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Abstract

Advancements in instrumentation and computer techniques allow modern industrial
plants to collect and store a large number of measurements in a database. These
databases contain extremely useful information about processes and are usually anal-
ogous to a “gold mine”. However, without efficient tools, little information can be
extracted from these database. Recently, some multivariate statistical tools, such as
Principal Component Analysis (PCA) and Partial Least Squares (PLS) have become
popular data mining tools.

Unlike the traditional univariate statistical process control tools, multivariate sta-
tistical analysis methods take the correlation between variables into account and
study many variables simultaneously. The original variables are usually projected
into subspace through some dimension-reduced methods. The latent variables in the
reduced dimensional space are then utilized to extract useful information about a
process. The main objective of this thesis is to investigate these multivariate analysis
tools (PCA and PLS) and their practica! applications. The method of using PCA
for statistical process monitoring is illustrated through a simulated flow rate system.
Recursive PCA approach is implemented in a pilot scale plant. An empirical dynamic
PLS model is built based on a industrial data set. A root cause diagnosis strategy
is presented by taking advantage of PLS weighting vector. The multiscale monitor-
ing strategy which extends the suitability of PCA for SPM based on autocorrelated

measurements is demonstrated through a simulated example.



To My Parents



Acknowledgements

I would like to thank my supervisor Dr. Sirish Shah for his excellent and enthusiastic
guildance and great support during the entire course of this research. His broad
knowledge and deep understanding in the research area led me into the field of process
control.

I would like to thank Professors Shah, Huang, Forbes, Chen, Marquez, Wiens for
being excellent teachers. It is from them that I learned not only the fundamentals
of process control and statistics, but also the methods and tools to carry out my
research. Thanks to Jame Kresta for providing industrial data and great help during
the course of applying statistical theory into practice. Thanks to Arun for teaching
me wavelets, which expanded my research area greatly. I am also indebted to Bob,
Jack and Walter for their help with computer and lab equipment.

I am really fortunate to pursue my degree in the CPC group at the U of A. I
had a wonderful time in the past two years in this wonderful group. Arun, Lanny,
Dongguang, Camron, Dan, Yale, Jie, Xin, Weihua, Huilan, Bushan, Ramish, Sachin,
Shoukat, all of you have been such wonderful friends. Many original ideas were
generated from the goup seminiar and free discussion with you. It is all of you that
make the CPC group such a good place to stay.

Thank my wife Man Liu for her support, patience, understanding and encourage-
ment during the course of pursuing my degree. This research cannot be done without
her love.

Thank the Faulty of Graduate Study and Research and the Natural Science and
Engineering Research Council of Canada for their financial support.



Contents

1 Imntroduction

1.1 Multivariate Statistical Process Control . . . . . . ... ... ... ..
1.2 OrganizationoftheThesis . . . . . ... ... .............

Basic Theory of Multivariate Statistical Process Control

21 Imtroduction . . . . . . ... ... ¢ e

2.2 Univariate Statistical Control Charts . . . . . ... ... .......

2.3 Principal Components Analysis . .. ..................
231 PCAAlgorithm . .. .......... ... ... .......
2.3.2 Optimal Dimension of a PCAModel . ... ... .......
2.3.3 PCA for Multivariate Statistical Process Control (MSPC)

24 Partial Least Square . ... ......... ... ... ... ...
241 PLSAlgorithm ... ........ ... ... . . ......
2.4.2 Nonlinear and Dynamic PLS Model . . . . . . ... ... ...

2.5 ConcluSionS . . . . . v i e e e e e e e e e e e e e e e e e e e e e e

PCA in Statistical Process Monitoring— A Simple Example
31 Imtroduction . . . . . . . . . ...t it e e
3.2 Buildingof PCAModel. . . .. ... ... ... . ... .. .....
3.3 Sensor Fault Detection . . . ... ....................
3.3.1 Abrupt Sensor Fault Detection . .. ..............
3.3.2 Ramp-type Sensor Failure Detection . ... ..........
3.4 Limitations of PCAModelforSPM . . . ... ... ... .. .....
3.5 Assembly of the measurement matrix . . .. ..............
36 MinorComponents . . . .. ... ...ttt ittt nn

[ I

co 00 v W b

11
12
14
14
18
19



37 ConcluSIon . . . . v v v o e e e e e e e e e e e e e e e e e e e e e e e e

4 Recursive PLS and PCA
41 Introduction . . . . . . .« o o i i i i it e e e e e e
42 Recursive PLS . . . . . . . . . . . i e e e
43 Recursive PCA . . . . . . . . . . i e
44 Applying RPCAtoaCSTHSystem. . ... ... ...........
45 AnalysisandConclusions. . . . . ... .. .. .. ... .......

5 Industrial Data Analysis
51 Imtroduction . . .. ... .. ..
52 Problem Description . . .. ... ... .. ... ... ..o ...
53 DataPreprocessing. . . . . . .. ...t i it
54 VariableSelection . . . . . . . . .. .. ... oo
55 PLSmodeling . . ... ... ... ... ... ..
5.6 Dynamic PLSmodeling . ........................
57 RootCauseDiagnosis. . . ... ... .. ... ... ..........
5.8 ConcludingRemarks . . ... ...... ... ... .. ........

6 MSPCA-Combination of Wavelets with PCA
6.1 Imtroduction . . .. .. ... .. ... . i e
6.2 IntroductiontoWavelets . . . . . .. ... ... ... ... ...,
6.3 Statistical Assumptionof SPEandT? . ... ... ... .......
6.4 Combining Wavelets with PCA-MSPCA . . . ... ... ... ....
6.5 MSPCA for Dynamic Process Monitoring-A illustrated Example .

6.6 Conclusion & Discussion . . . . . . . . .t i i i i ittt e e e

7 Conclusions
7.1 Contributionsofthesis . . . . . . . . . . . . o i i i i et
72 PFuature Work . . . . . . o i i i e e e e e e e e e e e e e e e e e e e

Bibliography

A Color Figures in Thesis

39
39
39
43
47
50

55
95
59
87
59

67
71
79

80
80
81

85
88
91

93
93
95

97

103



List of Figures

2.1 Correlation between the steamn demand and the boiler fuel flow. .
2.2 A schematic diagram of PLS regression procedure. . . .. .. ... ..

3.1 Configuration of flow ratesystem .. ... ... ... .........
3.2 Snapshot of flow rate measurements . . . . . . ... ... .......
3.3 Eigenvalues of covariancematrix. . . . . . ... ... ... ......
3.4 Two PCs can capture 99% of information in the system. . . ... ..
3.5 The SPE plot for the normal operationdata. . ... .........
3.6 Hotelling T2 chart for the normal operation data. . ... .. ... ..

3.7 Measurements of flow rates with sensor failure between 300-400. . .

3.8 Hotelling 7? monitoring chart for the system with abrupt sensor failure.

3.9 SPE chart for the system with abrupt sensor failure ... ... ...
3.10 SPE contribution plot at sample isntant 398 (Abrupt sensor fault). .
3.11 The measurements for flow rates with incipient sensor fault. . . . . .
3.12 The SPE plot for the flow rate measurements with incipient sensor

failure. . . . . . . .. e e e e e e e
3.13 The SPE contribution plot at sample 293 (incipient sensor fault). . .
3.14 Flow rates measurements with the sensor fault in F; between 100-300.
3.15 The SPE monitoring chart detect the abnormal situation between 100~

3.16 SPE contribution plot at sample istant 249 (Ramp sensor fault) . . .
3.17 Three temperature measurements are added to the flow rate system. .
3.18 SPE plot for the new PCA model with temperature measurements.
3.19 SPE contribution plot at sample time 295. . . . . ... ... .. ...
3.20 The SPE chart (top) is for PCAl; SPE chart (bottom) is for PCA2.

24
24
26
26
26
27
28

28
28
29



3.21 Third principal component in PC A1 (top); Third principal component
in PCA2 (bottom) . . ... ... ... ...
3.22 Thrid PC in PCA2 is truely in residual space, while third PC in PCA1
still have some autocorrelation. . ... .. ... ... .........
3.23 The significant value in ACF of the third PC matches with the time
delayvalue. . ... ... ... ... ... e
3.24 First two PCs explaine the variation of the data. The last PC contains
the residuals of energy balance equation. . . . . ... ... ......
3.25 Third loading gives the correlation between variables ... ... ...

4.1 The schematic diagram of the CSTH system . . . . ... ... . ...
4.2 Hotelling T? and SPE both detect the temperature and level distur-
bance. . . . . . ... e e
4.3 The Hotelling 7?2 and SPE without recusively updating of the model.
4.4 Hotelling T? and SPE of recursive PCA model, forgetting factor p =
0.995, model updated every onesample. . ... ............
4.5 Hotelling 72 and SPE of recursive PCA model, forgetting factor p =
0.985, model updated after every ten samples. . . . . ... ......
4.6 Recursive PCA can detect both flow rate and temperature disturbance
when p=0998. . . ... ... ... ... e
4.7 Recursive PCA can detect large flow rate disturbance, but fail to detect
small temperature disturbance when 2 =0.99. . . . . ... ... ...

5.1 Trend plots of the total emission and net emission. . ... . ... ..
5.2 The raw measurementsof vli4andv36. . . . . . ... ... ... ...
5.3 Filteredsignalsofvl4andv36. ... ... ... ... ..........
5.4 Comparison of spectrum of orginal and filtered signal (v20) . . . . . .

55 Timeseriesofvariable39. . . .. . . . . . @ . & ...

35

35

36

37
37

51

51
52

52

53

53

63

5.6 Correlation coefficients between total emission and other process variables 63

5.7 First loading coefficients in PLS model vs. correlation coefficients . .
5.8 The cluster analysis display the correlated variables . .. . ... ...
5.9 The cross validation suggest three latent variables should be kept in

63



5.10 The Model output vs. the actual measurements using static PLS model. 66
5.11 A plot of the cumulative PRESS. This suggests that 6 latent variables

should be kept in the PLSmodel. . .. ... ............. 68
5.12 The fittingerrorissmall . . . . ... .. .. ... ........... 68
5.13 Comparision of model output and actual measurements. .. ... .. 69

5.14 The model prediction vs. the actual measurements when the validation
data is scaled by its own mean and variance. . ............ 70

5.15 The comparision of model outputs and actual measurements with EWMA

updating of mean and variance . ... ................. 72
5.16 Trend plots of V39 (upper), v52(middle), and net emission(lower) . . 73
5.17 First loadings based on different sectionofdata. . . . . . .. ... .. 74
5.18 First weighting vector in recursive PLS model using all the available
data. . ... e e e e e e e e e e e e e e 75
5.19 First weighting vector in recursive PLS model with EWMA updating
method.(A=0.9) .. ... ... ... .. ... . 75
5.20 First weighting vector in recursive PLS model with fix data length,
window length 300, updated every 20 sample. . . ... ... .. ... 76
5.21 First weighting vector in recursive PLS model with EWMA updating.
(A=0.7) .« o e 76

6.1 f(n) is the signal at finest scale. By passing a series of high and low
pass wavelets filters, it is decomposed into signals at different scales. 83

6.2 The ACF of z indicates that the data is time-dependent. . . . . . .. 85
6.3 ACF of PC-1 (dynamic PCA model) indicating highly autocorrelated
SCOTES. « « v v o v v o v e e vt e e e s e e e e e e e e e e 86

6.4 Original data of Z (a); Wavelets coefficients from first H.F. band to the
Fourth H.F. band (b)-(e); Scaling function coefficients at the coarset
scale (lowest frequency band) (f) ... ... ... .. .. ... ... 87
6.5 ACF of reconstructed data from the second level H.F. band. . . . .. 87
6.6 ACF of wavelets coefficients at first H.F. band or finer scale (a), second
H.F band (b), fourth H.F band or coarser scale (c), and fifth H.F. band
orcoarsestscale(d). . . . . . ... ... ... i oL 88



6.7 SPE chart with dynamicPCA . . . ... ... ... .......... 89

6.8 T2 Chart withdynamicPCA .. ...... ... ........... 89
6.9 SPE chart with MSPCA at finerlevel. .. ... ... ... . ... .. a0
6.10 T2 chart with MSPCA at coarsestlevel. . . ... ........... 90

6.11 SPE chart with MSPCA at coarsest level. . . . ... ... ...... 90



List of Tables

3.1

4.1

5.1
5.2
5.3

Comparison of variance captured by two PCAmodels . . . . . .. .. 33
Variance captured by latent variables in dynamic PCA model . ... 48
Variance captured by latent variables in standard PLS model . . . . . 65
Variance captured by latent variables in dynamic PLS model . . . . . 69
Correlation coefficients between net emission and v51 based on different

sectionof data . . . . . . . . i e e e e e e e e e e e 72



Chapter 1

Introduction

1.1 Multivariate Statistical Process Control

Statistical Process Control (SPC) is a philosophy based on the use of a variety of tools
for monitoring the performance of a process. SPC provides the basis for achieving
continuing improvements in product quality and productivity. An essential part of
SPC is to employ a set of statistical tools to establish control charts for a process.
Should some abnormal events occur in the process, the control charts should be able
to detect the occurrence of special events and diagnose the possible causes. SPC has
roots that date back to the 1920s in the work of Dr. Walter A. Shewhart. Since then
Shewhart (Shewhart, 1931), CUSUM (Page, 1954; Woodward and Goldsmith, 1964)
and EWMA (Roberts, 1959; Hunter, 1986; Lucas and Saccucci, 1990) monitoring
charts have been widely accepted and implemented in most industries. In the past,
traditional statistical charts were mainly focused on monitoring key product quality
variables in plants. These monitoring charts examine one variable at a time as if each
variable is independent of another. Unfortunately, measurements from a process are
rarely independent; more often than not they are correlated to each other and are
affected by some inherent relationship in the process. The univariate charts, which
ignore the inter-relationships between variables, make the monitoring and diagnosis
of special events very difficult.

In recent years, some multivariate statistical tools, such as Principal Component
Analysis (PCA), Partial Least Square (PLS), have become more and more impor-
tant in SPC. In contrast to the classical univariate SPC tools, these tools take the

correlations between variables into account and monitor a set of correlated variables



simultaneously. Moreover, by projecting the original measurements into a latent sub-
space, latent variables are monitored in a reduced dimensional space. A PCA or
PLS model is built on good historical data of normal or “nominal” process operation.
This model can then be used to monitor or predict the future behavior of the process
based on the assumption that operation in the future should follow the same pattern
or template of this normal historical data. Any significant deviation from that as-
sumption should be detected as a “special event”, such as sensor failure, disturbance,
or possible process drift.

PCA is concerned with the study of one data block (X). X usually contains all
process variables including quality variables. The idea of PCA was first introduced by
Pearson (1901), and developed by Hotelling (1933). Their ideas are further reviewed
by many other researchers (Jolliffe, 1986; Wold et al., 1987; Jackson, 1991). In recent
years, PCA has been used as a multivariate SPC tool in areas of application such
as process monitoring ( Kresta et al., 1991; Wise and Gallagher, 1996; Chen and
McAvoy, 1998; Rannar et al., 1998), gross error detection ( Tong and Crowe, 1995),
sensor fault identification (Dunia et al., 1996), Validation of plant operating modes
(Zullo, 1996), etc.

