ]
𝑛,1
= {

1, 𝑖 = 𝑗
−1 ≤ 𝑟𝑖,𝑗 ≤ 1, 𝑖 ≠ 𝑗

(3 − 7) 

𝑍𝑗
′ = [𝑧𝑖,𝑗

′ ]
𝑛,1
, 𝑧𝑖,𝑗 = 1;∀𝑖 (3 − 8) 

𝐸𝑗
′ = [𝑒𝑖,𝑗

′ ]
𝑛,1
= {

1, 𝑖 = 𝑗
−1, 𝑖 ≠ 𝑗

(3 − 9) 

𝑑𝑗
′(𝑅𝑗

′, 𝑍𝑗
′) =∑|𝑟𝑖,𝑗

′ − 𝑧𝑖,𝑗
′ |

𝑛

𝑖=1

(3 − 10) 

𝑑𝑗
′(𝐸𝑗

′, 𝑍𝑗
′) =∑|𝑒𝑖,𝑗

′ − 𝑧𝑖,𝑗
′ |

𝑛

𝑖=1

(3 − 11) 

𝑁𝑗
′(𝑅𝑗

′, 𝑍𝑗
′, 𝐸𝑗

′) =
𝑑𝑗
′(𝑅𝑗

′, 𝑍𝑗
′)

𝑑𝑗
′(𝐸𝑗

′, 𝑍𝑗
′)
=
∑ |𝑟𝑖,𝑗

′ − 𝑧𝑖,𝑗
′ |𝑛

𝑖=1

∑ |𝑒𝑖,𝑗
′ − 𝑧𝑖,𝑗

′ |𝑛
𝑖=1

, 0 ≤ 𝑁𝑗
′(𝑅𝑗

′, 𝑍𝑗
′, 𝐸𝑗

′) ≤ 1 (3 − 12) 

𝑊𝑗
𝑐 = 𝑊𝑗 ∙ (1 − 𝑁𝑗

′) (3 − 13) 

where 𝑅𝑗
′ is a given matrix of pairwise correlations, 𝑟𝑖,𝑗

′  represents the correlation between 

design specifications 𝑖 and 𝑗, 𝑍𝑗
′ is the ideal column vector of correlations in which the correlation 

index 𝑧𝑖,𝑗
′  always equals one, and 𝐸𝑗

′ is the column vector for the most undesirable situation in 
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which any given design specification 𝑗 is negatively correlated (−1) with the others. 𝑁𝑗
′(𝑅𝑗

′, 𝑍𝑗
′, 𝐸𝑗

′) 

refers to the Manhattan distance ratio of a given column vector between the extreme column vector 

𝐸𝑗
′ and the ideal column vector 𝑍𝑗

′. 

3.3.5 Part D: Relationships Between Occupant Requirements and Design Specification  

After the occupant requirements and design specifications are determined, a relationship matrix 

defining the correlation between the user requirements and design specifications is then established. 

Figure 3-5 illustrates the fuzzy linguistic scales (i.e., triangular fuzzy number sets, TFNs) 

incorporated in the proposed method for determining the association between user requirements 

and design specifications. Notably, the number of linguistic scales in the term set determines the 

granularity of uncertainty modelled by the linguistic descriptor. Typically, the more knowledge is 

available, the more granularity, according to Bonissone & Decker (1986). This method 

incorporates a five-term linguistic set, given the experience level of design experts. 

Similar to the previous group decision process in FAHP (Section 3.3.4), the degree of correlation 

between occupant requirement and design specification is obtained by aggregating multiple design 

experts’ decisions using geometric mean algorithm. In addition, the re uirement–characteristics 

correlation matrix should be examined to ensure that each user requirement corresponds to at least 

one design specification, and each requirement is expected to have a significant correlation (i.e., 

“assigned linguistic term” as “High influence”) with a design characteristic. 
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Figure 3-5. Fuzzy number sets. 

3.3.6 Part E: Prioritization of Design Specifications  

To prioritize the design specifications per user cluster, the absolute importance of design 

specifications is computed by integrating both the adjusted relative weight of user requirements, 

correlation matrix between user requirements and design specifications, and interrelation index 

among design specifications.  

The mathematical formula is given in Equations 3-14 and 3-15 by following the fuzzy set ranking 

method proposed by Yager (1981). This method is based on the idea of associating the fuzzy 

number with a scalar value 𝑌𝑖,𝑗 calculated through Equation 3-14, where 𝑎, 𝑏, and 𝑐 represent the 

lower, medium, and upper values or fuzzy numbers set (i.e., TFNs) in the correlation matrix, 

respectively (Bevilacqua et al., 2006). By obtaining the fuzzy set ranking, the prioritization of the 

design specification can then be drawn up using Equation 3-15, which generally multiplies the 

relative importance of user requirements 𝑤𝑢𝑟𝑖  and the ranking index of the fuzzy relationship 
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matrix (𝑌𝑖,𝑗), as well as the adjustment coefficient by design specification correlations. Once the 

ranking of design specifications is completed, design alternatives can then be assessed and 

compared with the weight of each specification item. 

𝑌𝑖,𝑗 =
𝑎𝑖,𝑗 + 2𝑏𝑖,𝑗 + 𝑐𝑖,𝑗

4
(3 − 14) 

𝑤𝑗 =
(1 − 𝑁𝑗

′)∑ (𝑌𝑖,𝑗 ∙ 𝑤𝑢𝑟𝑖)
𝑛
𝑖=1

∑ ((1 − 𝑁𝑗
′)∑ (𝑌𝑖,𝑗 ∙ 𝑤𝑢𝑟𝑖))

𝑛
𝑖=1

𝑚
𝑗=1

(3 − 15) 

where 𝑖 and 𝑗 refer to the 𝑖 th of 𝑛 user requirement and the 𝑗 th of 𝑚 design specifications, 

respectively. 

3.4 Illustrative Example for Kitchen Design 

In this section, a case study of KBDSS for kitchen design in a multiunit residential building (MURB) 

is adopted to illustrate the application of the proposed methodology. The choice of MURB kitchen 

design relies on the following considerations. First, the kitchen is usually regarded as the center of 

home, and its diverse roles require this space to simultaneously fulfill both comfort and functional 

requirements in (Maguire et al., 2014). Further, residential design in MURBs is more challenging 

than in single-family buildings due to their compartmentalized interior space, building height, and 

control options for occupants, resulting in a relatively low satisfaction among MURB occupants 

(Fonberg & Schellenberg, 2019). Therefore, fulfilling occupants’ requirements under such a high-

constraint design environment remains a challenge during decision making in the early residential 

design stage.  

3.4.1 Development of KBDSS for MURB Kitchen Design 

Following the proposed QFD-based method, this section presents a detailed description of how the 

KBDSS is developed for MURB kitchen design. 
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Six MURB kitchens from three cities in China were visited to acquire a basic understanding of 

how occupants interact with kitchen environments and what kind of requirements may be reported. 

Table 3-3 summarizes the property type and household information of the visited kitchen. 

Table 3-3. Information summary of the visited kitchen. 

 Kitchen 1 Kitchen 2 Kitchen 3 Kitchen 4 Kitchen 5 Kitchen 6 

Household Married 

family with 

children 

Married 

family with 

children 

Married 

family with 

children 

Married 

family 

without 

children 

Married 

family with 

children 

Married 

family with 

children 

Frequency 

of usage 

Everyday Everyday Everyday Once or 

twice a 

week 

Everyday Everyday 

Area 5.76 m3 4.66 m3 8.03 m3 4.81 m3 4.76 m3 5.97 m3 

Year of 

Built 

2010 2019 2000 1998 2005 2016 

Kitchen 

layout 

 

 

 

 

 

 

 

During the Gemba visit, most users specified problems related to cleaning, organization, and 

storage space. For instance, it was common to observe stuffs stacked on the floor due to the space 

limit. Further, it was found that the kitchen used by similar household types and family structures 

could have very different requirements priority due to their differences in lifestyles. Accordingly, 

a finer division of the kitchen design market may be necessary for allocating the limited design 

resources to personalization needs. After the Gemba visit, comprehensive information extraction 

was performed over an internet forum (i.e., “Zhi-Hu” and “Xiao-Hong-Shu”). The keywords 
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“kitchen design,” “kitchen,” and “kitchen decoration” were used to  uery the relevant reviews and 

self-posted contents. To accurately obtain the information related to user requirements in kitchen 

design, design complaints and recommendations were underscored.  

A total of 43 user requirements items for the MURB kitchen were identified in this case study, as 

presented in Figure 3-6. These were subsequently grouped into 11 categories using the affinity 

diagram method in a group discussion (Yang et al., 2021). For each category, a label is chosen to 

broadly describe all the contained requirement items, namely, (1) hygiene and health, (2) energy 

saving, (3) social connectivity, (4) preparation support, (5) illuminance, (6) smart home, (7) 

appliance usage, (8) maintenance, (9) ergonomics & accessibility, (10) storage & organization, and 

(10) aesthetics. 
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Figure 3-6. User requirements for the MURB kitchen. 

Step 2: User clustering 

A Kano survey on the collected user requirements was performed to understand the diversity of 

people’s preference toward different user re uirements items in a MURB kitchen. Thus, 178 

responses collected from the Kano survey were used for further user clustering analysis after data 

cleaning on uncompleted and unqualified responses.  

As a result, four user clusters were identified in this study, and their characteristics are outlined in 

Figure 3-7. The user characteristics for each cluster are summarized according to the participant’s 

current kitchen design attributes and their attitudes toward different requirement items (based on 

UR1 No bacteria breeding, mold and other problems UR22 Remote control of equipment 

UR2 Anti-insect UR23 Assist with meal preparation

UR3 Blocking grease and smoke UR24 Prompting healthier meal choices

UR4 No unpleasant odor UR25 Learn user behavior and automatically adapt to their daily schedule

UR5 Efficient electricity usage UR26 Access to  garbage disposal  

UR6 Water efficiency UR27 Access to appliances with different power

UR7 Efficient appliance energy consumption UR28 Multiple appliances can work at the same time

UR8 Sufficient storage space UR29 Maintenance with low effort

UR9 Well-organized cabinet, drawer, and pantry UR30 Easy to clean

UR10 Easy to find what you need UR31 Resistant to dirt and stains

UR11 Keep the countertops clear

UR12 Keep all items organized UR32 Efficient workflow avoiding repetitive movement 

UR13 Displaying collections without clutter UR33 Ergonomic comfort

UR34 Easy access objects from high place and avoid bumping heads

UR14 Prompting Communication UR35 Avoid bending and squatting during kitchen activities

UR15 Collaborative environment UR36 Enough space for comfortable movement and operation 

UR16 Shared dining and cooking space UR37 Avoid slip and fall injury

UR38 Wheelchair accessibility

UR17 Sufficient work surface UR39 Easy control of lighting 

UR18 Separation of dirty dishes from pod preparation UR40 Easily operate kitchen appliances

UR19 Easy to clean large pots and pans UR41 Smooth kitchen activities with reduced labor

UR20 Uniform lighting without glare UR42 Simple, bright, and fresh

UR21 Bright operation area UR43 Pleasant, relaxed, and comfortable

Social Connectivity

Preparation Support

Illuminance

Smart Home

Appliance Usage

Maintenance

Ergonomics & Accessibility

Aesthetic

Hygiene and Health

Energy Saving

Storage & Organization
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Kano survey). As representative users, this can help experts quickly determine the common needs 

and behaviours of a group and, thus, the importance of design specifications. 

 

Figure 3-7. Personas of four user clusters. 

Step 3: Prioritize user requirements for each user cluster 

After identifying the user requirement items and the user cluster, four experts with experience 

ranging between three and five years in residential design were asked to judge the relative 

importance of user requirement items using an AHP-based questionnaire. The expert was first 

asked to go through a description of user personas, as shown in each box of Figure 3-7. They were 

then instructed to select the more important user requirement items in a pairwise comparison and 

G
ro

u
p
 1

High requirement for kitchen design 

G
ro

u
p
 2

Users want a  small, well-equipped kitchen

High demand for comfort and functionality of use
Users want a kitchen environment that is pleasant, 

relaxing, and restful

Interested in high-tech products Users want to interact with others while cooking

Kitchen area of 8-12 sqm
Users are concerned about the layout and ergonomic 

comfort of the kitchen

Like to invite friends over
Users are very concerned about the grease problem in the 

kitchen

Cooking time is usually long, 40% use the kitchen more 

than an hour per time
Kitchen area of 4–8 sqm

75% with electrical scales Highest kitchen use frequency compared to other groups 

G
ro

u
p
 3

Only request the most basic, simple, and practical 

functions, such as kitchen appliances that are easy to 

operate, well-ventilated kitchen, adequate storage space, 

and neatly placed items.”

Users are relatively traditional and do not have a strong 

preference for high-tech products

Users want the kitchen to have social functions

Users do not require ergonomic and technical features Users like to invite friends to their homes for dining 

Only 28% of users find social function necessary 40% have no electric oven, while the average is 20% 

Water quality is valued 30% entertain once per week

Users have a lower frequency of grocery visit than that in 

other groups

G
ro

u
p
 4

Users value ergonomic comfort in kitchen design

Kitchen cleanliness and practicality are important to users

Users with the lowest kitchen use frequency.
Users are attracted to high-tech products in the kitchen but 

do not consider them necessary

Cooking time is usually short Kitchen size is larger than 4 sqm

42.9% of users with coffee machine It is likely to have elderly users at home

71.4% of users without slow cooker Users may have accessibility requirements
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indicate the relative importance level. Following the method introduced in Section a), the relative 

weight of the user requirement in each group could thus be computed. 

Meanwhile, according to the Kano model of each cluster, the adjusts were assigned as multipliers 

to the relative weight of each user requirement. Consequently, the absolute importance of the user 

requirement for each cluster was determined. The result showed that the most valued requirements 

for Group   include “bright operation area” and “odd-free”, “blocking grease and smoke” and 

“bright operation area” for Group 2, “bright operation area” and “sufficient work surface” for 

Group  , and “blocking grease and smoke” and “electricity saving” for Group  . 

Step 4: MURB kitchen design specifications 

From a comprehensive literature review of the design guidelines and existing design cases, 101 

design specifications capable of systematically fulfilling the user requirements were summarized 

as outlined in Figure 3-8. These design specifications were divided into 13 categories based on the 

associated conventional kitchen design elements. In addition, their potential interaction effects 

were evaluated.  
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Figure 3-8. Design specification items. 
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Step 5: Determine the importance of design specifications based on relationship matrix  

The effect of design specifications on user requirements was then assessed in a relationship matrix 

based on consensus among the design experts. By solving the fuzzy relationship matrix, the relative 

weight of the kitchen design specification could be computed for each cluster. According to the 

result, Group 2 showed relatively more interest in smart appliances; thus, the design specifications 

of “appliances e uipped with sensors” (DS7 ) and “appliance could connect to internet” (DS72) 

obtained higher relative weights during the analysis. Likewise, Group 3 was tagged with a 

“pragmatist” user persona, where the focus was on the most essential functions of kitchen design. 

Accordingly, the design specification on the cooking landing area and sink landing area had higher 

priority. 

Step 6: Develop knowledge-based kitchen design decision support system 

Following the above steps, a knowledge-based decision support prototype system was developed 

to evaluate potential user satisfaction with design alternatives.  

With this system, the decision maker was first required to enter the basic information of the kitchen 

design project, as shown in the actual screenshots in Figure 3-9a, and to define the linguistic 

evaluation scale to be used in assessing the fulfillment level of the design specification (see Figure 

3-9b) using a three-level (poor, moderate, and good) or five-level (poor, fair, medium good, good, 

and very good) linguistic evaluation scale. A finer granularity of linguistic terms (i.e., seven-level 

linguistic scale) should be used if the decision maker has more knowledge regarding the kitchen 

design specifications and less uncertainty regarding the performance evaluation to be made.  

After the preparation setup, the system entered the ‘Quick Design’ module. This module had the 

decision maker go through the personas of each user group (see Figure 3-10a) to determine which 
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user personas appropriately describe the potential user of the kitchen. Four user personas were 

outlined in this case study: Group 1 – demanding user, Group 2 – technology lover and high 

demand on ergonomic comfort, Group 3 – practical user emphasizing the functionality of kitchen, 

and Group 4 – user with the most essential needs. 

 

Figure 3-9. GUI of preparation setup for project information and linguistic evaluation scale. 

 

Figure 3-10. GUI of KBDSS for user-centered designs assessment. 
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Depending on the user group, the system retrieved the relevant information on design specifications 

from the knowledge base (see Figure 3-10b). Because KBDSS was also expected to help decision 

makers understand kitchen design and assess the effect of implementing a design, the top-50 design 

specifications ranked in the order of importance were marked in green, and those ranked in the top 

20 were marked in yellow to highlight the design specification with greater effect on user 

satisfaction. The decision maker then rated the performance satisfaction of users with the design 

alternatives considering the fulfillment level in the design specification items, in the form of the 

fuzzy linguistic term, as shown in the list (see Figure 3-10c). The final score of each design 

alternative was individually shown in the left corner of the gauge (see Figure 3-10d), and a 

comparison among the design alternatives was demonstrated in table of Figure 3-10e. By obtaining 

the performance of design alternatives in the form of numeric scores, the decision maker could 

determine the optimal design alternative in a straightforward manner. Notably, all evaluations with 

regard to design specification criteria (i.e., the rating of design criteria for each alternative) were 

recorded and stored in a database that could be used for further analysis. 

Further, if the decision maker had any uncertainty regarding the design criteria during the 

evaluation process, they could always refer to the “Design Suggestion” module (see Figure 3-12a) 

to access the related knowledge. This knowledge included the design guideline and specification 

for each design criterion, allowing the decision maker to measure the performance parameters of 

kitchen design, as shown in Figure 3-10f. 

