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Abstract

Many lossy compression algorithms have been proposed that perform well for high
compression ratios. but are computaticnally intense. Oun the other hand, there are
many simple algorithms that perform poorly at high compression ratios. An algorithm
that incorporates both computational simplicity and acceptable performance at low
bit rates would have miany potential applications. In wireless communications, for
example, where computing power and transmission speed are important factors, the
time required to compress and send image data would need to be reduced signiticantly.
Two new methods are proposed iu this thesis, one spatial domain based and the
other transform domain based, which make improvements over existing compression
technology in their respective domains. Both of the new schemes can be shown to have
advantages over the methods upon which they were based, and both are theoretically

simple computationally, making them ideal for use in many circumstances.
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Chapter 1

Introduction

The compression of digitized images is a prominent part of current computing scien. c.
Modern compnting power and storage has reached the point where the displaying
of large, detailed images is not only possible, but in high demand for almost any
conceivable application. One need look no further than the increasing popularity of
the world wide web to realize that the storage and transmission of images is and will
continue to be an important aspect of computing.

Image compression can take two forms: lossless compression, where the compres-
sion and decompression process results in a reconstructed image which is identical to
the original, and lossy compression, where the reconstructed image differs from the
original. In general, lossless image compression will not result in large compression
ratios. Lossy image compression. on the other hand, can result in very impressive
compression, often with very little loss to the reconstructed image. Depending on the
application a lossy compression algorithm may be more desirable than lossless for this

reason.

1.1 Redundancy in Images

Any compression scheme, whether it is specific to images or some other form of data,

relies on redundancies in the data in order to achieve compression. A completely



random data stream will not contain many redundancies, and thus will not compress
well. A digitized image, which we can generally assume will be representative of
some vi~iial phenomenon and not random intensities, will contain much redundancy.,
In image compression, there are three basic types of redundancy that need to be
considered in order to effectively reduce the space required by an image: coding

redundancy, interpixel redundancy, and psychovisual redundancy.

1.1.1 Coding Redundancy

When symbols from a data stream are being coded, certain symbols will ocenr with
higher or lower frequency than others, assuming that the data stream is not randon.
For a given data stream with N symbols, where each symbol 7y, oceurs ng times, we

can calculate the probability of each symbol occurring as:

p(ri) = k=0,1,...,N—1 (1.1)

In order to minimize the space required in the coding of the symbols, we must
minimize the equation:

N-1

Lavg = Y U(ri)p(rk) (1.2)
k=0

where [(r) is the number of bits used to store symbol 4.

In the general case, using a non-variable coding scheine to code the symbols (in
bits per symbol, where m = [log, N]) will not minimize the equation. Clearly, less
bits need to be allocated to more common symbols, which implies that more bits will
be needed for less common symbols.

Using this principle, the Huffman coding scheme generates a variable length code
which effectively minimizes equation 1.2 for a fixed value of N, subject, to the con-
straint that the symbols are coded one at a time[9, 13]. The constraint allows for the
fact that there can be advantages to coding symbols in groups, which may lead to

further redundancies in certain situations.



Another popular coding scheme, arithmetic coding[9, 1, 33]. does not operate on
the same principle of mapping each input symbol to a code symbol on a one to one
basis, as is done by Huffman coding. Rather, the entire data stream is converted
into a single arithmetic codeword. Theoretically, arithmetic coding can code an input

stream in the lowest possible number of symbols as dictated by information theory.

1.1.2 Interpixel Redundancy

Interpixel redundancy is based on the observation that in an image there exist simil-
arities between the intensity values of neighboring pixels. This type of redundancy in
two dimensions is one of the major differences in the compression of image data and
one dimensional data streams.

One of the simplest methods for eliminating interpixel redundancy is to use what
is known as predictive coding. In this scheme, each pixel value is “predicted” from
the values of a neighboring pixels in such a way that only the difference between the
predicted and actual value ne~d be stored. Because of interpixel redundancy, the
difference values are generally small, thus creating a low entropy source which will be
more effectively coded.

Other means of reducing interpixel redundancy include transform coding, which
is frequency based rather than spatially based like the predictive coding method.
Instead of considering the direct redundancies between the pixel intensities themselves,
which is done in spatial domain methods, transform coding converts the image into
a set of frequency coeficients using a reversible transform. The advantage of such
transforms is the generation of transform coefficients which are inherently easy to
quantize (resulting in lossy compression). The discrete cosine transform (DCT) used

in JPEG compression{20, 34] is an example of transform coding.

1.1.3 Psychovisual Redundancy

A final type of redundancy is that which is observed by the human eye. In an im-

age, certain pieces of visual information may be more or less important than others.



Psychovisual redundancies are often eliminated in a compression scheme by the quant-
ization of pixel or transform values. By selectively quantizing pixel values in image
regions with little detail. for example, the amount of space required to store an im-
age can be reduced without losing any important information. Often the results of

quantization are not apparent to the human eye except on close inspection.

1.2 An Image Compression Model

A lossy image compression scheme will generally have components which deal with
each of the three types of image redundancies. A generic lossy image compression

model will consist of the following components:

s Mapper: deals with interpixel redundancies by transforming the image into a

nonvisual form.

o Quantizer: eliminates psy-hovisual redundancies by quantizing the output from

the mapper. The mapper and quantizer can often be thought of as a single block.

o Symbol Encoder: handles coding redundancy by assigning a code (gencerally

variable length) to the output from the mapper/quantizer.
Siniilarly, the decompression model wonld consist of the following:

o Symbol Decoder: decodes the symbols which have been coded by the symbol

coder.

o [nverse Mapper: converts the decoded nonvisual information back to visual

information.

The quantizer module will, of course, be the only module which will not be present in
any lossless compression scheme. Figures 1.1 and 1.2 show the encoding and decoding

process as described in[9].



Data ——= Mapper Quantizzr Symbol encoder > Compressed data

Figure 1.1: Source encoder

Compressed data ——  Symbol decoder Inverse mapper | Reconstructed data

Figure 1.2: Source decoder

1.3 New Approaches to Image Compression

In this thesis two compression methods will be presented which often result in sig-
nificant improvements over previous methods. Both new algorithms are based on
previously existing schemes, but have been modified from their original form result-

ing in some of the following improveme; . <
o Improved image quality, as measured mathematically.

e Improved visnal image quality. It will be shown that visual quality and math-
ematical quality (different measures of reconstructed image error) do not neces-

sarily correlate.
e Minimized computativial complexity

The tirst of the proposed schemes is based on the spatial domain quadtree com-
pression method developed by Shusterman and Feder[28]. By making what would
scem to be very simple and almost obvious modifications to the reconstruction pro-
cess. the image quality is significantly improved, and at the same time the algorithm
complexity is reduced.

The second proposed scheme is a transform domain method based on a variation of
the wavelet transform method developed by J. Shapiro[27]. By adding vector quant-
ization and several optimization routines, the quality of the reconstructed images can
increase for busy images (images containing an abundance of detail), at low cost to

the computational complexity.
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Many publications describe compression results in terms of very few images and
bit rates. By doing so. the reader is often not necessarily convineed of the algorithin's
success. The methods presented herein, however, have been tested on a large image
set which includes a variety of images and different image types. Consequentiy, the

effectiveness of the new schemes is more clear.

1.4 Outline of Thesis

This thesis is devoted to two new lossy compression schetiies, one spatial domain
based. the other transform domain based. Chapter 2 is devoted to the fiest, which is
based on quadtree compression similar to that described by Shusterman and Feder|25).
Chapter 3 explores a wavelet compression algorithm based on the Embedded Zerotree
Wavelets (EZW)[27] and SPIHT([21] algorithins. Chapter 4 summarizes the findings.

comparing the execution and results of the two algorithms.



Chapter 2

Quadtree Compression

2.1 Introduction

Many algorithims have heen developed which perform well for low bit rate applications
(less than 0.3 bits per pixel). One need look no further than Model-based image coding
[2] or any recent wavelet transform methods [27, 24] to see that such algorithms exist
and give good results. However, the higher conceptua! and computational complexity
of such algorithims encourages the further examination of some of the simpler spatial
domain compression methods. Of these, one of the most common is the quadtree
decomposition method.

Conceptually, quadtrees may be one of the simplest means of compression avail-
able. It is this simplicity, as well as the potential for relatively good performance
for low bit rates that make quadtrees z desirable choice for a compression scheme.
Quadtrees are used for a variety of applications. Many papers have been written on
their usefulness, some of which explore various propeities and applications of quadtrees
and quadtree-like structures [14, 32, 23. 35, 11, 18], while others concentrate on effi-
ciency and different methods of storage {15, 7, 8, 22, 10, 26, 12]. The quadtree methods
that are of particular relevance to this research are those which deal directly with the
compression of grayscale images {28, 29, 30. 31].

Strobach describes a very successful compression method based on the quadtree[30]

7



whicl is based on “describing”™ quadtree leaves in terms of a linear model: f(a.y) =
a+br+cy. Given the plane parameters [a. b, ¢] for a block of size .V x N, it is possible
to efficiently compute the same parameters for a block of size 2V x 2.V, This method
reports a PSNR (Peak Signal to Noise Ratio) of greater than 32dB at 0.5 bpp. and is
relatively simple computationally when compared to other current methods.

Another method, developed by Shusterman and Feder[28], was particularly ap-
pealing because of the apparent ease with which it could be moditied to test possible
combinations with other compression methods, as well as its apparent computational
simplicity. In this chapter, we will outline some improvements made to this algorithm.
analyze its complexity, and make comparisons to other methods. Much of the content
will be devoted to the discussion of the new algoritl:m and differences hetween it and

that of Shusterman and Feder.

2.2 The Quadtree

The concept of a quadtree is quite simple. It involves the construction of a quadtree
structure (each node has either no children or four children) in which cach leaf node
represents a homogeneous region. The definition of “homogencous™ in this context
depends upon the type of compression which is desired. In the lossless compression
of a binary image, for instance, a homogeneous region would he defined as a region

that is either all black or all white.

NN i SN /—\\\
X NI} us
\/ \\/ '\\/

Figure 2.1: Top-down quadtree decomposition

There are two ways in which quadtree decomposition can be done: top-down or

bottom-up. In the top-down procedure each sub-image (beginning with the eitie

8
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Figure 2.2: Bottom-up quadtree decomposition

image) is examined to determine if it meets whatever homogeneity criterion is appro-
priate. If the eriterion is not met. four new nodes (each representing one quadrant
of the snb-image) are ereated. Otherwise. the node representing the sub-image re-
mains as a leaf containing information about the region it represents. The bottom-up
vrocedure considers first the pixel level of the image, which requires that a complete
quadtree structure exist. If any four “neighbor™ pixels meet an appropriate merging
criterion. their corresponding nodes in the quadtree are eliminated, and a resulting
average value is stored in the parent node which becomes a leaf. It is well known and
casy to see that 1 ¢ bottom-up procedure is superior. Figures 2.1 and 2.2 illustrate
the two alternatives.

The actual coding of the tree can be done by storing the quadtree structure as a
string of 0's and 1's, and the:: storing separately the values of the leaves. The quadtree

structures from the previous two figures is as follows:

/]
/i

Figure 2.3: Quadtree Structure

The branches in the above figure (from left to right) indicate the north-west, north-
cast, south-east and south-west children respectively. The actual order is unimportant.
The resulting structure code, if we use NW-NE-SE-SW DFS traversal using a 1 to
represent a node and a 0 for a leaf would be: 11001101010011011. A breadth first

(=4



10
traversal would yield the code: 1-1011-0011 0100 1011. Auy method of storage which

allows the quadtree structure to be reconstructed is acceptable. Note that the botton

level need not be stored since evervthing at the pixel level is implicitly a leaf.

2.3 Shusterman and Feder’s Algorithm

Since the proposed algorithm is based primarily on that presented by Shusterman and
Feder[28], we will briefly outline their basic compression algorithm in this section.

Before proceeding to the algorithm itself. the notation that will be used to deseribe
the quadtree structure will be explained. First of all. in a quadtree representing an
N * N image (where N = 2")! the tree itself will contain n + 1 levels, which will be
numbered starting from the bottom. The quadtree elements will be referred 1o in the
following manner: r;(J, &) will represent the quadiree node at level i with coordinates
(J. /). The children of such a node (if it is not at the bottom level of the tree), in the
order NW-NE-SE-SW, would be: o,y (2),2k), o,o1(2) 4+ 1.28) ey (25 + 120 4 1)
and ;-1 (25. 2k + 1).

2.3.1 Quadtree Decomposition and Bit Allocation

The *value” of any internal node in the tree is calculated 1o be the average of the
values of its children. That is, for all levels except the lowest level (whicl coiains

the values of the image pixels):

. Il _
zi(y. k) = ZZ Z Loy (29 + L2k + ) (2.1)
(=0 m=0
Note that the division at this point can be done as a bit shift operation.

The basic algorithm is based on the idea that the merging of four siblings oceurs

when their values differ from their parent’s value by less than a certain threshold T,

'Images of any dimension can be compressed using this method and that presented in the next
chapter, but must be padded in some way to fit the dimension requirement.



which will hereafter be referred to as the decomposition threshold. Thus. we only

merge siblings iff the following condition is true:

1
ﬂ le(oh) = o (25 + L2k+m)| ST (2.2)

=0

The value of the threshold. however. is not static throughout the quadtree. Becauase
merging siblings at higher levels in the tree can potentially cause greater distortion
in the resulting image as a conscequence of the increasing size of the area represented
by higher level nodes. it seems reasonable that the threshold should become smaller
at higher leveis. An optimal solution described by Shusterman and Feder [28] is verv
expensive, but an acceptable suboptimal solution is presented. in which an initial
decomposition threshold 7) is given for the first lev<i, and the thresholds at the

other levels can be calculated by:

: . _ N
2SISN 1,2;:1- (23)

Thus. the decomposition threshold decreases by a factor of two each time the level is
incremented, and formula (2) becomes:
1

ﬂ lei(J k) = 2oy (2] + L2k + )| < T; (2.4)

{m=0

The bit allocation is also found to vary by level. The near ¢ptimal bit allocation

for level ¢, B;, is found using the formula[2§]

1 2L
Bi = 3 log 7% (2.5)

where o? is the variance of the leaf values at level 7, Ly is the leaf count of the
quadtree, and D is a distortion constant. The larger the value of D, the fewer bits
will be used at each level to represent the leaf values.