Partial least squares (PLS) is also known as projection to latent structures. The
pioneering work in PLS was done in the late sixties by Wold (1966) in the field of
econometrics. The objective was to find relations between blocks of data by relating
their latent variables. A detailed description of the PLS algorithm is given by Geladi
and Kowalski (1986) and Hoskuldsson (1988). In PLS, two block of variables, X
(contains the process variable) and Y (contains the quality variables), are usually
included in the analysis. In this case, one would like to find an optimum latent variable
transformation such that the transformed variables not only explain the variations in
X, but also have most capability in predicting Y. This data-driven empirical statistical
model approach is extremely useful under the situation where either a first principal
model is difficult to obtain or the measured variables are highly correlated (colinear)
to each other. The PLS methods have been extensively researched and applied in
the chemometrics field. More recently, interest in PLS is spreading to the chemical
engineering area. ( MacGregor et al., 1994; Nomikos and MacGregor, 1995; Kourti
et al., 1995; Lakshminarayanan, 1997).



1.2 Organization of the Thesis

The organization of the paper is as follows.

In Chapter 2, some univariate statistical control methods, such as Shewhart,
CUSUM and EWMA, are reviewed and their limitations discussed. The basic al-
gorithm of PCA and PLS are introduced in detail to provide necessary background
for further discussion.

When PCA is used for statistical monitoring, the multivariate statistical charts,
such as Hotelling T? and Q statistic (also know as Square Prediction Error or SPE)
can be employed to monitor the process operating performance. The methodology of
using PCA for statistical process monitoring (SPM) is illustrated in detail through a
simulated example in chapter 3. Some related issues such as the importance of taking
the time delay into account when applying PCA and the advantage of minor PCA
are also emphasized in this chapter.

Conventional PCA and PLS models are most suitable for dealing with a steady
state process. However, a practical process is usually a dynamic and time-varying
one. Directly applying PCA and PLS method to monitor or model such a process
often results in false alarms and model-plant mismatch. To adapt to the process drift
and change of operating point, recursive updating of PCA and PLS models on-line
is essential. The algorithms for recursive PCA and PLS are introduced in chapter 4.
A pilot scale plant is then used to demonstrate the idea of recursive PCA (RPCA).
Some issues of applying RPCA in practice are also discussed through this example.

Chapter 5 presents the study of applying PLS to deal with a industrial data set.
In this industrial data analysis, some practical issues relating to PLS modeling, such
as data pretreatment, variable selection and dynamic PLS, are discussed. A novel
method which uses the weighting vectors in the recursive PLS model to do root cause
diagnosis is discussed in this chapter.

In Chapter 6, the limitations of using 72 and Q statistics in monitoring autocorre-
lated measurements are pointed out. Unfortunately, this limitation has not received
enough attention in past years and as a result the control charts are misused by
practitioners. Multiscale PCA (combining wavelets decomposition with PCA) is pro-
posed in this thesis to overcome this limitation. The multiscale PCA approach not



only meets the underlying assumption of the control charts, but also demonstrates
sensitivity in detecting small disturbances. The thesis ends with concluding remarks
and suggestions for future research directions.



Chapter 2

Basic Theory of Multivariate
Statistical Process Control

2.1 Introduction

The development of computer and instrumentation technology has enabled modern
process industries to obtain huge volumes of data. It is often the case that even in a
single operating unit, hundreds of process variables may be recorded and monitored.
However, not all process variables are independent of each other, i.e. they are usually
colinear or correlated in some way. In this case, much information in the collected
data is redundant. How to effectively extract the useful information and eliminate
the redundancy in the data is a challenging problem. Without effective data analysis
tools, little information can be extracted from the data, which results in the situa-
tion that the process industry is generally “data-rich but information-poor”. In recent
years, Principal Component Analysis (PCA) and Partial Least Square (PLS) have be-
come popular multivariate analysis tools which allow us to extract useful information
from process data and analyze the data in greatly reduced dimensional space.

This chapter is organized as follows: in section 2.2, different types of univariate
control charts are introduced and limitations of these charts are pointed out. The
basic theory of PCA and related issues, such as the selection of the optimal subspace
dimension and PCA for Statistical Process Monitoring (SPM) are described in section
2.3. The algorithm of PLS is outlined in section 2.4, together with the discussion on
dealing with the nonlinear and dynamic processes. The chapter ends with concluding

remarks in section 2.5.



2.2 TUnivariate Statistical Control Charts

Univariate statistical methods, such as Shewhart Chart, CUSUM and EWMA have
been widely used to monitor industrial processes for many years. These methods are
briefly introduced here.

e Shewhart Chart

In a Shewhart chart, a sequence of samples (denoted as z;) are plotted against
time. Upper and lower control limits for the samples are established around
the process mean (o) based on the “three sigma” rule, i.e. a % 3o, where
o is the standard deviation of the observations. Whenever the most recent
measured point or a consecutive sequence of points are outside the control limits,
an abnormal condition is said to be encountered and attention is focused to
diagnose the source of the problem. In practice, o can be estimated from the

sample average and o from the sample standard deviation.

o CUSUM

In a CUSUM chart, rather than plotting a sample value itself, one can plot the
cumulative sum of observations, 23;1 z;. Or, instead one can plot the cumula-
tive sum of the deviations, 2?:1 d;, where d; = z; — ¢, and c is a constant value,
usually being the target value of the variable. Thus the CUSUM chart is the
quantity

T T
ST=Zd,- =Z(z,~ -c) (2.1)

plotted against time 7.

If the mean of samples equals the target value, then St will simply appear as
a series of random numbers around zero. However, if the mean deviates from
the target value by a small amount §, then each time St will be added by this
small number §. Therefore, St will increase or decrease against time depending
on the sign of §. Should Sr proceed beyond a pre-determined control limit, then

alarm can be announced and appropriate corrective action can be taken.



e EWMA

The exponentially weighted moving average (EWMA) is a statistic which gives
less weight to old data, and more weight to new data. The expression for the
EWMA is

Z; = Az; + (1 - /\)Z'_.l, 0<A<l1 (22)

The starting value Z; is usually set to be the target value. Z; is the output of
EWMA and z; is the observation from the process. Equation 2.2 can also be

written as
Z; =AY (1-N7g,+(1-A)'2% (2.3)
i=1
= Y wiz+(1-2) 2 (2.4)

i=1

where w; = A(1—\)'"’ is the weight for z; which falls off exponentially for
past observations. The forgetting factor A determines how fast EWMA forgets
the data history. At its extremity, A = 1, in which case the EWMA is equal to
the most recent observation and gives the same result as Shewhart chart. As
X approaches zero, EWMA approximates the CUSUM criteria which gives the
equal weights to the history observations.

The standard deviation of the EWMA (Hunter, 1986) can be shown to be
oewma =M (2 - )"0 (2.5)
and the three-sigma control limits for the EWMA can be established as follows
T+ 30gwara (2.6)

where 7 is the target value. The process is considered out of control whenever

Z; falls outside the range of the control limits.

Traditional Shewhart, CUSUM and EWMA charts serve as strictly univariate
monitoring tools only, ie., only one variable can be plotted and monitored on one

chart. With computers widely hooked up to industrial processes, it is very common

7
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Figure 2.1: Correlation between the steam demand and the boiler fuel
flow

that even in a single operating unit, hundreds of variables need to be displayed and
monitored. Thus it is difficult to use univariate charts to monitor each process vari-
able individually. Even if one could use such charts, the univariate monitoring charts
ignore the correlation between variables and treat each variable independently. How-
ever, variables are usually correlated to each other, and their performance should be
evaluated relative to other variables. Thus univariate statistics cannot make a correct
interpretation and diagnosis of a process. The limitation of using univariate methods
can be illustrated by the boiler example shown in Figure 2.1. Increasing the steam
demand of boiler should require the corresponding increase of boiler fuel flow. Should
the fuel flow measurement fail in such a way that it gives an incorrect reading when
the steam flow increases, then the univariate control limits may not be able to detect
such a fault. This is clearly seen in Figure 2.1. Although most of the points (o) are
around the correlation line (- - -), two points (e) break up the normal correlation and
yet are within the univariate control limits. In this case, the univariate chart fails to
detect such a fault.



2.3 Principal Components Analysis
2.3.1 PCA Algorithm

The goal of principal components analysis is to explain the variance/covariance struc-
ture through an orthogonal set of linear combination of original variables in the re-
duced dimensional space. Although n principal components are required to capture
the total system variability, due to the dependency and colinearity, usually much of
the variation can be accounted for by a only small number of principal components.

Consider a properly scaled data matrix or measurement matrix X, x», where m
represents the number of samples, n represents the number of process variables. In
the following discussion, it is assumed that the scaled data is zero mean centered with

unit variance.

X = T2y To2 - Ton (2_7)

ooooo

Let ¥ be the covariance matrix associated with these process variables. In PCA
the first principal component (latent variable) ¢, is a linear combination of original
data that accounts for the maximum variance in the data. Denoting the coefficients
of the first linear combination by p, (loading vector), then

t1 = Xpl (2.8)

The procedure of finding p; can be expressed as the following optimization prob-

lem:
max £ty = o[ X" Xp: (2.9)
st.pipp = 1

Note that if there is no constraint on p;, then an infinitely large p,will maximize
tTt;. To avoid this, a unit length constraint of p, is usually required. To find the
solution of the above optimization problem, introduce a Lagrangian multiplier A.
The constrained problem can then be reformulated as the following unconstrained



problem: find the maximum value of 8, where
max 8 = p? XTXp, — Mpfp1 — 1) (2.10)
n

The partial derivative of 6 w.r.t. p, set equal to zero gives

a0

XTXp, = \py (2.12)

Now, the problem of finding p, has been changed to finding the eigenvector of
XTX with ) as the corresponding eigenvalue. Since the variability explained by the
first PC is proportional to A, p; should be the eigenvector associated with the largest
eigenvalue of matrix X7 X. p, is also referred to as the loading vector.

After finding the first PC, the information unexplained by the first PC in the data

matrix is
Ei=X-tp] (2.13)

E, is called residual matrix. The next step is to find a second linear combination to
explain the maximum variability in E; Applying the same procedure to E, (Equation
2.9-2.12) and adding one more constraint t{¢, = 0, we can find the second loading
vector, p;. It turns out that p, is the eigenvector associated with the second largest
eigenvalue of X7 X. This procedure can be continued until n principal components are
obtained. Usually, due to redundancy and noise in the data, ‘A’ principal components
(A < n) can capture much of the variability in X, and X can be expressed in the

following way:

X=tpf +tpf +---+tsp L +E=X+E (2.14)
- A
X=TP"=) tpf (2.15)
i=1
E=T.PT =) tgf (2.16)
i=A+1
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where A is the number of principal components retained in the PCA model. P is the
loading matrix with each loading vector p; as its column. It describes the relationships
between variables. T is the principal component score matrix, which describes the
observed variables in the transformed basis space spanned by the orthogonal vectors,
p;. Ideally A is chosen such that there is no significant process information left in £
where E represents the random error. PCA models are formed by retaining only the
loading vectors that describe the systematic variations in the data. Adding extra PCs
to the model would only fit random error, and increase the prediction error.

Note that PCA requires proper scaling of raw data in order to obtain reasonable
results. If improperly scaled, some unimportant variables may dominate the variance
in X matrix due to the units of measurement. In general, the variables should be
scaled based on their relative importance. Although it is common to scale the data to
have unit variance and zero mean (auto-scaling), caution should be used to scale the
variables that are almost constant, since in this case small variations may be highly
amplified.

PCA is very closely related to Singular Value Decomposition (SVD) (Jackson,
1991). Through SVD, a data matrix X can be decomposed as:

X=UzvT (2.17)

Here, columns of V' are equal to the PCA loading vectors and X is a diagonal matrix
containing the singular values, which are equal to the square roots of the eigenvalue
of the covariance matrix of X.

If one loading vector is plotted vs. another (for example p, vs. po), a loading
plot is obtained which shows the relationship between the original variables and the
principal components. The variables that are highly correlated to each other tend to
cluster together. One can thus infer about the relative importance and influence of
the original variable through this plot.

A scores plot is formed if one score vector is plotted vs. another (for example
t, vs. tz). Score plots reveal the relationship between the observations or samples
and the principal components. By observing the changes in the score plots, one can

monitor drifts and other abnormal events in the process.

11



2.3.2 Optimal Dimension of a PCA Model

In PCA, it is very important to select the optimal number of PC’s to be retained
in the model. There are many approaches for selecting the dimension A, such as
cross-validation (Wold, 1978), cumulative percent variance (Malinowski, 1991), Xu
and Kailath’s approach (Xu and Kailath, 1994), Akaike information criterion (Akaike,
1974; Wax and Kailath, 1985), minimum description length criterion (Rissanen, 1978),
and variance of reconstruction error (Qin, 1998). Some of these approaches are de-
scribed below:

1. Cumulative Percent Variance

Cumulative Percent Variance measures the percent variance captured by the
first k£ PC’s, which can be expressed:

Z?:x ’\J'
Z?:l A.7

k principal component is chosen if the CPV (k) can explain a predetermined

CPV(k) = 100% (2.18)

variance, say 95%.

2. Eigenvalue One Criterion

Only those PC’s whose variances (equals to the corresponding eigenvalues of
XT X) are greater than one are retained in the model.

3. Average Eigenvalue

This approach selects the eigenvalues which are greater than the mean of all
eigenvalues and discards eigenvalues smaller than the mean.

4. Cross Validation

The whole data set is divided into several blocks. Each time, one block of data
is left out, and a PCA analysis is performed on the remaining blocks of data
and the prediction error sum of squares (PRESS) is calculated based on the
data block which is left out. The procedure is repeated until each block of
data has been left out once. Adding all the resulting PRESS together, gives
a cumulative PRESS. The optimal order of PCA is the order that minimizes

12



the cumulative PRESS. Although this method is lengthy and has no sound
statistical background, it is effective in practical use. More references on this
‘method are given by Stone (1978) ; Eastment and Krzanowski (1982) ; Geladi
and Kowalski (1986b).

2.3.3 PCA for Multivariate Statistical Process Control (MSPC)

Once a PCA model based on data representing historical normal operation is obtained,
it can be utilized to monitor future deviation of the process from normality. Let
Tnew(l X 1) denote the multivariate observation from the process. Projecting it to
the latent PCA space gives the scores t,.,(1 X A):

thew = znewP (2.19)
Prediction of the original variables from t,.,, is given by:
Znew = tnewPT = TnewPPT (2.20)
The model residual is:
€new = Tnew — Lnew (2.21)
Two dimensional score plots (usually ¢, vs. t;), Hotelling 72, and Q statistics
(SPE) are usually used to monitor the process. If the first two principal components
can explain a large part of the variance, the two dimensional scores plot provides an
intuitive insight into process variations. Any abnormal shift in the process will cause
the scores (£,¢) to move out of the confidence limits in the 2-D score plots.

However, the T? chart is more appropriate if the variance explained by the first
two PCs is relatively small. The T2 statistic based on the first A PCs is defined as

A t2
=3 X (2.22)
=1

where ); is eigenvalue of the covariance matrix of X. The T7? statistic given in
Equation (2.22) can be considered as an ellipsoid in a A dimensional space.

Confidence limits for 72 at confidence level (1 — ) relate to the F-distribution as
follows:

(m-1)A
Toa= m—FA,m—A (2:23)
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where F4n_4 is the upper 100a% critical point of the F distribution with A and
m — A degree of freedom (Tracy et al., 1992).