3.4.2 Validation and Result Analysis 

To validate the performance of this KBDSS, the design evaluation results from the decision support 

tool and those analyzed by senior design experts in an experiment were compared. 
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Experimental validation 

Four MURB kitchen design alternatives (see Figure 3-11) proposed by three prominent real-estate 

developers in China were chosen as the experimental subjects. Generally, the room areas in these 

kitchen designs are approximately four to six square meters, and their target housing market 

position as well as their unit construction cost are similar. The designs were proposed by the 

developers based on their understanding of the users’ kitchen re uirements, and all designs had 

been adopted as universal design plans in actual building projects. Thus, it is interesting to 

investigate how these designs could be assessed within different user groups. Moreover, a 

sensitivity analysis could also be conducted using the evaluation results to determine the effect of 

changing the weight of design criteria on the ranking of design alternatives for different user groups. 

 

Figure 3-11. Design alternatives 

During the experimental validation, the research team acted as a junior decision maker to rate the 

performance satisfaction with the four kitchen designs for each user group. Utilizing the 

Design 1 Design 3 
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quantitative tool in the knowledge base for criteria assessment, few conflicts were found among 

the team’s performance assessment of the design criteria. Thus, the team’s opinions (i.e., fuzzy 

number sets) were aggregated through the average-value technique. Notably, the kitchen design 

specification included during the design evaluation should be associated with the existing design 

elements, and there is no need to exhaustively go through all design specifications. 

Meanwhile, the four senior design experts introduced earlier were invited to assess the 

appropriateness of the design alternatives in a pairwise comparison (i.e., AHP method) and rank 

the preferred design alternatives for each user group based on their background. Therefore, the 

ranking of design alternatives generated from the DSS could be analyzed along with the ranking 

result provided by experts. 

Result analysis and discussion 

Table 3-4 lists the evaluation of design alternatives conducted with the proposed KBDSS, and 

Table 3-5 presents the ranking of design alternatives among various user groups suggested by the 

design expert through a pairwise comparison method. The most appropriate designs for user groups 

using the knowledge-based decision support tool are Design 3 for Group 1, Design 4 for Group 2, 

Design 3 for Group 3, and Design 3 for Group 4. 

Overall, the KBDSS ranking results agree with the rankings recommended by the design experts, 

which suggests that the proposed KBDSS could successfully use the collected knowledge and 

relevant analytical models to support the decision maker in making sound judgments. From a 

sensitivity analysis point of view, the rankings of design alternatives (see Table 3-4) suggests that 

the different weights assigned to the design specification under different user group settings result 

in changes in the final ranking of design alternatives. Groups 1 and 3 have the most similar weight 
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distributions among the design specifications, and the same rankings results are obtained in these 

two user group settings. This indicates that the ranking of the sensitivity analysis is in good 

agreement when considering closeness (Yazdani et al., 2017). Notably, Design 3 and 2 generally 

have the most stable ranking positions (the best and the worst options) under various user group 

settings. Thus, the decision maker could be very confident that Design 3 fulfills the design 

requirement for universal users, whereas Design 2 may likely fail in providing a satisfactory 

kitchen space, considering changes in the current user requirement. 

Table 3-4. Rankings of design alternatives for user groups determined by the knowledge-based 

decision support system. 

Alternatives 
Group 1 Group 2 Group 3 Group 4 

Score Rank Score Rank Score Rank Score Rank 

Design 1 61.61% 3 60.70% 3 60.75% 3 62.70% 2 

Design 2 53.30% 4 52.78% 4 54.01% 4 53.74% 4 

Design 3 65.20% 1 63.92% 2 65.27% 1 65.25% 1 

Design 4 63.64% 2 64.00% 1 64.26% 2 62.51% 3 

 

Table 3-5. Ranking of design alternatives through pairwise comparison. 

Alternatives 
Group 1 Group 2 Group 3 Group 4 

Weight Rank Weight Rank Weight Rank Weight Rank 

Design 1 0.15 3 0.11 3 0.11 3 0.25 2 

Design 2 0.06 4 0.06 4 0.06 4 0.08 4 

Design 3 0.58 1 0.27 2 0.55 1 0.43 1 

Design 4 0.21 2 0.56 1 0.29 2 0.24 3 
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In addition, feedback from the decision makers on the design of the KBDSS was sought. The team 

members recognized the value of the developed KBDSS in helping laymen with little background 

knowledge better understand the manifold selection criteria to be considered in the selection of 

design alternatives and the rationale behind the assessment of design requirements. Thus, with the 

aid of this DSS, the decision maker can make a rational decision in a more effective and 

straightforward manner. 

3.5 Conclusion 

A novel and systematic KBDSS methodology is proposed in this study to facilitate decision-

making for user-centered residential design. This proposed system improves the efficiency, quality, 

and consistency of UCD decisions by providing less experienced design practitioners with specific 

knowledge about decision problems and assisting them in consistently assessing the quality of 

design alternatives. 

In this proposed framework, the Kano model is incorporated with clustering technologies to 

facilitate user segmentation and enable design decisions that provide a higher degree of satisfaction 

among a wider audience. The incorporation of a fuzzy inference engine in QFD implementation 

addresses the uncertainty and subjectivity problem in the design selection and assessment process 

to enhance the consistency of the decisions. To illustrate the proposed framework and test the 

validity of the KBDSS, a case study of MURB kitchen design is demonstrated along with the 

application of the developed prototype system. 

The results showed that the proposed KBDSS can provide a consistent assessment of the design 

performance while mitigating the identified challenges in UCD, such as the inadequate 

consideration of user requirements and the failed translation of user requirements into design 
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specifications. Using the proposed KBDSS, complex design assessment tasks for user centered 

residential design can be simplified—from the overall design to the detailed evaluation of 

individual design specification. Moreover, the proposed KBDSS can help design practitioners 

understand the rationale behind the performance of design specifications and their effects on 

overall design quality. The research findings can contribute to a better understanding of design 

decisions for the built environment and represent a further step towards developing a systematic 

and scientific methodology for user-oriented built environment design. 

Despite its contributions, this study has several limitations. First, due to the limited data collection 

in the case study, our personas of kitchen users were not exhaustive. In addition, considering the 

changing environment, the dynamics of user needs should be featured in future studies and 

conflicting opinions among group members should be addressed. Further, this research is limited 

to the residential environment. An extended application to other building types is highly 

recommended for a future study to establish a robust KBDSS for UCD in built environments. 
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Chapter 4:  ONTOLOGY-BASED KNOWLEDGE MANAGEMENT FOR HUMAN-

CENTERED RESIDENTIAL DESIGN3 

4.1 Introduction 

Built environments have significant impacts on our physical and psychological wellness, work and 

learning performance, social behavior, and many other building-related behaviors (Du et al., 2018). 

With the extended amount of time that people spend indoors, user-centered design (UCD), which 

optimizes the environment around occupants’ capabilities and preferences/re uirements rather than 

forcing the user to adapt to the design, has been strongly recommended for built environments to 

facilitate a comfortable living experience and provide greater user satisfaction with the building 

project. In practice, an effective user-oriented design is expected to satisfy a desired set of 

requirements, even if they are not explicitly specified by the current user but could be inferred from 

existing documentation and previous experience. This necessitates the participation of relevant 

expert stakeholders to comprehensively identify design requirements, users' capabilities, and 

methods for evaluating design decisions following specific design objectives (Hagedorn et al., 

2016).  

However, the extensive multi-disciplinary knowledge involved in built environment design makes 

it incredibly difficult for stakeholders to retain all necessary details and collaborate their knowledge 

in each decision-making process. The stakeholders frequently acquire information from external 

sources, such as documentation, drawings, models, information systems, or other professionals. 

Such collaboration and knowledge exchange between entities (humans, documentation, or 

 

 

3 A version of this chapter has been submitted to Journal of Building Engineering. 
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machines) reveals a strong motivation to improve the efficiency of knowledge sharing and reuse 

while eliminating the misunderstandings and missing data (Hagedorn et al., 2016). In accordance 

with existing studies, knowledge reuse in the design domain, such as providing design 

recommendations or case-based reasoning among existing design cases, can significantly reduce 

product development time and cost, with designers streamlining the design process if they have 

easy access to all necessary design information (Sarder, 2006). In recent decades, attempts have 

been made in assisting designers in pursuing informed decision by providing necessary information, 

storing design objectives, and predicting the performance of alternative solutions (Afacan & 

Demirkan, 2011; Guerrero et al., 2022; Singhaputtangkul et al., 2013). For instance, Afifi et al. 

(2014) proposed a decision model to analyze the falling risk associated with the architectural design 

of staircase elements in order to recommend best practices for creating elderly-friendly designs 

(Afifi et al., 2014). Heydarian et al. (2017), likewise, developed a data-driven model to optimize 

the designs around the occupant’s behaviour related with lighting preference (Heydarian et al., 

2017). These studies recognized that the effectiveness of information and knowledge support 

substantially influences the quality and creativity of the design process and its outcomes.  

However, despite the presence of numerous studies on generating and capturing design rationale 

to address complex built environment design challenges, the knowledge share and exchange still 

remain inconvenient and inefficient in current design practice, particularly when addressing the 

diverse requirements of occupants and the huge collection of design alternatives. Moreover, the 

context of built environment design is constantly evolving in accordance with social development. 

The variation caused by different lifestyle paradigms, climate change, demographic change, and 

the development of building technologies is also expected to be reflected in decision-making of 

built environment design for fulfilling the evolving demands of occupants (Lee & Ha, 2013). In 
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this regard, a knowledge-based system that provides formalized design knowledge with flexible 

data schema is expected to provide up-to-date knowledge for relevant decision support and 

eliminate the ambiguous language among various stakeholders for enhancing the quality of user-

focused residential design (Guo & Goh, 2017; Xing et al., 2019).  

The development of ontology is typically regarded as the initial step in developing knowledge-

based systems. As one of the emerging semantic web technologies, ontology has been widely used 

to represent knowledge across a variety of domains, and thereby providing a common 

understanding of information structure and domain knowledge for further intelligent-based 

decision support (Asim et al., 2018; Gao et al., 2018; Liu et al., 2016; Shue et al., 2009). Generally, 

ontology is defined as “an explicit specification of a shared conceptualization.” It formally 

represents knowledge by defining the categorization (taxonomies), properties, and axioms 

(limitations) of relevant concepts and establishing the logical relations between concepts in a 

particular domain, enabling information integration, retrieval, and reuse in a machine-readable 

format (Zhong et al., 2019). In recent decades, numerous ontologies have been proposed in the 

domain of architecture and building to represent the dispersed knowledge of numerous disciplines, 

such as the ontologies for building environmental monitoring (Zhong et al., 2018), active fall 

protection system design (Guo & Goh, 2017), building and infrastructure construction (El-Diraby, 

2013; El-Gohary & El-Diraby, 2010), concrete bridge rehabilitation (Wu et al., 2021), and the 

ontologies describing occupant behaviour in buildings (Hong et al., 2015; Putra et al., 2021). These 

applications of ontology technology denote its important role in representing and reusing 

knowledge semantically. Putra et al. (2021) also suggested that ontology is helpful in information 

integration, since it is more flexible and extensible in knowledge representation compared with 

conventional data schemas, making them better options to store knowledge that requires timely 
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maintenance and updates. As a formal and explicit specification of a shared conception of domain 

knowledge, domain ontology is thus an essential component for knowledge-based systems in user-

centered residential design. 

To the author’s knowledge, however, no ontology has yet been developed to comprehensively 

describe the knowledge of user-oriented residential environment design. To fulfill this research gap, 

this chapter proposes a domain ontology, being called UCRD-Onto, to describe the knowledge of 

human–building interactions and the domain of residential design. This proposed ontology is 

expected to capture the user-centered residential design knowledge from multiple disciplines and 

store the domain knowledge in a formalized and explicit format, allowing relevant knowledge to 

be efficiently shared and exchanged between different stakeholders and generating a machine-

understandable vocabulary for the development of intelligent design support systems.  

4.2 Methodology  

Concerning the application domain and context of UCRD-Onto, an ontology development 

methodology (see Figure 4-1) is proposed in this study combining METHONTOLOGY and 

Ontology 101, the two most matured and widely used ontology development approaches (Guo & 

Goh, 2017; Xing et al., 2019). The proposed methodology enables the building of domain ontology 

from scratch and independent the development process from the uses of ontology so that the 

developed ontology is not limited by its application systems (Guo & Goh, 2017). In this study, 

ontology development could be illustrated in nine steps and divided into three stages: specification, 

ontology development, and evaluation. A detailed discussion regarding the user-centered 

residential design ontology development is presented in the following steps.  
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Figure 4-2. Development process of HCRD-Onto. 

Step 1 Determine the purpose, scope, and formality level of the ontology  

Prior to the ontology development, it is necessary to determine the purpose, scope, level of 

formality, and intended users of the domain ontology to be developed. Thus, a list of  basic and 

competency questions is established in Step 1 to help identify the domain and scope of ontology. 

These questions include, but are not limited to: 

Q1: What is the purpose of this ontology? 

A1: To formally represent the knowledge of residential design, along with the occupants’ needs 

and design constraints, across a variety of contexts. 

Q2: What type of built environment will be covered in this study? 
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A2: Residential buildings. 

Q3: What is the domain of ontology? 

A3: This ontology comprises the basic concepts of residential design, as well as their 

interrelationships, the requirements in support of indoor activities, intended physical feelings, and 

psychological experience. It does not include the design of the building’s construction (i.e., the 

envelope of buildings). 

Q4: Who is the user of the developed ontology?  

A4: Decision makers of residential designs, such as the designer or the homeowner 

Q5: What information should be captured in the ontology? 

A5: The information includes (1) the design settings for residential environments, such as design 

elements and their properties, space configurations, and design options; (2) the requirements 

toward residential environments concerning occupant’s behaviour and experience; ( ) the 

relationship between the requirements and the design settings; (4) the information related to design 

standards and building codes. 

By answering these questions, an ontology design specification could thus be generated, serving 

as a guideline for the overall ontology development process. Generally, this ontology aims to 

inform design decision-makers on the design elements and the requirements to be considered for a 

user-centered residential design, as well as appropriate design options concerning their different 

characteristics. This ontology encompasses numerous stakeholder perspectives, such as those of 

occupants, architects, structural engineers, psychologists, and even health or human factors 

practitioners. 

Step 2 Term enumeration from literature review 
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By having the ontology’s scope and objectives, the next step is to enumerate terms in the ontology 

by acquiring knowledge from the domain of interest. In this case, the main knowledge source in 

this stage includes research on human–building interaction, residential design, environmental 

comfort, residential design cases, and design standards and regulations. Knowledge acquisition 

from multiple sources can help the developed ontology become more relevant, representative, and 

comprehensive. Specifically, relevant terms and concepts retrieved through literature review on 

research reports, to some extent, represent the formal language of design knowledge communicated 

within the general academic community. In addition, the documentation of design cases reveals 

how design practitioners process different design requirements and how they communicate the 

knowledge of residential environments with other stakeholders. By reviewing this documentation, 

a number of important terms of UCRD-Onto could be derived. In addition, standards and technical 

manuals focus on residential building design are also referred as complementary resources for 

knowledge acquisition. These standards include residential building code GB 50368-2005, national 

code for design of the residential interior decoration JGJ367-2015; fundamental parameters for 

kitchens and related equipment in housing GB/T 11228-2008; kitchen and bathroom planning 

guidelines with access standards by national kitchen and bath association; accessible and usable 

buildings and facilities ICC/ANSI a117. 1. These codes and standards specify the essential 

requirement for residential design, representing structured expert knowledge and industry norms 

in the domain.  

Step 3 Term extraction from social media data 

To satisfy the informational needs of design practitioners with different professional levels, it is 

also necessary to emphasize the viewpoint of layman users with little design knowledge in UCRD-

Onto. Researchers suggested that social media data, as a form of passive crowdsourcing, could 
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advance abstract idea-collection on public opinions and perceptions (Wan et al., 2021). The user-

generated content shared on the social media platform and the conversations among people online 

may represent a voice of the public in a more accurate manner, since this content is usually created 

without initiation, stimulation, or moderation (Browarnik & Maimon, 2015). Compared with 

conventional knowledge acquisition methods that explicit concepts and relations from small and 

structural information sources (e.g., reports and standards), ontology learning from social media 

content instead tackles the massive heterogeneous data online from which manually building 

ontology is highly labor-intensive and time-consuming. To enable knowledge acquisition from 

social media data, a co-occurrence-network-based analysis method (see Figure 4-2) for domain 

term extraction is adapted in this step following the existing research on natural language 

processing (NLP) (Asim et al., 2018). The statistical co-occurrence analysis locates the term units 

that occur together in pursuit of extracting related terms with high frequency and finding the 

implicit associations between various terms and concepts.  

To begin with, data collection is performed through web content scraping from specific social 

media platforms and online communities where people popularly share their home design ideas. 

User-generated posts on Xiaohongshu (a Chinese social media) and Houzz (an American online 

community) are chosen as the term extraction source in this study because of the unique target 

community of design, architecture, and home improvement of these two platforms, and their 

adequate active users for analyzable data in Chines and English language respectively. According 

to the literature review findings (Step 2), the information and knowledge related to residential 

design are usually divided based on the functional rooms, such as kitchen, bathroom, living room, 

concerning their different functions and attributes. Thus, the keywords related to different rooms 

(e.g., “bathroom,” “bathroom design,” or “shower design” for bathroom design knowledge) are 
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used to query the relevant contents. Once the corpus data is collected, text pre-processing is 

subsequently performed following conventional NLP pre-processing techniques, i.e., (1) breaking 

the raw text into the list of words (Tokenization), (2) normalizing words into their basic or root 

form (Stemming), (3) reducing the word to its lemma (Lemmatization), and (4) finally removing 

the stop words. It should be noted that the middle two NLP procedures (i.e., text stemming and text 

lemmatization) are only applied in English language processing. NLP toolkits in Python, including 

NLTK (Natural Language Toolkit) Library and Jieba (a Chinese word segmentation tool), are used 

for English and Chinese language pre-processing, respectively. Likewise, the user-generated posts 

online usually consist of internet slang and emoji; thus, an adapted stop word list containing these 

slang and unusual characters is used to filler out the stop word in text pre-processing. 

 

Figure 4-2. Co-occurrence networks development from social media data. 