The compression algorithm[28] using the above information is:

Step 1: Choose 7. Let i =1:N =21,



Step 2: For j.k=0...... V-1
IF for Lo = 0.1 all w2y (2 + 420 4+ ) are leaves
calculate », according to (2.1)
perform the test according to (2.1)
IF the test is true, &, (J. k) is a leal.
ELSE r;(j. k) is a node.

..

Step 3: IF no leaves were produced by Step 2 goto Step .

ELSE N = 2:i =i+ 1T, = &2 poto Step 2.
Step 4: Code the tree structure information.

Step 5: Calculate L,;: Cthoose a desired distortion level D: i = 0:

Step 6: Calculate leaves variance o7,

~1

Step 7: Allocate bits for level 1 leaves according to (2.5).

o0

Step
Step 9: i =1+ 1:1F 1 >n STOP.
ELSE goto Step 6.

Quantize level 1 leaves.

Using this algorithm. the size of the tree structure is refatively small when com
pared to the size of the pixel data. Table 2.1 shows the averages of several test runs.,

varyving the bit rate?.

Bits per Pixel | Structure Size (%)
1.0 17
0.5 21
0.2 22

Table 2.1: Quadtree structure size as a percentage of total compressed data size

ZHere as well as in the rest of the thesis, it is assu .~ that the original tnages require ¥ hits peer
pixel in uncompressed form



2.3.2 Image Reconstruction

Ounce the gquadtree is reconstructed from the coded data it becomes a simple matter
to convert the tree back into image form. However, unless some form of smoothing is
done the resulting image will be blocky, as each leaf in the quadtree will represent «
square region with a single intensity value. The use of a reconstruction filter whic!:
propagates the values of the quadtree leaves down to the pixel level in a manner
which reduces blockiness is described by Strobach[29]. Shusterman and Feder(28]
recommend the use of this reconstruction method. The filter itself is the following 2-d

mask:
0.0285 0.1519 —0.0285
F=1 01519 09787 —0.1357 (2.6)
—0.0285 —0.1357 0.0159

The reconstruction of leaf values at level i — 1 from level 7 is then done as follows:
;l.‘,-(j -1,k = l) ;l‘i(j,k——- 1) J,(J + 1)(k - 1)

Xi()k) = ri(y = 1,k) ri(j k) ri(y + 1)(k) (2.
ai(j— i k+1) oG Ek+1) G+ 1)(k+1)

o
-1
~

1 00 0 01
R(j = 0 l 0 *R] = 0 1 O
0 01 1 00

forim=0,1

i1 (25 + 1,2k + m) = RiFR,, X:(3,k) (2.

o
@]
o

What the above essentially amounts to is placing a (rotated) version of the filter
F over the leaf value at x;{j,k) and its 8-neighbors, and calculating the “value” of its
children. Suppose we have the following values in the X matrix (2.7) for some values

of i, . k:
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200 195 195
X =1 190 185 160 (2.9)
190 80 "0

The resulting values for the four children of the leaf ri( . k)will be:

202 200

(2.10)
175 158

The numbers which have been calculated above illustrate what was consider to he one
of the problems with this reconstruction filter. For instance, the valne of i1 (27, 2K)
15 202. It seems reasonable, however, that the value should be somewhere in the range
of (185. ..., 200) as indicated by the values in the upper left portion of the X matrix
(2.9).

The filter given by Strobach{29] seems to over compensate edges, making the hright
side of an edge brighter than it should be and the dark side darker than it should be,
creating ghost edges that disappear a few pixels away from the actual edge. In a
relatively smooth area, it performs well. It would seem that the problem is caused

by an assumption that the filter must be 3x3 and include the values of neighbors that

perhaps should not influence the reconstructed value of the child.

2.4 Modifications and Improvements

The reconstruction phase of the algorithm is changed significantly from Shuster-
man and Feder’s method. Different sized filters as well as the introduction of a
reconstruction threshold, which removes the smoothing of sharp edges, have con-
tributed to give better results to the output. This section will be devoted to explaining

these changes, and documenting the improvements that result.

2.4.1 An Optimal 2x2 Filter



(b)

Figure 2.4: An illustration of 3x3 and 2x2 filter reconstruction. The black box shows
the child leaf which is to be reconstructed, and the grey shaded boxes show the neigh-
hor leaves whose values will influence the final value of the child. (a) 3x3 filter; (b)
2x2 filter

Consider Figure 2.4. It should be clcar that generating a1 intensity value for a
child leaf by using the intensity values of neighbor leaves which do not border on the
child does not make intuitive sense. Instead of using a 3x3 filter in this way, a 2x2
filter seems to be a more reasonable choice. A a 2x2 filtc which considers only those
neighbors at level 7 that border on the child to be reconstructed at levei : — 1 may
outperform a 3x3 filter, and be simpler computationally.

The process of finding an “optimal” filter that minimized MSE (Mean Squared
Error)® as was done by Strobach to calculate the values of his 3x3 mask, was designed
to generate a different filter for each level of the quadtree. The results of running
the search process, which attempted to find 2x2 filter values that minimized the MSE
on a set of 15 different images, showed that there were significant differences in the
“optimum” filter values at the different levels. Thus, a search was made for each

quadtree level, and the result was that improvements were made in the MSE values

SMSE=+4 Z?:l (e; ~ é;)2, where ¢ and ¢ are the original and quantized signals respectively

15



of the resulting images. The values of the filters are shown below:

0.0133 0.0887 E 0.0010 0.0784

1 = 2 =
0.0887 0.8093 0.0781  0.8391
50186 0.0375H 0.0000 0.0000

= F4+ =
0.0375 0.9064 0.0000 1.0000

Where F; is the filter to be used at level i to generate values at level i — 1. For any
Jevel 2 such that 7 > 4, the filter [, is used, as it was found to be the case that the
MSE was minimized using this filter at all levels above 3.

Thus. the reconstruction of the leaves would be computed as before (2.8), but with

the reconstruction filter itself taking a ditferent form:

Al A2, 0
Fi=1 A2, A3, 0 (2.11)
0 0 0

Note that because of the reduced number of coefficients in the filter, the computational
complexity of the algoritum is reduced.

The equation for the reconstruction process then bhecomes:
ri1(25 + 1,2k +m) = RiF R, Xi(), k) (2.12)

The results of using this filter as opposed to Strobach’s can be seen in the images
shown in Figure 2.5, which use the same initial values of T} and N, with the resulting
images being compressed to about 0.42 bpp. The original image is Lena (see Fig-
ure 2.9), which has been cropped to show more detail. The PSNR of the image shown
in Figure 2.5(a) is 31.02, and that of the image in Figure 2.5(b) is 31.77. These res.
ults differ from those given in a paper accepted for publication at ICPR’96[16] which
I co-authored, since a different version of the Lena test image was used. The PSNR
is calculated according to the following formnula [30]:

2552
MSE

FSNR = 10log dB (2.13)



Figure 2.5: Comparison of Methods: (a) results using Strobach’s single filter; (b)
results using multiple filters.

A higher PSNR value indicates a smaller mean squared error, and generally (although
not always) a better visual quality image.

Aside from the increased PSNR in the right image, there are some differences
worth noting. First, the right image appears to be more blocky. This is caused by the
final filter Fy; which does not contribute to the smoothing of the final image. Second,
the left image seems to contain “ghost” edges beside each sharp edge in the image,
which would seem to be similar in nature to the results seen in the previous example
(2.10). It would appear that a smooth gradient, present in the left image is sacrificed

for better edge handling in the right image.

2.4.2 Smoothing Alternatives

Because of the potential blockiness caused by the use of multiple filters {(which decrease
the MSE of the image), it may be desirable to use a single smoothing filter in place of

the multiple filters. While such filters do not in general generate better MSE results
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than multiple filters, they are often able to smooth out all of the resulting blockiness.
A filter which seems to be well suited to this purpose (but not necessarily to the

optimization of MSE) is:

0.00 0.13 0
F'=|013 074 0
0 0 0

Figure 2.6: A comparison of the two new filter schemes, using the Lena image com-
pressed to 0.2 bpp: (a) resw.it of using the multiple filters, PSNR=29.17; (b) result of
using the new single filter, PSNR=28.63.

Consider the images in Figure 2.6, both compressed to approximately 0.2 bpp.
Figure 2.6(a) has a PSNR of 29.17, Figure 2.6(b) 28.63. Note the relative smoothness
which results from the use of the single filter.

It should be noted that Figure 2.6(b) contains some noticeable “bleeding” artifacts
in the shoulder area which are a result of the reconstruction process’ inability to
distinguish between regions. This shortcoming will be discussed and eliminated in

the following section.
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2.4.3 Reconstruction Threshold

A problem with the reconstruction algorithm is that it ignores edges. When an edge is
enconntered in an image, the reconstruction process will attempt to smooth the areas
around it, which may lead to “bleeding” of dark regions onto light regions, and vice
versa. A simple solution is to introduce a reconstruction threshold, which prevents
this from occurring. When considering whether or not to use the value of a leaf’s
neighbor, the difference between the two would be compared to the reconstruction
threshold. If the value is within the threshold, we proceed with the reconstruction as

previously described. Otherwise, we ignore the value of the neighbor.

Figure 2.7: Window Image

Figure 2.7 is used as an example for the reconstruction threshold. This image.
which contains many sharp edges, will be used to illustrate the more extreme effects
of the bleeding.

Thus, the X;(j, k) matrix (2.7) would change in the following manner:
for [,m=-1,0,1; ({,m) # (0,0)

IF |o:(j + L.k + m) — 2(j. k)] < RT then z;(j + L.k+m) = z:i(j + [,k +m)
ELSE /(j + L.k + m) = 2;(4, k)



r=Lk=1) wlk=1) i+ D)k=1)
Xk = -1k Gk G+ DR (2.1)
rJ =Lk + 1) oGk ) G+ DK+

The equation for the reconstruction process then becomes:
;1‘,'_1(2;}' + [. 2]\ + III.) = [{[FI Hm.\’,"(j. l\) (llr))

in the general case, image quality can improve with the use of a reconstruction
threshold. However, it is difficult to determine what value should be given to the
threshold and in which cases the threshold is not required. Images which are com-
pressed at higher bit rates. as well as those which contain many sharp edges between
contrasting regions would appear to benefit the most.

Interestingly enough, although the reconstruction threshold gives improved results
when the single filter F' is used, its use does not contribute visnally or numerically
(in terms of MSE) for the reconstructed image when filters /) — gy are used for the
different levels.

A good example of how the reconstruction threshold can be used to improve image
quality can be seen in the images in Figure 2.8. Figure 2.8(a) does not use a recon-
struction filter, while Figure 2.8(b) does. The corresponding etror images are shown
in Figure 2.8(c) and (d). Note the superiority of the error image in (d).

Because of the increased visual image quality resulting from using the single fil-
ter in combination with a reconstruction threshold, it would appear to be a hetter
alternative than the use of the multiple filters described earlier. When referring to the
improvements made to Shusterman and Feder’s quadtree algorithm, the single filter
and reconstruction threshold method (or SR quadtree compression, as it will he called

hereafter) will be implied.



(c) (d)

Figure 2.8: Reconstruction and Error Images for Figure 2.7

2.4.4 Coding Alternatives

Rather than simply quantizing the leaves and packing bits into an array for out-
put, comparisons were done with Huffman coding and Arithmetic coding schemes to
determine which would generate the best results. The input to the Huffman and Arith-
metic coding routines was the quantized leaf values. In general, Arithmetic coding
performed best, although the margin of improvement over bit packing is quite small,
indicating that the bit allocation suggested by Shusterman and Feder is indeed very
near to optimal. All of the results reported in this thesis, however, are based on the

use of the Arithmetic coding scheme, since it does give a slight improvement without

-
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adding a significant amount of complexity.
Table 2.2 gives a comparison of the three alternatives that were considered, using
the 512x512x8 image Lena and varving values of the initial decomposition threshold,

Ty.

| Sizes of compressed files (in bytes) |
Lena
T, | Bit Packing | Huffman Coding | Arithmetic Coding
10 41458 41356 38989
20 14199 15335 12443
30 9413 10247 8513
40 6396 6748 6128
50 4485 4961 4318
60 3613 4037 3544
75 2397 3242 2803

Table 2.2: Comparison of coding alternatives

2.4.5 Results

In this section, we will use several graphs and tables in order to illustrate the results
of the algorithm. Several Rate-Distortion curves (hereafter referred to as R-1) curves)
will be presented for the methods described (as well as JPEG compression). The
methods graphed will be the original presented by Shusterman and Feder, the modified
version including different filters for each level, and the version which includes a
single 2x2 filter and a reconstruction threshold. The above methods will be referred
to as “SF” (Shusterman and Feder), “MF” (Multiple Filters) and “SR” (Single filter
and Reconstruction threshold). In addition to the R-D curves, a table containing
information relating the results of the new algorithm to JPEG compression will he

shown.



Test Image Set

In order to adequately determine the saccess of any compression algorithm, the al-
gorithm must be tested on a wide range of test images. Many compression schemes
are compared to previous methods based on their performance with respect to very
few 1mages - in fact, often only one test image is used, usually the Lena image. Four

test images that will be used more commonly in this thesis are shown in Figure 2.9.

Figure 2.9: Commonly used test images: (a) Lena; (b) Io; (c) Barbara; (d) Mandrill.

Since many different versions of the popular test image Lena are in existence, it

should be noted for those interested in making comparisons that the image used in
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this research was obtained from ftp://ipl.rpi.edu. and is the same version of Lena
used in the wavelet compression paper by Said and Pearlman[21].

There are several different types of test images which should be used in testing a
compression scheme. The major groups of images which will be utilized for testing in

this thesis are the following common and not necessarily mutually exclusive sets:

e Busy images: plenty of detail. e.g. Barbara

Smooth images: low detail. e.g. Lena

e Portrait images: common images of human faces

Nature images: NASA images, outdoor scenes

Computer generated images



Numerical Results

Since the implementation of the quadtree methods does not provide for the specifying
of an exact bit rate (the T' parameter will vary the degree of compression, similar to
the quality parameter in JPEG compression), tablular summarizations of the results
are not useful. Thus, graphical representations of the results. with the bit rate on the
horizontal axis and (inverse) PSNR on the vertical axis (known as a Rate-Distortion

or R-D curve) will be nused instead.