Variations in the process could be associated with the breakdown of the correlation
structure among the measured variables while still within the confidence regions of T?
chart. For this reason, monitoring the process only via T chart is not sufficient. To
overcome this problem, the SPE chart is also used in conjuction with the T2 chart.

Let z;(1 x n) denote an observation whose prediction from PCA model is given
by Z; = z; PPT. The p dimensional error vector is given by e; = z; — T;. The SPE is
then defined as

SPE = e;el (2.24)

SPE can be considered as a measure of the plant-model mismatch. The confidence
limits for SPE are given by Jackson and Mudholkar (1979). This test suggests the
existence of an abnormal condition when SPE > Q,, where Q, is defined as:

Q. =6 1+c"‘h°“2;2+62h°(h§_1) ’ (2.25)
61 91
where
€= Y A; fori=1,23 (2.26)
j=p+1
. 2665

¢, is the confidence limits for the 1 — a percentile in a normal distribution.

Once an abnormal event is detected in a SPE chart, the SPE contribution plot
can usually be utilized to isolate the fault. The fractional contribution of each process
variables to the overall SPE at sample instant ¢ can be computed as:

_ SPE;
~ SPE

where SPE; denotes the square of the 7** element of the error vector e; If the con-

@; (.7 =1,2,--- n) (2.28)

tribution from some variables is significant, then these variables are most likely to be
the cause of the abnormality (Miller et al., 1993). Although the contribution plots
cannot unequivocally diagnose the cause, they will provide much greater insight into
possible cause and thereby greatly narrow the search (MacGregor and Kourti, 1995).
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2.4 Partial Least Square
2.4.1 PLS Algorithm

Consider a dependent data matrix ¥ (m x j) and an independent data matrix X
(m x n),where m is the number of samples or observations, j and n are the number

of dependent and independent variables, respectively. Y and X may be related by
Y = X0+ error (2.29)

If the matrix X7 X is non-singular, then the best estimate of § in a least square sense
is given by the well know least square regression:

8 =(XTX)'XTY (2.30)

If the matrix (X7 X) is singular, or nearly so, the direct inversion of XT X is impossible

or error prone, and another representation of the inverse has to be found.
e PLS1

The objective of PLS is to maximize the covariance matrix between linear combi-
nations of X and Y block. For the sake of simplicity, we first consider the case where
only one dependent variable is in Y block, thus Y = y. This is also known as PLS1
in the literature. Any vector ¢ in the column space of X can be written as a linear
combination of column of X, t = Xw for some vector w. The target here is to find
a w such that t is good at describing Y, i.e. such that it maximizes the correlation
between X and Y. Description means a linear measure between Y and X. The choice
of such a linear measure made by PLS is z7y, where z; is the i** column of X. w is
determined as w = (wy, ws, - -w,) with w; = (z7y) . In terms of X and Y, we can
write w as w = XTY. In the numerical computations w is scaled to have unit length

to ensure numerical stability.
w=XTY/ IIXTY” (2.31)

When the first score vector is computed ast; = Xw, we want to determine second
score vector that is orthogonal to the previous one. We do this by computing the
residual matrix

By =X —t,pf (2.32)
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here p, is the rotated w and defined by
XTXU) _ XTtl
T, Ty

The second score vector is computed as t; = F;wy.,,. The residual matrix formed

n= (2.33)

in Equation 2.32 ensures that different ¢ vectors form an orthogonal basis due to the
fact

tTty = tT ByWnew = t] (X — t1P] ) Wnew = (8] X — ] X) Wnew =0 (2.34)

This procedure is continued until the newly computed vector t,.,, does not contribute

much in describing y.
e PLS2

We now discuss the case where two or more dependent variables are in the Y block
which is also known as PLS2 problem. The solution to this problem is described under

the optimization framework as follows:

max cov(t;, ) = tu =w] X Yq
w1 q1
st.wlw, =1
g =1 (2.35)

where t; = Xw, and u, = Yq, are linear combination of X and Y respectively.

To solve the above problem, two Lagrangian multipliers A, and A, are introduced
and an unconstrained optimization problem is formed as to find the maximum value
of © , where O is

0 =ulXTYq — A\ (wfw; —1) = Ay (T g1 - 1) (2.36)
Let the first derivative of © with respect to wl and ¢7 be set to zero, i.e.
00
m‘ = XTYqI - 2A1w1 =0
—637. = YTXw —2)q =0 (2.37)
oqy
We then have
XTqu = 2A1'UJ1 (2.38)
YTXw1 = 2A2q1 (2.39)
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Solving the combined Equation 2.38 and 2.39, we obtain the following eigenvalue

problems:

XTYYTXw, = 4\lw (2.40)
YTXXTYQI = 4A1A2q1 (2.41)

w, is expressed as an eigenvector associated with the largest eigenvalue of XTYY7 X,
and g, is an eigenvector associated with the largest eigenvalue of Y7 X X7Y.

If XTY = USVT through SVD decompositions, w; and ¢, can be proved (Hoskuldson,
1988, Manne, 1987) to be the first column of matrix U and V. Once ¢, and u,; are
obtained by t; = Xw, and u; = Yq, a linear inner relation between u, and ¢, are
found to be

171 = b1t1 (242)

where b, = ult,/tTt), is the linear regression coefficient. The X and Y blocks are
indirectly related through the inner relation between u; and ¢;.

2,7 can be interpreted as the part of the information in Y block that has been
explained by the first PLS dimension. Similarly ¢;pT represents the information used
up in X block. The X and Y block residuals can be further calculated as follows:

E, = X-tp] (2.43)
F]_ = Y—b1t1q’{

where p; is defined similarly as in Equation 2.33 to ensure that the next score vector
is orthogonal to the previous one. The above procedure is continued until the useful
information in Y cannot be explained further by adding one more latent variable.
Figure 2.2 (Lakshminarayanan, 1997) illustrates this iterative procedure.

In practice, how to choose a proper number A for the latent variables is a crucial
step in PLS. If all the latent variables are used in modeling, the model may fit the
noise and therefore reduce the predictive ability of the model. The cross validation
method has been suggested by S. Wold (1978) to determine a proper number of
latent variables.

In matrix form, the total information explained in Y block can be expressed as:

Yo = bitiq] + botoqs + -+ -batagy = TBQT (2.44)
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Figure 2.2: A schematic diagram of PLS regression procedure.

where B is a diagonal matrix with b, b,, ---bs as the diagonal elements, T =

[tita -+ ta, @Q=[m g2 - q4].
Note that both in PLS1 and PLS2, the weighting vector w; (i = 2,3,--- A) are
directly related to different residual matrix E; through Equation 2.45

t,'=Ei'lUi, i=2,3,"'A (2.45)

and not to the original data matrix X. This obscures the relation between the weighing
vectors and original variables. Suppose R represents the relation between X and T :

T =XR (2.46)

Since each latent vector t;, i = 1,2, --- A lies in the column space of X, R can be
computed by regressing T on X (de Jong, 1993):

R=X'T (2.47)

where X7 is the pseudo-inverse of X. R has been shown to have the following relation
with W and P (Helland, 1988):

R=W(PTW)! (2.48)
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Combining Equation 2.46 and 2.44, we have

Y XRBQT + F (2.49)
Yop = XChs (2.50)

where F is the final residual matrix and C,;, = RBQT, is the PLS regression coefficient
matrix.

In the classical PLS algorithm the sequential calculation of PLS dimension is done
iteratively. In general, iterative algorithms often become inefficient when data struc-
ture is large. To overcome this difficulties, a fast and memory-saving PLS regression
algorithm for data matrices with large number of samples was proposed by Lindgren
et al. (1993). de Jong (1993) developed another novel algorithm for PLS, SIMPLS,
which can calculate the PLS factors directly as the linear combination of the original

variables.

2.4.2 Nonlinear and Dynamic PLS Model

Although PLS provides a robust calculation method for correlated data, its major
restriction is that only linear information can be extracted from the data. Since many
practical data is inherently nonlinear in nature, it is desirable to have a method to
model nonlinear relations between variables. One possible approach is to include the
nonlinear transformation of original variables in X block (such as exponential, square
root and logarithm). However, this approach suffers from the requirement of priori
knowledge of the process and expansion of data matrix.

Another approach is to move the nonlinearity into PLS inner model. Wold et al.
(1989) use the quadratic model for inner relation between u; and ¢;. This method
is limited to handling the quadratic inner relations and ineffective for other types of
nonlinearity. Qin and McAvoy (1992a) proposed to incorporate neural network into
the PLS modeling. In their method, a multi-input multi-output nonlinear modeling
task is decomposed into linear outer relations and simple nonlinear relations which
are performed by a single-input and single-output networks. The proposed neural
net PLS (NNPLS) gives better results than the PLS modeling method and the direct
neural network approach.

19



To deal with dynamics in a process, we can include the past values of the input
and output variables in the X block. In this case, Cys in Equation 2.49 can be inter-
preted as finite impulse response (FIR) coefficients ( Ricker, 1988) or as a multivariate
autoregressive moving average (ARMA) model (Qin and McAvoy, 1992b). The dis-
advantage of the method is that the dimension of X can be very large, especially with
many input variables. Kasper and Ray (1993) developed a modified PLS modeling
procedure which permits the dynamics to be expressed as part of the inner relation
and obviates inclusion of lagged values of the input and output variables in the input
data matrix. Moreover, the approach can optimize the dynamic transformation so
that the resulting model has maximum predictive ability. Lakshminarayanan et al.
(1997) suggested that the inner relation in PLS (; and ;) can be captured by a
dynamic ARX model instead of the static model to deal with a dynamic system.

2.5 Conclusions

Data when properly analyzed by statistical tools yield meaningful information. Uni-
variate statistics are inappropriate in handling large amounts of multivariate data
from processes and may not allow extrzction of useful information from the data. To
overcome this difficulty, multivariate statistical methods, such as PCA and PLS, have
become important tools for data mining. These methods treat all the data simulta-
neously and explain the correlation between the data in a reduced dimensional space.
The algorithms of PCA and PLS and some related issues are discussed in this chapter.
In the following chapters, we will further demonstrate how these multivariate tools
can be effectively used in statistical modeling and monitoring areas.
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Chapter 3

PCA in Statistical Process
Monitoring— A Simple Example

3.1 Introduction

The basic idea of using PCA for statistical process monitoring (SPM)is to build a
PCA model based on the data when the system is operating at a nominal or normal
state. This model can then be used to monitor the possible disturbance, sensor failure,
and other abnormal events in the process that may lead the process to depart from
its “normal” state. In SPM, usually two statistics are employed. One is the Hotelling
T? statistic, which measures the variation within the PCA model. The other is the
Q statistic, also known as the square prediction error (SPE), which indicates how
well the measurements conform to the PCA model or how large is the deviation from
the nominal model. An abnormal event is encountered if some points exceed the
confidence limits in either the SPE or T? charts.

In this chapter, a simulation example is utilized to illustrate the application of
PCA in SPM. The chapter is organized as follows: In section 2.2, the steps required
in building a PCA model for a simple flow rate system is outlined. The use of this
model to detect various sensor faults is illustrated in section 2.3. In section 2.4,
we discuss the limitation of using PCA as a fault isolation tool. The possible ways
to overcome this shortcoming are also proposed in this section. The importance of
minor principal components are emphasized in section 2.5. The chapter ends with
concluding remarks in section 2.6
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Figure 3.1: Configuration of flow rate system
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Figure 3.2: Snapshot of flow rate measurements

3.2 Building of PCA Model

Let us consider a flow rate system, as described in Figure 3.1. F;, F; are cold and hot
water flow rates measurements respectively. Fj is the mixed water flow measurement.
For incompressible fluids with no storage capacity, it is expected that F3 = F] + F5.
F; is a redundant measurement of F3.

F,, F, are two independent measurements. F3 and F, are clearly dependent on
the F}, F>. The snapshot of four flow measurements are displayed in Figure 3.1. Only
since F), is only slightly different from F; due
to the presence of measurement noise.

These four flow rate signals (0-500) are considered to be measured when the system
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is operating at normal condition. A PCA model is built based on the data compiled

from the measurement matrix arranged as follows:

X =[R@) R FE) F@) (3.1)

Two linear relationships exist among flow rate measurements if there is no mea-

surement noise:

Fi(t)+ R(t) = F() (3.2)
F(t) = Fut) (3.3)

Strictly speaking, F3(t) # Fi(t)+ F(t) and F3(t) # Fi(t) due to the measurements
noise.
First, all the measurements are auto scaled to have unit variance and zero mean,

ie.

r=E=F (3.4)
ofF

where the subscript s denotes the scaled measurements, F is the sample average and
oF is the sample standard deviation. The covariance matrix is then calculated based
on the scaled data:

XTX,

cov(X) = n“_ T (3.5)

Four eigenvalues of covariance matrix are shown in Figure 3.3. As would be
expected, only two are significant. This is so because only two of the vectors in Xj
are independent. Columns 3 and 4 are linear combination of columns 1 and 2. The
first PC explains 78.34% of the total variance; the second PC explains 21.47% of the
total variance. Totally, two PCs can capture almost 99% of all the useful information
in the system (Figure 3.4).

Thus, only two PCs need to be retained in the PCA model. The SPE and
Hotelling 72 charts for the normal operation data are shown in Figure 3.5 and 3.6.
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Since the SPE plot shown here is based on normal operating data, one should expect
that almost all the data will lie within 99% confidence interval. Similarly, the data
points in the Hotelling 72 chart are also within the 29% confidence limits.

Eigenvalue
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Figure 3.3: Eigenvalues of covariance matrix
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Figure 3.4: Two PCs can capture 99% of information in the system.

3.3 Sensor Fault Detection
3.3.1 Abrupt Sensor Fault Detection

In this section, an abrupt sensor failure is simulated by adding a small constant
deviation (the magnitude of the deviation is equal to one in this example) to F;
between sample times 300-400. This could represent a sudden sensor offset or mis-
calibration. The measurements of three flow rates are displayed in Figure 3.7. Clearly,
it is not easy to detect the sensor failure by observing the trend plot of the raw
measurements.

Applying the PCA model, as generated from the nominal process, to monitor
the system, the Hotelling 72 and SPE charts are displayed in Figures 3.8-3.9. The
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Figure 3.5: The SPE plot for the normal operation data.
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Figure 3.6: Hotelling 7 chart for the normal operation data.
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95% and 99% detection limits are also shown in these figures. Many measurement
points are out of 95% limits in the 72 chart. However, in the SPE chart, only the
measurements between 300-400 are out of detection limits. How should we interpret
these results?

The data set used to build the PCA model is different from the data set used for
validation. F, and F, are two independent flow rates. They are always changing.
Thus, the system is in a varying state. Whenever the system shifts from the normal
operating states (defined by the normal measurements used for the PCA model), the
measurements will flare up in 72 chart. Several points being out of control limits in
Figure 3.8 implies that the system has drifted beyond previous operation. However,
we notice that the T? chart is not sensitive in detecting the sensor fault. (All points
between the 300-400 sample rates are within the control limits). This is due to the
small magnitude of the fault which is comparable to the dynamic transients in the
process. In other words, the variability of the process and the noise “mask” the sensor
fault.

Although the system may drift away from the normal operating point, if the
relationships between the measurements continue to hold, only small prediction errors
should be expected. The sample points before 300 and after 400 in SPE chart show
this case (Figure 3.9). However, when the sensor fault occurrs during 300-400 sample
intervals, the correlations between variables break down. This results in a large SPE
which can be seen clearly in Figure 3.9.

