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Abstract:

The gravitational interaction of a cosmic string with a black hole is studied by considering
a scattering “experiment” where a straight cosmic string, initially at a great distance from
a black hole of mass M and angular momentum a = J/M, approaches at some initial
velocity v (0 < v < ¢) and impact parameter b. Both numerical and analytical methods are
used to study this problem. There are two possible outcomes, either the string is trapped
by the black hole, or it is scattered. It is shown that, for the case where the string is
scattered, the string is displaced towards the black hole, in the direction perpendicular to
the velocity. The late-time solution is represented by a kink and anti-kink, propagating
in opposite directions at the speed of light, and leaving behind them the string in a new
“phase”. String scattering data is also obtained in the case of strong-field scattering. When
the string approaches the black hole at near-critical impact parameters, numerical results
reveal that the string can partially wrap the black hole before being trapped, or scattering
to infinity. The dynamics of the string are highly sensitive to initial data, and small changes
in impact parameter affect the details of the final plunge of the cosmic string into a black
hole. Near-critical scattering where the string manages to avoid capture gives rise to many
transient phenomena while portions of the string dwell in the strong gravitational field near
the event horizon of the black hole. The problem of string capture is further studied to
determine the dependence of the capture impact parameter on initial velocity and is used
to plot of a capture curve, b(v). Motion of a captured string in the interior of a black hole is
also discussed, and the final picture that emerges from this study is a comprehensive view

of cosmic string dynamics over the full range of velocities and impact parameters.



Acknowledgement:

Numerical projects in General Relativity tend to consume a large amount of computing
resources. This project could not have been undertaken without the co-operation of Dr.
John Samson who kindly provided access to a Silicon Graphics Power Challenge computer on
which a substantial amount of the numerical work for this project was carried out. Neither
could this project have been completed without the help of the members of the University
of Alberta cosmic string team, Shaun Hendy, Arne Larsen, and especially Valeri Frolov.
For its continued financial support, the Natural Sciences and Engineering Research Council
of Canada deserve special recognition for the NSERC undergraduate and post-graduate
programs that have sustained me over the years.



Contents

1 Introduction
1.1 Organizationof Thesis . . . . . . ... ... .. ... .......
1.2 Notation . . . . . . . i i i e e e e e e e e e e e e e e e e e e e

2 Physics of Cosmic Strings and Black Holes

2.1 Cosmic Strings . . . . - vttt i e e e e e e e e e
2.1.1 Broken Symmetries. . . . .. . ... ...
2.1.2 Topological Defects . . . . . . . ... ... ... .......
2.1.3 Nielsen-Olesen Vortices . . ... ... ... ... ......
2.1.4 More General Cosmic String Solutions . . . . . .. ... ..

2.1.5 The Nambu-Goto Action . . ... ... ...........
22 BlackHoles . . . . . . .. .. . . o
2.2.1 Spacetime of a Stationary Black Hole . . . ... ... ...
2.2.2 Gravitational Scattering of Particles . . . . ... ... ...

3 Motion of a Cosmic String in Curved Spacetime
3.1 Polyakov form of the Nambu-Goto Action and Equations of Motion
3.2 Equations of Motion for String with Massive Particles at its Ends .
3.3 String Motion in a Weak Gravitational Field (non-rotating source)
3.3.1 Weak-Field Approximation . . ... ... ..........
3.3.2 First-Order Corrections . . . . . .. ... .. ........
3.3.3 Low-Velocity Limit . . . . .. . ... ... ... ......
3.4 Ultra-relativistic String Motion in a Weak Gravitational Field . . .
3.5 String Motion in a Weak Gravitational Field (rotating source) . . .
3.6 Numerical Schemes . . . . . . . . . . ... o L.
3.6.1 Computational Grid . . . . . . .. .. ... L. ..
3.6.2 Discretization . . . . . . . . ... Lo L.
3.6.3 Initial Data and Boundary Conditions . . . . . .. ... ..
364 RoleofConstraints . . . . . . . .. ... .. .........
3.7 Chapter Summary . . ... . . . ... e



Gravitational Scattering of Cosmic Strings by a Black Hole

4.1

4.2
4.3

4.4
4.5

4.6

Weak-field String Scattering by a Non-rotating Black Hole . . . . . . . . ..
4.1.1 Late-time Properties . . . . . . . . . . .« oottt it
412 EnergyofKinks ... ... ... ... ... ...
4.1.3 Comparison to Numerical Results . . ... ... ... ... .....
Strong-field Scattering by a Non-rotating Black Hole . . . . . . ... .. ..
Ultra-relativistic Scattering and Loop Formation . . ... .. ... .. ...
4.3.1 Condition for Loop Formation . ... .................
4.3.2 String Self-intersection . . . . . . . .. ... oL oo
Role of Tension - Dust String Model . . . .. ... ... ... ........
Scattering by a Rotating Black Hole . . . . ... ... ... .........
4.5.1 Weak-field Scattering . ... ... ... .. ...
4.5.2 Ultra-relativistic Scattering . . . . . . .. ... ... ... ... ...
4.5.3 Strong-field Scattering . . . . . . .. ... ..o
Chapter SUIMMATIY . . . .« .« ottt e et et e e e e e e e e e e e e e e e

Cosmic String Scattering at Near-Critical Impact Parameters

5.1

5.2
5.3

Near-critical Scattering by a Non-rotating Black Hole . . ... ... .. ..
5.1.1 String Capture . . . . . . . .. ..t
5.1.2 String Winding Effect . . . . . ... ... ... ... o
Near-critical Scattering by a Rotating Black Hole . . . . . ... ... ....
Chapter SUmMMArY . . . . . . . o ottt et e e e e e e e e e e e e e e

Capture of Cosmic Strings by a Black Hole

6.1
6.2

6.3
6.4

Description of the Numerical Method . . . . . . . . ... ... ... .. ...
Cosmic String Capture by a Non-rotating Black Hole . . . . . . .. .. ...
6.2.1 Results from Numerical Scheme B . . . ... ... ... ... ....
6.2.2 Results from Numerical Scheme A and Perturbative Calculations . .
Cosmic string Capture by a Rotating Black Hole . . . . ... ... .. ...
Chapter SUMmAry . . . . . « . . .t it it e ettt e e e e e e e

Motion of a Trapped String in the Black Hole Interior

7.1

7.2 Case of Non-rotating Black Hole . . . ... ... ...............
7.3 Caseof RotatingBlack Hole . . . . . ... .. ... ..............
Discussion

8.1 SummaryofFindings . .. ... ... ... ... ... ...
82 FutureResearch . .. .. ... ... ... .. ... ... ...

Description of the Numerical Method . . . . . . . ... ... ... ......

Variational Calculations

A.1 Variations on Interior Region
A.2 Variations on Boundary

36
37
39
41
42
43
45
47
48
49
51
51
53
53
54

56
56
99
59
61
63

65
66
67
67
69
70
72



B Discretization of the Equations of Motion and Constraints

B.1 Von Neumann’s Method - Linear Case . . . . ... ... ...........
B.2 Vector-Matrix Notation for Equations of Motion . . . . ... ... ... ..
B.3 Discretization of the Derivatives . . .. ... . ... ... .. ........
B.4 Handling the Non-linear Terms . . . .. ... ... ... ...........

B.4.1 Spatial non-linearterm . ... .. ... ... ... .. ........

B.4.2 Temporal non-linearterm . . ... ... ... .............
B.5 Discretized Equations of Motion . . . . . . ... .. ... .. oL L.

B.5.1 Boundary Conditions . . . ... ... ... ... ...........
B.6 Discretization of the Constraints . . . .. .. ... ... ... ........

C Coding Issues
C.1 Overview of the Von Neumann Solver . . .. ... ... .. .........
C.2 Initializing Block Tridiagonal Matrices . . . . . . . . ... ... ... ....
C.2.1 Jacobianmatrices . ... .. ... ... .. ... .. ..
C.3 Christoffel Symbols and their Derivatives . . . . . . ... ... .......
C.4 Optimizations and Parallelization . . . . . . .. .. ... ... ........
C.5 Testing Accuracy and Longevity . . .. ... ... ... ...........

D Metrics and Christoffel Symbols
D.1 Minkowski Metric. . . . . . . . . . . . L e e e e e e e
D.1.1 Cartesian Coordinates . . . . . . . .. .. . ... ...
D.1.2 Spherical-Polar Coordinates . . . . . . . ... ... ..........
D.2 Schwarzschild Metric . . . . . . . . . . . . .. . e e
D.2.1 Schwarzschild Coordinates . . . . . .. .. . ... ... ........
D.2.2 Eddington-Finkelstein Coordinates . . . . . ... ... ... .....
D.2.3 Isotropic Coordinates . . . ... ... ... ... ... ...
D.3 Kerr Metric . . . . . . . .« . o i e e e e e e
D.3.1 Boyer-Lindquist Coordinates . . . .. ... ... ...........
D.3.2 KerrCoordinates . . . . . . . . . . . . . . o it ittt

E Spacetime Coordinate Transformations
E.1 Transformations for Schwarzschild and Boyer-Lindquist Coordinates
E.2 Transformations for Eddington-Finkelstein In-going Coordinates . . . . . .
E.3 Transformations for Kerr In-going Coordinates . . . . ... ... ... ...



List of Tables

4.1
4.2
4.3
4.4
4.5
4.6

6.1

Scattering Parameters - Schwarzschild Weak-field. . ... ... ... . ... 43
Scattering Parameters - Schwarzschild Strong-field. . . . . . ... ... ... 44
Scattering Parameters - Schwarzschild Ultra-relativistic. . . . . ... . ... 47
Scattering Parameters - Kerr Weak-field. . . . . . ... ... ... ...... 52
Scattering Parameters - Kerr Ultra-relativistic. . . . . ... ... ... ... 53
Scattering Parameters - Kerr Strong-field. . . . . .. ... ... ... ... 54
Comparison of Critical Impact Parameters - v = 0.995¢ (Kerr). . .. .. .. 72



List of Figures

1.1
1.2

2.1
2.2
2.3
2.4

3.1

4.1
4.2
4.3
4.4
4.5

4.6

4.7

4.8
4.9

4.10

4.11
4.12

[lustration of cosmic string scattering. . . . . . ... ... ..........
Cosmic String Scattering: Two-dimensional Parameter Space. . . . . . . . .

Temperature dependence of Vy (¢), A=np=1land A=2. .. ... ... ...
Gravitational Scattering of a Test Particle. . ... . ... ... ... . ...
Effective potential in General Relativity. . . . . ... ... .. ... .....
Scattering for a Rotating Black Hole - Sense of Rotation. (North Pole, § = 0.
isoutofthepage.) . .. . .. .. .. .. ..o

Equations of Motion as a Map from Parameter Space to Spacetime.

X(3) perturbation. . . . . . ... Lo
Xqu perturbation. . . .. ... oL o oo
X(0) and x(gy perturbations. . . . . .. ... Lo
Reconstruction of perturbed string (Cartesian coordinates). . . . ... ...
A straight cosmic string scattered by a Schwarzschild black hole. Weak-field
CASE. + « v e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e
Time sequence of string scattering in weak-field regime (numerical results).
Black hole lies at origin of coordinate system. Initial velocity, 0.76c, impact
parameter 40 7. . . . . .. ... oLl
Time sequence of string scattering in strong-field regime (numerical results).
Black hole lies at origin of coordinate system. Initial velocity, 0.29¢, impact
parameter 2.5 Tg. . . . . . . ... e i e et e e e e e
Breakdown of weak-field approximation. . . . . ... ... ... ... ...
Time sequence of string scattering in ultra-relativistic regime (numerical re-
sults). Black hole lies at origin of coordinate system. Initial velocity, 0.995c,
impact parameter 4.0 7g. . . . . . .. ... ..o o
Time sequence of string scattering in ultra-relativistic regime (analytic).
Black hole lies at origin of coordinate system. Initial velocity, 0.995c. im-
pact parameter 4.0 7g. . . . . .. ... ..o oo
Loop formationregion. . . . . . . . . . .. . ..o
Time sequence of dust string scattering in ultra-relativistic regime. Black
hole lies at origin of coordinate system. Left: Initial velocity, 0.995¢c, impact
parameter 4.0 r,. Right: Initial velocity, 0.76c, impact parameter 40 7.

12
13

14

43

45

46

47
48

50



4.13
4.14

4.15

4.16

5.1
5.2
5.3
5.4
5.5

5.6

6.1

6.2

6.3
6.4

7.1

7.2

C.1
C.2

X(3) Perturbation. . . . ... ... L oL oo
Time sequence of string scattering in weak-field regime (numerical results).
Kerr black hole lies at origin of coordinate system. Initial velocity, 0.76c,
impact parameter 80M. . . . . . . . .. .. L e e
Time sequence of string scattering in ultra-relativistic regime (numerical re-
sults). Black hole lies at origin of coordinate system. Initial velocity, 0.995c,
impact parameter 80M. . . . . . . . ... L L e
Time sequence of string scattering in strong-field regime (numerical results).
Black hole lies at origin of coordinate system. Initial velocity, 0.29¢c, impact
parameter S.0M. . . . .. . ... e e e e e e

Near-critical scattering for string and test particle. v = 0.987c and ry = 1. .
String worldsheet near Z =0 plane, v =0987¢. . . . . . ... ... ... ..
String worldsheet at late proper time, v = 0.987c. Loops dissipate and kinks

EMEIEE. - o v v v o e e e e e e e e e e e e e e e e e e e e e e e e e e e e e
Near-critical scattering for string at v = 10, v = 0.995¢. Impact parameters
are b = 2.579, 2.580, 2.582, and 2.585,and rg =1. ... ...........
Near-critical scattering for string and test particle. v = 0.987¢, ry = 1, and
a = +M/2. Black hole rotation is counter-clockwise. . . .. ... ... ...

Near-critical scattering for string and test particle. v = 0.987c, and a =
—M/2. Black hole rotation is clockwise. . . . ... ... ... ... .....

Cosmic string capture curve for Schwarzschild black hole - data from numer-
icalscheme B. . . . . . . . . .. e
Cosmic string capture curve for Schwarzschild black hole - data from numer-
ical scheme A and perturbativeresults.. . . . .. . ... .. ... ......
Cosmic string capture curve for Kerr black hole - Ultra-relativistic data. . .
Cosmic string capture curve for Kerr black hole - non-relativistic data (pre-

liminary). . . . . . o o e e e e e e e e e e e e e e e e

Motion in interior of Schwarzschild Black Hole. v = 0.987¢ and b = 2M.
Axes are in dimensionless units X*/M. . . . . .. ... ... ... ... ...
Motion in interior of Kerr and Schwarzschild Black Holes (equatorial plane).
v=0987cand b=2M. . . . .. ... e

Scalability graph for SGI Power Challenge. . .. ... ... ... ......
Accuracy of Solver. . . . . . . . . L L e e e e e e

52

63

72



List of Symbols:

General:

C

G

Co-ordinates/metrics:

Black holes:

a
@

Tg

T+
Tstatic

Cosmic Strings:

n
1

< OF®

x

Notation:

Speed of light
Universal gravitational constant

General spacetime co-ordinates

Metric of general spacetime, signature (— + ++)
Metric of Minkowski spacetime, signature (— + ++)
Christoffel symbol

String worldsheet co-ordinates
Induced metric on string worldsheet, signature (—+)

Specific angular momentum of a rotating (Kerr) black hole
Newtonian gravitational potential

Gravitational radius (horizon) of Schwarzschild black hole
Event horizon of Kerr black hole

Static limit of Kerr black hole

Linear mass density of cosmic string

Impact parameter for scattering

Initial velocity for scattering (measured at infinity)
Equations of motion of straight string - Minkowski spacetime
Equations of motion of straight string - general spacetime

Equivalent expressions
Definition of special symbol
Equivalent expressions for partial derivatives



Chapter 1

Introduction

Cosmic strings are topological defects that are predicted by various grand-unified theories
to have arisen in the early life of the universe. Cosmic strings are thought to have formed
during cosmological phase transitions and their parameters, mass per unit length u and
thickness p, are determined by the energy that characterizes the phase transition. The
earlier the transition, the greater the energy and hence the greater the parameters p and
p~L. Cosmic strings formed at GUT-scale phase transitions, with a characteristic energy of
~ 10'% GeV, are massive enough to have produced cosmologically significant effects. If such
objects exist and persist in the portions of the universe that can be probed by scientific
instruments, then a study of the interaction of cosmic strings with the constituents of
galaxies and especially black holes is of considerable interest.

The study described here deals with the gravitational scattering and capture of cosmic
strings by black holes. Cosmic strings are either infinite in length or they form closed loops.
If the size of such a loop is much greater than the size of the black hole, as is expected for
astrophysically realistic cases, then the portion of the loop of string that will interact with
the black hole can be treated as part of an infinitely long and effectively straight cosmic
string. For this reason, the straight-string approximation is used exclusively in this study.

The scattering of straight cosmic strings by a black hole bears some similarity to the
scattering of test particles, which is well understood!. One important difference is that a
cosmic string is an extended one-dimensional object with internal degrees of freedom that
can be excited during scattering. For this reason, the detailed dynamics of string scattering
by a black hole are expected to be far more complicated than for particle scattering. In
order to describe the main features of string scattering, it is convenient to think of string
scattering in terms of the two-dimensional parameter space of initial velocity (v) and impact
parameter (b), where the initial velocity is the velocity of the string at large distance from the
black hole (mass M and specific angular momentum a = J/M), and the impact parameter
is perpendicular distance of the cosmic string relative to a line passing through the center
of the black hole, as shown in Fig. 1.1 (some aspects of this figure will be discussed in more

!See Misner, Thorne, and Wheeler [40] or Frolov and Novikov [27] for a comprehensive survey and
references to the literature.



detail in subsequent chapters).

Xo>>M ™ qvanthon
Figure 1.1: Illustration of cosmic string scattering.

The (b,v) parameter space of a string can be divided into a number of regions, as
sketched in Fig. 1.2. The most basic division of the parameter space separates the regions
of weak and strong gravitational fields. The weak-field scattering region is characterized
by large impact parameters, where no part of the string ever strays close to the black hole.
The strong field region is subdivided into two regions, depending on the fate of the cosmic
string. The strong-field scattering region represents the range of parameters for which
a string can come close to the black hole, yet still scatter to infinity. The trapped region,
on the other hand, is the region of parameter space representing strings that are trapped by
the black hole. The boundary between these two regions is known as the capture curve.
The edges of parameter space represent various limiting cases: the slow motion limit,
where v — 0, the Minkowski limit, where 6 — oc. and the ultra-relativistic limit,
where v — ¢.

The study of string motion in the various regions of parameter space requires different
approaches; the purpose of this thesis is to present the results of this study.

Minkowski limst
<4——— staponary limit
weak-field scattering
.
13
]
E
Il
H
-3
g . stra istic lima >
= strong-field scattering
=
capture curve
trapped region
0
0 velocity c

Figure 1.2: Cosmic String Scattering: Two-dimensional Parameter Space.



1.1

Organization of Thesis

The study of string scattering, at its fundamental level, involves finding solutions to the
equations of motion of the string on a curved background. Analytic and/or numerical
solutions have been derived for the various regions of parameter space discussed above;
the numerical results, especially, are quite technical. In order to present results without
cumbersome details, main physical results are emphasized in the body of the document,
while details of derivations are deferred to a series of Appendices. The thesis is organized
into the following chapters:

Overview of Cosmic String and Black Hole Physics - A cursory review of
the field-theoretic background required to postulate the existence of cosmic strings,
combined with a brief review of physical properties of black holes and gravitational
scattering.

Motion of a Cosmic String on a Curved Background - The motion of a cosmic
string in the spacetime of a black hole is governed by a set of coupled partial differential
equations, the equations of motion. A perturbation method is developed that allows
solving the equations of motion where the gravitational field is weak. This chapter
also outlines the numerical schemes used to study string motion where perturbative
methods break down.

Scattering of Cosmic Strings - This chapter formulates the scattering problem for
straight cosmic strings and describes the results of inelastic scattering by non-rotating
and rotating black holes in the weak-field and strong-field regimes. The role played by
string tension in determining the detailed dynamics of the scattering is also discussed.

Scattering at Near-Critical Impact Parameter - A special case of scattering,
deals with the scattering of strings with near-critical impact parameters that pass
extremely close to the event horizon. Interesting dynamical effects are observed under
these conditions that shed light on the capture of strings.

The Capture Curve - The capture curve for the motion of straight strings in the
gravitational field of non-rotating and rotating black holes is derived and discussed.

Motion in the Interior - This chapter discusses the evolution in the interior of a
black hole for the portion of the string that has been captured.

Summary of Findings - Review of key results. including an outline of future work.

Appendices - Provide supplementary details on the following topics: variational
calculations (equations of motion), discretization of the equations of motion, imple-
mentation of numerical solvers. metrics for black hole spacetimes, and coordinate
transformations.

Some portions of this thesis have been published previously. Material for some chapters
has been adapted from:



1. De Villiers, J.P., Dynamics of Cosmic Strings in Schwarzschild Spacetime. Proceed-
ings of Seventh Canadian Conference on General Relativity and Relativistic Astro-
physics (Fall 1997). gr-qc9706040.

2. De Villiers, J.P., and Frolov, V.P., Gravitational Capture of Cosmic Strings by a Black
Hole. To appear in Int. J. Mod. Phys. D7 No. 6 (December 1998).

3. De Villiers, J.P., and Frolov, V.P., Scattering of Straight Cosmic Strings by Black
Holes: Weak Field Approzimation. To appear in Phys. Rev. D58 No. 6 (October
1998).

4. De Villiers, J.P., and Frolov, V.P. Gravitational Scattering of Cosmic Strings by Non-
Rotating Black Holes. (paper under preparation).

1.2 Notation

The equations presented in this thesis make implicit use of a few notational conventions.

e The sign conventions of Misner, Thorne, and Wheeler [40] for metric tensors and
curvatures are followed in this thesis.

e Unless otherwise stated, natural units, where G = ¢ = 1, are also used.

e In dealing with spacetime quantities, two types of indices are used: Greek indices (e.g-
z#) take on the values p = 0,1,2,3, and roman indices (e.g. z*) take on the values
i = 1,2,3. Indices related to the worldsheet of cosmic strings use the upper-case
indices A or B (e.g. () which take on the values 4,B =0, 1.

e The Einstein summation convention, whereby repeated covariant (lower) and con-
travariant (upper) indices are implicitly summed over, is used throughout. For in-
stance,

3

9" gop,0 = Zguu Gpou,0- (1.1)
pu=0



Chapter 2

Physics of Cosmic Strings and
Black Holes

This chapter provides a cursory review of the field-theoretic concepts that are used to
postulate the existence of cosmic strings, and the role of the Nambu-Goto action as the
fundamental action for cosmic strings. This chapter also discusses the necessary concepts
from black hole physics that are required to study motion of strings in black hole spacetimes.

2.1 Cosmic Strings

The currently held view is that our universe, after beginning its expansion, passed through
a very hot, very dense state. The various grand-unified theories that have been put forward
to explain how the universe evolved in the primordial seconds involve broken symmetries
that can give rise to extended structures known as topological defects. For various reasons
that will be touched upon in this chapter, linear topological defects are especially appealing
for the role they may have played in galaxy formation. Cosmic strings were first discussed
by Kibble [37] and first proposed by Zeldovich [55] and Vilenkin [49] as possible sources of
density fluctuations in the primordial universe.

Cosmic strings (and other topological defects) are thought to have formed during cos-
mological phase transitions as the early universe expanded and cooled. In principle, cosmic
strings can form at a number of phase transitions; however, only strings formed at GUT-scale
phase transitions are capable of producing astrophysically significant gravitational effects.
Strings formed at other, lower-energy phase transitions can give rise to many interesting
(non-gravitational) effects [34], but their gravitational interactions are negligible.

In order to understand the nature of cosmic strings, field-theoretic concepts are re-
quired [46]. The modern physics of elementary particles is described in the language of
gauge theories. Such theories feature broken symmetries, symmetries that can be restored
at sufficiently high temperatures. It is assumed that the universe, after a possible stage
of inflation and subsequent reheating, during which the main matter of the universe was
created, began in an extremely hot, extremely dense and highly homogeneous state where



the fundamental interactions were unified under some large symmetry group. As the uni-
verse expanded and cooled, it passed through a sequence of critical temperatures at which a
particular symmetry was broken. A broken symmetry can give rise to extended structures,
topological defects, that can be sheet-like (domain walls), line-like (cosmic strings), or point-
like (monopoles). Textures, which are three-dimensional structures, can also arise, as can
hybrid defects, such as walls bounded by strings. The structural parameters of these defects
are mainly determined by the energy characterising the cosmological phase transition.

In order to determine the suitability of a given topological defect in structure formation,
there are some key considerations: the defects must be stable and they must have sufficient
(but not excessive) energy density to perform this important astrophysical role. Not all
topological defects are suitable candidates for accounting for structure formation. For in-
stance, domain walls forming even at the relatively low energies of the electro-weak phase
transition have been ruled out, as discussed by Kibble [38]. If such a structure were to
have formed, it would dominate the mass of the universe. On the other hand, it is thought
that cosmic strings, formed during a GUT-scale phase transition, and moving through the
initially homogeneous matter could have given rise to the density fluctuations necessary to
initiate the formation of galaxies.

A proper survey of the entire subject of cosmic strings is quite an undertaking. Fortu-
nately, survey papers are available by Vilenkin [50] and Hindmarsh and Kibble [34]. More
recently the monograph of Vilenkin and Shellard [52] provides a thorough exposition of the
subject. What is required here is a cursory review expanding on some of the key points
raised above, the main objective being to arrive at a low-energy effective action for cosmic
strings. This effective action is the foundation upon which all calculations in this thesis are
based.

2.1.1 Broken Symmetries

The motivation for the study of topological defects has its origins in the Higgs mechanism.
Since it is believed that there is only one massless spin-1 particle in nature, the photon
which mediates the electromagnetic interaction, a problem arises as soon as a gauge theory
is formulated with a symmetric Lagrangian and symmetric vacuum states. The problem
is that the gauge symmetries built into the Lagrangian are associated with massless spin-1
particles. So, any Lagrangian that contains symmetries that require the existence of such
massless particles (other than the photon) must be “incorrect”. The remedy is to give
these other spin-1 particles a mass (i.e. making their interactions short-range). The Higgs
mechanism introduces spin-0 (scalar) fields in a Lagrangian that transform non-trivially
under the symmetry group of the Lagrangian and give the gauge particles a mass. This
scalar field, denote it ¢, takes on minima at non-zero values (¢ # 0), and hence breaks the
vacuum symmetry.

The symmetry breaking mechanism is associated with quantum field theories where the
effective potential contains temperature-dependent terms (Vr(¢)) . These temperature-
dependent terms arise in developing the quantum field theory from a classical potential
by perturbative expansion in powers of the Planck constant A. The nature of the effective



potential fixes critical temperatures associated with symmetry breaking. In the cosmological
context, these critical temperatures are associated with cosmological phase transitions.