By far, the user-generated text of each post is converted into a list of terms. Based on that, the 

frequency of terms and the set of collocates of which terms with significant frequency appear in 

the same context are to be calculated and presented in a matrix manner. To efficiently capture the 
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domain terms and concepts from the co-occurrence analysis, visualization of the co-occurrence 

network is generated where the dimension of node represents the frequency of the term, and the 

thickness of the line reflects the affinity of terms. Figure 4-3 shows an example of co-occurrence 

networks generated from kitchen design posts in Chinese social media (Xiaohongshu) and English 

online community (Houzz) respective, where each co-occurrence network is created from more 

than 1000 corpus (posts). The terms with higher frequency and centrality (i.e., larger nodes with 

many connections) may be chosen in UCRD-Onto to represent how people online describe this 

type of design knowledge (e.g., cabinet, floor, light, appliance, window, pantry). Besides, the 

collocates of terms with close affinity jointly form a cluster of relevant terms, which is helpful in 

concept extraction from a linguistic or textual perspective (Browarnik & Maimon, 2015). For 

instance, activities, such as storage, cooking, cleaning, and food preparation, are the most frequent 

terms when people discuss the kitchen design, according to the Chinese co-occurrence network 

(Figure 4-3a).  

 

Figure 4-3. Example of co-occurrence network on kitchen design. 

a) Chinese Co occurrence Network b) English Co occurrence Network 
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Step 4 and 5 Concept definition and conceptualization  

By enumerating domain terms and extracting residential design-related concepts in previous steps, 

this section aims to develop a concept hierarchy (taxonomy) of UCRD-Onto and define the 

properties of concept classes. These two steps are closely intertwined and usually performed in a 

reciprocating manner (Natalya F. Noy & McGuinness, 2001). In this study, a top-down taxonomy 

development approach is adopted to construct the concept hierarchy and determine the properties 

and relations among these concepts. Specifically, the researchers define the most general concept 

in UCRD-Onto and subsequent specialization of the concept. Then, for each concept, a set of 

intermediates representations that describe the data structure used by a compiler is built, which 

includes concept dictionaries containing all the domain concepts and instances of such concepts, 

tables of binary relations, attribute tables for each concept and instance in the concept dictionary, 

and the logical axioms tables. Note that these concepts, relations, and axioms are 

determined through a consensus-based discussion among the research team on the analysis of 

literature review and co-occurrence results.  

Step 6 Implementation in Protégé 

Following the intermediate representations, the taxonomy along with defined concepts and 

relations are coded by OWL language using Protégé 5.0 platform, a JAVA-based ontology editing 

tool with an open architecture. The defined concepts, properties, and relations referred are classes, 

data properties, and object properties in Protégé, respectively, represented by subject-property-

object triplet expressions (Xing et al., 2019). In addition to its mature applications across various 

domains, the extensible architecture of Protégé platform also enables ontology developers to access 
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a set of open-source API to customize their knowledge base system to have it integrated with other 

applications effortlessly (Shue et al., 2009). 

Step7-9 Ontology Evaluation 

Upon completing the UCRD-Onto development, a careful evaluation is performed to determine 

whether this ontology is appropriate to represent the domain knowledge of occupant-oriented 

residential design and its relevant applications. in accordance with the difference of ontologies and 

their application domains, several proper and formal evaluation criteria and methodologies have 

been proposed to measure the  uality of ontology design, such as the ‘gold standard,’ data-

driven, criterion-based, application-based, and application-based evaluations (Delir Haghighi et al., 

2013). In this study, several factors are taken into account to determine the suitable evaluation 

approaches in considering the limitation of each approach and the objective of the developed 

ontology: (1) there is no benchmark ontology or standard measurement tool that could be referred 

for standard evaluation; and (2) this ontology evaluation is more focused on the correctness, clarity, 

and applicability of the developed ontology since this is the first domain ontology in the occupant-

oriented residential environment area, which is expected to be expanded and evolved in future 

studies. Therefore, three ontology evaluation approaches, i.e., automated consistency checking, 

criterion-based evaluation, and application-based evaluation method, are adopted to assess the 

quality of UCRD-Onto.  

First, the automated consistency checking (Step 7) is implemented using the description logic 

reasoner, Pellet, a third-party plug-in embedded in Protégé. It checks for lexical and syntax errors, 

identifies contradictory facts, and aids in bug diagnosis and resolution. Along with the incremental 

ontology coding process (adding new concepts and modifying old ones), the automated consistency 
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checking will iteratively review the updated ontology to ensure completeness, consistency, and 

non-redundancy in the defined ontology.  

Next, the content and design of UCRD-Onto will be manually evaluated using the criterion-based 

approach with a set of predefined criteria (Step 8). Following the existing literature, various criteria 

are available for ontology evaluation, as the example in Table 4-1. In considering the objectives of 

UCRD and its application domains, five criteria proposed by past studies (Delir Haghighi et al., 

2013; El-Gohary & El-Diraby, 2010; Guo & Goh, 2017; Xing et al., 2019; Yu et al., 2005), 

i.e., clarity, extendibility, correctness, completeness, and coverage, are adapted to evaluate the 

content of UCRD-Onto. With the selected criteria, focus group discussion among expert 

participants with knowledge background in information technologies, building design, and human 

factors are considered the main form of conducting criterion-based evaluation in this study. A 

detailed discussion regarding the ontology evaluation criteria, along with the analysis results, is 

presented in Section 4.4. 

Table 4-1. Example list of common ontology evaluation criteria. 

 Xing et al. 

(2019) 

Guo and Goh 

(2017) 

Delir Haghighi 

et al. (2013) 

El-Gohary and 

El-Diraby 

(2010) 

Yu et al. 

(2005) 

Clarity ✓ ✓ ✓  ✓ 

Consistency ✓  ✓ ✓ ✓ 

Extendibility ✓ ✓ ✓  ✓ 

Correctness ✓  ✓ ✓ ✓ 

Completeness ✓ ✓ ✓  ✓ 

Coverage  ✓ ✓ ✓ ✓ 

Conciseness ✓  ✓  ✓ 

Minimal encoding bias     ✓ 

Minimal ontological 

commitments 
  ✓  ✓ 
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Ease of Use    ✓  

In the last step, an application-based evaluation is conducted to evaluate the capability of ontology 

by (1) deploying UCRD-Onto to describe the content of residential design cases and (2) performing 

the task of knowledge acquisition in an information system (Step 9). The prototype information 

system is developed based on UCRD-Onto with the support of an ontology API JENA, aiming to 

provide appropriate information support for design decision makings. By examining the 

application results, the competency of UCRD-Onto in knowledge description for residential design 

and human–building interactions could thus be demonstrated. 

4.3 HCRD-Ontology 

This section provides a comprehensive discussion of the concepts and definitions, semantic 

relations, and relevant attributes of UCRD-Onto, which were developed by following the steps 

outlined in the methodology section. 

4.3.1 A Meta Ontology Model 

As shown in Figure 4-4, a meta ontology model is first proposed as the generic knowledge 

hierarchy of UCRD-Onto. Four kinds of generic concepts are included to synthesize the knowledge 

hierarchy of user-centered residential design: (1) the requirement concept refers to the user needs 

in a residential setting, which are broadly categorized by three environment comfort factors, 

namely psychological comfort, physical comfort, and activity intended in accordance with the 

“environmental comfort” theory model (Vischer, 2008a); (2) the design concept represents 

residential design solutions, consisted with building element, space element, and placement; (3) 

the context concept represents the constraints or situations in which the proposed requirement is 

configured and determined, describing the design constraints from three perspectives, i.e., the 

design standard and regulatory, the constraints existing in the project, and the environmental aspect; 
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and (4) measurement concept represents the assessment of design quality. Following this meta 

model, the subsequent paragraphs present a detailed definition of concepts and relations in UCRD-

Onto. 

 

Figure 4-4. Meta ontology model. 

4.3.2 Concept Taxonomies and Definition 

Occupant-User  

Occupant-user refers to the resident who intends to use or live in the space. It could be a single 

individual or the individuals in a household. Pertaining to ISO 9241-210 standard and the user-

centered building design framework proposed by Attaianese and Duca (2012), identifying user 

profiling along with the specified use context is one of the critical processes in user-centered design 

(Heimgärtner, 2020). Thus, occupant-user is a primary concept in UCRD-Onto, containing 

relevant characteristics that might be associated with their requirements or preference in residential 

design.  
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User and persona are two subclasses of occupant-user in UCRD-Onto, representing the physical 

individuals and the archetypical users for which the residential environment is designed. User 

concept is usually featured by the attributes of demographic data, cultural background, and 

preference that influence how people interact with built environments. Besides, the health status 

information of users, such as impairments and specific disabilities, could be included in the analysis 

of accessibility requirements, so that residential design can provide such users with more 

appropriate environmental settings. On the other hand, the persona refers to the user analysis model 

in conventional UCD that helps the design practitioner understand the target users. Similar to user 

concept, persona is also defined by demographic information, physical and cognitive abilities, 

behaviour characteristics, and user personalities (Attaianese & Duca, 2012; Salminen et al., 2020), 

whereas the characteristics and design goals of personas are generated and defined through user 

clustering and segmentation on a larger group of users. 

Residential Design 

Residential design refers to the design solutions and configuration of interior spaces that is defined 

by building enclosure from the external environment in a residential built context. It is the most 

intimate space where our health, physical, and psychical is affectable. Generally, the design for 

residential interior space consists of components such as spatial plans, furniture, finishes, 

equipment, lighting, heating, and so on; thereby a hierarchy of design elements concepts (see 

Figure 4-5) categorizing these components to describe the design solutions in UCRD-Onto is 

illustrated below.  
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Figure 4-5. Taxonomy of residential design. 

Building Element 

In the context of UCRD-Onto, building elements is a general concept for physically existing and 

tangible components in a residential building system. The hierarchy of this concept is derived from 

Omni classification system, which is compatible with BIM software (e.g., Revit) and can be 

comprehended by the majority of design practitioners (Afsari & Eastman, 2016). According to the 

Omni classification system, the major components of building elements include architectural, 

finishing, furnishing, mechanical, electrical, plumbing, and residential facility and equipment as 
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outlined in Figure 4-5. Note that the definitions of these concepts also adhere to the Industry 

Foundation Classes (IFC) schema, an open standard representing data related to building and 

construction. For instance, the electrical in HCRD-Onto defines the concepts of cabled systems 

with power supply and data transmission and the electrical devices and light fixtures connected by 

cabling and the protection of electrical devices. 

Spatial Element 

Spatial element is the generalization of all spatial elements that describe a space or spatial zones. 

In this definition, the room represents a hierarchical decomposition of spatial elements, describing 

an area or volume bounded actually or theoretically. Particularly, a room in the residential building 

is usually associated with certain functions, such as kitchen, living room, and bathroom, as listed 

in the taxonomy. On the other hand, the other sub-concept of special element, spatial zone, denotes 

the functional areas in a building, such as thermal zone and lighting zone, which is a non-

hierarchical decomposition and may overlap with the existing subdivisions of indoor space. 

Placement Element 

The concept of placement element under residential design defines how the building design 

elements are arranged and located. Following the definition of IFC scheme, its component, local 

placement, can describes the relative position of building design elements in relation to the position 

of the other ones. This concept could be also used to represent the coordinate position of building 

design elements following the predefined coordinate system of building projects.  

Activity 

Activity refers to the event or task that occupants wish to perform for a purpose in an interior space. 

This concept is defined by the functional comfort factor in the environmental comfort model 
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(Vischer, 2008a) that assesses the availability of environment to support users in accomplishing 

desired tasks. In UCRD-Onto, the activity focuses on the routine self-care and domestic tasks 

expected to be performed by occupants in residential environment settings.  

To comprehensively list all activities instance in the residential environment, the activity 

classification in the ATUS survey (i.e., a national survey studying the time use pattern of people) 

is referred to synthesize the relevant sub-concepts in activity (Fisher et al., 2018), as illustrated in 

Figure 4-6. Each activity could be subdivided into several sub-activities or actions for detailed 

requirement analysis. This detailed division also assists in depicting the interrelationship among 

requirement concepts among activity, physical comfort, and psychological comfort. For instance, 

household activity with certain amount of labour may be frequently associated with some instances 

of physical comfort, and the activities of socializing & relaxing & leisure may also fulfill 

requirements in psychological comfort.  

 

Figure 4-6. Taxonomy of activity. 
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Physical Comfort 

Physical comfort is pertaining to bodily sensations and represents the desired experience of well-

being in environmental conditions. This kind of comfort refers to the basic human needs, and is 

mostly specified by standards (e.g., EN-ISO 7730: 2005 and ASHRAE55-2013) which can be 

efficiently measured using quantitative metrics (Chen et al., 2019; Vischer, 2008a). In the context 

of home environments, physical comfort is defined by the perspectives of indoor air quality, 

thermal comfort, auditoria comfort, thermal comfort, and visual comfort, as illustrated in Figure 4-

7 and introduced below.  

 

Figure 4-7. Taxonomy of physical comfort. 

a) Indoor Air Quality 

Indoor air quality for environmental physical comfort refers to the sensation and perception of the 

indoor air quality and smell, describing how good or bad the air in the indoor environment is with 

respect to pollution or contamination by pollutants (Adeleke & Moodley, 2015; Putra et al., 2021). 
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The quantity of CO2, CO, PM10, O3, NO2, relative humidity, and air velocity are usually referred 

to characterize indoor air quality in built environments (Chen et al., 2019). 

b) Acoustic Comfort 

Acoustic comfort describes the physical needs of human hearing perception to indoor noise level, 

against the intruding environmental noise. Such comfort results from a balance of acoustic 

conditions instead of the absence of all noise (Esfandiari et al., 2017); thereby, the requirement for 

acoustic comfort is specified by both the sound level and the room acoustics in a specific room 

context. Moreover, the acoustic criteria from WELL standard, such as sound pressure level, 

reverberation time, and sound masking, are adopted to characterize acoustic comfort in UCRD-

Onto (Chen et al., 2019). 

c) Ergonomic Comfort 

Ergonomic comfort describes the physical body-related wellness, which assesses the environment 

with regard to its ability in injury prevention and task efficiency enhancement. Three major 

components, i.e., work efficiency, accessibility, and ergonomic risk, are included to characterize 

the concept of ergonomic comfort in built environment. Among these sub-concept, work efficiency 

defines the desired task and workload to be accomplished with minimal cost (e.g., time or resource) 

in such environmental context, accessibility describes the environment's capacity for occupants to 

access, use, and exit buildings or building elements on equal terms with other individuals, 

regardless of disability, age, or gender (ISO, 2011), and ergonomic risk refers to the potential risk 

of musculoskeletal disorders that are caused by certain design settings. Costa et al. (2012) 

suggested that the requirement for ergonomic comfort should be associated with the task and 

activity performed by the occupants. For example, the requirement of efficient workflow, 
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accessibility, and lower workload pressure has been heavily emphasized for ergonomic comfort in 

kitchen and meal-preparation-related activities (Pinto et al., 2000).  

It is to note that, sometimes, there is a blurry boundary between the comfort needs among physical, 

functional, and psychological. For instance, the requirement for ergonomic comfort could be either 

categorized into the physical comfort, or functional comfort (activity) since this kind of comfort 

both intends to prevent the user from injury (i.e., basic needs of safety) and support the productivity 

of related activity (i.e., functional efficiency).  

d) Thermal Comfort 

Thermal comfort represents a desired condition where people feel satisfied with the thermal 

environment based on subjective evaluation, i.e., not feeling either too hot or too cold (Lu et al., 

2019). It is a personal experience dependent on a great number of criteria and can be different from 

one person to another within the same space. Even though thermal sensitivity is affected by the 

factors of age, gender, activity, and cultural habit, the basic principles underneath thermal comfort 

are largely universal. Specifically, the thermal environment can be characterized through a set of 

factors, including indoor air temperature and humidity, surrounding surface temperatures, indoor 

air velocity, activity level, incident radiation, and clothing level of the occupant (Hong et al., 2015), 

which are thus incorporated as the property of thermal comfort in UCRD-Onto.  

e) Visual Comfort 

Visual comfort describes the preferred subjective reaction to the quantity and quality of light within 

environments at a given time (Sarode & Shirsath, 2014). It is a subjective condition of visual well-

being induced by certain visual environment settings. Generally, the visual quality of space can be 

determined by factors including: the sources and quality of light, the distribution of light within the 
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space, and the human perception (i.e., physiology of the human eye). In the context of residential 

environments, the requirements of visual comfort for artificial lighting settings are usually 

specified with the functional intention of supporting specific activities and atmosphere rendering. 

Several index properties, such as luminance contrast ration, unified glare rating, and illuminance, 

are adopted from a visual comfort review to characterize visual comfort in our ontology (Carlucci 

et al., 2015). 

f) Tactile Comfort 

Tactile comfort describes the skin's sensational comfort based on the mechanical contact of the 

fabric with the skin (Taieb et al., 2010). Although few studies on tactile comfort were observed in 

the field of environmental comfort-related study, Ellsworth-Krebs found in their survey that many 

occupants indicated their needs toward the tactile experience provided by the furniture as being 

pleasing to the touch (Ellsworth-Krebs et al., 2019). Thus, this kind of comfort is included in 

UCRD-Onto for completeness purposes. 

Psychological Comfort 

Psychological comfort refers to the desired wellness state that is archived by filling psychological, 

mental, affective, and feeling-related needs with passive environmental support. According to the 

definition by Leal (1986), psychological comfort is a positive feeling free of extreme tension or 

pain, a sense of relaxation, self-esteem awareness, and an accepting attitude toward others. As for 

residential environments, the psychological expectation is usually associated with terms such as 

companionship and attachment, relaxation, and sense of control, relaxation (Ellsworth-Krebs et al., 

2019). However, in compared with the studies on physical comfort, the requirement for 

psychological wellness is rarely explicitly mentioned in the relevant literatures. 
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Figure 4-8. Taxonomy of psychological comfort. 

