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Abstract

The application of a new technique, based on the spectral method, for
describing light scattering by biological cells is reported. The accu-
racy of the spectral numerical method has been verified by compari-
son with linear perturbation theory and Mie theory. Comparison with
Mie theory has validated that the three-dimensional scalar wave equa-
tion is a good approximation to the full Maxwell’s set of equations for
light scattering at moderate angles. The computational requirements
for the spectral method in modelling laser interaction with biologi-
cal samples are much lower than the requirements for other existing
numerical methods such as: finite-difference time-domain and Monte
Carlo. Yet the new algorithm is capable of resolving the variations
in the scattered signal with a contrast in intensity of up to six orders
of magnitude. The spectral technique can be successfully applied to
address scattering from individual cells and from biological samples
containing many cells. The new method is well suited to recognizing
the size and composition of biological cells, making it a valuable tool
in cell cytometry, for example, in the detection of rare event cells,

cancerous cells and bacterial cells.

A three dimensional coupled vector wave equation comprised of two
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orthogonal field components is derived from Maxwell’s equation for
capturing the polarization information for small angle scattering. The
spectral technique has been applied to solve this 3D coupled vector
wave equation. Both a 3D-2 component vector field solver and a 3D-
3 component vector field solver have been developed. These solvers
are capable of providing a more accurate prediction of the angular
spectrum of the scattered intensity than that which is provided by
our 3D scalar equation solver, especially in the backscattering range.

In addition, polarization information is also provided.

An outline of our proposed measurement of laser light scattering from
latex beads is presented. A detailed derivation of the normalization
constant for both Gaussian beam and plane wave incident sdurces is
provided. Hence, the angular spectra of the scattered light intensity
can be reported in an appropriate unit, i.e. photons/(s.sr), allowing

for the calculation of the scattering cross section .
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Chapter 1

Introduction

Lasers have several unique properties, such as monochromaticity, high power,
short pulse duration, and coherence, which are particularly useful for biological
and medical applications. Laser medicine is now a quickly growing research field.
The increasing use of laser light for both diagnostic and therapeutic medicine
has created a need to understand how laser light propagates through biological
tissues, in order to enable the quantitative analysis of diagnostic measurements
and the optimum development of therapeutic techniques. v |

There are five main categories [1-3] of photophysical processes in laser light
tissue interactions. There are non-destructive photo interactions, photochemical,
photothermal, photoablative and photomechanical interactions. Non-destructive
photo interactions mainly concern laser light propagation and scattering in tissue,
which can be used both for imaging and diagnostics. Photochemical interactions
involve the absorption of light by specific molecules that are either present in,
or added to, a tissue sample. Such interactions are the basis for photodynamic
therapy. Photothermal interactions are those where the observed biological effect
is due to the deposition of heat in the tissue. Most current laser surgery, such as

welding and coagulation, for example, falls into this category. Photoablative in-
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CHAPTER 1. INTRODUCTION 2

teractions can occur when photons have sufficient energy to cause the dissociation
of biopolymers and subsequent desorption of fragments. The threshold for this
effect to occur with 10ns pulses is approximately 108Wem™2. Photomechanical
interactions occur at fluence rates of approximately 101°°Wem=2 for nanosecond
pulses and 102Wem™2 for picosecond pulses. When these ps pulses illuminate
tissue, the dielectric of the tissue experiences breakdown, and a small volume
plasma is produced. The expansion of this plasma creates a shock wave which
can mechanically rupture the tissue. These last two types of interaction are
complex in terms of their thresholds and nonlinear effects. Both can be used for
tissue ablation, emulsification and drug delivery.

At the Lawrence Livermore National Laboratory (LLNL), a computer code
named LATIS [6] has been developed to realistically model these physical pro-
cesses (excluding the first category of non-destructive photo interactions) for
medical applications. LATIS is a two-dimensional, time-dependent simulation
program which takes into account laser light transport, mechanical response,
thermal response, and material response, and the non-linear interactions be-
tween these phenomena. It has been demonstrated that LATIS can be used in
describing such applications such as the ablation of hard biological tissue [7],
vapor bubble generation by short-pulse lasers [8], and tissue welding.

I will not discuss the last four types of photophysical processes further in
this thesis; instead, I will focus on non-destructive photo interactions, where the
optical properties of the tissue do not change in time and are independent of the
light intensity. Optical properties of tissue and individual cells are very important
for a wide range of studies from imaging and diagnostic applications, such as
cytometry [9], confocal [10] and optical coherence tomography [11] imaging, and
fundamental investigations of a cells’ sensitivities to light sources [12]. When

laser light enters a biological sample, it can be scattered and absorbed. The
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CHAPTER 1. INTRODUCTION ' 3

relative probability of these processes in a given tissue depends on the laser
wavelength {4]. In these applications, laser light from the blue to near-infrared
parts of the spectrum is predominantly scattered from local variations of the
index of refraction between different parts of cells and other small structures in
the sample. ;

Cytometry is the measurement of physical and/or chemical characteristics of
cells, or, by extension, of other biological particles. Flow cytometry [13] is a
process in which such measurements are made while the cells or particles pass,
preferably in single file, through the measuring apparatus in a fluid stream.
During the past 30 years, sophisticated improvements have made flow cytometry
a powerful and invaluable tool for the quantitative analysis of individual cells
or other biological particles. A flow cytometer is an instrument, which can be
used to obtain quantitative information based on light scattering or fluorescence
emission caused by individual cells (or particles) as they flow rapidly in a fluid
stream in front of a light source [14]. The components of a flow cytometer
usually include a light source (normally a laser); a sample chamber with flow cell
and sheath fluid stream; a photodetector or photomultiplier tubes (PMTs) that
collect light and convert it to a electronic signals; a signal processing system that
. converts the signal from analog to digital; and a computer to direct operations,
store the collected signals, and display data [15]. With the combination of state-
of-the-art advances in computer and laser technology, more sophisticated flow
cytometers have been developed to obtain objective and precise measurements
of multiple characteristic parameters of an individual cell at one time. Such
parameters include cell size, cell shape, and cytoplasmic granularity (refractive
index).

In conventional flow cytometry, the physical properties of cells are deduced

from an analysis of the angular distribution of scattered light. When a cell (or
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CHAPTER 1. INTRODUCTION 4

particle) passes in front of the disc-like focused narrow laser beam, the light
is scattered in all directions. The larger the cells, the more light is scattered.
Through comparison of relatively simple forward and backward scattering infor-
mation, broad categorizations of cells can be performed. The identiﬁcation of
different types of cells is based on the empirical observation [16] that the small-
angle scatter in the forward direction is more sensitive to the size of the cell, while
the large-angle scattering primarily depends on small-scale structures inside the
cell or other granularity. The processing of this relatively simple information is
dictated by several factors. For example, the system is able to position the cells
only by moving them at high speed, thereby limiting the time available for data
acquisition. In addition, the detectors are limited to detecting the light scattered
far from the original beam direction, since any scattering signal near the colli-
mated beam is negligible compared with the beam itself. Moreover, insufficient
information is obtained to account for cell rotation effects. As a result, only
simple predictions can be made.

Recently, microfluidic devices or microchips, which consist of micromachined
channels (typically 100um wide), have been used in improving flow cytome-
try techniques. In Ref. [17], Schrum et al. demonstrated a microchip-based
cytometer with which they sorted latex beads, correlating the scattered peak in-
tensity with the bead size. They used two different sizes of particles: fluorescent
smaller particles with a diameter of 0.972um and non-fluorescent large partcles
with a diameter of 1.94um. The results show that peak intensity, which corre-
sponds to the total scattered intensity by a particle, was 0.235 times smaller for
the 0.972um fluorescent particles than for the 1.94um non-fluorescent particles.
These observations are consistent with Mie theory, which predicts that the scat-
tered intensity should be proportional to the particle surface area and, therefore,

to the square of the particle diameter [24]. This was a powerful demonstration of
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CHAPTER 1. INTRODUCTION 5

the manipulation of latex beads, especially with regards to the use of hydrody-
namic focusing—balancing fluid flows toy position the beads in the laser beam so
as to ensure a reproducible scattering signal. However, because of the very fast
movement of the beads (34 beads per second), their apparatus was incapable of
detecting more than the peak value of the scattered signal, which greatly limited
the information that could be extracted from the experimental data. A U.S.
company called Micronics has developed a microcytometer in which biological
cells from a sample, such as blood, pass in single file through a micro-channel
upon which a laser beam is focused. Light scatter mea,suréments are taken at
multiple angles over two ranges: forward angle scattering (from 0 to 3 degrees)
and small angle scattering (from 3 to 11 degrees), and these multi-parameter
scatter measurements provide information not simply about the size but also
about the internal cellular structure for the varibus type of cells. A study of this
device’s ability to separate several types of white blood cells has been presented
in Ref. [18]. This would be very useful in blood counting and differentiation.
Understanding relationships between measured scattered light properties and
physiological differences at the cellular level is fundamental to the usefulness of
optical diagnostics and constitutes the main challenge for the modelling of light
scattering from cells. Both analytical approximations and numerical solutions
have been used to model tissue scattering. Due to the complexity of scattering
media, and the fact that dielectric constant inhomogeneities occur on scales
comparable to the laser wavelength, analytical solutions to the scattering problem
are limited. Several numerical procedures originally employed in other physical

and engineering applications have been adopted to the cell scattering problem.
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CHAPTER 1. INTRODUCTION 6

1.1 Analytical Approach

Mie theory, which was published in 1908 by G. Mie [19, 20}, refers to the elec-
tromagnetic theory for the diffraction of a plane monochromatic wave by a ho-
mogeneous sphere of arbitrary diameter and refractive index immersed in a ho-
mogeneous medium. In fact, Mie theory is a rigorous solution to the Maxwell
equations describing the field generated by a plane monochromatic wave incident
upon a spherical surface, at which the refractivé index of the medium changes
abruptly. Based on Mie theory, the electromagnetic fields inside and outside the
sphere can be expressed by inﬁnife series expansions. To obtain quantitative
results from the Mie theory it might seem that we are faced a straightforward
task. However, the number of terms in the series required for convergence can
be very large. For example, we need to sum about 12, 000 terms in investigating
the rainbow — a visible scattering phenomenon, if we assume a water droplet
radius of 1mm. Such a calculation clearly requires much more than just patience
and pocket calculator. Even for smaller particles the number of calculations can
be painfully large. Indeed, although the Mie theory has been available for many
years, only the recent development of fast computers has made it a practical
means for detailed computations.

Mie theory has many applications in the study of light scattering by biological
objects. For example, it can be used to calculate light scattering from tissue on
the cellular level by assuming that cells are hbmogeneous spheres [21]. It has also
been used to describe light scattering from coated spheres, which represent many
types of biological cells with a nucleus of a refractive index ~ 1.1 and a cytoplasm
with a slight lower refractive index [22], as well as to study the dependence of
the backward scatter pattern on membrane thickness and refractive index when
light is scattered from biological cells [23].

In summary, Mie theory has been very successful in describing light scattering
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CHAPTER 1. INTRODUCTION 7

~ from biological cells which can be approximated by homogeneous spheres of any
diameter with arbitrary values for the refractive index and for simple 2—layered
structures. Indeed, the scattering matrix (Mueller Matrix) for a homogeneous
sphere can be constructed from Mie theory. However, Mie theory is unable to
describe the interaction of light and biological cells with arbitrary shapes or with
complex structures such as multiple organelles contained within individual cells.
- Mie theory provides a benchmark for testing other analytical solutions [25]
and numerical approaches [38] which are developed to account for light scattering
that arises from inhomogeneous biological objects of arbitrary shape. In this
thesis, Mie theory will be used as the benchmark for validating numerical results.
A detailed description of Mie theory will be presented in Chapter 2 and the
numerical results of a modified version of Bohren and Huffman’s computer codé
[24] are also presented in Chapter 2.

When the shape of the cell is not spherical, but is still homogeneous in-
side, several approximate analytical methods, such as Wentzel-Kramer-Brillouin
(WKB) [25,26], Rayleigh-Gans-Debye (RGD) [27],. Fraunhofer diffraction, and
anomalous diffraction [28], have been used to model the resulting scattering of
light. All these approximate analytical methods have been compared numeri-
cally with the exact Mie theory solution for the specific case of spherical cell
scattering. With regard to erythrocytes (red blood cells), which are biconcave
and disk-shaped, the WKB method used in Ref. [25] gives qualitative agreement
with experimental results of scattered light over an angular range of 15° — 35°.
However, these analytical methods involve increasing computational complexity
and become impractical for complicated shapes of particles and cells with more

complex internal structure.
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CHAPTER 1. INTRODUCTION 8

1.2 Numerical Approach

One of the common numerical techniques that has been used to date to describe
laser light scattering from tissues and cells is the Mohte Carlo technique. This
method was first proposed ’by Metropolis and Ulam to simulate physical pro-
cesses using a stochastic model [29], has been used to solve a variety of physical |
problems. In all applications of the Monte Carlo method, a stochastic model is
constructed in which the expected value of a certain random variable (or of a
combination of several variables) is equivalent to the value of a physical quan-
tity to be determined. This expected value is then estimated by the average
of multiple independent samples representing the random variable introduced
above.

Monte Carlo simulations of photon propagation provide a flexible yet rigor-
ous approach toward photon transport in turbid tissues [30,31]. This method
describes local rules of photon propagation that are expressed as probability dis-
tributions for the step size of photon movement between sites of photon—tissué B
interaction, for the angles of deflection in a photon’s trajectory when a scattering
events occurs, and for the probability of transmittance or reflectance at bound-
aries. This method simulates the “random walk” of photons in a medium that
contains absorption and scattering centers. The simulation can model multiple
physical quantities simultaneously and produces a rigorous description of light
propagation in biological tissue. However, this method is wholly statistical in na-
ture and relies on numerical calculations for the propagation of a large number
of photons. As a result, this method requires a large amount of computational
time.

The number of photons required depends largely on the question being con-
sidered, the precision needed, and the spatial resolution desired. For example in

Ref. [30], in order to simply have the total diffuse reflectance from tissue of spec-
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ified optical properties, typically about 3,000 photons can yield a useful result.
To have the spatial distribution of photons in a cylindrically symmetric problem,
at least 10,000 photons are required. To map spatial distributions in a more
complex three-dimensional problem, such as a finite diameter beam irradiating
a tissue sample, the required number of photons may exceed 100,000.

Two important aspects of the Monte Carlo simulations deserve emphasis.
First, MC simulations are based on macroscopic optical properties of tissue and
do not treat details of the radiant energy distribution within cells. As a result, one
cannot extract information concerning the refractive index on the cellular level
from the MC simulations. Secondly, MC simulations usually treat the photon as
a neutral particle and not as a wave phenomenon. Hence, features such as phase
and polarization are ignored. Recently, Mainland et al.[32] conducted Monte
Carlo simulations of polarized light propagation in microsphere suspensions. In
this application, a normalized Stoke matrix was used for the photon polarization
information and the Mueller Matrix, which is calculated from Mie theory, was
used in the MC model for the scatterers, so that photons would still have the
polarization information intact after a scattering event occurs.

The finite-difference time-domain (FDTD) method, or Yee’s algorithm, which
is an algorithm first described by Yee [33] to solve initial-boundary value prob-
lems for Maxwell’s equation in isotropic media, has been used in a wide range
of electromagnetic modelling applications including electromagnetic absorption
of tissue in hyperthermia [34], scattering cross-section calculations of arbitrary
objects [35], and scattering from frequency-dependent materials [36].

The FDTD algorithm solves for both the electric E and magnetic H fields
in time and space by using the coupled Maxwell’s equations. The FDTD algo-
rithm centers its £ and H components in three-dimensional space so that every

E component is surrounded by four circulating H components. The FDTD al-
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gorithm also centers its E and H components in time. All components have
the full-point value and all A components have the half-point value in the three-
dimensional space and in time. All computations of E over the spatial region of
interest are completed and stored in the memory for a particular time point by
using the H data from the previous iteration. Then all of the H computations
in the modeled space are computed and stored in memory using the E data just
computed. The cycle is repeated until time-stepping is ended. The increment of
iteration both in three-dimensional space and time is 1/2 of space/time step. A
detailed explanation of the FDTD method can be found in Ref. [37].