R-D Curve for Lena

L] T ¥ T ¥ L T T T ¥ T

26

PSNR

1 ] 1 1 1 1 1 1 i ] 1
38

0.1 0.2 0.3 0.5 1.0
Rits Per Fizel

Figure 2.10: PSNR results f. * Lena

Figure 2.10 clearly shows that the modifications made to Shusterman and Feder's
algorithm result in a noticeable improvement in the image quality for Lena as meas-
ured by the PSNR. Note that in many cases, especially at low bit rates, the multiple
filters (MF) give the best results. However, the PSNR values for the SR are very

similar. and are consistently better than the original single filtering method.
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R-D Curve for lo
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Figure 2.11: PSNR results for [o

Similar results are observable in the “lo™ image when the results from the
gorithms are compared in Figure 2.11. Agamn. we can see a improvement in results
at every bit rate.

In order to make a complete comparison, the results should be compared to JPEG
compression. In the following comparisons. only JPEG compression and Sk resalts
will be compared for two reasons: first, the SR scheme gives the hest visual results,
regardless of the fact that MR often gives better PSNR values; second. the resulting

graph will be less cluttered than if all the filtering methods were ineluded.
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R-D Curve for Lena
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Figure 2.12: Comparison to JPEG compression using Lena

Fignure 2.12 shows that the modified algorithm performs better than JPEG up to
approximately 0.2 bpp. It may also be noted that visually, the JPEG results are quite
noticeably blocky for bit rates lower than 0.4 bpp, which may make it less visually

appealing than the SR results, as can be seen in Figure 2.16.
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Figure 2.13: Comparison to JPEG compression using lo

Again as can be seen in Figure 2.13, the modified algorithm performs hetter than
JPEG. in this case at higher bit rates than the previous example, up to about 0.35

bpp. At higher bit rates, the algorithm gives almost identical PSNR results to JPEG.



R-D Curve for Mandrill
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Figure 2.14: Comparison to JPEG compression using Barbara

Figures 2.14 and 2.15, showing results for Barbara and Mandrill respectively.
indicate that the R-D curves for these two images are similar to that of Lena. The
SR method wins handily at the lower bit rates, but is surpassed by JPEG between
0.2 and 0.3 bits per pixel. Again, emphasis should be given to the fact that JPEG’s
blockiness often makes the SR algorithm a desirable alternative at bit rates higher

than what the graphs would seem to indicate.



R-D Curve tor Barbara

T 1 T L] T T T T T LEBEA

16 +

22 +

24

PSNR

26

30 f
32 f

34

1 1 "l 1 N 1 1 A A L H

0.1 0.2 0.3 0.5 1.0
Bits Per Pixel

Figure 2.15: Comparison to JPEG compression using Mandrill

Since the results described above consider only four distinct mmages and thus may
not present a complete picture of the results, some additional data has been recorded
in Table 2.3. The results were compiled using 14 of the 256x256 images from the test
image set, again using the SR reconstruction scheme to obtain the quadtree results,
Instead of showing the R-D graph for each of the 14 images, two pieces of information

are recorded from the R-D curves of each test image:

1. The point at which the R-D curves cross {in bits per pixel). At bit rates lower

than the given points, SR outperforms JPEG.

2. The positive improvement in PSNR given by using SR as opposed to JPEG at

approximately 0.2 bits per pixel (the R-D intersection is at a bit rate greater

than 0.2 bpp in each case, so APSNR will always be positive) is also given. A

bit rate of 0.2 bpp is used
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Tinage R-D Intersection | APSNR at 0.2 bpp
Bay 2.26 0.9
Build 3.20 0.8
Car 0.25 0.9
Carrier 0.27 0.9
Earth 0.26 0.9
Flower 0.28 1.8
Fruit 0.27 1.0
Lena 0.31 1.5
Model 0.25 0.7
Monalisa 0.29 1.0
Pfeifer 0.26 1.2
Potala 0.28 0.9
Street 0.30 0.5
Sunset 0.25 1.6

Table 2.3: Comparison to JPEG compression

Note that in each case there is a positive result in favour of the SR reconstruction
scheme. The first two images show very impressive results similar to those which can

be seen in the R-D curve for lo 2.13

2.5 Complexity

In this section, the theoretical complexity of the proposed algorithm will be examined
and compared to the complexities of Shusterman and Feder’s method{28)], Strobach’s
RPD coding[30] and JPEG compression[20]. Computationally, the improved recon-
struction process performs better than the original process suggested by Shusterman
and Feder, and the decomposition process can theoretically outperform both RPD
coding and JPEG.

It is clear that at low bit rates, the leaf terms become less significant. and the
number of required operations decreases. The approximate numbers of operations

required for images compressed to 0.80 bpp and 0.16 byp are shown in Table 2.4.
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(2) JPEG (b) SR

Figure 2.16: Lena compressed to 0.3 bpp with JPEG and SR

Strobach’s RPD} compression complexity is given in his paper(30], and is shown
in Table 2.5.

The decompression complexity is not given. However, it is clear that the compres-
sion complexity of the proposed algorithm is somewhat hetter than that of Strobach’s
RPD method which, as has already been claimed, is a fairly simple method relative
to other common compression schemes.

The complexity of the JPEG algorithm, without the symbol encoder, is based
on the fast DCT algorithm described by Arai et al[20, 34], which requires only 5
multiplications and 29 adds for a 1-D DCT of dimension 8, which must he performed
16 times for each 8x8 bluck. The quantization of the DCT coefficients will also require
1 division for each pixel. Thus, the operations count will be as shown in Table 2.6:
Note that the decompression phase of JPEG will require the same operations count,
except that the divisions become multiplications.

In theory, the proposed algorithm is clearly superior in terins of operations in the

compression phase. The analysis of the decompression phase shows it to be similar
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| Operations per Pixel (0.80 bpp) | Operations per Pixel (0.16 bpp) |

Compression:
Shifts 0.50 {| Shifts 0.36
Additions 3.13 || Additions 2.48
Multiplications 0.16 || Multiplications 0.03
Decompression:
Shifts 0.16 || Shifts 0.03
Additions 6.82 | Additions 6.69
Multiplications 3.00 [| Multiplications 3.00

Table 2.4: Operation count for the SR algorithm

Compression:
Additions 8.00
Multiplications  3.33

Table 2.5: RPD operation count

in operation count to JPEG compression.

2.6 Future Work

Although the algorithm performs well. the only changes made to the original algorithm

by Shusterman and Feder were made to the reconstruction process. There were.

Operations per Pixel
Compression:
Additions 7.25
Multiplications 1.25
Divisions 1.00
Decompression:
Additions 7.25
Multiplications 2.25

Table 2.6: JPEG operation count
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in fact. several successful modifications to the decomposition phase which were not
incorporated because the magnitude of their improvements did not Justify the added
increases in computational complexity. In this section, these moditications. which

may present alternatives for future work. will be deseribed briefly.

/
/

’

(a) (b)

Figure 2.17: Storage of vectors in quadtree nodes: (a) the current scheme., with leaf
nodes shaded black: (b) a potential vector quantization scheme, using the next-to-leaf
node (shaded black) to store a vector which would be used to reconstruct the leaf
nodes

Because of the nature of the decomposition process, the leaves in the quadtree
structure have children whose values vary little from each other, the magnitude of
the variance being dependent on the decomposition threshold 7. This fact conld
simplify the construction of a 2x2 vector codebook which could be used to code each
leal which was not at the pixel level. Such a process could likely also henefit if a
different codebook were used fox each level, since the variance in the values of a leal's
children decreases at the higher levels of the tree. Figure 2.17 shows how the next-
to-leal quadtree nodes rather than leaf nodes could be used 1o store pixel intensity

information. Variations of such a scheme could include:
1. Coding a single vector containing an approximation of the child values
2. Coding an error vector and an average value

A brief experiment into the use of LGB vector quantization in the next-to-leaf level

of the quadtree structure was attempted, with promising initial results. The itmage



quality (visually and as measured by PSNR) was generally found to be very close to
that generated by SR quadtree compression.

The downside to the addition of such a vector quantization scheme is the obvious
increase in complexity. One of the major strengths of the SR quadtree algorithm is
its low complexity as compared to existing methods, which would be eliminated with
the addition of LGB vector quantization. Justification for the addition would need to
be present in the form of much improved image quality, or the use of a simpler vector
quantization scheme such as lattice vector quantization. which will be examined in the

next chapter.

2.7 Conclusion

As compared to Shusterman and Feder’s method. the proposed algorithm performs
slightly hetter computationally in the reconstruction of the image. and also gener-
ates better results with the additions of the improved 2x2 filters and reconstruction
threshold. It also outperforms Strobach’s method both in quality and complexity.
making it currently the best performing quadtree decomposition compression method.

The SR reconstruction algorithm has several advantages over previous methods in
terms of computational complexity and compressed image quality at low bit rates. Its
performance is comparable to JPEG compression in the range of less than 1.0 bpp.
and is in fact able to generate higher quality results than JPEG at lower bit rates,
and better looking images at some higher bit rates.

It has been shown that the described algorithm is simpler than JPEG computation-
ally, using significantly fewer operations for the compression phase. This, combined
with the fact that it can outperform JPEG at low bit rates, makes it a desirable
alternative.

There is a good deal of potential for future work in the combining of this method
with other compression schemes such as vector quantization, as such a combination has

already been successfully attempted with some improvement in the resulting quality.
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In conclusion, this algorithm would appear to be sujtable for usc wich a portable
or wireless system which would depend on speed and low bit rate transmissions. It

has been shown that the presented algorithn yerforms well in both areas.
I



Chapter 3

Wavelet Compression

The use of the wavelet transform in image compression has become very popular as
of late. and has been used in many very successful algorithms. Much current image
compression literature is devoted to the applications and advantages of the wavelet
transform. Wavelet compression techniques have evolved to the point where they
can be shown to be very computationally efficient, as well as generating exceptional
compression results.

A basic introduction to the mechanics of the wavelet transform will be given,
followed by a literature survey of some recent, successful wavelet compression al-
gorithms. The proposed wavelet algorithm, which is similar in many aspects to those

in the literature survey, will then be described and analyzed.

3.1 Introduction to Wavelet Compression

3.1.1 Basic Wavelet Concepts

Conceptually, the wavelet transform can be broken into two separate transforms which
perform lowpass and highpass filtering on the input data stream. In theory, the wavelet
transform is lossless in that a data stream which has been transformed using a forward
wavelet transform can be completely reconstructed using the corresponding inverse

transform. Many if not most compression algorithms based on wavelet decomposition,
37



however. allow for lossy compression.
The forward wavelet operators can be described as a pair of convoiution operations
with the forward lowpass and highpass tilters L and /1, performed on the original data

stream (9;

C'=Lx»¢"
D'=Hx°

where * is the convolution operation. Similarly, the reverse wavelet transform can he

described using the inverse lowpass and highpass filters L=" and 4!
('v(): L—I *(VI + [I—l * 1)]

Because quantization is usually performed on the wavelet cocflicients before the re-
construction of the data stream is attempted, it may be more accurate to express the

previous equation as follows:
(V();_ L—l(Vl + 1[—-1 * [)l
where 1. D' and ("° are the quantized versions of (', D' and €70 r pectively.,

‘)———:—C ———>C2

NN

Figure 3.1: Wavelet decomposition

The space requircment for the wavelet transform operations is often the same
as that required by the original data stream, the low and high frequency segments
each requiring half the space of the original signal. This work will consider only
those wavelet filters which meet this criterion. Consider Figure 3.1 in which the

original data stream is shown as C'° and the wavelet decomposition is indicated by the
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Figure 3.2: Space taken by transform coefficients

arrows labeled L and [. Becanse the original stream can be reconstructed by its two
transformed components (which are both half the size of the original), once a transform
is performed the original stream can be overwritten by its components. Thus, at the
end of the process illustrated above, the transformed stream would not require any
additional space other than the original data stream storage (see Figure 3.2).

Thus, the nature of the wavelet transform allows for the splitting of a data stream
into two separate components with each coefficient generated by this operation repres-
o »of the spatial area of approximately two of the original data elements. The low

-~ mes y component can be thought of as a quantized version of the original data
stream. Because of this, we know that an additional wavelet transform performed
on this low frequency component will generate another set of two components, one of
which will be a further quantized version of the original data stream, and another high
frequency compenent. Note that in Figure 3.1, as a result of the similarity between
C? and (', the high frequency components D' and D? will share similar properties.
Although D? will be coarser than D! (spatially, each D? coefficient will be repres-
entative of two coefficients in D'), similar high frequency phenomenon can and will
be observed in both. It is this redundancy, when exploited, along with the compac-
tion of the low frequency information, which proves to be very useful for compression

purposes.
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3.1.2  Distribution of Coefficient Magnitudes

The nature of the coefficient distribution is of some interest sin. e as was emphasized
previously, an ideal transform compression method will generate much redundancy.
Generally, like the DCT example. a given transform method will generate coeflicients
which are concentrated around zero. a phenomenon which is often modeled using
modifications of the Gaussian curve[3]. The high frequency wavelet trausform coefli
cients also have these characteristics. A typical distribution of high frequency wavelet
coefficients, using more than 65000 coefficients generated from a single test image, is
shown in Figure 3.3.
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o . e .

100 -RB0 60 40 220 0 20 40 60 80 100
Wavelet transform coefficient values

Figure 3.3: High frequency coeflicient distribution

Obviously, the low frequency portion of the wavelet transform will be distributed
rather randomly, depending on the intensities of the original data stream. Some com.
pression schemes attempt to manipu} e ¢he low frequency information by subtracting
the mean so that it becomes more similar to ‘i “igh frequency information. As will be
shown later, however, the low frequency comporents make up a very small proportion

of the final coefficients and their effect on the distribution is minimal.

10
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3.1.3 Relative Importance of Wavelet Coefficients

The relative importance of a given wavelet transform coefficient to the quality of
the reconstructed signal is a very significant issue. Without knowing which of the
coefficients are important to the reconstruction process, an effective quantizer cannot
he easily constructed or understood.

Mathematically, the following equation relates the original data stream to the trans-

formed coeflicients:
(1= ONCH 1D < O < (T4 OUCT? + 11DMP) (3.1)

For most filters, the value of ¢ can be assumed to be small. In fact, for unitary filters

¢ = 0, aud equation 3.1 becomes

)% = Y2 + IIDYI? (3.2)

It ther follows for unitary filters that the error caused by a particular quantization

scheme can be described as
(ICH2 = IC*) + (DM 1* = 1D )1%) (3.3)

('learly then, the mean-squared error of a reconstructed image will be identical to
the mean-squared error in the coefficients as a result of quantization, assuming that a
unitary transform is used. While this is not the case in general, since most commoun
wavelet filters are non-unitary, the indication is stiil that lerger wavelet coefficients

arc more important than smaller ones.