This study adopted the taxonomy of human psychological motives in Talevich et al. (2017) to 

synthesizes the components under psychological comfort concept in UCRD-Onto (see Figure 4-8) 

(Talevich et al., 2017). For instance, social life and friendship is used to describe the intended 

feelings of attachment and companionship, expecting an affective experience bond with a particular 

group or scenario. In the context of the dwelling scenario, an ideal experience is mostly depicted 

to be shared and has features that enable householders to accommodate guests. Feeling of 

relaxation, on the other hand, is associated with a pleasant emotional state of low tension and being 

absent of stress, anxiety, or fear (Ellsworth-Krebs et al., 2019). The perceived restorativeness in 

environments is an instance of such affective experience that denotes the mental recovery process 

from mental fatigue (Kals & Müller, 2012; Kaplan & Kaplan, 1989; Kopec, 2017). Moreover, the 

desire for appreciating beauty also plays an essential role in built environment design in addition 

to the affective needs of relaxation, accompany, and social support. This experience is a 

psychological process in which the attention is attracted to the object, while all other objects, events, 
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and everyday concerns are suppressed (Marković, 20 2). Theoretically, the perception of aesthetics 

in built environment is usually associated with the principles of harmony, proportion, style, balance, 

and variety (Alfakhri et al., 2018).  

Constraints 

A constraint in the HCRD-Onto is something that limits or controls how the residential 

environment could be designed. It is imposed on design solutions and restricts the range of design 

solutions that can be configured and adopted. The taxonomy of design constraints in the present 

ontology is adopted from the category in Niemeijer (2011), of which the constraints is divided into 

legal constraints, environmental constraint, and project constraint based on their different imposing 

sources. 

a) Standards and Regulatory Frameworks 

The concept of standards and regulatory frameworks represents the legal constraints specified in 

relevant laws, regulations, and building codes that should be adhered by the design solutions. These 

constraints commonly focus on safety and security protection, hazard elimination, and accessibility 

compliance. Examples of standard and regulatory constraints for residential design include the code 

for the design of residential interior decoration JGJ367-2015, the design code for residential 

buildings GB 50096-2011, the code for fire prevention in the design of interior decoration of 

buildings GB 50222-2017, and residential building code GB 50368-2005. 

b) Environmental Constraints 

Environmental constraints represent environmental conditions or impacts that must be considered 

when performing the residential design. For instance, the designs of residential environments 

should concern the regional climate characteristics and the resilience of climate change as well as 
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the environmental impacts of decisions in consequent energy consumption, carbon emissions, and 

air pollution (Dili et al., 2010; Tian et al., 2018; Zhang et al., 2019). 

c) Project Constraints 

Project constraints restrict factors related to the building project, such as the resource allocation of 

time, budget, workforce, and the space and layout limitations caused by architectural and structural 

designs. Besides, due to the property of materials and the feasibility of interior construction 

methods, the technical constraint is also included as a component of project constraints. These 

project limitations can influence how the user requirement is fulfilled and how built environments 

could be designed in practice. 

Usability Performance 

Typically, design decisions are based on achieving a balance between multiple objectives, and 

sometimes a well-designed residential environment may still fall short of achieving certain 

requirements to a level of complete satisfaction. To understand the limitations of implemented 

design solutions, the measure concept, usability performance, is incorporated in UCRD-Onto to 

assess the usability performance of residential design solutions and provide a more comprehensive 

picture of UCD in residential environments. This concept is used to evaluate the built environment 

based on the expected performances and fulfillment levels for specific user requirements (i.e., 

intended activity support, psychological comfort supports, and physical comfort supports) after a 

residential design solution has been implemented. For instance, WELL Building Standard is an 

instance of usability performance, which assesses the building performance based on its impact on 

human health and well-being (International WELL Building Institute, 2015). 
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4.3.3 Semantic Relations 

Semantic relations, as an essential part of ontology, describe the meaningful association between 

concepts. The linkages of concepts enrich their definitions and refine their context in knowledge 

interpretation (El-Diraby & Osman, 2011) improving ontology's expressiveness and linguistic 

aspects. It is believed that ontology can embed some tacit knowledge of concepts in their 

relationship with other concepts (El-Diraby, 2013). In UCRD-Onto, the semantic relation can be 

categorized into three types as discussed below:  

1) Hyponymy (is–a) relations: this taxonomic relation defines the category or type of a 

concept. It is associated with two varieties of variances: (1) representing additional means 

for describing types and categories, or (2) defining a concept's category or type by 

excluding it from a certain domain, such as <is_similar_to> and <is_disjoint>, respectively. 

The UCRD recognizes the following is–a relations examples: Base Cabinet for Sink Base 

<is_a> a Base Cabinet, and Base Cabinet <is_disjoint> with a Wall Cabinet. 

2) Meronymy (whole–part) relations: this relationship illustrates the connection between a 

concept and its constituent element. For example, in UCRD-Onto, Cabinet <has_part> 

Cabinet Frame. It is related to its reverse relation <part_of>. 

3) Descriptive relation: this relationship explains the essence and behavioural context of 

concept. The primary descriptive relations in UCRD-Onto include the attributive relation, 

the contingency relation, the conformance relation, and the requirement relation. 

a. attributive relation identifies the characteristics of concepts, and it is typically 

highlighted by generic verb phrases containing 'has. As an example, in UCRD-Onto 

would be Building_Element <hasPlacement>Local_Placement.  

b. contingency relation describes cause-and-effect relationships with causative verbs 

like "support, namely, <supportActivity>, <supportExperience>, <supportFeeling>, 

which are inverse of <isSupportedBy>, <isStimulatedBy>, and <isInfluencedBy>, 

respectively. For example, Space_Element <supportFeeling> of Physical Comfort.  
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c. conformance relation represents a constraining relationship between concepts. As 

an example, Standard&Regulatory <constraints> Placement_Element.  

d. requirement relation establishes a connection between the condition or capacity that 

must be met or possessed by the residential design and the occupant. This is 

accomplished through verbs like <perform>, <experience>, and <desire>. 

4.3.4 Property  

The concept alone cannot provide sufficient information to achieve the purpose of the UCRD-Onto. 

Thus, following the definition of taxonomy and relations, the properties of concept (attributes) are 

described to locate the necessary information of ontology. This property definition is helpful for 

the residential design specification and reasoning because the involved design elements and 

requirements are usually characterized by multiple properties (El-Gohary & El-Diraby, 2010; Guo 

& Goh, 2017), such as the dimensions and luminance level for lighting fixtures, the riser height 

and stair length for staircases, and the duration and intent for activity-related requirements. Besides, 

it also enhances the efficiency of knowledge management by providing more information for the 

semantic search of relevant entities via their properties (El-Gohary & El-Diraby, 2010). Different 

data types could be taken to represent property values, such as integer, float, string, and Boolean 

types.  

Figure 4-9 outlines some examples of properties attached to the concepts in UCRD-Onto. These 

properties are retrieved through previous literature reviews on human–building interaction studies 

and design standards, which may be essential for design configurations and may have an impact 

on human experience. It is to note that all subclasses of a concept inherit the property of the concept. 

For instance, all properties of room, such as area, height, length, and width, will be inherited by all 



 

 

122 

 

 

subclasses of room, including kitchen, living room, and bathroom. Thus, a property should be 

attached to the most general concept that has that property (Natalya F. Noy & McGuinness, 2001). 

 

Figure 4-3. Examples of concept properties. 

4.3.5 Axioms 

Each ontology has three major components: taxonomy, relations, and axioms. Axioms specify the 

logical rules and formal assertions used to define the semantic context of concepts and relations in 

the domain, thereby limiting how they can be interpreted (El-Diraby, 2013; El-Gohary & El-Diraby, 

2010; Guo & Goh, 2017). The axiom can define the meaning, scope, and even criteria of concepts 

and relations via formal logical expressions in natural language and first-order logic (FOL). Such 

specification allows to infer and deduce information from ontology. To facilitate this, several 

domain axioms are formulated in UCRD-Onto, as shown in the examples below.  

o Example 1: A kitchen is defined as a room supporting the activities of food preparation, 

interior cleaning, and storage, (∀x, a1, a2, a3) ((Room (x) ^ supportActivity (x, a1, a2) ^ 

Food_Preparation_and_Clean-up (a1) ^ Interior_Cleaning (a2) ^ Storing (a3)) ⊃ Kitchen 

(x)). 
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o Example 2: A design solution for kitchen space involves the design elements of ceiling and 

ceiling finishes, flooring finishes, wall finishes, backsplash, lighting, cabinet, countertop, 

sink, faucet, switch, layout, switch, outlet, and appliances of cooking equipment, ventilation 

equipment, refrigerator, waste deposal system, floor drain: (∀x, d1, d2, d3, d4, d5, d6, d7, 

d8, d9, d10, d11, d12, d13, d14, d15, d16, d17, d18, d19)(Kitchen (x) 

⊃(hasDesignElement(x, d1, d2, d3, d4, d5, d6, d7, d8, d9, d10, d11, d12, d13, d14, d15, 

d16, d17, d18, d19) ^ Ceiling (d1) ^ Ceiling_Finishes (d2) ^ Flooring_Finishes (d3) ^ 

Wall_Finishes (d4) ^ Lighting (d5) ^ Backsplash (d6) ^ Countertop (d7) ^ Faucet (d8) ^ 

Kitchen_Sink (d9) ^ Kitchen_Cabinet (d10) ^ Wall_Storage (d11) ^ Floor_Drain (d12) ^ 

Waste_Disposal_Unit (d13) ^ Electrical_Outlet (d14) ^ Electrical_Switch (d15) ^ 

Cooking_Equipment (d16) ^ Cooking_Ventilation_Equipment (d17) ^ 

Refrigerators_And_Freezer (d18) ^ Door (d19)) 

4.3.6 Implementation  

Protégé is a free, open-source ontology editor that allows developers to create and manage 

terminologies and ontologies in a visual manner. In this study, the concept, properties, and relations 

of UCRD-Onto defined in the intermediate’s representations are respectively coded as classes, data 

properties, and object properties in Protégé 5.0. Figure 4-10 demonstrates a screenshot of the 

ontology developing process in Protégé, where the left part is the class taxonomy of the proposed 

UCRD-Onto (marked in red dashed box), the lower right half part (orange dashed box) is the class 

description that outlines the defined axioms of class using OWL syntax, and the upper right half 

part (blue dashed box) is the object property defining the relations among classes. By implementing 

the UCRD-Onto within Protégé, different aspects of design knowledge are linked into one semantic 

network, which lays the foundation of knowledge-based decision support systems for residential 

design.  
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Figure 4-10. Screenshot of UCRD-Onto in Protégé. 

4.4 Ontology Evaluation 

This section provides an in-depth analysis of the ontology evaluation procedure and corresponding 

evaluation results. The performance of UCRD-Onto was evaluated using three ontology evaluation 

approaches: automated consistency checking, criterion-based evaluation, and application-based 

evaluation, as illustrated below.  

4.4.1 Automated Consistency Checking  

The UCRD-Onto was automatically checked for contradictory facts using a built-in description 

logic reasoner, Pellet, ensuring  any conclusions by ontology applications are inferential and 

semantically consistent. By executing the reasoner, the hierarchies, domains, ranges, and 

conflicting disjoint assertions in the ontology are automatically examined, and the inconsistency, 

C    h      h           
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as well as the inferred classes and relations, are highlighted in red and displayed on the Protégé 

interface. This automated ontology evaluation tool greatly reduces manual checking efforts 

and delivers a meaningful, correct, and minimally redundant ontology (El-Gohary & El-Diraby, 

2010). As a result, Pellet's consistency checking result was positive, and the inconsistencies 

observed during the ontology development process were addressed to ensure the ontology's 

application. 

4.4.2 Criterion-based Evaluation 

Criterion-based evaluation is mainly focused on verifying the content of an ontology. Considering 

the objectives and application domain of the UCRD-Onto, in addition to consistency criteria that 

were evaluated by the logic reasoner, the other five criteria, namely, clarity, correctness, 

completeness, coverage, and extendibility, were selected to conduct the ontology assessment. In 

this study, focus group discussion was considered the main form of conducting criterion-based 

evaluation since this evaluation requires expert judgment with respect to abstraction, classification, 

and coverage. The focus group consists of five individuals: four research team members with 

expertise in built environment design, information systems, and human factors, and one interior 

design practitioner with more than three years of project experience. On the basis of the proposed 

criterion, it was believed that these participants could evaluate the content and quality of UCRD-

Onto with their knowledge and experience. A more detailed account of each criterion and its 

evaluation result is given in the following paragraph. 

o Clarity: clarify criteria refers to whether an ontology can effectively communicate the 

intended meaning of defined concepts and whether definitions in the ontology are clearly 

specified without ambiguity.  Following Gruber's (1995) definition, the specification for 
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clarity could be elaborated as follows: (1) the concepts in ontology should be formally 

defined without subjectivity, (2) the ontology should be documented using natural language, 

and (3) the terms in ontology should express their intended meanings to conform to the 

knowledge comprehension of various social situations and computation requirements. In 

this study, the majority of ontology terms and their definitions in the present study were 

extracted directly from domain-related publications, design standards, and building codes, 

which were typically developed through consensus among field researchers, domain 

experts, or working groups appointed by building and housing development-related 

departments. Besides, for terms with synonyms defined in other documentation, the 

annotation “<rdfs:comment>“ in prot g  is included to denote the synonyms of given 

concepts. 

o Correctness: The correctness criterion evaluates whether ontology represents the correct 

modelling of real-world concepts (Delir Haghighi et al., 2013). To support a practical 

application of UCRD-Onto in knowledge-based systems, the correctness of ontology has 

been the main focus of our evaluation. The participants were provided comprehensive 

documentation on the class definitions, relations, and relevant properties, along with the 

knowledge source related to the UCRD-Onto development. During the focus group 

discussion, the definition of classes and the reasons for the setup of the properties were also 

explained. By collecting and adapting the feedback from participants, the semantic 

correctness of ontology could be further verified. For instance, the class definition of 

usability_performance has been revised to include the concept of post-

occupancy_eevaluation as well by adapting the comments from experts. 
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o Completeness: The completeness criterion refers to the coverage of information represented 

by the concepts and relation in UCRD-Onto over the domain knowledge of residential 

design and occupant requirements (Delir Haghighi et al., 2013). This criterion lays a basis 

for the knowledge-based system application to be developed in the next stage, concerning 

the ontology capability in knowledge sharing, transferring, and reuse. It should be noted 

that the proposed ontology mainly focuses on design elements closely related to human–

building interactions and experience. Thus, the completeness of ontology was evaluated by 

going through the class hierarchy and the relations to determine whether the core concepts 

and attributes associated with human–building interaction and built environment design 

were included in the ontology. As well, the information collected from literature and design 

standards was used as a frame of reference to identify the incompleteness of ontology in 

terms of scope, exhaustiveness, and granularity (Guo & Goh, 2017). 

o Extendibility: extendibility refers to the capability of ontology to extend further or to be 

applied to a specific application domain without changing its current definition (Delir 

Haghighi et al., 2013; Guo & Goh, 2017). According to the feedback from the focus group 

discussion, it is possible to extend UCRD-Onto to support knowledge-based residential 

decision-making involving other requirement considerations; and it is also feasible to 

extend the use of UCRD-Onto to other application domains (e.g., different building types) 

following the architecture of meta ontology model with certain modifications and 

extensions. Both of such extensions would not require changing well-defined concepts and 

relations in the UCRD-Onto. Thus, the extensibility of UCRD-Onto that enables the reuse 

and extension of the different parts of the ontology was verified. 
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In conclusion, the results of criterion-based evaluation indicated that the UCRD-Onto was correct, 

clear, extendable, and complete in terms of content, scope, exhaustiveness, and granularity. As for 

the consistency criterion, it was evaluated by Pellet objectively with good results. Based on the 

feedback from focus group discussion, this ontology is believed to possess all necessary and 

essential concepts for serving the objective of representing human-centered residential design-

related knowledge in a formalized and reusable manner. However, the result of criterion-based 

evaluation is sometimes questioned for its subjective and qualitative measure since the evaluation 

is heavily relying on expert judgment. To address this limitation, an application-based evaluation 

is still necessary to further validate the competency of ontology. 

4.4.3 Application-based Evaluation 

To evaluate the capability of UCRD-Onto, an application-based evaluation was performed by 

applying the proposed ontology to an experimental residential design scenario. In accordance with 

conventional residential design procedures, the UCRD-Onto was initially used to describe the 

context of design cases and constraints using the terms, relations, and relevant properties of the 

developed ontology. Next, a prototype of an ontology-based knowledge system based on UCRD-

Onto was developed to perform information retrieval for requirements specifications. In this 

application-based evaluation, the ontology was tested to represent and retrieve the design 

information for each room in the experimental residential design case, with the evaluation of the 

kitchen room design provided as an illustration. This evaluation assessed the competency of 

UCRD-Onto in terms of knowledge description and retrieval for residential design.  
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Figure 4-11. Design Problem Description using UCRD-Onto. 

Figure 4-11 demonstrates a description example of kitchen design scenario using UCRD-Onto. 

Following the description formatting in Guo & Goh [361], different typography was used to 

distinguish the concept class (e.g., kitchen), the class properties (e.g., frequency), the class property 

value (e.g., 159 cm height elderly), the relation (e.g., <supportsActivity>), and the instance (i.e., 

[ergonomic design valuer]). This description provides the basic information of occupant, and 

indicates the general needs on intended activities, preferred physical experience, and desired 

psychological comfort. In addition, the context of design problems, such as the building project 

type and the mandatory building codes, were also described through the terms and knowledge 

defined in UCRD-Onto.  

On the other hand, an ontology-based knowledge retrieval prototyping system is developed in this 

chapter with the support of semantic web rule language (SWRL) and semantic query-enhanced 

web rule language (SQWRL) for requirements specification in residential design. Figure 4-12 

A    h  is to be designed for a                           of  ergonomic design valuer . The     h  is

expected to <supportsActivity >           of  Cooking  Storing food  Kitchen and Food Clean up at a

         of                     , and              respectively.

To <supports>  h      C                 R   related re uirements should be followed to eliminate

              To <supports>        C       the                 <isInfluencedBy>     h  space

should be identified respectively  For     h               , the psychological feeling of

      S              Biophilia  Restorative is expected to be experienced by approaching a      of

              in                                                        ; and reach a satisfied

 Harmony      for the re uirement of              B     .

This     h  is designed for a        of an                  <inAccordanceWith> the

        C           This design should be performed under the constraints of S        R            

           and              
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outlines the overall system architecture, of which the essential components include the knowledge 

base modules, reasoning module, and user interface modules. 