How this comes about can be understood by a simple example. Taking the case of a
scalar field theory (with complex scalar field ¢) having the U(1) symmetry (field invariant
under transformation ¢ — e*®¢), and temperature-dependent potential

Vi) = AT 8¢+ M (#°6 — 1)’ (2.1

where A > 0 is assumed. At T = 0, the minima of this potential do not occur at ¢ = 0 but
rather describe a ring; this is an example of a broken symmetry since the vacuum expectation
value of the field (¢) = ne*? is of a model-dependent amplitude (n) but arbitrary phase
(8); the vacuum is not invariant under the U(1l) transformation (it maps the one vacuum
state to another). The original U(1) symmetry can be restored, however, given a suitably
high temperature. How this comes about can be seen by rearranging the expression for the
potential,

(AT? = an?) 66+ 5 ((¢°0)* +7°) (2:2)

= m0)#o+ 5 (6707 +1') . (2.3

Vr(é)

where the critical temperature T, = (/\/A)l/ 25 restores the potential minimum to ¢ = 0, so
that for T > T, the symmetry is restored and for T < T, the symmetry is broken. These
cases are shown in Fig. 2.1.

o
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Figure 2.1: Temperature dependence of V7 (¢), A =n=1and A =2.

In this simple model, a phase transition would occur as the temperature dropped below
the critical value T.. This transition may generate topological defects in the vacuum. The
study and classification of topological defects is systematic, and the general procedure is
described in the next section.



2.1.2 Topological Defects

The investigation of topological defects in field theories involves a series of steps that estab-
lish the properties of the vacuum manifold and seek stable solutions for topological defects.

1. Write the Lagrangian for the field theory of interest;

2. Determine the symmetry group;

3. Find the minima of the potential and determine the structure of the vacuum manifold;
4

. Characterize the types of topological defects (this requires knowledge of homotopy
[42]);

5. Derive the field equations from the Lagrangian through the Euler-Lagrange equations.
e.g. for a scalar field ¢,

9L _, 9L

% %T0a .

6. Compute solutions for the topological defects;

7. Compute the energy-momentum tensor of the field, e.g.
Ty = a;z ¢au¢—guuLy (2.5)

where g, is the Minkowski metric, and from this the energy density (Tgo) of the
topological defect.

Most of the calculations in the above procedure are outside the scope of this document.
and are covered in the reviews cited above. What is relevant here is that linear defects
are predicted by a large number of field-theoretic models, and it is possible to formulate
a common low-energy effective action for these string solutions, the Nambu-Goto action
to be described shortly. Linear defects arise when the vacuum manifold M is not simply
connected, containing unshrinkable loops. In the language of homotopy, a non-trivial first
homotopy group, mi(M) # I, is the condition for string formation. The first homotopy
group counts the equivalence classes of loops in the manifold. To illustrate the above
procedure, one of the simplest models leading to cosmic string solutions is discussed next.

2.1.3 Nielsen-Olesen Vortices

One of the simplest models leading to string solutions is that of the Nielsen-Olesen vortex
[43] which can arise when a local (gauge) symmetry is broken. The Lagrangian of interest
contains a complex scalar field (¢) and a gauge field (4,),

® 1 v 1 *
L = Dyu¢" DH¢ — JFu F* — §A(¢ é—n?)?, (2.6)



where D, = 9, +ig A, and F,, = d,A, — 3,A,. The Lagrangian is invariant under the
local U(1) symmetry

¢ — erIg, (2.7)
A, — A,‘—éa,‘A(z).

The minima of the field occur when (@g) = ne*?. The vacuum manifold, M, consists of
points lying on the circle (S!) of radius . The vacuum manifold is not invariant under the
action of the U(1) transformation for values of the rotation parameter that are not integer
multiples of 2x. It is possible to construct arcs on the manifold, which are distinguished by
their winding direction and the number of turns, so m;(M) = Z, a non-trivial group. The
general methods of homotopy predict the existence of strings (they also exclude domain
walls and monopoles).

The string solutions begin with the derivation of the field equations for the scalar and

gauge fields. The Euler-Lagrange equations yield,
2
D¢+ x¢ (¢2—%> = 0, (2.8)
8, F™ +ig(¢" Dhg — D ¢*g) = 0.
Using cylindrical coordinates (p, ¢, z), the radial gauge (4, = 0), and making the ansatz
that a straight string lying in the z-direction exists and is described by

b(p,0,2) = %f(mup) ein? (2.9)
A =
gpa(mup)

reduces the field equations to two coupled non-linear ODEs for the radial function and
angular functions. Here, m, = g7 is the mass of the vector boson, m; = VA7 the mass of the
scalar. Asymptotic solutions can be obtained [34] by assuming power-law and exponential
dependence for f, the radial function, and a, the angular function, yielding the asymptotic
solutions

_J fo€i™ for £ —» 0%
f (E) - { 1 _ fl E_l/ze_\/ye fO[' f — 00 ] (2-10)

and

a(s)={“°52‘4‘I‘IJ"<'71'Q1)52'"'+2 for = 0% (2.11)

1 —a; €Y2e¢ for £ = oo

2
where £ =mypand B = A\/g?> = (%:-) , and n is a parameter known as the winding number.

The energy density (Tyo) of the string can be computed as outlined above. The important
observation here is that the energy density of the string solution is localized in the core of
the string (1 ~ n%n?). The radius of the string’s core is given by the Compton wavelength
of the scalar, p; ~ m! and the radius of the tube of magnetic flux is given by the Compton

wavelength of the vector boson, p, ~ m;!.



2.1.4 More General Cosmic String Solutions

The above simple example can be expanded upon, taking under consideration more realistic
field-theoretic models and their corresponding symmetry groups. The important fact for the
present discussion is that plausible models featuring string solutions arising from a GUT-
scale phase transition are possible. Although the above example dealt with an infinite string
solution, strings forming closed loops are also possible. GUT-scale strings are characterized
by a large energy density (z ~ 102! kg/m) that is equal to their tension (disturbances on
the strings propagate at the speed of light); their energy is also highly localized in a very
thin core (p ~ 10731 m).

If such strings exist, they form a random network permeating an expanding (Friedmann-
Robertson-Walker) universe [52]. Infinite strings expand with the universe. Closed loops
behave like infinite strings if their size is greater than the cosmological horizon; if they are
smaller than the horizon, they collapse [49]. Loops of irregular shape oscillate and radiate
gravitational waves. Strings can also self-interact and interact with other strings. When
strings self-intersect or intersect other strings, they can split and reconnect. Consequently,
the evolution of a large network of strings is a very complicated process.

In this study, the interaction of a string with a black hole of mass M involves a charac-
teristic length scale (on the order of the event horizon of the black hole) that is exceedingly
small when compared to the cosmological horizon size, or the radius of the loop of string.
It is therefore possible to simplify matters considerably by treating the string as infinite.
Also, the gravitational field created by the string can be neglected because the dimensionless
parameter which characterizes the strength of the field u* = Gu/c? is negligibly small (for
GUT-scale strings one has u* ~ 1075). It means that the string is a test object moving in
the background of a black hole metric. Furthermore, as discussed above, the radius of the
core of the cosmic string is much less than any other parameters that enter the problem,
such as the length of the string or the size of inhomogeneity of the gravitational field in
which it is moving, so that one can idealize the motion of the string in the spacetime as
a two-dimensional worldsheet. In order to describe this string mathematically, an effective
action is required, and this issue is discussed next.

2.1.5 The Nambu-Goto Action

In astrophysically realistic situations the thickness of the string is small with respect to
other length-related parameters and can be neglected. The string can be idealized as a
one-dimensional line where the energy-momentum of the string is concentrated. In this
approach, string motion is described by a two-dimensional surface in spacetime.

Starting with a field-theoretical description, one can derive the approximate equation
for this two-dimensional surface. The corresponding analysis can be found in Vilenkin and
Shellard [52], who demonstrate that the equations of motion of a cosmic string in the test
string approximation follow from the Nambu-Goto action,

oz# oz¥
I=—p / PC/EHG) . Can = 9w ot g (2.12)
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where g, is the spacetime metric, (* denote the worldsheet coordinates (4,B = 0,1;
¢(® = 7, ¢! = o), and G4p is the induced metric on the worldsheet of the string. A
two-dimensional worldsheet which provides an extremum to the Nambu-Goto action is a
minimal surface.

The thickness of the string and the small radius of curvature of its bending result in
corrections to this action involving extrinsic curvature and terms of higher order in extrinsic
curvature. These terms are neglected in this study’.

2.2 Black Holes

Astrophysical black holes are the remnants of the collapse of massive stars, or the super-
massive entities at the core of many galaxies. Black holes are dynamical objects; they
can increase their mass by the capture of external material, through accretion of dust and
plasmas from the neighbouring stars or the interstellar medium, or through coalescence (the
capture of whole stars, neutron stars, or other black holes). Realistic black holes are highly
complex systems. Theoretical models that are more amenable to study of these objects can
be obtained from vacuum solutions to the Einstein field equations of General Relativity.

2.2.1 Spacetime of a Stationary Black Hole

The most general vacuum solution of the Einstein equations describing an isolated. sta-
tionary uncharged black hole was given by Kerr [36]. The Kerr metric, in Boyer-Lindquist
coordinates (¢, 7.6, ¢) [12], has the form

2 _ 2Mr\ ,, 4aMrsin®g £,

ds® = (1 5 )dt S dtd¢+Adr (2.13)

.2
4+ Sde? Asin 9d¢2
b
where

A = r2——21\/[1‘+a2,

T = r?+a%cosd,

A = (r2+a2)2—a25in26A,

M is the mass of the black hole, and a = J/M its specific angular momentum.

In this study, the Kerr solution will be applied to rotating black holes (a # 0) and also to
non-rotating black holes (a = 0), where the above metric simplifies considerably (it reduces
to the Schwarzschild solution; see Appendix D).

The properties of the Kerr and Schwarzschild solutions are discussed in many works.
notably those of Misner, Thorne and Wheeler [40] and Frolov and Novikov [27]. For the
present purposes, only a few basic facts about these objects need to be considered.

!Shellard and Vilenkin demonstrate that the Nambu-Goto action arises as the natural low-energy effective
action for strings in a wide variety (if not in all cases) of field-theoretic models.
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Schwarzschild (non-rotating) black holes are stationary (time-independent), spherically
symmetric solutions to the Einstein equations and are characterized by an event horizon at

rg =2M. (2.14)

Particles or photons crossing the event horizon cannot return to the exterior of the black
hole and are quickly pulled to the central singularity (at r = 0) by the strong gravitational
field in the interior of the black hole.

The Kerr solutions are also characterized by an event horizon at

r, = (M +VM2 = a2) : (2.15)

Kerr black holes also have ergosphere that extends outward from horizon up to static limit,
the distance below which objects cannot avoid rotating with the black hole,

Tstatic = M + V/ M? — a2 cos?4. (2.16)

The static limit and the horizon coincide at the poles (8 = 0,7) and Tsatic = 2M in the
equatorial plane (8 = 7/2).

2.2.2 Gravitational Scattering of Particles

Since the problem under study is that of gravitational scattering (and trapping) of cosmic
strings, it is necessary to briefly review the simpler problem of particle scattering and record
here some results that will be used later to provide a basis for discussing the results for
strings.

The general picture of gravitational scattering is given in Fig. 2.2, where a particle of
mass m approaches a massive object, of mass M (M > m), with an initial velocity v
measured at infinity and a corresponding kinetic energy £ > 0. The particle approaches
the central mass at some initial impact parameter b, measured as shown in the illustration.
Initial velocity can range from O to the speed of light, c. Although the detailed dynamics of
the particle depend on the effective potential that characterises motion in the gravitational
field of the central mass, the scattering problem can be characterised by the choice of initial
velocity and impact parameter.

st paricie

~@ >
black hole
b (M.a)

Xo>> M ~—" 7 eventhonzon

Figure 2.2: Gravitational Scattering of a Test Particle.

In Newtonian gravity, the scattering of test particles can be described in terms of hyper-
bolic (Keplerian) orbits of the particle about the central mass [31]. In General Relativity,
where the central mass is taken to be a black hole. scattering is a far more interesting
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process. Black holes, with their compact size and extreme surface gravity, have very special
properties that make them unique and fascinating objects. In the context of gravitational
scattering, black holes have a unique signature, in part due to their ability to trap objects
that stray too close, and in part because particles can orbit the black hole many times
before scattering to infinity (glory scattering, where the particle turns through an angle of
180°, is a special case).

The effective potential of a black hole (see Chapter 25, [40]) has the form

V3(r) = (1 - 3?—) <1 + f-j) : (2.17)

where L = L/m, the angular momentum per unit mass. Figure 2.3 shows a plot of V(r).
The figure shows that the potential has a long-range 1/r character and, for sufficiently
large values of L/M, a contribution from the "centrifugal barrier”, as in Newtonian gravity.
However, the general relativistic character of the potential manifests itself at small r where
the potential makes an abrupt downward turn.

Vir)

1.05

Figure 2.3: Effective potential in General Relativity.

This new feature of the potential has a drastic effect on the scattering problem. It is
now possible for particles incident on the black hole with a given velocity v and impact
parameter b to be trapped. Expressions can be derived for the critical impact parameter
for capture of test particles [27]. For non-relativistic velocities,

aM
bcaprure = = (2.18)

and for ultra-relativistic velocities (v — ¢),

beapture = 3 V3M. (2.19)

Similar expressions can be derived for the critical impact parameter in Kerr spacetime.
However, the angular momentum of the black hole introduces an additional complication
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in that the initial position of the string and the sense of rotation affect the value of the
critical impact parameter. The sign convention for the rotation of a black hole is taken to
be that of Misner, Thorne and Wheeler [40]; positive angular momentum denotes rotation
in direction of increasing azimuthal angular coordinate ¢. The particle can move in any
one of the four quadrants shown in Fig. 2.4; however, there are only two possibilities: in
the retrograde case (R), the particle approaches the black hole going “against” the sense of
rotation; while in the prograde case (P), it approaches with the sense of rotation.

Y Y
b>0 v_ > < v _ _ v > < - b>0
R - P [ N R
_ X JRNR S V4
P - R R N P
b<0 v » < v vy <-Y-. . Bb<oO
a>0 a<0

Figure 2.4: Scattering for a Rotating Black Hole - Sense of Rotation. (North Pole, § = 0. is out
of the page.)

For non-relativistic velocities [27], the critical impact parameter for a particle moving
in the equatorial plane of the black hole is given by

2M a
b{:)apture ~ v (1 +4/1 - lH’) (2.20)

for the prograde case, and

2M / a
bgpture = —’l-l— (1 + i+ IM‘) (221)

for the retrograde case. For ultra-relativistic velocities, again restricting to motion in the
equatorial plane,

(1 a a
P _ 3
beapture = (8 cos -3(7r — arccos Hl)] + IMD M (2.22)
for the prograde case, and,
(1 a ] a
R — 3(t el _|le
beapture = (8 cos 3 arccos l 7 I |M|) M (2.23)

for the retrograde case.
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Chapter 3

Motion of a Cosmic String in
Curved Spacetime

This chapter! discusses the main analytical perturbative methods and numerical schemes
that were used to obtain physical results concerning the motion of a straight cosmic string.
The solution of the equations of motion of a cosmic string in the spacetime of a black
hole is is a map from a two-dimensional parameter space to the four-dimensional spacetime
manifold, as shown in Fig. 3.1. Solutions to these equations describe the world surface (or
worldsheet) T of the string as functions X* (¢°,¢!) of the string parameters (*(4 = 0.1)
conventionally taken as (¢° ¢!) = (1,0), where 7 is a time-like parameter playing the role
of proper time on the string and o is a space-like parameter parametrizing points along the
string.

The equations of motion can be derived from the Nambu-Goto action discussed in Chap-
ter 2. For infinite cosmic strings, the equations of motion have been derived previously, and
known analytic solutions to these equations deal mostly with stationary strings [29], [24],
uniformly accelerated strings in Minkowski spacetime [28], or other special cases. Here,
solutions to the equations of motion in weak gravitational fields were found using perturba-
tive techniques, and numerical methods were used to study the motion of strings in strong
gravitational fields, yielding a fairly comprehensive view of the dynamics of cosmic strings
in the gravitational field of a black hole.

The derivation of the equations of motion, weak-field solutions, and the numerical
scheme are the subjects of this chapter, with technical details deferred to the Appendices
where necessary.

!Portions of this chapter have been previously published. Sections 3.1 and 3.3 are adapted from Ref. [22].
Sections 3.2 and 3.6 are adapted from Ref. [21]. Section 3.4 is adapted from Ref. [23].
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Figure 3.1: Equations of Motion as a Map from Parameter Space to Spacetime.

3.1 Polyakov form of the Nambu-Goto Action and Equations
of Motion

As discussed in the previous chapter, the Nambu-Goto action (2.12) is the fundamental
action for cosmic strings. Polyakov [45] writes the action for a relativistic string in the
following equivalent form:

S[X#, hag]l = —p /dQC V=hh'BG g, (3.1)

where h g is the internal metric (with determinant h) of the two-dimensional parameter
space of the string, G 45 is the induced metric (with determinant G) given by

axXH* oxv

ack a8 (3:2)

Gap = gu(X?)

and g, (X*) is the spacetime metric.

The Polyakov action is a quadratic action that introduces the additional freedom to
extremize with respect to the internal metric, h4g. Polyakov shows that this action is
equivalent to the Nambu-Goto action in that they yield the same equations of motion;
however, the Polyakov action is generally easier to manipulate and is used here.

To extremize the Polyakov action, the following variational expressions must hold. First,
the variation with respect to A'¥. which yields the equations of motion, gives

3S [X*, hag]

S =0X*+TY, hiB X% X% =0, (3.3)
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where,

__1 T 1 AB
0= =0 (\/ hh aB) . (3.4)
Second, the variation with respect to h4pg, which yields constraint equations, gives
65 [X*, hasg] AB _ 1. 4B ~C
W——=G —ih G C=0, (3.5)
where
GCc = hBGpe. (3.6)

The constraint equations are to be considered an auxiliary condition on the equations of
motion.
In the equations of motion, the Christoffel symbols

1
F;;cr = Eg'/# (9ou,0c — Gop,u + Gua,p) (3.7)

encode all the properties of the spacetime and the particular choice of coordinates (the
Christoffel symbols contain the information on the gravitational influences felt by the cosmic
string). There are potentially 40 different Christoffel symbols, but the actual number is
reduced by symmetries of the spacetime and/or the coordinate system chosen (for instance,
in flat spacetime with Cartesian coordinates, all Christoffel symbols are identically zero:
for Schwarzschild black holes in the Schwarzschild (essentially spherical-polar) coordinates,
there are 9 distinct non-zero Christoffel symbols).

To derive the equations of motion in the final form used in calculations, a choice of gauge
must be made by using the allowed freedoms. Since any 2D Riemannian manifold is locally
conformally flat [42], it is always possible (at least locally) to parametrize the 2-dimensional
worldsheet using isothermal coordinates

hag =e*"™ ) n,p. (3.8)

For this choice of metric, the box operator reduces to the usual 2D wave operator.
resulting in the following equations of motion:

dXP X"  dXP ax”} —o

~ 57 or  d¢ 9o (3.9)

where O = —82 + §2. The equations of motion express the coordinates of the string in the
target spacetime manifold; they can also be thought of as four coupled scalar field equations.

Applied to Eqn. (3.5), the metric (3.8) yields two constraints

" v
Go = aw -2 0, (3.10)
JXH 9xY ~OxX* XY\ 0

g“"(ar ar | 8o 60>— :
These equations can be interpreted as orthogonality conditions on the tangent vectors to
the worldsheet, C(‘:,) = 9;X* and ((‘;) = G, X*H.

The imposition of boundary conditions to truncate the string to a finite length suitable
for numerical solution will be discussed in Section 3.6.

ox# + I, {

Goo + G111
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3.2 Equations of Motion for String with Massive Particles at
its Ends

Sometimes, especially in numerical studies where boundary conditions require special care,
it is convenient to consider a finite open string with massive particles at its ends. It is
possible to extend the Nambu-Goto action (2.12) to include massive end points by adding
to the free string action the action for two free particles (see, e.g. Barbashov [7], Barbashov
and Chervyakov (8], [9]), as follows:

T2 oo (T 2 . 2
s = [ ( [ e S [(SGY) o
G i=1

! 1(7)

where the end points of the string move in the (7,0) plane according to the functions a; (),
i = 1,2 (see Fig. 3.1). The above action functional consists of three distinct "pieces”, a
functional for the string interior (the free string action) and functionals for each massive end
point. Barbashov shows that the variation of the action functional with respect to o; does
not lead to new equations of motion and that, therefore, the ¢; are not dynamical variables.
This finding allows a simple choice to be made for these boundary functions. How this
simplification applies to the case for arbitrary spacetimes will need to be established.

The Polyakov action for a free string (3.1) is similarly extended to include massive end
points,

T2 a2(T)
S[X“,hAB,O'i] = —#/ d’l’/ dO’\/—hhAB GAB (3.12)

m a1(7)

Az(7) dX* dx¥

2
m;
; 2 /M_., A Guw ~ "D

where X! (1) = X#(7,0;(7)) is a world-line of the i-particle, m; is its mass, and A = A(7) is
the most general parametrization for X! on the boundaries, from which

dX!! (oX!  oX! . i1
- ( P + £ o‘,(r)) AT (3.13)
Using Eqn. (3.13), it is possible to rewrite Eqn. (3.12) as
T2 a2(7)
S[X“,hAB,Ui] = —u/ d’l’/ dO'V—hhABGAB (3.14)
1 a1(7)
2 T2 o f o] v v
- - el 3 . 1A
;2 /n dTg""[61+60' % |37 T35 %
2
= Sstring+zsi-

i=1
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In order to obtain the most general equations possible, it will be assumed that the extrem-
izing functions for the free string action are not prescribed on the ¢ boundaries (however,
the extremizing functions are assumed to vanish on the T boundaries). When the variations
are computed, this means that the equations of motion of the massive end points receive
contributions from both the string action and the particle action, effectively coupling the
two objects.

To extremize this action, the following variational expressions must hold on the world-
sheet interior £ (where 7, < 7 < 7, and 0} < ¢ < 02)?,

0 Sstri AB =
S = DXM 4T AN XA X5 =0, (3.15)
0Sstring _ ~aB _LliaBAc

o = G- S rAP G =0, (3.16)

where the definitions given in the previous section apply.

As mentioned above, the equations motion of the boundary points receive contributions
from the X* variation of the free string action Ssring on the boundary, and the X! variation
of the particle actions S;. The expressions obtained from the variations are quite cumber-
some and are shown in Appendix A. It is shown there that the boundary functions can be
taken to be constants, allowing the choice of ¢; = £7/2 to be made on the boundaries. and
—7/2 < 0 < w/2 for the interior. Also, under the assumption that the massive particles are
very massive, m; — oc, the boundary terms yield the following equations of motion for the
massive end points of the truncated string:

d 22 dx dX
Further, conditions are obtained on the parametrization A(r) leading to the identification
of the time parameters A(7) = 7. This equation is a familiar result: it is the equation of
motion for a test particle with A an affine parameter.

To summarize, the complete set of equations of motion of a cosmic string with infinitely
massive end points in an arbitrary spacetime are given by

=0. (3.17)

aX? gx° J9gXPIX° T T
OX* 4Tk < — —_— = 0:(—= - 3.
+ p”{ oT 81’+60 60’} 0; ( 2<U<2)’ (3.18)
& x* dX? dX? o
i I : 3 — s — A K
7.2 Mg 4 0:0; i2 . (3.19)
The constraint equations read
QxXH* Xy o9oXHIXY n
kv [a'r aT + do 80'] = 0 (3.20)

8xXH* dXxv
Guv dr Odo

2The results for the hap and X* variations for the interior of the string are identical to the results for
the open string, but here the domain of the equations is no longer infinite, but is bounded by the end point
functions, o:(7).
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3.3 String Motion in a Weak Gravitational Field (non-rotating
source)

This section discusses the motion of a straight cosmic string in a weak static gravitational
field using perturbative methods developed in [22]. The perturbative approach treats the
weak-field solution to the equations of motion as a correction to a solution on a flat back-

ground,
XH (1,0) = X* (1,0) + 0X¥#(1.0), (3.21)

where X*# is the background solution, and § X* is the correction.

In the absence of the external gravitational field g, = 1., where 7, is the flat space-
time metric. In this case, the equations of motion have easy solutions. Taking Cartesian
coordinates (T, X,Y, Z), where all Christoffel symbols are zero, it can be shown by direct

computation that
X*(r,0) = (cosh (B) 7,sinh (B) T + Xq, Yo.0) (3.22)

satisfies the equations of motion (3.9) and the constraints (3.10). The solution describes
the motion of a straight string oriented along the Z axis, and moving parallel to the X axis
at velocity v = tanh 3. Initially, at 7o = 0, the string is found at X#(0,0) = (0, Xy, Yo.,0).
with Yy playing the role of impact parameter, Yo = b. For definiteness we choose Yy > 0
and Xy <0, so that 8 > 0.

It is convenient to introduce an orthogonal tetrad efm) (m =0,1,2,3) connected with
the world-plane of the background solution

elyy = X% = (cosh 3,sinh 3.0.0). ;) = X5 =(0.0.0,1). (3.23)
elyy = by, = (sinh B.cosh B,0.0) . efy) =ng =(0.0,1.0). (3.24)

The first two unit vectors X" are tangent to the world-sheet of the string, while the other
two né‘ R) (R = 2,3) are orthogonal to it. In order to avoid confusion, tetrad indices will be

distinguished from spacetime indices by enclosing them in parentheses, (m). It is easy to
verify that the induced metric G 4p on the world-sheet of the string is of the form

0
Gap =GaB=TAB- (3.25)

3.3.1 Weak-Field Approximation

The background solution is expressed in Cartesian coordinates. To treat the Schwarzschild
black hole as a source of perturbations on this background isotropic coordinates (T, X, Y.Z)
are used, for which the line element of Schwarzschild spacetime is

ds? = _(_I—M—/?@; dT? + (1 + M—) (dX? +dY? +dZ?) , (3.26)
(1 + M/2R)" 2R
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where R? := X2 + Y2 + Z2. This metric is of the form

ds? = —(1 — 28)dT? + (1 + 2¥)(dX? + dY? + dZ?) (3.27)
with
/2] 3 2 1 3 1 4
d -= — - — —_— .28
TETEE V=gt 10"+ 20+ 50, (3.28)

and ¢ is the Newtonian potential, ¢ = M/R.
In what follows it is assumed that this potential is small and, therefore, it is possible to
write3
12 T 2
P=p+d+...=p+a? +0 (%), U=p+¢+...=0+b®+0(p°) .(3.29)

where

a=-—1, b=§. (3.30)
4
A string moving far from the black hole is moving in the perturbed metric
1 2
Guw =Mpe + Tuvs Yur =Vpe + T +0 (‘Ps) s (3.31)
l 2 2 <0 <0 i o]
Yur=208py, Yp=20 T4, T =ad,d,+ bd;,63,0:5 - (3.32)

Here 7,j = 1,2,3 and §;; is the Kronecker 4-symbol.