Recently, the FDTD algorithm has been implemented to model the cellular
scattering problem [38-40]. In this application, the size of the computational
domain is sightly larger than the cell size, and the dielectric constant €(%, 5, k) for
the simulation medium is specified at each grid point (7, j, k) in three-dimensional
space. The cell is constructed as a dielectric object by assigning different dielec-
tric constant values to each of the different components, such as the nucleus, the
cytoplaém, and the mitochondria [38-40]. Due to computational stability con-
siderations, the grid spacing A must be less than A/10 and the maximum time
step is limited to A/(cv/2), where c is the speed of light in the medium and )
is the laser light wavelength. Thus, the FDTD method requires extensive com-
putational resources, especially for three-dimensional problems. As reported in
Ref. [38], the grid spacing in the simulation was A/20 (A = 900nm), a sinusoidal
source was stepped in time until sinusoidal steady state of the scattered fields
was reached. This typically requires 3 or 4 passes through the grid. The scat-
tering pattern, F'(0, ¢), was computed in one-degree resolution for both 6 and ¢.
A simulation for an object 12pum in diameter typically required 100 Mwords of
storage and 30 minutes of system CPU time on a Cray J90 computer.

The coupled dipole method was introduced to describe scattering from dielec-
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tric particles of an arbitrary shape in astrophysical applications [41]. It has since
been adapted to the cell scattering problem [42]. In the coupled dipole algo-
rithm, scattering particles are placed on a cubic grid and subdivided into smaller
sub-regions, each modeled as a dipole. The external field and the field due to
the dipoles themselves both contribute to the far field values of the scattered
intensity.

Overall, the use of MC simulations and FDTD algorithms are the two estab-
lished mainstream approaches for modelling laser light propagation in biological
tissue for multiple scattering stﬁdies. The MC method efficiently describes mul-
tiple scattering from tissues; however, it is not well suited to resolving the scat-
tering from single cells, especially from cells of different sizes and compositions,
and may lose the polarization and phase information. On the other hand, the
FDTD method accurately describes scattering from a single cell, but requires
large amounts of computer memory and time as the FDTD algorithm solves
the full vector electric and magnetic fields and resolves their time evolution on
the scale of a laser light period. Such a complete solution is unnecessary when
scattering occurs on stationary cells and modelling is restricted to the angular
distribution of the scattered light intensity. Moreover, its application to multiple
cell scattering further increases computational resource requirements.

The goals of this thesis are: (1) to develop a new technique, based on the exist-
ing spectral method [44], whick can be applied in studies of single cell scattering
and multiple scattering in large samples; (2) to develop a computer simulation
code which is capable to modelling and predicting the laser light propagation in
biological tissues; (3) to provide numerical support for planed micro-cytometry
experiments in the Electrical & Computer Engineering Department at the Uni-
versity of Alberta; and (4) for other possible optical diagnostic applications in

laser medicine.
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The proposed new numerical method for modelling laser light scattering from
cells is based on a simplified mathematical model of light propagation and the
spectral algorithm. The spectral method has been successfully used to study the
physics of laser-plasma interactions [43]. In these applications, the plasma, which
is a neutral gas of charged particles, was modelled as a time-dependent, spatially
inhomogeneous dielectric. Similarly, biological cells or tissues are modelled as
spatially varying dielectrics, although stationary in time. The results of numeri-
cal and analytical studies in both two and three spatial dimensions (cf. [38], [39])
are presented in this thesis. In the two dimensional studies, the relative changes
in the scattering intensity distribution due to the internal cell structure, shape,
size, and refractive index can be addressed more easily than in three dimensions.
Multiple scattering processes, i.e., the dependence of the scattered light charac-
teristics on the number of scatterers and the packing parameter, i.e, density of

| cells, have been illustrated in 2-D simulations.

‘In our approach, the full set of Maxwell equations is reduced to the wave
equation for the electric field. Further approximations include the elimination
of high frequency (wp) oscillations by enveloping field amplitude variations that
occur on time scale of 1/wq and reducing the order of a time derivative in the wave
equation. As compared, for example, to the FDTD method we have reduced the
number of equations, eliminated the need for high time resolution, and achieved
convergence with just six points per laser wavelength. By reducing numerical
requirements, we have produced an effective algorithm, which can be applied to
studies of a single cell as well as in tissue scattering problems where our code
can be used to model large samples. The application of the FDTD method to
the latter case is impractical because of the large computational requirements.
The Monte Carlo (MC) techniques allows calculations of light propagation in

large geometries, but the loss of information regarding the coherence of scattered
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radiation makes this approach unsuitable for modelling of confocal or optical
coherence tomography imaging [10, 11].

The remainder of this thesis is organized as follows. This introductory chap-
ter is followed by a chapter describing Mie theory. Chapter three contains a
description of the numerical model in which the scalar wave equations, the spec-
tral method, and the calculation of the scattered light amplitude in the far-field
are addressed. Chapter four details code development and testing. Chapters five
and six present the 2-D and 3-D simulation results, respectively. Chapfer seven
addresses polarization effects in laser-tissue scattering. The spectra method has
also been applied to solve a coupled three dimensional vector wave equation
with two orthogonal field components and a wave equation with 3 electric field
components in a 3-D geometry. In chapter eight, we present an outline of our
proposed experimental measurement of laser light scattered by a latex bead. We
also present a detailed derivation of the normalization constant for both Gaussian
beam and plane wave incident sources. The scattered light intensity distribution
can therefore be presented in an appropriate unit, i.e photons/(s.sr), and the
simulation results of our 3D scalar solver can predict the outcome of the pro-
posed measurement. The last chapter contains concluding remarks and proposes

further development of this research topic.
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Chapter 2

Review of Mie Theory

2.1 Introduction

We consider the problem of a particle with given size, shape, and optical prop-
erties illuminated by a monochromatic wave. Our goal is to determine the elec-
tromagnetic field at all points in the homogeneous medium in which the particle
is embedded. Clearly, the amount and angular distribution of the light scattered
by a particle depends in a detailed way on the nature of the particle. In general,

the light scattered by an arbitrary particle can be expressed by [1}:

—

Ss =M 3 (21)

where M stands for a 4 x 4 Mueller matrix and 5‘; and 5’, are the Stokes vectors

which have the following form:

I = Total Intensity

@ = Linear Polarization (Igo — Igg0)

S = (2.2)

-

U = Linear Polarization (11450 — I_450)
V = Circular Polarization (Lrignt — liest)
where I, J, U, and V are the Stokes parameters which are an equivalent descrin

tion of polarized light, particularly in scattering problems.
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An arbitrary monochromatic wave may be expressed as a superposition of
two orthogonal components: horizontal £, and vertical E,; right-circular and
left-circular; and so on. Therefore, the electric field E referred to the orthogonal

axes é; and é, is

E = FEyexp(ikz — iwt) (2.3)

—

Ey = E.é;+ Eyé,, (2.4)
and the. Stokes parameters of I and @) take the following form:

I = Ip+Iye = E,E:+E,E; (2.5)
Q = Ip— Iy = E,E. — E,E;. | (2.6)

By introducing another orthonormal set of basis vector &, and é_, which are

obtained by rotating é, by +45° and —45°:

&y = —1—(é +éy)
+ \/-i T ' Y
5 1 .. .
é. = —\7:2'(61 — &), (2.7)
the electric field Ey may be written as
Ey=FE.é, +E_é_, (2.8)
where
E, = -—1—(E +E,)
+. \/-2- e y
~ 1
E. = —(E;—E,). 2.9)
7 y) (2.9)

Therefore, the third Stokes parameter U takes the following form:

U= Iy — I_gso = BE}, — E_E* = E,E} — E,E; (2.10)
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For consideration of circularly polarized light, one more set of basis vectors
ér and €z, are introduced:

1 . L
ép = ﬁ(ex + ié,)
& = —;—i(éx _ig,). (2.11)
These basis vectors represent right-circularly and left-circularly polarized waves

and are orthonormal since

ér-&% = 1,
ér-é, = 1,
ér-€. = 0

The incident field EO may be written as

Ey=E.ép+E_éy, (2.12)
where
o 1 .
ER = -E(Em - ZEy)
A 1 . v
Er = E(Ez +1Ey). | (2.13) |

Therefore, the last Stokes parameter V takes the following form:
V = Light — liess = ErER — ELE] = i(E E, — E E}) (2.14)
Assuming E, and F, take the following forms:

E, = Ay

E, = Aye™,
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the Stokes parameters I, @, U, V are written as:

I = E,E}+E/E, =EE,+EE; = A2+ A%, (2.15)
Q = E,E,-E,E, =EE;—E,E;, =A%~ A, (2.16)
U = E\E,-E_E' =E,E,+E/E} =2A,A,cos$, (2.17)
V = EgEj - E,E} =i(E,E, — E,E}) = 2A4,A,sin s, (2.18)

where the phase difference § is ¢, — ¢,.

The various degrees of polarization are defined as follows:

Degree of linear polarization = /@2 + U?/I

Degree of circular polarization = V'V2/I
Degree of total polarization = 4/Q? + U2 + V2/I. (2.19)

In particular, if E, and E, have the same amplitude 4, = A, and same phase
¢ = ¢y, the degree of circular polarization is zero and the degree of linear

polarization is described by

24,4,
A2+ A

Degree of linear polarization = =1 (2.20)

Mie theory is a theoretical framework which can be used to exactly solve
Maxwell’s equations in order to determine the field arising from a plane monochro-
matic wave incident upon a spherical surface, at which the properties of the
medium change abruptly (see fig. 2.1). Although Mie theory has been available
for many years, it is only with the advent of fast computers that it has become
a practical means for detailed computations.

The following is the derivation of Mie theory as presented by Bohren and
Huffman [1].
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Figure 2.1: Geometry of Mie Theory. The incident field (E,, ffi) gives rise to
a field (El, ﬁl) inside the dielectric sphere and a scattered field (E"s, ﬁs) in the

medium surrounding the sphere.
2.2 Solutions to the vector wave equations

We consider a sphere with an infinitely thin interface. The dielectric constant
within the sphere is assumed to be £;. That outside is assumed to be equal to ¢
Let us denote the field inside the sphere as (El, H 1), while the field outside the
sphere (E,, H) is a superposition of the incident (E;, H;) and scattered (E,, H,)

fields

E, = Ei+E,

H, = H;+H, (2.21)
- where

. Ei = E{) exp(zE T - zwt)
H; = Hyexp(ik - Z — iwt),

and k is the wave vector in the surrounding medium. In a region with zero

free space charge and no free conduction currents, these fields must satisfy the
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following Maxwell equations

V-E =0 (2.22)
V-H =0 (2.23)
VxE = iwpH (2.24)
VxH = —iweE (2.25)

at all points where € and p are continuous. Taking the curl of (2.24) and (2.25)
yields

Vx(VxE) = iwquﬁ=w2syE
Vx(VxH) = —iwpV x B =u’epf. (2.26)
We may now use the vector identity
V x (VxA)=V(V-A)-V-(VA)
to find

VE+KE = 0
VZH +K*H = 0, | (2.27)
where k% = w?ep and V24 = V - (VA). Hence, we see that £ and H satisfy the
vector wave equation.

Let us construct a vector function M .
M=V x (&),

where % is a scalar function and ¢ is an arbitrary constant vector. Since the

divergence of the curl of any vector function vanishes, we have

V-M=0,
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and we may once again use the vector identity
Vx(VxA) =V(V-4) -V (VA

to obtain
VM + M = V x [EV + k). (2.28)

If ¢ is a solution to the scalar wave equation
V2 + k% = 0, (2.29)

then M satisfies the vector wave equation. We now construct a new vector
function N,

. VxM
N = k

Clearly V - N vanishes, so N satisfies the vector wave equation

V2N + k2N = 0.

It also follows that
V x N = kM.

Let us take stock of what we have accomplished. Starting from a scalar function
% (often refered to as a generating function) and an arbitrary vector & (called
the guiding or pilot vector), we have constructed two vector functions M and N
which possess all the properties of the electromagnetic fields E and H. Therefore,
we have reduced the problem of solving Maxwell’s equations for the vector fields
to having to solve the much simpler scalar wave equation for the generating
function .

In general, whatever generating function we choose depends on the symme-
tries which may exist in the problem. In much of the work in this thesis we

choose a generating function ¢ that satisfies the wave equation in spherical polar
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coordinates r,0,¢. While the pilot vector is completely arbitrary, if we choose

—

¢ = 7, the radius vector, then
M =V x (7)), (2.30)

and M is a solution to the vector wave equation in spherical polar coordinates.
In problems possessing spherical symmetry, M given by (2.30) and the associated
N are the fundamental solutions to the field equations.

In spherical polar coordinates, the scalar wave equation is given by

2 1 o
r28r( r281n980(sn080)
1 8% 9
+ T251n06¢2+k¢ 0. (2.31)

Using separation of variables,

¥(r,0,9) = R(r)0(0)2(¢),

we obtain three separated equations:

d*®

g Tme=o (2.32)

1 d . dO m?
sngap migg) +In(n+ 1) - —5plO =0, (2.33)
%(7‘2%) + [k2'r2 — ’n,(’n -+ 1)]R =0, (234)

where m and n are separation constants which are determined by various con-

straints on ¢. For a given m, the linearly independent solutions to (2.71) are
®, = cosmg, D, = sinmap,

where subscripts e and o denote even and odd, respectively. Since we require

to be a single-valued function of the azimuthal angle ¢

Y(d + ) = h(4), (2.35)
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(2.35) requires m to take on integer values—by convention, we will take m =
0,1,2,3,- -, which is sufficient to generate all linearly independent solutions of
(2.71).

The solutions to (2.70) are the associated Legendre functions of the first kind
P™(cos 8) of degree n and order m, where n = m,m+1,---. These functions are
orthogonal, finite at # = 0 and § = 7, and reduce to the Legendre polynomials,
denoted by P,, when m = 0. | ’

Introducing the dimensionless variable p = kr and defining the function Z =

R./p, we may rewrite (2.34) as

P )+~ (n+ 512 =0 (2.36)

Equation (2.36) is solved by the Bessel functions of the first and second kind,
J, and Y, of half-integral the order v = n + % For notational convenience, we

introduce the spherical Bessel functions

. Vs
In = 4/ %Jn+1/2(p)
7"' .
Yn = 4 / §;Yn+1/2 (P) (237)

Any linear combination of j, and y, is also a solution to (2.34). For example,
the spherical Bessel functions of the third kind (often called the spherical Hankel

functions),

KD = ju(p) +iya(p)
h2 = ju(p) — iya(p) (2.38)

are often useful. Therefore, our generating functions take the form

Yemn = cosmoPr(cos )z, (kr)
Yomn = sinmePy(cos)z,(kr), (2.39)
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where z, is any one of the four spherical Bessel functions j,, ¥n, hg), or hg).
Any function that satisfies the scalar wave equation in spherical polar coordinates
may be expanded as an infinite series in the functions (2.39). Moreover, we may

now generate our vector spherical harmonics from ¥em, and Yomn, obtaining:

pury

Mo = Si.‘—-"lsin me P (cos 8) z(p)és

ind
— cos mqﬁé—lz’-‘—(%(ﬁﬂzn (p)éy, (2.40)

=
i

m —t
omn g °% moP,(cos 8)z,(p)és

dP(cos 6)

—sin mg¢ 70

z(p)€s, (2.41)

Nomn = "(p zn(0) =222 cosmen(n + 1) P (cos G)er

dP™(cos@)1 d
()

P™(cos#)1 d
g pap P (2.42)

+ cos meg

—msinme
B n(p) m
Nomn = ——sinm¢n(n -+ 1)P*(cosb)é,

. P(cosf)1 d
+sin ¢~?1(?de [pzn(p)]eg

Pr(cosf)1 d
sind pdp

)

+m cos me¢ —[pzn(p)]€s. (2.43)

Any solution to the field equations can now be expanded in an infinite series of

these functions (2.40-2.43).