3.2 Literature Survey in Current Wavelet Techniques

Many wavelet transform based compression methods have been developed recently
which exhibit impressive compression performance, low complexity, or both. This
section examines several of these schemes which are of particular interest because of

their influence on and/or similarity to the proposed wavelet algorithm. Before going
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into the details of the methods. a summary of multiresolution decomposition will he

provided. since this forms the basis for all of the background methods which will be

discussed.

3.2.1 Multiresolution Decomposition in Wavelets

The main purpose of any transform domain compression techuique is to localize re-
dundancy, making it simpler to develop effective coding schemes. The DCT as applied
in JPEG compression[20] for example, will often generate cocflicient blocks which con-
tain large numbers of small coefficients which can be safely quantized to zero withont
any significant loss of detail in the reconstructed block. The JPEG algorithm: codes
the transform coefficients as a one dimensional stream using a variable length code
which takes advantage of large strings of zero coefficients. Similarly, for the wavelet
transform to be applied effectively, an element of redundancy which does not exist
between the pixels themselves must be introduced.

Although one application of a wavelet filter will result in coeflicients which are
distributed about zero and hence easily exploitable for redundancy, several iterations
of the filter on the low resolution components of the previously transformed coeffi-
cients results in even more easily exploitable redundancy, as was discussed briefly
in the previous section. The twu dimensional case, being more complex, warrants a
more complete investigation into the advantages of iterative application of the wavelet
transform.

In practice, wavelet filters may be applied to a particular image many times. Mul-
tiresolution wavelet decomposition is a common application of the wavelet transform
which involves splitting the image into “subbands”. A wavelet filter is iteratively
applied to the low frequency component of the previous transformn coefficients, cre-
ating smaller, coarser subbands. This type of decomposition initially involves using,
both the lowpass and highpass filters first on the rows of an image and then on the
columns. The resulting coefficient array will then be broken into four subbands of the

form shown in Figure 3.4a. This process continues, with the transformations always
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Figure 3.4: Wavelet decomposition of an image: (a) after one iteration of the filter;
(b) after two iterations

being applied to the most recently generated low frequency (LL) subband (see Figure
3.4h).

Because of the order of the application of the transforms, the high frequency sub-
bands contain different types of high frequency information. The LH subbands contain
horizontal high frequency information because the high frequency filter transforms
the columns, HL subbands contain vertical high frequency information since the high
frequency filter transforms the rows, and the HH subbands contain diagonal high fre-
quency information as a result of the high frequency filter being applied to both the
rows and columns.

One of the current conventions for the identification of the different subbands is
to describe them as resolution-orientation pairs. The exact convention which will be
used in this work will be as shown in Figure 3.5. The low frequency subband will be
known as resolution 0 (with no orientation). The coarsest high frequency subbands
will have resolution 1 and orientation 0, 1 or 2 corresponding to horizontal, diagonal
and vertical subbands respectively. The next coarsest subbands will have resolution

2. and so on. The entire subband structure is often referved to as a pyramid ; in order
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Figure 3.5: Naming of subbauds

to make the subject clear, it will be hereafter referred to as a wavelet pyramid.

As a result of the similarity in the low frequency subbands at different iterations.
there will exist additional similarities between corresponding high frequency subbands
at different iterations. Figure 3.6 illustrates how similar features in high resolution
subbands are propagated thronghout the subband structure. Each coefficient in a
high frequency subband (with the exception of those contained in the finest resolntion
subbands) will be roughly equivalent to four coefficients in the next finest resolution.
It seems reasonable to assume then that guesses or predictions can be made abont the
values of the “descendants” of a particular coefficient given its value.

Because the low frequency subband (which is in the upper left of the previons
figures) will not contain any high frequency features, its coefficients cannot be used
to predict the values of other coefficients in the same way that can be done with

coefficients in high frequency subbands.

14



(a) (b)

Figure 3.6: Dependenries in image subbands: (a) illustration of the immediate de-
pendencies of three coarse coefficients; (b) all of the descendants of a coarse resolution
coefficient

3.2.2 Zerotrees of Wavelet Coefficients

In previous sections. two characteristics of wavelet coefficients were clearly identified
as being important to achieving superior compression results. Those characteristics

were:
1. Subband redundancies - potential for predictive coding
2. Importance of large coefficients - essential for minimizing error

One particular compression method which takes advantage of both points, as well
as being computationally efficient and generating an embedded code, is Shapiro’s
Embedded Zerotree Wavelet[27] algorithm, hereafter referred to as EZW.

While other wavelet algorithms based on multiresolution decomposition such as
that proposed by Antonini ef al.[3] generate good results by concentrating on gen-
erating a vector codebook and optimizing bit allocation for the different subbands,
the EZW algorithm bases coding on a hierarchical structure which groups coefficients

in a manner which is similar to the parent-child structure discussed previously with
y
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Figure 3.7: Parent-child dependencies in the EZW algorithm

a minor difference. This structure includes the low frequency subband as well to
preserve the embedded nature of the final code (this will be made clear later) in the
manner shown in Figure 3.7.

Possibly the most important contribution of Shapiro’s paper to wavelet compres-
stion is the zerotree assumption, which takes full advantage of the aforementioned

subband redundancies. To quote Shapiro[27).

A wavelet coefficient x is said to be insignificant with respect to a given
threshold T if |z| < T. The zerotree is based on the hypothesis that if
a wavelet coefficient at a coarse scale is insignificant with respect to a
given threshold T, then all wavelet coefficients of the same orientation in
the same spatial location at finer scales are likely to be insignificant with

respect to T.

Logically, the zerotree idea makes sense. An insignificant coefficient at a coarse
resolution will likely have descendants which are also insignificant. While this is
not true in all instances, it is usually the case that the zerotree hypothesis is correct,
approximately 10 times more often than not (this varies depending on the input image)

The next logical step might seem to be to make another similar assumption, that a

significant coefficient has significant descendants; however, this is not as certain. It is



Figure 3.8: Quautized versions of the Lena image

likely that in the quantization of the original signal (iterative application of the lowpass
wavelet filters), higher frequency information may be obtained from the quantized
signal than were obtained from the original. Consider, for example, the sequence
of quantized images shown in Figure 3.8. The higher quantized images show an
abundance of high frequency information per unit area. Relatively smooth areas can
become less frequent, and it is easily observable that high frequency information in
the highest quantized of the images in Figure 3.8 will often correspond spatially with
large portions of low frequency information in the less quantized images.

The zerotree assumption is not true in all cases. While the probability of finding
a significant coefficient as the descendant of an insignificant coefficient is not high,
it will happen many times in a typical wavelet pyramid. Because larger coefficient
values should always be coded because of their relative importance (see equations 3.1,
3.2, 3.3), accommodations for these instances need to be made.

It should be apparent by now that the zerotree assumption can be effectively
applied to a wavelet coefficient array. Given a particular threshold, we need only code
those coefficients which are significant, using the zerotree criterion to eliminate the
need for coding large numbers of descendants of insignificant coefficients. The EZW

algorithm does exactly this in a very simple fashion.

4
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Basics of the Algorithm

The only input to the algorithm., besides the image itself, is the exact mamber of bytes
to which the image should be compressed. This byte budget can be matehed exactly by
the algorithm, giving it an advantage over algorithms such as JPEG aud the quadtree
algorithm discussed in a previous chapter.

Shapiro suggests that the wavelet transform be applied five times to the image.
resulting in a 6-level wavelet pyramid. The first step in the processing of the pyramid
is to find the initial threshold which will determine a given coeflicient’s significance.
Given the maxinum magnitude threshold in the wavelet pyramid, .. the initial

threshold Tj is set to the largest power of 2 less than

.
d muar-.

lr} <

J mear

I.I'l << 21;)

7‘() = 2“, |.l'| < 2”+l = 27‘()

for avy & in the wavelet pyramid. Since the algorithm requires many passes of the
coefficients and almost all coefficients would be msignificant with respect to 7y, (see
Figure 3.3). many passes are made in which the value of the threshold is reduced:
T,=T._,/2.i>0.

There are two main modules i the algorithm which are executed until the hyte
budget has been met: the dominant pass and subordinatc pass, ecach dealing with a
corresponding dominant list and subordinate list respectively. The dominant pass
looks at all coefficients which have not yet been found to be significant with respect
to the currvut thrrshold while the subordinate pass deals with refining the values of
coefficients *#1icis 1ave already been found to he significant with respect, to the eurrent,
(or a previcus) threshold.

While the dominant list elements are simple (a reference to a single wavelet, coeffi-

cient), th- subordinate list is more complex. It contains the magnitude of the original



coefficient as well as a reconstructed magnitude. The reconstructed magnitude is the
component whicli is refined during each subordinate pass. 1 will refer to the two fields

as actual magnitude and reconstructed-magnitude.

Figure 3.9: Scan order of wavelet subbands

The dominant list is initialized to contain one element corresponding to each coef-
ficient in the wavelet pyramid while the subordinate list is initially empty. The order
of elements in the dominant list is important since the coefficients will be scanned
and handled in their order of appearance in this list. In order to effectively apply the
zerotree idea. no coefficient should be handled before all of its ancestors have been
handled first. In this way. we can make use of any zerotrees to ignore the values of
zerotree descendants. The suggested ordering by resolution/orientation pair is shown
by the Z-scan in Figure 3.9 with the scan starting in resolution 0 and the coefficients
within each subband handled in scan-line order. The scan-line order appears to be an
arbitrary but reasonable choice since all we wish to do is be assured that the lower res-
olution coefficients are handled before their higher resolution counterparts. Note that
all of the coefficients within a particular subband are handled before any coefficients
in the next subband of the Z-scan order.

A high-level outline of the algorithm could be described in the following steps:

1. Get the image and byte budget
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3.

ot

Transform the image

Initialize dominant and subordinate lists
Find the initial threshold T

WHILE (T > 1)

¢ Perform dominant pass
¢ Perform subordinate pass

o T «T/2

The Dominant Pass

The dominint pass simply traverses and updates the dominant list, coding symbols

where appropriate. There are four distinct symbols which are coded using an arith-

metic coder during a dominant pass. They are:

1.

o

ZT - indicates a zerotree root
If an element of the dominant list is found to be a zerotree root, the Z7T symbol
is voded. and all descendants of the element are marked so ti:at they will not be

coded during this pass.

IZ - indicates an isolated zero
This symbol is coded when we encounter an insignificant coefficient with at least
one significant descendant. Notking further is done besides the coding of the 17

symbol.

POS and NEG - indicate significant coefficients

These symbols are coded when a significant coefficient (positive or negative) is
encountered. When this happens, the wavelet coefficient corresponding to the
list element is set to zero (so as to not prevent the possibility of zerotrees in
subsequent passes), and an element is added to the subordinate list with the

fields set as follows:

a0



o actual_magnitude « coef ficient_magnitude

o rcconstructed.magnitude 11'2-21

Note that as soon as an element is added to the subordinate iist, it is given a “best
guess” length (reconstructed_.magnitude) of the midpoint of the uncertainty interval
associated with the the current threshold. That is, since we know that a symbol is
never coded when its magnitude is less than T and it will always be coded when its
magnitude is greater than T, the best guess as to its actual value is the midpoint of

the current threshold and previous threshold values.

The Subordinate Pass

After each dominant pass, a subordinate pass is performed to refine the magnitude of
eacli element in the subordinate list. As was mentioned previously, an element which
is inserted into the subordinate list has its reconstructed magnitude set to LE?I, the
“hest guess” that can be made with the given threshold T. The subordinate pass
refines this “guess” by coding (again with an arithmetic coder) one of two symbols

for each subordinate pass element:
o IF (actualsmagnitude > reconstructed_magnitude)

— Code 1

— reconstructed.magnitude < reconstructed_-magnitude +

=~

e ELSE

Code v

~ reconstructcd_anagnitude + reconstructed_magnitude —

oi=3

After all of the subordinate |. st elements are refined in this fashion, which amounts
to reducing the size of the uncer-ainty interval to half of its previous size at each pass
(see Figure 3.10), the list is sorted, with the elements with the largest
reconstructed_magnitudes at the front of the list. This ensures that the larger mag-

nitude coefficient values wil' ve refined first.
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Figure 3.10: U: ity interval in the dominant pass and first subordinate pass for
a wa.let coefficic...

Decompression of the Data

The decompression of the compressed data is very simple. The steps used in the
decompression phase are almost identical to those used in the compression phase.
Note that with each symbol that is decoded it is implicitly known where changes
should be made in the wavelet pyramid given the original Z-scan ordering.

The embedded nature of the code should also be obvious at this point. Each
additional decoded symbol simply adds another piece of information to the wavelet
pyramid. By terminating the data stream before any of the symbols can be read,
the result is a NULL image containing no information (all coefficients in the wavelet
pyramid have magnitude 0). Terminating the data stream after 100 bytes, say, will
result in the wavelet pyramid containing 100 bytes worth of coded information. With
each additional symbol, the reconstructed signai becomes more complete (with the
exception of the IZ and ZT symbols, which serve to reduce the required yumber of
symbols in total, but do not by themselves add directly to the completeness of an
image). Consider Table 3.1, which indicates the effect that the decoding of cach

symbol has on the reconst. icted image.

o



Dominant Pass
POS/NEG | Coefficient value to within %
17 No effect
T No effect
Subordinate Pass
0 Coefficient value to within *
1 Coefficient value to within %

Table 3.1: Effects of coding each symbol on its corresponding coefficient

Conclusion

The EZW algorithm very effectively deals with the problem of quantizing the wavelet
cocfficients. The algorithm is very efficient, generates exceptional results, and because
of its embedded code, allows for the user to compress an image once in order to test

many bit rates.

3.2.3 Set Partitioning in Hierarchical Trees

Another algorithm based on the same basic principles as the EZW algorithm is Set
Partitioning in Hierarchical Trees (hereafter referred to as SPIHT), proposed by Said
and Pearlman[21]. Essentially, SPIHT i. a variation of the EZW algorithm which
approaches the quantization of the coefficients frem another perspective: rather than
considering each coefficient individually, coefficients are grouped together into sets
based on the same parent-child dependencies used in EZW. In this way, it is possible
to code the (in)significance of many coefhcients with a single symbol.