The perturbation, v,,, of the metric results in the perturbations §X* and dhap of the
flat-spacetime string solution (3.22). The equations describing these perturbations can be
obtained by perturbing string equations (3.3) and (3.5). For this purpose decompose the
perturbation of the string, using the orthogonal tetrad (3.23) and (3.24), as

5X# = XMt = xBinft 4D XH (3.33)

where the four scalar functions of two variables, x(™)(7, o), describe the deflection of the
string world-sheet from the plane (3.22). The perturbations x(®) and x(® describe pertur-
bations along the tangent vectors of the string worldsheet £, denote these the longitudinal
fields. The perturbations x(!) and x(?) describe perturbations perpendicular to ¥, denote

1 2
these the transverse fields. As was done earlier, expand x(™) = x(™ + X(™) + ___ in powers
of ¢, and also use the expansion of the internal metric hap

1 2
hap =7map+ hap + hag +.... (3.34)

The first-order corrections will be treated next and applied to the general scattering prob-
lem. Second-order corrections will be discussed in section 3.3.3 to obtain the low-velocity
behaviour of strings.

3The same form (3.27) of the metric is valid for the charged black hole (with charge Q). For the
Reissner-Nordstrom metric describing such a black hole, one has 1 — 28 = (1 + ¢ + g?) ~2(1 — ¢¥°)*,
1+2¥ = (1 + ¢ +qp®)? g = 1 — (Q/M)?. For this metric, the expansion (3.29) is also valid with
a=3(g—3),b=3(g+2).
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3.3.2 First-Order Corrections

This section considers effects that are of the first order in ¢ only. The first-order effects
on the constraint equations are considered first to obtain gauge fixing conditions, followed
by first-order effects on the equations of motion, then by solutions using Green’s function

methods.

Constraint Equations

The induced metric is
1 1
GaB =nap+ YaB +2 X(a.B) -
where
1 L
YaB=Yuw X% X' = 2 diag(l + 2sinh’8,1).

The perturbation of the constraint equation (3.5) has the form

1 1 1
Y4B +2 X¢4.B) — haB ~Qnag =0,

where

1

1 1 1
Q:= 517CD [hco + Ycp +2 X(C.D)] .

One can always choose

1 1
haB=hmnag-

so that,

=0.

! L L co |4 L
Y4B +2 X(a,B) —574B7 fcp + Xe,
Using Eqn. (3.36), it follows that

1 L L L
Xor + X10= —2p cosh®’ . Xoos + X1,r=0.

In what follows these are chosen to be the gauge fixing conditions.
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Equations of Motion

The perturbation of the dynamical equation (3.3) is now considered. First, note that
Eqn. (3.39) implies that /—hh48 is equal to 7*® up to the terms which are quadratic
in . As a result, the equations of motion (3.9) can be decomposed as

i 1
OX* + hABTE X3 X ~ OX* + e ax™ 4B T4 XX =0 (3.42)
from which it follows that the first-order corrections must satisfy
L 1
O X(m) +7*8 Tpap X4 X% i) =0. (3.43)
In these equations,
1 1,1 1 I
Cues= 5(7;:&# + Yuga — 706.#) = ‘P,a‘suﬁ + ‘P,55u0z - ‘P.uaaﬁ - (3.44)
Dynamical equation (3.43) has the form
1 1 -
0 X(m)=f(m) (3.45)

The components f(,y) describe longitudinal perturbations of the straight string*. The com-
ponents f(p) describe transverse perturbations of the straight string under the action of the

1 1
external gravitational force f(zy. To calculate f g, note that
1 1 u
f(m)=Ku e(m) s (3.47)

1 L
P 3
Kuy=-n 1B Lpes X,(:lX,B

L L 5 1 L

= cosh® B T'y00 +2sinh 8 cosh B [y o1 +sinh? B Tyt — Tuss - (3.48)
Simple calculations give

Y oaiin2 . 50 . 12 1 3 ,

Ku= —2sinh” 8 ¢, + 2sinh B cosh 8 16, + 2sinh® B ¢ 16, 2030, . (3.49)
Using these results it is easily shown that

L ) L

f@y=2sinh g cosh? 3 ox. fiy=-2 cosh? 8 0.z, (3.50)

1 1

foy=2sinh®B cosh B o x. fzy= —2sinb’B oy, (3.51)

3Since longitudinal fields )1(( A are already fixed by the gauge fixing condition it is necessary to verify that
Eqns. (3.43) for m = A are identically satisfied for this choice and do not give additional restrictions. For
this purpose, it is noted that
! -3 < 1,1 1 1
Thas XAXGX% = 5(7AC.B + YBc.A — YaBC) - (3.46)

By using this relation and Eqn. (3.40) it is easy to verify that Eqns. (3.43) are satisfied identically for m = 4.
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Solutions

Equation (3.45) for string propagation in a weak gravitational field can be easily solved.
The retarded Green’s function for the 2D O-operator is [10]

Go(o,7 | o\ 7') = %G(T—'r’- lo—do'l). (3.52)
Using this Green'’s function a solution of Eqn. (3.45) can be written in the form® [41]
X(m) (> 9) = X{m)(T:0) + X{in) (T + 0) + Xy (T — @) (3.53)
where
T oo
X?m) (r,0) = —/ dr'/ da'Go (0,7 | o', 7") fim)(7',0")
T0 -0
1 T , o+T—7 , .
= —5/ dr / do f(m)('r ,0') (3.54)
T0 a—(T-1")

is a solution of inhomogeneous equation and x(im) are solutions of homogeneous equation
which are fixed by the initial data

X(m) (70, 0) = Xy (T0+0)+X(1n) (T0=0) ,  X(m)(T0.0) = Xy (T0+0)+X gy (T0—0) -(3-55)

Consider first the perturbation perpendicular to the direction of motion (the Y -direction),
which is described by x(3)- Assume that initially (at the infinite past) x(s) = 0. that is, the
straight string starts its motion (T = 0) at a very large, negative Xo with initial conditions,

x3)(0,0) = x(3)(0.0) =0, (3.56)
and the solution has the form®
X@a)(T,0) = =M sinh 8 [Hy (r.0) + H_(7,0)] , (3.57)
where
Y2 + (Xo + 7 sinh 8) (X + s+ sinh 3)
Hy(T, = t g = 3.58
£(ro) = arctan [ Yo sinh 8 R(r,0) (3.58)
. 2
_ arctan Xo (Xo + s+ sinh 8) + Y;
Yy sinh By /p? + 51
where the following notation was introduced,
RY(7,0) = (Xo + 7sinh B2 + Y¢ + 0, p?=X2+Y§, sz=t1*o. (3.59)

5Since only first-order corrections to string motion are considered, the superscript 1 in )l((m) and similar
quantities is omitted in this section.

5The integrals were carried out using Gradshteyn and Ryzhik [32], section 2.25. The solutions were
verified using Maple V.
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One can also obtain solutions for the other components of x(m). Substituting (3.51)
and (3.50) into (3.54) and performing the integrations one gets, for the initial conditions

X(m)(0,0) =0,

x©)("0) = Mcosh(B)[ln(Fy(r,0)) +In(F_(r,0)) (3.60)
+ 5 cosh(B) [sgn(s+) In(Ga(7,0)) + sgn(s-) la (G—(r, )]
x)(™o) = Mcosh(B) [ln(Fy(r,0)) —In(F-(r,0))] (3.61)
X2)(1r,0) = —Msinh(B)(In(Fy(r,0)) + In(F_(7,0)) (3.62)
+ 5 cosh(B) [sgn(s+)1n(Gs(r,0)) + sgn(s-) In (G- (r, 0))]
where

h?® inh B —
Fi(r.o) = R cosh 8 + 1 cosh“8 + Xg sinhf — s+ (3.63)

cosh B /p? + 5% + Xo sinh 8 — s+

VP +si— sz
Gx(r,0) (3.64)
P2+ si+ s |

These results are applied to the study of string scattering in the weak field regime
(Chapter 4); they are also used as boundary conditions and initial data for numerical work.
as discussed in the next section.

3.3.3 Low-Velocity Limit

As was already mentioned, the components f(z) normal to the string world-sheet are com-
ponents of the physical force acting on the string. As can be seen from (3.51), the force fg)
acting on the string vanishes in the limit v — 0. This fact has a simple physical explanation.
As was shown in Ref. [29], a static string configuration in a static spacetime is a geodesic
in a spacetime with the metric {ggg|gij, which in this case takes the form

dS? = |goolgijdzidry = (1 — 20)(1 +2¥)(dX? + dY? +dZ?). (3.65)

In the leading order, ® = ¥ = ¢, and the string is a straight line, as was first observed
by Vilenkin [52]. In other words, in the first-order approximation a force acting on a
static string in a static spacetime of a black hole vanishes. For this reason, the leading
terms in the expansion of the force are of the second order in ¢, and they remain so until
v/c ~ (M/[bimp) /2. In this section the effect of these second order terms on the motion of
the string is discussed in the limit of very small velocities.

Substituting Eqn. (3.33) into the dynamical equations (3.3),

2 2
nfp O X(B) =fu= A* 4 B*, (3.66)
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where the O-operator is given by (3.46) and,
p 2 1 1 1
At = P LA XEXG, B = —n*P DX B Xl + X D X pel) - (36)
Note that

1%,;6 =n* %yyaﬂ + ';”" E‘y,aﬂ (3.68)
where ]_E‘y,ag is given by (3.44) and,
Pras = 3 (Fas +Fusa = Fos) (3.69)
= 20(pemTg+ P aTve — Py Tag)
where %’u,,,,,z 2000 Tpy-

To simplify matters, consider only the corrections to the motion of the string in Y-
direction. It is easy to verify that

2 2 2
A? = cosh? BT 2%, +sinh2 BT 2, — ['%5 = 200.2[2(1 +b) — (2 + a + b) cosh?® 8] . (3.70)

Calculations also give

B?=2p, [(coshz B +sink? B) X0),» —sinh(26) X2)r + X(1yr | — 203 X@yo - (3-71)
At low velocities (8 — 0) one has

A2~ 2p0(0—a), B~ 2p3(Xoyr + X()o) = 203 Xy - (3.72)

1
Equation (3.57) shows that X(3) vanishes at § — 0. Using gauge conditions (3.41), it follows
that

2
fy~ —2(2+a—blpps. (3.73)
Using a relation similar to Eqn. (4.1),
2 24+a-b [ 0 9p?
= = oA < (. Y. 4). 3.74
X) (1=00) = 5o —oodY/_de = (X Y0.2) (3.74)

Calculating the integral one gets
M 22+a-1b)
Yy sinh 8

For the scattering of the string on the Schwarzschild black hole, a = —1 and b = 3/4,
so that one has

X@) (1 =o0) = (3.75)

T(GM)?

—_ 3.7
4c*Yysinh 8 (3.76)

2
X(3) (r=00) =
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These results will be applied to the problem of string capture in Chapter 6.
Using the expressions for the coefficients ¢ and b for the scattering on a Reissner-

Nordstrom black hole (see footnote 3) one gets

2 _ 2
>2<(3) (r =00) = _’r((fé‘Q SinhGﬁQ )| (3.77)

These results agree with those of Page [44].

3.4 Ultra-relativistic String Motion in a Weak Gravitational
Field

The solutions presented here are, in a sense, a special case of the perturbative solutions
documented above. The ultra-relativistic solutions are simpler in form, and a number of
properties of ultra-relativistic scattering are derived in a straightforward manner in Chap-
ter 4 using these simpler solutions.

The key observation which leads to a solution of the equations of motion in the ultra-
relativistic limit is the following: in the reference frame of the string the black hole moves
with v =~ 1 and its gravitational field is boosted to the shock wave [33]. As a result, before
and after crossing the null surface N representing the black hole, the string obeys the free
equations in flat spacetime. All the information concerning the non-linear interaction with
the gravitational field of the black hole can be obtained in the form of “jump” conditions
on the null surface N. Such solutions were studied earlier (see e.g. Ref. [3]).

To obtain the metric of an ultra-relativistic black hole one starts with the metric (3.27)
written in the form

ds® = (1 + 20)ds3 + 2(® + ¥)dT?, (3.78)
where
ds3 = —dT? + dX? + dY? + dZ?, (3.79)

and make the boost transformation

T =vT—-vX), X=v(X-vT), V=Y, Z=2. (3.80)
Let X+ =T + X so that
Xe=v1-v)(T+X), X-=v1+v)(T-X), (3.81)

(
(

. -1
and, since v2 = (1 —v?2)" ",

1—v .
1 v) X_) \ (3.82)
1

+
—-v

X_].
1+v) )

Xy +
X4 —

)
T = ;1(1+v)(
X = %(1+v)<



Using Eqns. (3.82) the metric (3.78) takes the form
ds? = (1+20)[-dX-dX; +dY? +dZ?] (3.83)

2 _ 2
+ 22—(1+v)2(<1>+\11)( i+z ) :

In the lowest order ® = ¥ = ¢ = M/R, where R = VX2 + Y2 + Z? can be rewritten
using Eqn. (3.82) as

R=7\[<1;")2<X+-(:Z) X+)2+71—2(Y2+Z?) (3.84)

so that
M(1 —v?
o= TM( ) — (3.85)
[(1;—")2 (x: - (1) X-) +(1—v2)(Y2 + z2)]
The metric (3.83) takes the form
ds? = —dX_dX, +dY?+dZ? (3.86)
+ 20 (dY? +dZ?) + v (L +v)2dX2 + (1 - v)%dX2)
In the limit v — 1 and yM fixed one has [3]
lim v2p = lim M = —yM&(X.)lnp?, (3.87)
v—1 v—1 \/X2 1 _ v2

where p? = Y2 + Z2. From this it follows that the metric in the Aichelburg-Sex! form [1] is
obtained

ds® = —dX_dX, +dY? +dZ% —4yMF§(X.)dX2 . (3.88)

where F = Inp?. The boosted metric in this form represents a gravitational shockwave.
The following components of the Christoffel symbols do not vanish:

T;,=4YMF&§(Xy), [;y=2TY  =#YyMFyd(X).

[;,=20%, =4YMFz6(X:). (3.89)
The in-coming straight string motion (3.22) in this limit takes the form

Xilpeo=7: X-lreog=T7—27X0, Y,o=Y, Z|l.co=0. (3.90)

First solve the string equation (3.3) in the metric (3.88) for the initial conditions (3.90)
using the conformal gauge in which v—hh4B =048 so that O = -2 + 82.
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The equation for X takes a simple form
OX; =0. (3.91)
Hence its solution obeying the proper initial conditions is
Xe=rT. (3.92)
The equation for Y is
aYy =2yM Fy é(t). (3.93)

The solution obeying the initial conditions (3.90) is solved using the Green’s Function (3.52)
and has the form

Y| 5o =Yoo —27M [a.rcta.n (r;;a) + arctan (T;oa)] . (3.94)

Similarly, solving equation
QZ =2yM F z (1) (3.95)

for Z with the initial conditions (3.90) one gets

Zl,s5g=0—7M In [%] (3.96)
And finally, a solution of the equation for X_

OX_ =4yM F§'(7) (3.97)
is

X_|pso=7T—27Xo—vM [In (Y7 + (T + 7)) +In (YZ + (r - 0)?)] . (3.98)

It is easy to verify that the obtained solutions obey constraint equations (3.5) which for
the case under consideration take the form

V24 Y2422+ 2% =X_ +4yMFé(r), (3.99)
YY'+22' = %X’_ , (3.100)

Here a dot and prime denote derivatives with respect to 7 and o.
These results are applied to the study of string scattering in the ultra-relativistic regime.
as discussed in Chapter 4.
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3.5 String Motion in a Weak Gravitational Field (rotating
source)

First-order perturbative solutions in Kerr spacetime can be obtained using the general
procedure outlined above to solve the scalar perturbation equations X(m)- However, the
perturbative expansion of the Kerr metric is more involved than that of the Schwarzschild
metric. In the latter case, the expansion was done directly in isotropic coordinates and first-

order contributions to the metric, ‘%’, and Christoffel symbols, Il‘, were easily obtained. Since
there is no analogous coordinate system for Kerr black holes, the perturbative expansion
must be carried out in two stages, beginning in Boyer-Lindquist coordinates to obtain
leading terms, and then converting these terms to Cartesian coordinates.

The Kerr metric in Boyer-Lindquist coordinates, (¢,7,6, ¢), has the form (see Appendix
D),

2Mr 4a M rsin%6 by
2 _ _[+_ 2 2aMTSILO 2

ds®* = (1 5 ) dt S dtdo + A dr (3.101)

- 26
+ nde+ 280
s
where @ = J/M is the specific angular momentum, and

A = rP=-2Mr+a® (3.102)

T := r?+a%cos’d

A = (r*+ a2)2 ~a?sin®0A.

The metric components are expanded in powers of r, for r large,

2M
goo = —l+—+ o(r ),
4a M sin®6 _
gy = ———222 400,
2M

gn m 1+==+0(7),

g2 = T'2,

g3z =~ T‘25i 29.

In this expansion, the new contribution due to angular momentum is the O(r~!) term in
goa; otherwise, the metric is equivalent to the expansion of the Schwarzschild metric.
Now transform the coordinates to Cartesian using Eqn.(E.2) to obtain the metric

2M 2M
ds? = - (1 - —R—) dT? + (1 + T) (dX? +dY? +dz?) (3.103)

daM
R3

(XdY — Y dX)dT,
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where R = VX2 + Y2 + Z2 and the black hole is rotating about the Z axis. This result
is in agreement with the general weak-field formula (19.5) in Misner, Thorne and Wheeler
[40] for a gravitating source rotating about the Z axis. Further, this result reduces to the
weak-field metric for Schwarzschild black holes in the limit where a — 0.

The new contribution to the Christoffel symbols is

alM
R3’

with R? = (Xo + rsinh8)® + Y& + o2
The source term f3) appearing in Eqn. (3.45) receives an extra contribution from angular
momentum

1
L3 = (3.104)

a cosh 8

L
Yo

1
) o (3.105)

The new solution for x(3) with black hole angular momentum is

a cosh (B)

) {H (1,0)+ H_(1.0)} . (3.106)
Yo

X3 = -M (sinh(,@) +
where H. are given by Eqn. (3.58). The choice of sign for the angular momentum term
depends on the choice of initial conditions. As discussed in Chapter 2, the angular momen-
tum of the black hole now introduces an additional dimension to the scattering problem.
The terms retrograde and prograde (see Fig. 2.4) were introduced to describe the two pos-
sible cases for particle scattering. These terms will be used here also. Here, the convention
Xo <0,b=Yy >0, and B > 0 results in choosing the + sign for the angular momentum
term (this can be verified by carefully following signs through the detailed perturbative
calculations).

According to this lowest-order calculation, angular momentum simply introduces a small
correction to the amplitude of the transverse perturbation x(3) that is proportional to a
and inversely proportional to impact parameter. It is important to note, however, that the
perturbation calculation outlined here has to be approached with caution. The magnitude
of the correction is small and may be subject to further corrections from higher-order
perturbation terms.

It would seem as if the methods used to study the low-velocity behaviour of strings
should extend to Kerr spacetime, with appropriate caution taken in obtaining the higher-
order expansions of the metric and the Christoffel symbols. Due to time constraints, these
calculations will not be pursued in this document, but will be the subject of a subsequent
publication.

3.6 Numerical Schemes

The above perturbative solutions are important for the general formulation of the scattering
problem (discussed in the next chapter). If a string enters in the strong field region near
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the black hole, the weak-field solutions break down and numerical solutions must be found
instead. This section describes the main features of the numerical schemes, the results of
which will be discussed in subsequent chapters.

In seeking numerical solutions, a method of truncating the string to a reasonably short
segment is required since strings of infinite length cannot be dealt with directly. Such a
physical truncation imposes special boundary conditions since it is crucial to reproduce the
motion of an infinitely long string. Two such boundary conditions have been developed:

e Numerical Scheme A: This method places the truncation points a reasonable dis-
tance away from the black hole, subject to the condition that the end points move in
a weak gravitational field where a perturbative solution to the equations of motion is
applicable and can be imposed as boundary conditions.

e Numerical Scheme B: This method places a massive particle at each end of a
segment of string and requires that the motion of these particles mimic the motion of
the portions of the string lying outside the region of interest. Without the “support”
of such massive particles, the segment of string would collapse on itself at the speed
of light.

Each method has distinct advantages, and both were used extensively in the course of
this study. Since method A is a direct application of the standard equations of motion,
it is the better model in that it deals directly with an infinite string. However, from
the numerical perspective. method B offers certain advantages that will be discussed in
subsequent chapters. Furthermore, provided suitable care is taken to correctly specify the
numerical problem, the results from the two models are in complete agreement.

3.6.1 Computational Grid

The numerical solution to the equations of motion begins with the imposition on the internal
coordinate space of the string worldsheet of a grid of uniformly spaced points, (o,7) —
(0i,7j)- As shown in Fig. 3.1, this grid consists of a fixed number of points in the spatial (o)

direction, indexed by i = 1,..., N, and an unspecified number of points in the temporal (7)
direction, indexed by j = 0,..., M, where j = 0 represents the initial time step (obtained
from initial data) and j = M represents some particular time denoting the end of the

evolution. Each set {(o;.7;)} with j fixed represents the string configuration at 7 = 7;.
The spatial interval between grid points, Ao, is constant. The temporal spacing, Arj, is
constant across the spatial grid, but may vary from one time step to the next, allowing for
an adaptive step size to be used.

The equations of motion describe the spacetime coordinates of the string, X#(o,7). On
a discrete grid, denote these coordinates X*(o,7) = X¥(0i,7j) = (x*), ;- Note that the
use of roman indices here is specific to the numerical grid; these should not be confused
with spacetime indices. The equations of motion. as shown in Eqns. (3.9) and (3.18),
are a system of four coupled non-linear wave equations that specify the time-evolution
of the cosmic string, beginning from some initial configuration. How these equations are
discretized is outlined here, and discussed in detail in Appendix B.
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3.6.2 Discretization

After some trials with more traditional approaches involving substitutions to reduce the
equations to a first order system, a method based on Von Neumann'’s discretization [4] for
the linear (scalar) wave equation (Ou = 0) was developed. This approach deals with the
wave equation directly as a second-order equation, using standard centered finite differencing
for the time and space derivatives. The method deals with the time derivative directly, but
uses an average of spatial derivatives at three adjacent time steps, with the third time step
being the next increment in the time-evolved solution. Von Neumann’s discretization gives
rise to an implicit scheme that yields a tridiagonal system where the time-evolved solution
is expressed for the entire spatial grid; this system is solved algebraically.

The Von Neumann method has been extended to handle a system of equations, and
to handle the non-linear terms shown in Eqns. (3.9) and (3.18). The non-linear terms are
expanded to first order in the appropriate grid spacing (At or Ac), using second-order
accurate centered differences for the first derivatives, and treating the Christoffel symbols
as known functions of the spacetime coordinates. The non-linear spatial term is averaged
in the same manner as the second-order spatial term. The discretized expressions for each
term in the equations of motion are combined and manipulated to yield a block-tridiagonal
system of linearized equations that is solved iteratively using a Newton-Raphson scheme.

3.6.3 Initial Data and Boundary Conditions

In order to have a well-posed problem, we must specify the shape of the string at some
initial time 7, along with normal derivatives (9, X*) everywhere on the string, including
the boundaries, at this initial time. Along with the appropriate boundary conditions, these
completely specify the initial/boundary value problem (IBVP). Since the Von Neumann
method requires two time steps in order to compute the unknown time step, a completely
equivalent way of specifying the IBVP is to use two initial time steps, along with the required
boundary conditions.

The design of the numerical solver allows a good deal of flexibility as to the choice of
initial-boundary value problem. The two physical boundary conditions discussed above can
be implemented using this numerical scheme simply by altering the initialization routine
and the conditions imposed on the 7 = 1 and i = N grid locations (i.e. the first and last
rows of the block-tridiagonal system).

Numerical Scheme A

In this version, the numerical scheme uses the perturbation solutions of sections 3.3 and
3.5 as initial data, and to prescribe the motion of the end points. Typically, this scheme
imposes two conditions to yield usable results:

1. the string must be long enough (L ~ 2007,) so that the ends of the truncated string
move always in the weak field
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2. the string must be started in the weak field, (ro ~ 1007,) so that the perturbed
configuration is a reasonable approximation of the correct string configuration.

Typical runs using this version of the numerical scheme require small grids (~ 103 grid
points) and short integration times (~ 102 to 10* time steps). This IBVP is used to probe
the low-speed behaviour of strings for both rotating and non-rotating black holes.

Numerical Scheme B

In this version, the numerical scheme uses a finite straight string solution as initial data. It
can be shown by direct computation that, in Minkowski spacetime,

XH(r,0) = (—ﬁ- cosh (6) . = sinh () 7 + Xo, Yo, fo) (-E<o<l), @107

is a solution to the equations of motion for a string of length L with massive ends (3.18) that
also satisfies the constraints (3.20). The numerical scheme enforces the geodesic boundary
conditions (3.19). This scheme must meet two conditions to yield usable results:

1. the string must be very long (L ~ 20007,) to ensure that the motion of the end points
is not extensively disturbed by the black hole,

2. the string must be started well away from the black hole (ro ~ 10007,) so that
the straight string configuration is a reasonable approximation of the correct string
configuration.

Typical runs using this version of the numerical scheme require large grids (~ 10* grid
points) and long integration times (~ 10* to 10° time steps). This IBVP is used to study the
long-term evolution of strings (scattering) and the high-speed capture cross-section. Since
the massive particles at the ends of the string act as perfect mirrors, an additional constraint
is imposed on string length for long integrations: perturbations propagating along the string
at the speed of light cannot be allowed to reach the end points in the course of calculations.

Where the data for these two schemes overlaps, it is possible to validate the numerical
results. They were also tested against the perturbation solutions and using other means, as
documented in Appendix C.

3.6.4 Role of Constraints

The constraint equations, (3.10) or (3.20), are used as checks on the solutions to the equa-
tions of motion. The calculation of the discretized form of these equations (see Appendix B)
is carried out periodically during the numerical solution. Statistics are computed for the
constraints (average value over the length of the string and standard deviation) at the
current time step and reported to an output file. Monitoring that the constraints are con-
sistent with zero to several significant digits is done by inspecting this file. If the constraints
are not satisfactorily maintained, that is if the average value grows unacceptably large or
undergoes sudden changes, the numerical solution is restarted with new parameters (e.g.
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finer grid, finer step size). The specific tolerances for constraint calculations are discussed
in subsequent chapters; typically, the constraints were expected to be consistent with zero
to four significant figures for numerical scheme A and six significant figures for numerical
scheme B. Tighter tolerances can be achieved by increasing the number of grid points (and
significantly increasing solution time), but for the purposes of this study, the above values
were deemed a reasonable compromise between accuracy and speed.