2.3 vExpansion of a Plane Wave in Vector Spher-
ical Harmonics

In this section, we outline how to determine the coefficients of the expansion of

a plane wave in vector spherical harmonics.
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In spherical polar coordinates, a plane z-polarized wave may take the form

—

E; = Ege *(sin 6 cos ¢¢, + cos § cos &y — sin ¢&}), (2.44)

and we may expand (2.44) in vector spherical harmonics as

o oo
Ei = Z Z(BemnMemn + BomnMomn + Aemnﬁemn + Aamn]vomn)- (2~45)

m=0 n=m

From the orthogonality of the vector spherical harmonics, we have that the
coefficients in the expansion (2.45) take the form

T E; - Moy sin 6d8de

emn T T em : 9.46
" 02 j;) IMemnP sin fdfd¢ ( )

with analogous expressions for Bomn, Aemn, and Agp,. Combining (2.40), (2.43),
and (2.44) with the orthogonality of sine and cosine, we have By = Aomn =0
for all m and n. Moreover, for the same reason, the remaining coefficients vanish
unless m = 1. At the origin, the incident field should be finite, but since y,
blows up at the origin, we must choose j,(kr) as the spherical Bessel function
in the generating functions 1,1, and ¥e1,. Notationally, we will denote vector
harmonics whose radial dependence of the generating function is specified by j,
with superscript (1). Hence, the expansion for E; has the form

oo

E; = " (BanM3) + 4anNS)). (2.47)

n=1 -

By evaluating integrals of the expressions for B, and Agy,, the expansion co-

efficients take the form

2n+1
Bon = i"Ey—
in ? On(n+ 1)
2n+1
Actn = —1Eyi"———. .
1 ZEo'l n(n+ 1) (2 48)

Therefore, the expansion of a plane wave in spherical harmonics has the form
o0
Ao n 2ntl o) s
E; = E n; ) (M0 — Ny, (2.49)
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and from the curl of (2.49), we obtain the expansion of the corresponding incident

magnetic field in spherical harmonics

_.‘ 2n+ 1 (1) (1)
Eq nZ i) Mo + NG (2.50)

2.4 The Internal and Scattered Fields

Consider a plane wave polarized in the z-direction being scattered by a homoge-

neous, isotropic sphere of radius a Figure 2.1. By using the boundary conditions

(Bi+E,—E)xé& =H+H -H)xée =0 (2.51)
between the sphere and the surrounding medium, we may expand the scattered
electromagnetic field (E,, H,) and the field (Ey, H,) inside the sphere in vector
spherical harmonics. As we saw above, the boundary conditions (2.51), orthog-
onality of the vector harmonics, and form of the expansion of the incident field
force the coefficients in these expansions to vanish for all m # 1.

In the region inside the sphere, finiteness once again requires that we choose
Jn(ky7), where k; is the wave number in the sphere, as the spherical Bessel func--
tions in the generating functions. Therefore, the expansion of the field (E;, ;)
is

0o

E = ZEn(chcgr)l —id N(m)

Bo— 25 B+ icalD), (2:52)
Wy - —

where E, = i"FEy(2n + 1)/{n(n + 1)) and y; is the permeability of the sphere.
On the other hand, both j, and y, are well behaved in the region outside the
sphere. Therefore, we will consider the spherical Hankel functions h,,(zl) and hg)

which have the asymptotic form
(__ ’L) n eikr

hY (kr) . (2.53)
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kr > n?
n ikt
et

B (kr) ~ ~ tkr

(2.54)

It is clear that AY (kr) corresponds to an outgoing spherical wave while h{? (kr)
corresponds to an incoming spherical wave. Since the scattered field is to be

| an outgoing wave at large distance from the sphere, only A should be used in
the generating functions. Therefore, the expansion of the scattered field (E‘;, ﬁs)
should be given by

Es = ZE (mn 5:1,’2;)
=1
g = —-ZE (iby N + a, M), (2.55)

where the superscript (3) denote vector spherical harmonics whose generating
functions radial dependence is specified by B,

We notice that, for a given n, there are four unknown coefficients a,, by,
¢n, and d,, in the expansions of the scattered and internal fields. We therefore
require four independent equations to solve for these four unknown coefficients.

From the boundary conditions (2.51) in component form:

Eip+ FEy = Eyq, Eiy + Esp = Eyg,
Hg+ Hy = Hyg, HiqS + Hs¢ = H1¢, T =a, (2.56)

we eventually obtain four linear equations from which we may determine expres-
sions for the four coefficients. We are primarily interested in a, and b,, which
are called scattering coefficients and are given by
. = M4 (M), (%) — Y () ()
" mgbn(m"l")&z(x) - fn(ac)z,b;(m:c)

b Yalma)(a) = mpa(@)pl(ma)
" T hama)t(a) — () (ma)

(2.57)
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where Y, (p) and &,(p) are the Riccati-Bessel functions:

ba(p) = pin(p),  &lp) = PhD(p),

while

w:ka:QWNa mzﬁ:]_\/'l
Ao ] £k N’
are the size parameter and the relative refractive index, respectively. NV, is the
refractive index of the sphere and N is the refractive indices of the medium.
Note that a, and b, vanish as m approaches unity, because when the sphere
disappears, so does the scattered field.

For convenience, let us define angle-dependent functions 7, and 7,

P
= sinf
dP!
= = 2.
T, p7] (2.58)
which can be built up through use of the recurrence relations
2n—1 n
Ty = cos Omp_1 — Mp—9
n—1 n—1
Tw = ncosfm, — (n+ )mp_g, (2.59)

beginning with 7y = 0 and m; = 1. 7, and 7, are alternately even and odd

functions of cos @

Ta(—cos@) = (=1)""'m,(cosh)

To(—cos8) = (=1)"r.(cosf), (2.60)
while 7, + 7, and 7, — 7;, are orthogonal sets of functions

/w(wn + T )(Tm + T ) 5in6df = /W(wn — Tp) (T — ) sin 6d8 = 0
(m # mn). (2.61)
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Using the angle-dependent functions 7, and 7, (with m = 1), we may express
the vector harmonics (2.40-2.43) which are used in the expansions of the internal

(2.52) and scattered (2.55) fields in a more concise manner as follows

Moyn = €08 @my(cosd)z,(p)€y — sin ¢7,(cos 0)z,(p)€;

Men = —singm, (COS 9) Zn (p)éf) —~ COS T, (COS 0) Zn (p) €¢
Noin = sin¢gn(n + 1) sinfm,(cos ) znip) &,
-+ sin ¢, (cos 6) I_Efgéﬂ)_]_ge + cos ¢y, (cos ) —[&[E—p—)—]-é‘d,

Nein = cos¢n(n + 1) sin 07, (cos 6)

n(p)
p

+ cos ¢, (cos ) 1‘—)—’;@]—- — sin ¢, (cos ) ——~ lp "[Ep i € (2.62)

2.5 Scattering Matrix—Mueller Matrix

Figure 2.2 shows a cell illuminated by a plane wave. The propagation direction
of the incident light is taken to lie along the Z axis, which we shall call the
forward direction. The centre of the cell is chosen as the origin of a Cartesian
coordinate system (z, y, z), with the X and Y axes orthogonal to the Z axis and
to each other. The scattering plane (see Fig. 2.2) is defined by the scattering
direction é, and the forward direction é,. When é, is not parallel to the Z axis,
the scattering plane is uniquely determined by the azimuthal angle ¢. On the
other hand, when é, is equal to +é,, any plane containing the Z axis is a suitable
scattering plane.

We introduce two new orthonormal basis vectors for the incident light; éy;,
which is parallel to the scattering plane, and &,;, which is perpendicular to the

scattering plane. Therefore, a incident electric field Ei, which lies in the zy plane,
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Figure 2.2: Incident beam scattered by a cell.
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can be resolved into parallel component Ej; and perpendicular component E;:
E;' = Enié"z' + FE e (263)

These new orthonormal basis vectors €,; and &); form a right-handed triad with

A

€,
é_\_i X é",, = éz, (264)
and we have
é1; = singé, — cosPéy,
i = coS¢é; + sin Pé,. (2.65)
Moreover,
€1 = —é,
é”i = sin6é, + cos Béy,

where é,, €y, and &, are the orthonormal basis vectors of the spherical polar
coordinate system (r,6,¢). Using Eq. (2.65), the components E; and Ejy; of

incident electric field take the following forms
Ei = singEy — cosdEy;, (2.66)

Eji = cos¢E;; +sin 9By, (2.67)

where E,; and E,; stand for the z and y components of the incident electric field.
In the far-field (kr > 1), the scattered electric field E, is approximately
transverse (Es - &, ~ 0) [2]. So that in the far-field region, the scattered electric

field takes form
Es = Fyséys + E14€15, (2.68)

where the basis vectors ¢, and é,, are respectively parallel and perpendicular

to the scattering plane, and have the following properties

éis = & (2.69)
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br, = —& (2.70)

é_LsXé”s = é,.. : (2.71)

If we assume that the series expansion (2.55) of the scattering field is uni-
fbrmly convergent, we can terminate the series after n, terms. When n, is suffi-
ciently large, the resulting error is very small. In addition, for kr > n?, we may
replace A (kr) with its asymptotic expression (2.53) in the truncated series.

The transverse components of the scattering electric field are then given by

ikr '
Ew ~ Ey fi 1 cos $Sa(cos ) (2.72)
eikr
Esy ~ —Ey ~ sin ¢S; (cos §) (2.73)

where

Ne

2n+1
Sl = Z ;{m(anﬂn +- bnTn)

n=0

e on 41 | |
Sy = zm(wﬁbﬂn). (2.74)

n=0
Using Eqs. (2.44), (2.67), (2.67), (2.70), and (2.71), we may express our
results for the scattered field Egs. (2.72) and (2.73) in terms of the incident field

as follows:

eik’r

Ey, ~ Ey
lIs ffé —ikr

eikr

—ikr

Sa(cos 8), (2.75)

EJ_S ~ E_Li S}(COSH), (276)

Therefore, the ihcident and séattered field amplitudes are related as follows

E,, —tkr 0 S Ey;

Since basis vectors €, and &,, form a part of an orthonormal set of basis

vectors, following the discussion in section 2.1, we have
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I, = EyEj,+EEL,
Qs = EyEj, - ELFE,, (2.78)
U, = EyFEl,+EiE},
Ve = i(B,El, — ELE,).
Substituting Eq. (2.77) into Eq (2.79), the scattered Stokes parameters are

related to the incident Stokes parameters by the relation

I ' My M, 0 0 I;
s 1 My M, 0 0 i
Q - L 12 My Q , (2.79)
U, k2r 0 0 M Msy U;
Vs 0 0 —Mss Mas Vi
where the Mueller matrix elements have the form
1 1
My = §(|32|2 +15:%), M= *2'(15212 — 1819,
1 % £ 3 | ‘i £ *
My; = "2'(5251 + 8257), May = 5(5152 — S525%),
and the incident Stokes parameters take the following forms:
I, = EuEj;+ELEY,

Ui = EE};+ELEy,

Vi = (BBl — E_LiEﬁi).
Only three of these four matrix elements are independent: M7, = M%, + M% +
M?,. The factor 1/k%*r? is usually omitted in the calculations.

When the incident light is polarized parallel to a particular scattering plane:

E,; =0, then the Stokes parameters of incident light Eq. (2.81) becomes

I; = EuEy,
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Q = L (2.81)
Vi = Ui=0,

and the corresponding scattered Stokes parameters are

I, = (M + M),

Qs = I (2.82)
U = V,=0.

Therefore, the scattered light is polarized parallel to the scattering plane. In the
case of the incident light being parallel to the scattering plane, let us denote the

scattered irradiance per unit incident irradiance %:
i = My + My = |S,|*. (2.83)

Similarly, when the incident light is polarized perpendicular to the scattering

plane, the Stokes parameters of incident light Eq. (2.81) are now given by

I, = EEY;,
Q& = I (2.84)
Vi = U;=0,

and the corresponding scattered Stokes parameters are

Is - (Mll - Ml?)I‘h
Qs = —I37 (2.85)
U, = V,=0.

Therefore, the scattered light is perpendicularly polarized with respect to the
scattering plane. In the case of incident light being perpendicular to the scat-

tering plane, let us denote the scattered irradiance per unit incident irradiance
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?:_LZ
i = My — My = |Si% (2.86)

When the incident light is unpolarized, then the only non-zero Stokes param-

eter is I;. Therefore, the corresponding scattered Stokes parameters are

I, = Mul,
Qs = My, (2.87)
U, = V,=0.

Using Eq. (2.19), the total degree of polarization P is given by
My _ Y-t

P= ———
Mn ’L”+Z_L’

(2.88)

it follows that |P| < 1. If P is positive, the scattered light is partially polarized
parallel to the scattering plane; if P is negative, the scattered light is partially
polarized perpendicular to the scattering plane. From the definitions of the
angle-dependent functions 7, and 7, (2.58) and their recurrence relations (2.59),
we have
ma(D) = 7a() = 2L
Thus, in the forward direction (6 = 0°) and backward direction (8 = 180°), Eq.
(2.74) is reduced to

(2.89)

Ne

Si(1) = S,(1) = S(1) = -;- 3 (20 + 1)(an + ba), (2.90)

n=0

which gives M;3 = 0 for both directions of forward and backward scattering.

Hence, regardless of the size and composition of the cell, P(0°) = P(180°) = 0.

- 2.6 Computations of Mie Theory

By introducing the logarithmic derivative

mw=%m%w, (2.91)
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the scattering coefficients a,, and b, (2.57) may be rewritten as

[Dn(mx)/m + n/x]"/)n(x) — Pp-1(x)
[Da(mz)/m + n/z]én(z) — &n-a(z)
[mDp(mz)/m + n/z]a(z) — Yn-1(z)
[mDn(mz)/m + n/z)n(z) — €ar(z)’

where we have used the recurrence relations

Gn

b, =

(2.92)

, _ iy, ()
Yal@) = ns(o) - 22
(@) = @) - 2,

to eliminate 1,0; and f;. This represents just one of many possible ways of rewrit-
ing the scattering coefficients in a form more suitable for computation. As a
consequence of the recurrence relations of the Bessel functions, the logarithmic

derivative also satisfies a recurrence relation

n 1
Dpg=D ™
"1 5 Dn+n/p

(2.93)
- We may therefore use this downward recurrence to compute D,, in order to ensure
numerical stability.

A modified version of the Mie code was developed based on the above dis-
cussion. In order to verify this code, we chose the same parameters, which are
a/A = 1 and N;/N = 1.59/1.33, as in [3]. Figure 2.3 (a) shows the average
scattered intensity My, = (4 + ¢.)/2) vs scattering angle, while (b) shows the
degree of linear polarization (—P) as defined in equation (2.88) (note that the
negative signs results from a difference in sign convention between this work and
ref [1].) vs scattering angle when the incident laser light is unpolarized. Our
results are excellent agreement with those presented in [3]. Furthermore, the
scattered intensity i polarized parallel to a scattering plane (it can be an arbi-

trary scattering plane depending on a given azimuthal angle ¢, refer to Fig. 2.2)

and the scattered intensity ¢; polarized perpendicular to the scattering plane
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are presented in Figure 2.3 (a). This modified version of Mie code can be used
in the description of arbitrarily polarized light that is scattered by a homoge-
neous sphere. Figure 2.4 shows the computational results of Mie theory with the
parameters a/A = 5.5 and N; /N = 1.37/1.35.

There are three curves in Fig. 2.4 (a) which stand for the average scattered
intensity (solid line), the scattered intensity i) polarized parallel (dashed line)
to and the scattered intensity i, polarized perpendicular (dotted line) to the
scattering plane, respectively. Fig. 2.4 (b) shows the degree of polarization of
the scattered light when the incident light is unpolarized. In both forward (at
0°) and backward (at 180°) directions, the scattered light remains unpolarized
(P(0°) = P(180°) = 0). However, in the range of 80° to 100°, the scattered
light is almost completely polarized perpendicular to the scattering plane (P =~
1). These computational results will be used as a benchmark for our numerical
simulations.

In conclusion, we have seen that when the incident light is 100% polarized
parallel to the scattering plane, the scattered light is also polarized parallel to
the scattering plane. When the incident light is 100% polarized perpendicular
to the scattering plane, then the scattered light is also polarized parallel to the
scattering plane. 'We have also seen that polarization may result for certain

scattering angles if the incident light is itself unpolarized.
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Figure 2.3: The computational results of Mie theory with parameters of ¢/ =1
and N;/N = 1.59/1.33. In Fig. (a), the solid line is for the average scattered
intensity Mi; = (i + 91)/2; the dashed line is for the scattered intensity i
polarized parallel to the scattering plane; and the dotted line is for the scattered
intensity ¢, polarized perpendicular to the scattering plane. Fig. (b) show the

degree of polarization when the incident light is unpolarized.
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Figure 2.4: The computational results of Mie theory with the parameters of
a/A = 5.5 and N;/N = 1.37/1.35. In Fig. (a) three curves stand for the average
scattered intensity (solid line), the scattered intensity ¢ polarized parallel (dash
line) to and the scattered intensity i, polarized perpendicular (dot line) to the
scattering plane, respectively. Fig. (b) shows the degree of polarization of the

scattered light when the incident light is unpolarized.
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Chapter 3

The Computational Model

3.1 Basic Equations

The computational model used for the scattering problems considered in this
thesis is based on solving the wave equation for the amplitude of the laser light
by using the spectral method. This method allows us to model the interaction
of laser light with biological specimens whose physical size can vary over a wide
range of spatial scale lengths, from sub-wavelength dimensions up to a few orders
of magnitude larger than the laser wavelength.