The parent-child dependencies sugges.ed by Said and Pearlman are essentially
the same as those used by Shapiro with the unly difference being the handling of the
resolution 0 components (a minor difference since, as was mentioned before, resolu-
tion 0 coefficients do not relate to higher resolution coefficients and are included in
the structure to preserve continuity in the algorithms). Instead of each resolution 0
coefficient having three descendants as in Figure 3.7, three of every four coefficients

has four descendants, as shown in Figure 3.11.
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Figure 3.11: Resolution 0 dependencies in SPIHT

The SPIHT algorithm makes use of four types of sets as listed in Table 3.2 helow. A
graphical illustration of the sets can be seen in Figure 3.12. Each individual coetlicient

within a set is referred to by its coordinates: ¢;;. A given set 8 is said to he

O(i,) | contains all offspring of node (i,))
D(z,7) | contains all direct descendants of node (i)

H contains all resolution 0 coefficients

Tab'e 3.2: Sets in SPIHT

insignificant with respect to a threshold 7' if all of the elements in the set are less than

T in magnitude. The following function 1s defined to determine set (in)significance:

1 ma {S}<T
Su(S) = (3.4)

0 otherwisc

Three lists are used in the algorithm to keep track of the varions sets used. They

are:
e LIS - list of insignificant sets

o LIP - list of insignificant pixels
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Nod \A,J)

Figure 3.12: Dependency Sets in SPIHT
e LSP - iist of significant pixels

The elements of both the LIP and LSP are individual pixels while the LIS contains
sets of type D(i,j) (type A) or L(z,7) (type B).
The steps in the SPIHT algorithm as described by Said and Pearlman([21] are

listed below:

1. Initialization: output |n = log,(max{coefficients}|: set the LSP as an empty
list and add the coordinates (i,j) € H to both the LIP and the LIS as type A

entries.
2. Sorting Pass: (Similar to EZW dominant pass)

(a) for each entry (z, ) in the LIP do:
i. output S,(7,7);
ii. If S,.(z,7) = 1 then move (¢, 7) to the LSP and output the sign of ¢; ;
(b) for each entry (7, ) in the LIS do:
i. if the entry is of type A then
e output S,(D(z,7));
e if S,(D(z,7)) =1 then
— for each (k,1) € O(i,7) do:

* output S, (k,!);



* if S, (A, 0) = | then add (A.D) to the LSP and output the sign
of e) 42
* if Sy(K 1) = 0 then add (k1) to the end of the LIP;
— il L1, J) # @ then move (i, j) to the end of the LIS, as an entry
of type B;
it. if the entry is of type B then
e output S,(L(z.J));
o if S,(L(z,))) =1 then
— add each (k,1) € O(1, j) to the end of the LIS as an entry ol type
A;

— remove (7, 3) from the LIS;

3. Refinement pass: (similar to EZ\. subordinate pass)
For each entry (7.7) in the LSP, except those included in the last sorting piss,

output the n-th most significant hit of le; ;|;

1. Quantization-step update: decrement n by 1 and go to step 2.

It should be clear that the SPIHT algorithm is very similar to EZW in many
respects. In fact, it would appear to be a more compact version of the same algorithm
with a few differences. Because of the set structures which are utilized, all of the
descendants of a single coefficient can be identified as significant or imsignificant with
a single symbol. The EZW algorithm requires that each immediate descendant of a
coefficient be coded in this way. In addition to this, SPIHT requires that the coder
require only two symbols at any point in the algorithm (note that only 0’s and I's
are coded). The refinement pass in SPIHT and subordinate pass in EZW are slightly
different as well, but accomplish the same goal: the refinement of coefficients which
have already been found to be significant. As with EZW, the decompression algorithin
is virtually identical to the compression algorithm, and the spatia! location of the effect

of each symbol being decoded is implicitly known.



Since the SPIHT algorithm requires only two symbols, it is possible to use straight
Linary coding rather than arithmetic coding. While the binary coding results are not
as good as when arithmetic coding is used, they are still better than the EZW results
and require less computational effort as a result.

It should be noted that the SPIHT algorithm does not code coefficients which have
beer included in the last sorting pass. Resources are instead allocated to coding the
next sorting pass, with the said coefficients being refined in the next refinement pass.
The EZW algorithm, on the other hand, refines the coefficients immediately. This
results in the refined coefficients being approximated to within T/4 of their actual
values, while the remaining insignificant coefficients are guessed to have a value of
0. within T of their actual values. It is much more efficient to code the remaining
insignificant coefficients first to within 7/2 (the value of the threshold at the next
pass) given that the MSE of the coefficients is closely related to the MSE of the
reconstructed image. This is one of the more important improvements of SPIHT over
the EZW algorithm.

Because of the similarity in the EZW and SPIHT algorithms and the fact that
PIHT deals with the quantization in a more efficient manner, SPIHT is almost guar-
antecd to generate better results than EZW for any image without any increase in

complexity. Some sample PSNR results for two test images are shown in Table 3.3.

Lena image Barbara image
Bits per pixel | EZW | SPIHT || EZW | SPIHT
1.0 39.55 | 40.42 | 35.14 | 37.45
0.5 36.28 | 37.22 | 30.53 | 32.10
0.25 33.17 | 34.12 || 26.77 | 28.13
0.125 30.23 | 31.10 |} 24.03 | 25.37
0.0625 27.54 | 28.38 | 23.10 | 23.77
0.03125 25.38 | 25.97 | 21.94 | 22.71
0.015625 23.63 | 23.97 || 20.75 | 21.79
0.0078125 21.69 | 22.08 || 19.54 | 20.62

Table 3.3: EZW and SPIHT results
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3.2.4 Wavelet Combined with Vector Quantization

Because of the advantages of vector based quantization over scalar based quantization,
it is natural to extend wavelet compression routines to include vector quantization,
In this section, two methods which combine these two approaches will be examiuned:
one which uses the codebook based LGB quantization and the other which uses lattice

vector quantization.

LGB Based Vertor Quantizatioi,

Several methods have been proposed which combine wavelets and LGB based vector
quantization. Although there are examples of this type of combination which make
use of the zerotree concept[6], the most recent (and most successful) method, which
will be described in this section, does not.

A very successful method which combines multiresolution decomposition wavelets
with codebook based LGB vector quantization[17] is proposed by Averbuch e al [1].
Their approach to wavelet compression is quite different from that taken by the EZW
and SPIHT algo. thms in that the parent-child hierarchy and zerotree concepts are
not used in any way. Instead, the wavelet subbands are all coded using vectors
from codebooks that have been constructed using test images. Two passes are made
(the second to code the residual from the first pass) in the quantization as shown in

Figure 3.13, each pass requiring a separate codehook.

LGB Quantized - '
Image uantized 3 estored
: Image 7 Image
J -
Residual LGB Quantized
Image Resdual

Figure 3.13: Two pass LGB coding

An interesting point is also made in the paper, specifically thai using such a scheme

s |



will require that 75% of the required space will be taken by the finest three resolutions.
In order to take advantage of the importance of the coefficients. their algorithm makes
allowances for these three resolutions to be completely ignored if lower bit rates are
requested. Note the the EZW and SPIHT algorithms already make implicit allowances
for the small magnitudes of the finest resolution coefficients and such a scheme would
be ineffective if applied to them.

Some drawbacks to this method are obvious when compar ug it to EZW/SPIHT.
Although the reported results are excellent (comparable to those given by SPIHT),
other aspects of the algorithm would seem to make it an undesirable choice. Some of

these aspects are:

o Vector codebooks need to be generated on a sample st of images before run

time.

o Codebooks must be accessed and searched during run time thus increasing the
time complexity of the method to a level which may not be practical if computing

speed is an issue (e.g. remote wireless systems).

e Although a terminated data stream could be used to regenerate parts of the

original image, the embedded nature of EZW/SPIHT is not supported.

e There is 1o easy way to set an exact bit rate for a compressed image.

Lattice Vector Quantization

It is desirable to apply a vector quantization scheme to the EZW/SPIHT algorithm
in such a way that the advantages of the algorithm would not be lost. This brings
us to the question of whether or not codebook based vector quantization would work
well when combined with such a scheme. It is possible to use vector quantization in
tandem with EZW/SPIHT by grouping coeflicients into blocks of, say, 2x2 or 4x4,
and treating each block as a single unit. In this way, residual vectors would need to
be refined in the refinement pass instead of the coefficient magnitudes. The question

remains: would such a scheme work with codebook based vectors?
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One of the major problems associated with combining wavelet compression with
codebook based vector quantization is the generation of acceptable codebooks. Two of
the major contributions to wavelet compression techniques shown in combination in
the EZ\W/SPIHT algorithm. is the zerotree concept with iterative refinement of cocf-
ficients. These concepts will not work well with codebook-based vector quantization

for the following reasons:

1. Residual vectors will result which may not match well with any initial codeboks.

Potential (but costly and incomplete) solutions to this could be:

o The construction of additional codebooks designed with residuals in miad

¢ The use of a limited number of passes as in Averbuch at al.[4] This is not

particularly desirable.

2. The clustering of vectors as a result of the LGB algorithin may leave holes in
n-dimensional space which result in poor vector matches. Because of the nature
of the iterative refinements, & poor match may result in a block of residual

coefficients which may never converge

An alternative to LGB vector quantization (and other codebook based variations)
is lattice based vector quantization. A lattice is a regular, symmetric ordering of
points in n-dimensional space. Lattices are often associated with the sphere packing
problem which asks “How densely can n dimensional spheres be packed together?”
or the covering problem which asks “What is the most economical way to cover n-
dimensional Euclidean space with equal overlapping spheres?”[5]. An example solution
to the first question in 2-dimensional space is shown in Figure 3.14. The centers of
the circles form the coordinates of lattice points in what is known as the heragonal
lattice.

Because of the regular nature of lattice vectors, lattice vector quantization can
be performed very efficiently. Given a particular input vector, the closest lattice
“codebook”™ vector can often be found by simple rounding operations. Sampson and

Ghanbari describe simple schemes for using vector quantization with several specific
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Figure 3.14: Sphere packing in 2-dimensions

lattices[25], and state that the resulting cc ._.pmtational complexity of using lattice
vectors in their implementation of an image sequence coder is approximately 4% of
that of a similar LGB coder.

An important set of lattices which turns out to be very useful to wavelet compres-
sion is the set of root lattices. These types of lattices result in vector points being
regularly distributed on the surfaces of concentric hyperspheres or shells[25]. The
result of taking one or more of these shells to be a vector “codebook” is a regular,
(hyper)spherical arrangement of vectors.

would seem then that the characteristics of lattice vector quantization will solve
at least some of the problems associated with LGB vector quantization. Residual
vectors should match just as well as original vectors since the vector distribution is
regular and the regularity of the lattice should reduce the number of “Loles” in the
codebook.

A variation of the EZW algorithm described by Sampson et al.[24] makes use of
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lattice vectors to further quantize wavelet coefficients in the proposed manner. Wavelet
coeficients are clustered into 4, 8 and 16 dimensional vectors and then quantized using
lattice vector quantization. The quantization makes use of an implicit threshold and
unit vectors from a lattice codebook, the actual code vector being the normalized lattice
vector scaled by the current threshold. Thus. the shape, not the length, of cach lattice
vector is important.

Only vectors in the first shell of the the three root lattices described below (although

in the case of Dy, the second shell will be of some interest later on) are used by Sampson

et al.[24]:
1. D4 lattice: 4-dimensional
o Vectors in this lattice have the property that their components add up to
an even number. Thus: (1,0,0,0) ¢ Dy, (1, 1,0, 0) € D,
e The first (and second) shells contain 24 vectors
e First shell vectors have a length of V2, second shell vectors have a length
of 2.

2. Fj lattice: 8-dimensional

e Vectors in this lattice have the following property:

.. e Dy or
ve by & -
v € (Dg+ 1)

where Dy has exactly the same properties as D, except that it is 8-dimensional,
T _ /111
and 7= (-2', IR EER )
e The first shell of this lattice contains 240 vectors

o First shell vectors have length V2
3. A lattice: 16-dimensional

e Known as the Barnes-Wall lattice, the first shell vectors take the form

ﬁ(:}:Q",O”) and all permutations (480 vectors), and (£1%,0%) where the




positions of the nonzero elements correspond to the nonzero elements of
the first-order weight 8 Reed-Muller code [5, 19] in addition to having an
even number of negatives. The basis vectors for the Reed-Muller codes of

interest are as follows:

(0,0,0,0,0,0,0,0,1,1.1,1,1,1,1,1)
(0,0,0,0,1,1,1,1.9,0.0.0,1,1,1,1)
(0,0.1,1,0,0,1,1,0,0,1,1,0,0,1.1)
(0.1,0.1,0,1,0,1,0,1,0,1,0,1,0.1)
Note that in order to obtain all of the 30 possible codewords, cyclic shifts
must be performed on the above vectors.
e The first shell of this lattice contains 4320 vectors
In addition to using the above lattice vectors. the algorithm[24] contains one notable
difference to the EZW algorithm: it does not divide the threshold by 2 at each pass;

rather, it is multiplied by a real constant « < 1. Thus, at step n of the refinement

process, the approximation F to an original vector I can be described as follows:

=arfy+ 4+ ... +dtn,

5oy

where r; is the codevector used at refinement i. The reason for the use of this constant

is simply to ensure the convergence of the vector refinements as shown in Figure 3.15.

Figure 3.15: Convergence of vectors

The steps in the modified algorithm are described below:
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1. Initialization: T « a * maximumevector magnitude

2. Dominant pass equivalent:
(a) While (51 budget not exceeded) Scan vectors for zerotree generation:
if (IF]] < 7 code 1Z or ZT as appropriate
else rep.'ace with closest orientation codevector multiplied by T
3. Subordinate pacc equivalent:

(a) T < aT

(b) Refine nonzero vecturs

This again brings up an important point about using vector quantization of any
form that differentiates it from the scalar quautization methods: a veetor which results
in a poor match will often never converge especially if the ¢ constant is too small,
Consider the following example where we have a 4-dimensional ipnt veetor of the
form & = (1,1,1.0.9), we are using the D, lattice, ¢ = Yand T = 1. Since |7 > 7.
the vector will be coded at this refinement (and will not have been coded in the
previous refinement, since ||7]] < 2T°). The closest normalized first shell Dy Jattice
vector (and since T = 1 the codevector which will be used) s one of the permutations
of & = (7]-2- 715, 0,0). The residual vector will then be 7 = (1- 7’5, |- 7'1- 1,0.9). Since
[|7]l = 1.408 is already greater than the current value of 7' (which, with « = 1 will be
the limit of the remaining values of T), the residual will never converge to zero.