3.7 Chapter Summary

In this section, the following results were established:

e for a cosmic string moving in 2 weak gravitational field, perturbative solutions were
developed for non-rotating sources;

e a special form of the perturbative solution was obtained in the limit where the string
moves at ultra-relativistic velocity;

e the perturbative solution was extended to rotating sources;

e a discretization of the equations of motion, based on a non-linear extension of Von
Neumann’s discretization of the wave equation was also discussed; this method can be
used to numerically evolve cosmic strings using initial-boundary value data derived
from both the perturbative solution and the solution for a straight string terminated

by infinitely massive particles.

The following chapters discuss how these analytic and numerical solutions were used to
study the dynamics of cosmic strings near black holes.
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Chapter 4

Gravitational Scattering of Cosmic
Strings by a Black Hole

This chapter deals with the gravitational scattering of a straight cosmic string by a black
hole. The problem under consideration is that of an initially straight string starting at
a large distance from the black hole and approaching with a velocity v(0 < v < c) and
impact parameter b, as shown in Fig. 1.1. The impact parameter is greater than the critical
impact parameter for capture, so the string scatters to infinity. It will be shown that the
perturbative solutions can be applied to formulate the scattering problem, and from these
solutions a number of scattering parameters can be derived which are useful in discussing
the general scattering problem.

A cosmic string is an extended object whose response to a gravitational field is deter-
mined by its internal tension. Cosmic strings formed at the GUT-scale are extremely stiff
objects, and straight strings have an infinite number of internal degrees of freedom. The
scattering of a string is an inelastic process since the string absorbs some energy (i.e. the
string’s internal energy, connected with the excitations of its degrees of freedom, changes
during the interaction). Naively, one can expect that only a close encounter with a black
hole’s extreme gravitational field can excite string modes to any great extent. The fact
that such internal modes can be excited leads to many dynamical consequences that will
be discussed in this and subsequent chapters.

This chapter is divided into five sections. The first three sections discuss the scattering
of straight cosmic strings by Schwarzschild black holes, which has proven to be far more
interesting than initially anticipated. Scattering is discussed in the weak-field, strong-field,
and ultra-relativistic regimes, comparing analytic and numerical results in each case. The
fourth section compares the results of string scattering to that for a dust (tensionless) string
in order to gain insight on the role of the internal tension. The fifth section shows how black
hole angular momentum affects scattering.
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4.1 Weak-field String Scattering by a Non-rotating Black
Hole

A simple picture of scattering in the weak field arises when one considers the perturbation
solutions of Section 3.3. In order to set the context, consider the asymptotic solution. at
T — 00, of the x(3) perturbation (3.53), assuming that x(3) =0 at 7 = —o0,

A 1 o o] o
X(3)(T = 0) =71LI{.IOX(3)(T,U) = —-2'/_°°dT'/_°°d0' fay(r',a'). (4.1)

Substituting expression (3.51) for f(3) and making a change of variables of integration from
(,0) to (X, Z) (using Eqn. (3.22)) the integral takes the form

oc 0o dp
xe(r=c0) = —sianp [ ax [~ az S8(x.%,2). (42)
—o0 —oo ay

This integral represents the flux of the Newton gravitational field through the plane ¥ = ¥j
and is equal to 2rM (that is a half of the total flux 4wM). Using this simple observation.
it follows that, as a result of scattering, the string as the whole is displaced downward in
the Y-direction by a constant value

X@)(T =00) = -27M sinh 3. (1.3)

At late but finite time only part of the string is displaced. The full perturbative solutions
help shed light on the process.

-3.5
-2000 -1000 0 1000 2000

Z (rg)

Figure 4.1: x(a) perturbation.

The perturbation solutions are illustrated by Figs. 4.14.3, where the solutions are ap-
plied to the case of a straight string with initial velocity v = tanh 8 = 0.76c and impact
parameter b = Yy = 4071, (for —20007; < o < 2000 r4)!. These figures show each per-
turbation at late proper time, when the string is well past the black hole. The x(3, = JY
perturbation (Fig. 4.1) describes the deformation of the string normal to the background
world-sheet; the two kink-like pulses propagating away from the Z = 0 plane at the speed of

For non-rotating black holes, distances are measured in units of the gravitational radius, r, = 2\/.
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light are clearly visible, and their amplitude is considerably larger that any of the other per-
turbations. These pulses carry energy away to infinity and, in the process, shift the string’s
late-time position roughly 3.5r, below the original position. The x(;) = §Z perturbation
(Fig. 4.2) represents lateral displacements of points on the string towards the Z = 0 plane;
the amplitude of these displacements is small at low velocities, but becomes significant in
the limit of ultra-relativistic velocity and shallow impact parameter, where lateral displace-
ments of the string are involved in transient loop formation. The x(o) and x(2) perturbations
(Fig. 4.3) also show two pulses propagating outward, but these are exceedingly small, and
are of secondary interest in the scattering problem.

6
4
2
Xilrg) O
-2
-4
-6
-2000 -1000 4] 1000 2000
Z (rg)
Figure 4.2: () perturbation.
Zr Xo i
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| |
0;1 :
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'1} X2 i
i l
{ f
-2000 -1000 0 1000 2000

Figure 4.3: x(o) and x(z) perturbations.

The perturbation solutions can be used to reconstruct the full world-sheet of the string
in Cartesian coordinates, using
XE(1,0) = X¥(1,0) + x"™ (7, 0)el, » (4-4)

where the tetrad components are given in Eqns. (3.23) and (3.24). Such a reconstruction is
shown in Fig. 4.4, where a sequence of string configurations separated by constant intervals
of proper time in two separate views. The view on the left looks down on the XZ plane
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Figure 4.4: Reconstruction of perturbed string (Cartesian coordinates).

and shows the outward propagation of the two pulses (the black hole lies at the origin).
Note that the view is a 3D projection; the kinks appear to extend in the X-direction, but
they actually lie completely in the Y-direction (the effect is an artifact of the viewpoint
chosen for this view). The view on the right looks toward the origin along the direction of
motion, and shows the growth of the perturbations along the Y axis. Comparing Figs. 4.1
through 4.3, it is easily seen that the shape of the perturbed world-sheet is almost completely
determined by the x(3y (or §Y’) perturbation. The contribution from the other perturbations
is undetectable on the scale used in Fig. 4.4.

The scattering of the string can be used to generate a schematic representation of string
worldsheet, as shown in Fig. 4.5. This figure is a quite general representation of the scat-
tering problem and will be useful in describing the general (late-time) features of string
scattering in all regimes. The straight string starts its motion in the plane Y = Yj; denote
this the in-plane. This plane represents the motion of the free string in flat spacetime. At
late times, the scattered string approaches another plane, offset from the in-plane by Ao
denote this the out-plane. As the energy acquired by the string is propagated to infinity
through the two kinks, more and more of the string falls to the out-string plane. The
asymptotic deflection, Ao, is determined by the properties of the encounter.

4.1.1 Late-time Properties

In terms of the background solution (3.22), the string reaches periastron when 7sinh3 =
—Xo. In order to study the late time behaviour of the string it is advantageous to rewrite
the perturbation solution in a more symmetric form by making the substitutions X9 = —L
and 7sinh 8 = 2L, and considering the limit L — oo. In this limit, the expression for H+
(Eqn. (3.58)) simplifies to

(4.5)

Yosinh 8\/1 + (o/L)?
L + osinhfg
Yosinh 8\/1 + ((2/sinh B) £o/L)2 |’

H, = a.rcta.nl: L £ osinhf ]

+ arctan [
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Figure 4.5: A straight cosmic string scattered by a Schwarzschild black hole. Weak-field case.
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and the kink is located near o = FL/sinh 8. Using this fact the asymptotic expression for
H, further simplifies to

L £osinhfg
H, =~ 2arctan | —————— 4.6
. a.rcan[Yocoshﬁ]—)n (4.6)
From this result, the shift in position of the string is given by
Ap =You: ~ Yo = Llim M sinhfB (Hy + H_ ) = 2ny M, (4.7)
—>00

where sinh 8 = yv, ¥ = cosh # = (1 — v?)~Y/2, Furthermore, each kink has a characteristic
width in the external spacetime. This width is computed using 9 x(3) at the center of the
kink and using a linear fit to the kink profile. The width of the kink is the distance between
the points where this straight line intersect the lines Yy and Yy + A. It is easy to show
that the width of the kinks is given by

w=nYycothB=nx ﬁ. (4.8)
v

Steep pulses occur for small impact parameters (b = Yp) and/or large velocities (v — 1).
As was done for x(3), expressions (3.60) - (3.63) for the other components x(;,) can be
rewritten in terms of the parameter L (with L > Yj). The functions (3.63) that appear in
these expressions take the form
- cosh 3y/1 + (¢/L)? + (cosh?f + 1) /sinh B ~ (2/sinh B + o/ L) (4.9)
* cosh B \/1+ (2/sinh 3 £ o/L)? —sinhf — (2/sinh B +£o/L) '
V1+(2/sinhf+o/L)2—|2/sinhB +a/L |
V1+ (2/sinhf£0/L)2+ |2/sinhB+o/L|’

In rewriting the expressions in terms of the location of the kink, ¢ = FL/ sinh 3, one sees
that, Fr - coand G+ — (coshf8 — 1) /(cosh B8 + 1) for L — oo. Whereas the contributions
In G+ are well behaved, those from In Fy generate a logarithmic divergence in x(g) and x(2)-
This divergence is the result of the long-range nature of gravitational forces and is similar to
the logarithmic divergence of the phase for the Coulomb scattering in quantum mechanics.
It vanishes for potentials vanishing rapidly enough at infinity.

G+ (4.10)

4.1.2 Energy of Kinks

At late time in the asymptotic region where g,, = 7,, the action (3.1) can be written as
the sum of the action for the straight string and a term which is quadratic in perturbations.
This term is of the form (for details see Ref. [26])

Sy = —% /d’rda\/ —hh"‘Bxf‘f)xfg) . (4.11)

Hence the contributions of x(3) to the energy is

_p [ ox@\*, (@) )
E—z/;wdo{( 31’) +( o . (4-12)
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Using solution (4.6) and
Ox@) _ 9x@ OL _ sinhfIx@) (4.13)
ar dL dr 2 9L’ )

the integrals can be evaluated in a straightforward manner. In the limit L — oo, the
energy carried away by each of the kinks has a very simple form

5u A2
E=_-—2=2. 4.14
32 w ( )
Large, steep pulses created at small impact parameters and ultra-relativistic velocities
carry away the most energy.

4.1.3 Comparison to Numerical Results

The perturbative solution to the equations of motion of an infinitely long cosmic string is
most conveniently carried out in isotropic coordinates, (T, X, Y, Z). Numerically, however,
the scattering problem is best studied in Eddington-Finkelstein In-going coordinates since
the Christoffel symbols in this coordinate system are simple, few in number, and regular
everywhere, and allow following the scattered string very close to the event horizon. The
Christoffel symbols associated with this coordinate system, along with their derivatives with
respect to the spacetime coordinates (see Appendix D), were derived and inserted as analytic
expressions in the portions of the code dealing with the initialization of the tridiagonal
matrices. For similar reasons, the scattering of a cosmic string by a rotating black hole is
best carried out in Kerr coordinates. In order to compare analytic and numerical results,
Cartesian sections of the worldsheet such as those shown above will be used; the coordinate
transformations given in Appendix E are used to generate these views from the numerical
data.

Both numerical schemes were used for this study. For string scattering where the late-
time behaviour of the string is of interest, numerical scheme B is perfectly suitable since a
long string is required. Numerical scheme A is useful for obtaining high-resolution views of
string scattering in the vicinity of the event horizon.

The solvers are used to generate numerical worldsheets. As the numerical simulation
evolves, the solution to the equations of motion is output to a file (the frequency of output,
number of grid points, etc. are set by run-time parameters, as discussed in Appendix C). The
results of the constraint calculations are also output periodically and are used to validate
the numerical solution (numerical constraint calculations are described in Appendix B). If
the constraints are not maintained to suitable numerical thresholds, the run is repeated
with finer step sizes and/or finer spatial grids, as the situation dictates. For scheme B, the
grid-averaged constraint can be expected to be maintained at zero to seven significant digits.
For scheme A, dealing with first-order perturbative boundary conditions, the grid-averaged
constraint holds to three (perhaps four) significant digits over the duration of the run. In
both cases, these zero results should hold at all times; any great departure (whether sudden
or over the length of the run) is deemed to invalidate the run.
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Figure 4.6 shows sections of the numerical worldsheet of a string under the same con-
ditions as those of Fig. 4.4. As shown in Table 4.1, the maximum amplitude and width of
the pulses is in good agreement with the weak-field results obtained from Eqns. (4.7) and
(4.8).

Table 4.1: Scattering Parameters - Schwarzschild Weak-field.

numerical perturbation

A 341, 3.6y
w 1407, 16514

(v=0.76c, b=40ry)

400 40C
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Figure 4.6: Time sequence of string scattering in weak-field regime (numerical results). Black hole
lies at origin of coordinate system. Initial velocity, 0.76¢c, impact parameter 40 ry.

It will be shown in the following sections that the scattering model just described pro-
vides a useful context in which to discuss more general results, even though the weak field
approximation breaks down when the impact parameter becomes comparable to the critical
impact parameter for capture. The breakdown of the weak field approximation manifests
itself as the failure of the analytical expressions to correctly reproduce transient shapes,
which develop when the string reaches periastron. However, the late time features of the
string, counter-propagating kinks and asymptotic deflection, explained by the weak-field
approximation remain qualitatively the same.

4.2 Strong-field Scattering by a Non-rotating Black Hole

When the impact parameter approaches the critical value for capture, the string is in a
regime where only numerical solutions are available. This section discusses scattering in
this strong-field region, and the numerical solutions are compared to those of the weak-field
approximation at intermediate velocities (0.1c < v < ¢) for a range of impact parameters.
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The basis for comparison will be the amplitude of the deflection, Ay, and the characteristic
width of each pulse, wpyise, as defined in the previous section.

Figure 4.7 shows sections of the worldsheet of a slow string (v = 0.2c) with near-critical
impact parameter (b = 2.5 74 compared to bcapiyre = 2.1 74). As shown in Table 4.2,
the maximum amplitude of the pulses is considerably greater than predicted by weak-field
Eqn. (4.7), while there is good agreement in terms of the measured width of the kink and
Eqn. (4.8).

Table 4.2: Scattering Parameters - Schwarzschild Strong-field.

numerical perturbation

A 1.87, 0.95r,
w 2871y 271y

(v=029¢, b=25r,)
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Figure 4.7: Time sequence of string scattering in strong-field regime (numerical results). Black
hole lies at origin of coordinate system. Initial velocity, 0.29¢, impact parameter 2.5 ry.

It is important to note that, although the behaviour of the string is qualitatively consis-
tent with the weak-field solutions, the total deflection of the string is greater than predicted
by Eqn. (4.7). The discrepancy is made clear by plotting the total deflection of the string
obtained from the numerical solver and comparing it to the prediction of Eqn. (4.7). This
is done in Fig. 4.8, where the ratio Apymericat/Aweak is plotied for four velocities. It can be
seen that numerical and perturbative results converge for large impact parameters, and that
the transition from weak-field to strong-field occurs for impact parameters on the order of
10r4. Conversely, the curves make it clear that the weak-field solutions are quite acceptable
down to very small impact parameters. The curve which suffers a downturn is the lower
velocity one, meaning that Eqn. (4.7) predicts a greater shift than the numerical data. The
velocity of the string in this case is at the upper threshold where second-order corrections to
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Figure 4.8: Breakdown of weak-field approximation.

the perturbative expansion become important. Recall that the expression (4.7) was derived
using results from first-order perturbative calculations.

4.3 Ultra-relativistic Scattering and Loop Formation

Numerical studies of the evolution of stochastic networks of cosmic strings from initial for-
mation to the matter era ([52],[51]) suggest that astrophysical cosmic strings are expected to
move with an average velocity v = 0.7¢ . For this reason, the results discussed in this section
concerning motion at the ultra-relativistic limit are mainly of theoretical interest. Never-
theless, they provide a number of analytic expressions against which to validate numerical
solutions in this regime.

Figure 4.9 shows sections of the numerical worldsheet of a string propagating with an
initial velocity of 0.995¢ (v = 10) and impact parameter of 47,. The projections onto the
XZ plane show a complicated early phase associated with the evolution of short-lived loops
and, at late times, two kink-like pulses propagating outward. The speed of the pulses is
again that of light. The projections onto the YZ plane show more clearly the early evolution
of the loops, which indicate that the points on the string near the Z = 0 plane undergo
a short-lived deflection across the Z = 0 plane. The formation of loops suggests that the
behaviour of the string at periastron is particle-like in that there is insufficient time for
tension to play a role. However, once clear of the black hole, the tension can again assert
itself and solitonic pulses with an S-shaped profile propagate outward. This will be discussed
at greater length in the next section. Figure 4.9 also shows that the string self-intersects
in the Z = 0 plane. As the loop grows, the intersection point moves gradually downward
in the Y-direction. Once the loop has reached its maximum size, the S-shaped kinks have
formed and begin to propagate outward, away from the Z = 0 plane. The intersection point
disappears when the kinks have completely separated.

The amplitude of the kinks and the maximum size of the loops can be computed from
the ultra-relativistic solutions (3.94) and (3.96). The maximum amplitude comes from the
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Figure 4.9: Time sequence of string scattering in ultra-relativistic regime (numerical results).
Black hole lies at origin of coordinate system. Initial velocity. 0.995¢, impact parameter 4.0 r,.

asymptotic value of Y|;q,

T—00

The maximum width of the loops, wieep, occurs when the solution for Z|:,, reaches an
extremum in both 7 and o. It is straightforward to compute the derivatives from Eqn. (3.96)
and show that

1. [1+ Yo \?2
Wigop = 27 {n—gln[#]}(rg) o= 1_(21\/197>’ (4.16)

Figure 4.10 shows YZ sections generated from the analytic weak-field and ultra-relativistic
solutions for the same physical parameters and intervals of proper time as in Fig. 4.9. It
is easy to see that the two analytic solutions are virtually indistinguishable, the only dif-
ference being in the first slice, taken at the time where the string reaches periastron. The
ultra-relativistic solution shows a completely straight string, as expected, since the black
hole does not begin to distort the string until it has passed over it. The weak-field solution
shows a slightly bent string, indicating that even at 0.995¢, the influence of the black hole
is felt before closest approach. For later times, the two solutions are indistinguishable.

As shown in Table 4.3, the maximum amplitude of the deflection and the size of the
loops in the numerical data is slightly larger than predicted by Eqns. (4.15) and (4.16). It
is important to note that y = 10 for these figures, which is low for the ultra-relativistic
approximation, but represents a practical upper bound for numerical computations?. Fur-
thermore, the impact parameter is very small, and, as shown in the previous section, the
approximate solutions are no longer completely accurate under these circumstances.

2This is due to numerical anomalies that develop when larger y-factors are considered. These numerical
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Figure 4.10: Time sequence of string scattering in ultra-relativistic regime (analytic). Black hole
lies at origin of coordinate system. Initial velocity, 0.995¢c, impact parameter 4.0 ry.

Table 4.3: Scattering Parameters - Schwarzschild Ultra-relativistic.

numerical perturbation

A 407, 31.6r,
Wigop 207y 13.2ry

(v=0.995¢c, b=4.0r,)

4.3.1 Condition for Loop Formation

The above results show that there is a qualitative difference in string profiles at different
velocities. Low velocity scattering sees the evolution of two kinks in the string, but no
transient loops, whereas ultra-relativistic scattering shows both kinks and loops.

A loop-like configuration appears when Z(7,0) is no longer a monotonic function of o
for a fixed value of 7. This occurs when Z, < 0. From Eqn. (3.96), one gets

G ¢
Zo=1-29M + ; 4.17
T [Y&Hﬁ g+ (@i

where (+ = 7+0. The function Z; has extrema at |(1| = |Yp|. The minimum of Z, occurs

anomalies manifest themselves as a rigid deflection of the entire string as it crosses the X = Q0 plane. The
cause of these anomalies was traced to a loss of resolution in the first-order angular derivatives 85 X* at large

v-factors. The problem is suppressed by increasing the number of grid points; the large grid sizes required
result in a numerically intensive solver.
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Figure 4.11: Loop formation region.

at ¢+ = (- = Yy, that is at 7 = Yy and o = 0. This minimal value Z, = 1 — 2yM/Y;
becomes negative when

WM > Y. (4-18)

This is the condition for loop formation. This condition can be overlaid on the capture curve
(the plot of critical impact parameter for capture introduced in Chapter 2 and discussed in
greater detail in Chapter 6), as shown in Fig. 4.11. The loop formation region lies above the
capture curve and to the right of the curve y = Yy /r,; it can be seen that loop formation is
a relativistic phenomenon, and the ultra-relativistic solution predicts that this effect cuts
off for velocities below v ~ 0.9c.

Since the weak-field and ultra-relativistic approximations are accurate only for impact
parameters greater than ~ 10r,, the boundary of the loop formation is expected to shift
due to strong field effects. The solid line, based on numerical tests to detect loop formation,
indicates that the boundary is shifted towards lower velocities; the strong field near the
black hole tends to enhance loop formation.

4.3.2 String Self-intersection

Figures 4.6 and 4.9 suggest that the formation of loops is accompanied by string self-
intersection. Self-intersection occurs if there exists a pair of points on the string world-sheet,
(11,01) and (79, 03), such that

XH(11,01) = &¥(72,02). (4.19)

Since this condition forms a system of 4 equations for 4 variables, in the general case the
self-intersection points are isolated. For the highly symmetric initial-value problem used
here, a point of self-intersection is located at Z = 0. Let

F(C) = ¢ —2yM In(Y{ + ¢?), (4.20)
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then Z = 0 when F({+) = F(¢-). This condition is satisfied for two different points
(¢+.1, ¢—,1) and ((4,2, (- 2) if and only if there exist two different values of ¢ (say, ¢; and
c2 > c;) such that F(c;) = F(cp). It happens when the function F is non-monotonic, and
the equation

F'(¢) =1—=2yM¢/(Y§ +¢H) =0 (4.21)

has a solution. The latter condition implies 2yM > Yj. This is exactly the same condition
of loop formation which was obtained earlier, Eqn. (4.18). The equation F'(¢;) = F'(c) has
solutions for

cL € (27M — \[4(YM)? — Y, 20M + \J4(yM)* - V@) . (4.22)

It is easy to verify that for such ¢, all the conditions of self-intersection are met if {_ ; = ¢y,
C+,1 =2, {_2 = ¢z, and (4 2 = c;. Simple analysis shows that the self-intersection is stable
with respect to small perturbations of the initial state of the string before its scattering by
the black hole.

The key point is that, although a high degree of symmetry is imposed on the scattering
problem by the initial data, the resulting self-intersection point seems to be a character-
istic feature of string scattering at relativistic velocities. The black hole drives the self-
intersection process as its gravitational influence draws points on either side of the string
towards the Z = 0 plane. The string model used here does not allow for the string to
break at the self-intersection point (such a model would require higher-order terms in the
effective action than the "tree-level” contribution from the Nambu-Goto action). Where
such models have been discussed [52] and [2], it is thought that a loop formed through self-
intersection would likely break off and the remaining segments of string would reconnect.
The size of such loops is thought to be small. If this is indeed the case, then the black hole
driven self-intersection could leave a line of small loops in the wake of the string, yielding a
physical picture far different from the one shown here. How each of these loops would then
interact with the black hole would also prove an interesting problem.

4.4 Role of Tension - Dust String Model

Since a cosmic string is an extended object under tension, motion of a string near a black
hole represents the resultant of the competing influences of tension and gravity. In order to
shed light on the role of tension in the dynamics of the string, string motion is compared
to the motion of an array of test particles initially configured with the same position and
initial velocity as the cosmic string.

To study the role of tension for v < ¢, consider a family of N test particles arrayed on a
line with initial position X#;(79) and initial velocity 8, X*;(7g), where 7 is a position index
(an integer between 1 and N) that describes the initial location of the test particle on the
line. These particles each satisfy the geodesic equation and constraint,

a2xv; ., dXP;dX°;

dr? P dr dT 0, (4.23)
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Figure 4.12: Time sequence of dust string scattering in ultra-relativistic regime. Black hole lies at
origin of coordinate system. Left: Initial velocity, 0.995¢, impact parameter 4.0 ry. Right: Initial
velocity, 0.76c, impact parameter 40 7.

d [ d XH; dX”i]
Guv = 0.

dr dr dt

It is easy to show that

X¥(7) = (cosh (B) 7,sinh (B8) T + X0, Yo, 0%) , (4.24)

satisfies these equations and represents a straight dust string moving with velocity v =
tanh 4 where the discrete o; mimic the ¢ coordinate of the cosmic string?.

In the weak-field and ultra-relativistic cases, the role of tension in the string is made
apparent by comparing the YZ projections of Figs. 4.6 and 4.9 against those of the dust
string in Fig. 4.12. The dust solutions show that a loop always evolves in the dust string
worldsheet. This loop is due to the Keplerian nature of the trajectories of each particle on
the dust string. Particles lying on one side of the Z = 0 plane are deflected across this plane
since their motion is constrained to an orbital plane passing through the black hole. Unlike
the cosmic string, the Y-axis deflection of the dust string is unbounded (this is not to say
that the deflection does not reach an asymptotic angular value). Furthermore, at the early
stages the size of the loops in the dust and cosmic strings are virtually identical, reinforcing
the idea that tension takes some time to assert itself. Loop formation is a generic feature
of the dust string; this is not the case for the cosmic string, where loop formation is subject
to the low-velocity cut-off effect discussed above.

In the strong-field regime (with v < ¢), a comparison to the dust solution is uninforma-
tive since the impact parameter is well below the critical value for particles and the portion
of the dust string near the equatorial plane is captured by the black hole. However, it
does reinforce the idea that internal tension plays an important role in the dynamics of the
string, helping the string avoid capture for impact parameters well below that of the dust
string.

3 Although solutions to the equation of motions of test particles in the Schwarzschild geometry as used
here have been given previously, e.g. {16] and [17], it is easier to integrate the dust solutions numerically
and graph the results using Mathematica.
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4.5 Scattering by a Rotating Black Hole

Having discussed the scattering of strings in Schwarzschild spacetime at length, the effect
of black hole rotation can now be considered. As discussed in Chapter 2, the angular
momentum of the black hole now introduces an additional dimension to the scattering
problem. Here, the study of scattering is restricted to strings oriented along the Z-axis,
that is parallel to the axis of rotation of the black hole. The terms retrograde and prograde
(see Fig. 2.4) were introduced to describe the two possible cases for particle scattering.
These terms will be used here also. The perturbative calculations of Chapter 3 adopted the
convention Xg < 0, b =Yy > 0, and 8 > 0 for a string oriented parallel to the Z-axis, which
is also the axis of rotation of the black hole. According to Fig. 2.4, for this choice of initial
conditions, prograde scattering occurs for @ < 0; retrograde for a > 0.