Once an abnormal situation is detected in the system, the SPE contribution plot
usually can be utilized to isolate the fault. Figure 3.10 shows the SPE contribution
plot at sample instant 398. The percent contribution related to the mixed water
1 (F3) is 68.61%, which is quite large compared to the contributions from other
measurements. This indicates that F3 is responsible for the abnormality, i.e. this
sensor is likely to be faulty.

3.3.2 Ramp-type Sensor Failure Detection

A ramp-type or a slow drift sensor failure is simulated by adding a ramp change to
normal measurements of F; between 100-300 sample intervals (Figure 3.11). Again,
it is not easy to detect the fault by observation. However, the SPE monitoring chart
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Figure 3.7: Measurements of flow rates with sensor failure between 300-
400.
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Figure 3.8: Hotelling 72 monitoring chart for the system with abrupt sen-
sor failure.
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Figure 3.9: SPE chart for the system with abrupt sensor failure
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Figure 3.10: SPE contribution plot at sample isntant 398 (Abrupt sensor
fault).

(Figure 3.12) indicates that an incipient fault has occurred. To diagnose the cause for
the fault, the contribution plot was checked picking up F; as the candidate (Figure
3.13).

3.4 Limitations of PCA Model for SPM

In this section, we will show the limitation of PCA model as a diagnostic tool through
the simulated flow rate example. Possible remedies to overcome these shortcomings
are also proposed and discussed.

Let us consider the following scenario for the flow rate system. Suppose that only
three flow rates are measured (F}, F», F3) . An abrupt sensor failure related to mea-
surements of F; occurs between samples 100-300 (Figure 3.14). The SPE monitoring
chart does indeed detect such a fault because the relationship between the variables
breaks down (Figure 3.15). However, the SPE contribution plot at sample instant
249 (Figure 3.16) considers F3 as the possible cause, since it indicates the largest con-
tribution to SPE. In this case, the SPE contribution statistic is unable to identify
the correct faulty sensor. Why?

Note that there are three variables in the system, but only one linear relationship
between them (F; + F> = F3) . The diagnosis mechanism of PCA requires redundan-
cies among the measured variables. Without enough redundancies, the PCA model
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Figure 3.11: The measurements for flow rates with incipient sensor fault.
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Figure 3.12: The SPE plot for the flow rate measurements with incipient

sensor failure.
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Figure 3.13: The SPE contribution plot at sample 293 (incipient sensor

fault).
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Figure 3.14: Flow rates measurements with the sensor fault in F; between
100-300.
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Figure 3.15: The SPE monitoring chart detect the abnormal situation
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Figure 3.16: SPE contribution plot at sample istant 249 (Ramp sensor
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Figure 3.17: Three temperature measurements are added to the flow rate

system.

gives the wrong diagnostic result.

To overcome this shortcoming, more constraints need to be added to the system.
In this example, we can either add redundant measurements for F; or utilize the
temperature measurements in the system. A more detailed schematic plot for the

flow rate system, together with the temperature measurements is shown in Figure
3.17.

The new measurement matrix X is then arranged as follows:

Xoew=[F1 Fo F RTy T, FT;] (3.6)
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Figure 3.18: SPE plot for the new PCA model with temperature mea-
surements.

Now two linear relationships exist in X,y :

F,+F, = F; (Continuity equation assuming constant density) (3.7)
FT, + FT» = F;T; (Energy balance equation assuming constant heat capacity)

A new PCA model based on the new measurement matrix can then be used to
diagnose sensor faults more precisely. The same sensor fault as introduced in F (cold
water) between samples 100-300 is now simulated again. The SPE plot is shown in
Figure 3.18. The SPE clearly flares up in the plot indicating the fault. Comparing
to the SPE plot for the flow rate system(Figure 3.15), the SPE for the new model
is more sensitive. The reason is that there are now two terms in X, related to F;.
Both terms contribute to the SPE.

The contribution plot for SPE (Figure 3.19) shows that the measurements related
to F, and F\T; is the source of the fault. If we assume that the most likely cause
of the fault is failure of only one sensor at a time, then the sensor for F; is the
candidate. Since it is highly unlikely that both sensors (F; and T}) could have failed
at the sare time, we are first led to investigate the case where F; is likely the source

of the problem.
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Figure 3.19: SPE contribution plot at sample time 295.
3.5 Assembly of the measurement matrix

In the previous discussion, we have ignored the time delay possibly caused by the
transportation lag. Physically there is no delay in a system when incompressible fluid
is being transported without any accumulation capacity. The data considered here
is simulated data where a delay has been inserted for illustration purpose only and
we assume this delay causes a lag between the measurements of F; and F;. What
happens if there is a large time delay between F3 and F3?

In such case, caution should be used in arranging the measurement matrix so that
the correct time delay can be taken into account. This point is illustrated by the
following example.

Assume that the time delay between F; and F; is 4 sample intervals. Consider

two measurement matrices:

X1 [Fi(t) Fx(t) Fs(t) Fai(t)]
X2 = [Fl(t) Fg(t) F3(t) F4(t+4)] (3.8)

Two ways of arranging the data matrix are considered here. X1 contains the four
flow rate measurements, but the delay term in F} is ignored, while X2 includes a delay
term in F;. The variance captured by the two PCA modes is listed in Table 3.1. Two
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PC A1 (based on X1)
Principal Eigenvalue of | %  Variance | %Variance
Componet # | cov(x) Captured by | Captured
This PC Total
1 2.77 69.29 69.29
2 0.863 21.58 90.87
3 0.362 9.05 99.92
4 0.003 0.08 100
PC A2 (based on X2)
1 3.14 78.38 78.38
2 0.87 21.43 99.82
3 0.00543 0.14 99.95
4 0.00194 0.05 100

Table 3.1: Comparison of variance captured by two PCA models

principal components in PCA1 capture 90.87% of the total variance, whereas two
PCs can capture 99.82% of the total variance in PCA2. With a properly arranged
matrix, i.e. the raw measurements lagged correctly as in X2, the same number of
PCs is able to capture even more information in the measurement matrix.

Two PCs are retained in both models since there are two linear relations between
variables. The SPE charts for both models are displayed in Figure 3.20. We can see a
fairly large number of points out of the 95% confidence interval in the SPE chart for
PC Al, which implies that a significant amount of information remains unexplained in
the residual space. In contrast, the SPE in PCA2 is small. This means that almost
all the information can be explained by the PCA2 model. (only 1% of variance
remains unexplained).

Further comparison of third principal component in each model (Figure 3.21)
indicates that the variance of third PC in PCAl is much bigger than that in the
PC A2. The autocorrelation function (ACF) of the third score (the residual score) in
PC A2 (Figure 3.22) is almost zero which means the third PC is true white noise, and
therefore truely represents white-noise residual terms that cannot be captured by any
other dynamics. Note that the ACF of the third PC in PC A1 is significant at lag 4,
which is exactly the same as the time delay value in the system. This match is not a
coincidence. Further experiments show that the significant value in ACF of the third
PC does have a relationship with the time delay. For example, if the time delay is
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Figure 3.20: The SPE chart (top) is for PCAl; SPE chart (bottom) is for
PCA2.

set at one sample interval, the ACF of the third PC (Figure 3.23) clearly flares up
at lag 1. This relationship thus provides an alternative to find the time delay in the
system.

In summary, the X2 matrix is correctly assembled and takes the process delay
into account. The PCA model based on this matrix can explain the true relationship
between variables (Fy(t) = F3{t — 4)). On the other hand, the X1 matrix is not
correctly assembled. As a result the PCA model cannot capture the true relationship.
This model is therefore unreliable for process monitoring.

To build a correct PCA model, it is important to include lagged variables when
time delays exist.

3.6 Minor Components

Minor components refer to the components that are not retained in a PCA model.
As we know, the principal components explain most of variation in the data. Only
unimportant or residual information is left in minor components. Minor components
usually contain residuals for the constraints or redundancies that exist between vari-
ables. Few studies (Schoukens et al., 1997) have taken the minor components into
account when doing PCA analysis. The loading vectors related to the minor compo-
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Figure 3.21: Third principal component in PCA1 (top); Third principal
component in PCA2 (bottom)

ACF of third PC in PCAY
o
-

ACF of third PC in PCA2

Figure 3.22: Thrid PC in PCA2 is truely in residual space, while third
PC in PCAL1 still have some autocorrelation.
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Figure 3.23: The significant value in ACF of the third PC matches with
the time delay value.

nents actually describe the correlations between variables. To illustrate the point, let

us consider the following example:

X = [F[Tl F2T2 F3T3] (39)

A PCA model is built based on the measurement matrix X, which include three
energy terms. Three principal components are plotted in Figure 3.24. First two PCs
explain most of variation in the data. The last PC is the residual term for energy
balance constraint between variables.

The last loading vector (Figure 3.25) provides the correlation between the energy

terms, that is:

Residual = 0.579F\T} + 0.576F;T: — 0.576F313 =~ 0
= F1T1 + F2T2 ~ F3R (3.10)

Equation 3.10 is the energy balance equation (a constraint that relates three energy
terms). The last loading vector or the minor component reveals the relationship
between them.
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3.7 Conclusion

The basic methods of using PCA for SPM have been demonstrated via applying PCA
to monitor a simple flow rate system. How to detect various sensor faults and fault
isolation have been discussed in detail.

The limitation of using PCA model and possible ways to overcome these short-
comings are also illustrated. One should be cautious in assembling the measurement
matrix to ensure a successful application of PCA, especially when dealing with the
time delay. Finally, the minor components and associated loading vectors, which are

important in revealing the relationships between variables are emphasized.
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Chapter 4
Recursive PLS and PCA

4.1 Introduction

Multivariate statistical methods are rapidly being introduced in a variety of manu-
facturing processes, chemical process industry, steel rolling, pulp and paper, phar-
maceutics, food, beverage, and cosmetics (Wold and Sjostrom, 1998). Conventional
PCA and PLS are most suitable for steady state processes where measurements are
stationary signals and are only weakly autocorrelated. However, a common scenario is
that chemical processes are usually dynamic, time-varying and nonstationary. Direct
application of PLS and PCA to these chemical processes for modeling and monitoring
usually results in large model-plant mismatch and many false alarms. Adaptive algo-
rithms for these statistical tools are thus essential for monitoring such time-varying
processes. In this chapter, recursive PLS and PCA algorithms are briefly described
and an application to a pilot scale Continuous Stirred Tank Heater (CSTH) system
is used to illustrate the necessity and effectiveness of these recursive algorithms.

4.2 Recursive PLS

Partial Least Square regression is effectively used in process modeling and monitoring
to deal with a large number of variables with collinearity. In most of applications,
the PLS regression is a batch-wise modeling approach, which means that the data are
collected and stored in computer, and PLS regression is carried out on the historical
batch of data. Although it overcomes the collinearity, the batch PLS has a limitation
in that it is difficult to incorporate the newly available data in the model. Although
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one can simply merge new data with the old one and rebuild the model, it is com-
putationally inefficient because the old data are modeled repeatedly. Furthermore,
the algorithm will ultimately run out of the computer memory since the data length
keeps on increasing.

For adaptive process modeling and monitoring, it is essential to find an efficient
approach to update PLS model recursively and efficiently. The basic idea of recursive
PLS (RPLS), which was first proposed by Helland et al. (1991), was to use loading
matrices to express old data. Although the algorithm is computationally efficient,
it may suffer from losing information in the original data matrix and result in nu-
merical errors. In addition, the algorithm is not an exponentially updated one. Qin
(1998) modified this method and further extended it to block-wise RPLS with a mov-
ing window and a forgetting or discounting factor for steady and dynamic process
modeling.

The key idea of RPLS is to update the covariance matrix efficiently. Consider a

PLS regression coefficient matrix which can be expressed in a general framework:
Ceus = (XTX)' XTY (4.1)

where (-) denotes the generalized inverse defined by the PLS algorithm and X, Y are
the input and output matrices. An explicit expression for the PLS coefficient matrix
can be found in (Hoskuldson, 1988). Using singular value decomposition (SVD), X
and Y can be decomposed as

X = TP"+E,

Y = TBQT +F, (4.2)
where E, and F, are residual matrices for X and Y (refer to Chapter 2).

When a new pair of data matrix (X, Y;) is available, the augmented data matrices

are

Xm=[))§l]ande=[;] (4.3)

The new PLS model can be calculated as

om=(XT XD [ET1E] w
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In Equation 4.4, matrices X7 X and X7Y can be denoted as

XTX ~ PT"TPT = PPT (4.5)
XTY = PTTTBQT + PTTF, = PBQ"

where T is an orthonormal matrix and it is orthogonal to F; (Qin, 1998). Therefore,

the new PLS regression coefficients become

m=(ZIR) K [F] e

Comparing Equation 4.4 with 4.6, we can see that performing PLS regression on the

bR

results in the same regression model as performing PLS on data pair

5L ]

In other words, instead of using the augmented input and output matrices, we can use
the old model and the new data to obtain a new PLS model. To extend this result,
we can further build a PLS model based on newly available data pair (X, Y;). Denote
the matrices associated with (X; Y;) through PLS regression by (T1, Wy, P, By, Q1) .
It can be easily proved that performing PLS on data pair:

data pair

PT BQT
5] [oe] “n
results in the same regression model as performing PLS on data pair:
X Y
ESEEY “

Similarly, it can be concluded that applying PLS regression on multi-block data
pair (X, Y1), (XyY2) - (X,,Y:) is equivalent to applying PLS regression on

P B.QT

P. B

2| B (4.9)
P, B.QT



Since the number of rows in P (number of variables) is usually much less than
that in X (number of samples), updating a PLS model based on sub-models other
than the whole data set requires less computation. Note that Equation 4.5 holds
under assumption that E4 is near zero. In practice it is essential to check whether
|E4ll € €. Otherwise, Equation 4.5 dos not hold and the RPLS algorithm will result
in numerical errors. Qin (1998) pointed out the essentiality of this step in recursive
PLS.

The cross validation method is widely used to determine the number of latent
variables in PLS regression (Wold, 1978). Usually the subspace dimension reported
by cross validation is less than ‘A’ which is required to satisfy recursive PLS. This
means that when the model is used for prediction, we use fewer latent variables.
However, more latent variables need to be retained to facilitate the model updates in
the future.

Newly available data usually contain more important information about current
process than the old ones. To adapt to the process change, it is desirable to give more
weight to the new data while forgetting old data. This can be done by either using
a moving window or a forgetting factor. For a moving window approach, the model
based on old data block is omitted from Equation 4.9 when the model based on new
data block is available. Then PLS regression can be performed on this updated data
matrices. The forgetting factor approach uses a forgetting factor A (0 < A < i) to
discount the old data exponentially.

Suppose that at step s, we have a PLS model with associated matrices P; B, Q;.
When the next data block is available, the new model with a forgetting factor can be
obtained by performing PLS using

%]
APT
as the input matrix and

Bs+ 1 Q.T—e-l
AB,QT

as the output matrix. Where P, 1, By11,@s4+1 are the matrices associated with the
new data block. In other words, the new PLS model can be obtained by deriving a
sub-model based on the new data block and then combining it with the old model
with a forgetting factor.