The results of the EZW /lattice combination can be seen in the table below taken
directly from the paper by Sampson et al.[24]. The results in many cases appear to he
superior to those of EZW especially for the A lattice. Clearly, the higher dimensional

lattice vectors yield significantly better results than the lower resolition vectors.
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Test image D, Ex A | EZW
Barbara 29.36 | 30.60 | 30.90 | 29.03
Boats 34.19 | 34.78 | 35.24 | 34.29
Girl 35.27 { 35.91 | 36.12 | 35.14
Gold 31.01 | 32.76 | 32.61 | 32.48
Zelda 38.43 | 39.36 | 39.44 | 39.08
Lena (256x256) || 30.13 | 30.15 | 30.29 [ 30.06

Table 3.4: EZW /lattice results for images at 0.4 bpp

3.3 A New Wavelet/LVQ Algorithm: ModLVQ

In this section, a new wavelet compression algorithm which makes use of a modified
form of lattice vector quantization will be described. Since the most successful scalar
hased multiresolution wavelet quantization algorithm is the SPIHT algorithm(21], this
will be used as a basis for the new algorithm. In addition to combining this algorithm
with a modified form of lattice vector quantization, the new method will look at
minimizing the residuals o. the vectors as well as eliminating additional redundancies

within SPIHT. In total, t':-ee changes will be made to the existing SPIHT algorithm:

I. The inclusion of ve« Hr quantization in a manner similar to that presented by

Sampson et al.[24]
2. The further addition of a vector residual minimization scheme
3. The elimination of existing redundancies in the SPIHT algorithm

The new algorithm will hereafter be called ModLV() as it will include a modified
lattice vector quantization scheme as its major component.

The resulting algorithm can be shown to be significantly numerically superior (in
terms of PSNR) to the SPIHT algorithm for detailed images and comparable to SPIHT
for smooth images. In addition to this, there is often a significant visual improvement

in reconstructed versions of high detail images over SPIHT.
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3.3.1 Modified Lattice Vector Quantization

The sPIHT algorithm is based on a hicrarchical structure which considers single
coefi:cient elements.  This structure can be easily extended to handle multidimen-
sional elements, assuming that the elements are square. ‘That is, the algorithm can
accommodate the use of 2x2 or 4x4 blocks (or vectors) of coeflicients. Figure 3.16

shows how the structure would appear with 2x2 blocks.

b

T T

Figure 3.16: Organization of 2x2 vectors in the SPIHT hicrarchy

Using the Eg lattice vectors is not quite as simple. It is not immediately elear how
8-dimensional vectors could be imcorporated into the hicrarchical structure withont
substantial changes to parts of the algorithm. For this reason. only the Dy and Ay,
(in modified form) lattices were used in the ModLV(Q) algorithm.

Lattice vector quantization. as mentioned previously, can he a very efficient and
effective quantization method and has been shown to work well when combined witl
wavelet quantization. However, there are some problems associated with lattice vector
quantization in general, and also in the way in which it has been applied to wavelet

compression specifically:

1. The distribution of the lattice vectors makes no allowances for the nature of the

input vectors themselves.

e Although the distribution of lattice vectors is regular, it is by no means
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even. There are holes in lattice structures. If a certain vector orientation
resulting from the wavelet coefficients happens to regularly fall into one of

these holes, large residuals will result.

e This is perhaps the most undesirable characteristic of lattice vector quant-
ization. By holding to the strict rules of the lattice, certain vector types

will not be approximated very well by their lattice codevectors.

2. Some “holes” in the first shell lattice structures may be filled in. Some sugges-

tions inclnde:

e The Dy lattice could be expanded to include second shell lattice vectors,

doubling the number of codevectors from 24 to 48.

e The A lattice could be expanded to include the Reed-Muller codeword
structures with even and odd numbers of negatives. This would almost

double the number of codewords from 4320 to 8160.

One potential solution to the problem of the lattice vectors not accommodating
the input vectors very well might be a combination vith LGB vector quantization or
one of its variations. This would, however, increase the complexity of the algorithm
significantly and require training sets to be tested in advance of compression. One
of the major advantages of lattice vector quantization techniques, as was previously
discussed, is that they do not require this additional complexity.

Another option is to add additional lattice or non-lattice vectors to the lattice
codebook. Such vectors, if they were non-lattice, would need to have the following

characteristics:

e The vectors’ nature must be such that they can be efficiently tested for matches

with input vectors.

e The vectors must be designed to match input vector forms that appear consist-
ently within the wavelet coeflicients but are not well handled by the original

lattice.
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Another consideration is that the number of additional vectors cannot be too high:
a relatively low number of svmbols is required 1 order for an arithmetic coder to
effectively compress the information.

The nature of the coefficient distribution (Figure 3.3) would seem to indicate that,
In many cases. vectors will consist of a single dominant component which couses
the vector to become significant. Observation of the coeflicient vectors confirms this
hypothesis. In such a case. the best vector form which would match this would be
(£1',0°) for 4-dimensional vectors and (£1',0") for 16-dimensional vectors.

By simply including the second shell 1, vectors to tie 2x2 block coding. this wonld
be taken care of - (£2'.0%) € D§™2 and since the veetor quantization would only
consider the shapes of the vectors, this is equivalent to (£11.0%. Because they are
stll Dy lattice vectors, this addition will have no significant adverse effects on the
complexity of the quantization.

The Ajg lattice is somewhat different. It has no form in its first shell which matehes
(£1',0'%) - the closest form being (£12,0™), which is not a very good approximation.

LI

In addition to this, the sec: we lattice contains 61440 vectors, This quantity

of vectors is too many for an aiii . oder, eliminating the possibility of using the
same idea as was used for . © 5 case, the most sensible conrse of action is to
simply add the 32 non-lattice vectors of the form (£11,0") 10 the coding algorithm.
Since there are only a small number of additional vectors which are very casy o
compare with input vectors for potential matches, this addition has no adverse effect
on complexity.

The final form of the new A}, vectors inchiding the non-even form of the Reed

Muller shape vectors and the 32 dominant component voctors will have the following,

forms:
L. 32 vectors: (+1!,05)
2. 480 vectors: 7’5(:t22,0”)

3. 7680 vectors: (£18,0%), where the positions of the nonzero elements correspond

b8



69
to the nonzero elements of the first-order weight 8 Reed-Muller code and there

are no restrictions on the number of negatives.

In total, using this new scheme, Ajg contains 8192 vectors.

Becanse the addition of more vectors implies that more space, on average, will be
taken by the arithmetic coder to encode each vector index, there will be two shifts
on the R-D curve as a result of this modification to the vectors. The first shift will

come as a result of the increased space required (see Figure 3.17), which gives an

Distortion

Rate _—>

Figure 3.17: R-D curve shift: increase in AR

increased rate. The second will come as a result of better matches between input
vectors and codevectors. which results in decreased distortion (see figure 3.18). In
mathematical terms. we have an increase in rate. AR, and o :lecrease in distortion
AD. In order for this modification to be successful, —%% must be sufficiently large
1o lead to an overall downward shift in the R-D curve as shown in Figure 3.19. By
choosing “better” vectors (vectors that will match better with the coefficient vectors),

the magnitude of AD increases and the R-D curve will shift more downward.

3.3.2 Clarification of Vector Refinements

It is not entirely clear in the EZW/lattice combination by Sampson et al. that any
allowances are made for “insignificant” residual vectors in the subordinate (or refine-

ment) pass, although it seems likely that this was inplemented. Such a case may
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Distortion

Rate R

Figure 3.18: R-D curve shift: decrease in A1

Distortion

Rate —_—>

Figure 3.19: R-D curve shift: favourable ﬁ

arise, for example, when a vector quantization step results in a very small residual
(smaller in magnitude that the current threshold). Such an insignificant vector should
NOT be coded with a codevector until a later pass as the residual may increase ii
size as a result. (see Figure 3.20).

Thus. during the refinement pass, one of two symbols would need to be coded in

addition to the vector indices:

1. Significant
Indicates that the current residual is significant. This symbol will be followed

by a codevertor index.



(a) (b) (¢)

Figure 3.20: Consequence of coding insignificant vectors: (a) The original vector:
(h) The original is matched well by a codevector leaving a small residual; (c) The
small residual is vector quantized even though it is insignificant, resulting in a larger
residual

2. Insignificant

Indicates that the current residual is not significant. The codevector index will

not be coded.

3.3.3 Minimizing the Lattice Vector Residuals

One aspect of using vectors to refine wavelet coefficients that has been overlooked is
the simple issue of minimizing the residual by coding a vecte r at the correct time. The
residual of a vector can be theoretically minimized using basic linear algebra which
tells us that, given an initial vector and an arbitrary length codevector. the optimal
length of the codevector for the minimization of the residual will be the projection of

the initial vector onto the codevector as in Figure 3.21.

Initiai Vector

Residual

..> -------------------------------------- I.-

Optimal length codevector

Fizure 3.21: Residual Optimization

Using an algorithm similar to that suggested by Sampson et al.[24] , however,

we do not have the option of setting the codevector to the exact length which would



minimize the residual. To do so would be very costly in terms of space as the algorithim
handles the length of each vector implicith: which requires no storage. However, using
a similar scheme to the one described in the previous section which either codes each
vector as significant or insignificant, we can choose the hest time to quantize a given
input vector.,

There are two cases where it might be desirable to code a given vector at a ditferent

pass than it otherwise would be coded. The two cases are:
1. Short projection

1 - .
e Can occur when an input vector is poorly matched by a codevector

® The residual would become smaller if the vector were coded using the same
codevector in the next refinement. That is, given the carrent threshold 7.

the input vector F and the normalized codevector ¢,

-
) -

F=alé< F=T¢ (3.5)

See Figure 3.22.

Figure 3.22: Poorly matched vector: (a) a short projection which would be better
matched in the next pass; (b) a normal projection which is optimally matched in the
current pass



2. Long projection

o Can occur if an input vector is very well matched by a codevector

o The residual would become smalier if the vector were coded using the same
codevector in the previous refinement. That is, given the current threshold

T the input vedtor X and the normalized codevector ¢,

i-LecaoTE (3.6)
a

See Figure 3.23.

I
T i
1
'

Figure 3.23: Well matched vector: (a) a long projection. which would have been better
coded in the previous pass: (b) a normal projection whirh is optimally coded in the
current pass

It should be clear that the factor which determines when to optimally code a vector
is the projection length. If the projection of the initial vector onto the codevector is
greater in length than the midpoint of aT and T, it should be coded at the current
threshold. Otherwise. the coding is postponed until a subsequent pass with a smaller
threshold.

A simple refinement to the aigorithm can be made to accommodate the optimiza-
tion of the residuals. Instead of considering the vector length as the criterion for “sig-
nificance” (which might be better termed optimal significance in light of the proposed
modifications), the projection ler:=th would be --onsidered. As before, two symbols in
addition to the codevector indices will be required to indicate whetker or not to code
the vector at this pass. They will be renamed from significant and insignificent to

optimally significant and optimally insignificant:



o IF (T < projection_length)
Vector is optimally significant
e ELSE
Vector is optimally insignificant
There are some potential problems associated with this modification however.
While each vector will be coded with an optimal length codevector, the potential

changes have to be considered within the framework of the entire algorithm.  The

following problems could arise:

1. Coding of significant vectors could be left to a subsequent pass which might

never oceur (it could be the final pass).
sialler vectors will often be coded before much larger ones.

. The coding of additional optimally insignificant symbols will now take place
before the coding of many veetors which w50 otherwise require only a single
significant symbol. .hat is. the foliowin; = .. in coding a single veetor could
change from the non residual-ontimized:

(a) Code significant

(b) Code vector index

(c) ... Next pass ...
to the residual-optimized:

(a) Code outimal’v insignifican?
(b) ... Next pass ...

(¢) Code optimally significant

(d) Code vector index



Because of this, there wil be an increase in the rate as well as a decrease in

Al

—2%), and siniilar shifts to those described for the modified lattice

distortion (
veetor quantization will occur on the R-D curve. Again, the ratio of AD to AR

needs to be favourable in order for this modification to be successful.

3.3.4 Further Minimization of Redundancy

The SPIHT algorithm is in many ways a replica of the EZW algorithm with several
improvements which reduce redundancies in the quantization resulting in a more ef-
fective compression scheme. Similarly, by eliminating remaining redundancie= in the
SPIHT algorithm, superior results can be achieved. One such existing redundancy in
the algorithim will be eliminated.

Consider steps (b)i and (b)ii in the SPIHT algorithm. When an entry D(i,j) of
type A i= found to be significant, each (k1) € O(i.j) is tested for significance. Note
that D(i,3) = 0@, )H)U L(i.3). and O(i.5)N L(:,j) = 0. From this, it should be clear

that:
Vo€ O3i.7)Su(r) = 0= 3y € L(i,j) s.t. Su(y) =1

From this, we know implicitly that S,,(L(Z,7)) = 1, and hence there is no need to code
any symbol for S, (L(z, j)) since it will be implicitly known.

In such a case. the steps associated with (b)i and (b)ii in the SPIHT algorithm
need to be modified slightly. To deal with the situation, an attribute will be added to

each set element which will be set as follows:

I Vze 0(,j),Sa(z)=0
NoCode(i, j) = z € 0(i.9). Su(z) (3.7)

0 otherwise

This attribute, of course, will indicate when the value of S,,(L(z, 7)) is implicitly known
to be 1.

Obviously, this redundancy elimination is minor compared to the changes which
mark the differences between the EZW and SPIHT algorithms. However. such an

improvement is guaranteed to reduce the space required to code an image to a given
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quality. That is, there is a reduction in the rate (a negative AR) without any associated
increase in distortion which is equivalent to a simple leftward shift of the R-D curve.
In addition to this. checking for this redumdaney requires a minimum of computational

effort.