4.5.1 Weak-field Scattering

As shown in Chapter 3, the perturbative calculations can be extended to the case of a
rotating source. In this limit, perturbative solutions were tentatively derived that extended
the analytic expressions to Kerr black holes, while noting that the results of this higher-
order expansion could be affected by contributions from other terms in the perturbative
expansion that were not accounted for in the calculations. With this cautionary note, a
comparison will be made of perturbative and numerical results.

Accepting the tentative nature of perturbation solution x(3) (3.106), consider its appli-
cation to the case of a straight string with initial velocity v = tanh f = 0.76¢ and impact
parameter b = Yy = 80M (see Fig. 4.13)%, and angular momenta of a = 0, £M/2. This
figure shows, like Fig. 4.1, the perturbation at late proper time, when the string is well past
the black hole.

-4020 -2000 ] 2000 4000
Z (rg)

Figure 4.13: x(3) perturbation.

Figure 4.13 suggests that angular momentum affects the asymptotic deflection of the

*For rotating black holes. distances are measured in units of the black hole mass, M.
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string, which can be estimated from perturbation solution x(3) (3.106) to be

Aoy = =27 M (sinhﬂ + ﬁ;zlﬂ-) : (4.25)
indicating that weak-field scattering from a black hole with a < 0 leads to a smaller deflec-
tion than the non-rotating (Schwarzschild) case whereas a > 0 leads to a larger deflection.

The numerical results generated for the same initial conditions, v = tanh § = 0.76¢ and
b = Yy = 80M, are shown in Fig. 4.14. The predictions derived from tentative perturbative
results are compared to numerical results in Table 4.4. The numerical results show a
smaller shift in amplitude as a function of black hole angular momentum, and it is clear
that the perturbative results overestimate the effect. However, the perturbative results
give a qualitative account of the effect of the angular momentum in that the direction of
the shift due to angular momentum agrees with the numerical results. This comparison
reinforces the earlier observation that a more complete perturbative calculation is required
(this matter will be pursued in a subsequent publication).

Table 4.4: Scattering Parameters - Kerr Weak-field.

a: +M/2 0 -M/2
perturbation: Ay 6.86M  6.81M 6.75M
numerical: Ag 6.858M 6.856M 6.854M

(v=0.76c, b=401y)

a = M2 az=20 a = -M/2

Figure 4.14: Time sequence of string scattering in weak-field regime (numerical results). Kerr
black hole lies at origin of coordinate system. Initial velocity, 0.76¢, impact parameter 80A{.

52



4.5.2 Ultra-relativistic Scattering

Noticeable differences in the shape of scattered strings due to black hole angular momentum
only manifest themselves at higher velocities and shallow impact parameters. Figure 4.15
shows sections of the numerical worldsheet of an ultra-relativistic string (v = 0.995¢c) with
shallow impact parameter (b = 8.0M) generated from the perturbative solutions.

The predictions derived from the analytic expression for deflection are compared to
numerical results in Table 4.5. As already discussed, the relatively shallow impact parameter
of this data set is known to be below the threshold where the perturbative solutions become
inaccurate. Again, the perturbative results overestimate the effect of angular momentum.
The width of the loops is not affected by angular momentum in the perturbative calculations.
To the extent this could be measured from the numerical output, the numerical results also
show no change in loop size.

Table 4.5: Scattering Parameters - Kerr Ultra-relativistic.

a: +M/2 0 -M/2
perturbation: Ay 67 M 60 M 53 M
numerical: Ao 808M 79.4M 782M

(v=0.995¢, b=4.07)

80
10

g o zm

-80

Figure 4.15: Time sequence of string scattering in ultra-relativistic regime (numerical results).
Black hole lies at origin of coordinate system. Initial velocity, 0.995c, impact parameter 8.0M.

4.5.3 Strong-field Scattering

Effects due to angular momentum are also noticeable at non-relativistic velocities and
shallow impact parameters. Figure 4.16 shows sections of the numerical worldsheet of
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a slow string (v = 0.29¢) with near-critical impact parameter (b = 5.0M compared to
bcapture = 4-2M)-

The predictions derived from the analytic expressions are compared to numerical results
in Table 4.6. It can be seen that the numerical results present a much smaller range of
deflections than predicted by the analytic expression (4.25). Evidently, the dynamics of
strings in strong-field scattering are quite different than is suggested by the perturbative
results. This is reinforced by the presence of bends in the numerical worldsheets of Fig. 4.16
that are not accounted for by the analytic results. The worldsheet of the string appears
bowed towards the Z = 0 plane for a = —M/2, and away from it for a = +M/2. These
features seem persistent in that a warp seems to remain in the shape of the string at late
times. However, very long runs generated in other cases suggest that such features, though
they may persist for long periods, eventually are smoothed out by tension. Long runs on
this data set have not been attempted at this time.

Table 4.6: Scattering Parameters - Kerr Strong-field.

a: +M/2 0 —-M/2
Perturbation: A. 5.0M 3.8M 24M
Numerical: Ao 39M  36M 3.3M
(v=20.29c. b=25rg)
a M2 -3 [+] a --/2

Figure 4.16: Time sequence of string scattering in strong-field regime (numerical results). Black
hole lies at origin of coordinate system. Initial velocity, 0.29¢, impact parameter 5.0M.

4.6 Chapter Summary

This chapter discussed the scattering of a cosmic string by non-rotating and rotating black
holes. The analysis of the weak-field approximation developed in Chapter 3 helped clarify
the process of scattering. Perhaps one of the more important results to emerge from this
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chapter is that numerical, weak-field analytic, and ultra-relativistic analytic results are
consistent with one another in the regions of overlap.

The scattering of a string was represented at early and late times by straight string in-
and out-states. The shifting of the string from one state to the other is done by kinks that
propagate along the string at the speed of light. In weak-field scattering, analytic and nu-
merical results agreed well in terms of the properties of the kinks (amplitude and width). In
strong-field scattering, analytic results agreed qualitatively with numerical results. Numeri-
cal tests have shown that the weak-field approximation breaks down for Yy < 107y, meaning
that the strong-field scattering regime occupies a much smaller region of parameter space
than originally thought.

In ultra-relativistic scattering, numerical and analytic methods have shown that strings
form transient loops under certain conditions, provided that the conditions Yy < vr, and
Yy > begpture are satisfied; this phenomenon cuts off for velocities below ~ 0.9c. The
formation of these loops indicates that tension in the string plays a decreased role in the
early stages of scattering, allowing portions of the string to exhibit dust-like behaviour.

The role of black hole angular momentum was also considered. Again, the general
picture of straight-string in- and out-states was found to apply at late times. Numerical
results show that black hole angular momentum altered the late-time deflection of the
string but. in ultra-relativistic scattering, left the maximum width of the loops unchanged.
Perturbative results were qualitatively consistent with numerical results in the relative shift
in amplitude due to angular momentum (greater or smaller than the a = 0 case), but
overestimated the magnitude of the shift. As mentioned in Chapter 3, it is quite likely that
other contributions from higher-order perturbative terms also contribute to complicate the
effects of black hole angular momentum.

The discussion in the next chapter turns to the special case of scattering where the
impact parameter is extremely close to the critical impact parameter for capture, and
further effects are observed.

[¥1]
[3]]



Chapter 5

Cosmic String Scattering at
Near-Critical Impact Parameters

The study of geodesics of particles in black hole spacetimes shows that, for impact parame-
ters near the critical value, particles can execute multiple orbits around the black hole before
escaping. This chapter discusses string scattering where the impact parameter is extremely
close to the critical impact parameter for capture. In this limit, the portion of the string
near the Z = 0 plane can dwell in the strong-field region for an extended period, leading to
interesting dynamical consequences. Some similarities with particle scattering are observed,
but there are also important differences that shed light on the process of string capture.

5.1 Near-critical Scattering by a Non-rotating Black Hole

Figure 5.1 compares a slice of the string worldsheet through the Z = 0 plane to the motion
of a test particle. A comparison is made of a series of string and particle trajectories with
identical velocities (v = 0.987¢) and nearly identical impact parameters. For the particle
trajectories, these range from b = 2.60r, through b = 2.65r,. For the string, the impact
parameters are slightly smaller, ranging from b = 2.55r, through b = 2.56r,. The impact
parameters at the lower end of each range result in capture, whereas those at the upper
end result in scattering. It is easy to see that, even at ultra-relativistic velocities, tension
influences string motion. Although the critical impact parameter for the string is very
close to that for a particle, suggesting that tension plays a limited role, the dynamics of
the string are, nevertheless, still governed by tension. This is made especially clear by the
folded appearance of the escaping string trajectories. The escaping trajectories of the test
particle are far less complicated.

There are two possible outcomes to near-critical string scattering: either the string
crosses the event horizon or it scatters to infinity. However, the detailed motion of the
string is highly sensitive to the initial impact parameter. Figure 5.1 shows that there are
two types of capture trajectories, trajectories such as curve 1, where the string crosses
the horizon directly, and curve 2, where the string folds back on itself before crossing the
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string particle

Figure 5.1: Near-critical scattering for string and test particle. v =0.987c and ry = 1.

horizon. Curve 2 exhibits a loop-like feature, but does not represent a self-intersection since
the intersecting points have distinct proper times. Escaping trajectories, such as curve 3,
have a folded structure. There are two critical cases that mark the transition between
each of these three generic curves. The transition between curves of type 1 and type 2 is
marked by a structure that develops an increasingly cusp-like shape (point B in Fig. 5.1)
as the impact parameter approaches the critical value that marks the boundary between
type 1 and 2 curves. In practical terms, this impact parameter is difficult to obtain since
it requires a large number of significant digits (curve 1 and the curve with point B have
impact parameters that differ by one part in 10°). The transition between type 2 and type
3 curves is marked by a tangent point, where the string trajectory passes twice through the
same point (point A) at different times (again, no self-intersection).

The string worldsheet for these critical curves contains many twists where the string
passes nearest the black hole. Figure 5.2 shows small subsets of the worldsheet for curve
3. Three views are shown, an overall view from a point of view looking up towards the
black hole from a viewpoint located in the —Y direction. This view shows that complicated
folds that are generated as points on the string cross and recross while executing the partial
orbit of the black hole. The view on the left lies in the forward direction and looks back
towards the black hole. This view shows the forward self-intersection point as portions of
the string cross the Z = 0 plane prior to beginning their partial orbit. This view also shows
that these points converge again on the far side of the black hole. The third view. from
the rear direction looking forward towards the black hole, shows how the string reaches a
turn-around point and forms a folded structure. This fold is accompanied by a series of
recrossings of various points on the string. There is no clearly defined self-intersection point,
and the worldsheet evolves highly complicated folds as the points on the string retrace their
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steps and scatter to infinity.

At late times, the folded features have dissipated from the worldsheet and all that
remains are kinks; details of the dissipation of loops and emergence of the kinks are shown
in Fig. 5.3. This Figure reinforces the observation made in Chapter 4 that the description
of scattering at late times is completely understood in terms of the perturbative solutions.
However, it may take a significant amount of time for the simple kink/anti-kink picture to
emerge. In the case studied here, the distortions due to the close encounter persist until
the string is about 10007, past the black hole. Whether simple analytic models can be
applied the transient phenomena discussed here is an open question; perhaps a second-
order perturbative expansion will yield manageable expressions from which some properties
of these phenomena could be understood.

Backward View (rotated)

Forward View (rotated)

Y D

N

NN
0
iy

Side View

Figure 5.2: String worldsheet near Z =0 plane, v = 0.987c.

The numerical study documented here for v = 6 was repeated for -y = 10; a few trajec-
tories are shown in Fig. 5.4 (v = 10 is the largest practical value for the numerical solver).
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Figure 5.3: String worldsheet at late proper time, v = 0.987¢c. Loops dissipate and kinks emerge.

All observations made for the critical trajectories at lower v apply in this case as well. The
only obvious difference is that the amplitude of the folds has increased noticeably, leading to
another instance of apparent intersections (again, there is no physical intersection because
proper times at the intersection points are distinct). The critical impact parameter for
capture lies between b = 2.580 and b = 2.582. In this narrow range of impact parameters,
there is a range of "loop and capture” trajectories, such as those observed in the v = 6 case.

5.1.1 String Capture

The trajectories shown in Fig 5.1 reveal that the critical impact parameter for capture is the
value associated with a trajectory that is at the transition point between type 2 and type 3
curves. There was a conjecture made by Page [44] that the curve of critical impact param-
eter would have some structure due to the string reaching a stationary point under some
circumstances. Figure 5.1 suggests that the capture process is quite complicated, involving
a transition between a "loop and enter” trajectory and a "loop and escape” trajectory that
is dynamically intricate. This looping feature is highly dependent on velocity; nevertheless,
it seems that the capture curve has some structure since the transition point between the
two types of trajectories is highly sensitive to initial data (more will be said about this in
Chapter 6).

5.1.2 String Winding Effect

The string does not complete more than one turn about the black hole for any of the
numerical runs attempted. In fact, it seems as if the transition to a "direct capture”
trajectory (like curve 1 in Fig. 5.1) always occurs before a full turn is achieved. The
numerical results for moderate y-factors show that the string worldsheet folds back on itself,
with no evidence of multiple windings or glory scattering. The fact that these features are
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Figure 5.4: Near-critical scattering for string at v = 10, v = 0.995¢c. Impact parameters are
b =2.579, 2.580, 2.582, and 2.585, and ry = 1.

absent is a clear indication that the tension in remote parts of the string eventually asserts
itself in all cases accessible to the numerical solver.

The fold in the worldsheet evolves after the Z = 0 portion of the string has almost
completed a full orbit of the black hole. The question as to whether the string can complete
more than one full turn and "wrap” the black hole is an open one, although numerical
results suggest it is unlikely. There are three possible approaches to address this problem:

e revisit the numerical problem with a solver that can handle large «y-factors (this is
done with very large grids and small step sizes),

e revisit the perturbative treatment of ultra-relativistic string motion,
e work with the null-string approximation.

The ultra-relativistic solutions given in Chapter 3 worked with the Aichelburg-Sex! form
of the shock wave metric. In this approximation, the weak-field condition is still in force.
Since the winding, or wrapping effect that is under study here is a strong-field one, the
ultra-relativistic approach is unsuitable. In the same way that the ultra-relativistic loop
formation condition was shown to be related to non-monotonicity in the Z-perturbation,
the wrapping effect should manifest itself in some form of non-monotonicity in the X-
perturbation. This feature is absent from the ultra-relativistic solutions of Chapter 3. In
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order to study wrapping, it would be necessary to go beyond the Aichelburg-Sexl result.
Such a "strong-field” shock wave expansion has already been attempted by Hayashi and
Samura [33], but even their strong-field result does not exhibit the required feature. Early
calculations in this form of the metric showed that the maximum turn in the string world-
sheet is w/2. In a sense, the wrapping feature seems incompatible with the ultra-relativistic
perturbative approach.

The other possibility is to use null strings. In the limit where a string travels at the
speed of light, the tension in the string vanishes completely and the equations of motion
used up to now do not apply; instead the equations for a null string should be used [18].
The equations of motion of a null string are virtually identical with those of a "dust” string
of photons, with the addition of a second constraint that the tangent vectors on the null
string worldsheet must remain orthogonal. It is possible to carry over knowledge of the
geodesics of photons to the discussion of null strings, leading to the tentative conclusion
that null strings should indeed wrap around the black hole under the right circumstances.
As was discussed in [15], however, there is some question as to the physical meaning of null
strings. Since the equations of motion for null strings are not directly derivable from the
Nambu-Goto action, it is fair to ask whether the behaviour of the nuli string is an accurate
representation of the ultra-relativistic limit of a cosmic string. If the null-string picture
is indeed correct, then near-critical impact parameters could yield multiple windings or
even glory scattering of the portion of the string near the Z = 0 plane, and cause extreme
stretching, and perhaps breaking, since the remainder of the string would continue in the
original direction of motion. Whether this is plausible remains an open question.

5.2 Near-critical Scattering by a Rotating Black Hole

As discussed in Chapter 2, the angular momentum of the black hole now introduces an
additional dimension to the scattering problem. The terms retrograde and prograde (see
Fig. 2.4) were introduced to describe the two possible cases for particle scattering. These
terms will be used here also. Here (for historical reasons) numerical calculations adopted
the convention Xy > 0, b = Yy > 0, and 8 < 0. According to Fig. 2.4, for this choice of
initial conditions, prograde scattering occurs for a > 0; retrograde for a < 0, opposite what
was the case in the previous chapter.

Figure 5.5 compares a slice of the string worldsheet through the equatorial plane to the
motion of a test particle for a Kerr black hole with angular momentum a = +M /2. For
such a black hole, the horizon is located at r+ = 1.86M, and is indicated in the figures by
the dashed circle. A comparison is made of a series of string and particle trajectories with
identical velocities (v = 0.987c) and nearly identical impact parameters. For the particle
trajectories, these range from b = 4.08 M through b = 4.20 M. For the string, the impact
parameters are slightly smaller, ranging from & = 4.00 M through 6 = 4.15 M.

It is clear from the figure that motion near a Kerr black hole differs from that of a
Schwarzschild black hole. The particle and string trajectories that enter the horizon exhibit
a short-lived co-rotation phase as they cross the ergosphere. Once in the interior. both
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Figure 5.5: Near-critical scattering for string and test particle. v = 0.987¢c, rg = 1, and a = +M/2.
Black hole rotation is counter-clockwise.
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particle and string spiral towards r = 0. The resolution of the geodesics in the ergosphere
and interior is quite coarse since motion evolves very rapidly in terms of the proper time.
and leads to visualization artifacts (i.e. the apparent formation of loops that cross and
recross the horizon). Detailed views of motion of particles and strings in the ergosphere
and interior of the black hole will be taken up in the next chapter.

The string trajectories exhibit many features already described in the previous section.
Some string trajectories have the "loop and capture” feature already discussed; such a
feature is absent from the particle trajectories. Escaping trajectories show the familiar fold.
but the folds are considerably larger, since the angular momentum of the string is reinforced
by the angular momentum of the black hole.

Figure 5.6 presents data for the retrograde case, a = —M/2. A comparison is made of
a series of string and particie trajectories with identical velocities (v = 0.987c) and nearly
identical impact parameters. For the particle trajectories, these range from b = 6.160 M
through b = 6.176 M. For the string, the impact parameters are slightly smaller, ranging
from b = 6.00 M through b = 6.04 M.

The particle trajectories that enter the horizon exhibit a short-lived reversal in direction
as the particles approach and cross the ergosphere, again due to co-rotation of the string
and particle with the rotation of the black hole.

The string trajectories again exhibit many features already described in the previous
section. Escaping trajectories show the familiar fold, but the folds are considerably smaller.
Since the string is approaching the black hole in a retrograde sense, the angular momentum
of the black hole acts against the angular momentum of the string, hence reducing the
magnitude of the folds. The trajectories that enter the black hole are similar to those
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Figure 5.6: Near-critical scattering for string and test particle. v = 0.987¢c, and a = —A/2. Black
hole rotation is clockwise.

of the particle. No "loop and capture” trajectories were observed. It is possible that
they lie between the impact parameters of the last trapped trajectory and the first escaping
trajectory, but this appears unlikely, and this feature may be subject to cut-off as a function
of angular momentum.

5.3 Chapter Summary

The behaviour of strings with near-critical impact parameters is quite rich. Short-lived loops
and folds develop in the worldsheet while the string dwells in the strong-field region of the
black hole. These features dissipate over time as the string scatters, and the characteristic
kink/anti-kink pattern is recovered when the string has moved well away from the black
hole, as is expected from the study of motion in the weak-field region.

The near-critical scattering of relativistic strings has revealed how intricate the process
of capture is. Strings can enter the black hole directly, or they may begin an escape only to
be subsequently captured. the so-called "loop and capture” curves. Escaping trajectories
exhibit a folded structure that progressively lessens as the impact parameter increases away
from the critical value. For sufficiently large impact parameters, the more benign scattering
trajectories described by the perturbative solutions are recovered.

The role of black hole angular momentum has also shed some light on the origin of the
folds in the escaping trajectories: in addition to tension, string angular momentum seems
to play a role in the development of those folds, and these can be amplified by the coupling
of the black hole’s angular momentum.
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Although the numerical study of critical scattering is fascinating, it is also extremely
intensive. Fine grids and small step sizes are required to obtain adequate views. Further,
the extreme sensitivity to initial conditions makes the choice of impact parameters subject
to costly guess-work (the Kerr solver takes roughly one day for each critical orbit). For this
reason, only near-relativistic strings were considered (since the numerical solutions evolve
rapidly), and a small number of values of angular momenta. Since the complexity of the
trajectories seems to be a function of the amount of time spent in the strong field region,
slower strings might exhibit other interesting features. However, this study would perhaps
best be undertaken with more efficient numerical solvers.

For the present, it is more important to look in greater detail at the fate of trapped
strings. This is the subject of the following two chapters.
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Chapter 6

Capture of Cosmic Strings by a
Black Hole

The capture of a cosmic string occurs when the string passes sufficiently close to the gravi-
tational radius. After capture, the string remains attached to the black hole. If it is possible
to assign a characteristic length L to the string, then its total mass is Ms¢ring = p L. For
pL < M the total mass of the string is much smaller than the mass of the black hole, and
the attached string will move around the black hole while the black hole remains practically
at rest. In the opposite case, uL > M the black hole will be accelerated by the string.
The characteristic time of this process is T ~ vM/(uc®). For a solar-mass black hole (10%
kg) and an ultra-relativistic GUT-scale string (v ~ c), the acceleration phase is remarkably
brief: T ~ 10s.

The objective of the study discussed in this chapter! was to map the location of the
capture curve both for Schwarzschild and Kerr black holes using the numerical solver?. The
results for critical impact parameter will be compared to those for test particles. Because
the string has tension, it is reasonable to expect that it would be more difficult to capture
the string than a test particle moving with the same velocity and impact parameter. In
other words, the capture impact parameter for a string approaching a black hole should be
less than the capture impact parameter for a test particle.

This chapter is divided into three sections: the first section describes how the numerical
solver was adapted to the study of string capture; the second describes string capture for
Schwarzschild black holes; the third deals with non-extreme Kerr black holes.

IThe contents of this chapter dealing with Schwarzschild black holes have been previously published in
Ref. [21} and [22], and submitted for publication Ref. [23].

2The results cover a range of angular momenta, but the extreme Kerr spacetime, where a = M, has not
been studied since the numerical IBVP’s developed for the present study do not allow this extreme value
of angular momentum. To handle extreme Kerr spacetime would require developing another version of the
solver (IBVP, metric, Christoffel symbols, and derivatives of Christoffel symbols), which could not be done
because of time constraints.
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6.1 Description of the Numerical Method

Both numerical schemes were used for this study. Since the geodesic boundary conditions of
numerical scheme B were the first to be developed, the results cited in [21] used this version
of the numerical solver exclusively. Later, with the availability of the perturbative solutions,
a more efficient solver for numerical scheme A was developed, and a revised capture curve
was given in [23]. Results from both solvers are reported here since each helps corroborate
the other in the regions where results overlap.

Prior to carrying out the study of critical impact parameter, a choice had to be made
as to the coordinate system. In order to study the capture pgoblem for Schwarzschild black
holes, Eddington-Finkelstein In-going (EFI) coordinates, (V,r,6,¢), are a natural choice
since they do away with the Schwarzschild coordinate singularity at the event horizon. The
Christoffel symbols associated with this coordinate system, along with their derivatives with
respect to the spacetime coordinates (see Appendix D), were derived and inserted as analytic
expressions in the portions of the solver dealing with the initialization of the tridiagonal
matrices. For similar reasons, Kerr In-going coordinates are the natural choice for studying
string capture by Kerr black holes and another version of the solver was prepared using
the appropriate Christoffel symbols and their derivatives (as can be seen by glancing at
the lengthy expressions in Appendix D, this solver is vastly more complex and numerically
intensive than its EFT counterpart). When each solver is in operation, the behaviour of the
radial coordinate is monitored. When the capture condition r(7,0) < Tygrizon IS met, the
solution is halted and the capture of the string is reported.

The procedure for scanning the parameter space to locate the critical impact parameter
for capture (beapture) is straightforward:

e Choose an initial velocity;

e For this velocity, calculate the critical impact parameter for a particle (see formulas
in Chapter 2);

e Take the initial impact parameter for the string as

1
bstring = ) (bparticie + Thorizon )

(i.e. halfway between horizon and critical value for particle);
e Run the solver and check the outcome:

e [f the string escaped (i.e. r(Tgnal, 0) > r(Tinitial. 0)), repeat the run with
1
bpew 1= 5 (bold + Thorizon ) ; (6-2)
o If the string was captured, repeat the run with

1
bpew = 5 (bparticle + baid) ; (6.3)

66



e Repeat this process with

1
bnew = 2 (botd esc + bold trap) ’ (6.4)

until a sufficiently precise determination of bcaprure has been made.

The solvers (EFI and Kerr) developed for numerical scheme B relied on "manual” interven-
tion to carry out this procedure, whereas the solvers developed later for numerical scheme
A automated this procedure. For the Kerr versions, a choice is also made of angular mo-
mentum and a separate capture curve generated for each such choice.

The critical impact parameter is reported with ”error bars®. The lower bound indicates
largest impact parameter resulting in capture, while the upper bound indicates the smallest
impact parameter for which the string escaped. The value of the critical impact parameter
is taken as the average of these two numbers.

6.2 Cosmic String Capture by a Non-rotating Black Hole

The capture curve for Schwarzschild black holes was obtained from three different studies.
The first used the B solver to map the curve of critical impact parameter for velocities
v > 0.1c and different string lengths. The second used the A solver to map the curve
for velocities v > 0.03c, overlapping the data set for the other solver. The third used the
second-order perturbative expansion of Chapter 3 to obtain an analytic expression for the
critical impact parameter for very low velocities. These results are assembled here to present
a complete picture of string capture over the full range of velocities.

6.2.1 Results from Numerical Scheme B

The results of the numerical calculations are presented in Fig. 6.1. It shows log-log graphs
of the capture impact parameter as a function of initial velocity. Dashed, dotted, and
dashed-dotted lines represent capture impact parameters for strings of lengths L = 100r,,
10007y, and 20007, respectively.

The graph shows that for a string of finite size the capture impact parameter depends
on both the length and velocity of the string, b(v, L). The capture curve for the L = 20007,
string is definitive for velocities v > 0.2¢, meaning that the capture curves for longer strings
are indistinguishable in this velocity range.