Dayal and MacGregor (1997a) addressed RPLS by combining the kernel PLS al-
gorithm (Dayal and MacGregor, 1997a) with the recursive updating of the covariance

matrix as follows:

(XTX), = M(X"X),_, +z = (4.10)
(XTY), = M(XTY),_ +ziwn

where, z, and y, are the new input and output row vector. (X7 X), and (X”Y), are
the updated covariance matrices at time ¢. When calculating the current covariance
matrix, the previous data are discounted exponentially with a forgetting factor A
(0 < A < 1). This strategy of using the kernel algorithm to calculate the updated
covariance matrices in Equation 4.10 has been shown to be much faster than the
conventional PLS (Dayal and MacGregor, 1997b).

In ordinary PLS, the data are usually scaled to have zero mean and unit variance
before performing PLS regression. In a time-varying process, the mean and standard
deviation of variables may change over time. Using the old mean and standard
deviation to scale the newly available data may result in a bias term. In this case,
one can use the updated mean and standard deviation to scale the data to avoid the
bias. This step will be discussed in the next chapter. Another approach to handle the
mean-centering problem is to introduce an intercept term d, as in the general linear
regression model. The input and coefficient matrices are simply modified to include

this term as shown below:
C
Y=XC+I-d=[XI][d] (4.11)

where I is a unity column vector with all its elements equal to 1 and d is a constant

scalar. Such a bias term can help reduce the model prediction error.

4.3 Recursive PCA

Traditional PCA model works well with a stationary process. However, chemical
processes usually demonstrate time-varying behaviour, such as catalyst deactivation,
heat exchanger scaling, equipment aging, sensor and process drifting, maintenance
and cleaning. A lot of false alarms are usually resulted if a time-invariant PCA model
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is used to monitor such aforementioned processes. To improve the robustness of pro-
cess monitoring, an adaptive process monitoring strategy is essential. Gallagher et
al. (1997) pointed out the need to consider the drifting mean and variance in a non-
stationary system when he used the PCA model to monitor a semiconductor etching
process. Wold (1994) extended the standard multivariate models with exponentially
weighted moving average (EWMA) models based on multivariate scores from PCA
and PLS. A complete recursive PCA scheme, which was recently proposed by Qin et
al. (1999), considered the following issues:

1. Recursive update of the correlation matrix when building the PCA model, in-

cluding the update of the mean and variance.
2. Efficient algorithm for the computation of PCA.
3. Recursive determination of the number of principal components.

4. Recursive determination of the confidence limits for SPE and T? to facilitate

adaptive monitoring.

Herein, we give a brief review of the algorithms for updating the correlation matrix
and we use the same notation as in Qin et al. (1999). X° € R**™ denotes the raw
data matrix with n samples and m variables. The raw matrix is so scaled that data
in each column have zero mean and unit variance.

The conventional PCA involves the singular value decomposition of the correlation
matrix or covariance matrix. The correlation matrix is estimated using the scaled
data:

1
n—1
Let XY € R*™ be the raw data block used to build initial PCA model. The

mean of the variable can be expressed as the vector:

R= XTX (4.12)

1
b= — (X?)" Loy (4.13)
n
where L, »; =[1,1,---1]T € R™. The scaled date vector is then given by:

X1 = (X? ad Inlxlb{) 2;1 (4.14)
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where £, = diag (011, - 01.m) and oy, is the standard deviation of the " variable

(i=1,---,m).

The correlation matrix based on X, is

R = XTXx, (4.15)

n—1
Assume that b, X; and Ry have been calculated based on kth block of data and we
want to calculate b1, X1 and Ri.; when the next block of data X3 | € R+1xm

is available. Denoting

XO
X = [ X0 ] (4.16)

Nie+1

for all the k + 1 blocks of data. The mean by, is related to by in the following way:

k+1
(Z nz) b1 = (Z nz) by + ( nm) | . (4.17)

i=l i=1

Denoting N = 3+ n;, equation 4.17 can be rewritten as:

N 1 o \T
bisr = Nk+1bk+ Nes (X"ku) 1"k+1 (4.18)

The recursive calculation of X, is given by

Xer1 = [XI(:)H 1k+lb£+l] zl:-(l-l
X _ X - 1. AbT 1, AbT _
= [[ XSM ] - 1k+lb{+1] e = [ b _k-{:k+lb{+l . ]Ek:—ll
= [ szkzkﬂ - lkAbf-(-lz;;I ] (4.19)
Rit1
where
Xk = (Xg - lkb',f) 2;1
X"k+1 = (ngn - 1"k+1b£+1) 21:-11-1
X; = diag(oj1, - -0im), j=k,k+1
Ablc+1 = bk+1 — b (4~20)
Since all the k + 1 blocks of mean-centered data are:
-1 AbT -1 AbT
XI?-H. 1k+lbk+1 [ X0 g 1 T 4 ] (4.21)
e +1 Net1 k+1
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the standard deviation for the #*# variable is

‘ Xg( Z) - lkAbk.{.l (2) - lkAbk(Z)

ﬂk+1 nk+1bk+1(z)
k+l i
Nk+1 -1

(4.22)

where X?(:,1) is the i** column of the associated matrix; b1 (i) and Aby,., (i) are the

it* elements of the associated vector. Equation 4.22 can be rewritten as

N4t . z) - 1"k+xbk+1(i)||-
(4.23)

(Niwr = 1) 0200 = [[ X2 (:9) — 1ubi ()] + NeABZ, 1 3) + | X3

Introducing a new notation,
02 (Ne — 1) = || X2 (:,4) — Lebe (0)]|° (4.24)
then Equation 4.23 can be rewritten as:

(Neet = 1) 0hrs = (N = 1) 0+ NeABE 1 3) + | XS, (58) = Loy ben )|

(4.25)
The correlation matrix can be similarly derived as:
Ry = mi_—leﬂxm
NJZ:I — 12k+12kR’=zk2k+l Nkj.\:k— 12;41-1Abk+1Ab£+12;-+1-1
+ 1 xT x (4.26)

Nk+1 -1 N1 Ph+l

Since the old data do not represent the current process, it is usually desirable to
ignore the old data exponentially. The update of mean, variance and covariance with

a forgetting factor are thus computed as follows:

1 T
besr = by + (1= 1) - (X3,,) Lo (427)

Fhrs =1 (oh + DB 0) + (1= ) = [0 ()~ Lo G| (428)

R = [lzk_,_l (szkzk + Abk+1Abk+1) 2k+l + (1 [l) ——XT X, (4.29)

Te1“ Tkt
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where0 < pu < —':’: is a forgetting factor. A small value of the forgetting factor tends
to discount the old data quickly. If z = N—IZ:T’ it is equivalent to no forgetting.

The number of principal components may change over time. Thus it is necessary to
determine the number of PCs recursively. There are many methods for determining
the number of PCs, as discussed in Chapter 2. However, not all approaches are
suitable for recursive PCA. For example, the cross-validation is not suitable because
the old data may contain little information about the current process.

When a PCA model is used as a process monitoring tool, the Hotelling 72 and
SPE are the two main monitoring charts used. The confidence limits for these two
statistics also change over time since the confidence limits for 72 rely on the number
of PC retained in the model, while the limits for SPE depend on the eigenvalues of
the correlation matrix. Details about these issues can be found in Qin et. al. (1999).

The procedure of using RPCA for process monitoring is summarized as follows:

1. Build a PCA model based on an initial data block (k = 1) collected from normal
operating condition. Calculate the confidence limits for T? and SPE.

2. When a new sample is available, calculate T? and SPE based on the old model. If
either of the two statistics exceeds the confidence limit obtained in the previous
step, then an abnormal event is detected. At this point model updating is
stopped. Otherwise, collect the data until a block size (n,+1) is reached.

3. Update the covariance matrix using Equation 4.26 or 4.29. Rebuild the PCA
model based on the updated covariance matrix. Calculate new confidence limits
for T2 and SPE. Set k = k + 1, and go back to step 2.

In practice, step 2 is important because the data that contains the sensor fault
and other abnormal conditions should not be included in updating the model. How-
ever, sometimes it is not easy to discriminate the normal process drift from a small
disturbance and sensor fault. This point will be further addressed in the next section.

4.4 Applying RPCA to a CSTH System

In this section, a continuous stirred tank heater (CSTH) system is used to illustrate
adaptive process monitoring through RPCA. This system is available in the Computer
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LV# | Eigenvalues | % variance captured this PC | % total variance captured

1 421 52.58 52.58
2 1.16 20.12 72.70
3 0.85 10.73 83.43
4 0.70 8.83 92.26
9 0.42 5.25 97.51
6 0.103 1.28 98.80
7 0.0082 1.02 99.82
8 0.0014 0.18 100

Table 4.1: Variance captured by latent variables in dynamic PCA model

Process Control laboratory at the University of Alberta. A schematic diagram of the
CSTH is shown in Figure 4.1. High temperature steam passes through a heater coil.
The cold water is heated by the steam coil and exits through a long copper tube. Four
thermocouples located at different sections of the long exit pipe provide temperature
signals at different locations. The flow rates of steam and cold water are available as
manipulative variables to control the temperature and level of the water in the tank.

Flow rates of steam and cold water, temperature and level are the four moni-
tored measurements. Taking the dynamics of the process into account, the lag one

measurements of four variables are also included in the data matrix:
X = [Fsteam(t) F;:old(t) T(t) L(t) F,gem(t - 1) Fcold(t - 1) T(t — 1) L(t - 1)] (430)

Performing principal component analysis to the data matrix in Equation 4.30 is also
known as the dynamic PCA, which has been suggested by Ku et al. (1995). The
strategy of including lagged measurements in X allows one to capture the dynamic
relationships between variables in this system. Several inter-relationships exist be-
tween these measurements, for example, the increase of Fi.; not only raises the level,
but also acts as a disturbance to the temperature and effects the steam flow rates.
Cross validation suggests that four principal components, which can capture 92%
variation of measurements, should be retained in the model (Table 4.1).

Figure 4.2 shows the Hotelling 72 and SPE charts for a fixed PCA model when
a temperature disturbance (between samples 50-150) and a cold water flow rate dis-
turbance (between samples 450-470) are introduced. Both statistics clearly show up
and exceed the 99% confidence limits indicating the occurrence of some abnormal

condition.
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In Figure 4.3, a small variation of the level setpoint is introduced. To follow the
change of the setpoint, the process moves to another state which is a normal operation
in the system. However, both Hotelling 72 and SPE for a fixed PCA model exceed
their confidence limits, resulting in a false alarm. Therefore, it is inferred that a
time-invariant PCA cannot be used to monitor a time-varying system effectively in
practice.

Figure 4.4 and 4.5 show the T? and SPE calculated from a recursive PCA model.
In this experiment, the set point change begins at sample instant 500 as we update the
PCA model recursively. Figure 4.4 shows the results when the model is updated every
one sample with forgetting factor u = 0.995. Figure 4.5 is the case where the model
is updated after every 10 samples with a forgetting factor u = 0.985. Both statistics
are well within the confidence limits and significantly reducing the probability of
false alarms. Note that the confidence limits for SPE vary with time after sample
500 because of the variation of eigenvalues of the covariance matrix. However, in
this experiment, the number of principal components are fixed at 4, resulting in a
constant confidence limit for T? as shown in Figure 4.4 and 4.5.

When applying RPCA for adaptive process monitoring, the value of the forgetting
factor u determines how efficiently the PCA model tracks the process drift. A small
forgetting factor discounts the old data heavily and allows the model to follow the
process change quickly, but may sacrifice the sensitivity of the model to detect small
disturbances. Figure 4.6 shows the case where a recursive PCA can detect both
a small temperature disturbance (between 150-250) and a rather large cold water
disturbance (between 550-570) when x = 0.998 is used. However, when a smaller
value of forgetting factor u = 0.99 is used, both 72 and SPE fail to detect the small
temperature disturbance (Figure 4.7). This means that RPCA model by itself cannot
discriminate the normal process drift from a slow drift caused by a small disturbance.
On the other hand, an abrupt and a large cold water disturbance usually causes the
Hotelling 72 or SPE to violate the confidence limits significantly. RPCA can quickly
detect such a violation and will stop updating the model until the process returns to
its normal state.
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4.5 Analysis and Conclusions

In this chapter, recursive PLS and PCA algorithms have been described and an ap-
plication example is used to illustrate the effectiveness of the algorithm. To make
those statistical tools more robust and successful in practice, it is essential to develop
the recursive algorithms for PCA and PLS to adapt to the process drift. Although
progress has been made in developing and implementing these recursive algorithrus,
there are still a lot of practical issues that need to be dealt with. Here, we point
out some directions for future work. First, when the recursive PCA is applied on-
line, the measurements are usually very noisy. If the data is directly included in the
recursive PCA model, the true correlation between variables may suffer from such
noisy signals. Thus an effective on-line filter needs to be found and used together
with recursive PCA. Second, the measurements may include some sensor faults. If
so, these measurements should not be used to update the PCA model since it will
destroy the correlation between variables. A mechanism is thus necessary to separate
the faulty sensor signal from the normal signal before updating the model (Qin and
Li, 1999). In addition the determination of an optimal forgetting factor to trade
off the sensitivity and robustness of recursive PCA for a given process needs further
investigation. Finally, recursive PCA shown herein is a static model updating tech-
nique. It may not work for fully dynamic processes. Thus dynamic RPCA which is
suitable in monitoring a fully dynamic process should be investigated.
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Figure 4.2: Hotelling 7% and SPE both detect the temperature and level
disturbance.
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Figure 4.3: The Hotelling 72 and SPE without recusively updating of the
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Figure 4.4: Hotelling T2 and SPE of recursive PCA model, forgetting fac-
tor u = 0.995, model updated every one sample.
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Figure 4.5: Hotelling 72 and SPE of recursive PCA model, forgetting fac-
tor p = 0.985, model updated after every ten samples.
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Figure 4.6: Recursive PCA can detect both flow rate and temperature
disturbance when u = 0.998.
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Figure 4.7: Recursive PCA can detect large flow rate disturbance, but fail
to detect small temperature disturbance when p = 0.99.
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Chapter 5

Industrial Data Analysis

5.1 Introduction

PLS has been proved as a good alternative to the classical multiple linear regression
and principal component regression methods because of its robustness in dealing
with colinear measurements. Many successful industrial applications of PLS have
been reported recently (Wise, 1991; Morud, 1996; Blom, 1996; Mujunen et al., 1996;
Lakshminarayanan, 1997).

With the present-day’s focus on environmental monitoring, the ability to predict
and report certain emissions, such as CO, SO,, NO,, etc. is becoming an important
part of daily routine work in chemical plants. In this chapter, we show that a PLS
based empirical model can be used to predict emission levels in the situation when
strong colinearity exists among variables. Some issues in PLS modeling, such as data
pretreatment, variable selection, dynamic PLS modeling, are also discussed in detail.
Finally we show how the PLS weighting vector can help in diagnosing the root causes

that influence the emission.

5.2 Problem Description

In the Syncrude industrial example that is considered here, there are 4 units and
a total of 74 measured variables. (In respect of proprietary information, a detailed
description of the process is omitted. Variable numbers, instead of the true tag
names, are used to represent the measurements). Two variables are related to the

emission of SO, : the total emission generated from four units and the net emission
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Figure 5.1: Trend plots of the total emission and net emission.