‘Maxwell’s equations in a nonconducting medium take the following form[1}:

V-eE = 0 (3.1)
V-B =0 (3.2)
. 188
= pedE .
V x 5 - 0, (3.4)

where E and B are the electric and magnetic fields, respectively; c is the speed

of light in vacuum; and g and e stand for the magnetic permeability and the
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dielectric constant of the medium, respectively. By taking the curl of Eq. (3.3)
and substituting for V x B by using Eq. (3.4), the full set of Maxwell equations
(3.1—3.4) in three spatial dimensions is reduced to a wave equation for the
electric field amplitude, |

pe 8

25552-5 ~V2E+V(V-E)=0, (3.5)

where we have used the vector identity
V x (Vx A) =V(V-4) - V24,

and the fact that the operators V x 2% and ;%Vx are equivalent as space and
time coordinates are independent.

For an electromagnetic wave of high frequency wy, the electric field vector
takes the form

BE= E(z,y, z,t) exp(—iwgt) + c.c.,

where the amplitude E(x, Y, 2,t) is assumed to vary on a time scale that is much
larger than the light period 27/w,. Enveloping Eq. (3.5) with respect to time

reduces the order of the time derivative, and one obtains

—

B I .
2i[icj—29€u%? +V2E + ‘;—’geuE ~V(V-E) =0, (3.6)

where 2 = 82/8z% + 0?/8y® + 82/92? is the Laplacian in a three-dimensional
Cartesian geometry.

In this chapter, we develop a 1-field component wave equation (scalar case)
model. This will later be generalized to the case of 2 and 3 electric field compo-
nents. For the 1-field component case, we consider the scattering of laser light by
biclogical mediums in two and three spatial dimensions. A 2-D wave equation
can be obtained from Eq. (3.6) by assuming that the biological medium is inho-

mogeneous in the z —y plane and that the electromagnetic wave is s - polarized,
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so that E = E(z,y,t)€,, i.e., the electric field polarization vector is perpendic-
ular to the plane of inhomogeneity of the biological medium. For this case, the
last term on the left hand side of Eq. (3.6) is zero, and one obtains a scalar wave

equation with a 2-D Laplacian for the electric field amplitude E(z, y, ):

22;58/1—3—[ +VE+ —6—2—6uE = 0. v (3.7)

The scalar field approximation can be also considered in three spatial dimen-
sions. The form of the wave equation for the 3-D scalar field approxiniation is
similar to that of Eq. (3.7), except that the Laplacian V2 has three spatial com- |
ponents. For the case of three spatial dimensions, the last term on the left hand
side of Eq. (3.6) may not be negligible. The validity of such an approximation
will be tested by comparing simulation results with exact analytical solutions for
scattering from homogeneous spherical dielectrics, especially for forward scatter-
ing (see figure 4.2).

For a biological medium, we assume p = 1, and that the dielectric constant

can be represented as a sum of two terms:
€ = gg + Ae(z, y, 2). (3.8)

Here ¢, is the dielectric constant of inter-cellular fluid that is considered homo-
geneous, and (g9 + Ae(z,y, 2)) is the dielectric constant of a cell that consists
of cytoplasm, nucleus, and other internal structures. For the célls considered in
this thesis, the perturbations Ae are assumed small: |Ag| < &.

It is readily seen that the first term on the left hand side of Eq. (3.7) accounts
for time variations of the electric field amplitude. In our studies, the biological
medium is considered stationary. Non-stationarity can only play a role during
the propagation of the electromagnetic wave front through the medium. Hence,

¢ can be replaced by &, in the time derivative term in Eq. (3.7), allowing us to
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rewrite the scalar wave equation (3.7) as

2%, 2F
Al

w2 Wl
+V2E + c—geoE = mc-g f)AeE (3.9)
The time function of f(t) in right-hand side of Eq. (3.9) models an adiabatic
“turn on” of the perturbations (see fig.3.1). The normalizing time is in the unit

of picoseconds (see details in the next section).

1
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o 5 10 15 20 25 30 35 40 45 50

Normalized Simulation Time

Figure 3.1: The profile of time function f(t) which is used to “turn on” the
perturbations. Here the simulation time is normalized and a stable solution is -

generated in the time interval from 40 to 50ps.

The left hand side of Eq. (3.9) accounts for the field propagation in a ho-
mogeneous medium, and the interaction with inhomogeneous perturbations is
described by the right-hand side. There are no restrictions in our model on the
scale length of spatial variations in Ae. However, inhomogeneities in the scat-
tering medium on a scale length much smaller than laser wavelength cannot be

properly resolved from the scattered light spectra. Therefore, we assume that
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the characteristic scale length of the spatial inhomogeneity for the perturbation
Ace is longer than the laser wavelength in the medium A, = ¢/(wo+/€g). Inho-
mogeneities on a scale length smaller than the wavelength A, (for example, the
interface between cell and inter-cellular fluid) are treated as sharp boundaries in
our method. This approach is consistent with the fact that light scattering off an
interface much narrower than the Wa\?elength is similar to scattering off a sharp

boundary.

3.2 The Spectral Method

The wave equation (3.9) is solved in a 3-D region: 0 < 2 < L,, —L,/2 <y <
Ly/2 and —L,/2 < z < L,/2 (see Fig. 3.2) by using the spectral method [2].
The incident electromagnetic wave is assumed to propagate in the z-direction.
In this spectral method, we expand the electric field amplitude E into a Fourier
series in the transverse (y and 2) directions, obtaining

E= z Z Ep (z) exp (imkyy + im'k,2), (3.10)

e

where k, = 2r/L, and k, =27 /L,. We now introduce the following dimension-

less variables:

T = Puwet/eo

X = kz

Y = ky

Z = kz, (3.11)

where k = 2mrN/Ag, with A\g = ¢/wp being the laser wavelength in vacuum and
N = /g is the medium refractive index in the simulation region, and § being

a dimensionless parameter which is used to renormalize the time T' to some
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convenient unit (picoseconds, for example). This allows us to recast Eq. (3.9) in

the following form:

.0 g
(QZ,BBT + —‘“—6X2 + Kimmr) Emm’ = NL(Emm’, T)1 (3'12)
where,
N L(Emml 3 T) = —Ae Emm,’
K%, = eq— (mhky/E)? — (m'k,/k)>. (3.13)
Y
P
B F /
Incident laser A E E /
S ": R
» : /;'-‘\ o - "\i”," / X
~ ’,,’L-‘L:”'"'\r"‘_’" ;‘ """" e -==
oS '\\ ) . ———
> / i b . ’ \, s ——
Z -/-"D ---------- RoTATTT ----% Scattered Light

Figure 3.2: The geometry of the simulation

The electric field amplitudé E is expanded into Chebyshev polynomials in the
longitudinal (z) direction. The length of the simulation region in the direction
of light propagation [0, L,] is mapped into the interval [—1, 1} and the gridpoints
are defined as: X; = —cos((j — 1)n/N;), where j =1,2,...,N; + 1 and N, is

the total number of points in the z-direction.
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3.3 Iteration in Time

We use the implicit midpoint rule [5] for the time iteration of Eq. (3.12). The

implicit midpoint method solves a differential equation of the following form
@ = p(u)u,

where p(u) is a given function of the quantity u. For a step in time u® — u"+1,
tn = tpy1 = t, + T, where 7 is the step size and u” is the quantity u at ¢t = £,

the implicit midpoint rule reads

y" = o 4 7p(@) (3.14)

where @ = (u™*! + u")/2 is the midpoint value of u. Solutions to Eq. (3.14)
have the conservation property |u"| = |u"*!|, and the solution u™ is bounded as
n — oo [6].

Now, Eq. (3.12) can be rewritten as:

OB i ( & ) NL(Em,,,,,T)> 5

T = EE 9X?2 + Xmm! — Emm’ (3‘15)
In order to va.dVa.nce Eq. (3.12) in time, the forward Euler scheme has been used

to get the midpoint value Emm:. The forward Euler scheme takes the form

dEmm’
dt

EML=Er 41

mm/’

(3.16)

n

Combining Eqgs. (3.15) and (3.16), the middle point value takes the form

82E" |
Bt = E®_, + T 17 [ + K% B — NL(E},‘m,,T")] . (3.17)
From the implicit midpoint rule (3.14), one obtains:
ir | 8 NL(Eppe, T*) | -
n+1 ) mm’ s
Emjn, Bt + 55 26 [aXz +KXmm’ - = B (3.18)

mmn'
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Substituting Eq. (3.17) into Eq. (3.18) and assuming NL(Epm,T") = N LEL,..T™),
we have
ntl __ F ir [ 82 2 nil T = n
Emmy = L' + ZB ’6—3—(—2' + KXmm’ Emm’ - ZBNL(EmmI, T ), (319)
which can be rewritten as follows
i 40 ~ -
v ————— o— A En+1; T e mml m ' 7 -

where A = —K%, ..., —i48/7. The length of the simulation region in the direction
of light propagation is mapped into interval [-1,1] and, therefore, Eq. (3.20)
is a Dirichlet problem for a second-order elliptic operator in the interval [—1, 1],

which we may solve using the Tau method [2].

3.4 Boundary Conditions

Due to the properties of the Fourier transform, the imposed boundary conditions
are periodic in the transverse (y and z) directions. The boundary conditions in
z-direction correspond to transparent boundaries at X; = 0 and X, = koL, for

both the incident and the scattered waves (see [3] and [4]):

OE m’ | . (
a;n( X, = K Xmm! (2E1(m)n’ - Emm’ (Xl,T)+
Z,B J (0)
=7 | B (T) = Epmm (X1, T)
remwt ]
aEmm’ . iﬂ 6 '
= Kxmmw {1+ 55— %5 | B (X, T), 21
BX |, m ( tw’g,. or) B Xn ) (321)
where E,(,(:,)n, (T') is the Fourier component of the incident electric field amplitude.
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3.5 The Shape of Incident Beam

Three kinds of incident beam shapes are used in our simulations. The simplest
case is that of an incident plane wave. However, we also use two more complicated

beam shapes—the flat-top laser beam (in dimensional units)

Eo(z =0,y,2,t) = zll—Eo(t)(tanh yte tanh = a)

5 3
20 a2, (3.22)

x (tanh 3 3

~ where a stands for the half-width of the beam at the plane of incidence and &

characterizes the smoothness of the beam edges, as well as the Gaussian beam

[71

2, .2
Bo(e=0,3,58) = Bt el sl
. L yr+ 22 :
X exp[—jkz — yk-z—éza—:)-g + j¢(=z)], (3.23)

where W(z) and R(z) are the beam radius and the wavefront radius, respectively,

taking the following forms:

W(z) = 0[1—}-(—[—/—;)2]1/2 (3.24)
R(z) = x[1+(£;ﬁ)2] (3.25)
C(z) = arctan{—R ~ (3.26)

where ¢ is the minimum radius of the beam at the best focus position and Ly is
the Rayleigh Range, which is the distance from the best focus position to where
the beam radius increases by a factor of 2. The minimum radius of the beam is

related to the Rayleigh Range by
o= (—=)"%, ' (3.27)

where ) is the wavelength. The number f is defined to characterize the minimum

radius of the beam ¢ = fA at the best focus position and the f number is also
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related to the Rayleigh length L = 27 f2). The Gaussian profile given in (3.23)
is a reasonable realization of an actual incident laser beam as it might be found
in an experimental setup, while the plane wave is a ideal profile for testing the
validity of the code, as it allows for comparison with analytical solutions, i.e.,

Mie theory.

3.6 Far-field Calculation

An appropriate presentation of numerical data is very important for the com-
parison with experimental results and theoretical models. Typical experimental
measurements usually only show the characteristics of the laser light well outside
the interaction region. 'Therefore, the laser field profile far from the scattering
objects ( so-called far-field) should be caiculated from the field distribution in
the interaction region (so-called near-field) which we have obtained through our
simulations.

The asymptotic expression for the electric field of the scattered light at a

far-field point p (see Fig. 3.2) is given by [8]:

<exp (ikp(z, 1,2) - z'vr/4))

1
E(p,t) = Ez“-fds‘ [Es(m7y:z7t)vn (W

ko7 exp (tkp(z,y, 2) — in[4)V, Es(z,y, 2, t)] , (3.28)

where E, is the electric field at the emitting surface, E(p, t) is the electric field at
a far-field point p, V,, denotes the derivative along the outward drawn normal to
the emitting surface, and g is the vector from the point at the emitting surface
with coordinates (z,y,2) to the far-field point with coordinates (g, yo, 20). In

order to evaluate the above integral, we use a Cartesian geometry and let

u = (1/2nkp(z,y, 2)) exp (ikp(z, y, 2) — in/4).
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Then the integral (3.28) takes the following form:
1
Blp,t) = 5 j{ dS - (EV,u — uV,E). (3.29)
&

From Fig. 3.2 one can see that the planes ABCD and EFGH coincide with
the input (z = 0) and output (z = L;) boundaries. For forward scattering
calculations, we consider only the contributions due to plane EFGH, while for
backward scattering calculations, we consider only the contributions due to plane

ABCD. Hence, the integral Eq. (3.29) reduces to
E(p,t) == / / dydz (Eéy-—u%g—).' (3.30)'

The above result can be expressed in a somewhat more informative form if we

rewrite |5] in terms of spherical coordinates (6, ¢). Using the facts

dp/0x = -—z/p= —cosb
dufdxr = (Ou/dp)(8p/dx) = — cos 6(du/dp)

p =~ po—1xcosl —ysinfcosd— zsinfhsing

. 1 ) ) o
,,ll,rf,lo U= o e exp(ikpo — ikx cos @ — ikysin @ cos ¢
—tikzsin@sin ¢ — i /4)
pl}glo g% = 27:;;00 exp(ikpy — ikx cos @ — ikysin 6 cos ¢
—ikzsin@sin ¢ — in/4), (3.31)

we have

1 1 OF
E(p,t) = 5 2mkon / / dydz [——zkE cos @ — —5;:—]
X exp (—ikz cos @ — ikysinfcos ¢ — tkzsinfsing). (3.32)

By introducing k; = kcos#, k, = ksinfcos ¢, k, = k sin § sin ¢, and taking into
account that, in the case of forward scattering, E ~ exp (ik;z), one obtains from
‘Eq. (3.32) that

exp (tkp +im/4)
471']6[)0

E(p,t) = 24k, exp (—iky )| E(La, ky, k). (3.33)
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Similarly, in the case of backward scattering, we have

exp (ikp + in/4)

[2¢k; exp (—ik, )] E(0, ky, k). (3.34)

Equations (3.33) and (3.34) for E(p,t) have been used in our numerical sim-
ulations to calculate the scattered light intensity at the far-field points. The

emitted power at a far-field point is given by

Q= AIBEE O = kB Lo by k) (335)

1287

3.7 Conclusions

The model presented in this chapter allows us to describe the interaction of a
laser with biological objects on spatial scales ranging from single cells to larger
samples. In this model, only a scalar wave equation is solved, which can be
accomplished more efficiently than the calculations required for other numerical
solutions, such as FDTD and Monte Carlo techniques. The nonparaxial spectral
method is employed to solve the scalar wave equation and both forward and
backward scattering are considered in the model. The small-angle, large-angle (
up to 25° ), and backward scattering signals can be obtained. From the scattered
signals, it is possible to differentiate between cells on the basic of their size and
composition. In the next chapter, the implementation and validation of the code

will be presented.
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Chapter 4

Code Development and

Validation

4.1 Introduction

In the previous chapter, we presented the theoretical model upon which our
simulations are based. We subsequently derived the approximate scalar 3-D wave
eqﬁation from Maxwell’s equations, explained in detail the numerical algorithm
which we use to solve this equation, and also addressed the far-field electric field
calculations.

A code previously developed for studying laser-plasma interaction physics [1-
4] was evolved to address the scattering of light by cells. The development and
validation of this new code is now addressed.