The solid line represents the capture impact parameter for a test particle. As discussed
in Chapter 2, the gravitational capture of test particles is well understood: a particle
moving at non-relativistic velocities has a capture impact parameter b(v)/ry = 2/v, while
in the ultra-relativistic regime (v — c), the capture impact parameter is b(v)/ry = 3v3/2.
The capture impact parameter for the ultra-relativistic particle is also the smallest capture
impact parameter.

The capture curve of a cosmic string is different in many ways from that of a test particle:
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Figure 6.1: Cosmic string capture curve for Schwarzschild black hole - data from numerical scheme
B.

e Unlike a test particle, the smallest capture impact parameter for a string occurs at
some intermediate velocity (e.g v = 0.2c for the L = 20007, string);

e The capture impact parameter increases as v — ¢ and v — 0;
o The smallest capture impact parameter decreases with increasing string length.

e At a sufficiently low velocity, the capture curve of a (finite) string intersects the curve
for the test particle;

e The capture impact parameter for strings is independent of string length for velocities
approaching ¢, even for very short strings.

The increase in the capture impact parameter for velocities approaching the speed of
light can be understood in terms of the propagation time of influences along the string. As
v — ¢, the interaction time where the string experiences the gravitational pull of the black
hole becomes progressively shorter, and the influence of the black hole is felt by a shorter
and shorter segment of string. For this reason, the string presents an increasingly particle-
like appearance to the black hole, and the trapping behaviour of the string is determined
by the portion of the string lying nearest to the Z = 0 plane. As v — ¢, the capture
impact parameter increases and converges on the value of the capture impact parameter for
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a particle. It is reasonable to expect that in the ultimate limit, the string will behave like
a particle and hence have the same capture impact parameter.

This result illustrates how the internal tension in the string helps determine its response
to the gravitational field of the black hole. In the extreme relativistic limit, tension plays
virtually no role since signals cannot propagate sufficiently far down the string to help
influence the capture process. At lower velocities, tension plays an increasingly dominant
role and helps the string avoid capture. The smallest capture impact parameter for the
string is far less than that for a test particle, and occurs away from the ultra-relativistic
limit.

If the string is not long enough its end points may influence the string’s motion. For
example, the capture curve for L = 1007, intersects the capture curve for the test particle.
This reflects the fact that for small velocities the finiteness of the string plays an important
role. The trajectories of the infinitely heavy particles terminating the strings are focused
by the black hole. When the strings are sufficiently long, the effect of focusing on capture
is negligible. However, the boundary conditions used in the numerical work force these
infinitely heavy particles to move on geodesics, so they are subject to the same capture
characteristics as free test particles. This means that the end particles will be trapped by
the black hole when the initial velocity becomes sufficiently small, no matter how far they
are initially from the black hole. Since there is a string connecting the two particles, its
behaviour will be greatly influenced by a strong focusing of the end points, and hence easily
captured. For this reason, the intersection of particle and string curves is to be expected
for any finite length of string. However, the initial velocity for which intersection occurs
decreases with increasing string length.

6.2.2 Results from Numerical Scheme A and Perturbative Calculations

The results obtained from the A solver produce the capture curve shown in Fig. 6.2; the
capture curve for v > 0.2c is identical to that of the L = 20007, string discussed above.
The A solver, because of its increased efficiency, was able to probe lower velocities than
were possible with the B solver. These results validate two claims made in the previous
section: first, that the capture curve for long strings is indeed definitive (provided focusing
of end points is negligible), and is reproduced by the perturbative results; and, second, that
there is indeed a minimum impact parameter at intermediate velocities, which occurs in
the range of v = 0.2c and has a value of 1.67,. The A solver is also velocity-limited in
that, at sufficiently low velocities, second-order perturbative effects become important and
invalidate the first-order solutions used to set the boundary conditions. However, analytic
results are available for this velocity range, and the numerical results join smoothly with
the analytical result for the critical impact parameter for very low velocities, which can be

2
derived from (3.76), taking Yo = b and noting that, for capture, X(3) (T = oc) = b/2, so
that

1 / T
bcapture ~ 5 51’]‘ (1'9), (6.5)
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Figure 6.2: Cosmic string capture curve for Schwarzschild black hole - data from numerical scheme
A and perturbative results.

and is shown as a dashed line in Fig. 6.25.

Further, the error bars (as defined above), are quite small for the model A solver. With
such tight values for critical impact parameter, it is quite apparent that the capture curve
is not a smooth line, but has some fine structure to it. This has to do with the complicated
nature of the trajectory of the string for near-critical impact parameters, as mentioned in
Chapter 5.

6.3 Cosmic string Capture by a Rotating Black Hole

As discussed in Chapter 2, the angular momentum of the black hole now introduces an
additional dimension to the scattering problem. Here numerical calculations adopted the
convention Xg > 0, b = Yy > 0, and § < 0, and, as usual, the string is oriented parallel to
the Z-axis, which is also the axis of rotation of the black hole. According to Fig. 2.4, for
this choice of initial conditions, prograde scattering occurs for a > 0; retrograde for a < 0.

The capture curves for a = 0, +M/2, £+M/5, £3 M /4 are shown in Fig. 6.3 for ultra-
relativistic velocities (using data from the B solver).

It is clear from the curves that angular momentum shifts the capture curve up (a < 0;
retrograde) or down (a > 0; prograde) relative to the Schwarzschild case. Naively, this can
be understood in terms of the coupling of black hole angular momentum to the string. In
the case where the string is approaching such that it co-rotates with the black hole (a > 0,

*In addition, the capture curve agrees with a recent result by Page [44] for the critical impact parameter,

1[ [= 7 64 64
beapture ~ 3 [ 59 (\/;4- 5 \/2—7) + 1—5-0] (rq)- (6.6)

This formula reproduces the general shape of the curve shown in Figure 6.2, without the fine structure that
is revealed by the numerical approach.
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Figure 6.3: Cosmic string capture curve for Kerr black hole - Ultra-relativistic data.

b > 0), the string has an increased tendency to "bounce off” the black hole, and hence
is more difficult to capture. The net result is that the critical impact parameter shifts
downward; the string can come closer without trapping than it can in the Schwarzschild
case. In the retrograde case, where the string is approaching a counter-rotating black hole
(a <0, b > 0), the string has an increased tendency to be dragged by the black hole in the
direction opposite its original motion, and hence is more easily captured. The net result is
that the critical impact parameter shifts upward.

The perturbative results for Kerr black holes outlined in Chapter 3 corroborate this
view. Although the perturbative results are known to break down near the horizon, tests
have shown that they provide a qualitative picture of string dynamics even very close to
the horizon. As was discussed in Chapter 4, the magnitude of the deflection of the string
towards the black hole is greater for the retrograde case than it is for @ = 0 (Schwarzschild);
a greater deflection implies an increased likelihood of capture, hence an upward shift of the
critical impact parameter. Conversely, for the prograde, the magnitude of the deflection is
less than it is for @ = 0; a smaller deflection implies a decreased likelihood of capture, hence
a downward shift of the critical impact parameter.

A preliminary verification that this shift of the capture curve holds for intermediate
velocities is given in Fig. 6.4, where partial results of the A solver are given for a smaller
set of angular momentum values. The error bars are somewhat broad, but the shift effect
is nevertheless distinguishable. It appears as if the velocity at which the minimum capture
impact parameter occurs (v = 0.2c) is not altered by black hole angular momentum. In
light of the observations made in the preceding chapters, it is possible that the capture
curves for Kerr black holes will exhibit more structure that in the Schwarzschild case when
the error bars are tightened, but this remains to be determined.

A comparison to the capture of particles is also useful, using the formulas for capture
impact parameter for particles (2.20), (2.22), and (2.23). Table 6.1 compares the critical
impact parameters for string and particle at v = 0.995¢. As in the Schwarzschild case, the
critical impact parameters for particle and string converge, indicating that tension plays a
decreased role in helping the string avoid capture. However, it is important to note that
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Figure 6.4: Cosmic string capture curve for Kerr black hole - non-relativistic data (preliminary).

results for string capture for |a] = 3M/4 do not agree with particle results, that is, the
string appears to be slightly easier to capture than the particle at the ultra-relativistic
limit. These results do not make sense and show that the numerical IBVP, which is known
to break down completely in the limit where a = M, actually shows symptoms of this
breakdown for smaller values of a. For this reason, the solver was restricted to the range
—-M/2 <a < +M/2 in other work.

Table 6.1: Comparison of Critical Impact Parameters - v = 0.995¢ (Kerr).

a: -3M/4 -M/2 -M/5 0 +M/5 +M/2 +3M/4

bstring: 7.24M 6.00M 555M 512M 472M 4.08M 3.55 M

bparticle: 6.58 M 6.14M 5359 M 520M 508M 410M 3.40M

6.4 Chapter Summary

Capture by Schwarzschild black holes was studied over the entire velocity range using nu-
merical and analytic methods. The capture curve for strings is different than that for
particles in that the capture impact parameter increases both as v — 0 and v — c. At the
low-velocity limit, the impact parameter for the string is shown by second-order perturba-
tion calculations to be b ~ v~1/2 (for a particle, b ~ v~!). At the ultra-relativistic limit,
b — 3v/3M, the same result as for particles. This is due to the decreased role played by
tension in determining the fate of the string at this extreme. A minimum impact parameter
occurs at intermediate velocities.

The effect of black hole angular momentum was also studied numerically. In the prograde
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case, the capture curve shifts downward. In the retrograde case, the capture curve shifts
upward. This effect was shown to be consistent with analytic results from perturbative
calculations, and it is conjectured that this shifting effect is consistent across the full velocity
range.

The gravitational capture of strings by Schwarzschild black holes was discussed some
time ago by Moss and Lonsdale [39]. The results shown here do not agree with these earlier
results. The capture curve presented in Figure 6.2 does not resemble that of Moss and
Lonsdale, neither do the details of string configurations which were discussed in previous
chapters resemble the sample string configuration given by these authors. This early paper
does not contain sufficient information to understand the discrepancy; since the results
presented here are corroborated using several different lines of reasoning, the only conclusion
that can be drawn is that this earlier paper is incorrect.
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Chapter 7

Motion of a Trapped String in the
Black Hole Interior

This chapter discusses preliminary results on the fate of trapped cosmic strings. Since the
gravitational field inside the black hole is extremely strong, only numerical solutions are
available. In principle, an expansion of the metric for small r is possible; such an expansion
was attempted in the hopes that it would yield simplified equations of motion. Some
simplifications are indeed possible, but they apparently do not lead to analytic solutions.
This issue will be revisited at a later date; for the time being, only numerical solutions were
obtained for ultra-relativistic cosmic strings and dust strings.

7.1 Description of the Numerical Method

The only significant modification to the basic EFI and Kerr solvers described in Chapter 4
is the use of a smaller step size (A7 = Ao /20). Since the string evolves very quickly (in
terms of string proper time 1) near to and inside the event horizon, a small step size is
needed in order to adequately resolve the physical effects of string capture. In fact, without
small step sizes, the tridiagonal solvers failed to converge once a substantial portion of the
string had crossed the event horizon.

As usual, the constraint equations are a critical part of the validation of numerical
results. All results presented herein followed the same guidelines regarding the constraint
checks as discussed in Chapter 4.

7.2 Case of Non-rotating Black Hole

Figure 7.1 shows a sequence of 3D string profiles, for a cosmic string and a dust string,
inside a Schwarzschild black hole (note that the scaling of the axes distorts the shape of
the string). The string velocity is v = 0.987c and the impact parameter of b = 2M is well
below the critical value for capture, dcapture = 3 V3M for the cosmic string and the dust
string. These views are generated in display (i.e. Cartesian) coordinates by transforming
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Figure 7.1: Motion in interior of Schwarzschild Black Hole. v = 0.987c and b = 2M. Axes are in
dimensionless units X*/M.

from the EFI coordinates of the solver using the formulas given in Appendix E. It is clear
from the picture that the fate of the cosmic string is not different from that of a particle
(or dust string) in this respect: once trapped by a black hole, the string is drawn towards
the central singularity on a very short time scale. The solver was unable to track the
solution when the string reached a radial distance of ~ 0.1y and reached an automatic
stop when the tridiagonal solver failed to converge on a solution. Constraints were fairly
well maintained during the latter stages. It is also clear from the picture that the motion of
the cosmic string and the dust string are very similar, suggesting that, once inside the black
hole, string tension plays a very minor role. This is not entirely surprising considering that
gravity is dominant in black hole interiors.

7.3 Case of Rotating Black Hole

A three-dimensional view of string motion in the interior of a Kerr black hole can also be
generated, but the resulting display is almost meaningless in display coordinates!. This
is because of the complicated dynamics that arise when portions of the string cross the
ergosphere on their way to the horizon. The first portion of the string to enter the ergosphere
is that which lies in the equatorial plane of the black hole (the Z = 0 plane in display
coordinates). This portion is dragged by the black hole and co-rotates until it crosses
the event horizon. As the portions of the string lying off the equatorial plane enter the
ergosphere, they also co-rotate before crossing the horizon. In terms of string proper time,
the process is very rapid. Nevertheless the string worldsheet develops a highly tangled
appearance that is very difficult to visualize. The clearest representation is that which is
restricted to the portion of the string lying in the equatorial plane.

Figure 7.2 compares the motion of the cosmic string and the dust string for a =
~M/2,0, +M/2. It can be seen that the fate of the dust and cosmic strings is virtually

'The string woridsheet is very smooth in the original Kerr coordinates, but these are not intuitive coor-
dinates for the visualizations presented here.
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Figure 7.2: Motion in interior of Kerr and Schwarzschild Black Holes (equatorial plane). v = 0.987¢
and b = 2M.

indistinguishable. This observation also holds for the portions of the string lying off the
equatorial plane, where both the cosmic and dust strings display the same tangled structure
as they approach and cross the event horizon. Once inside the black hole, string motion
is less agitated and, as in the Schwarzschild case, the string evolves very rapidly (a matter
of a few time steps) towards the center. Constraint calculations show that the solution is
no longer reliable in the very late stages, and the solution displays large oscillations that
are numerical (and not physical) in origin. These last time steps were removed from the
graph?.

Because of the nature of the numerical solvers, it is not possible to study the behaviour of
the parts of the string that remain outside the black hole for very long (i.e. until the interior
portions force the solver to shut down). In order to obtain an adequate late-time view of
disturbances propagating along the string, a method would have to be found of removing
the portions of the string that lie inside the black hole from the numerical evolution. This

is an open issue.

2In principle, the numerical solutions can track the motion closer to r = 0 given a finer numerical grid
and smaller step size, but these solutions are far too numerically intensive to pursue at this stage.
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Chapter 8

Discussion

The preceding chapters discussed the dynamics of cosmic strings in different regions of the
(b,v) parameter space (shown in Fig. 1.2). Perturbative solutions were derived to describe
the motion of strings in weak gravitational fields; numerical schemes were developed to
study motion in weak and strong gravitational fields, including the interior of black holes.
In all cases where there was overlap, numerical and perturbative results were consistent.
The method that underlies all numerical work is based on a novel non-linear extension of
the Von Neumann discretization of the wave equation; this numerical method has proven
to be robust and reliable, and has allowed investigations to be pursued where analytical
methods are not applicable. Furthermore, this numerical method should be applicable to
other system of non-linear wave equations, and it should also be possible to extend the
numerical method to handle more spatial dimensions.

8.1 Summary of Findings

The scattering of cosmic strings in the weak-field, ultra-relativistic, and strong-field regimes
revealed many aspects of string dynamics that were unanticipated when this study was
first undertaken. With the two-pronged approach of numerical simulations and analytical
calculations, the solution of the ecuations of motion of the cosmic string yielded many
interesting results:

Weak-field Scattering - After passing the black hole, the string is displaced in the
direction perpendicular to its velocity vector and towards the black hole. This shift was
explained in terms of the flux of the Newtonian gravitational field through the string world-
sheet, and is accomplished by two kinks that propagate along the string at the speed of
light. Besides providing a quantitative understanding of the scattering and capture of cosmic
strings by black holes at large impact parameters, the weak-field approximation provided
the conceptual framework for describing scattering in the strong field since the early and late
phases of strong-field scattering are well described by the in- and out-states derived from
the analysis of weak-field scattering. Black hole angular momentum was shown to have
long-lived effects that alter the value of the asymptotic deflection of the string; angular
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momentum enters the deflection formula as a correction to the (first-order) Schwarzschild
expressions. The effect of angular momentum was found (numerically) to be small; per-
turbative calculations tended to overestimate its effect, suggesting that the calculations for
angular momentum were subject to higher-order corrections that were not factored in.

Ultra-relativistic Regime - Scattering in the limit where the string velocity ap-
proaches the speed of light, yet has a sufficiently large impact parameter, can be treated
using the weak-field solutions. However, more manageable solutions were obtained by trans-
forming the Schwarzschild metric to that of a shock wave spacetime. Scattering in the
ultra-relativistic regime exhibited a new feature: the formation of transient loops in the
string shortly after periastron, provided that the conditions b < yry and b > beaprure are
satisfied. These loops arise because gravity dominates string tension in the early stages of
scattering; when the string emerges once again in the weak-field region, tension reasserts
itself and the loops are unwound into outward-moving kinks. The numerical solver estab-
lished that the loop-formation phenomenon cuts off for velocities below ~ 0.9¢. Black hole
angular momentum, as in the non-relativistic case, altered the amplitude of the string de-
formations but left the amplitude of the loops unchanged. Again, the effect was very small
and perturbative results tended to overestimate the effect.

Strong Field Regime - Scattering in the strong-field regime bears a general resem-
blance to weak-field scattering in that kinks are formed (without loops for v < 0.9¢) and
propagate outward after the string reaches periastron. At relativistic velocities, transient
loops are also seen to form (for v > 0.9c). However, the amplitude of the kinks and the
maximum width of the loops are larger than predicted by the perturbative formulas. Black
hole angular momentum again altered the amplitude of the string deformations. The ef-
fect of angular momentum was more pronounced here, suggesting that only near-critical
encounters are significantly affected by black hole rotation.

Breakdown of Weak-field Approximation - Numerical studies showed that the
weak-field approximation breaks down for b < 20 M; this is a surprisingly small value, and
suggests that the analytic expressions are a good approximation of string dynamics even
for strings with relatively small impact parameters.

Near-critical Impact Parameters - When the cosmic string approaches the black
hole with an impact parameter that is very close to the critical value for capture, the
behaviour of the string is extremely sensitive to initial conditions. [t was shown that there
are two characteristic trajectories for capture, the first where the string enters directly after
partially wrapping itself around the black hole, the second where the string evolves a small
loop before crossing the horizon. The trajectory of a cosmic string that avoids capture is
significantly different from that of a dust string. Instead of winding a number of times
around the black hole, as is the case for the dust string, the cosmic string evolves a folded
structure after partially wrapping itself. This fold appears to be persistent up to moderate
v-factors (in fact, up to the practical limit of the numerical solvers), revealing that tension
is not entirely absent from the strong-field dynamics of ultra-relativistic strings.

Capture - The location of the capture curve in parameter space was mapped using the
numerical solvers, and supplemented with a perturbative analysis for very low velocities.
Together, these results yielded a composite picture of the string capture curve over the entire
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velocity range. The capture impact parameter grows for both small and large values of v/c,
and hence there exists a velocity v for which the capture impact parameter has minimum
value. This minimum occurred for v = 0.2¢ for rotating and non-rotating black holes. The
numerical results also demonstrated that for ultra-relativistic velocities the critical impact
parameter beapiure reaches the same value as the capture parameter for the ultra-relativistic
particles. This result supports the earlier observation that tension becomes less effective at
helping a string avoid capture when v — ¢. The angular momentum of the black hole shifted
the capture curve up or down in parameter space. This effect was understood in terms of
the effect of angular momentum in the weak-field regime, extrapolated to the strong-field
case where capture occurs.

Interior Preliminary work on the motion of strings in the interior of a black hole
(subsequent to capture) indicates that, as expected, gravity dominates the dynamics of the
string. Little difference is observed between cosmic string and dust strings, and strings
are inexorably drawn inward. As in the case of particle motion, string motion in the
interior occurs very rapidly in terms of proper time. Numerical solutions had to be carefully
controlled because of this.

8.2 Future Research

The numerical solver and the perturbative methods developed in the course of this study
have allowed many aspects of the interaction of cosmic strings and black holes to be inves-
tigated, at least at a preliminary level. These techniques should now be applied to more
elaborate studies.

As mentioned in preceding chapters. a number of areas remain to be investigated:

e Resolving the wrapping "problem” (Schwarzschild case) using either an improved
numerical method or shock wave expansion: results from this study should help settle
how a string behaves at the ultra-relativistic limit.

¢ High-resolution capture curve for Schwarzschild and Kerr black holes; this study will
provide a better understanding of string capture and should suggest further investi-
gations of string dynamics for near-critical impact parameters (chaotic behaviour in
such cases is anticipated).

e Scattering and capture for extreme Kerr spacetime, in order to extend the description
of string dynamics to all possible values of black hole angular momentum.

e High-resolution views of trapped strings, and the late-time behaviour of the exterior
parts of the string.

These will be the subject of subsequent papers. In addition, it appears as if an investiga-
tion of gravitational radiation from string scattering might be fruitful. and may offer an
opportunity for experimental detection of cosmic strings by space-based gravitational wave
observatories.

79



There has been a good deal of work done on the radiation produced by encounters
between test particles and black holes and, more recently, by extended bodies (including
black hole/black hole coalescence). The following facts can be extracted from the literature
(see, e.g. [5] and [6]):

e Black holes radiate in quasi-normal modes, which are strongly damped oscillations of
the event horizon;

e Quasi-normal modes are excited by ultra-relativistic particles and extended objects;

e Black holes are largely insensitive to scattered particles, and only near misses excite
the quasi-normal modes;

e Quasi-normal modes are characteristic of the black hole.

Cosmic strings, being extended objects, should excite the quasi-normal modes of a black
hole in the process of scattering (or trapping), and will also radiate themselves as the
kinks that characterise scattering form and propagate outward, especially in a near-critical
encounter where the string dwells in the strong-field region and becomes highly distorted.
It would seem as if string/black hole encounters could be interesting sources of bi-modal
radiation, with a high-frequency component due to ringing of the black hole, and a low-
frequency component associated with large-scale deformations of the string.

As was shown earlier, a cosmic string can pass very close to a black hole without being
captured. The deformation of the string has a characteristic length scale of the order of
the black hole diameter (L ~ 2r,) and takes place on a time scale that is of the order of
t~ 2—:;-7-, the time taken to cross the diameter of the black hole.

Using the expression for power radiated by a quadrupole source (see, e.g., Vilenkin [52]),

E’=9M2L4w6, (8.1)
P
where M and L are the mass and length of the string along with the relation for the
amplitude of the radiation signal at an Earth-based detector (see Thorne (48]),

h=x4 (f—i) (%) ; (8.2)

where r¢ is the distance from the Earth to the source and Q the quadrupole moment, and
introducing the characteristic length and time scales for an encounter between GUT-scale
cosmic string and a black hole yields

1073 su\5 /M BH
h = - . .
TE (C) (Msol ) (8.3)

where My is the mass of the black hole and M is the mass of the sun.
A large galactic core black hole (~ 10° solar masses) should generate a signal in the
10~* Hz frequency range with an amplitude that could lie above the noise threshold of
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proposed space-based detectors (the frequency is far below the lowest frequencies accessible
to Earth-based detectors).

Although a full numerical investigation of string capture and the gravitational radiation
emitted by the string/black hole system appears to be beyond the capabilities of present
computers, it is possible to obtain preliminary results on the radiation from the string only,
using the weak-field approximation discussed in Chapter 3. For an extended, weak source
such as this, a method described by Weinberg [54] allows direct calculation of a radiation
solution.

From the findings discussed in this document, it appears as if the dynamical interac-
tion of a cosmic string with a black hole is a source of rich, and perhaps even surprising,
behaviours. It is hoped that the results discussed here have helped clarify some aspects the
interaction of two of the more exotic types of objects in our universe.
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Appendix A

Variational Calculations

This appendix supplements the derivation of the equations of motion for a cosmic string
terminated by massive particles discussed in Chapter 3. Many authors have carried out
similar derivations for strings with massive end particles (see, e.g., [7], [8], and [9]) using
the Nambu-Goto action. The derivations shown here for the Polyakov form of the Nambu-
Goto action are new.

In Chapter 3 the Polyakov action was extended to include massive end points,

a2(T)
S[X* hag,oi] = —p/ dr/ do V=R h'B G g (A.1)
o1 (1)
m; dX* dX?
- Z'z_ d’\g"” DD

=1 A

where the string tension u has been explicitly shown, and A = A(7) is the most general
parametrization for the boundaries X{‘ , from which,

dax# axt 6X“
= (G + S i (A.2)
Using Eqn. (A.2), it is possible to rewrite Eqn. (A.1) as
o'o(‘r)
S[X* hig,o] = —u / dr / VRAAE Gap (A.3)
o1 (7)

m,/ dr (8X“ 6X{‘,_ oxXy oXy ))\'
Guv do i ot Jdo

The equations of motion are obtained by taking the hsp, z#, and o; variations of the
action. Since the bounds of integration are finite, the variations must take into account
contributions from the interior of the (7,0) plane, denoted D in Fig. 3.1, and bounded by
70 < T < 71 and 01(7) < o < o9(1), as well as the boundary of D. In order to obtain
the most general equations possible, it will be assumed that the extremizing functions for
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the free string action are not prescribed on the o boundaries (however, the extremizing
functions are assumed to vanish on the 7 boundaries). The above action functional consists
of three distinct “pieces”, a functional for the string interior (the free string action) and
functionals for each massive end point,

2
S[X*, hap,0:] = Setring [X*, has] + Y _ Si[X*,ai]. (A.4)

i=1

A.1 Variations on Interior Region

The free-string action Ssiring is a functional of both string position, X¥, and the internal
metric, h4p, so variations with respect to each of these quantities must be computed!.
First, the variation with respect to X#

é Sstrin.g

3 Xn (A-5)

D

is computed using?