(a calculated value eliminating the emission from one unit) are two variables that
need to be monitored. Figure 5.1 shows the time-series of total emission and net
emission. There is clear correlation between the trend plots of the two emission
variables. Although the values between sample instants 0-300 is higher than that
between sample instants 300-500, they are both considered to be at normal level.
However, for some unknown reasons, the emission went up after sample instant 500
and lasted for a period of time and then went back to the normal level around sample
instant 750.
The objective of this data analysis was twofold:

e First, to investigate what are the possible reasons that can explain the high
emission level whenever it occurs? In other words, which variables are the
likely candidates that effect the emission?

e Second, is it possible to build an inferential model to predict the emission level?
If so, a good prediction model can help in taking preventative action to prevent
high emission levels.

87



5.3 Data Pre-processing

Process data is usually contaminated by the random and gross errors due to mea-
surement noise, sensor failure, and human error. The statistical analysis tools (PCA,
PLS, etc.) are data driven methods, that rely on good quality data. Since bad data
can severely effect the analysis results, data pre-processing is essential before doing
further analysis.

Data pre-processing usually refers to transforming data (taking logarithm, differ-
ence, etc.), filtering, truncation, replacing or deleting bad and missing data. Proper
choice of the data preprocessing methods depends on the nature of the data. Here,
we describe some filtering algorithms that are commonly used in dealing with the
chemical process data (Seborg et al., 1989).

The samples of measured variables are denoted as --- z,.,,%;,Z;4; -+ and the
corresponding filtered variables are denoted as - - - 1, ¥:, Y241 - - - , Where ¢ refers to

the current sampling instant.

e Moving average filter

A moving average filter averages a specified number of past data points, by
giving equal weight to each data points. The algorithm is expressed as

t

yt=% > @ (5.1)

i=t-J+1

J is the number of past data points that are being averaged.

e Exponential filter

The output of an exponential filter can be expressed as:

w=az+(l-a)y (5.2)

Equation 5.2 indicates that the filtered measurement is a weighted sum of the
current measurement z, and the filtered value at the previous sampling instant

Y. Limiting cases for « are

= 1: No filtering (the filter output is the raw measurement z.).
a — 0 : The measurement is ignored.
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e An exponential filter is more effective than the moving average filter, since it
gives more weights to the most recent data. Both exponential and moving

average filter are examples of low pass filters.
e Noise-Spike Filter

A noise spike is said to occur if a noise measurement changes suddenly by a

large amount and then returns to the normal value at next sampling instant.

Noise-spike filters are used to set a maximum allowable change of current mea-
surement from previous one. The noise-spike filter can be expressed as:
z if |z —y1| < Az
b= Y1 — Az if Yoy —zp > Az (5.3)
1 +Azif oy —z, < Az
If a large change in the measurement occurs, the filter replaces the measurement

by the previous filter output plus (or minus) the maximum allowable change.

The trend plot of two process variables (v14 and v36) are displayed in Figure 5.2.
Many spikes are observed in these trend plots. These spikes may result from failure
of the sensors or due to some other reasons. If included in the data analysis, these
spikes will certainly influence the variance/covariance information. In this case study,
a median filter is used to filter out spikes.

If the window length of a median filter is 2M + 1. The output of the median filter

at time instant ¢ is
XC = median(X¢—1\17 ----- ’ Xt—l ’ Xh XH—I: ------ ’ XH—IW) (5°4)

The median operator in Equation 5.4 reorders X;_jr, ..., Xe—1, Xiy X1y ooeeee s Xean
in a descending or ascending way, and then takes the middle (or the median) value
of the reordered queue.

If a data segment consisting of a spike has n data points, a length M (M >
2n) median filter can eliminate such a spike. Thus, proper selection of M requires
the knowledge of the maximum duration of gross errors. When such knowledge is
available, the length of median filter can be determined so that a complete elimination
of gross errors is achieved.
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Figure 5.2: The raw measurements of v14 and v36.

A length 7 median filter is used to eliminate the spikes in all measurements, since
maximum data window of big spikes in the data set are 7. The filtered vl4 and
v36 are shown in Figure 5.3. All the big spikes have been eliminated after filtering.
Note that the median filter algorithm shown in Equation 5.4 is non-causal, because
it requires the future data values X, X;.1, ......, Xt+ar as the input. Thus this filter
is not suitable for on-line use.

A median filter is a low pass filter. With increase of the filter data window
length, more information in high frequency part will be lost, but the low frequency
information is well retained. This point is illustrated by the spectrum plots (Figure
5.4) of the original and filtered signal v14. Since the information in chemical process
data is mainly localized in the low frequency part, and the noise is mainly localized
in the high frequency part, the median filter is effective in getting rid of noise and

gross errors in measurements.

5.4 Variable Selection

Variable selection is an important subject in statistical modeling method due to the
fact that not all the recorded variables are relevant to the dependent variables (vari-
ables in Y block). In fact if some irrelevant variables are deleted from the predictor
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Figure 5.4: Comparison of spectrum of orginal and filtered signal (v20)
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matrix (X block), then the model prediction capability can be improved. If irrele-
vant variables are retained in the model, these variables can potentially deteriorate
the quality of the model. Therefore, it is necessary to eliminate totally irrelevant vari-
ables and only keep the relevant variables in the model. Generally, variable selection
techniques can be classified into several categories ( Forina et al., 1999):

e Subset selection.

A number of regression models are built using different subsets of the predic-
tors, the performance of each model is evaluated and the best one is selected
based on some criteria, for example, minimum square prediction error. Genetic
algorithms (GA) are well known to have the advantage of searching over all
possible subsets but within a reasonable time. Moreover, GA offer a number of
possible optimal or near-optimal subsets (Leardi et al., 1992).

e Dimension-wise selection.
Martens and Naes (1989) suggest replacing the small PLS weights in each latent
variable with zero, so that the corresponding predictors are cancelled from the
latent variable. Other similar PLS weights related methods can be found in in-

teractive variable selection (Lindgren et al., 1994), automatic variable selection
(Forina et al., 1986), and the intermediate least square method (Frank, 1987).

e Model-wise elimination.
The model is developed with all the predictors:

y= blzl + b2z2 SRR bnzn (55)

If the associated regression coefficients in the regression model is small. The
corresponding predictor can be eliminated. Another criterion that can help
decide the importance of the predictor is ISE (iterative stepwise elimination)
(Boggia et al., 1997), defined as
e = |bi| s

b bils:
where s; is the standard deviation of the predictor i. The predictor with the
minimum importance is eliminated in each elimination cycle, and the model is

(5.6)
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built again with the remaining predictors. The final model is the one that has
the maximum predictive ability. For other model-wise elimination methods,
readers can refer to uninformative variable elimination PLS (Centner et al.,
1996), and the iterative predictor weighting PLS method ( Forina et al., 1999).

Although there are 72 process variables measured in this process, more careful
scrutiny of these variables indicates that some variables have little relationship with
change in emission observed. One such variable (v39) is shown in Figure 5.5 as
an example. A further correlation analysis tell us that the correlation coefficient
between v39 and total emission is -0.08, which means that relationship between these
two variables can be ignored. The correlation coefficients between the total emission
and other variables are shown in Figure 5.6. As we expect, the total emission and
net emission have strong correlation (correlation coefficient = 0.97). Meanwhile,
many other variables (v4, v15, v16, v17, etc.) show very weak correlation with the
emission. These variables, if included in the inferential model, may influence the
prediction accuracy since their variation appears not to influence the emission in the
real process, but may cause variation of the emission level in the model. An absolute
value of 0.3 is set as the threshold in this correlation analysis. Any variable, if its
correlation coefficient fall in the range (-0.3 0.3), will not be included in the model.
By using this as a variable selection criterion, only 33 variables are retained in the
model for further analysis.

In this study, the correlation analysis is used to select the important variables.
Many other methods, as discussed above, can be used to do variable selection. For
example, we can build a preliminary PLS model. The variables which have little
contribution to the inferential model, should have relatively small first weighting
coefficients. Thus they can be deleted from the model. Figure 5.7 gives the comparison
between the correlation coefficients and the first PLS weighting vector. The variation
of first weighting vector in PLS is similar to that of correlation coefficients and these
two methods are expected to give the similar results.

It is difficult to build a process model based on first principles and the process
knowledge for the emission, because the mechanism influencing the emission is not
known. In this case, building an empirical model is a realistic choice. Furthermore, the
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Figure 5.8: The cluster analysis display the correlated variables

ordinary least squares method is not numerical stable because of the highly correlated
variables. Figure 5.8 shows the correlation map with variables regrouped by similarity.
Highly correlated variables form several clusters in the figure which implies that the
PLS method is a better choice in dealing with the collinearity in the data.

5.5 PLS modeling

The whole data set (936 samples) is divided into two parts. One set (including sample
instants 0-850) is used for modeling. The other data set (including sample instants
851-936) is used for validation. In this study, only one variable (total emission) is
included in Y block (known as PLS1 modeling). The X block contains 33 variables
after variable selection. To ensure that the results are invariant to the choice of
measurement units, all the variables are auto-scaled (zero mean, unit variance). In a

static PLS model, the data matrices are arranged as follows:

X = [X(t-1)] (5.7)
Y = [Y(t)]

X(t — 1) contains 33 process variables at lag one measurement. Y contains the

measurements of total emission at current time. The objective of the static PLS model
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X block Y block

LV# | This LV | Total | This LV | Total
54.99% | 54.99% | 48.91% | 48.91%
7.05% | 62.04% | 22.93% | 71.83%
3.00% | 65.03% | 4.20% | 76.03%

Table 5.1: Variance captured by latent variables in standard PLS model

W N

is to predict the emission value at next sampling time using 33 process varialbes at
current time.

Cross validation is used to determine the number of latent variables in the PLS
model. The cumulative PRESS (prediction error sum of squares) plot (Figure 5.9)
indicates that 3 latent variables is a good choice. Table 5.1 lists the variance explained
by each latent variable. With three latent variables, 65.03% percent of information
in X block is utilized to explain 76.03% percent of information in Y block.
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Figure 5.9: The cross validation suggest three latent variables should be
kept in the model.

The model outputs, together with the real measurements, are displayed in Figure
5.10. We can see that although the model output can follow the trend of actual
measurements, the fitting error is relatively large. The prediction error (after sample
instant 850) is also large. The possible reasons for this big model-plant mismatch
may be due to:

e The underlying assumption that the process is at a steady state does not hold
all the time. The process appears to have gone through a dynamic transition
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Figure 5.10: The Model output vs. the actual measurements using static
PLS model.

around sample time 500. Thus, the static PLS model, which assumes that the
process is at steady state, may not work well in modeling the dynamics in the

process.

The standard PLS assumes a linear algebraic model structure. The real process
is nonlinear. If the process operates at a single steady state, it can be linearized
by a PLS model around the operating point. However, it is difficult for PLS to
account for the nonlinearity at different steady states.

We may not measure all the variables that affect SO, emissions. In other words,
some of variables that influence the emission level may not be included in the
model due to unobservability.

Some of the variation in the process may be random, thus unpredictable.

The possible remedies to improve the model are:

Use PLS to extract the relationship between variables from normal process data.

Including more data collected from different normal states can help PLS “learn”

more about the process.

Build a dynamic PLS model by including the lagged measurements of emission
as the model input.
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e Build a nonlinear PLS model. This can be done in two ways. One method
is to incorporate some nonlinear elements (nonlinear transformation of original
measurements) in the X matrix, which require the apriori knowledge about the
process. The other method is to use some nonlinear modeling techniques to
build nonlinear inner relationship for the latent variables. Neural network has
been reported as one of these tools (Qin and McAvoy, 1992a).

In this analysis, we have attempted to build a dynamic PLS model and a nonlinear
PLS model and found that a nonlinear model that ignores the dynamics in the process
did not perform well in contrast to a dynamic linear model. Thus, we will only focus
on the discussion of the dynamic linear model.

5.6 Dynamic PLS modeling

There are a number of approaches to deal with dynamics in a process. One method is
to include a relatively large number of lagged values of the input variables in the input
data matrix. This approach is used by Ricker (1988) and this results in a PLS Finite
Impulse Response (FIR) models. This model is parsimonious in the parameters due to
the dimensionality reduction capabilities of PLS. Another possibility is to include the
lagged values of both the inputs and outputs in the input data matrix. This approach
is used by Qin and McAvoy (1992) and this results in a parsimonious multivariate
ARMA model. Both FIR and ARMA methods require a substantial increase in the
dimension of X matrix. With the FIR approach, the column dimension of X is
proportional to the specified length of the impulse response model. With the ARMA
approach, the column dimension of X is proportional to the sum of the orders of
the autoregressive and moving average parts of the model. These dimension can
reasonably range from 5 to 50 times the original data dimensions for the FIR model
and from 2 to 6 times for the ARMA model. Thus, there can be a significant increase
in the column dimension of X. To overcome this difficulty, Kaspar and Ray (1993)
proposed another method which permits the dynamics to be expressed as part of
the inner relation and obviates inclusion of lagged values of the input and output
variables in the input data matrix. The resulting dynamic PLS model can be easily
used to design a control system by employing precompensators and postcompensators
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Figure 5.11: A plot of the cumulative PRESS. This suggests that 6 latent
variables should be kept in the PLS model.
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Figure 5.12: The fitting error is small

constructed from the input and output loading matrices.
In the emission data analysis, a first order ARX model is utilized to capture the
dynamics in the process. The data matrix for dynamic PLS modeling is arranged as

follows:

X = [X(t-1)Y(E-1)] (5.8)
Y = [Y(t)] (5.9)

X(t — 1) is same as that in the static PLS model. However, lag one measurement of
total emission is also included in X matrix.
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Figure 5.13: Comparision of model output and actual measurements.

X Y

# | This LV | Total | This LV | Total
47.05 | 4705 | 53.34 | 53.34
10.34 | 57.39| 26.07 | 79.41
6.12 |63.51| 822 | 87.63
518 |68.69| 4.81 | 9245
4.03 | 72.73| 2.83 | 95.27
241 (7514 204 | 9732
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Table 5.2: Variance captured by latent variables in dynamic PLS model
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Figure 5.14: The model prediction vs. the actual measurements when the
validation data is scaled by its own mean and variance.

The cumulative PRESS plot (Figure 5.11) indicates that 6 latent variables should
be retained in the dynamic PLS model. The variance captured by the latent variables
is shown in Table 5.2. Six latent variables can explain 75.14% of X and 97.32% of Y.
The comparison between the model output and the actual measurement is shown in
Figure 5.12. Very small fitting error (samples between 0-850) is observed in the plot.
The zoomed figure related to validation data (after sample instants 850) is shown
in Figure 5.13. The prediction error is large. However, the prediction and actual
measurements trend very well.

Recall that the data used for building a PLS model was autoscaled. When the
model is used for prediction, the same mean and standard deviation are employed
to scale the recently available data. Scaling the data in this way assumes that the
signal is stationary. In other words, the mean and variance of the data are not
expected to change over time. However, the emission measurements are nonstationary
signals and thus it is incorrect to scale the new measurements using the old mean and
variance. If the validation data is scaled using the mean and variance estimated based
on samples 850-936, we observed a significant improvement of the model prediction
(Figure 5.14). Although this treatment of scaling is non-causal, and cannot be used
on-line, it highlights the points that the new data should not be scaled using the old

mean and variance in a nonstationary process.