In the code development section, I briefly describe the process of code devel-
opment and address some of the difficulties which arose during this process. In
the code validation section, I describe the 3 main areas where the code was tested.
These include 2-D simulation results which are compared with the predictions of

linear perturbation theory; the 3-D simulation results, which are benchmarked
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against the Mie theory predictions for scattering from a homogeneous sphere;
and backward scattering calculations, which must be addressed as they require

extensive computational accuracy and stability.

4.2 Code Development

As described in previous chapter, the wave equation (3.9) is solved numerically
through use of the spectral method. In the past, the spectral method has been
used to describe light scattering from inhomogeneous, time dependent dielectrics,
anvd'a,pplied to a number of problems in laser-plasma interaction physics [1-4].
The 2-D laser-plasma interaction code solves a coupled system of equations for
the non-paraxial electromagnetic and the ion-acoustic waves. In order to apply
this code to laser-tissue interactions, several modifications were required, such as,
physically separating the two coupled equations in the iterations, benchmarking
the simulation results after separation, deleting everything related to the ion-
acoustic wave equation, and implementing a subroutine to model cell as described
by equation (3.8).

After successfully testing this new version of the 2-D code (see next section),
a three dimensional version vof the code was developed. One more dimension to
the modified 2-D code was added and subroutines for the far-field electric field
calculations were written. The 3-D code has been successfully run on “Aurora
and Borealis”, the parallel supercomputers on the University of Alberta campus.
” Aurora”, a SGI Origin 2000, is configured with 46 processors and ”Borealis” is
a SGI Origin 2400 with 64 processors. For a typical model, with a simulation
region (Fig. 3.2) size of 40 x 80 x 80 wavelengths Ag (40 is the length in the
direction of wave propagation and 80J is the length of two transverse directions),
the code will usually take less than 24 hours to run on “Aurora” (utilizing 10

Processors).
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4.3 Code Validation

4.3.1 Linear Perturbation Theory

In this subsection, an analytic stationary solution to Eq. (3.9) is obtained via the
linear perturbation method. In the stationary regime, the time derivative term in
Eq. (3.9) can be neglected. Consider the scalar wave equation (3.9) in two spatial
dimensions. By assuming small-angle scattering, the field amplitude F can be
written as E = E,(r,y) exp(ikn,z), where kn, = 27/Am = (wo/c)/E is the laser
wavevector in the inter-cellular medium. The characteristic inhomogeneity scale
length of the field amplitude E,(z,y) in the direction of light propagation (z) is
assumed to be much larger than the laser wavelength in the inter-cellular medium
Am & |0n (E,)/8z|~t. This is the condition that is required for the validity of
the paraxial approximation. Expanding E, = Ey+J0FE , where Ej is the incident
light amplitude and ¢ E is the scattered light amplitude (|6E| < |Ep]), Eq. (3.9)

to first order in 6F and Ac takes form
.. O0E O%E
Qka—'é;- + 6y2

w2 »
+ z;iAan = 0. (4.1)

After performing a Fourier transformation in the transverse (y) direction, we
obtain the following equation for the Fourier component of the electric field
SE(z, ky) : |

dSE(z, k,)

2k i

2
— K26E(z, k,) + ‘ic’-g-Ae(z, k,) Eo = 0, (4.2)

where Age(z, k) is the Fourier component of the dielectric constant perturbation

Ae(z,y). The solution to Eq. (4.2) takes the form
7.2

z k
/ dz' Ae(z', k) Ae(2', ky) exp (———QZ—Ey—(m - x’)) . (4.3)
0 m

wi Ey
0E(z,ky) = 5,

The constant of integration in (4.3) is chosen so that the field perturbation §E

is zero at the boundary z = 0.
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For simplicity, consider a square perturbation of the dielectric constant Ae(z, y)
equal to Agg in the region —Ry < x — 29 < Ry and —Ry < y < Ry, and zero
elsewhere. By using the assumption that the incident light has a very small di-
vergence angle ( Eo(L,, k) ~ 0 for k, # 0), We may combine (4.3) and (3.35) to

obtain the transmitted power per unit angle

_ 8B} (Aeo)\?1-K ,(2Ry \ (7R,
Q_W3L§(eo) = sin N k. ) sin —/Vn—k*v, | (4.4)

where k., = k,/kq.

Similarly, placing a square nucleus measuring 2R, by 2R, and dielectric con-

stant perturbation Ae, in the center of a cell with dimensions 2Ry by 2Ry and

dielectric constant Agg, the transmitted power per unit angle is
- 25 (22 8 o () ()

() () ) () )

(52 -1) w (Biw) o (52¢)

As k, — 0 formula (4.5) takes the form

_32mER (Aeo\? [ Ro\* Ae, R\? [ Ae, 2 (R.\*
°="n (‘eo—) (x;) [l”(m‘l) (E) +(Aso*1) ('fe.?) '
(4.6)

The scattering from these square perturbations can be used to test the numer-

ics of our spectral method. A comparison between our numerical results and
theoretical predictions from Eqgs. (4.4), (4.5) is shown in Fig. 4.1. In these simu-
lations, the dielectric constant of the medium is ¢ = 1.8225, while the dielectric
constant perturbations for the cytoplasm and the nucleus are Aey = 0.0544 and
Ag, = 0.1096 respectively. The accuracy of our numerical method in this case is
clearly demonstrated in Fig. 4.1, where the simulation results agree nicely with

theoretical calculations.
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Figure 4.1: A comparison of the scattering intensity obtained from both numer-
ical simulations and analytic solutions (4.6) for three types of square cells: for
a cell without a nucleus—the dash-dotted line (simulations) and “circ” (analyt-
ical); for a cell with a normal nucleus—the solid line (simulations) and “ +”
(analytical); and for a cell with a large nucleus—the dashed line (simulations)
and “A” (analytical). The width of the cell is Dy = 11um, the width of the
normal nucleus is D,, = 3um, and the width of the large nucleus is D,, = 6um.
The dielectric constant perturbation for the cell is Aeg = 0.0544, while for the
nucleus Ae,, = 0.1096.
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4.3.2 Scattering from a Homogeneous Sphere

The diffraction of a plane monochromatic wave by a homogeneous sphere with
a zero thickness interface can be calculated within the framework of Mie theory
[7,8]. Mie theory exactly solves Maxwell’s equations in 3-D for all components
of the electromagnetic field both inside and outside of the sphere, along with the
boundary conditions on the surface. In Mie theory, the electromagnetic fields
are expressed in term of infinite series expansions. These expansions can be
significantly simplified when the distance r from the scattering sphere is much
larger than the laser wavelength )\, in the medium surrounding the scattering
sphere. When the incident light is linearly polarized, the scattered light intensity
|S[? can be determined by [8]

2n+1
S = ; m [anTn + bnﬂ'n] . (47)

where 7, = —(1/sin8)dP,/df, T, = —d*P, /d6?, and P, are the Legendre poly-
nomials of order n. The coeflicients a, and b,, are given by
o (M)l () — () ()
" mapn(mz)E, (7) — &n(x) 9 (ma)

- _ n(ma)yi(c) — min(c)y(ma)
" hn(mz)E (z) — mén(z)P (maz)

- where 1, and &, are the Ricatti-Bessel functions, z = kn,a, m = k,/kn, a is the

(4.8)

radius of the scattering sphere, and k,, and k; are the laser wavevectors outside
and inside the scattering sphere, respectively.

Figure 4.2 and Figure 4.3 compare 3D simulation results and Mie theory
predictions for the scattering of a plane wave by a homogeneous sphere in different
cases. The agreement is very good for scattering angles up to 30 degrees. This
good agreement between simulations and theory is achieved in spite of the fact
that the numerical model solves the wave equation in the scalar approximation,

whereas Mie theory solves the full Maxwell’s equations (for all 6 components of
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Figure 4.2: A comparison of the intensity of scattered light from a homogeneous
sphere in three spatial dimensions obtained from simulations (solid line) and
from Mie theory (dotted line). The diameter of the sphere is Dy = 11um. The
dielectric constant outside the sphere is £g = 1 and inside the sphere ¢ = 1.0609.
In the simulation result, the transmitted component (at 0°) has been removed

by setting the intensity at 0 degrees equal to its neighbour point.
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Figure 4.3: An another comparison of the intensity of scattered light from a
homogeneous sphere in three spatial dimensions obtained from simulations (solid
line) and from Mie theory (dotted line). The diameter of the sphere is Dy =
11pm. The dielectric constant outside the sphere is g9 = 1.8225 and inside the
sphere £ = 1.8769. In the simulation result, the transmitted component (at 0°)
has been removed by setting the intensity at 0 degrees equal to its neighbour

point.
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the electromagnetic field). We may conclude that the scalar wave equation is
an effective approximation to the full Maxwell equations for moderate scattering
angles that are of practical importance for applications such as cytometry. The
scalar wave approximation is valid because in the case of small-angle scattering,
the longitudinal component of the electric field E is small and divE is small,
so the last term on the left hand side of the full wave equation (3.6) can be
neglected. For larger scattering angles, the scalar wave approximation breaks
down, sihce the term with divE becomes comparable to the second and third

terms on the left hand side of Eq. (3.6).

4.3.3 Backward Scattering

Mie theory predicts (see figure 2.4) a 5 to 6 order of magnitude difference be-
tween the forward and backward scattering intensities. It is very difficult for a
simulation code to give correct results over a range from 1 to 107%. So verification
of the backward scattering calculations must be addressed.

We first examined the reflection and refraction of electromagnetic waves at
a plane interface between two different dielectrics. In the propagation direction,
one half the simulation box was filled with a medium with a refractive index of
1.00 while the other half was filled with another medium with a refractive index
of 1.03. The incident laser light was assumed normal to the plane interface. The
simulation results show that the ratio of intensities of the reflected and incident
light is 2.1 x 107%.

Based on the Fresnel’s prediction [5], we have that if the electric field is
perpendicular to the plane of incidence, the ratio of amplitudes of the reflected

wave and incident wave takes form

B ncos@® — £4/n? —n2sin?d
= = £ , (4.9)

Ey  pcosf+ ﬁ n'2 — n2sin? 6
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where @ is the incident angle, n and n' are the refractive indices of two different
media, and g, g are the permeabilities. On the other hand, if the electric field
is parallel to the plane of incidence, the ratio of amplitudes of the reflected and

incident fields is given by

E, %nZcosé—ny/n?—n’sin*¢

== . 4.10
Eq i cos + ny/n”? — n? sin® § (4.10)
For normal incidence (6 = 0), Eqs. (4.9) and (4.10) reduce to
B, n-
=l (4.11)

Ey, n+n
where p’ = y is assumed. Using Eq. (4.11) and defining #’ = 1.03 , n = 1.00, the
ratio of intensities of the reflected and incident light is 2.18 x 10~%. Therefore,
our simulation result closely agrees with Fresnel’s prediction.

Secondly, in order to avoid the aliasing effect [6] in the discrete Fourier trans-
form, we have smoothly cut off modes with large k vectors in the transverse
directions. This is done by multiplying the modes of E, and E, respectively by
the profile function shown in Fig. (4.5). Figure 4.4 shows the backward scat-
tering signal on the boundary. Figure 4.4 (a) corresponds to the case when a
cutoff is not imposed on large K values while figure 4.4 (b) represents the case
where a cutoff on large K values is used. Without a cutoff, the signal due to the
aliased Fourier transform in the transverse directions are larger than the back-
ward scattering signal which is very small for scattering from a cell. Therefore,
an ihcorrect backward scattering profile is obtained in the far-field. With a cut-
off, the backward scattering signal on the left boundary is correct (see Fig. 4.4
(b)) , so that the backward scattering intensity in far-field is also correct. There-
fore, in order to have a correct backward scattering signal distribution, modes
with large K values in transverse direction have to be smoothly cut-off. The

prescription we have used is shown in Fig. 4.5. Figure 4.5 (a) and (b) show two
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different smooth cutoff profiles imposed on large ¥ modes in transverse direc-
tions. Fig. 4.6 (a) shows the scattering intensity in far-field corresponding to the
smoothly cutoff profile shown in Fig. 4.5 (a) and Fig. 4.6 (b) is the scattering
intensity in far-field corresponding to the smoothly cutoff profile shown in Fig.
4.5 (b). From Fig. 4.6 (a) and (b), the elimination of large K modes gets rid
of the signal produced by the aliased Fourief transform and leads to a correct
backward scattering intensity in the far-field. By comparing Fig. 4.6 (a) with
Fig. 4.6 (b), we can see that the difference in scattered intensity distribution
is in the scattering aﬂgle beyond 45° in both forward and backward directions.
Therefore, the profile of Fig. 4.5 (a) is chosen in our simulations. In transverse
directions, we set the grid of 3 points per wavelength. This grid is not as fine
as that in propagation direction (see below discussion) to resolve the interface
profile between surrounding medium and cell. It may lead to some numerical
inaccuracy at large scattering angle. This is the another reason why we choose
the smooth cutoff profile described in Fig. 4.5 (a).

According to Mie scattering theory [8,9], the backscattered (scattering angle

6 = 7) phase function can be expressed as

pla,m) = ISy, (1)

where Qs is the scattering efficiency and z = 2w Na/A¢ is the size parameter
defined in chapter 2; the definition of S;(n) is given by Eq. (2.90). We have
plotted p(z, ) (solid line with symbol *') and its correspbnding backscattered
intensity (solid line with symbol "0’} in Fig. 4.7 over a small range of size parame-
ters common in sphetical cell scattering. Figure 4.7 shows that the backscattered
intensity is very semsitive to the size parameters (cell size). The reason of this
sensitivity may be due to mismatch between the cell diameter and the incident
laser wavelength. Therefore, the mechanism involved in the backscattering is

rather complex.
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In Mie theory, the interface between the cell and the surrounding medium
is treated as a step-function. Unfortunately, when we attempt to model this
setup numerically, stability requirements force us to describe the interface as an
extended object—we treat the cell boundary as if it was a smooth transition from
the index of refraction of the surrounding medium to that of the cell interior. We
are allowed some freedom, however, in choosing how sharp/smooth this interface
profile is. Our choice of interface profile will impact our measurement of effective
cell radius and cell size parameter z— a broader interface region will tend to
give a smaller size parameter than that which results when a very sharp interface
profile is used. Therefore, we should examine the effect of our choice of interface
profile on our simulation results. Figure 4.8 (a) shows a relatively smooth profile
for the interface between cytoplasm and surrounding medium. Figure 4.8 (b)
gives the scattering intensity distribution corresponding to this smooth profile.
The magnitude of backward scattering is 10~ smaller than that predicted by Mie
theory (dotted line in Figure 4.8 (b)). Figure 4.9 (a) shows a much sharper profile
for the interface between the cytoplasm and the surrounding medium. Only 4
points are used to resolve the interface which leads to resolution limit of 3 points
per wavelength (see Chapter 3). Figure 4.9 (b) gives the scattering intensity
in far-field corresponding to the sharp profile of the interface. The backward
scattering intensity is comparable with that predicted by Mie theory (see Flg
4.9 (b)). Moreover, we consider the high resolution case by doubling the points
in the propagation direction (12 points per wavelength in propagation direction).
Figure 4.10 (a) shows the same profile as shown in Fig. 4.9 (a) and Figure 4.10
(b) shows the corresponding far-field scattered intensity distribution from which
one can conclude that with the same profile but doubling the resolution, the
forward scattered distribution has been improved but the backward scattered

distribution has become worse. This is because the interface profile between
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cytoplasm and surrounding medium is smooth (refer to Fig. 4.10 (a)). Figure
4.11 (a) shows a much sharper interface profile and Figure 4.11 (b) shows the
corresponding scattered intensity distribution. This is improved in both forward
and backward scattering.