8f 9 ([ of 8 (of \ _
axn‘a—r(m)‘%(m)—" (&.9)

where f = vV=hh48 g, (X '\)Af,";1 X'p. The contributions to the variations are

af 8
g = g YA (XN X XL}

= V=hhrAE g a(X*) X5 X 6 (A.10)

0
ol = VERRAB g% (X0, 550 ™ + Xy Sac 5 (A1)
C

and

!These calculations also apply to the conventional case where the domain D is unbounded.
2For a general integral defined on a 2-dimensional space, (see, for instance, Weinstock [s3}),

k= [ dzdysepmwew), (4.6)
the function w that extremizes the integral is determined by the following PDEs:

af &8 ([ of a (af\ _
A (2L)-% (F)=o (A7)

on the interior of region D, and by

af d af dz
Loy O =_, (A8)
on the boundary of region D.
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% (53%) = (V7REE) Lom(X) (X boo 8™ + Xy 5108%)
C r

+ VERKAZ g a(2) (X0 850 8™ + X 640 8+) X0

+ VERRAB (X% (X8, 850 8 + X Sac 67

where indices C,D =0, 1.
Combining, factoring, and relabelling indices, Eqn. (A.9) becomes

0 = V—hh4B (9one — Gun.p — Goum) X,ﬁt X.Z?
- 2 (J—h h48 g Xp + (w/—h h"B) L Juw f‘f.”s)
With

O:= \/1__’; da (\/—_hhAB 33)

and
1

Cyon = 5 (9vno + Govin — Gpnw)
then, Eqn. (A.9) becomes

0 = —2V7R (gu OX¥ + Tp hA2 X, )

= —2V=hg (DX + T4 148 24 x7%)
and it follows that the equations of motion are,
AB -
Ox* 4+ 0 A7 X5 X, =0
Second, the variation with respect to hap

] Sstring
is computed using

- () - & (a)
Ohap Ot \Bhapr 00 \Ohaps)

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)

where f = V=hhAB G,p. Care must be taken in handling the covariant and contravari-
ant indices of metric k, but the calculations are straightforward since there are no metric
derivatives h4p c in the action. It is straightforward to show that Eqn. (A.19) becomes

__0f _ ap _ b4 c)
O—ahAB— h(G 3 G*¢
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where G¢¢c = hBC Gpc. It follows that the equations of constraint are,

hAB

GAB — - GCc=0 (A.21)

The choice on the internal metric hyp = €27 p = nup is justified in Chapter 3
and leads to equations of motion (3.18).

A.2 Variations on Boundary

On the boundary of region D, there are contributions from both free-string action Ss¢ring and
the action of the massive particles S;, which is a functional of both particle position, X} and
the parameter o}, so variations with respect to each of these quantities must be computed.
Since there are no contributions on the 7 boundaries, 79 and 71, only the boundaries o;(7)
are of concern.

First, the variation with respect to X* of the free string action

] Satring (A.22)

is computed using
of doy Of dr af . af

oX% dr ~ 9xh dr  9xXE 7T BAn

(A.23)

where f = vV=hh*8 g,y X% X7,. The contributions to the variations are as given in (A.11)
and it follows that Eqn. (A.23) becomes

V=RRAB g { (28,8808 + X} 640 6%) 6¢ — (X8, 651 6™ + Xy b1 5)} (a.24)
Second, the variation with respect to h4p of the free string action

) Sstring

Shag

is automatically zero since there are no terms h4p ¢ in the action.
Third, the variation with respect to X! of the end point action

4 S;
X"

(A.25)

ab

(A.26)

ab
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is computed using®

af d [ of
dXF  dr (axf‘ ) (A-29)

where f = m; g X2, X[,
The ca.lcula.tlons a.re 51mila.r to those already shown in the previous section and lead to

&2 XY dX? d X7
mi Guv (—c_i-/\T-*-FZ" T d/\’) : (A-30)

Since the combined variations must vanish, that is Eqns. (A.23) and (A.29) add to 0, it
follows that the equations of motion are,

\/—hhABgu,, {(Xu dpo + X" 6,10) g; — (X” ép1 + XB da1 } + (A.31)

d? XV ry, dX" dX"
mi Guv —d 2 +T 1,2.
which can be expanded to
hOl +h10
2V~hgu <h°° XY 6 —ht' XY + — (X%.6; — Xj;)) + (A.32)

d2X pr dX"
mi Guv ( + T

axz PN d,\) = 0.i=12

Finally, there are also "equations of motion” for the boundary points arising from the
o; variation of the end point action. To do this variation, use the second expression for the
action, (A.3), for which the Euler-Lagrange equation reads, for each end point,

m PXE . 0XP X\ 9X
0 = _,'\_{g‘“' (a—i_+rm ar 31‘) do (A-33)
926 Xt axy +lag,“, X axtoaxy
i 9% 3780 G0 T28X° 87 8o do
52 [, PXEOXE | 10gu OXI OXE OXY
Guuv + = ]
302 doc 28X! 0o 0o Odo

- dXLAXY _5 (3Xt  oxi \oXy
9w\ e 80 ) 3% \Tar * 80 ) B0 [

-+

-+

3For a general action functional defined on a 1-dimensional space.

I = J[dxf (z.v.9") (A.27)
the function y that extremizes the integral is determined by the Euler-Lagrange equation,

af d [of

-2 (3) -
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For the boundaries, it is necessary to unravel Eqns. (A.32) and (A.33). To do this, two
physical conditions are imposed on the system. First, assume the end points to be very
massive, and hence consider the limiting case where m; tend to infinity. Second, assume
that the initial string time 7; and parameter A(7;) agree at the boundaries. Along with
these conditions, a conformal reparametrization of the internal metric leaves the freedom to
specify the boundary functions; this fact is used to apply the condition that o; are constant
functions, namely, o; = +%. This simplifies the equations of motion of the boundary
points and yields information on the parametrization A(r). (Note: With this choice, the
parameter is bounded in the conventional fashion, -5 <0 < 5.)

This choice of boundary function reduces Eqn. (A.32) to

2 xv XP dX? v h+h%axr
. (d”XI v 4 dX,>_2u\/:-E(huaX LW +h 8 ):0,(A.34)

d A2 M dx dA do 2 or
or,
2 yvv (9 ¢ 2 /— v 1)1 10 v
d A2 T dX dA m; do 2 ar
Taking the limit of infinite mass, the geodesic equation is obtained,
d* XY dX? dX]
Z i v =0. A.36
a2 gy ax =0 (4.36)
The choice of boundary function reduces Eqn. (A.33) to
: o x* dX? axX™ axv _,-0XFOXY
9 3\~! . i " 1 i i _ )\l 2T — . A.37
AT 9 [( ot + Lon or 0T ) do AT or Jdo } ( )

This result imposes conditions on the parametrization A(7). The first term in paren-
theses is interesting; the equations of motion for the boundary points are "recovered”,
parametrized this time by 7. Further, it is clear that A7) = 0 is not allowed. In order
for the above expression to hold, it is necessary to satisfy 82 A = 0 subject to the initial
condition that the string and end point times be "synchronized”,

M) =m1. (A.38)
The required parametrization is, therefore,
A7) =171. (A.39)

For this parametrization, the equations of motion for the end points become
d?2 X*(r,0; x? . n .
! (2. i) dX{(r,0:) dX](1,04) _ 0 : oi=+2. (A.40)
dr dr dr 2
To summarize, the equations of motion consist of two pieces, the equations for the string
proper. and boundary conditions that describe the physics at the edges of the computational
domain:

+ oy

9% x+ dxP gx" 9% X+ axP ox s T

u — © T (== - A4l
ar? + L odr 9Tt dc2 o doc Oc  ( 2 <o< 2) ( )
d'-’Xf‘ dX? dX? T

H LS = . - —_ .
72 + T, i dr 0:0; tz. (A.42)
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Appendix B

Discretization of the Equations of
Motion and Constraints

This appendix! discusses the discretization of the equations of motion and constraints of
the cosmic string and the implementation of the boundary conditions for both models

(perturbative and geodesic boundary points).
The motion of a cosmic string in an external spacetime is described by the equation for

the string proper
2 yp (4 Y 2 yu
o X Lo oxrgx" 9 A" e
ar? M or ot do? M Jo do
along with boundary conditions that depend on the numerical model.

For numerical scheme A, where the ends of the string move in a weak gravitational field.
the ends of the string must satisfy initial data

(4 n
axeox" _ (B.1)

X#(Tﬂ'lo’) = X“(To,a') +6X”(TO’U) ’ (B'2)
and the boundary conditions
X! = X¥(1,03) + 6XH#(7,0%), (B.3)

where § X* are the perturbations documented in Chapter 3.
For numerical scheme B, a string terminated by massive particles, the string must satisfy
initial data

X#(TOvU) = XM(T():a.) b (B'4)

where X* is the Minkowski analytic solution documented in Chapter 3, along with the
boundary conditions
Xt e dX? dX] _
dr? Pl dr dr

A less detailed version of this appendix has been previously published in Ref. [21].

0. (B.5)
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The equations of motion and their boundary conditions must be discretized. The task
appears quite complicated due to the presence of the Christoffel symbols, 'Yy, which are
derivatives of the spacetime metric. However, these are known analytic functions of the
spacetime coordinates and, since the spacetime is taken to be non-dynamical, the Christof-
fel symbols enter the equations of motion as pre-defined, albeit somewhat complicated,
functions of the string position. The role of the Christoffel symbols is to couple the equa-
tions of motion; in addition, they are also non-linear functions of the spacetime coordinates,
and can give the equations of motion a very complicated structure. However, the only por-
tions of Eqns. (B.1) and (B.5) that require discretization are the first- and second- order
derivatives.

The non-linear terms in Eqn. (B.1) are potentially troublesome. For instance, one of
the Christoffel symbols for the radial coordinate for a Schwarzschild black hole of mass M
is given by

M
Iy =07 = T —2M)’ (B.6)
and grows without bound as the radial coordinate approaches the event horizon ry = 2M.
A discretization based on this particular type of black hole and coordinate system must
therefore be used only for cosmic strings moving at a reasonable distance away from the
event horizon; other coordinate systems (e.g. Eddington-Finkelstein) are available to follow
the motion of the string near to and across the event horizon.

In devising a numerical method to solve the equations of motion (B.1), a number of

points were considered:

e the cosmic string is a large, extended object; only a small portion of the string is likely
to probe the highly non-linear region of spacetime near a black hole,

o the degree of coupling between the equations can vary considerably during the evolu-
tion of the solution,

e the cosmic string can travel at any speed, up to ultra-relativistic velocities (arbitrarily
close to the speed of light).

For these reasons, a robust, implicit finite difference solver was sought.

B.1 Von Neumann’s Method - Linear Case

Ames [4] describes a discretization due to Von Neumann for the linear wave equation,
P u _ 3% u
ar2~ do?’

which uses a standard second-order finite difference formula for evaluating the time deriva-

tive at the discrete grid point (z, ),

(62u) L Ui+l —2uid~+ui’j-1 (B 8)
7)., @ar? |

(B.7)
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This formula is second order accurate in the temporal grid spacing (A 7). A similar ex-
pression holds for the spatial derivative, but here the actual finite difference expression is
created from an average

32
u A
( ) = (Bigrg+1 — 2% 541 + Uie1js1)
L,

do? (Ao)?
1—-2A
+ (TA—O—’)2—) (i1 — 2uij + vim1j)
A
+ o) (it1j—1 — 2%Uij—1 + Uim1j-1) (B.9)

that is second order accurate in the spatial grid spacing (A o). Here, the spatial derivative
at the current grid point is the weighted average (weighted by the factor A) of the spatial
derivatives at the current, previous, and next time steps. This averaging gives rise to a
9-point implicit scheme; the scheme is referred to a 9-point since there are three grid points
required at each of three time levels, and implicit since the spatial derivative involves the
unknown "j+1” time step whose solution is sought in order to advance the solution forward
in time. Ames shows that this scheme is unconditionally stable for % <A< %

In order to generalize Von Neumann’s discretization to the non-linear wave equation of
interest here, a number of extensions must be made to the basic scheme:

1. Generalize the discretization to handle 4-vectors
2. Linearize the terms containing Christoffel symbols

3. Modify the temporal discretization to allow an adaptive step size

The third consideration is important for two reasons: first, the motion of the cosmic
string will take place in a background where the non-linear terms contribute either very little
(well away from the event horizon, for instance) or a great deal, so that the option must
exist to stride over large time increments in uninteresting areas; second, the linearization
scheme (an iterative method is used) may require smaller time steps when the contribution
of non-linear terms becomes significant and convergence of the solution is difficult to obtain.
These considerations require that an adaptive time step size be available.

B.2 Vector-Matrix Notation for Equations of Motion

In order to simplify the formulation of the complete finite-difference expression which is to
be coded in FORTRAN, a vector and matrix representation of the equations of motion will
be adopted. Denote the 4-vector describing the position of the string as (z°, z!, z2,z3) = x.

The Christoffel symbols that are part of the non-linear terms can be represented as 4-vectors
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of 4x4 matrices,

(9%) 1 (3&)]
T FO
, 9zf 927 _ (&) T (3%) :(a_")Tf (.‘E)»f: . ®.10)
oer o™ | (gaytes (g | o) o) T[]
| (#5)  (3%).
T

where ¢4 = 7 or o, ( f—g}) is the transpose of the 4-vector form of the derivative, and I'*

denotes the 4 x 4 matrix of Christoffel symbols for the given upper index u.
With this notation, the equations of motion (B.1) can now be written in vector-matrix

form,

?x [(9x\T. [ox 2x (9x\T. [0x

a?*(ﬁ) L (5?)‘552'+(a_a) P(%)- (B-11)
B.3 Discretization of the Derivatives

As a first step in developing discretized expressions for Eqn. (B.11), express the 4-vector in
a manner compatible with a numerical grid

X+ Xij. (B.12)

where 7 is a spatial index associated with discrete values of the o coordinate, and j is a
temporal index associated with discrete values of the 7 coordinate. The following standard
finite difference expressions for the first and second order derivatives of the position 4-vector
x (see, for instance, Hirsch {35]) will be referenced throughout this Appendix.

The first-order spatial derivative is handled using a standard centered difference,

dx o Xitl,j — Xi—1,j _ N
(aa),-,j ~ BT 2 Doy (B.13)

The second-order spatial derivative is also discretized using a standard centered difference,
denoted D?x; .j» but in keeping with Von Neumann’s method, is expressed as an average at
three adjacent time levels,

?x
(ﬁ) =~ ,\D?,xi,j.;.l +(1=-22) Dgx,-J + /\DZ.X,',]'_[ R (B.14)
where,
Xitlj — 2%X4,j + Xi-1,5
D3x;; = (Xit1j A 0_;2 1) (B.15)
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The discretized time (7) derivatives need to be modified to handle a non-uniform mesh.
The formulation of such expressions is based on forward and backward differences,

(6_x) n Xl "X (£ orard) (B.16)
or i ATy
and,
( 3_’5) ~ T ZXi=l (o ckpard) (B.17)
or i ATip

where A 7; represents the time increment between levels j-1 and j, and A 7;4; represents
the time increment between levels j and j+1. Similar expressions hold for second-order
derivatives.

These forward and backward differences are combined to yield

ox 1 ATJ' ATj+[

gx ~ et —Xii X B.

(af)i'j Ar; + A {mj+l (et = %ig) + =5 = (i = Xig-1) (B.18)
= D,—(xi,j),

and,

?x 2 1 1

= ~ el — X)) = —— (Xii — Xiie 1

(aﬂ)u AT + Ay {AT]';.I (i1 = %ij) AT, (xij = %iy ‘)} (B.19)
= D,g,(x,-J).

It can be readily shown that these expressions reduce to the usual expressions when the
time increments are equal.

B.4 Handling the Non-linear Terms

When trying to extend the Von Neumann scheme to include the non-linear terms, one
is forced to evaluate their contributions at the unknown j + 1 time-level. In order to
solve the finite difference equations for this time-level, the non-linear contributions must be
linearized. The spatial non-linear term is handled using a standard Taylor expansion. The
temporal non-linear term is linearized in a different manner, keeping in mind that it needs
to accommodate the non-uniform mesh shown in Eqn. (B.18) and also fit the linearization
scheme developed for the spatial term. The fully linearized system is then solved iteratively
using a Newton-Raphson scheme [47].

B.4.1 Spatial non-linear term

For the spatial term, an expression must be derived which is compatible with Von Neu-
mann’s averaging method in Eqn. (B.9) for the second-order derivatives. To this end define
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(using Hirsch’s notation) the non-linear function H that will form the basis of an iterative
scheme,

ax\T. (0x
H=[=—= — B.20
(55) £ (55) (B:20)
and define a discretized form for H in terms of the average of the three time levels,
(H)i‘jzAHid+l+(1_2A) Hij +AH;j1. (B.21)

As before, the non-linear contribution at time level j is expressed implicitly in terms of
the contribution at the unknown time level j+1. It can be seen, by substituting centered
difference expressions for the spatial derivatives, that H yields a quadratic expression for
each time level. The contributions at the j and j—1 level can be obtained directly, evaluating
the Christoffel symbols at x;; and x; j—; along with the finite difference expressions. The
j + 1 level, however, cannot be handled directly by an implicit finite difference solver and
must be linearized.
The most straightforward way to do this is through a Taylor expansion of H7;,,.

HT;-LIl = ng-:-l + j(x?,j-i—l) * AX?JH s (B.22)

where the upper index n is an iteration index, Ax}, ., represents the difference between
the iterated solutions at the j+1 time-level,

n — g+l n
Axi,j+l—xi,j+1 Xi i+l

and J (x7,.1) is the Jacobian of the n-th iteration of H7,, |, written symbolically as.

= dH\"
J (X3 = | — . (B.24
o) = (5¢) )
After a sufficient number of iterations, H*¥! will represent the non-linear contribution at
the 5 + 1 time level.

These expressions are highly complex and need not be reproduced here; however, a
partial result needs to be established before proceeding. The Jacobian is a matrix containing
derivatives of the non-linear term with respect to the spacetime coordinates z¥; as such,
the spatial derivatives do not contribute to the Jacobian and can be factored out; only the
Christoffel symbols are involved in the derivative. This operation, however, must be carried
out with some care due to the discretization process (the details are provided in Hirsch
[35]). To proceed, write the discrete spatial derivative using the shift operator E,

(c%c)- = (E' - E7Y) (B.25)
ij

do 2A0 Xig»

(B.23)

where E*! acts on x;j, shifting it up or down by one spatial grid position. The shift
operator can be used to rewrite the Jacobian,

- E'-E™Y? . 9F
J (xi3) = (—-('MTQ)X,{,- 33 X (B.26)
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where and g—‘; represents the derivatives of the Christoffel symbols. These are analytic
expressions that are given in Appendix D.

The full expression for the spatial non-linear terms is obtained by combining Eqns. (B.21)
and (B.22), and expanding the shift operator in Eqn. (B.26), yielding

A
B = 4(Ao)’ [V (Fe1g) @ Axry — 27 (xEj) @ Ay (B.27)
J(x'?—lg') d AX.?_I'J-]
A T~
4(A a')2 [x;l+ld+1 - x‘r}-l'j*'l] r (x?'j+1) [x?+l,j+1 - x:‘l—L‘j.i.l]
(1-2A) I=
+ —4(A 6)2 [Xi+1,j - Xi—l,j] F(xi,j) [xi+1,j — xi_lJ]
A =
+ 4_—(Aa)2 [xi-i—l,j—l - xi—-l.j—l] r (xi.j—l) [xi+1,j—-1 - xi_l'],_l] )

B.4.2 Temporal non-linear term

For the temporal non-linear term

) ().

it is again necessary to conform to the Von Neumann approach of Eqn. (B.8) and use a
centered, second-order scheme. To begin, use Eqn. (B.18) to discretize Eqn. (B.28),

(g_:)Tf‘ (%’;) = [(Drxi,j)T C(xi;) (Drxi,j)] . (B.29)

To make this discretization compatible with the iterative scheme developed for the
spatial derivatives, make the substitution

. _Ln+l _ n+l _ n n _ n n
Xij+l = Xi o1 = Xijp1 — Xigal T X1 = DX 00 + X541 (B.30)

2
in Eqn. (B.29) and discard the term containing (Ax?d» +1> . This leads to
ax\" s (8x
ar or

where D, now acts on the iterated value xzj as follows:

(DPx:,;)T T(xij) (DPxiz) (B.31)

2 ATJ'
ATJ' + ATJ'.H AT]'.H

Q

(D-?xiq')T f‘(x?,j+l) b Ax?J_H :

n 1 AT n ATjpy
D"x; - X —xi:) + s — X . .32
X0 ATi + ATjp1 | AT ( Jl xl“') ATj (xij = Xij-1) (B.32)

With this final result, the various pieces of the discretized equations of motion can be
assembled and an iterative solution for the unknown time level can be written down.
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B.5 Discretized Equations of Motion

The various results obtained in the previous section appear daunting. However, the process
of assembling the various pieces into a final set of equations will yield a simple expression
that can be handled numerically with relative ease.

Before proceeding with the task of assembling all results, two more adjustments must be
done to ensure that all finite difference expressions are compatible with the iterative scheme.
It is necessary to adjust the discretization (B.14) of the second-order spatial derivative to
correctly handle the A-notation introduced in Eqn. (B.22). The discretization is modified
to read

9 x A
(6?) = —— (g — 2% 41 +xPja1)
18]

(Ao)?
+ ZZ%Q— (AP jo — 28X 0 +AXE )
+ % (Xirry — 2Xij + Xi—15)
+ (A%)z (Xit1j-1 — 2Xi5-1 + Xiz1j-1) - (B.33)

and similarly for the temporal second-order derivative (B.19),

7% )4 T AT+ AT AT e Ar; i T Xi-l

2 1
Ax}ig)p - B.
At + Aryer {ATjH( xw'l)} (B-34)

Combining results (B.33), (B.34), (B.27). and (B.31). and isolating the terms involving
Ax} s AXTy,and AxE ., on the right hand side, the system of equations reduces
to an equation for the components of a block-tridiagonal system of the form

n n n n i n n _
AP e @ AXE o+ Bl e AXY L + O C A e = s (B.35)
n n n M s
where Ai—l.j+u Bi,j-i-l’ and Ci+lj+l are 4 x 4 matrices and d?,j+l is a 4-vector.

The block-tridiagonal system expresses an implicit relationship between the iterated
solution at all points on the spatial grid; this can best be seen by expanding the above
expression for all grid points i=1,...,N:

n n n n _
BY i AXT i +Coi AXgj = dijn
n n n n n n _
AT, AT+ B3 AX5 0 + 03 AXS 5 = 45y
(B.36)
qn n n n n n _
AY 01 AXN o + By ju1 AXN_1je1 T ONja1 BDXNjr = dy_1j+1
n n n n _
Noljrt ANt + B BDXier = digsrs
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or, as a matrix-vector product (suppressing the time step index),

BT C% --- Ax} dt
At By C3 - Axy dz
.. . - : = E . (B.37)
AYy_, By Cx AxXy_y dy_1
N-1 BN Axy dy
This further reduces to the matrix expression
Th e AX"* =d", (B.38)

where T in an N x N matrix whose elements are 4 x 4 matrices, and X* and d” are vectors
of length N whose elements are 4-vectors.
Using the definitions

o (ATj+1+ATj> AT

Ao '— ATJ'.H_ ’

the components of the block tridiagonal system are

1 .

1

m o= 2AR2 (I+ ZJ(x;:jﬂ)) +2(1+n) I
T P
+ 20 (xPje — xig) + (xig — xig-1)] Tlxiy)
1
Clirjer = —AK (I'*‘ ZJ(x?HJﬂ))
dFi = 2 {(1+n) (P —%ig) — (A +07") (rij —%ij-1)}
_ T =
[7 (<Fjer —xij) +77F (ki — xig-1)] Dlxig) e
n . -1 . ..
[7 (xhjer — xig) +07" (%ig = Xi-1)]
AR? (KR — 2% 0 X )
(1 —2)) &2 (Xix1j — 2Xij + Xi—1,5)
AE? (Kig1 -1 — 2% -1 + Xi—1,j-1)
T -

ARE (KB g = XPrjen) D O) (Rnger = xrje1)
(1 —2X) 62 (xig15 — Xie15) T T (i) (Xit1j — Xie1,5)

e
+ AR (Xiprj-1 — Xic1,j—1)" T (Xij—1) (Kit14-1 — Xi-1,5-1) »

+ o+ o+ o+ o+

where I is the 4 x 4 identity matrix.
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B.5.1 Boundary Conditions

For numerical scheme A, where the string is prescribed by the perturbation solution, the
boundary conditions are

Bl j+1
Cljs1
dlj+1
AN_1j+1
BR.j+1

dy j+1

I (B.40)
0

X{l,j+l - X{l.j_-:l

0

I

n n—1
XNJ+1 - XN,j+1 ’

where X are the analytic expressions for the perturbative solutions evaluated at the discrete
coordinates given by the edges of the grid, o, and on, and the iterated time coordinates

n—1 n
Tit and T

For numerical scheme B, where the string is terminated by massive particles, the bound-
ary conditions are derived in the same manner as the temporal terms discussed above; they

have the form

Li+1 = 2(1+n)1 (B.41)
+ 2[n? (kP — Xug) + (g = xig-1)] " Tlxry)
Cg.j+1 = 0
diim = —2{(L+n) (xPm —xi) — (L +071) (k15 —x15-1)}
~ [0 (Fje —xug) +07t (i = x1j-1)]” T(x17) o
[ (P41 — %15) +07" (X5 — X15-1)]
Ag/—u-s-l =0
B,'\',J+1 = 2(1+n)I
+ 2[n? (XN e — xng) + (xvg — xN.j—l)]T T(xny)
djer = —2{(1+n) (xRjm —xng) = (1 +07") (envg —xn-1)}
— [ (Rjer —xng) +07 (xvg — xN.j—l)]Tf(xNJ) .
[ (xNj+1 — xng) +n7" (xnvg — xnj-1)] -
B.6 Discretization of the Constraints
The constraint equations, derived in Chapter 3, have the form
G [aa"f 0 aa’f:] - o, (B.42)
G [6.«1"‘ axv] - 0.

r Oda
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They are used as checks on the solutions to the equations of motion.
With the notation introduced earlier, the constraints can be written in vector-matrix

form,

()"0 (32) ' () -

ax\T ax
— 1] glt=—})=0. B.44
() (%) o
where § denotes the matrix form of the metric g,, evaluated.
The constraint calculations should yield a zero result when applied to the solution pro-
duced by the iterative scheme described above, and are computed using the solutions at
three adjacent time steps, x; j_1, Xij, and x; j+1. The discretization of these equations is

straightforward, using the first-ordered centered difference expressions (B.13) and (B.18).
The first constraint reads

and

~(Drxi )T §(xij) (Drxij) + (Doxig)" § (%iy) (Doxij) =0. (B.45)
The second constraint reads
1 _

(EA_U) (Drxi )T §(xi5) (Xivrj — *Xi-14) =0, (B.46)

These expressions can be expanded in a straightforward manner to yield the final scalar-
valued expressions that are used in the numerical solvers, and are not reproduced here.
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Appendix C

Coding Issues

The discretized equations of motion and the corresponding numerical IBVP shown in Ap-
pendix B were coded in Fortran77, with some low-level routines coded in C. Depending
on the computational complexity of the spacetime (i.e. the number and complexity of
the non-zero Christoffel symbols) and the resolution requirements of the particular study,
the numerical solver can be computationally intensive. In order to accommodate the full
range of needs, a modular design that admitted easy modifications for different spacetimes,
boundary conditions, and resolution, was adopted. The choices in coding techniques aimed
to strike a balance between adaptability and efficiency, and a number of optimizations were
carried out to achieve good performance on a Silicon Graphics Power Challenge computer.