To deal with the drifting mean and covariance in the process, the new process data
should be scaled by the updated mean and covariance when the new data is available.
For this purpose, we use an exponentially weighted moving average (EWMA) method

to update mean and variance, as shown in Equation 5.10:

Mt+l = C!Mt' + (1 - Q)Mt (5.10)
Virn = BV +(1-B)V.

where M, is the mean used for scaling at current time. M, is the previous mean
used for scaling. M/ is the estimated mean based on new process data. (length of
new process data is m, which is a user specified parameter). « is a weighting factor
to the new data (0 < a < 1). The notation for the variance can be explained in a
similar way. When the method is used on-line, the user needs to choose , 8 and
m. A large a and 3 tend to give the current measurements more weights and forget
the old measurements quickly. The choice of m determines interval length needed
to update the mean and variance. For example, if m=5, the mean and variance will
be updated every 5 sample intervals. Let a and £ equal to 0.025 and m = 2 in this
analysis. Figure 5.15 shows better results in comparison with Figure 5.13 when the
updated mean and variance are used.

PLS modeling combined with EWMA gives better performance when dealing with
the nonstationary process. However, at least two issues need to be addressed with
this method. One issue is how to choose a proper m. In other words, how to decide
when we need to update the mean and variance. Some rules or algorithms that
are able to detect the drifts of mean and variance need to be employed. The other
issue is proper choice of weighting factors o and . Strategies for identifying optimal
weighting parameters need to be developed.

5.7 Root Cause Diagnosis

As we have seen in Figure 5.1, emission is at normal level before sample instant
500 and exceeds a certain criterion after sample instant 500. This case happens
occasionally in the process. Whenever this occurs, engineers try to find the causes
that result in undesirably high level emission. In the past, this was done by viewing
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Figure 5.15: The comparision of model outputs and actual measurements
with EWMA updating of mean and variance

Data Range | Corr. Coef.
100-300 -0.349
400-600 0.726
600-800 0.0017

Table 5.3: Correlation coefficients between net emission and v51 based on
different section of data

the trend plot of individual process variables and the possible causes were identified
based on engineer’s experience. This univariate method is not only time consuming
(over 100 process variables in the process need to be examined), but also subject to
errors due to collinearity and noise masking the real root cause.

Figure 5.16 shows the trend plots of v39, v51, and the net emission, respectively.
The measurements of V39 is almost at stable state, and unlikely to be the variable that
causes the variation of emission around sample instant 500. V51 is almost constant
before sample instant 500; however, it has a significant change around sample instant
500. Since the emission also undergoes a large change at sample instant 500, v51
is likely to be one of the variables pointing to the root cause. Table 5.3 shows the
correlation coefficients between net emission and v51 at different periods of data.
The correlation coefficients based on sample instants 400-600 is the largest, which
indicates that v51 is highly correlated to the net emission during this period.

As shown in Table 5.3, the correlation coefficients between two variables change
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Figure 5.16: Trend plots of V39 (upper), v52(middle), and net emis-
sion(lower)

in magnitude and sign over time. This implies that the correlation matrix R is not
a constant matrix. If the process is at an ideal steady state (all measurements are
almost constant and only affected by measurement noise), the values of off-diagonal
elements in R should be very small. In other words, variables should show very weak
correlations between each other at steady state. The data collected at steady period
would thus reveal little relationships among variables.

The PLS model based on different sections of data may reveal different relationship
between the emission and the other process variables. This is evident since the process
undergoes different states or changes during the time when the data was collected
and the correlation also changes during this period. The data used for PLS modeling
thus cannot reflect all the normal variation and conditions in the process. Thus
a PLS model built off-line may have a large model-plant mismatch if it cannot be
updated on-line. Should the plant change, the model should also be updated to
reflect the current state of the process. This is the idea of adaptive modeling that has
been investigated by many researchers (Ljung and Soderstrom, 1983; Goodwin and
Mayne, 1987; Eykhoff, 1974).
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Weighting vectors in a PLS model are important in the sense that they reveal the
relative importance of process variables to response variables (total emission and net
emission in this analysis). The first weighting vector (associated with first principal
component) in the PLS model provides more information than other weighting vec-
tors, since the first PC usually explains the most variation in X block and at the
same time contribute most to the prediction of Y compared to other PCs. Figure
5.17 compares the first weighting vectors based on the data between sample instants
1-500 and 500-936. Some weighting values remain unchanged (for example, weight-
ings related to variables 1-10). However, other weightings show a large variation, such
as variables 18, 45, etc. This phenomenon implies that continuous monitoring of the
weightings for process variables may reveal the causes for the variation of emission
when there is a significant change.

Color coding or chromatic graphing is utilized here to facilitate an easy interpre-
tation of the results. In the following color figures, variables are reordered based on
the similarity between each other (refer to Figure 5.8). (Note: all the color figures
will be displayed in the text in black and white to facilitate the printing and the
corresponding color figures are attached at the end of this thesis).

There are several ways to update the model recursively (refer to the discussion in

Chapter 3). Here we compare the results from three methods:

1. When the new measurements are available (say 20 samples), the initial model
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Figure 5.18: First weighting vector in recursive PLS model using all the
available data.
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Figure 5.19: First weighting vector in recursive PLS model with EWMA
updating method.(A = 0.9)
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is updated including the old data together with the new one. No discounting of
the old data is considered in this case. (Figure 5.18)

2. Exponentially weighted moving average updating of the model. The old data is
discounted in building the model. The new data carry more weights than the
old one. (Figure 5.19 and Figure 5.21)

3. A fixed length moving window is set to include the same amount of data in
building the model. When some fresh data is available, it is included in the
model. At the same time, some old data is deleted. (Figure 5.20)

In all three methods, the initial models are built using samples 0-300. All models
are updated whenever 20 new observations are available. 72 process variables are
included in X matrix. Total emission variable is included in Y matrix. First weighting
vector in a static PLS model (lag one measurement of net emission is not included in
Y matrix) is calculated recursively.

To facilitate the interpretation, the variables are regrouped based on similarity.
Cluster analysis indicates the similarity between variables and shows how the variables
should be grouped together. The X axis gives the variable index. The Y axis gives
the current time. Each pixel in the figures represent the colour coded weighting values
for a variable. For example, the first row from bottom represents the weighting values
for the corresponding variables in PLS model based on samples 0-300. When next 20
sample are available, the models can be rebuilt by means of any of the three methods
discussed above. The updated weightings are then displayed in a new block of colors
in a horizontal line above the old one. The procedure is repeated until the end of the
data length.

Figure 5.18 shows the change of weighting vector of PLS model if the model
is updated using all the available data (no discounting to the new data). Weighting
values for some variables are fairly stable, e.g. v7, v39, v15. Meanwhile, the weighting
values are small, which implies that these variables have little relationships with
emission. On the other hand, weighting values for some variables, for example v51,
v52, v53, v55 etc. have undergone significant changes, both in sign (from negative to
positive) and magnitude.
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We know that emission level rise to abnormal level after sample time 500. Thus
the variables whose weighting values indicate a significant change after sample instant
500 are most likely to be the cause that influences the emission. v11 v12 v61 v67
v62 vb3 v55 v52 v51 v58 v50 v56 v57 have been picked out as such candidates.
The limitation of using the first method is that all the available data is given equal
weights in building the model, which makes the weightings insensitive to the current
states of the process. In the second method, exponential weighted moving average
(EWMA) updating of PLS model is utilized. The new data is given more weightings
than the old. The weights on the old data decay exponentially by using a forgetting
factor A (0 < A <1). A smaller A will forget the old data faster, which also make
the weighting vector more sensitive to the new data. Figure 5.19 and 5.21 show
the results with A = 0.9 and 0.7, respectively. More variation of the color can be
observed in Figure 5.21 due to the smaller A. This allows us to find a cause and
effect relationship between emission and other process variables during a short period
of time. In practice, if emission level is relatively constant and only violates the
monitoring limit occasionally, a big A should be chosen to avoid drastic and frequent
change of the color.

Figure 5.20 shows the variation of first weighting vector when a fixed length moving
window is used. The results are similar to EWMA method since both methods
discount the old data in some way. A small window length is equivalent to using
a small ) in the EWMA method.

The diagnostic results obtained from above three methods are similar. These
results have proved to be very helpful in finding the cause that affects the emission.
Usually, when the process is at steady state, the emission level is relative constant.
The color coding graph cannot provide much information in this case. However, if
the emission rises to an abnormal level, the system will undergo a transition i.e. it
is in a different state. In this case, the weighting values for some variables will vary
significantly (color changes correspondingly in the graph). The possible reasons that
effect the emission thus can be found among these variables. Although the method
cannot provide a unequivocal diagnostic results, it can quickly narrow the search
range and give clues to the possible causes. For example, by simply observing the

color variation after the sample instant 500, we can quickly discard many irrelevant
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variables and focus only on 13 variables.

5.8 Concluding Remarks

A dynamic PLS model is more appropriate if the measurements from a process display
not only strong crosscorrelation but also strong autocorrelation. A dynamic PLS
model can be achieved by including the lagged variables in the predictor matrix or
expressing dynamics in the inner model. In a time-varying process, it is essential
to update the mean and variance over time. The newly available data should be
scaled using the updated mean and variance to avoid any possible bias in model
prediction. The weighting vectors in a PLS model reveal the relative importance
between prediction variables (variables in X block) and response variables (variables
in Y block). Using color blocks to display the variation of the weighting vector, we
show how this method can be effectively applied in diagnosing the root causes for

abnormal emission.
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Chapter 6

MSPCA-Combination of Wavelets
with PCA

6.1 Introduction

Statistical Process Monitoring (SPM) via PCA involves the use of Hotelling T and
Q (also known as SPE) charts. Time-independency and normal distribution of the
measurements and residuals of PCA model are required for obtaining the statistical
limits for the T2 and Q charts, respectively. Conventional PCA is thus ideally suited
for monitoring steady state processes based on the assumption that the measurements
are time independent (uncorrelated) and normally distributed. Typically, most of the
processes are in dynamic state, with various events occurring such as abrupt process
changes, slow drifts, bad measurements due to sensor failures, human errors, etc. Data
from these processes are not only cross-correlated, but also auto-correlated. Applying
conventional PCA directly to dynamic systems usually results in false alarms, making
it insensitive to detect and discriminate different kinds of events.

Every event is associated with a certain frequency band according to its power
spectrum. Wavelets are emerging tools for decomposing a signal into various fre-
quency bands providing simultaneous time-frequency domain analysis. Wavelet de-
composition of a signal results in approximately decorrelated wavelet coefficients of
the stochastic part of the signal and a few set of large coefficients containing the trend
of the process. Thus, wavelets provide a good separation between the deterministic
and stochastic parts of a measured signal (Donoho et al., 1995). Typically, measure-
ments from chemical processes are autocorrelated and thus unsuitable for SPM using
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PCA. Harris and Ross (1991) have suggested changes in the confidence limits when
monitoring univariate data. Their results do not directly apply to the multivariate
case. However, in this work, it is shown that through wavelets decomposition, the
resulting wavelets coefficients are almost decorrelated. PCA models can then be built
based on these wavelet coefficients over each frequency (scale) band. This strategy
helps in overcoming the above mentioned shortcomings of conventional PCA for SPM.
Consequently, MultiScale PCA (MSPCA) retains the statistical basis for the monitor-
ing charts. Moreover, since each event occurs over a certain frequency band, MSPCA
possess greater sensitivity in fault detection and process changes. These ideas are
illustrated by a simulated example.

6.2 Introduction to Wavelets

The ideas of wavelets originated from the works in engineering (subband coding),
physics (coherent states, renormalization group), and pure mathematics (Calderon-
Zygmund operators). The name wavelets were coined in early eighties by some French
researchers (Morlet et al., 1982; Grossmann and Morlet, 1984). Since then, wavelets
have attracted a great deal of attention from scientists and engineers in various disci-
plines. In this section, we give a brief introduction to wavelets and Mallat’s multires-
olution analysis, which is a necessary background for understanding Multiscale PCA.
More details about wavelets theory and their applications can be found in many refer-
ences (Daubechies, 1992; Chui, 1992; Koornwinder, 1993; Chan, 1995; Mallat, 1998).

The wavelet transform is a tool that transforms data, functions, or operators into
different frequency components, and then studies each component with a resolution
matched to its scale (Morlet et al., 1982). Fourier transforms provide a perfect fre-
quency resolution of a signal but completely lose the information in the time-domain,
i.e., the Fourier transform cannot provide the time-frequency localization at the same
time. This means that although we are able to get the frequencies present in a signal,
we do not know when they are present.

The Wavelet transforms, in contrast, resolve signals both in time and frequency
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domain. A wavelet of 9 is a function of zero average:

+00

Y(t)dt =0 (6.1)

-0

Wavelets are obtained through dilation and translation of 1 (t)

bea®) = 2 (S57) 6:2)
Function 1 (t) sometimes is called “mother wavelet” because it represents the pro-
totype from which wavelets functions (s, ) are generated. 7 is the translation
parameter which determines the location of the wavelet in the time domain, and s is
the dilation parameter which determines the location in the frequency domain.

Let f(t) and g(t) be two functions in L?(R). The functional transformation or
inner product of f(t) and g(t) is defined as

-+00

(f(£).9(t)) = f(@)-g°(t)at (6.3)

According to definition of inner product, the continuous wavelet transform of a signal
can be defined as the inner product of the signal with the wavelets basis functions

+00 1

wfr,9)= [ HO)Z(

t—T1
s

)dt (6.4)

A family of discrete wavelets is represented as the dyadic dilations and translations
of a mother wavelet ¥(k):

Vmalk) = 27227k — n) (6.5)

where m and n are the dilation and translation parameters respectively. v, , can
constitute a set of orthonormal basis functions for L?(R) with the proper choice
of 9 (Daubechies, 1992). Any function f in L?(R) can then be represented, up
to arbitrarily small precision, by projections onto the set of basis functions %, ,
(Daubechies, 1992).

The Discrete Wavelet Transform (DWT) analyzes the signal at different scales
(or over different frequency bands) by decomposing the signal at each scale into
a coarse approximation (low frequency information) and detail information (high
frequency information). DWT employs two sets of functions, the scaling functions
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and wavelet functions, which are associated with low pass filter H and high pass filter
G, respectively. Mallat’s decomposition algorithms (Mallat, 1989) provide a simple
means of transforming data from one level of resolution, to the next coarser level
of resolution. Let a,_; denote the scaling function coefficients at scale m — 1, the
wavelets and scaling function coefficients at level m is

Wm = Gam-1, @m=Hap (6.6)

Figure 6.1 shows this procedure. Note that each time after the decomposition of a,,
the resulting a.,., is down sampled by 2. This is due to the fact that decomposition
of a signal into the coarser scale will double the frequency resolution and result in
redundance of the information. In other words, only half of the number of samples
is needed to characterizes the signal at current scale. The raw data from a process
f (n) can be considered at the finest level f (n) = a9. Through multi-resolution de-
composition, the raw data can be decomposed into several sets of wavelet coefficients
at different scales and a set of scaling function coefficients at the coarsest scale. Coef-
ficients at different scale contain the information over various frequency bands in the
original signal.

The inverse Mallat transform is a transformation from the coarser levelm—1, back
to the finer level m. For example, a,, can be reconstructed based on @, ., and wp;,
and the original signal may be completely reconstructed using its wavelets coefficients
at all scales and scaling function coefficients at the coarsest scale.