In order to check if ouf simulation results in backward region are also sensitive
to the cell size, we consider a case of surrounding medium index n = 1.35, cell
index n; = 1.37, and cell radius ¢ = 5.5um with four different interface profiles
which are equivalent to having four different effective cell sizes. In this consider-
ation, we also choose the high resolution case of having 12 points per wavelength
in propagation direction. Figure 4.10 (a), 4.12 (a) & (b), and 4.11 (a) show
these four different interface profiles, from smooth to the sharper. Figure 4.13
(a) shows our simulation results in the backward region for these four different
interface profiles. The solid line represents the scattered intensity distribution
for the very sharp profile described by Fig. 4.11 (a). The dotted line represents
the scattered intensity distribution for a less sharp profile described in Fig. 4.12
(b) while the dashed line répresent the scattered intensity distribution for a rea-
sonable smooth profile described in Fig. 4.12(a). The dash-dotted line is the
backscattered intensity distribution for a smooth profile described in Fig. 4.10
(a). From Fig. 4.13 (a), we conclude that our simulation results in the backward
region are very sensitive to our choice of interface profile, which, as we have seen
above. corresponds to different choices of the effective cell size. On the other
hand, Figure 4.13 (b) shows our simulation results in forward direction which
are not sensitive to the effective cell size. We also consider a case of surround-
ing medium index n = 1.35, cell index n, = 1.37, and a very sharp interface
profile described by Fig. 4.11 (a) with three different values of the cell radius
a = 5.50,5.49, and 5.48um. We also use 12 points per wavelength in propagation

direction in this consideration. Our simulation results of the scattered intensity
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distributions are plotted in Fig. 4.14, (a) for the backward region and (b) for the
forward region. The solid line is the results of cell radius a = 5.50um, the dashed
line is the results of cell radius a = 5.49um, and the dotted line is the results of
cell radius a = 5.48um. Our simulation results shows that there is a factor of
2 for backscattered intensities for these two cell sizes—cell radius ¢ = 5.50pm
and a = 5.48um. Therefore, our simulation results in the backward region are
very sensitive to the cell size which is predicted by Mie theory. However, in the
forward region, our simulation results are not very sensitive to the cell size (refei
to Fig. 4.14 (b)). |

In summary, backward scattering is implemented in our simulation code. The
simulation results and Mie theory predictions are different since Mie theory is an
analytical solution of the full Maxwell’s equations assuming a plane monochro-
matic wave incident upon a spherical surface, at which the profile between two
media is a step function. However, in the case of high resolution (12 points per
wavelength in propagation direction); our numerical simulation results of back-
ward scattering are a good approximation to the exact solution and allows one

to derive information on a cell’s shape, size, and dielectric composition.

4.4 Conclusions

A new numerical technique for modelling laser light propagation in biological
tissue has been developed and implemented as an optimized and parallelized
three dimensional simulation code. This code can be used to efficiently model
laser light scattering from both single cells and larger biological samples. For
a typical simulation run on “Aurora”, the supercomputer at the University of
Alberta campus, utilizing 10 processors, requires less than 24 hours of real time.
This code is non-paraxial, and can model both forward and backward scattering

of laser light in biological tissues. The simulation results are reliable over the
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range of 0° 4= 30° for forward scattering and 180° & 20° for backward scattering.

The 3-D code has some limitations-—for example, the ratio of |Ae(z, y, 2) /e0] <
0.2, otherwise the code will experience convergence difficulties, since we treat
Ae(z,y, z) as a perturbation; the code only solves the approximate scalar wave
equation, so all polarization information is lost; and practically, the code can-
not resolve structures on scales much smaller than the laser wavelength, as for

example, the cell membrane. Polarization effects will be addressed in Chapter 7.
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Figure 4.4: Backward scattering signals on the left boundary from a two dimen-

sional cell with diameter of 11um and dielectric constant of 1.8769. The incident

light is a plane wave with a wavelength of 1um. Figure (a) corresponds to the

case where a cutoff is not imposed on large K values while figure (b) gives results

when a cutoff is used.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 4. CODE DEVELOPMENT AND VALIDATION 74

0.9

0.8 (&) .

Cutoff Profile
[=}
o

0.2

0.1

50 100 150 200 250
Number of Points in Transverse Direction Ny
1 T T T T

o
O
T

i

(b) 4

Cutoff Profile
© o o o o
3 (4] =23 ~J [«:)
T 1 L T T
i L I3 i

e
(%)
T

1

o
(Y]

50 100 150 200 250

Number of Points in Transverse Direction Ny

Figure 4.5: The profiles of smooth cutoff. Fig. (a) corresponds to the profile
of more modes being cut off while Fig. (b) stands for the profile of less modes

being cut off which means only extreme large K being cut off. The largest mode
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Figure 4.6: Scattering intensities in far-field. Fig. (a) shows the scattering
intensity in far-field corresponding to the smoothly cutoff profile shown in Fig.
4.5 (a) and Fig. (b) is the scattering intensity in far-field corresponding to the
smoothly cutoff profile shown in Fig. 4.5 (b). The dotted line in both Fig. (a)
and (b) is the result of Mie theory.
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Figure 4.7: The backscattered phase function of Mie theory over a small range
of size parameters for a surrounding medium with refractive index n = 1.35,
the refractive index of cell n; = 1.37, and laser wavelength in vacuum Xy =
1.0um. The solid line with symbol ‘0’ represents the corresponding normalized

backscattered intensity [a.u.].
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scattering intensity in far-field corresponding to the gentle profile of the interface.
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toplasm and surrounding medium. Fig. (b) is the scattered intensity in far-field

corresponding to the sharpest profile of the interface.
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Figure 4.13: Simulation results of the scattered intensity distributions for four
different profiles of the interface between cytoplasm and surrounding medium
in the high resolution case of 12 points per wavelength. (a) backward direction
and (b) forward direction. The solid line is the result of the very sharp interface
profile described by Fig. 4.11 (a); the dotted line is the result of the sharp
interface profile described by Fig. 4.12 (b); the dashed line is the result of the
reasonable smooth interface profile described by Fig. 4.12 (a); the dash-dotted
line is the result of the smooth interface profile described by Fig. 4.10 (a);
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The solid line is for cell radius a = 5.50um, the dashed line is for cell radius

a = 5.49um, and the dotted line is for cell radius a = 5.48um.
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Chapter 5

Two Dimensional Simulations of

Light Scattering from Cells.

5.1 Imtroduction

The previous two chapters dealt with the development of an algorithm upon
which our simulations are based and the implementation and testing of the com-
puter code. In this chapter, we present the two dimensional simulation results
of light scattering from biological cells.

Although they cannot describe the “real world,” results from simulations in
two dimensions are nevertheless useful in obtaining qualitative predictions for the
behaviour of certain systems. In the 2-D case, we focus on plane wave scattering
from both single and multiple cells.

Since we intend to model laser light propagation in biological tissue, we re-
quire values for the index of refraction of each cell component. The values listed
in Table 5.1 were taken from the literature, and are used in ail simulations in

this thesis.
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Cell component | Refractive index | Reference
Surrounding medium 1.35 [2]
Cytoplasm 1.37 [3]
Nucleus 1.39 3]
Mitochondria 1.42 {4]

Table 5.1: The values for index of refraction of various cell components which

are used in the simulations. 5
5.2 Scattering by Single Cells

In light scattering from cells, it is important to understand the role of a cell
nucleus. For example, cancerous cells are characterized by a large nuclear to
cytoplasmic volume ratio [1]. Three types of cells were chosen for our 2D sim-
ulations: cells without a nucleus, cells with a normal-size nucleus of diameter
D,, = 3um, and cells with a large nucleus of diameter D,, = 6um. The cell diam-
eter in all cases is Dy = 11um. The dielectric constant is related to the index of
refraction by € = n?. Therefore, using the values from Table 5.1, we know that
the dielectric constant of the inter-cellular medium is g¢ = 1.8225. Similarly, we
find that for the cytoplasm, ¢ = 1.8769, while for the nucleus ¢ = 1.9321. The
incident laser light is assumed to be a plane wave with wavelength Ay = 1um.
The dependence of the scattered light intensity on the scattering angle is shown
on a linear scale in Fig. 5.1(a) and on a logarithmic scale in Fig. 5.1(b). The
transmitted component, which is the large peak at 0 degrees in Fig. 5.1(b), is
removed by setting the intensity at 0 degree equal to its neighbour point intensity
in Fig. 5.1(a).

From Fig. 5.1 it is clear that the dominant feature of the scattering pattern is

forward (small-angle) scattering. Three different regions can be identified in the
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Figure 5.1: Scattering intensity from a two dimensional single cell with diameter
Dy = 11pm on a linear scale (a) and on a semi-logarithmic scale (b). The dash-
dotted line corresponds to a cell without nucleus, the solid line corresponds to
a cell with a normal nucleus of diameter D,, = 3um, and the dashed line corre-
sponds to a cell with a large nucleus of diameter D, = 6um. The transmitted
component, which is the large peak at 0 degrees in (b), is removed by setting the

intensity at 0 degree equal to its neighbour point intensity in (a).
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scattering pattern in Fig. 5.1. First, the angle interval from 0 to 0.25 degrees
corresponds to the angular width of the incident light. The large scattering
intensity over this range simply represents the signal from the incident light
which is not scattered.

The second region, which extends from 0.25 to 6, =~ 4 degrees, contains the
main part of the scattered light intensity. The width of this interval, charac-
terized by value of 6y, is determined by the ratio of the typical cell size to the
laser wavelength in the inter-cellular medium. A cell Wifh a large nucleus scat-
ters more light than a cell with a normal nucleus, while a cell with a normal
nucleus scatters more light than a cell without nucleus. This is consistent with
the predictions of linear perturbation theory (4.5), (4.6), and with the numerical
results of Ref. [1].

Finally, for angles larger than 6y ~ 4 degrees, the scattering amplitude de-

creases rapidly with angle, so that large-angle scattering is small.

5.3 Scattering by many objects

In many realistic situations, the laser light propagates through a medium with
many scattéring objects (scatterers). For example, a biological tissue sample
usually contains many cells. Therefore, the problem of light scattering by an
ensemble of many identical scatterers is of fundamental importance. In this
section, the scattering features of a medium with many scattering objects are
discussed and compared to the scattering features of a single object. In our
2D simulations, the number of randomly distributed scatterihg objects in the
simulation region was varied from 1 to 90. The scattering objects are aséumed
to have a diameter of Dy = 7um and a dielectric constant € = 1.8769. The
dielectric constant of the surrounding medium is assumed to be go = 1.8225.

The incident light is assumed to be a plane wave with a wavelength \g = 1um.
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Figure 5.2 shows a contour plot of the dielectric constant in a simulation
region with 52 randomly distributed scatterers. Figure 5.3 illustrates the typical
form of the relationship between the scattering intensity and the scattering angle.
In this figure, the scattering intensities for the case of N = 10 scatterers and for
the case of single scatterer are compared. It is readily seen that the scattering
intensity from N = 10 scatterers does not have the regular pattern of minima
and maxima that is observed when scattering from only a single object. At the
same time, the scattering intensity, averaged over an interval of a few degrees, is
a few times larger in the N = 10 case than it is in the N = 1 case. The increase
of scattering intensity with the number of scatterers is observed at both small
and large scattering angles. |

In addition, up to 45 degrees scattering angle in Fig. 5.3, the distribution of
scattered intensity from N = 10 scatterers has a high frequency modulation and
is enveloped by a scattering distribution from single scatterer. The phenomenon
may be caused by interference effects between scatterers. One can conclude from
Fig. 5.3 that the increase of the number of scatterers changes the scattering
intensity, but not the characteristic angular features of scattering.

The dependence of scattering power and scattering angle on the number of
scatterers is illustrated in Figs. 5.4(a) and (b), which combine results corre-
sponding to two different lengths of the simulation region—L = 160um and
L = 320pum. meanwhile, the width of the simulation region is 160um for both
cases. Fig. 5.4(a) shows the fraction of scattered power, i.e., the power of light
propagating outside the incident beam optics, as a function of the number of
scatterers. The scattered power varies from about 4% of the incident power for
a single scatterer to over 90% of the incident power for N = 90 scatterers. From
Fig. 5.4(a) it is evident that the scattered power does not depend on the length

of the simulation region, but only on the number of scatterers. It can be expected
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Figure 5.2: An example of the random distribution of scatterers in the simulation

region. In this case, there are N=52 scatterers.
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Figure 5.3: Scattering intensity as a function of scattering angle for 10 scatterers

(dotted line) and for a single scatterer (solid line).
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that, due to the multiple scattering, the scattered power will be close to 1 as the
number of scatterers increases. The dependence of the scattered power on the
number of scatterers [cf. Fig. 5.4(a)] is close to linear.
The angular width of the scattered light can be characterized by the average
~ scattering angle (f), defined as

0) = \ﬂ [ weqon1 [ wae). BCAY

Fig. 5.4(b) shows the dependence of the average scattering angle (f) on the
number of scatterers. It is evident from Fig. 5.4(b) that {(#) changes only slightly
| (by no more than 25%) as N changes from 1 to 90. The small dependence of the
characteristic scattering angle (f) on N is consistent with the angular spectrum of
scattering intensity [cf. Fig. 5.3] that shown that amount of scattering increases,

but without essential changes in the angular spectrum.

5.4 Conclusions

It has been demonstrated that the spectral method can be efficiently used in
modelling laser light scattering for samples ranging in size from a single cell to
large biological samples. In the case of laser light scattering from single célls,
the most significant features of the angular distribution of the scattered light
from various cells occur at small angles. Cells containing large nuclei have more
scattering at small angles compared to cells containing normal-sized nuclei. The
amplitude of scattering light decreases even further for cells without a nuclei. In
the case of scattering from multiple cells, the simulation results show that the
fraction of the scattered power depends on the number of scatterers and not on
the size of simulation region. In fact, the fraction of the scattered power is al-

most linearly proportional to the number of scatterers. Finally, up to 40 degrees,
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the scattering pattern from many cells approximately retains the angular distri-
bution characteristic of single cell forward scattering, but with high frequency
modulation due to interference effects.

In the next chapter, we will consider the results from 3-dimensional simula-

tions.
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Chapter 6

Three Dimensional Simulation

Results

6.1 Introduction

In the previous chapter, we discussed the results of our simulations of laser light
scattering from cells in two dimensions. While these simulations enabled us to
obtain a good qualitative understanding of the interaction between la,sér light
and biological media, in addition to providing a useful testing ground for our
new computational algorithm, two dimensional models, in the absence of certain
symmetries, do not provide a complete general solution to the scattering problem.
Therefore, in this chapter, we will turn to the treatment of a 3—dimensional
model in which 3 spatial coordinates and a single component transverse E-field
(E'y) are considered. This model is exactly described by Eq. (3.9).

Since the 3—dimensional model more closely describes the true nature of the
system, the results from the three dimensional simulations are very useful in
obtaining quantitative predictions for the behaviour of laser-tissue interactions.

These results therefore have many potential applications; for example, they would
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Figure 6.1: Scattered light intensity from plane wave for three types of cells :
without a nucleus (dotted line), with a small nucleus D,, = 3um (dashed line),
and with a large nucleus D, = 6um (solid line). In all 3 cases, the cell diameter

Dy = 11um. The nucleus is located in the center of the cell.

be useful in studies in micro-cytometry.

In the 3—D case, the incident laser light profile can either take the form of
a plane wave or that of a Gaussian, and will experience scattering froni both
single and multiple cells. The values of the index of refraction for the various

cell components are listed in Table 5.1.

6.2 Scattering by a Single Cell

In this section the influence of cell size and nucleus size on the scattering intensity
are considered. Figures 6.1-6.4 show the angular spectra of light scattered by
a spherical cell in 3D numerical simulations. The angular range shown in Figs.

6.1-6.4 is up to 45 degrees off the direction of incident light propagation.
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Scattered Intensity [a.u.]
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Figure 6.2: Scattered light intensity from plane wave for three sizes of cells that

do not contain a nucleus : with diameter Dy = 11um (dotted line), with diameter

Dy = Tum (solid line) and with diameter Dy = 5um (dashed line).
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Figures 6.1 and 6.2 show the angular spectra of scattered light in the case
when the incident laser light is a plane wave with wavelength A\g = 1um. The
length of the simulation region is 40y in the direction of light propagation and
80X in each of the two transverse directions. In Fig. 6.1, three types of cells
are chosen for our 3D simulations: a cell without a nucleus, a cell with a normal
nucleus (the diameter of the nucleus D,, = 3um), and one with a large nucleus
(the diameter of the nucleus D, = 6um). The cell diameter in all cases is
Dy = 11uym. The refractive index of the inter-cellular medium is a.ssﬁmed to
be ng = /€g = 1.35. The cell components are cytoplasm (with refracﬁve index
n = 1.37) and nucleus (with refractive index n = 1.39). A spherical nucleus is
located at the center of the spherical cell. Figure 6.2 shows the angular scattering
spectra for cells without a nucleus, but with different diameters: Dy = 11um,
Dy = Tum, and Dy = dum.