To begin with the knowledge base modules, the residential design-related knowledge, such as the 

instance of residential design elements with their attributes and the requirements to support certain 

activities or specific human experience, was converted into UCRD-Onto and SWRL rules by the 

Protégé platform, forming as the knowledge base in the developed system. Specifically, the 

requirements knowledge based on different contexts and its associated definitions (e.g., user 

characteristics or space configuration) were coded in the SWRLTab plug-ins of Protégé in a rule-

based manner, as the examples outlined in Figure 4-13. In SWRL, the implication sign 

“->“ connects antecedent and conse uence, while the  uestion mark “?” denotes the variables in 

each atom. When the antecedents are met (i.e., statement before “->“), the SWRL rules are then 

triggered, enabling context-driven inference and the storing of requirement-specific knowledge. To 

interact with that knowledge, the SPARQL query engine was incorporated into the system with the 

support of a SPARQL server tool, Apache Jena Fuseki, to enable the endpoint service so that the 

SPARQL query could be requested from other application platforms to retrieve the information in 

UCRD-Onto. 

 

Figure 4-12. Architecture of ontology base design information system.  

UCRD Onto Knowledge source

              

S R  R   

R               

Apache Jena Fuseki
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Figure 4-13. Example of SWRL rules. 

The results from SPARQL queries are then saved in a text format and presented in the graphic user 

interface. In the shown study, a graphic user interface of the information retrieval system is 

developed using MATLAB App designer to help users identify residential design requirements, 

where the MATLAB built-in function “urlread” was used to execute the SPARQL  ueries with 

endpoint settings. As the example of querying results shown in Figure 4-14, regarding the query 

                     h        

Rule   2
Small size kitchen (<  0 ft.):
                                                                                   

Rule    

Medium size kitchen (  0   0 ft.):
                                                                                                 

                  

Rule    
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        h                      h                               q         

Rule 2  

Storing needs for the small kitchen:
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premises of the intended experience (e.g., intended activities of “storing” and “food preparation 

and clean”), user characterizes (e.g., “elderly” and “ergonomic design valuer”), and project settings 

(e.g., “condominium,” “frame structure”), the re uirements on specific design elements could be 

retrieved and listed with the explained intentions and suggestions using concepts and relations 

formalized by the UCRD-Onto. Designers can then refer to the retrieved information to make 

informed residential design decisions. 

 

Figure 4-14. GUI screenshot of information retrieval system for residential design requirements. 

In summary, the domain knowledge for residential design and requirement determination have 

been formalized and tested in describing design cases and querying design requirements based on 

the guideline of UCRD-Onto throughout this application-based evaluation. By having ontology 

components in describing design scenarios and relevant solutions, the coverage and feasibility of 

UCRD-Onto in knowledge representation are further validated in terms of systematically capturing 

key concepts and relationships. Furthermore, the successfully established semantic interactions 

between reasoning modules and knowledge base (i.e., the ontology) by SWRL rules and SPARQL 

Querying results

UCRD Onto graph

Project  user

information
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queries demonstrated the consistent descriptions of domain knowledge in UCRD-Onto and 

confirmed the objective fulfillment of UCRD-Onto in knowledge-based system applications (Xing 

et al., 2019). As suggested by the findings of the application-based evaluation, the proposed 

ontology can be used to standardize the structure of user-centered residential design knowledge 

and hence facilitate knowledge retrieval and storage. 

4.5 Conclusions 

User-centered design for residential built environments has been regarded as a complex and 

information-intensive task involving multi-stakeholders and multi-disciplinary knowledge. 

Regarding the overwhelming volume of information and data concerning human–building 

interaction, a knowledge-based system that supports knowledge integration and semantic 

interoperability between stakeholders would be of great assistance in determining appropriate 

design requirements and developing solutions. Thus, this study denotes an initial effort to develop 

a domain ontology (UCRD-Onto) that focus on representing the knowledge of residential design 

and the relevant requirements associated with human preferences with regard to and experience of 

the built environment. Comprehensive literature was performed among relevant studies, 

regulations, standards, and existing cases to acquire comprehensive domain knowledge for 

ontology development. Besides, the social media data was also explored using NLP to extract 

consumer terms to incorporate the viewpoints of layman users in ontology learning. In this chapter, 

the framework of UCRD-Onto mainly consists of four parts, including requirement-related concept, 

design-related concept, context-related concept, and measurement-related concepts, which can be 

described by nine main classes as occupant-user, activity, psychological comfort, physical comfort, 

residential design, standard & regulatory, project constraint, environmental constraint, and 

usability performance. The proposed ontology was evaluated using automated consistency 
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checking, criterion-based evaluation, and task-based evaluation in order to assess its ability to 

formally and explicitly represent the knowledge of user-centered residential design. As indicated 

in the evaluation results, the UCRD-Onto is consistent, correct, clarified, and comprehensive in 

capturing and describing relevant knowledge required in user-centered design for residential 

environments so that the knowledge could be shared and reused even by computer machines.  

Overall, the proposed ontology sheds new light on the knowledge-based decision support for user-

centered residential design. It provides a formal and shared vocabulary for the residential design 

domain, potentially dealing with coordination issues, inconsistencies, and communication between 

different entities (i.e., human and machines). Knowledge sharing and reuse among different parties 

and even computer applications can be promoted while the unnecessary misunderstanding caused 

by inconsistent terms and assumptions is eliminated. Moreover, UCRD-Onto also help facilitate 

the integration of residential design informatics systems to existing knowledge or information 

models in other domains. The development of UCRD-Onto, for instance, denotes a further step 

toward building information modelling (BIM) based computer-aided automatic built environment 

design by clearly describing the connections between design components and their associations 

with design factors (Yang et al., 2019). 

Despite its contributions, this study was subject to several limitations. First, the proposed UCRD-

Onto did not exhaustively acquire all knowledge of the residential design field since it is impossible 

to fully represent a domain of interest with a single ontology (Gruber, 1995; Guo & Goh, 2017). 

The ontology is heavily dependent on the reviewed documentation in this study. Besides, the 

current ontology is mainly for residential design; the future work of UCRD-Onto will be focused 

on extending other types of built environments, such as healthcare facilities and education buildings. 
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Moreover, many efforts in architectural engineering and computer science nowadays are being 

made to pursue the automation of architectural design (Akase & Okada, 2013; Sydora & Stroulia, 

2020); thus, the identification and representation of design knowledge is the most fundamental and 

critical issue that must be addressed to achieve design computation (Aksamija & Grobler, 2007). 

In this regard, additional effort will be required to integrate the proposed ontology with BIM tools 

to enable a more automated built environment context identification in perusing an automatic 

intelligent built environment design. 
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Chapter 5:  VR-BASED COLLABORATIVE DESIGN SUPPORT SYSTEM FOR 

CONSENSUS BUILDING IN BUILT ENVIRONMENT DESIGN4 

5.1 Introduction 

With the increasing amount of time people are spending indoors today, the design quality of the 

built environment has become an important factor in productivity and well-being (Ergan et al., 

2018). In this context, an emerging trend in design practice in recent decades within the architecture, 

engineering, and construction (AEC) domain has been the intensive collaboration between multiple 

stakeholders with different disciplinary backgrounds and experience in the design of communities 

and spaces (Luck, 2018). Effective collaboration in design decision-making is thus widely seen as 

a necessity based on the assumption that decisions made by stakeholders with diverse expertise 

will be higher in quality than those made by homogeneous stakeholders, especially when multiple 

stakeholders' interests must be accommodated (Singhaputtangkul & Zhao, 2016). For instance, 

collaboration in the design of a shared space in the built environment (e.g., the hallway of hospital) 

results in high design quality in that the various stakeholders (e.g., patient groups, healthcare staff, 

architects, and engineers) exchange knowledge and jointly define the project goals in order to reach 

a generally satisfactory solution (Elf et al., 2015). 

Within the domain traditional collective decision making—i.e., group decision-making (GDM)—

negotiation and collaboration have long been recognized as time-consuming processes, this being 

attributable to an ill-defined decision-making process, information asymmetry, the diverse 

disciplinary backgrounds of the negotiating partners, and conflicting interests between stakeholders 

 

 

4 A version of this chapter has been submitted to Automation in Construction. 
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(Bhooshan, 2017; Xue et al., 2009). These factors may cause mood decay among decision-makers, 

provoking frustration and apathy and leading to low-quality project outcomes, dissatisfaction 

among users, project delays, and higher costs (Elf et al., 2015). As a means of improving the 

efficiency of design collaborations in the building construction domain, many efforts have been 

directed toward the development of virtual collaborative platforms that remove the barriers in 

communication and understanding between disciplines (Zhang et al., 2020). Specifically, as they 

undergo rapid development and become increasingly affordable, virtual reality (VR) technologies 

are now playing a significant role in addressing these issues in collaborative design. The immersive 

and interactive experiences provided by VR in visualizing and representing the design model can 

help fulfill the need for mutual trust and provide a foundation for common understanding and 

successful collaboration among stakeholders. However, most existing VR-based collaborative 

systems are limited to the functions of visualization and data synchronization. There is a lack of 

moderator support from the GDM mechanism to facilitate an efficient collaborative design and 

negotiation process that ultimately results in an acceptable built environment design. 

As such, the consensus-based GDM method, which seeks reasonable agreement among all 

stakeholders in a given situation with respect to the various design alternatives and criteria, may be 

helpful as a means of building consensus and generating a satisfactory design solution (Wibowo & 

Deng, 2013). Although many theoretical models have been proposed for consensus-based GDM 

problems (Dong et al., 2018; Wu et al., 2018), there is little research applying such methods in 

building design collaboration (Singhaputtangkul & Zhao, 2016). In addition, little information is 

available concerning the application of consensus models integrated with VR as a decision support 

tool for collaborative design. To fill these gaps, this research proposes a VR-based collaborative 

design support system to help stakeholders develop acceptable design solutions with less time and 
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effort compared to current practice. The proposed collaborative design support system not only 

helps to address the comprehension and communication challenges encountered in the negotiation 

process in current practice by offering robust visualization and user-friendly interfaces for built 

environment design, but also provides an iterative and dynamic decision-making process that yields 

consensus-based design solutions rooted in meaningful collaboration after multiple rounds of 

negotiation and modification. 

The balance of this chapter is organized as follows. Section 5.2 reviews the literature pertaining to 

GDM methods and VR applications for design collaboration in AEC. In Section 5.3, the theoretical 

models adopted in this study to facilitate the consensus-based collaborative design process are 

presented. Next, in Section 5.4, a detailed illustration of the proposed collaborative design process 

featuring the VR-based collaborative design support system is presented, along with the system 

scheme. In Section 5.5, a test case applying the system is used to illustrate the manner in which a 

simple collaborative built-environment design problem is solved. Finally, Section 5.6 concludes 

by highlighting the research contributions and limitations. 

5.2 Literature Review 

5.2.1 GDM in Building Domains 

Design decisions within the building construction domain usually involve the mutual 

understanding, participation, and input of multiple stakeholders spanning different disciplines. It is 

a cooperative process where team members come together to resolve issues and achieve a high-

quality outcome. To improve the effectiveness of group decisions in the building sector, many 

computerized and IT-supported decision-making technologies have been proposed. For instance, 

Smith et al. (Russell-Smith et al., 2015) presented a decision support system to engage design team 
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members from different disciplines in assessing the sustainability of building designs and making 

further design decisions accordingly. Garbett et al. (2021) used AR and BIM technologies to 

develop a collaborative design platform that enables multi-user visualization and collaboration for 

construction project management. 

Moreover, Roupé et al. (2020) suggested that incorporating VR techniques in collaborative design 

systems facilitates interactive and collaborative design work with immediate feedback, thereby 

providing stakeholders with better understanding of, knowledge exchange with respect to, design 

problems. Similar collaborative design systems have also been proposed in the form of virtual 

design studios (Pektaş, 20  ) and Internet-based collaboration systems (Xue et al., 2012). 

Underlying the development of these collaboration tools has been a recognition of the importance 

of providing stakeholders with a shared platform for real-time communication where stakeholders 

can access information, data, and knowledge without being constrained by geographic location (Du 

et al., 2018). 

Negotiation (i.e., consensus-building), meanwhile, as a critical collaborative decision-making 

behaviour, is recognized as time-consuming due to stakeholders' multiple preferences, intentions, 

and pay-off threshold. To manage conflicting interests in collaborative decision-making, many 

consensus support methods have been developed to help reach an acceptable level of agreement. 

For example, Arroyo et al. (2016) adopted the method, choosing by advantages (CBA), to facilitate 

collective decision-making in sustainable building design. The method they proposed was found 

to facilitate consensus-building and yield a solution with higher satisfaction compared to 

conventional methods. Chen et al. (2021) proposed a negotiation-based system to guide the 

consensus-building process for construction-contractor selection in such a manner that the final 

decision would be mutually acceptable to expert stakeholders, arguing that such a negotiation 
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support system can help decision-makers to efficiently and effectively pursue their interests 

throughout the negotiation process even amid conflicting goals. In addition, the assumption that 

stakeholders tend to withhold their opinion in order to avoid disagreement has also been identified 

as a major issue in collaborative decision-making that results in poor group decision outcomes 

(Singhaputtangkul & Zhao, 2016). Researchers have suggested in this regard that the application 

of consensus schemes may mitigate this problem by promoting an effective discussion process 

within the group and reducing divergence of opinions (Parreiras et al., 2012; Singhaputtangkul & 

Zhao, 2016). The consensus scheme has been adopted by researchers to facilitate GDM in building 

envelope design (Singhaputtangkul & Zhao, 2016) and project management (Elbarkouky & Fayek, 

2011). In these studies, the consensus scheme was shown to aid decision-makers in openly 

discussing issues and addressing matters of conflicting interest during the decision-making process 

and in systematically reviewing and refining their design preferences to minimize divergent 

opinions among decision-makers. 

Although negotiation and consensus support mechanisms have been widely studied within the 

building domain, consensus-building processes specifically within the context of collaborative 

built environment design have not been addressed in previous studies. Compared to construction 

management and engineering design, built environment design has a unique context with more 

diverse backgrounds in design and negotiation knowledge being represented among the 

stakeholders. This underscores the need for a more straightforward approach to facilitating the 

negotiation process, i.e., providing clear instruction to guide decision-makers toward a consensus 

state and more user-friendly human–computer interactions by which for decision-makers who are 

not from an architectural background to better understand and communicate design decisions. 
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5.2.2 VR for Design Collaboration 

Effective collaboration among colleagues and other professionals in the early building design 

phases is crucial for the final project design and delivery. In this regard, the rapidly expanding body 

of knowledge on virtual collaborative design points to the growth of multi-user virtual environment 

research (Koutsabasis et al., 2012). VR has received considerable attention in the AEC industry in 

recent decades for its ability to provide multisensory 3D environments that immerse the user in a 

virtual world, thereby helping to fulfill the high demand for visual forms of communication 

supporting the design, engineering, and construction of the built environment (Kim et al., 2013). 

As an immersive and interactive design review medium, VR allows participants to feel as though 

they are physically present in the environment being represented virtually, giving them a sense of 

scale. It allows users to gain clear insight into the various design alternatives in the early design 

stage and to make informed decisions, effectively eliminating potential errors or conflicts and 

ultimately increasing the likelihood of end-user satisfaction (Kumar et al., 2011; Shameri et al., 

2013). For this reason, VR-supported design studios that provide participants with dynamic spaces 

in which to engage in coordinated conjoined action, helping to offset the adverse effects of absence 

of collaborative local spaces, are becoming increasingly common (Zhang et al., 2020). 

A virtual design studio can be defined as a computer-generated, avatar-based virtual environment 

in which members of the design team can be virtually present interacting in the same space as 

anthropomorphic avatars represented in 3D virtual environment while they are physically distant 

(Koutsabasis et al., 2012). Researchers have asserted that this kind of VR platform is effective in 

promoting social relationships among collaborators (Kohler et al., 2011). Beyond the effectiveness 

of VR in exposing rich details and eliminating design misunderstandings, the benefits that the co-

presence of virtual avatars offers in terms of promoting creativity in architectural design have also 
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been noted by many researchers (Issa, 2000; Uribe Larach & Cabra, 2010). For example, Uribe 

Larach and Cabra (2010) used a game engine to set up a virtual discussion space replicating a 

meeting room for problem solving. Their results suggested that using co-present avatars makes 

direct interaction between the design and the participant feasible, effectively engaging participants 

in co-creation. This collaboration within the avatar-based virtual space was also found to be 

conducive to generating creative solutions. This result is consistent with the findings of Kohler et 

al. (Kohler et al., 2011). It can thus be concluded that the co-presence offered in the VR 

environment strengthens the sense of collaboration among team members, especially in terms of 

social aspects such as dependencies, encouragement, and mutual learning, compared to other forms 

of remote collaboration. 

However, the current VR-supported collaborative design system mostly emphasizes VR's 

visualization capability and providing a feeling of being present, whereas a systematic solution to 

leverage VR in group decision support to improve the efficiency and quality of collaborative design 

outcomes has yet to be explored. Thus, in the present research, a consensus-based group decision 

support method is integrated with VR design to facilitate collaborative design of the built 

environment. 

5.3 Theoretical Consensus Model of GDM in Built Environment Design 

A consensus-based theoretical model is proposed in this study to guide the consensus process of 

collaborative decision-making for built environment design. This consensus scheme is adapted and 

extended from the similarity- and proximity-based consensus model developed in Wu and Chiclana 

(2014) to enable its use in a multi-criterion decision making (MCDM) scenario as a way of arriving 

at a consensus solution with minimal preference adjustment. In the interest of completeness, the 
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relevant definitions and representation formats used in the model are briefly described in the 

following subsections. 

5.3.1 Preference relations 

In a collaborative design decision-making problem, a set of decision-makers (stakeholders) 𝐷 =

{𝑑1, … , 𝑑𝑠} need to determine their preferences (opinions) toward design elements 𝐶 = {𝑐1, … , 𝑐𝑚} 

for a set of design alternatives, 𝑋 = {𝑥1, … , 𝑥𝑛}. As illustrated below, each preference decision can 

be represented in a fuzzy MCDM model. 