The final, working version of the solver supports straight-string initial configurations
and two boundary conditions (particle and perturbation solution) for Minkowski spacetime
and Schwarzschild and Kerr black holes. For Schwarzschild black holes, both Schwarzschild
and Eddington-Finkelstein Ingoing coordinates are supported; for Kerr black holes, Boyer-
Lindquist and Kerr coordinates. These coordinate systems allow both scattering and trap-
ping studies to be carried out, with Eddington-Finkelstein and Kerr coordinates used in the
latter case. Minkowski spacetime is used to carry out accuracy and longevity tests since
the numerical solution is readily compared to the known analytic solution.

This appendix presents code fragments of the more important routines of the numerical
solver, and describes numerical tests that were carried out to validate its operation. Since
the fully optimized solver represents approximately 10,000 Fortran77 statements, with an-
other 1,000 or so lines of C, only a cursory look will be taken.

C.1 Overview of the Von Neumann Solver

The numerical evolution of a cosmic string in the spacetime of a black hole is governed by
a set of parameters:

e string: length, initial position (impact parameter, distance from black hole) and
velocity,
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e black hole: mass and angular momentum,

e numerical: maximum number of time steps, frequency of output, constraint checks,
checkpoints, type and resolution of output (ASCII, binary, low- or high-resolution).

Tasks such as output of the solution and constraint calculations are triggered on a peri-
odic basis. The code also periodically saves a copy of its internal state to allow restarts
(two consecutive time steps along with some counter values are sufficient for this purpose).
Restarts are useful to recover from system failures. and are also useful checkpoints from
which higher-resolution runs can be launched. This feature was used extensively to visual-
ize the final plunge of strings into black holes. These parameters are contained in an input
file that is read by the solver at the beginning of a run.

The code is built around a main routine that controls the time-stepping behaviour by
which the solution is advanced. The sequence of events that take place are as follows:

VN Solver:
read parameter file
validate parameters
set internal variables
initialize two time steps  (from analytic solution or restart file)
Evolve: compute next time step
success? no - shutdown
constraint check? yes - compute constraint, report statistics
output? yes - write solution to file
checkpoint? yes - write restart file
mazimum time step? yes - shutdown

no - evolve
Shutdown: close files
exit

Each time step is computed according to the iterative formula established in Appendix B,
and proceeds as follows:
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Time step:
clear working arrays
Iterate: initialize Jacobian arrays
initialize tridiagonal arrays
check stability condition
solve tridiagonal system

update solution (from d vector of tridiagonal system)
solution converged? no - iterate
yes - flag success and exit
too many steps? yes - reduce step size, repeat time step
step size too small? yes - flag error and exit
Exit: return to main program

The initialization of the tridiagonal matrices is discussed in the next section. The solu-
tion of the block tridiagonal system is a standard numerical procedure that is accomplished
using the Thomas algorithm (which carries out Gaussian elimination without pivoting).
Since this final form of the finite difference expression is an iterative one, the final solution
for time level j+1 is obtained when the above system yields a zero d-vector. Failure to con-
verge triggers a time-step reduction mechanism where the time interval A7;4 is reduced
and the solution attempted once more. If the reduction is repeated too many times, the
solution is stopped.

C.2 Initializing Block Tridiagonal Matrices

As discussed in Appendix B, the discretized equations of motion have the form of a block
tridiagonal system,

TAF" = d°, (C.1)

that is solved iteratively (n is an iteration index, and should not be confused with the time
step index j). The solution is evolved forward in time to the j + 1 time step by carrying
out the operation

o= g (TN (C.2)
until the solution converges, i.e. Az™/z"™ = 0. In practical terms, this means that
Az] .
—tl <1076 (C.3)
't .
o J+1

holds for all grid points at the new time level (j+1). This value of the convergence threshold
represents a compromise between speed and accuracy (it assumes that results are stored as
double-precision values).

The constituents of the block tridiagonal matrix T™ are given in Appendix B, where
Eqn. (B.39) applies to all grid points on the interior of the string (1 < ¢ < N) and
Eqns. (B.40) or (B.41) apply to the boundaries (i = 1, N).
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The components of the A, B, and C blocks (4 x 4 matrices) in T are built up from the
4D identity matrix, I, the Jacobians J(z. j+1), and, for block B, an expression of the form
XTT.

The elements of the Jacobian matrices (indexed by u,v) are computed from

N 1 . \TOT(E)
T () = Ga g7 (e %) —a (g — X)) (C.4)

which can be written as matrix elements

6], = g T (e ) () o

where 3 F‘,;,,(x?J-) /9 z¥ represents the derivatives of the Christoffel symbol at the spacetime
coordinate x7;, and summation is implied over indices p and 1. The order of the matrix
indices is important: the Christoffel index p is a row index, and the coordinate index v is a
row index for the Jacobian matrix. The Jacobians represent the derivatives of the solution
at the heart of the Newton-Raphson scheme that linearizes the spatial term in the equations
of motion.

C.2.1 Jacobian matrices

The initialization of the Jacobian matrices is carried out at the start of every iteration.
As shown in Eqn. (B.39), three Jacobian matrices must be computed at each grid point,
one associated with each of the A, B and C matrices for the grid point. The Jacobians
are stored in three separate arrays, dimensioned as JACA(4,4,N), JACB(4.4.N }, and
JACC(4.4, N), associated with the A, B, and C matrices. Each matrix is initialized by a
routine represented by the code fragment

DOI=1,N
DO COL = 1,4
po ROW = 1,4
DO RHO = 1,4
DO ETA = 1,4
SUM=SUM+DCHR (RHO,ETA,ROW,COL,X(1,I))*
(X(ETA,I+1)-X(ETA,I-1))
ENDDO
JACB(ROW,COL,I) = JACB(ROW,COL,I) +
SUM* (X (RHO,I+1)-X(RHO,I-1))
ENDDO
ENDDQO
ENDDO
ENDDO
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where the innermost DO-loops (indexed by RHO and ETA) implement the double sum
shown in Eqn. (C.5). The array X represents the current iteration of the solution at the
J + 1 time step.

The B matrices receive a contribution from the linearization of the temporal non-linear

term
T —_
Brtinear = [0* (3Fj41 — %ij) + (%ij — %ij-1)] T(xij), (C.6)

which requires operations of the form XT[. That these equations evaluate to matrix ele-
ments can be seen from the expression

[Brtinearl = T (i) [1? (31306, = 700?) + (@as” — mi51%)] (C.7)

where summation is implied on the p index.

The initialization of the A, B, and C arrays is carried out as follows. As with the
Jacobians, the constituents of the tridiagonal system are stored in matrices dimensioned
A(4,4,N), B(4,4,N), and C(4,4,N).

At each grid point on the string interior (DO I=2,N-1), the following operations take
place (shown here for B matrix only). First, the Jacobian matrices are included,

DO CcoL = 1,BLOCK
DO ROW = 1,BLOCK
B(ROW,COL,I) = -CONS1*JACB(ROW,COL,I)
END DO
END DO

then the identity matrix is summed in,

DO COL = 1,BLOCK
B(COL,CcOL,I) = B(COL,COL,I)+
2.DO* (CONS2+(DTAU1+DTAU2) /DTAU2)
END DO

followed by the temporal contribution (C.7) to the B matrix,

DO ROW = 1,BLOCK
DO COL = 1,BLOCK
DO INDX=1,BLOCK
SUM = SUM +
((DTAU1/DTAU2) = (X(INDX,I,UTOLD)-~-X(INDX,I,UT))+
(DTAU2/DTAU1) *(X(INDX,I,UT)-X(INDX,I,UTM)))=*
CHR(ROW,COL, INDX,U(1,I,UT))
END DO
B(ROW,COL,I) = B(ROW,COL,I) + 2.DO*SUM*DTAU1/DTAU2
END DO
END DO
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The constants DTAU1 and DTAU2 represent the step sizes Atj and A7j41, respectively.
The constant CONS1 represents the constant Ax2?/4 and CONS2 represents A x?, where &
and ) are defined in Appendix B.

Boundary conditions are treated in a similar manner.

The components of the d-vector all evaluate to 4-vectors. Most of the elements of dg , are
simple differences of solutions z, . at various grid points, along with vector-matrix products
of the form zT T'z. As shown above, expressions zI I evaluate to 4 x 4 matrices, so the
vector matrix products evaluate to 4-vectors.

The matrix for the d-vector is dimensioned D(4,N) and individual 4-vector elements in
D are initialized with expressions of the form

DO ROW = 1,BLOCK
D2SP(ROW) = KAPPA*LAMBDA*(U(ROW,I-1,UTOLD)-
& 2.DO*U(ROW,I,UTOLD)+U(ROW,I+1,UTOLD))
END DO

for difference expressions. and

DO ROW = 1,BLOCK
TEMP1 = ZERO
DO COL = 1,BLOCK
TEMP2 =(TCONS3=(U(COL,I,UTOLD)-U(COL,I,UT))+
-4 (u(coL,I,UT)-U(COL,I,UTM))/TCONS3)
TEMP1 = TEMP1+TEMP2+TEMP2+CHR(ROW,COL,COL,U(1,I,UT))
END DO
DGDT(ROW) = -TEMP1
END DO

DO ROW = 1,BLOCK
TEMP1 = ZERO
DO COL = 2,BLOCK
TEMP2 =(TCONS3=*(U(COL,I,UTOLD)-U(COL,I,UT))+
& (u(coL,1,UT)-U(CcoL,I,UTM))/TCONS3)
DO INDX=1,COL-1
TEMP1 = TEMP1+TEMP2*

& (TCONS3#(U(INDX,I,UTOLD)-U(INDX,I,UT))+
& (U(INDX,I,UT)~-U(INDX,I,UTM))/TCONS3)*
& CHR(ROW,COL, INDX,U(1,I,UT))
END DO
END DO

DGDT(ROW) = DGDT(ROW) - 2.DO*TEMP1
END DO

for vector-matrix products (here shown in a form that improves handling the off-diagonal
Christoffel symbols). The constant KAPPA represents the constant x? defined in Ap-
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pendix B and TCONS3 is the ratio A7j/A7;4;. The arrays D2SP(ROW) and DGDT(ROW)
are temporary arrays that are subsequently stored into the main array for the D vector along
with other similar contributions.

C.3 Christoffel Symbols and their Derivatives

The above code fragments include references to Fortran functions CHR and DCHR. These
functions return the values of

CHR(I,J,K,U) = T¥ (z*) = TE(z) (C.8)
and
4 (z)
dz°

evaluated at the spacetime point z*.
These functions are built up from switching logic of the form

DCHR(I,J,K,L,U) — =%,z (C.9)

IF(I.EQ.1) THEN
IF((K.EQ.1) .AND.(J.EQ.1)) THEN
CHR = MASS/(R*R)
ELSEIF((K.EQ.3) .AND.(J.EQ.3)) THEN
CHR = -R
ELSEIF((K.EQ.4) .AND. (J.EQ.4)) THEN
CHR = -R*SIN(TH)*SIN(TH)
ELSE
CHR = 0.DO
ENDIF
ELSEIF(I.EQ.2) THEN

ENDIF
shown here for a portion of FUNCTION REAL*8 CHR() in the case of Schwarzschild
coordinates. The indices passed as arguments in the function call result in the selection and

evaluation of the appropriate Christoffel symbol or derivative (the Christoffel symbols are
listed in Appendix D).

C.4 Optimizations and Parallelization

In practical terms, due to spacetime symmetries, many elements of the A, B, C and D block
matrices are identically zero, or identical to other components (for instance, in Schwarzschild
spacetime there are only 9 non-vanishing Christoffel symbols; see Appendix D). Similarly.
many elements of the Jacobians are identically zero, for symmetry reasons and also be-
cause the Christoffel symbols have no functional dependence on certain coordinates (both
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Schwarzschild and Kerr black holes are stationary, so their Christoffel symbols have no
functional dependence on the t-coordinate). So, a straightforward looping construct over
all possible indices in the Christoffel symbols is, in general, quite inefficient.

Instead, the DO-statements in the initialization of the A, B, C, and D matrices are
removed and the non-zero indices are explicitly listed and summed over by hard-coding
specific index values (ROW and COL) into the code fragments shown above (this is a
form of loop unrolling). Preserving a full looping structure generates compact code, but
invokes a large number of Christoffel symbols that, in the end, contribute nothing to the
tridiagonal system. This optimization lengthens the code considerably, but results in sig-
nificant performance improvements. Further improvements could be obtained by in-lining
the specific expressions for the Christoffel symbols, hence doing away with the functions
CHR and DCHR, but this would make the resulting code virtually unreadable; instead,
compiler-driven optimizations were used to further streamline the code.

There is inherent parallelism at many levels in the Von Neumann solver. The initial-
ization of the elements of JACA, JACB, and JACC are all independent and can be done
concurrently, as can the initialization of the A, B, C, and D matrices. However, the .J matri-
ces must be computed before the other matrices can be initialized, so the two initializations
must be done in strict order. The tridiagonal system also has some inherent parallelism,
and can be solved in parallel using a divide-and-conquer method described by Bondeli [11]
for scalar tridiagonal systems and extended by the author for block-tridiagonal systems [19].

The matrix initialization routines are the most numerically intensive portions of the
code, especially for the more complicated Kerr coordinate system that allows following
a string into the interior of a rotating black hole. These routines are parallelized in a
straightforward manner, by placing a directive at the outermost DO-loop, here shown for
the Silicon Graphics parallel computers,

C$ DOACROSS
DOI = 2,N-1
. body of routine
ENDDO

Each of P processors handles a sub-range of the DO index I, representing points on the
spatial grid. This means that parallelism is expressed within each iteration of a time step.
and nowhere else. No significant gains are realized by parallelizing the tridiagonal solver:
this parallelization is only effective for very large linear systems (i.e. grids on the order of
10° points) which have not, to date, been required.

The code was parallelized and runs on a number of platforms, but most production
work is carried out on an 8-processor SGI Power Challenge. Typical execution speeds for
geodesic boundary conditions are roughly 4000 time steps per hour for non-rotating black
holes on 4 processors (grid of 8000 points). and 2000 time steps per hour on 8 processors
for rotating black holes (grid of 8000 points). The optimum number of processors for each
version of the code is determined from speed-up curves, such as the one shown in Fig. C.1.
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Figure C.1: Scalability graph for SGI Power Challenge.
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Figure C.2: Accuracy of Solver.

C.5 Testing Accuracy and Longevity

The analytic expression that is used to initiate solutions in black hole spacetimes can also
be used to test the solver. It was mentioned earlier that the Christoffel symbols in empty
spacetime under Cartesian coordinates are identically zero; however, this is not the case in
spherical polar coordinates where there are 6 distinct, non-zero Christoffel symbols. This
fact was used to test the non-linear portions of the solver by producing a test version
that encodes empty-space spherical polar coordinates and reports the difference between
numerical and analytic solutions. The results are shown in Fig. C.2, where the absolute
relative error (|(Xnum — Xanalyt) /Xanatyt|) averaged over the spatial grid is plotted as a
function of string proper time, 7. The graph covers roughly 10,000 time steps, and the slope
confirms that the method is second-order accurate in the time step size Ar. Additional tests
were carried out for uniformly accelerated strings based on the solutions in Ref. [28] that
produced similar accuracy curves. Other means were used to validate the code, and these
are described in Chapter 4.

Although formal tests were not carried out in the strongly non-linear regime, the con-
vergence and consitency of the numerical method was verified implicitly in the course of
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studying near-critical scattering (see Chapter 5), where low-resolution runs were supple-
mented by high-resolution runs with the same physical parameters (initial velocity and
impact parameter). In each case where high- and low-resolution data sets were combined,
the agreement between the data sets was complete at the level of accuracy required to gen-
erate the graphs shown in Chapter 5, with the high-resolution data set filling in the gaps
in the low-resolution data set. This is a strong indication that the numerical solver is well
behaved under extremely non-linear conditions at the chosen grid sizes.



Appendix D

Metrics and Christoffel Symbols

The following are lists of the various metrics and Christoffel symbols. These expressions,
along with the derivatives of the Christoffel symbols, were generated and verified using
Mathematica and the package T'TC [14] and coded directly as FORTRAN-77 functions for
use in the Von Neumann solver. In this form, they are invoked in the set-up of the block-
tridiagonal matrices and in the computation of the components of the induced metric for
the constraint calculations.

The spacetime metric is written as

ds® = 9uvdz dz¥ | (D.1)

and the Christoffel symbols are derivatives of the metric components, g, .

1
FZU = 59”” (gpu.ar —ZGop,u t gpa',p) s (D.2)
which are symmetric in the lower indices,
ry, =Ty, (D.3)

D.1 Minkowski Metric

The metric of flat spacetime is used in finding solutions to the equations of motion of the
cosmic string that are used as the basis for initial data in numerical calculations and as
background solutions to perturbation calculations.

D.1.1 Cartesian Coordinates
Coordinates: (X9, X!, X2, X3) = (T, X,Y, 2Z)

Metric components:
—goo =91 =92 =¢gaz =1 (D.4)
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Christoffel Symbols: I';, =0

D.1.2 Spherical-Polar Coordinates
Coordinates: (X9, X!, X2, X3) = (¢,,1,6,9)

Metric components:

Non-vanishing Christoffel Symbols:
L, = —r, [l = —rsin?0, T2, = % r2, = —Smfe) D3, = é I3, =cotd (D.6)

D.2 Schwarzschild Metric

The Schwarzschild metric describes static, spherically symmetric solutions to the Einstein
equations of General Relativity. The Schwarzschild metric describes a black hole of mass
M with an event horizon located at ry, = 2M (also known as the gravitational radius).
Schwarzschild coordinates are an extension of the spherical-polar coordinates of flat space-
time; the Christoffel symbols in this metric are discontinuous at the event horizon. The
Eddington-Finkelstein Ingoing coordinate system fixes this coordinate singularity by trans-
forming the time coordinate. The Isotropic coordinate system, which is an extension of the
Cartesian coordinates of flat spacetime, is used as the basis of perturbative expansions. Due
to the large number of non-zero Christoffel symbols (and hence many non-zero derivatives),
this last coordinate system is numerically inefficient and is not used. Instead, numerical so-
lutions are generated using, usually, the EFI coordinate system and related to perturbative
results using the coordinate transformations of Appendix E.

D.2.1 Schwarzschild Coordinates
Coordinates: (X9 X!, X2 X3) = (¢,,7.6,¢)

Metric Components:

2M 2M\ 7! .
goo = — (1 - ’r—) gL = (1 - —r‘) . 9 =77, g3 =r"sin’0 (D.7)

Non-vanishing Christoffel Symbols:

M 2M\ ! M oM M oM\t
F31=—(1‘—) =F$o=_(1—7),[‘{1=—;—(1"r—) (D.8)
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1
e (1 2) e 1 )

r

sin(26)
2

1
F§3=— ,F:{3=;,P33=C0t0

D.2.2 Eddington-Finkelstein Coordinates
Coordinates: (X% X!, X2, X3) = (V,r,0,¢), V=t+r+2M In55; -1

Metric components:

2M .
goo = — (1 - T) L go1 =1, goo =17, ga3 =r*sin’@ (D.9)

Non-vanishing Christoffel Symbols:

Fgo = % . ng = -T, I‘gs = —Tsin29 (D.].O)
M 2M M 2M
I __ I _ 1 _
Poo—r—z(l“T)va——r—z,Fm——r (I‘T)
1 in(26
F§3=—T (l—‘z"f—{') SiDQG,F%2=;,F§3=—Sln‘() )

1
s, = = I3, =cotd

D.2.3 Isotropic Coordinates
Coordinates: (X%, X!. X2, X3) = (T, X,Y,2)

Metric components:

1-4)? M\*
2r
goo (1 g:) » 911 g22 g33 ( 21’) ( )

where r = VX2 4Y?2 + Z2.

Non-vanishing Christoffel Symbols:
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0 MX? 1

o = 3 2
™ 1-(4)
i Mxt (1-3)
i sk _MXJ' 1
P+
. MXt 1
i ., .
FJJ T3 (1+%) (z;é])

where 1,7 =1,2,3.

D.3 Kerr Metric

The Kerr metric describes stationary, axisymmetric solutions to the Einstein equations of
General Relativity. The Kerr metric describes a rotating black hole of mass M and specific
angular momentum a = J/M with an event horizon located at r, = M +VM? — a?. Boyer-
Lindquist coordinates are an extension of the Schwarzschild coordinates; the Christoffel
symbols in this metric are discontinuous at the event horizon. The Kerr In-going coordinate
system fixes this coordinate singularity by transforming the time coordinate and angular
coordinate ¢.

D.3.1 Boyer-Lindquist Coordinates
Coordinates: (X%, X!, X2, X3) = (¢,1,0,¢)

Metric Components:

G0 = — (1 _ 2Mr)
00 = )
_ 4a M rsin®d
goz = -
_
g = —A_
g2 = %
_ Asin?%6
g3z = o)
where
A = r2-2Mr+a®
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: r? + a® cos?0
A = (P+ a2)2 —a?sin?0 A

™
Il

Non-vanishing Christoffel Symbols:

62
e = _py
(% A
asin?f
s = —x (p6* +24r7)
2
r,=%rz = % sin(26)
3
ry, = —% sin26 sin(26)
Ap
Ty = ——
Qoo v
L — a Apsin2g
03 - v
r M-r
a? sin(26)
F%2 = Pg2 =-A F%l = TTax
TA
rh, = -——
22 )
2
T, = _As;n o (r + pa®sin6)
rz2. - gab? sin(26)
o = T
F%z = %
2 _ sim26) [ 5 _ 9 .9 a?sin6
'3 = 7% b° —2a“¢gsin“f {2 + =
3 _ _4ér
Fﬂl A
r3g, = % cot &
.2
3 _ T 5 sin®f
I3 = xQ+2q)+a"p—
r3, = "‘ze [(1+2q) (b* —2ga®sin®d) — 2qa®b® =™ sin’F)
where
¥ = r?4a?
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= Z72M (E-2r?)
g = (28)7!(-2Mr)

D.3.2 Kerr Coordinates
Coordinates: (X9, X!, X2, X3) = (V,r,6,9)

Metric Components:

_ 1 2Mr
goo = )
gor = -1

_ 2a M rsin?0
gi3 = —asin®d
g2 = X

2 232 _ A a2 sin28
g3 = sin8 (r* +a°) a”sin
=
where

A = r’—2Mr+d®+Q°
= r2 + a2 cos?6

Non-vanishing Christoffel Symbols:

[y = Mp 3'3
(%)
o _a®Mrsin2
” ()°
a2 sin 26
To = ——55
b2r
0 —d ——
F22 - n
ro. - _aMb2 $_ sin%8
03 (2)3
;2
o _ arsin“@
F13 - b))
o, — a® M r sin26 sin? §
23 (2)2
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0
P33

L
FOO

L
F12

L
l"-‘22

1
T3

1
F33

_ b2 sin®0
8 (x)°
4a’r (a® +r(M + 2r)) cos 20 — a*(M — r) cos 46)
-

(a*M + 3a*r — 4@’ M+? + 8a®r° + 8r°

_a2 sin 20
23
rA

=
_aMAE_ sin? 8

(z)®

a sin® 6
()
A sin?0

8 (z)

4a’r (a® + r(M +2r)) cos 20 — a*(M — r) cos 46)
a®> M r sin26

@’

(r(r + M) + a® cos? 6(r — M))

(a*M + 3a*r — 40’ M2 + 8a®r3 + 8r°

a? sin20
2%
a M rb?sin26
(£)°
a sin 260

23y
sin 26

16 (£)*
878 + 4a?A (a® + 2r%) cos 20 + a* A cos 46)
aM3Z_

(£)?

_ 2aMr cot@
(£)?
a cotd
=

ar

=
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a2 M sin?26%_
(=)*

r

P
cot @

8(x)?
a sin? 6

(=)®

(cos® 8 (2a%rb?

a*(M —r)sin?6) +r (r* — a* + a*(a® — Mr)sin®9))

1'2-{~a2

r?2 — a2 cos?8

(3a* + 8a>Mr + 8a’r? + 8r* + 4a%A cos 20 + a* cos 46)
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Appendix E

Spacetime Coordinate
Transformations

This appendix lists the coordinate transformations that were used to map between various
coordinate systems. These transformations were used to perform coordinate transformations
for visualization of numerical data and to generate initial data for the various versions of
the Von Neumann solver.

The numerical worldsheets are computed and stored in the basic coordinates of the
chosen spacetime. Graphics are generated based on a 3D Cartesian box. Although the
displays used in this document simply discard the time coordinate, the transformation
functions map the time coordinate as well for completeness.

Some of the coodinate transformations shown here are also used to transform the initial
data for the numerical solutions, which are expressed in Cartesian coordinates, to the correct
spacetime coordinates used by the numerical solver.

E.1 Transformations for Schwarzschild and Boyer-Lindquist
Coordinates

Schwarzschild coordinates and Boyer-Lindquist are effectively equivalent (no rotational
transformation is applied in Boyer-Lindquist), so the mapping to display coordinates is
simply a Spherical-Polar coordinate transformation.

The coordinates are designated as

(X%, X', X2 X3 = (T,R.0,¢), (E.1)
and transform as

T =T (E.2)

X = Rsinfcos¢

Y = Rsinfsing

Z = Rcos8,
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and

T =T (E.3)
R VX24+Y2+22
VXTI Y2
6 = arctan ——
Z
¢ = arctan X

E.2 Transformations for Eddington-Finkelstein In-going Co-
ordinates

Eddington-Finkelstein In-going coordinates are slightly more complicated in that the time
coordinate is remapped to an ingoing null coordinate V. The coordinates are designated as

(40]

(X% X', X% X% = (V,R,6,¢) (E-4)
and transform as,
T = V—R—2Mlog|%—1 (E.5)
= g 2M .
X = Rsinf cos¢
Y = Rsinfsing
Z R cos@,
and
vV = T+R+2Mlogl£-1 (E.6)
[2M
R = VX24+Y24+22
VXTEY?
§ = arctan —————
Z
¢ = a.rctan-)—{-.

E.3 Transformations for Kerr In-going Coordinates

Kerr In-going coordinates are slightly more complicated still, remapping both the time
coordinate to an ingoing null coordinate V and transforming to a co-rotating frame of
reference. The coordinates are designated as [40]

(X, X' x2, X3 =(V,R,0.9), (E.7)
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and transform as

T = V-—R-Mlog|A| (E.8)
2 - -y — a2
- M log R-M M?—a —M(l—log|4M2|)
M2 —-a R—-M+VM?-a?
X = Rsinf cos¢
Y = Rsinfsing
Z = Rcosé,
where A := R?2 —2MR + a? and
~ a R—M—VM?-aq?
p=¢— log . (E.9)
2VM? — a2 R— M+ VM?-qa?
These transformations are derived by integrating the infinitesimal relations [40]
dp = do+ %dr (E.10)
- 2, 2
v = daT+ % ar.

It can be readily verified that these transformations reduce to those for EFI coordinates
in the limit a — 0.
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