Spectra in Figs. 6.1, 6.2 have sharp maxima at zero angles, corresponding
to the unscattered light. In our simulations with a plane wave, only a small
fraction of light is scattered because the cell occupies only a small fraction of the
simulation region cross-section. Figs. 6.1, 6.2 clearly show that the scattered
light spectra have a characteristic width of a few degrees and that this width
is consistent with the cell size : the smaller the cell size, the larger the angular
width. In fact, the first minimum in the scattering pattern is approximately
determined by the ratio of the incident laser wavelength and the diameter of the
cells: 0, = A/D. For example, three cases in Fig. 6.2 have the minimum near
at 5.2°, 8.2°, and 11.4°, respectively.

Figures 6.3, 6.4 show the angular spectra of scattered light in the case when
the incident laser light is a Gaussian beam with wavelength Ay = 1.0p¢m and
optical f-number of 3 (Fig. 6.3) and optical f-number of 10 (Fig. 6.4). Other

parameters in the simulations with the Gaussian beam are the same as in simu-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 6. THREE DIMENSIONAL SIMULATION RESULTS 101

10 T T T T T T T T
107t

107k A @ E

Scattered Intensityfa.u.]
(=]

%

0 5 10 15 20 25 30 35 40 45
Scattering Angle [degrees]

0.8} ()

e
~

o

o
T

1

-
-

Scattered intensity[a.u.}
cC o o ©
N [ £ o

/
!
s

z

Vs
/,

1
i 1 L.

o
-
T

/
7
J
.

o2

2 3
Scattering Angle [degrees]

Figure 6.3: Scattered intensity from a Gaussian beam with £/3 optics on a loga-
rithmic scale (a) and linear scale (b) for three types of cells: without a nucleus
(dotted line), with a small nucleus D,, = 3um (dashed line), and with a large
nucleus D,, = 6um (solid line). In all cases, the cell diameter is assumed to be
11pm and the cell is located in center of the focal spot of the laser beam. The

incident beam profile is given by the solid lines with the x symbol.
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lations with the plane wave incident light.

By comparing Figs. 6.3, 6.4 with Figs. 6.1, 6.2 one can see that in the case
of Gaussian beams, the amount of scattered light is much larger than in the
case of a plane wave. This is partially due to a stronger concentration of the
’total light beam on a cell. Fig. 6.1 also shows that the amount of scattered
light can provide information about the dielectric permittivity of a cell. This
information, combined with the information on the cell size from the width of

angular spectrum, allows characterization of the basic cell features.

6.3 Backward Scattering

As described in Chapter 4, the backward scattering calculation is implemented
in our simulation tool and information regarding the cell’s size and dielectric can
be derived from the backscattering intensity distribution. Figure 6.5 shows the
scattering intensity from a three dimensional single cell with different diameters
of Dy = 11lpm, Dy = 7um, and Dy = 5um. The backscattering intensity
distribution is plotted in Fig. 6.5 (b). The solid liné corresponds to a cell
with diameter Dy = 11um, the dotted line corresponds to a cell with diameter
Dy = 7pum, and the dashed line corresponds to a cell with diametér Dy = 5pm.
Figure 6.5 (b) shows that a cell with different size has a different backscattering
intensity distribution. From the backward scattered spectra, one can conclude
the first minimum away from the backward direction is proportional to the ratio

of the incident laser wavelength and the cell diameter.

6.4 Multiple Scattering

The Henyey-Greenstein phase function [1] is often used to characterize the an-

gular distribution of scattered light by tissue and it has the form of
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Figure 6.4: Scattered intensity from a Gaussian beam with £/10 on a logarithmic
scale (a) and linear scale (b) for three types of cells: with diameter Dy = 17um
(dotted line), with diameter Dy = 11pum (dashed line), and diameter Dy = 8um
(solid line). In all cases, the cell is without nucleus and is located in center of
the focal spot of the laser beam. The incident beam profile is given by the solid

lines with the % symbol.
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Figure 6.5: Forward scattering intensity (a) and backscattering intensity (b) from
a three dimensional homogeneous cell with different diameters. The solid line
corresponds to a cell with diameter Dy = 11um, , the dotted line corresponds to

a cell with diameter Dy = 7um, and the dashed line corresponds to a cell with

diameter Dy = Sum.
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(1 -g°) 1
h{#) =

ph(9) dr (14 g% — 2gcos6)3/?
where # is the phase angle or scattering angle, -y is the spherical albedo, and g

(6.1)

is an anisotropic factor. The case where g = 1 corresponds to the complete for-
ward scatter and g = 0 represents an isotropic distribution of the scattered light.
This well-known Henyey-Greenstein phase function is used as another reference
to check our three dimension simulation results, especially for the multiple scat-
tering case. Using the simulation results, the anisotropic factor g is computed
from the scattered distribution P(8),

Jy P(8) cos@sin 6d
[T P(6)sin6dd

We consider the specific case where a plane wave incident laser with wave-

g =<cosf >=

(6.2)

length Ag = 1.0um interacts with homogeneous cells with diameter of 7um. Fig-
ure 6.6 shows the scattering distribution of a laser interacting with a single cell.
There are three curves in Fig. 6.6 : the solid line represents our numerical sim-
ulation result, the dotted line represents the Mie theory result, and the dashed
line is the result of Henyey-Greenstein’s phase function with ¢ = 0.985. The
calculated g factor is equal to 0.99. Thus, one can conclude that when a plane
wave incident laser beam with wavelength Ao = 1.0um interacts with homoge-
neous cells with a diameter of 7um, the scattering is almost completely forward.
Figure 6.7 illustrates the difference between multiple (ten cells) and single scat-
tering distributions. The amount of both forward and backward scattering from
10 cells is almost 10 times larger than that from a single cell.

The case of a plane wave incident laser with wavelength of 1.0um interact-
ing with multiple homogeneous cells with diameter of 7um is now considered.
Figure 6.8 (a) shows the scattered distribution from 18 homogeneous cells and
Figure 6.8 (b) is for the scattered distribution from 34 homogeneous cells. The

scattered distributions are characterized by the Henyey-Greenstein function with
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Figure 6.6: The scattering angular distribution from single cell. The solid line
corresponds to the numerical simulation result, the dotted line corresponds to
the Mie theory, and the dashed line corresponds to Henyey-Greenstein phase

function with g factor value of 0.985.

g = 0.985. The calculated g factor for both cases is equal to 0.99. Figure 6.9
shows the scattered intensity as a function of the number of cells (the simulation
region has a dimension of 40 x 80 x 80)g). The inter-scattering amongst cells
increases as the number of cells in the simulation box is increased. However, our

simulation tool cannot quantify the amount of inter-scattering among cells.

6.5 Conclusions

In this chapter, an optimized and parallelized 3-spatial dimensions and one elec-
tric field component simulation code (3D scalar solver) has been used to efficiently
model laser light scattering from both single cells and larger biological samples.

In the case of laser light scattered by single cells, the cases of a plane wave and
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Figure 6.7: The difference of scattering angular distribution from 10 cells and
from single cell. The solid line corresponds to the numerical Simulation result
for laser light scattering from a single cell with diameter of 7um and the dashed
line corresponds to the numerical simulation result for laser light scattering from

10 cells with same size: diameter of Tum.

a Gaussian beam are used as incident laser light. The simulation results demon-

strate that this 3D scalar solver is a valuable simulation tool in cell cytometry,

for example, in the detection of rare event cells and cancerous cells. The healthy -
cell usually has a nucleus with diameter of 3um and the cancerous cell has a

nucleus with diameter of 6um. The scattered spectra from a cell with a 3um

diameter nucleus and with a 6um nucleus are different. The calculated g fac-

tor value indicates that scattering of a plane wave with both a single cell and

multiple cells is an almost complete forward scattering.

The 3D scalar solver described in the previous chapters is unable to capture
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Figure 6.8: Multiple scattering distribution of laser light from 18 cells (a) and
34 cells (b). The solid stands for the calculated scattering and the dashed line

represents the Henyey-Greenstein distribution.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 6. THREFE DIMENSIONAL SIMULATION RESULTS 109

i1 < . T T

i0r

(=) D
T T

Scattered intensity [a.u.]

1 1

0 5 10 15 20 25 30 35
Number of scatterers

Figure 6.9: Dependence of the scattered intensity on the number of scatterers

(qells) .

any polarization information. In the next chapter, we will address solving the
two field components wave equation and the three electric field components wave
equation to explore the polarization effects in the process of laser light tissue

scattering.
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Chapter 7 |

Polarization Effects

7.1 Introduction

In the last several chapters, a new numerical technique for the solution of the
scalar wave equation in both two and three spatial dimensions was developed, and
the results of these simulations were presented and compared against theoretical
predictions. Unfortunately, the scalar wave equation treatment is somewhat
limited, as it does not take into account effects due to the polarization of light.

In this chapter, we explore the effects of polarization by solving a vector wave
equations We begin with a simple review of the different polarization properties
of light waves. Starting with Maxwell’s equations, we derive a two component
vector equation and present the numerical method that we use to solve it and
some simulation results. Based on the success in solving the 2 electric field
component vector wave equation, a vector wave equation with 3 electric field
components will be derived and solved numerically. We conclude with a discus-
sion of the numerical results obtained from 2 electric field component solver and

3 electric field component solver.
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7.2 Polarization Properties of Light

7.2.1 Linearly Polarized Light

Light is simply an oscillating electromagnetic field. Since, in this work, we are
interested in the interaction of laser light with biological tissue, we can restrict
our consideration to the electric field components, as they will interact much
more strongly with our media than the magnetic field components do. In the
case of linearly polarized light, the electric field is oriented along the polarization
axis. Therefore, we can describe light which is propagating along the z axis and

linearly polarized along the y axis as follows:
E, = EJsin(wt — kz + ¢0)j, - (7.1)

where the amplitude Eg is the magnitude of the electric field and j is the unit
vector in the y—direction. In an analogous manner, we may write light which is

linearly polarized along the z—direction as:
E, = Esin(wt — kz + ¢o)k, (7.2)

where k is the unit vector oriented along the 2 axis. Since the electric field
of linearly polarized light can be oriented in any direction perpendicular to the
propagation direction, in the most general case, it can be described as a vector

sum of E, and E,:
E= (Egi + E°E)sin(wt — kz + do). (7.3)

Hence, linearly polarized light with arbitrary orientation of the polarization axis
in the y-z plane can be thought of as consisting of two components oriented
along the y and z axis, respectively. The orientation of the polarization axis is
determined by the relative magnitudes of the two components. Note that in the
above discussion, we have taken the two components to have the same frequency

w and the same absolute phase ¢;.
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7.2.2 Circularly Polarized Light

Let us now consider another special case, in which the electric field components
have identical magnitudes Fg, but now a 90° phase difference exists between the

two components:

E.p = E{sinfwt— kz + ¢o)] + sinfwt — kx + ¢o + 7/2]k}
= E'{sinfwt — kz + ¢ + cos[wt — kz + o]k}, (7.4)

or

By, = E{sinlwt— kz + ¢o]j +sinlwt — kz + ¢o — 7/2]k}

= E%sinwt — kz + ¢o]j — cos|wt — kz + do)k}. (7.5)

In equation (7.4), the subscript rcp stands for right circularly polarized light for
which the polarization vector has constant amplitude, but rotates in the clockwise
direction. Similarly, equation (7.5) describes left circularly polarized light, for
which the polarization vector traces out a counterclockwise circular path.
Circularly polarized light can be viewed as being made up of linearly polar-
ized components which are 7 /2 radians out of phase with each other. Similarly
linearly polarized light can be treated as being composed of equal quantities of
right and left circularly polarized components. Therefore, in order to obtain a
reasonable description of polarization effects in the case of the non-paraxial ap-
proximation or moderate angle forward and backward scattering, we must solve
for these two perpendicular components of the electric field in the vector wave
equation. However, in the case of larger angle forward and backward scattering,
a wave equation with 3 field components should be considered. We will develop

a wave equation with 2 field components further in the next section.
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7.3 The Two Component Vector Wave Equa-
tions and Algorithm

As described in Chapter 3, we may use Maxwell’s equations (3.1-3.4) to obtain:

gy EPE _ |
V(V-B)-VE+ 5725 =0. (7.6)

Assuming propagation in the z—direction, we look for solutions for the specific

case of 2 components vector field of the form
E =[0,Ey(z,y, 2, t)e”™", E,(z,y, z,t)e™ "]

so that the simulation results can be improved in small angle scattering and
backward scattering. In addition, the 2 components vector field results can also
provide the effects due to the polarization in the region of small angle forward
and backward scattering. From Eq.(7.6) (neglecting the second derivative in

time), we have

2

LE, = c? Ey+ oy 0y = Oz )

. wile 0 OE, OE,

LEZ - C2 EZ + az( ay + az )’ (7‘7)

where [ = V2 4 24z B 4 %"ﬁ

In a manner analogous with that discussed in Chapter 3, Eq. (7.7) is solved
in a 3D region: 0 < z < L,, —L,/2 <y < L,/2 and —L,/2 < z < L,/2 (see
Fig. 3.2) by using the spectral method [1]. In the spectral method, we expand
the electric field amplitude A as a Fourier series in the transverse (y and z)
directions, obtaining

Alz,y,2) = Z Z A™™ (1) exp (imkyy + im'k, 2), (7.8)

m  m
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where A stands for F, and E,, k, = 27 /L,, and k, = 2r/L,. We then introduce

dimensionless variables:

T = Puwife

X = kz

Y = ky

Z = kz, (7.9)

where k = 27N/ Xg, with Ay = c/wp being the laser wavelength in vacuum and
N = ,/gq being the medium refractive index in the simulation region, and 3
is a dimensionless parameter which is used to renormalize the time T" to some
convenient unit (picoseconds, for example). This allows us to recast Eq. (7.7) in

the following form:

7
pEp™ = ey — (Tryppnt T pn
f [
PE™ = —AeE™ - (wmkk"VE;"m’ ~ ————-——mk‘g b g, (1.10)
where
; L&
P = 2255‘T~+5Y§+K§(mmr ’
Klpw = c0— (mky/k)? — (m'k,[K)%. (7.11)

We use the same numerical technique described in Chapter 3 to solve these
coupled wave equations (7.10). In particular, the time iteration is implemented
as described is in section 3.3, namely, by the implicit midpoint rule [2] [3]. We
must generalize this somewhat, however, since we are now dealing with two
components. We should develop a symmetrical approach to solve the symmetrical
equations (7.10) so that E} and E} are advanced in the same way. In this
scenario, we compute the midpoint values of E, and Ey from initial values of E7
and Ej. It is then possible to compute the iterated values for E?*1 (using E,

and E,) and EP*! (using E, and E,).
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7.4 Simulation Results

Following the algorithm described in above section and based on our three-
dimensiohal parallelized code (3D scalar solver), another version of three-dimensional
parallelized code (3D-2 components vector solver) was implemented to solve
equations (7.10). The expression for the total intensity used in the code is the

same as that defined in Mie theory. It takes form:
I= (5, +|E.P) (7.12)

In order to test the 3D-2 components vector solver, we consider the special
case where there are no cells in the simulation region (see Fig. 3.2). In this case,
equations (7.10) become two independent free propagating equations. When the
incident light is represented by two identical plane waves for E, and E,, the
simulation results in far-field are found to be comprised of two identical delta
functions — which is physically correct.

We now consider the case where the incident laser light is comprised of two
identical plane wave components with wavelength Aq = 1um for both E, and
E,, and a homogeneous cell (without nucleus) is placed in the simulation region.
The diameter of the cell is assumed to be equal to 11um and the refractive index
of the intér—cellular medium and cytoplasm are taken the values from Table 5.1
( 1.35 for the inter-cellular medium and 1.37 for the cytoplasm). The length of
the simulation region is 40)¢ in the light propagating direction and 80¢ in each
of the two transverse directions. The simulation results are plotted in Fig. 7.1.
Figure 7.1 (a) shows the angular spectra of forward scattered light while Fig. 7.1
(b) gives the backscattering results. In both Fig. 7.1 (a) and (b), the solid line
is for | E,|?, the symbol + is for |E,|?, and the dotted line is for the results of the
3D scalar solver using the same simulation conditions. Since equation (7.10) is a

symmetrical equation and the initial conditions for E, and E, are the same, the
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simulation results should be the same for E, and E,. Indeed, from Fig. 7.1 (a)
and (b), one can see that the angular distribution of scattered light for the two
orthogonal electric field components are identical.

Initially, the direction of polarization is 45° from the Y axis in the ¥ — Z
plane (E"0 = E’;‘} + E?) and the degree of the linear polarization is equal to 1 since
the two orthogonal components are initially identical. After scattering, we have
|E,|? = |E,|? for forward and backward scattering (see Fig. 7.1). Therefore, for
the scattered light, the direction of polarization is 45° from the Y axisinY — Z
plane and the degree of polarization is 1.