3.3.5 A Natural Extension to SPIHT

Given the modifications described above, the combination of lattice vector quantization
and SPIHT can be described in steps similar to the original SPIHT algorithin exeept
that vectors are considered instead of single coefficients. The significance function will

need to be redefined in terms of the threshold T and the new significance rules:

oo I 3s € Ss.t. sis optimally significant
St(S)=4 (3.8)
0 otherwise

The set notetion would remaim basically the same except that there is no distinetion
between significant and insignificant vectors since the refinement of residual veetors

will be handled in the same way as the initial coding of a cocflicient vector.
o LIS - list of insignificant sets
o LV - list of potentially significant vectors
Thus, the modified aigorithm would have the following form:

I. Imitialization: output 7' = a * maxr{coc f ficient vector norms}: add the co-

ordinates of the vectors (z, j) € H to both the LV and the LIS as type A entries.

2. Sorting Pass:

(a) for each entry (7,7) in the LV do:
1. output Sr(7,7);

i, If St(i.)) = 1 then code the codevector index and put the residual

vector back into the coefficient array;



(b) for each entry (z,7) in the LIS do:

i. if the entry is of type A then
e output ST(D(1,7));
o if S7(D(z,7)) =1 then
~ for each (k,1) € O(z, ) do:
* output St(k,!);

* if St(k,1) = 1 then add (k,!) to the end of the LV, code the
codevector index, and put the residual vector back into the

ccefficient array;
* if Sy(k,1) = 0 then add (+ [) to the end of the LV:
— if L(7,7) # @ then move (7, /) o the end of the LIS as an entry
of type B;
— if (V(k, 1) € O(2, ), Su(k, 1) = 0), NoCode(k,l) « 1
else NoCode(k,l) « 0
i. if the entry is of type B then
o if (NoCode(k,l) = 0) output Sr(L(7,J));
o if (NoCode(k,l) =1 ov Sp(L(Z,j)) = 1) then
— add each (k,!) € O(i, j) to the end of the LIS as an entry oi type
A,

— remove (7, 7) from the LIS;
3. Quantization-step update:
o T ¢ aT;
e go to step .

Notice that the refinement pass has been eliminated from the algorithm. The re-
finemnent of the vectors is done in the sorting pass since the residuals of each quantized

vector are placed back into the coefficient array. This does not adversely affect the



results since each vector which is quantized never needs to be checked for inclusion
in a zerotree structure again. The only time a residual vector js coded is when it s

refined and checked for optimal significance.

3.4 ModLVQ Compression Results

The suggested modifications which were outlined in the previous section result in
substantial changes to the quality of the reconstructed images.  In this section, the
impact of the modifications will be measured mathematically (in terms of PSNR)
and visuaily, image classes on which the ModLVQ algorithm performs well will he

identified, and the relevance of the resnlts will be discussed.

3.4.1 Test Image Set

In order to make an adequate assessment of the performance of a compression al-
gorithm. as was mentioned in the previous chapter, a wide range of test nnages and
test image types must be used. The same test image set as was used for the quadtree
compression algorithm is used to test the ModLVQ method. The four images shown

in Figure 2.9 will be used often in the analysis of the ModLV'Q algorithm.

3.4.2 Modification to Short Projection Optimization

Tradeoffs are an important part of image compression. As was discussed several times
previously. there are places in the suggested modifications where there is a tradeofl
between resulting reductions in distortion and increases in rate (—ﬁ—ﬁ). In order for
the modification to be successful, the magnitude of the ratio of AD to AR must he
sufficiently large (see Figure 3.19).

In alme-t all of the cases, the tradeoff came out in favour of the proposed modi-

fications. In one particular case, that of the short projection optimal significance,

the ratio —%% was not favourable, and caused a slight overall decrease in image

quality for a given bit rate. The decrcase in quality was not large (in general,
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APSNR € {-0.2,...,-0.1}), but was consistent throughout the test image set.
Because of this, the short projection vectors must be removed from the definition of
optimally significant by assuring that if a vector magnitude is greater than the current

threshold, it will always be optimally significant:

o IF (7’"—'2*3l < projection_length OR T < vector_length)

Vector is optimally significant

¢ ELSE

Vector is optimally insignificant

The improvement in image quality as a result of this addition as compared to some of
the others is small, and thus the calculation of optimal significance is removed every-
where in the algorithm except in the steps shown in 2(a) of the algorithm dealing with
the potentially significant vectors themselves. This eliminates the need for additional
processing during the algorithm with imperceptible loss to the improvements in the

resulting image quality.

3.4.3 Numerical Results

In this section, the numerical results of the ModLVQ algorithm will be discussed in
detail. The fidelity criterion used to determine image quality will, as before, be the
PSNR. The overall changes will be discussed first with concentration on the successes
and limitations of the algorithm. Later in the section, the various modifications to

“PHIT will be analyzed separately as to their impact on the algorithm as a whole.

Overall Kesults

The singie largest change to the SPIHT algorithm is, of course, the addition of the
vector quantization scheme. Although the addition of lattice vectors to the EZW
algorit :im produces better quality reconstructed images, there was o guarantee that
(. sam. combination with SPIHT would also result in an improvement, even with

the knowledge that SPIHT and EZW are closely related.



Consider the gap between the EZW and SPIHT results which is often greater than
1 dB PSNR in {aveur of SPIHT. The addition of lattice vector quantization to the
EZW algorithm. especially in the case of the Ayq lattice. is very effective as its use
place of the regular scalar quantization results in an advantage. However, with the
more optiniized SPIHT algorithm it is possible that the scalar quantization algorithm
in place could already be generating a more efficient code than would result with the
addition of lattice vectors.

As it turns out, the ModLV(@ algorithm can result in higher quality images for a
certain image class when the A, vectors (and the moditied combinations) are adde.l.
The Dy lattice vectors generally reduced the quality of the resulting images although
it was easily verified that the use of the first two shells produced better results thay
using only the first shell. In general, image -uality for busy mmages increases with the
addition of A4 vectors while there is a gene al decrease in quality for smooth images.
How can this phenomenon Le described mathematically?

Given that high frequency wavelet coetlicients are distributed about zero, the mean
absolute norm (MAN) of the coefficients is easily calculated as the average absolnte

coefficient value,

N

MAN = %}: lei] (3.9)

1==]

where N is the nvmber of coefficients, and ¢; are the coeflicient values. Sinee only
high frequency coefficients are used in the analysis, it makes sense that the higher the
value of the MAN, the larger (on average) the high frequency wavelet coefficients are,
and hence the more detail exists in the original image. Another method, of course, is
to calculate the mean-squared norin (MSN) of the high frequency coefficients:

v N
MSN = =3 ! (3.10)

=]
Using the MSN as a measure of the amount of high frequency information in the
coefficients can be criticized since a few very large coefficients can result in a farger
MSN than many moderately-sized coefficients. For this reason, I will use the MAN in

my aualysis.
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Consider the graph in Figure 3.24. The horizontal axis shows increasing MAN of
the high frequency wavelet coefficients and the vertical axis indicates the change in
PSNR which occurs as a result of using ModLV(Q as opposed to SPIHT. The APSNR

measure is taken at 0.125 bpp on a set of 28 test images. Visually, there appears to
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Figure 3.24: Coetlicient Mean Absolute Norm vs PSNR correlation

be a loose correlation between the MAN and APSN R values.
A visual test of the data, however, does not prove the correlation. Statistically. the

correlation, p, between two variables can be calculated in the following way:

Cov(Y;, Y2)
p =

0107

Cor(Y1,Y3) = E(Yy — ) E(Y2 — pa) (3.12)

The resulting correlation will always satisfy the inequality —1 < p < 1, with a |
(or -1) implying perfect correlation, and 0 implying no correlation In this case.
the two sample populations Y; and Y; are the MAN and APSNR. Since the data
points seem to be related in a positive fashion in Figure 3.24, the expected value of p
should be positive. Using 168 (MAN, APSNR) pairs generated from 28 test images.

the statistical correlation works out to be close to 0.45 showing a loose correlation
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between the two variables. By removing the two images which correspond to the
obvious outlying points in Figure 3.24 from the test set, the correlation becomes 051

A comparison of the reconstructed image quality of EZW, SPIHT, and Mod V')
for the Lena and Barbara images 1s shown below in Table 3.5 where the values in
the tible are in dB PSNR. Note that the Lena image is relatively smooth while the
Barbara image contains considerably more detail and is more difficult te compress, In
addition to this, the SPIHT and ModLV'Q results are shown for the lo and Mandrill

images in Table 3.6.

Lena image Barbara image
Bits per pixel | EZW | SPTHT | ModLVQ || EZW T SPIHT | ModINVQ
1.0 39.55 | 40.42 4047 3.1 | 3745 37.02
0.5 36.28 | 37.22 37.02 30.53 | 32010 32.50
0.25 3317 | 34012 33.99 26.77 | 28.13 895
0.125 30,23 | 3110 30.81 2403 | 2537 26,16
0.0625 2054 | 28.38 2820 2310 | 23,97 21.20
0.03125 2538 | 25.97 25.92 219101 2271 2279
0.015625 23.64 | 23.97 24.01 2075 | 21.7Y 21.67
0.0078125 21.69 | 22.08 2217 1951 | 20.62 20,62
T BZWLSPIHT and ModLV(Q results
" To image Mandrill image
SIHT [ ModEVQ || SPIHT [ ModlVQ
40T 3642 2007 | 29.46
, 2290 32.61 25.64 2578
20.36 30.08 23.27 23.44
oz 28.21 28.07 21.72 21.91
0.0625 26.42 26.36 20.74 20.82
H 0.03125 25.01 24.95 19.538 20.08
0.015625 23.67 23.68 19.57 19.59
| 0.0078125 2241 | 248 | 1908 | 198

Table 3.6: SPIHT and ModLV(Q) results

Because of the increased number of large high frequency coeflicients, busy im-
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ages generally give lower quality (in terms of PSNR) reconstructed images when any
compression scheme is applicd to them. Notice the geneial trend i the above tables,
which shows that the busier images tend to be better compressed with Mod LVQ than

SPIHT. which is in agreement with the statistical data presented carlier.

R-D Curve for Barbara
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Figure 3.25: A comparison of SPIHT, ModLV() and JPEG

A comparison to JPEG compression is given in the graph shown in Figure .25
rather than in table form since JPEG cannot be used to exactly specify a bit rate.
Only one graph comparing ModLVQ and SPIHT to JPEG will be given as it should

be obvious that JPEG cannot compete with these methods at any bit rate.

Effects of the Modifications

There were several modifications which were made to the SPIHT algorithm which
resulted in the ModLVQ algorithm. It is clear that the most prominent change was

.. . ' .
the addition of Ajg (or in the final case, A;;) vectors. In order to determine the exact



impact of cach modification. a haseline nst be established with the resnlts of the
addition of each modification compared to the results of using the baseline method. 1

will nse two separate baselines for two different modification classes:

I. Vector Modifications: 11 haseline will he the addition of the unmodified
Ay Tattice veetors. The nioatications which will be compared to this baseline

will b

(a) The addition of vectors with one dominant component of the form (£17.0'%)

(h) The addition of Reed-Mnuller vector form codewords with odd numbers of

negatives

3 &) . . ey . . ’
(¢) The combination of the above two modifications into the A codebook

2. Optimization and Redundancy Elimination: The baseline will be the com-
bination of SPIHT aud A}, vectors which will be compared to versions with the

following additions:

(a) Optimal significance

(b) Redundaney Elimination

For cach modification, a single table will be given illustrating the improvement in dB
PSNR over the baseline method using the Barbara image. In addition to this, a short
summary will be given which describes the effectiveress ¢f the modification over a
data set of 182 runs on 28 images (using different bit-rates on the image set).

Although the addition of the “one dominant component vectors” does not make a
tremendous difference in most cases, and in the case of the Barbara image actually
loses at two bit rates (see Table 3.7), it is generally successful. On 182 test runs on
the 28 test images, the modification results in an improvement 115 times, ties the
baseline 50 times, and loses 17 times.

The addition of vectors with the Reed-Muller form and odd numbers of negatives
gives a more pronounced improvement as can be seen in Table 3.8 above. Using the

same 182 test runs, this modification wins 124 times, ties 10 times, and loses 48 times.

%4



Bits per pixel | dI3 PSNR Improvement
1.0 0.01 )
0.5 0.01

0.25 0.01

0.125 -0.01

0.6625 0.00

0.03125 0.00

0.015625 -0.01

0.0078125 0.00

Table 3.7: Effects of “one dominant component™ vectors

Bits per pixel | dB PSNR Improvement
1.0 0.31
0.5 0.10
0.25 0.10
0.125 -0.04
0.0625 0.00
0.03125 0.03
0.015625 0.02
0.0078125 0.06

Table 3.8: Effects of including the odd negative count in the Reed-Muller forms

It should be clear that the combination of the previous two modificaticas do not
necessarily result in perfectly accumulated results as can be observed in Tabie 3.9,
The use of A}, vectors generally beat the original Ajg lattice vectors: 127 wins, 13
ties, and 42 losses as compared to the baseline.

The addition of optimal significance does not change the results much. In fact,
the addition mostly results in ties with the baseline, although wins are more common
than losses: 64 wins, 99 ties, and 19 losses.

The redundancy elimination modification was, as was mentioned hefore, gnaran-
teed not to lose. Its addition does not result in tremendous gains and often results in

ties, but it is a clear improvement: 71 wins, 111 ties, and 0 losses.

h



T Bits per pixel | dB PSNR Improvement
1.0 0.29
0.5 (.08
.25 0.06
).125 -0.07
).0625 -0.03
0.03125 0.02
().015625 0.01
0.0078125 0.06

Table 3.9: Effects of the use of A} vectors

Bits per pixel | dB PSNR Improvement
1.0 0.01
0.5 (.00
.25 0.01
0.125 -0.01
0.0625 0.00
0.03125 0.00
0.015625 0.00
0.0078125 0.00

Table 3.10: Effects of the addition of optimal significance

3.4.4 Visual Results

Because the strictly mathematical nature of the PSNR measurements do not necessar-
ilv imply that a reconstructed image with a higher PSNR is more visually appealing
than another reconstructed image, this section will look at the impact of the modi-
fications from a visual standpoint. Improvements in some specific images will be
shown and further proof that the ModLVQ method performs well on high detailed
images/regions will be given.