Two important applications: data compression and data filter can be achieved

through Mallat’s transformation and inverse transformation. Since the total length of
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all scaling function and wavelets coefficients together is equal to the length of original
signal due to the down sampling, there is no extra burden to store those coefficients.
Moreover, some wavelets coefficients may lie in the frequency band in which we are
not interested, and thus can be discarded. This means that the useful information
in a signal can be represented and stored by fewer wavelets and scaling function
coefficients. On the other hand, when we use this length-reduced wavelets coefficients
to reconstruct the original signal, the noise or irrelevant information localized in those
uninterested frequency bands is automatically filtered out.

6.3 Statistical Assumption of SPE and T?

Recall that the confidence limits calculated in Equation 2.23 are based on the assump-
tions that the measurements are time independent and normally distributed in the
multivariate sense (Johnson and Wichern, 1992; Tracy et al., 1992). The confidence
limits in Equations 2.25-2.27 were derived assuming that errors were random with
zero mean and Gaussian distribution (Jackson and Mudholkar, 1979). Although, the
underlying distribution of the residuals and the scores can vary substantially from
the Gaussian assumption without affecting the results due to the central limit the-
orem (Wise et al., 1990). The highly autocorrelated data would certainly affect the
confidence limits for the 72 chart. In practice, measurements from dynamic chemical
processes do not satisfy the assumptions on the measurements resulting in the loss of
statistical basis for the 72 charts. However, not enough attention has been paid to
these underlying assumptions (Luo et al., 1998). On the other hand, improper choice
of number of PCs retained in the model may lead to the autocorrelated residuals,
which will influence the confidence limits for SPE chart. Consequently, conventional
PCA is not suitable for monitoring dynamic processes due to the presence of nonsta-
tionarities and time dependencies.

We illustrate this point by means of an example where the autocorrelated mea-

surements: u, z and p are given by

u(k) = 0.7u(k—1)+w(k—1) (6.7)
z(k) = 0.82(k—1)+0.3u(k—1) (6.8)
p(k) = 0.5p(k —1)+0.2u(k — 1) (6.9)
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Figure 6.2: The ACF of z indicates that the data is time-dependent.

where w(t) is the white noise with unit variance. The data matrix, X for a steady-

state PCA analysis is arranged as follows:
X = [u(k) z (k) p(k)] (6.10)

The auto correlation function(ACF) of z is shown in Figure 6.2. The strong au-
tocorrelated feature indicates the strong time-dependence of the data. Consequently,
the first PC also exhibits significant autocorrelation as shown in Figure 6.3. In this
case, statistical control limits obtained for the 7 chart based on the time indepen-
dency assumption are not valid. In order to account for the dynamics/autocorrelation,
we consider the lagged data matrix for the dynamic PCA model given in (Ku et
al., 1995):

X = [u(k) z (k) p(k) u(k — 1) z(k — 1) p(k — 1)] (6-11)

However, the dynamic PCA model using the lagged data matrix as shown in
Equation 6.11 suffers from certain drawbacks. Firstly, the order of the process and
the associated time delay are usually unknown. Time delay estimation of chemical
processes is a non-trivial problem. It implies here that the lagged data matrix might
not capture the true dynamics of the process. Secondly, the incorporation of lagged
variables does not aid in decorrelating the measured variables. Thus, the assumption
of time-dependency still remains violated, and hence invalidating the statistical basis
obtained with the dynamic PCA model.
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Figure 6.3: ACF of PC-1 (dynamic PCA model) indicating highly auto-
correlated scores.

6.4 Combining Wavelets with PCA-MSPCA

Measured variables from a dynamic process may contain contributions from sev-
eral events, such as process dynamics, sensor noise and fault, parameter drifts, and
operator-induced actions. Every event has its own frequency and time features. For
instance, components of measurement noise are mainly localized in the high frequency
band, while basic process dynamics are mainly localized in the low frequency band.
Since the data from practical processes are multiscale in nature, analyzing a process
signal over various frequency ranges or scales may provide a multiscale, hierarchical
description of the signal (Bakshi and Stephanopoulos, 1994). Consequently, PCA
models built on wavelet transformed data at various scales or frequency bands would
have some advantages. Each PCA model at a certain scale can be expected to have a
greater ability to detect events whose spectrum is most significant in this scale. Here,
PCA models are based on the wavelet coefficients, rather than the reconstructed data
over certain frequency bands. The benefit of monitoring the wavelet coefficients is
that these coefficients contain no significant correlation, while the reconstructed data
still retains some time-dependent features. These issues are illustrated using the data
generated in the earlier example. A 4-level wavelet transformation of the data is
carried out yielding the representation of the signals over 5 frequency bands or scales
(the lowest frequency band and 4 sets of higher frequency bands). Figure 6.4 shows
the wavelets and scaling function coefficients at different scales. ACF of reconstructed
data over the second level high frequency band is shown in Figure 6.5. Figure 6.6
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Figure 6.4: Original data of Z (a); Wavelets coefficients from first H.F.
band to the Fourth H.F. band (b)-(e); Scaling function coef-
ficients at the coarset scale (lowest frequency band) (f)

shows the ACF of wavelets coefficients at different frequency band. It is easy to see
that the wavelet coefficients contain no significant correlation while the reconstructed
signal still contains significant correlation.

The idea of multiscale PCA is to build models for these wavelet coefficients indi-
vidually at different scales. The PCA models at each scale are combined to monitor
the process and are expected to be more sensitive to abnormal events than conven-
tional PCA. Note that a dyadic length of data is required for wavelet decomposition.
When the MSPCA is used online to monitor a process, it is necessary to incorporate
the fresh data timely and also keep the dyadic length of data. Bakshi (1998) suggested
a sliding window method to apply multiscale PCA on-line.
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Figure 6.5: ACF of reconstructed data from the second level H.F. band.

Figure 6.6: ACF of wavelets coefficients at first H.F. band or finer scale
(a), second H.F band (b), fourth H.F band or coarser scale
(c), and fifth H.F. band or coarsest scale(d).
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Figure 6.7: SPE chart with dynamic PCA

6.5 MSPCA for Dynamic Process Monitoring-A
illustrated Example

In this section, we illustrate the effectiveness of MSPCA using the aforementioned
example in Equations 6.7-6.9. A sensor failure is simulated by introducing a sudden
mean shift of magnitude 1.5 in z between sample times 200-800. For comparison
purposes, we show the results obtained using dynamic PCA. Results obtained using
steady-state PCA are not shown here since it is well-known that steady-state PCA
cannot perform well for dynamic processes.

The SPE and 72 charts obtained using dynamic PCA are shown in Figures 6.7
and 6.8, where we have employed the same lagged data matrix as in Equation 6.11.
The SPE chart is unable to detect the sensor fault. The T? chart can detect the
sensor fault, but it cannot report a fault unequivocally since the scores and residuals
go back and forth across the confidence limits.

Besides, the confidence limits in the 72 chart are based on time-dependent mea-
surements. Hence, the statistical basis is no longer valid.

Since sudden changes in processes contain mainly the high frequency component,
the beginning and end of abrupt events are expected to reflect in the PCA model
based on the wavelet coefficients at finer scale (first level of decomposition). The SPE
chart shown in Figure 6.9 clearly indicates this point. The 72 chart with MSPCA at

finer scale is not shown here because of its insensitivity to such a change. A note of
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Figure 6.9: SPE chart with MSPCA at finer level.
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Figure 6.10: T2 chart with MSPCA at coarsest level.
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Figure 6.11: SPE chart with MSPCA at coarsest level.

caution is required while interpreting the time axis in the monitoring charts obtained
using PCA on wavelet coefficients. At finer level, the time resolution is halved and
therefore should be doubled when going back to the original time domain. While the
wavelet coefficients at finer level (the highest frequency band) are primarily sensitive
to sudden changes, the ones at the lower frequency bands detect the persistence in the
fault. For this purpose, we make use of the 72 and SPE charts using the coefficients at
the coarser levels. Here, we only show the charts using the coarsest level coefficients.
Figures 6.10 and 6.11 for MSPCA at coarsest level clearly show the persisting fault.
The SPE chart is more sensitive than T2 chart in this case. Since the original signals
have been decomposed to four levels (5 frequency bands) in this example, we need
to multiply the time index in Figure 6.10 and 6.11 by 2* to get the interval of fault
persistence in the original time domain. The ACF of wavelet coefficients at the
coarsest and finer levels are shown in Figure 6.6. The wavelet coefficients at these
levels are almost decorrelated. Thus, the confidence limits for the monitoring charts
can be correctly calculated in this case, providing a sound statistical criteria to detect

an abnormal event.

6.6 Conclusion & Discussion

The underlying assumptions of applying PCA have not received enough attention in
the past years. Since most industrial processes are dynamic systems, the measure-
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ments are usually time dependent. Results of applying PCA to monitoring these
systems will be severely affected without taking into account the time-dependency of
the measurements. Wavelet transformation of measurements results in signals with
no significant correlation. Monitoring charts with PCA models based on the trans-
formed data comply with the underlying statistical assumptions. Furthermore, we
have shown by example that MSPCA is more sensitive to small disturbances than
dynamic PCA .

Typically, the wavelet coefficients at the coarsest level would primarily contain
the deterministic part of a signal while the higher frequency bands contain mainly
the stochastic part. In this example, it is a matter of coincidence that the wavelet
coefficients at the coarsest level are approximately decorrelated as well. In practice,
for reasons mentioned above, the confidence limits for the charts in Figures 6.10 and
6.11 may not be valid. In such a case, we could monitor deterministic or low-frequency
changes with heuristics based on process knowledge.

In this work, we have discussed the issues involved in conventional PCA and a way
to overcome some of the drawbacks therein. Extensions of off-line MSPCA to on-line
MSPCA is possible with some enhancements in the methodology (Bakshi, 1998).

93



Chapter 7

Conclusions

7.1 Contributions of thesis
In summary, the contributions of the thesis are:

e A simple and intuitive flow rate experiment has been employed to
demonstrate the methodology of using PCA to do process monitor-
ing. A physical set up for this experiment exists in the Chemical
Engineering Department at the U of A. For the purpose of this illus-

tration, simulation runs were conducted.

This simulated example involves flow rate and temperature measurements of
water flow rates. The correlation between these variables are simple and easy
to be understood. Principal Component Analysis was used to detect different
types of sensor faults happened in this experiment. The minor component,
which was usually ignored by practitioners, was shown to be very useful to reflect
the relationships between process variables. When a time delay exists between
variables, it is essential to shift or lag the measurements correspondingly to
allow the PCA model to capture the true relationship between variables.

e A recursive PCA strategy was implemented on a pilot scale Contin-
uous Stirred Tank Heater system.

Most conventional methods work with fixed PCA or PLS model. When such a
fixed model is used in practice, it usually results in a large model-plant mismatch
when PLS is used for modeling, and false alarms when PCA is used for Statistical
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Process Monitoring. This is because it is impossible to include all the normal
data when building a model. On the other hand, the process can drift due to
various reasons, such as the aging of equipments and catalysts or the process
can be changed to meet different specification of the product. A fixed model
cannot adapt the process change and therefore results in the aforementioned
problems. In this thesis, the experiment results based on the CSTH system is
used to illustrate this point. A recursive PCA algorithm is then implemented
on this CSTH equipment for process monitoring. The results show that the
on-line updated RPCA can follow the process change very well. The issue of
choosing a proper forgetting factor to trade off the sensitivity and robustness
of a PCA model is illustrated through this example.

A well performed PLS model has been built based on a real industrial
data set. Using the same data set, continuous monitoring of the
variation of PLS weightings has been proposed and verified as an

effective method to find the root causes for the abnormal operations.

A PLS model has been built to capture the relationships between the emission
and other process variables in an industrial process. Although conventional
PLS method is believed to be most suitable to model a steady state system, it
has been shown in this thesis that a dynamic PLS model is more appropriate
when the data display dynamic characteristics. Some issues in PLS modeling,
such as data pretreatment, variable selection and choice of number of latent
variables, are discussed in detail. Through color coding for PLS weightings,
one can observe the color variation of the color blocks to find the possible
root causes for abnormal events. In fact, the PLS weighting vectors reveal the
relative importance of each variable in X block relating the variables in Y block.
The color coding of the PLS weightings provides an intuitive and easy way to
monitor the changes of relationships between variables.

Multiscale PCA (MSPCA) is proposed as an effective approach to
overcome the limitation of using Hotelling 77 and SPE in monitoring
time-varying processes.
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The measurements from a time-varying process present strong autocorrelation.
The underlying assumptions (time independent and random distribution) to
obtain the control limits of 72 and SPE are no longer valid in this case. The
original signal can be decomposed into wavelets coefficients at different fre-
quency bands through wavelets decomposition. In this thesis, we have shown
that the resulting wavelets coefficients are almost decorrelated. Thus a PCA
model based on these wavelets coefficients not only meet the underlying as-
sumption of using statistical charts but also increase the sensitivity in detecting
small disturbances. All these points have been well illustrated through a suit-

able simulation example.

7.2 Future Work

Here, we list some directions for future research.

e The optimal determination of the number of latent variables in PCA and PLS
needs further investigation. Although there are a number of methods that can
be used to do this, we still do not have a general guideline or rules to do so. Cross
validation has been widely used to choose the number of latent variables. But it
does not work well when the measurements are time-varying and autocorrelated.
Thus more work needs to be done on this subject.

e When the recursive PCA is used to monitor a process, the RPCA may update
the model to fit the small sensor drift other than the normal process drift.
A strategy needs to be developed to differentiate the process drift from small
sensor drift or an incipient fault. Recent work in this area has been reported
by (Stork and Kowalski, 1999; Qin and Li, 1999).

e How to select a proper forgetting factor p for a RPCA model needs further
investigation. Forgetting factor in RPCA can trade off the robustness and
sensitivity of RPCA model. A good choice of forgetting factor for a given
process can allow RPCA to follow the normal process change and at the same
time keep the sensitivity in detecting small disturbance.
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¢ Conventional PLS method is a linear method and most suitable for dealing with
the steady state process. Although there are already some studies in nonlinear
and dynamic PLS. More work needs to be done in nonlinear and dynamic PLS

to incorporate severe nonlinearities and dynamic in real industrial data.

e Both PCA and PLS are data-driven based method. Thus the acquisition of
good quality data is the key in applying these statistical methods successfully.
Real industrial data are usually contaminated with noise, disturbance, sensor
failure and also contain a lot of missing data. These data cannot be used in
building the model directly. A good data pretreatment strategy needs to be
developed. Moreover, when the models are used on-line, a robust on-line filter
or mechanism that can pretreat the real time on-line data is essential for a good

application of these methods.

e Wavelets are an excellent tool that can provide the analysis of a signal both
in time and frequency domain. Each type of abnormal event is associated
with a inherent frequency pattern. Combining wavelets with PCA can decom-
pose a signal into various frequency bands and make the detection of abnormal
events more sensitive. Multiscale modeling has been reported recently by Bak-
shi (1999). It is worthwhile to carry out more work in multiscale data analysis
and combine it with other statistical tools.
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Appendix A

Color Figures in Thesis
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Correlation Map, Variables Regrouped by Similarity
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Figure 5.8 The cluster analysis display the correlated variables.
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Figure S.18 First weighting vector in recursive PLS model using all the avaliable data.
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Figure 5.19 First weighting vector in recursive PLS model with EWMA updating method. (A=0.9)
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Figure 5.20 First weighting vector in recursive PLS model with fixed data length, window length 300,
updated every 20 samples.
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