Definition 1. 𝐺ℎ denotes a collection of fuzzy decision matrices given by stakeholder 𝑑ℎ, where 

there are 𝑛 alternatives under consideration for 𝑚 design elements. We define: 

𝑔ℎ = [

𝑔11 ⋯ 𝑔1𝑚
⋮ ⋱ ⋮
𝑔𝑛1 ⋯ 𝑔𝑛𝑚

] (5 − 1) 

where 𝑖 = 1,2, … , 𝑛 is the index of design alternative, 𝑗 = 1,2, …, m refers to the number of design 

elements, and, accordingly, 𝑔𝑖𝑗 represents the rating of alternative, 𝑖, against design element, 𝑗. If 

the rating, 𝑔𝑖𝑗 , is a set of triangular fuzzy numbers (TFNs), then it can be represented as 

(g𝑖𝑗𝑙 , g𝑖𝑗𝑚, g𝑖𝑗𝑢). 

This fuzzy MCDM model can be converted into a complementary preference relation among 

design alternatives using the method introduced in Lee (2005) for further consensus measurement. 

Definition 2. A complementary preference relation, 𝑃, denotes a stakeholder's preferences on a set 

of alternatives, 𝑋 = {𝑥1, … , 𝑥𝑛}. We define: 

𝑃 = (𝑝𝑖,𝑘)𝑛×𝑛
(5 − 2) 

𝑝𝑖𝑘 + 𝑝𝑘𝑖 = 1 (5 − 3) 
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where 𝑝𝑖𝑘 ∈ [0,1]  denotes the stakeholder's degree of preference for design alternative 𝑖  over 

design alternative 𝑗 

Definition 3. We let 𝑔𝑎 = (𝑔𝑎𝑙, 𝑔𝑎𝑚, 𝑔𝑎𝑢) and 𝑔𝑏 = (𝑔𝑏𝑙, 𝑔𝑏𝑚, 𝑔𝑏𝑢) be two TFNs representing 

the stakeholder's preference attitudes toward design alternative 𝑎  and 𝑏  with regard to one 

particular design element. In preference relation, 𝑃, then, the membership function, 𝜇𝑝(𝑔𝑏 , 𝑔𝑏), 

can represent the degree of preference of 𝑔𝑎 over 𝑔𝑏. We define: 

𝜇𝑝(A, B) =
1

2
(
(𝑔𝑎𝑙 − 𝑔𝑏𝑢) + 2(𝑔𝑎𝑚 − 𝑔𝑏𝑚) + (𝑔𝑎𝑢 − 𝑔𝑏𝑙)

2‖𝑇‖
+ 1) (5 − 4) 

where 

‖𝑇‖ =

{
 

 
(𝑡𝑙
+ − 𝑡𝑢

−) + 2(𝑡𝑚
+ − 𝑡𝑚

− ) + (𝑡𝑢
+ − 𝑡𝑙

−)

2
, 𝑖𝑓 𝑡𝑙

+ ≥ 𝑡𝑢
−

(𝑡𝑙
+ − 𝑡𝑢

−) + 2(𝑡𝑚
+ − 𝑡𝑚

− ) + (𝑡𝑢
+ − 𝑡𝑙

−)

2
+ 2(𝑡𝑢

− − 𝑡𝑙
+), 𝑖𝑓 𝑡𝑙

+ < 𝑡𝑢
−

 

𝑡𝑙
+ = 𝑚𝑎𝑥{𝑔𝑎𝑙, 𝑔𝑏𝑙}, 𝑡𝑚

+ = 𝑚𝑎𝑥{𝑔𝑎𝑚, 𝑔𝑏𝑚}, 𝑡𝑢
+ = 𝑚𝑎𝑥{𝑔𝑎𝑢, 𝑔𝑏𝑢},  

 𝑡𝑙
− = 𝑚𝑖𝑛{𝑔𝑎𝑙, 𝑔𝑏𝑙}, 𝑡𝑚

− = 𝑚𝑖𝑛{𝑔𝑎𝑚, 𝑔𝑏𝑚}, 𝑡𝑢
− = 𝑚𝑖𝑛{𝑔𝑎𝑢, 𝑔𝑏𝑢} 

Thus, the preference relation can be represented as 𝑃 = (𝜇𝑝(𝑔𝑎, 𝑔𝑏))𝑛×𝑛. 

5.3.2 Consensus model based on similarity and proximity measures 

If we obtain the complimentary preference relation, 𝑃, for each stakeholder, a typical consensus 

process comprises the following steps (S): 

S1. The moderator in GDM checks whether the level of consensus (agreement) among all 

stakeholders is sufficient. 

S2. If the level of agreement is sufficient, the consensus process stops, and the aggregation 

process is carried out (proceed to step 4). 
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S2. If the level of consensus is not sufficient, the moderator gives recommendations to the 

stakeholders to help them refine their opinions toward a consensus solution. 

S3. In consideration of these recommendations, the stakeholders change their preferences with 

respect to the design alternatives, and the next iteration of the consensus process begins (i.e., 

return to step 1). 

S4. The aggregation and selection process is carried out by calculating the collective group 

preference, and a final solution to the problem is determined. 

Wu and Chiclana (2014) proposed two kinds of measures, namely, similarity degree and the 

proximity degree, to reflect the level of agreement (consensus) among stakeholders with respect to 

feasible alternatives. Both measures convey the concept of similarity between stakeholders in a 

group; the former measures the relative similarity between pairs of stakeholders, while the latter 

quantifies how far each stakeholder is from the collective preference. Accordingly, the consensus 

model employed in the present study requires that the similarity and proximity measures be defined 

at four levels: (1) the design element level; (2) the design alternative level; (3) the pair of design 

alternatives level; and (4) the preference relation level. The consensus control processes and the 

minimum adjustment-based feedback mechanism must also be tailored to the context of multi-

criterion GDM problems to ensure an optimal solution that maximizes proximity to stakeholders' 

original preferences. 

Degree of similarity  

Definition 4. We let 𝑔ℎ and 𝑔𝑙 be two preference decision matrices provided by stakeholders 𝑑ℎ 

and 𝑑𝑙, respectively. Then, 𝑆𝐸𝑖𝑗
ℎ𝑙 denotes the degree of preference similarity with respect to the 

alternatives 𝑥𝑖, given design element 𝑗 (Wu & Chiclana, 2014). We define: 
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𝑆𝐸𝑖𝑗
ℎ𝑙 = 1 − 𝑑(𝑔𝑖𝑗

ℎ , 𝑔𝑖𝑗
𝑙 ) (5 − 5) 

where 𝑑(𝑔𝑖𝑗
ℎ , 𝑔𝑖𝑗

𝑙 ) denotes a distance function measuring the normalized distance between 𝑔𝑖𝑗
ℎ  and 

𝑔𝑖𝑗
𝑙 . Thus, the degree of similarity of stakeholder 𝑑ℎ with respect to design alternatives 𝑥𝑖 against 

design element 𝑗 relative to the other stakeholders in the group is calculated as: 

𝑆𝐷𝐸𝑖𝑗
ℎ =

∑ 𝑆𝐸𝑖𝑗
ℎ𝑙𝑚

𝑙=1,𝑙≠ℎ

𝑚 − 1
(5 − 6) 

where 𝑚 refers to the number of stakeholders in the group. 

Definition 5. We let 𝑃ℎ = (𝑝𝑖𝑘
ℎ ) and 𝑃𝑙 = (𝑝𝑖𝑘

𝑙 ) be two complementary preference relations with 

respect to a set of alternatives 𝑋 provided by stakeholders 𝑑ℎ  and 𝑑𝑙 , respectively. Then, 𝑆𝐷𝑖𝑘
ℎ𝑙 

denotes the degree of similarity between stakeholders 𝑑ℎ  and 𝑑𝑙  with respect to the pair of 

alternatives (𝑥𝑖, 𝑥𝑘). We define: 

𝑆𝐷𝑖𝑘
ℎ𝑙 = 1 − (𝑝𝑖𝑘

ℎ − 𝑝𝑖𝑘
𝑙 ) (5 − 7) 

Definition 6. The degree of similarity of stakeholder 𝑑ℎ  with respect to the pair of design 

alternatives (𝑥𝑖, 𝑥𝑘) relative to the other stakeholders in the group is calculated as: 

𝑆𝑃𝐴𝑖𝑘
ℎ =

∑ 𝑆𝐷𝑖𝑘
ℎ𝑙𝑚

𝑙=1,𝑙≠ℎ

𝑚 − 1
(5 − 8) 

Definition 7. The degree of similarity with respect to design alternatives 𝑆𝐴𝑖
ℎ denotes the degree 

of similarity of a given stakeholder with respect to design alternative 𝑥𝑖  relative to the other 

stakeholders in the group. We define: 

 

𝑆𝐴𝑖
ℎ =

∑ 𝑆𝑃𝐴𝑖𝑘
ℎ𝑛

𝑘=1

𝑛
(5 − 9) 
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Definition 8. The degree of similarity with respect to stakeholder preference 𝑆𝐷ℎ  denotes the 

degree of similarity of a given stakeholder with respect to the whole set of design alternatives 𝑋 

relative to the other stakeholders in the group. We define: 

𝑆𝐷ℎ =
∑ 𝑆𝐴𝑖

ℎ𝑛
𝑖=1

𝑛
(5 − 10) 

Accordingly, each stakeholder in a collaborative design decision-making scenario can be 

associated with a relative degree of importance, 𝑅𝑆𝐷ℎ , based on the degree of similarity 

determined as described above. We define: 

𝑅𝑆𝐷ℎ =
𝑆𝐷ℎ

∑ 𝑆𝐷𝑙𝑚
𝑙=1

(5 − 11) 

Degree of proximity 

The degree of proximity is a measure of the similarity between a given stakeholder's preference 

and the collective preference of all stakeholders in the group. To obtain collective stakeholder 

preferences, the degree of importance of the various stakeholders in the collaborative design 

decision-making process must first be considered. This importance is calculated by combining the 

relative degree of similarity and the associated degree of importance based on the stakeholders’ 

characteristics. For instance, the preference from the primary users of the built environment being 

designed or the stakeholders with comparably expansive design knowledge and experience may be 

assigned more weight in preference aggregation (Wu & Chiclana, 2014). 

Definition 9. 𝑊 denotes the degree of importance of the different stakeholders in design decision-

making as determined based on their relative degree of similarity, 𝑅𝑆𝐷, and associated importance 

degree 𝐴𝐼𝐷 based on their design experience, authority, or use priority of the space. We define: 
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𝑤 = 𝜂 ∙ 𝐴𝐼𝐷 + (1 − 𝜂) ∙ 𝑅𝑆𝐷 (5 − 12) 

∑𝐴𝐼𝐷ℎ = 1 

where 𝜂 > 0.5 indicates that the associated importance degree is given a higher weight than the 

relative similarity (i.e., 𝑅𝑆𝐷) in determining the stakeholder's degree of importance. Notably, for 

homogeneous collaborative design scenarios, the value, 𝜂 = 0, applies. 

Definition 10. Given a collection of preference decision matrices 𝐺 = {𝑔} for a set of stakeholders 

𝐷 = {𝑑1, … , 𝑑ℎ}  in a group, 𝑔𝑐  denotes the collective decision matrix with respect to design 

element, 𝑗, in design alternative 𝑖: 

𝑔𝑖𝑗
𝑐 =∑𝑤ℎ ∙

𝑚

ℎ=1

𝑔𝑖𝑗
ℎ (5 − 13) 

Definition 11. Accordingly, the collective preference relation 𝑃𝑐 = (𝑝𝑖𝑘
𝑐 )𝑛×𝑛 can be calculated as 

follows: 

𝑝𝑖𝑘
𝑐 = 𝑤1⊗𝑝𝑖𝑘

1  ⨁ 𝑤2⊗𝑝𝑖𝑘
2  ⨁. . .⨁ 𝑤𝑚⊗𝑝𝑖𝑘

𝑚 (5 − 14) 

where  𝑤𝑚 is determined based on Equation (12) above. 

Definition 12. We let 𝑔ℎ be decision matrices for design alternatives 𝑥𝑖 provided by stakeholders 

𝑑ℎ, and let 𝑔𝑐 be the collective decision matrix aggregated based on the group of stakeholders' 

respective decisions. Then, 𝑃𝐸𝑖𝑗
ℎ  denotes the degree of proximity of stakeholders, 𝑑ℎ, with respect 

to design alternatives, 𝑥𝑖, given design element, 𝑗. We define: 

𝑃𝐸𝑖𝑗
ℎ = 1 − 𝑑(𝑔𝑖𝑗

ℎ , 𝑔𝑖𝑗
𝑐 ) (5 − 15) 
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Definition 13. Given the collective preference relation, 𝑃𝑐 , and the complementary preference 

relation, 𝑃ℎ, on the part of stakeholder, 𝑑ℎ, 𝑃𝑃𝐴𝑖
ℎ measures the degree of proximity of stakeholder, 

𝑑ℎ, to the group with respect to the pair of design alternatives (𝑥𝑖, 𝑥𝑘). We define: 

𝑃𝑃𝐴𝑖𝑘
ℎ = 𝑆𝐷(𝑝𝑖𝑘

ℎ , 𝑝𝑖𝑘
𝑐 ) (5 − 16) 

Definition 14. The degree of proximity with respect to design alternatives, 𝑃𝐴𝑖
ℎ , refers to the 

degree of proximity of stakeholder, 𝑑ℎ, to the group with respect to design alternatives, 𝑥𝑖. We 

define: 

𝑃𝐴𝑖
ℎ =

∑ 𝑃𝑃𝐴𝑖𝑘
ℎ𝑛

𝑘=1

𝑛
 (5 − 17) 

Definition 15. The degree of proximity for stakeholder preference relation, 𝑃𝐷ℎ, is the degree of 

proximity of stakeholder, 𝑑ℎ, to the group with respect to the set of design alternatives, 𝑋, which 

is calculated as: 

𝑃𝐷ℎ =
∑ 𝑃𝐴𝑖

ℎ𝑛
𝑖=1

𝑛
 (5 − 18) 

All of the above measures, including those related to the degree of similarity, are defined for the 

scenario with complete preference relations. 

Consensus control mechanism 

The degree of similarity and degree of proximity measures having been defined, the degree of 

consensus among stakeholders must also be defined at four levels as noted above, namely, the 

design element level, the pair of design alternatives level, the design alternatives level, and the 

stakeholder preference relation level. 

Definition 16. Consensus level on the design elements (𝐶𝐿𝐷𝐸) denotes the consensus level of 

stakeholder 𝑑ℎ with respect to design alternatives, 𝑖, given design element, 𝑗. 
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𝐶𝐿𝐷𝐸𝑖𝑗
ℎ = 𝜓 ∙ 𝑆𝐷𝐸𝑖𝑗

ℎ + (1 − 𝜓) ∙ 𝑃𝐸𝑖𝑗
ℎ  (5 − 19) 

Definition 17. Consensus level on the pairs of design alternatives (𝐶𝐿𝑃𝐷𝐴) denotes the level of 

consensus of stakeholder 𝑑ℎ with respect to the pair of design alternatives, 𝑖 and 𝑘. We define: 

𝐶𝐿𝑃𝐷𝐴𝑖𝑘
ℎ = 𝜓 ∙ 𝑆𝑃𝐴𝑖𝑘

ℎ + (1 − 𝜓) ∙ 𝑃𝑃𝐴𝑖𝑘
ℎ  (5 − 20) 

Definition 18. Consensus level on the design alternatives (CLDA) denotes the level of consensus 

of stakeholder 𝑑ℎ with respect to design alternative, 𝑖. We define: 

𝐶𝐿𝐷𝐴𝑖
ℎ = 𝜓 ∙ 𝑆𝐴𝑖𝑘

ℎ + (1 − 𝜓) ∙ 𝑃𝐴𝑖
ℎ (5 − 21) 

Definition 19. Consensus level on the stakeholder preference relation (CL) denotes the level of 

consensus of stakeholder 𝑑ℎ with respect to design alternative, 𝑖. We define: 

𝐶𝐿ℎ = 𝜓 ∙ 𝑆𝐷ℎ + (1 − 𝜓) ∙ 𝑃𝐷ℎ  (5 − 22) 

where 𝜓 ∈ [0,1] is a parameter that controls the weights of both the similarity and proximity 

criteria. To reach a consensus solution, 𝐶𝐿 should exceed the minimum satisfaction threshold, 𝛾. It 

should be noted that the likelihood of reaching full agreement in collaborative design decisions is 

rather low, which means the threshold value of consensus 𝛾 < 1. In addition, in most cases, as long 

as consensus is achieved among more than half of the decision-makers, the design decision may be 

considered acceptable. Thus, the threshold value could be more specifically defined to be within 

the range of 𝛾 ∈ [0.5,1). 

Minimum adjustment cost feedback mechanism 

The purpose of the feedback mechanism is to provide stakeholders who do not satisfy the degree 

of consensus criteria with easy-to-follow recommendations intended to result in a higher level of 

consensus for the final design decisions (Alonso et al., 2010). Conventional feedback mechanisms 

usually assume a fixed feedback parameter at the outset without considering the cost of stakeholder 
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preference adjustment. To help maintain proximity to the original design preferences of 

stakeholders and minimize the need for adjustment, a minimum adjustment cost feedback 

mechanism is used in this study (Wu et al., 2018).  

Generally, the feedback mechanism consists of two sub-modules: the first identifies the preference 

values that need to be modified, while the second generates recommendations with feedback 

parameters. In the first module, a two-stage process is used to identify any inconsistent stakeholders, 

𝑑ℎ, and design alternatives, 𝑖, that are lower than the threshold value of consensus level, 𝛾. 