Unlike the quadtree method presented in the previous chapter, it is difficult to
design a wavelet compression algorithm which directly benefits the visual quality of
the image (which, as we have seen, can sometimes result in a lower PSNR). The best

that a wavelet compression method can do is to minimize the error in the quantized
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Bits per pixel | dB PSNR Improvement |
1.0 0.02
0.5 0.04
0.25 0.03
0.125 0.05
0.0625 0.04
0.03125 0.02
0.015625 0.00
0.0078125 0.00 I

Table 3.11: Effects of redundancy elimination

wavelet coeflicients, thus indirectly reducing the error in the reconstrncted image.
Since the error can only be calenlated mathematically and not visually, no guarantees
can be given as to the visual quality.

An important question as to the effectiveness of ModLVQ is: “Ave the results
really superior to SPIHT even when the PSNR indicates that this is the case?™. In
the case of the Barbara image, on which the ModLVQ algorithin generates impressive
results. the visnal results are much more visually appealing. Censider Figure 3.26,
which shows a tablecloth portion of the Barbara image when compressed to 0.25 Lpp
using both the SPIHT and ModLVQ methods. Clearly, the ModLV(Q) retains much
more of the detail. In Figure 3.27, which shows the facial portion of the same .25
bpp Farbara images, it is more difficult to see the differences. However, upon close
inspeciion. the ModLVQ algorithin does a better job of reconstructing the rightmost
eve

Aunther question which might be asked is: “Are the visnal resalts of the ModL V()
algorithin better than those of SPIHT even if the PSNR is lower”? This is difficult
“riderermine. Generally, for smooth images such as Lena which do not give the same
iv. o ad results when the ModLV(@Q algorithm is applied, the visual differences are
mi- i However, it should be noted that positive differences can often be picked
out of tusy regions of just about any image. Consider the image segments shown in

Figure 3.28, which show the portion of the Lena image containing part of a hat, just

-
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(a) (b)

Figure 3.26: Tablecloth portion of Barbara image: (a) compressed using SPIHT: (b)
compressed using ModLV(Q

above the rim. The compression ratio was set in both cases to 0 25 bpp. The SPIHT
compression results show a relatively smooth area containing little detail, while the

ModLV Q) results show the fine texture in the hat.

3.4.5 Analysis

An exploration into the reasons for the ModLVQ’s enhanced performance for busy
images (and busy portions of images) needs to be performed in order to explain the
phenomenon.  While perhaps not being initially obvious, the major reason for the
success is very simple and involves primarily the variation in the distribution of high
frequency wavelet coefficients which result from busy as opposed to smooth images
or image segments (hereafter, the terms smooth image and busy image will be used
for both entire images and image segments).

The distribution of high frequency wavelet coeflicients will quite clearly be differ-

ent for a busy image than it would be for a smooth image. The general shape of the



Figure 3.27: Facial portion of Barbara image: (a) compressed using SPIHT: (b)
compressed using ModLV(Q

distribution curve will be similar for most images, but a wider distribution should
be expected for busier images, indicating that there are higher numbers of large mag-
nitude high frequency coefficients. Consider the distributions shown in Figure 3.29.
Figure 3.29(a) shows the distribution resulting from a low detail, smooth image, while
Figure 3.29(b) shows the distribution resulting from a busy image. The MAN valnes
of the images also indicate the differences in coefficient distributions.

Let us now consider two different types of 4x4 blocks of coeflicients that will occur

in the coefficient array at any point in the compression:

1. Smooth blocks: these will occur with more frequency in sinooth images. An

example is shown in Figure 3.30(a).

2. Busy blocks: these will occur with more frequency in busy images. Au example

is shown in Figure 3.30(b).

Consider the space which will be required by the coding of the two example blocks

by the competing algorithms, SPIHT and ModLVQ. A quick summary of the space
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Figure 3.28: Hat portion of the Lena image: (a) compressed using SPIHT: (b) com-
pressed nsing ModLVQ

required by each for a generic 4x4 block (without counsidering refinement passes) is

given below:
I. SPIHT:

e For each 2x2 block that has not already been coded as significant, one

symbol (from a 2-symbol alphabet) to code the block’s (in)sigaificance

e For each significant 2x2 block, one symbol (from a 2-symbol alphabet) to
code the significance of each symbol which has not already been coded as

significant
2. ModLVQ:

¢ One symbol (from a 2-symbol alphabet) to code the (in)significance of the

4x4 block

e One symbol (from a 8192-symbol alphabet) to code the A;4 codevector
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Figure 3.29: Coefficient distributions for two different mmages: (a) smooth image

MAN=1.75: (b) busy image, MAN=15.52

.

Clearly. since each significant 2x2 block requires more coding by the SPHIT al-
gorithm. it is able to code a block of the form ~hown in Figure 3.30(a) more casily
than a block of the form shown in Figure 3.30(b). The ModLVQ algorithm treats the
two blocks in exactly the same manner.

In addition to the above analysis whicl: considers only the sorting pass, the re-
finement pass will also turn in favour of SPIHT for smooth images. The SPIHT
refinement pass codes a single symbol from a 2-symbol alphabet for each coeflicient
that has been found to be significant. ModLV(Q), on the other hand, treats refinements
in the same way as the initial vector encoding where each block will be coded using
a codevector. When fewer significant coefficients are involved, the SPIHT algorithm
will perform better than it will when many significant coefficients are involved.

In conclusion, the SPIHT algorithm has more difficulty with coding Imsy blocks
than smooth blocks while ModLVQ treats all blocks in the same fashion. As a result,
it is not surprising that ModLVQ is able to perform well for busy images while SPHIT

has more difficulty.



(a) (b)

Fignre 3.30: 4x4 coefficient blocks, showing large (significant) coeflicienis shaded
black: (a) smooth hlock: (b) busy block

3.5 Complexity

An exhaustive lexity analysis of the ModLV'Q (as well as EZW aud SPIHT)

algorithm is sitaple as it is for the SR quadtree algorithm for several reasons:

1. SPIHT requires very few mathematical operations aside from the wavelet trans-

form itself which varies only with the size of the input image.

o

The ModLVQ algorithm requires additional mathematical operations that are not
required in SPIHT, but it is hard to give a good comparison of the complexities
of the two when the mathematical complexity of one of the algorithms is nearly

nonexistent.

3. The current implementation has not been optimized to the point where a reas-

onable comparison of execution time can be performed.

The one thing which seems certain is that the ModLVQ algorithm is indeed more
complex than its predecessor. The addition of the A4 vector quantization requires that
additional computations and comparisons be done. The complexity of the algorithm
is. like SPIHT, very dependent upon the user selected bit rate for both the compression

and decompression modules.
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Given the low complexity of lattice vector quantization and the efliciencies of the
SPIHT algorithm. the Mod LV Q algorithm requires a minimal amount of computation
power. Although it is not a computational improvement over SPIHT as the improved
SR quadtree compression was over Shusterman and Feder's quadtree decomposition,

it remains an efficient algorithm.

3.6 Future Work

The ModLV(Q compression method not only can result in superior image quality when
compared to existing compression schemes, but it presents several opportunities for
future work for further improved compression. T'wo potential arcas for continued
research are the vector quantization scheme and the possibly exploitable relationship
between image complexity and ModLV() success.

A discussion into the successes of the wavelet /LGB vector quantization combin-
ation of Averbuch ef al[4] has been given, briefly describing the algorithm to be
comparable to SPIHT in image quality, but requiring additional computational com-
plexity. The higher complexity was cited as the main reason for choosing a lattice
vector quantization scheme over a similar LGB method. However, the o e for a
computationally simple algorithm need not prevent further rescarch into ive arca.

Some possibilities for continued research which include LGB compression could be:

1. A combination of ModLV(Q) and the method described by Averbuels of al., in
which an initial vector quantization pass is performed using the suggested LGB

method and subsequent refinements to the residuals are performed using Mod-

LVQ.

2. The use of lattice vectors in combination with LGB generated vectors in the
ModLV(Q codebook. An entire section in this chapter has been devoted to a
modified form of lattice vector quantization designed to improve the results. It
may be worthwhile to consider using LGB vector quantization in the design of

a modified lattice vector codebook.



A second suggestion for continued work is to find a stronger correlation between the
APSNR given by ModLVQ over SPIHT and image complexity. Currently, a relatively
weak correlation of approximately .45 has heen established between the MAN and
AFSNR. I a stronger correlation were to be established using a measure other than
the MANL it might be possible to use a combined ModLV'() and SPIHT algorithm
which would first caleulate some measure of the image’s complexity and then decide
which of the two algorithms would be most likely to generate the best PSNR results.
For examyple, consider Figure 3.24. A point which divides positive from negative
APSNR could be established at an MAN of about 6. Any image which was found
to have an MAN greater than 6 could be compressed using ModLV(Q). otherwise it
would be coded using SPIHT. Using the MAN, of course, does not provide the best
correlation and many images would be sent to the wrong algorithm.

In addition to the above possibilities for improving PSNR results, further consider-
ation needs to he given to the optimization of the existing implementation in order to
make a fair comparison between the complexity differences of ModLV'Q and SPIHT.
and to make the ModlLV'Q algorithm more attractive for general use. Currently. the
SPIHT implementation is impressively efficient. requiring less than four seconds of
CPU time on an AMD 486DX/4-100 processor to compress a 512x512 image to 1
bit per pixel with similar decompression times. Given the relative theoretical sim-
plicity (requiring only rounding operations) of lattice vector quantization. an efficient

implementation which rivals that of SPIHT in execution time is a possibility.

3.7 Conclusion

One of the most powerful wavelet compression algorithms in existence is the SPIHT
algorithm. By eliminating many of the redundancies which the EZW algorithm failed
to handle effectively and using many of the same efficient structures within EZW.
the SPIHT algorithm generates superior results in addition to requiring very little

computational effort.
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The ModLV'Q algorithm. based on severai modifications to SPHT including the
addition of a modified lattice vector codebook, can generate better PSNR results for
busy images. A correlation has been shown to exist between the improvement in
PSNR and a measure of image complexity (MAN). In addition. MedLVQ generates
better quality visual results in areas of images that contain plenty of detail whether
or not the entire image is generally busy or smooth.

Aside from the main modification to SPIHT, which was the addition of lattice
codevectors, there were several additional modifications which were all shown to be
successful in the majority of cases. At least one of these modifications, the reduction
in redundancy, need not be applied only to ModLV(Q). This modification would result

in a similar improvement. as has been shown already, if it were applied to SPHHT.
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Chapter 4

Conclusion

4.1 Relative Effectiveness of the Algorithms

Both the SE Quadiree Compression and ModLV(Q algorithms give impressive results
for spatial and transform domain compression respectively. In spite of the improve-
ments made in the quadtree compression, however. its final results are poor in compar-
ison to ModLV(Q's. An example comparison is given in Table 4.1, which uses unusual
bit rates which resnlt from different thresholds i the quadtree algorithm (since the

SE compression cannot be given an exact bit rate): In addition to these results. it

Bits per pixel | ModLVQ | SR

0.964 40.30 35.16
0.501 37.03 32.14
0.271 34.26 29.79
0.154 31.88 27.78
0.102 30.04 26.41
0.074 28.74 25.18
0.036 26.29 23.37
0.017 24.23 21.75

Table 4.1: Comparison of ModLVQ and SR using Lena

should be noted that of the entire image set of 28 images described in chapter 2 section

1.5, the ModLVQ algorithm performs better on all of them excent one (the window
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image - see Figure 2.7), at all bit rates. The wavelet algorithim has several advantages

over the quadtree algorithm. which are listed below:
o Embedded code
o Exact compression ratio can be selected by the user

e Superior compression results, even at low bit rates, which are the strongest

point of the SR quadtree coding

Figure 4.1: Text image

While the wavelet based ModLV(Q compression will give better results than SI2 i
general, there are cases where spatial domain methods will still have an edge for some
bit rates. One such case is the image shown in Figure 4.1 which is composed of text.
A comparison of the results is shown in Table 4.2. The ouly bit rate in the above
table at which the reconstructed image contains reasonabiy vell formed, readable text
is the first (0.675 bpp), and then only for SR quadtrec compression. In images such
as the above (and the window image), quadtree compression algorithms will alimost
certainly have an advantage over the various transform domain based compression

schemes including ModLVQ. Some characteristics which could define images which are



Bits per pixel | ModLVQ | SR

(.675 18.34 48.09

0.464 16.33 15.39

0.120 13.59 12.98
Table 4.2: Successful S compression result

very easily compressed using SR quadtree compression (or another form of quadtree

or spatial domain compression) are:
e Contains large homogeneous regions
o Lidges are sharp and well defined
o Lilpes are oriented horizontally or vertically
e lew grayscale values are used

C'learly. the above characteristics define a set of images which is q:.ite restricted.
However, this does not mean that quadtree compression schemes such as SR quadtree
compression are not useful. Images with the characteristics described above do exist.
for which a spatial domain method such as that presented in Chapter 2 will perform

very well,

SR Quadtree Compression

The SR quadtree compression method, which is essentially an improved reconstruction
method for the decompression phase of the quadtree decomposition method suggested
by Shusterman and Feder[28], has been shown to be an effective and efficient quadtree
compression algorithm. It has resulted in improvements in complexity as well as the
image quality (both mathematically and visually) over previous quadtree compression
schemes.

Computationally, the algorithm is very simple. This, combined with its success

at lower bit rates, makes it an excellent candidate for use with applications requiring
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efficient compression, low storage space and good results. In wireless communica-
tions, for example. where computing power and transmission speed are important
factors. the time required to compress and send image data wonld need to be redueed
significantly. The SR algorithm is well suited to such a purpose.

While being unable to compete with the ModLVQ algorithm in all but a himited
class of images, SR compression has been shown to generate higher quality results
when compared to its predecessor both mathematically and visually. In addition to

this, it is simpler computationally, making it a very attractive spatial domain method.

4.3 ModLVQ Wavelet Compression

Although the modifications to the existing SPIHT algorithm do not generate universal
improvements in reconstructed image quality, the ModLVQ algorithm can be shown
to generate impressive compression results (both mathematically and visnally) for
busy images and/or busy image segments. Regardless, the ModLV() scheme must be
considered as one of the most powerful wavelet compression algorithms that has heen
developed to date.

Compared to SR quadtree compression, ModLVQ is the obvious choice when het-
ter compression results are desired unless the input image possesses the qualities
discussed previously which would make it a good candidate for a spatial domain tech-
nique. The efficiency with which ModLVQ) is able to choose and encode the wavelet
coefficients with the greatest impact on the resulting image quality and the additional
advantage over SPIHT which allows for superior coding of busy images is difficult for

any spatial domain compression scheme to match.
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