S1. Stakeholders who should modify their preferences are those whose preference relation 

consensus level is lower than the threshold value, 𝛾, i.e., 

𝐼𝑁𝐷 = {ℎ|𝐶𝐿ℎ < 𝛾}  (5 − 23) 

S2. For the stakeholders identified in Step 1, their design alternatives with a consensus level 𝐶𝐿𝐷𝐴𝑖
ℎ 

lower than the threshold, 𝛾, should be considered as candidates to be changed, i.e., 

𝐷𝐴𝐿𝑇 = {(ℎ, 𝑖)|ℎ ∈ 𝐼𝑁𝐷 ∧ 𝐶𝐿𝐷𝐴𝑖
ℎ < 𝛾}  (5 − 24) 

S3. Finally, the design elements to be reviewed are those with a consensus index 𝐶𝐿𝐷𝐸𝑖𝑗
ℎ  under the 

threshold, 𝛾, i.e., 

𝐴𝑃𝑆 = {(ℎ, 𝑖, 𝑗)|(ℎ, 𝑖) ∈ 𝐷𝐴𝐿𝑇 ∧ 𝐶𝐿𝐷𝐸𝑖𝑗
ℎ < 𝛾}  (5 − 25) 

The feedback mechanism then presents the inconsistent stakeholder with recommended preference 

values as previously identified in 𝐴𝑃𝑆, which contains the new preference values will result in a 

higher degree of consensus. 
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Definition 20. For all (ℎ, 𝑖, 𝑗) ∈ 𝐴𝑃𝑆, the following recommendation is provided to the relevant 

stakeholders: "would you like to consider changing your degree of preference regarding design 

element 𝑗 in design alternatives 𝑖 to a value close to 𝑟𝑡𝑖𝑗
ℎ ." We define: 

𝑟𝑡𝑖𝑗
ℎ = (1 − 𝛿) ∙ 𝑔𝑖𝑗

ℎ + 𝛿 ∗ 𝑔𝑖𝑗
𝑐  (5 − 26) 

where 𝛿 ∈ [0,1] denotes a feedback mechanism parameter to control the degree of acceptance of 

recommendations. 

When 𝛿 = 1, the original preference is completely replaced by the collective one, while 𝛿 = 0 

means the original preference is kept unchanged. Thus, the larger the feedback parameter 𝛿 is, the 

greater the adjustment the stakeholder is recommended to make will be. Therefore, selecting a 

boundary parameter (𝛿𝑚𝑖𝑛) is an important issue in collaborative design decision-making problems 

of this nature. 

Following the optimal model of minimum adjustments established by Wu et al. (2018), the 

feedback mechanism parameter can be determined by solving the optimization below (Equation 5-

27). This optimization model seeks to minimize the changes between the adjusted preference 

decision, 𝑔𝑖,𝑗
ℎ , and the original preference decision, 𝑔𝑖,𝑗

ℎ , in addressing inconsistent opinions with 

respect to design element, 𝑗, in design alternative, 𝑖, held by stakeholder, 𝑑ℎ, while ensuring that 

both the adjusted preference relation and the unchanged one can satisfy the minimum consensus 

requirement, 𝛾. 

𝑚𝑖𝑛 ∑ 𝛿|𝑔𝑖,𝑗
ℎ − 𝑔𝑖,𝑗

ℎ′|

𝑖, 𝑗, ℎ∈𝐴𝑃𝑆

 (5 − 27) 

𝑠. 𝑡. {
𝐶𝐿(𝑔ℎ′) ≥ 𝛾

𝐶𝐿(𝑔𝑠) ≥ 𝛾
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It should be noted that the recommendation, 𝑟𝑡𝑖𝑗
ℎ , here is calculated into a set of fuzzy numbers. In 

keeping with the principle underlying the feedback mechanism that recommendations must be 

simple to understand and apply, the recommendation, 𝑟𝑡𝑖𝑗
ℎ , should be presented to stakeholders in 

the same manner as their preference input (i.e., in linguistic form). 

5.4 Integrated VR-based collaborative design system 

In building design, VR techniques have been widely used for design collaboration because of the 

notable representativeness of the design element options in exposing rich details and eliminating 

design misunderstandings (Zhang et al., 2020). To leverage the advantages of VR in facilitating 

GDM, an integrated framework of a VR-based collaborative design system (see Figure 5-1) is 

proposed to assist decision-makers in reaching consensus and enhancing the efficiency of decision-

making in built environment design. 
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Figure 5-1. VR-based collaborative design system 

5.4.1 GDM process with the proposed system 

This VR-based collaborative design system is developed in accordance with the theoretical 

consensus model presented in Section 5.3.2. First, it allows users to comprehensively evaluate 

design element options in a VR environment. In contrast to the conventional catalogue selection or 

2D drawing method, the VR-based interface provides users with 3D spatial awareness and an 

effortless design engagement experience, which are critical for built environment design. Moreover, 
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users can rotate, tilt, and magnify a virtual product model from many angles within the VR platform. 

This institutive visualization and effortless maneuvering experience are also conducive to efficient 

communication among stakeholders and support the co-design experience. 

For each design element option, stakeholders assign preference-related linguistic variables, such 

as 'Like,' 'Dislike,' and 'Acceptable,' to denote their preference. These linguistic variables can be 

converted into TFNs, and a fuzzy decision matrix of design alternatives (i.e., fuzzy MCDM model) 

with all combinations of design element options can be generated for each stakeholder. Then, using 

the preference relation membership introduced in Section 5.3.1, a complementary preference 

relation is generated for each stakeholder, outlining their relative preferences toward each pair of 

design alternatives. 

Converting a fuzzy MCDM model into a complementary preference relation, rather than having 

the stakeholder make pairwise comparisons directly, is preferable as a way of (1) eliminating the 

workload associated with exhaustively assessing a great number of design alternatives with diverse 

combinations of design element options, and (2) allowing the decision-maker to examine each 

design element in a more detailed manner and consistently express their preference. It should be 

noted that, in this study, the degree of preference toward a given design alternative is assumed to 

be a weighted sum of the preference degree of design elements. This relative importance of design 

elements can be pre-determined by stakeholders based on personal experience. For instance, when 

there are three design elements, e.g., layout, style, and fixture selection, the stakeholder may 

determine their relative importance in influencing the final quality of a given design to be 30%, 

30%, and 40%. 
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By generating the preference relation, along with the fuzzy decision matrices, the system can then 

estimate the current consensus status by calculating each stakeholder's degrees of similarity and 

proximity relative to the group's preference. If the level of consensus among the stakeholders 

satisfies the predefined threshold, the system will designate a "soft consensus" status and proceed 

to the aggregation and selection phases. Meanwhile, with the associated importance weights of 

stakeholders with regard to their knowledge background or space usage frequency having been 

established, the collective overall preference values of design alternatives can be calculated using 

Equations (6-12) and (6-14). For a homogeneous GDM scenario in which the stakeholders share 

roughly the same design knowledge and space usage patterns, the impact of the associated degree 

of importance is considered negligible. Accordingly, the ranking of design alternatives can be 

obtained from this collective pairwise preference decision matrix, and the optimum consensus 

solution can be selected accordingly. 

On the other hand, stakeholders whose consensus level is lower than the minimum threshold are 

designated by the system as "inconsistent decision-makers" who may need to change their 

opinions/decisions in order for a consensus design solution to be reached. In such cases, the 

automatic feedback mechanism explores the extent to which inconsistent stakeholders need to 

modify their preferences in order for their consensus levels to satisfy the consensus threshold 

boundary at a minimal preference adjustment. By solving the minimum adjustment optimization 

model presented in Section 0, feedback mechanism parameters can be determined, and detailed 

recommendations can be generated accordingly for the given stakeholder(s). 

In a typical GDM situation, these recommendations are presented in a text form, such as "You 

should provide a preference value for design element [D1] in design alternative [No. 1] near 

(0.168, 0.418, 0.668)." Obviously, this form of feedback is not sufficiently detailed and persuasive 
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to communicate the pros and cons of design element options in such a way as to motivate 

stakeholders to refine their opinions toward the consensus, especially for stakeholders who do not 

have a background in architecture and thus may have limited spatial comprehension and may have 

difficulty fully understanding conventional architectural terms. In this regard, the proposed system 

leverages VR's ability to demonstrate different combinations of design element options when there 

are inconsistent design alternatives. Meanwhile, relevant design knowledge of the various design 

element options is provided to stakeholders in the VR interface. The system allows the stakeholder 

to re-evaluate the different design element options under the top three inconsistent design 

alternatives ranked based on the value of the consensus level on the design alternatives. This 

visualization-based system allows stakeholders to have a clearer view of the design decision-

making process by indicating the inconsistency, negotiation progress, and influence of the adjusted 

preference on the overall design. 

During consensus analysis, the system calculates the difference between the recommended 

preference and the stakeholder’s original preference using E uation (6-28). If the recommended 

preference is lower than the original preference, the system will direct the individual to lower their 

preference for this design element option; otherwise, the system will recommend to the given 

stakeholder that they raise their preference level. Once the stakeholder accepts the recommendation 

or makes other adjustments, the system will re-assign the preference matrices following the 

recommended value: 

𝑑𝑖𝑓𝑓 =
(𝑟𝑙 − 𝑔𝑟) + (𝑟𝑚 − 𝑔𝑚) + (𝑟𝑢 − 𝑔𝑢)

3
 (5 − 28) 

where 𝑟 and 𝑔 represent the recommended preference and the original preference with respect to 

the particular design element. 
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The system then repeats the previous steps, i.e., converting preference decision matrices into 

preference relations, calculating the current consensus level, and examining whether the consensus 

state satisfies the predefined requirement. It should also be noted that, if the predefined maximum 

number of iterations is reached or the stakeholder consensus levels are updated so that they fall 

within the tolerance value following two iterations (e.g., the difference of consensus degree 

between two iterations is less than 0.01), the consensus-based GDM process will be stopped to 

ensure GDM efficiency. 

5.4.2 System Scheme 

To support the collaborative decision-making process for built environment design as presented 

above, this study proposes a VR-based collaborative design prototype system. The system is 

programmed and fully implemented using a tech stack with game development engines, software 

development kits (SDKs) for specific VR hardware, and database tools. Given that there are various 

different functions and tasks to be performed, the system is designed in the form of a series of 

modules: (1) a visual interface (VR module), (2) a computation and analysis (computing) module, 

and (3) a data storage module. This structure makes it relatively straightforward to upgrade the 

system in a targeted manner by applying changes only to a particular module as needed. Figure 2 

illustrates the schema underlying the VR-based collaborative design system and the interactions 

among modules. 
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Figure 5-2. Schema underlying the VR-based collaborative design system 

VR module 

The VR module is the starting point for implementation of the proposed system, as this module 

governs stakeholder access to the system. This module is developed within a game engine (i.e., 

Unity, which is also used in the application example presented below), with the support of OpenVR 

SDK to enable the interactions and maneuvering by VR hardware. This module collects the 

stakeholders' preferences with respect to the design element options and design alternatives and 

feeds back the recommendations generated by the consensus model. Stakeholders can even review 

relevant information related to the design development, such as daylight perception, as in the 

example shown in Figure 5-3, which is also discussed in previous studies (Keshavarzi et al., 2021; 

Zhang et al., 2019). All of the information obtained by the system can be subsequently retrieved 

from the storage module. 
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Figure 5-3. Example of daylight condition simulation in a VR environment. 

To enable a multiple-user VR experience for timely GDM, a networking application programming 

interface (API), i.e., Photon, is incorporated to support networking. The stakeholders are 

represented in the cloud-based collaborative space in easily distinguishable colour-coded avatars 

and can communicate through voice chat. 

Computing module 

The computing module is the 'brain' of the VR-based collaborative design system, guiding the 

overall collective decision-making process. After obtaining the preference-related data collected in 

the VR interface, the computing module then calculates the consensus measures, analyzes the 

current consensus statistics, and generates the recommendations that are presented to stakeholders 

at the end of each consensus iteration. This computing module is implemented using the C# 

language, since C# is the primary language used by both the Unity and the MySQL server that 

works as a database server in this study. For each consensus iteration, the computations and 

recommendations are stored, along with the preferences expressed by the stakeholders, in a 

database; as such, the computing module must be able to communicate with the storage module. 

Once all the computations have been carried out, the information concerning the consensus 

progress is sent to the stakeholders, and, if necessary, stakeholders are prompted by the system to 
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initiate a new consensus iteration. In other words, this module automates most of the tasks typically 

executed by the moderator in traditional GDM. 

Storage module 

The storage module is developed (using the MySQL database) to store, retrieve, and manage all of 

the information produced by the system (and that the other two modules will need during the 

consensus-based decision-making process). Moreover, relevant design knowledge is also stored in 

the database to support informed design decision-making. In this way, the decision-maker can 

easily explore product information and refer to previous cases to ensure evidence-based built 

environment design. Data are stored in a relational database, as illustrated in the simplified entity 

relation in Figure 5-4. 

  

 

Figure 5-4. Main entity relation in the storage module database. 
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5.5 Test Case Application 

This section presents a test case example of applying the VR-based collaborative design system to 

solve a simple collaborative decision-making problem for built environment design. The aim here 

is to assist a group of stakeholders in determining the optimum kitchen design from a set of 

alternatives based on their preferences. The design alternatives are generated through an exhaustive 

combination of various design element options. The kitchen design alternatives in this example are 

defined in terms of four design elements: layout (3 options), design style (3 options), cabinet colour 

style (4 options), and flooring material (2 options). Given that there are multiple options available 

for each design element as shown in Table 5-1, 72 different design alternatives, each a unique 

combination of design element options, can be obtained.  

Table 5-1. Design elements options 

D1: Layout D2: Design Style D3: Cabinet Colour 

Style 

D4: Flooring Material 

Galley kitchens (GK) Traditional (TDS) White (WC) Ceramic Tile (CF) 

L-shaped kitchens 

(LK) 

Contemporary (CS) Grey (GC) Timber (TF) 

U-shaped kitchen (UK) Transitional (TS) Brown (BC) 
 

  
Beige (BEC) 

 

 

In the case application, three participants, referred to as stakeholders (𝑑1, 𝑑2, 𝑑3) were invited to 

engage in a collaborative design task. Each participant wore a head-mounted VR display device, 

two of them being Oculus Quest 2 headsets and the other an HTC Vive Pro headset. The headsets 

were linked to a computer with the following technical specifications: Intel(R) Core i7-11700KF 

processor, NVIDIA GeForce RTX 3080. During the test case, the participants were asked to 

indicate their degree of preference of various design element options using a linguistic scale, i.e., 
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'Like', 'Acceptable', and 'Dislike', and these were then converted into TFNs in the system as (0.5, 

0.75, (1), (0.25, 0.5, 0.75), and (0, 0.25, 0.5), respectively [416]. For simplicity, a 3-level 

granularity fuzzy term set was used to represent the different levels of satisfaction with the various 

design element options. As proposed by Bonissone and Decker (1986), participants were presented 

with three different linguistic scales to choose from (based on their design knowledge and 

experience) for expressing their preferences: a 5-level scale, a 7-level scale, and a 9-level scale. In 

this case, stakeholders 𝑑2  and 𝑑3  had more design experience than stakeholder 𝑑1 , and it was 

assumed that 𝑑2, as the primary user of this space, would spend a longer time in this designed space 

than the other stakeholders; thus, the associated importance degrees were objectively assigned to 

these three stakeholders as 𝐴𝐼𝐷1 = 0.15, 𝐴𝐼𝐷2 = 0.5, 𝐴𝐼𝐷3 = 0.35  by the researcher for 

illustration purpose. In addition, the importance of the design element in affecting the design 

alternative selection was homogenously assigned for the three stakeholders as [0.3, 0.3, 0.2, 0.2] 

for the four design elements. For the consensus-based decision-making model, this test case 

assumed the following parameters to control the process: similarity–proximity parameter, 𝜓 = 0.5, 

importance parameter 𝜂 = 0.5, and consensus threshold 𝜆 = 0.9. 

In the section below, the perspective of stakeholder 𝑑1 is taken in describing how the stakeholders 

performed a collaborative kitchen design with the guidance of the VR-based collaborative design 

system; the procedure was similar for the other participants. 

5.5.1 Collective kitchen design: First round 

Once stakeholder 𝑑1 had logged in to the system, they were required to indicate preferences for 

various design element options after reviewing the basic room information and design guidelines, 

as illustrated in Figure 5-5.  
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Figure 5-5. GUIs of the system when stakeholders log in and give preference to design element 

options 

The preference decision matrix for stakeholder 𝑑1—and the same applies to the other two 

stakeholders—is provided in the expression below, which can be expressed in the form of fuzzy 

MCDM models and converted into the complementary preference relation among the 72 design 

alternatives. 

  𝐺1 =

𝐷1 𝐷2 𝐷3                      𝐷4

[

{𝐺𝐾, (0.5,0.75,1)}

{𝐿𝐾, (0,0.25,0.5)}

{𝑈𝐾, (0,0.25,0.5)}

{𝑇𝐷𝑆, (0.5,0.75,1)}

{𝐶𝑆, (0,0.25,0.5)}

{𝑇𝑆, (0,0.25,0.5)}

{𝑊𝐶, (0.5,0.75,1)}

{𝐺𝐶, (0,0.25,0.5)}

{𝐵𝐶, (0.5,0.75,1)}

{𝐵𝐸𝐶, (0,0.25,0.5)}

{𝐶𝐹, (0.5,0.75,1)}

{𝑇𝐹, (0,0.25,0.5)}]
 

  𝐺2 =

𝐷1 𝐷2 𝐷3                      𝐷4

[

{𝐺𝐾, (0,0.25,0.5)}

{𝐿𝐾, (0.25,0.5,0.75)}

{𝑈𝐾, (0.5,0.75,1)}

{𝑇𝐷𝑆, (0,0.25,0.5)}

{𝐶𝑆, (0,0.25,0.5)}

{𝑇𝑆, (0.5,0.75,1)}

{𝑊𝐶, (0,0.25,0.5)}

{𝐺𝐶, (0.25,0.5,0.75)}

{𝐵𝐶, (0,0.25,0.5)}

{𝐵𝐸𝐶, (0.5,0.75,1)}

{𝐶𝐹, (0.25,0.5,0.75)}

{𝑇𝐹, (0,0.25,0.5)} ]
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  𝐺3 =

𝐷1 𝐷2 𝐷3                      𝐷4

[

{𝐺𝐾, (0,0.25,0.5)}

{𝐿𝐾, (0.5,0.75,1)}

{𝑈𝐾, (0.5,0.75,1)}

{𝑇𝐷𝑆, (0,0.25,0.5)}

{𝐶𝑆, (0.5,0.75,1)}

{𝑇𝑆, (0.5,0.75,1)}

{𝑊𝐶, (0.25,0.5,0.75)}

{𝐺𝐶, (0.25,0.5,0.75)}

{𝐵𝐶, (0,0.25,0.5)}

{𝐵𝐸𝐶, (0.5,0.75,1)}

{𝐶𝐹, (0.5,0.75,1)}

{𝑇𝐹, (0,0.25,0.5)}]
 

Based on the preference relations, the computing module then estimated the consensus level for 

each stakeholder as 𝐶𝐿1 = 0.88, 𝐶𝐿2 = 0.93, 𝐶𝐿3 = 0.92. This consensus degree was returned to 

the individuals in the VR interface so that they could easily capture the current consensus status 

(see Figure 5-6a). As can be seen, stakeholder 𝑑1 did not meet the consensus threshold requirement 

(i.e., 𝜆 = 0.9). Thus, the system's feedback mechanism designated stakeholder 𝑑1 as inconsistent' 

and started proceeding to the step of generating recommendations. Before creating specific 

recommendations for stakeholder 𝑑1 , the computing module solved the minimum adjustment 

optimization models in order to obtain the feedback mechanism parameter. It was found that, when 

𝛿 = 0.87, the consensus degree of stakeholder 𝑑1  would satisfy the threshold, i.e., 0.9, while 

minimizing the preference adjustment required of stakeholder 𝑑1. (All stakeholders, it should be 

noted, were represented in a virtual conference room throughout this consensus state analysis stage.) 

Once the feedback had been generated (see Figure 5-6b) and recommended preferences toward 

specific design element options presented (e.g., “Would you LOWER the preference for [Gallery 

Kitchen  near to Accept?”), the stakeholders exchanged thoughts on particular design element 

options and re-assessed the related design information in the database (Figure 5-6c). Moreover, the 

system retrieved the design features of the “inconsistent” design alternatives identified (see Figure 

5-6d), namely, design alternatives [No. 1], [No. 2], and [No. 5], for stakeholder 𝑑1 and allowed the 

stakeholder to change the design options so they could re-evaluate them in the inconsistent design 

setting (i.e., [No. 1], [No. 2], or [No. 5], see Figure 5-7). 
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Figure 5-6. GUIs of the system during the consensus analysis and feedback mechanisms. 

 

Figure 5-7. Re-evaluation of design element options in a VR environment. 

                                  R                                  

                        

                                                       

a) Change the design element D Layout from Galley to U shaped

b) Change the design element D  Flooring from Ceramic Tile to Timber
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5.5.2 Second collaborative design decision round 

After reviewing the feedback, Stakeholder 𝑑1 ultimately followed the recommendations for D1 and 

D2 while rejecting the recommendations for D3 and D4. Thus, in the new collaborative design 

round, the stakeholders’ preference matrices for the four design elements were updated as follows: 

  𝐺1 =

𝐷1 𝐷2 𝐷3                      𝐷4

[

{𝐺𝐾, (0.17,0.42,0.67)}

{𝐿𝐾, (0.24, 0.49,0.74)}

{𝑈𝐾, (0.33, 0.58,0.83)}

{𝑇𝐷𝑆, (0.17, 0.42, 0.67)}

{𝐶𝑆, (0.24,0.49,0.74)}

{𝑇𝑆, (0.33,0.58,0.83)}

{𝑊𝐶, (0.5,0.75,1)}

{𝐺𝐶, (0,0.25,0.5)}

{𝐵𝐶, (0.5,0.75,1)}

{𝐵𝐸𝐶, (0,0.25,0.5)}

{𝐶𝐹, (0.5,0.75,1)}

{𝑇𝐹, (0,0.25,0.5)}]
 

  𝐺2 =

𝐷1 𝐷2 𝐷3                      𝐷4

[

{𝐺𝐾, (0,0.25,0.5)}

{𝐿𝐾, (0.25,0.5,0.75)}

{𝑈𝐾, (0.5,0.75,1)}

{𝑇𝐷𝑆, (0,0.25,0.5)}

{𝐶𝑆, (0,0.25,0.5)}

{𝑇𝑆, (0.5,0.75,1)}

{𝑊𝐶, (0,0.25,0.5)}

{𝐺𝐶, (0.25,0.5,0.75)}

{𝐵𝐶, (0,0.25,0.5)}

{𝐵𝐸𝐶, (0.5,0.75,1)}

{𝐶𝐹, (0.25,0.5,0.75)}

{𝑇𝐹, (0,0.25,0.5)} ]
 

  𝐺3 =

𝐷1 𝐷2 𝐷3                      𝐷4

[

{𝐺𝐾, (0,0.25,0.5)}

{𝐿𝐾, (0.5,0.75,1)}

{𝐼𝐾, (0.5,0.75,1)}

{𝑇𝐷𝑆, (0,0.25,0.5)}

{𝐶𝑆, (0.5,0.75,1)}

{𝑇𝑆, (0.5,0.75,1)}

{𝑊𝐶, (0.25,0.5,0.75)}

{𝐺𝐶, (0.25,0.5,0.75)}

{𝐵𝐶, (0,0.25,0.5)}

{𝐵𝐸𝐶, (0.5,0.75,1)}

{𝐶𝐹, (0.5,0.75,1)}

{𝑇𝐹, (0,0.25,0.5)}]
 

The computing module returned the following current consensus level values, each of them 

satisfying the minimum threshold: 𝐶𝐿1 = 0.96, 𝐶𝐿2 = 0.96, 𝐶𝐿3 = 0.95.  As such, it can be 

concluded that the system successfully executed the selection and aggregation process. Design 

alternatives [No. 71], [No. 47], and [No. 72] were found to be the top three collaborative consensus 

design solutions considering all stakeholders' preferences, as shown in Figure 5-8. 
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Figure 5-8. Collaborative design solutions generated by the system. 

5.6 Conclusions and Future Work 

This study proposes an integrated framework of a VR-based collaborative design support system 

to facilitate collective decision-making for built environment design. This is the first study 

integrating a consensus scheme with a VR platform to leverage visualization, communication, and 

a) Design Alternative 7 

c) Design Alternative 72

b) Design Alternative  7
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GDM methods to assist stakeholders in obtaining acceptable design solutions in the early design 

stage. 

In the proposed framework, the consensus-building process is guided by both (1) the degree of 

similarity between every two stakeholders and (2) the degree of proximity between a stakeholder 

and the other stakeholders in the group. Furthermore, the system adopts a minimum adjustment 

feedback mechanism to generate personalized recommendations for inconsistent stakeholders that 

will assist them in satisfying the threshold value for group consensus while maximizing proximity 

between their original preferences and the consensus design choice during the negotiation process. 

This practice helps with achieving an acceptable compromise between group consensus and 

minimum preference adjustment. Meanwhile, the developed VR platform offers stakeholders a 

user-friendly collaborative environment that improves stakeholders' comprehension of spatial 

information and other related knowledge for better communication on collaborative-built 

environment design. Furthermore, with the support of the networking connection module, the 

collaborative VR platform also allows stakeholders to communicate their preferences without 

being physically present. This novel integration of the consensus model and VR technologies 

allows stakeholders to examine and clarify conflicting issues in collaborative design decision-

making and to minimize disparity between stakeholders' preferences with relative ease. 

From a practical perspective, the findings of this study contribute to achieving more effective 

collective decision-making among stakeholders in the design of shared spaces. From an academic 

perspective, this study expands the use of the consensus model in conjunction with VR techniques 

to cover decision-making issues in participatory-based built environment designs. In this way, this 

study contributes substantively to the body of knowledge on intelligent design collaboration in the 

virtual environment. However, this study is subject to the limitation that only one test case was 
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conducted to illustrate the application and feasibility of the VR-based collaborative design support 

system. As such, future research should evaluate the effectiveness of this system with more actual 

built environment design cases, specifically in terms of the efficiency of the system in facilitating 

consensus-building, human–computer interaction, and user-friendliness. In addition, the current 

consensus model assumes that stakeholders provide a complete preference relation and the same 

linguistic term sets to describe their preference attitudes toward design element options. However, 

in actual practice, decision-makers with different backgrounds and knowledge may provide their 

preferences using different linguistic term sets or incomplete matrices. Therefore, further research 

is required to investigate the scenario with multi-granular linguistic term sets and with uncertainty 

regarding the information in the preference decision matrices. 
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Chapter 6:   CONCLUSIONS  

6.1 Research Summary 

Understanding the interactions between occupants and built environments and implementing such 

knowledge into building design are strategies with high potential to improve user satisfaction and 

building performance in human-centered residential built environment design. However, the 

overwhelming volume of design information, the dynamic nature of decision-making, and the need 

to coordinate multi-disciplinary knowledge in design knowledge management pose significant 

obstacles to effective decision-making in human-centered residential design. To facilitate this 

knowledge-intensive HCD process, effective knowledge management can leverage design 

knowledge from multiple domains and data sources to support consistent and effective design 

decision-making for occupant-oriented built environment design. In this regard, this research 

proposes four integrated frameworks to optimize the knowledge management process—

encompassing knowledge explicitization, knowledge acquisition, knowledge representation, and 

knowledge communication—in support of effective knowledge-based design decision-making, as 

described in the above chapters. 

As described in Chapter 2, the first framework explores the feasibility of using machine learning 

to explicitly model the restorative quality of design alternatives, thereby providing decision support 

for proactive architectural design analysis. To achieve this goal, virtual reality (VR), design-of-

experiments (DOE), and machine-learning models are incorporated in the framework to facilitate 

the collection of human experience data, design feature selection, and affective modelling, 

respectively. Specifically, upon comprehensively identifying the influential design attributes on 

human perceived restorativeness, VR is employed to enable a controllable and validated 
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experimental environment for human–building experience data collection and to demonstrate 

various combinations of design attributes configured by the fractional factorial design. Four 

machine-learning models—GRNN, RBFNN, SVR, and FIS—are then used to develop models for 

predicting the restorative quality of a space based on human–building experience data collected 

from VR experiments. The results of this study indicate that the machine-learning model is capable 

of modelling the nonlinear relationship between design attributes and human affective experience; 

meanwhile, the GRNN model is found to outperform other machine-learning methods in predicting 

restorative experience. 

In Chapter 3, an integrated QFD-based framework for developing the KBDSS of human-centered 

residential design is proposed as the second framework in this research. The purpose of this 

framework is to gain understanding of the priorities underlying user requirements and match the 

appropriate design solution with the user's characteristics and preferences in a formalized and 

specific manner. To begin with, Gemba visits and social media analysis are conducted to 

comprehensively collect the knowledge regarding user requirements in built environments. Then, 

the Kano model is incorporated with clustering technologies to facilitate user segmentation based 

on occupants’ preferences with respect to particular requirements. Finally, using fuzzy analytic 

hierarchy process (AHP) analysis, a prioritized design specification for each user cluster can be 

generated based on the relative importance of occupant requirements in each user cluster and their 

associated correlations with design specifications. The prioritized design specifications can thus be 

regarded as a collection of indices for assessing the potential user satisfaction of various alternative 

design solutions. To illustrate the proposed framework and assess the validity of the KBDSS, a 

case study of a kitchen design for a multi-unit residential building (MURB) is presented, 

demonstrating the application of the developed prototype system. As suggested by the results of 
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the case study, the proposed KBDSS can effectively use the collected knowledge and relevant 

analytical models to support the decision-maker in making sound judgments. 

The third framework, described in Chapter 4, introduces the development of a domain ontology, 

UCRD-Onto, which formalizes user-centered residential design knowledge to support effective 

knowledge reuse and implementation in KBDSS. In this framework, Ontology 101 and 

METHODOLOGY are used to develop the ontology based on knowledge acquired from research 

reports, building codes and regulations, design cases, and the results of term extraction from social 

media data. This ontology covers the basic concepts involved in user-centered residential design, 

such as occupant, residential design, activity, physical comfort, psychological comfort, constraints, 

and usability performance, as well as the relations, properties, and axioms that define them. In 

addition, three ontology evaluation methods, i.e., automated consistency testing, criterion-based 

evaluation, and application evaluation, are adopted in this framework to assess the performance of 

ontology in terms of consistency and criteria, namely, clarity, correctness, completeness, coverage, 

and extendibility. 

The aims of the fourth framework of this research, described in Chapter 5, is to propose a 

collaborative built-environment design system that can consider all decision-makers’ opinions and 

guide a group of stakeholders toward consensus design solutions. In the proposed framework, VR 

technologies are incorporated with the group decision-making (GDM) consensus model to 

facilitate knowledge communication and the consensus-building process. Specifically, the multi-

user VR platform offers stakeholders a user-friendly collaborative environment that improves 

stakeholders' comprehension of spatial information and other related knowledge for better 

communication in collaborative built-environment design, even when the stakeholders are not 

physically present together. The consensus models in this framework analyze the degree of 
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similarity between every two stakeholders and the degree of proximity between a given stakeholder 

and the other stakeholders in the group in order to guide the negotiation process in an iterative, 

interactive manner. This proposed framework can aid stakeholders in reaching a decision that 

satisfies the threshold value for group consensus while remaining close to their original preferences 

during the negotiation process. 

6.2 Research Contributions 

This research proposes a framework that uses information techniques and analytical decision 

models to optimize knowledge management in human-centered residential built environment 

design decision-making. The primary contributions of this research, corresponding to the four 

frameworks described above, are summarized as follows: 

(1) A data-driven prediction model is developed in this research to explicitize the restorative 

quality of residential design alternatives based on design attributes, allowing the design 

practitioner to easily capture the affective quality of the design and further improve user 

satisfaction with the design, regardless of the designer’s experience, expertise, and 

subjective opinion. This prediction model lays a foundation for developing analytical 

models and tools to facilitate the decision-making process at the early design stage to ensure 

a built environment that gives due consideration to the emotional wellness of occupants. In 

addition, this work contributes to the body of knowledge on human–building interactions 

by introducing a VR–DOE-based method that optimizes the process of collecting human–

building experience-related data in order to provide a cost-effective and reliable dataset for 

affective modelling. 
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(2) A QFD-based KBDSS is developed to capture and manage knowledge related to occupant 

requirements and the associated design specifications. Using the proposed KBDSS, 

complex design assessment tasks for human-centered residential design can be simplified, 

from the overall design to the evaluation of specific quantifiable design criteria, thereby 

providing design practitioners with specific decision support and aiding in consistently and 

accurately assessing the quality of design alternatives. Meanwhile, this proposed system 

provides more refined design knowledge retrieval and implementation based on user 

segmentation, ensuring a higher degree of satisfaction among a wider crowd. The 

knowledge captured by this framework also helps design practitioners to better understand 

the factors governing the performance of particular design specifications and their effects 

on overall human-centered design (HCD) quality. 

(3) A domain ontology, UCRD-Onto, is developed in this research that focuses on representing 

the knowledge of residential design, constraints, and the relevant requirements associated 

with human preferences with respect to and experience of the built environment. This 

ontology provides a formal and shared vocabulary for the residential design domain to 

promote the sharing and reuse of knowledge among different parties, and deals with 

coordination issues, inconsistencies, and communication between stakeholders with 

different disciplinary backgrounds. By incorporating social media data into the ontology 

learning process, the perspective of non-professional users is also emphasized in this 

ontology in order to facilitate the informational needs of design practitioners with varying 

levels of expertise. 

(4) A VR-based collaborative design support system is developed in this research that 

facilitates negotiation and knowledge communication for collaborative decision-making in 
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built environment design. This is the first study integrating a consensus scheme with a VR 

platform to leverage visualization, communication, and GDM methods in order to assist 

stakeholders in arriving at acceptable design solutions in the early design stage. This work 

not only allows stakeholders to achieve more effective collective decision-making in the 

design of shared spaces; but also extends the applicability of the consensus model by 

incorporating VR techniques to cover decision-making issues in participatory-based built 

environment design. 

6.3 Limitations and Future Research 

Notwithstanding these contributions, there are opportunities for further work in this area as 

summarized below: 

(1) More advanced data collection methods could be used to increase the quantity and quality 

of data for knowledge creation and acquisition. For instance, in the present research, the 

data on the implicit human experience of the built environment was collected using a self-

reported psychometric scale. The incorporation of objective human physiological response 

measures, such as electrocardiogram (ECG), electroencephalogram (EEG), skin 

conductance (SC), or blood oxygen, in future research would be of great help in eliminating 

the potential biases in self-report assessments and in better understanding the complex 

interaction between the built environment and human experience. Moreover, factors related 

to human–building interactions, such as personality, cultural differences, and dynamic 

needs of occupants, should also be explored in future studies to provide more intelligent 

decision-support. 
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(2) Further validation of proposed frameworks and systems in actual residential design 

scenarios should also be undertaken, wherein the quality of HCD, measured using either 

predictive models or KBDSS in this research, could be analyzed based on architect 

feedback and post-occupancy evaluation. This validation would also assist in calibrating 

the proposed models, improving their ecological validity, i.e., the degree to which proposed 

models accurately reflect the relevant interactions in a real-world setting. 

(3) The present research is limited to the residential built environment. An extended application 

to other building types, such as healthcare facilities, office buildings, and educational 

buildings is highly recommended as an avenue of future study as a way of establishing a 

robust knowledge management and decision support framework for HCD that is generically 

applicable to any built environment. 

(4) The decision-making models developed in this research (i.e., fuzzy AHP in the second 

framework and the consensus model in the fourth framework) assume that decision-makers 

provide a complete judgment and the same linguistic term sets to describe their attitudes 

toward different decision alternatives. However, in actual practice, decision-makers with 

different backgrounds and knowledge may provide their judgments using different 

linguistic term sets or incomplete matrices. Therefore, further research is needed to 

investigate decision-making scenarios involving multi-granular linguistic term sets and 

with uncertainty regarding the information in the decision matrices. 

(5) Notable assumptions in the development of the first and fourth frameworks (Chapters 2 and 

5) are that (1) VR models can provide adequate representations of the physical environment, 

and (2) the sense of presence provided by VR models provides sufficient emotional and 

physical stimulus to participants. To improve the accuracy of the information and design 
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knowledge collected from VR-based methods, the VR display platform and configuration 

should also be incorporated as variables in the analysis in future work. 
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