Figure 7.2 shows our simulation results of the scattered intensity parallel to
-the scattering plane 4 (solid line) and the scattered intensity perpendicular to
the scattering plane i, (dash-dotted line) in forward direction (a) and backward
direction (b). From Figure 7.2 (a), we can find that there is a discrepancy
between 4 and i, for scattering angle § > 30° which agrees with Mie theory’s
prediction (refer to Fig. 2.4). This may be a reason for the breakdown of the
scalar approximation. Figure 7.‘3 shows the comparison of our simulation results
using a 3D -2 component vector solver with the Mie theory results (a) for 4 and
(b) for i, . For both 4 and i,, there is a good agreement up to scattering angle

0 = 30°.

7.5 The Three Components Vector Wave Equa-
tion

In this section, we will explore the effects of polarization by solving the 3 spatial
dimension, 3 electric field components vector wave equation. Recalling Eq. (3.6)

and using assumptions of y = 1 and € = ¢ + Ae(2, ¥y, 2), one has

,UJO BE 2 =4 wg - —) . w(% —
2?;2550—&‘ + V°E + ‘E2“€QE - V(V . E) = —ZEAEE' (713)
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Figure 7.1: The angular spectra of forward and backward scattered lights for two
orthogonal vector components. Figure (a) is for the forward scattered component
and (b) is the backward scattered component off a three dimensional single cell
with diameter Dy = 11pm The solid line is for |E,|?, the symbol + is for |E,|?,
and the dotted line represents results obtained with the 3D scalar solver for the

same simulation conditions.
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Figure 7.2: Scattering by a cell with diameter Dy = 11pum—the simulation results
of two components vector wave equation solver. The forward scattering and
backward scattering are shown in Fig. (a) and (b) in which solid line represents

i) and dash-dotted line represents ;.
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Figure 7.3: Comparison of our simulation results 4 (a), i, (b) with Mie theory
results. The solid line represents our simulation results and dash-dotted line

represents Mie theory results.
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After Fourier transform with respect to transverse coordinates (y, z), one
obtains the following equations for three Fourier components EI"™ (z), E™™ (z),

and E™™ (z):

wo_ OBP™ & S
2z—c-29_eo Lt (5 — (mhy)? — (R + D) B = (7.14)
—m2E™™ — mk,m'k,E™™ + imk DEF™ B g o
YTy Y 2z Y am Cz y
) 8 ) i 52 : w2 ) :
22-673'60 th + ( 32 (mky)? — (m'E,)* + ’EQQEO)ETm = (7_15)‘
~(M'k)2EM™ — mkym'k, E™ + im'k OB™ _ h p, gy
2z z Y 25y z 3{},‘ C2 z
W aE;n m 82 (U2 mm’ :
22—6—2260 B + (6392 — (mk,)? — (m'k,)? + _c_gEO)E” = (7.16)
mm/ o Emm’ 5?2 Emm’ w2 ,
. Y . I 2 T _ ___Q_A Emm
imk, B +im'k, B + 522 2 eE7

Instead of solving Eq. (7.16) for longitudinal component ET™ | it is possible to
use Eq. (3.1) which is one of Maxwell’s equations in charge free region, V-eE =0.

This gives the following equation:
AV .
V(B + -EE—:E) =0. (7.17)
0

After taking Fourier transfer in y and z directions, Eq. (7.17) becomes

0 mmn’ (A&.Ez)mm’ : mm’ (AEE’!I)mmI
5{;(E$ +~T) + ’Lmky(Ey +-—————————EO )
mm/
+ im’kz(E:"'"'+—(é—s—€f)———-)=0. (7.18)
0

The term of £ iéi%)—"—“—ni) on the left hand side of Eq. (7.18) can be neglected
compared to other terms. Then from Eq. (7.18), one easily finds:

OET™

+ m'k,(E™™ +
% )+ m'k,(

= mky(E™™ + ). (7.19)

, (AcE,)™™ (AcE,)™™
' £g £

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 7. POLARIZATION EFFECTS 122

Therefore, Egs. (7.19), (7.14), and (7.15) construct a complete system.

Using dimensionless variables of Eq. (7.9), the complete system becomes

~ ' ’ mk mm' mk mk mm' mk aEmm
PE;"' = ~A€Eg"m - (%)2Ey - “‘—%——E + 3 T__é_).(__
(7.20)
~ [ . ’ m'k ’ mk,m k ,k BE"""
mm mm ZN2 Y mm'
PE" AeEP™ — (S B - e B it
(7.21)
OEM™  mky, o (DEE)™ . m'Ey o (AEE)™™
¢ BX - k (Ey + €0 )+ k (Ez * Ep ),
o (7.22)
where

2

. o 2

Kimmw = c0— (mky/k)* — (m'k./k)?, (7.23)

and B is a dimensionless parameter which is used to renormalize the time T to
a unit of picosecond.

Iﬁ order to solve Egs. (7.21—7.22) numerically, the numerical technique
described in Chapter 3 and an algorithm presented in section 7.3 are used. We
calculate the value of 4 —;915(« using initial values of E; and E}. The results
are substituted into Eq. (7.21) and (7.22) for the midpoint values of E, and
E, calculations. In the next step, the value of %% aX is updated by using the
midpoint values of Ey and E, for Eg“ and E**! calculations. A new version of
the three spatial dimension parallelized code (3D-3 components vector solver)
was implemented.

We again consider the case described in section 7.4. The incident laser light
is assumed to be comprised of two identical plane wave components with wave-

length Ay = 1um for both E, and E,, and a homogeneous cell (without nucleus)

is placed in the simulation region. The diameter of the cell is taken to be 11um
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and the refractive index of the inter-cellular medium and cytoplasm are taken
the values from Table 5.1. The length of the simulation region is 40X in the
light propagating direction and 80Xy in each of the two transverse directions.
The simulation results are plotted in Fig. 7.4. Figure 7.4 (a) shows the angular
spectra of forward scattered light while Fig. 7.4 (b) gives the backscattering
results. In both Fig. 7.4 (a) and (b}, the solid line is for |E,|?, the symbol + is
for |E,|?, and the dotted line is for the results of the 3D scalar solver using the
same simulation conditions. Since equations (7.21—-7.22) are symmetrical equa-
tions for Fy, and E, and the initial conditions for E, and E; are the same, the
simulation results of the scattered intensities for £y, and E, should be identical.
In fact, from Fig. 7.4 (a) and (b), one can see that the angular distribution of
scattered light for two orthogonal electric field components |E,|? and |E,|? are
exactly the same.

Figure 7.5 shows the angular distribution of the scattered intensity by a cell in
the backward region. The simulation conditions are the same as described in the
previous pa,ragraph. The solid line is the result of 3D-3 component vector solver,
the dotted line is the result of 3D-2 component vector solver, the dash-dotted
line is the output of 3D scalar solver, and dashed line represents the results of
Mie theory. In these simulatidns, the interface profile described in Fig. 4.10 (a)
with 6 points per wavelength in propagation direction is used. For the scattered
intensity in the backward scattering direction (180°), we find in Fig. 7.5 that the
result of 3D-3 components solver is the closest to the Mie theory results, and
the result of 3D-2 components solver is the second one. The reason is that the
V(V - E) term in Eq. (7.6) is fully considered in the 3D-3 component solver,
partially considered in the 3D-2 components solver, and neglected in the 3D
scalar solver. The V(V - E) tefm accounts for the effect of the cell wall, since it

is only at this interface when the V(V - E) term is non-zero.
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Concerning the degree of polarization, the simulation results from our 3D-3
components solver agrees with those from our 3D-2 components solver. Initially,
the direction of polarization points 45° against the Y axis in the Y — Z plane
(B0 = E'_;‘} + E?) and the degree of the linear polarization is equal to 1 since
the two orthogonal components are initially identical. After scattering, we have
|Ey|2 = |E,|? for forward and backward scattering (see Fig. 7.4). Therefore, for
the scattered light, the direction of polarization is 45 against Y axisin ¥ — Z

plane and the degree of polarization is also equal to 1.

7.6 Conclusion

In order to explore the effects of the polarization of light, a vector equation for 2
transverse field components is derived from Maxwell’s equations. An algorithm
to solve this coupled equation is presented and a 3D-2 component vector solver
(code) is implemented and tested. The simulation results of the 3D-2 component
vector solver also shows that if the incident light is 100% polarized parallel to
a scattering plane (¢ = 45°) then the scattered light is also 100% polarized
parallel to that scattering plane, which is in agreement with Mie theory. There
is a discrepancy between 7 and ¢, when the scattering angle is equal to or larger
than 30°. Both ¢ and ¢, are in good agreement with the Mie theory results in
range of scattering angle up to 30°.

Furthermore, a 3 electric field component wave equation is also derived from
Maxwell’s equations. An algorithm to solve this coupled vector wave equation is
developed and a 3D-3 components solver is implemented. Regarding the observed
polarization effects, our 3D-3 component solver gives similar results to our 3D-2
components solver. Comparing to 3D scalar solver and 3D-2 component vector
solver results, the simulation results of 3D-3 component vector solver shows an

improvement in the backward scattering results.
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Figure 7.4: The angular spectra of forward and backward scattered light for the
E, and E, components of the electric field as predicted by our three component
vector wave equation solver. Figure (a) is for the forward scattered component
and (b) is the backward scattefed component off a three dimensional single cell
with diameter Dy = 11pm The solid line is for |E,|%, the symbol + is for |E,|?,
and the dotted line represents results obtained with the 3D scalar solver for the

same simulation conditions.
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Figure 7.5: The backward scattéréd intensity by a cell with diameter Dy = 11um
as simulated by our 3D-3 component vector solver (solid line), 3D-2 component
vector solver (dotted line), and 3D scalar solver (dash-dotted line). The dashed
line is the result of Mie theory.
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Chapter 8

Experimental Considerations

8.1 Introduction

All our efforts towards developing a numerical model of laser-tissue interactions
as described in previous chapters are motivated by cytometry applications, par-
ticularly micro-cytometry. Micro-cytometry is simply conventional flow cytom-
etry carried out in an apparatus based on a microchip. Recently, Schrum et
al. [1] demonstrated a microchip-based cytometer with which they sorted latex
beads, correlating the scattered peak intensity with the bead size. They used
two different sizes of particles: fluorescent smaller particles With a diameter of
0.972pm and non-fluorescent large particles with a diameter of 1.94um. It was
found that peak intensity, which corresponds to the total scattered intensity by
a particle, was 0.235 times smaller for the 0.972um fluorescent particles as than
for the 1.94um non-fluorescent particles [1]. A U.S. company called Micronics
has developed a microcytometer in which biological cells from a sample, such
as blood, pass in single file through a micro-channel upon which a laser beam
is focused. Light scatter measurements are taken at multiple angles over two

ranges: forward angle scattering (from 0 to 3 degrees) and small angle scattering
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(from 3 to 11 degrees). These multi-parameter scatter measurements provide in-
formation about the size and the internal cellular structure for the various type
of cells. A study of this device’s ability to separate several types of white blood
cells has been presented in Ref. [2]. This would be very useful in blood counting
and differentiation.

A research project called “Analysis of Cells with Scattered Laser Light” is
now being carried out by a collaboration including members from both the Elec-
trical & Computing Engineering and Physics departments at the University of
Alberta. This project is realized through marrying existing cutting edge mi-
crochip development with a detailed numerical model of scattered light. The
objective of this project is the development of an inexpensive instrument using
microfluidic technology. Our research approach is to integrate cell sorting and
the measurement of the scattered light by a cell with microchips developed at
the University of Alberta and Micralyne, a local company. |

Figure 8.1 shows a top view of a microchip which consists of micromachined
channels. Cell sorting procedures are performed on the microchip where an
individual cell moves through microchannels. By applying an electric field, a
charged cell will move in a medium toward the cathode or anode, depending on
the sign of the applied electric field.

Figure 8.2 shows a schematic of the experimental set-up. When a selected
cell passes in front of a laser beam, the incident light is scattered in the forward
direction and captured by a very sensitive CCD camera. The experimental pro-
gram is currently in an early stage. A latex bead with refractive index of 1.35 is
used instead of a real cell. The refractive index of the surrounding medium in the
microchannels is 1.30. A HeNe laser with wavelength of 0.6328um is used in our
experiment. As described in Fig. 8.2, we also need a very sensitive CCD camera;

however, what criteria should we use in selecting a suitable CCD camera?
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Figure 8.1: Microchip for manipulation of cells

In previous chapters, our results for the scattered intensity were presented
in arbitrary units. In order to determine the requisite CCD camera sensitivity,
we derive the normalization constant rfor both Gaussian beam and plane wave
incident light sources, allowing us to present the scattered light intensity in an

appropriate absolute unit, i.e. photons/(s.sr).

8.2 A Gaussian Beam Incident Light Source

An actual incident laser beam can be well described by a Gaussian beam whose
profile is given by Eq. (3.23). In this section, we will start from Eq. (3.23) to
derive the normalization constant.

The optical energy density |E(z, v, 2)|* is a function of the radial and axial
variables p = /4% + 22 and z [3], i.e.,
2

1Bz, 2)* = ol [ exel—5

-~ (8.1)
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Figure 8.2: Schematic of the experimental setup for measuring forward scattered

light by cells
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and the optical flux (intensity) is given by

1= eIl M7yl el (8.2)

where Iy = ¢|Eo(z,y, 2)|* /87; W(w) is the beam radius defined by Eq. (2.34)
and o is the minimum radius of the beam at the best focus‘ position. Figure 8.3
illustrates the Gaussian function at the best focus position (z = 0) with number
/12 where the number f is defined to characterize the minimum radius o of the

beam at the best focus position by
o= fA (8.3)

The total optical power of the beam is the integral of the optical flux over its

transverse plane (y-z plane) at any point on the x-axis.

P= /0 - d /0 " Lodp, (8.4)
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which leads to
P = [y x wo’. (8.5)

As expected, the total power is independent of z. Since Gaussian beams are very
often described in terms of their total power P, it is useful to express I in terms

of P by using Eq. (8.5). Therefore, Eq. (8.2) is rewritten in the form

__ P P
I= Wexp[—m]. (86)

Hence, at the best focus position (z = 0), we have
I=enl-5 (8.7)

Another parameter which is used to describe Gaussian beams is the full width

at half maximum (FWHM) From Eq. (8.2), we have
p%/z) _1
=2

exp (——&—2— (8.8)

where p;/; is the beam radius at which the beam power is one-half of its peak

power. Therefore, using Eq. (8.8), the FWHM takes the following form
FWHM = 2p,/, = 2VIn2 x o. (8.9)
In the far-field, we have z > Ly, where L é is the Rayleigh Range defined by
Lg = 21 f2\. (8.10)

In this limit we may rewrite Eq. (8.1) as

2LR L%zP]

‘E(:L‘, Y, Z)l ‘EOI o2 27’

5 exp[——5 (8.11)

where we have used the relation W(z) = o+/1+ (z/Lg)?. The flux [ in the
far-field then takes the form

c|B@ v, _clBl' Ly . Lip

I'= 87 T 81 x? [—0—2-5:_5]

(8.12)
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The total power in the far-field (for arbitrary fixed z) is given by integral of Eq.
(8.12)

= 271’]0;2— ] €xXp —;2—;2-,0 )pdp

= Iy x mo?, (8.13)
which is the same as Eq. (8.5). Therefore, it can be seen that our analytical

expression (8.12) of a Gaussian beam in the far-field conserves energy.

The power per solid angle in the far-field Q) takes the following.expression:

_ c|E'(:1:,y,z)|2 2 __ CIE0|2 L%i ‘ L%z 2
Q= o rE e Hexp[ =3 tan® 6], (8.14)

- where we used the following relations:

z = rcosf (8.15)
y = rsinfsing¢
z = rsinfcos .

When the incident laser light is a Gaussian beam and propagates in free space
(without scattering), Eq. (8.14) is the distribution function in the far-field. The
normalization factor can be obtained from Eq. (8.14) when 6 = 0. In this case,
the normalization constant @) for a Gaussian beam can be expressed as the
following

_C‘E()lz s _ P '
Qo= —g—Lp=—Lk, (8.16)

where Ly = 2mf%), 0 = f) and Qo has unit of J/(s.sr) when P has unit of J/s.
The angle dependent term ®(6) takes the form

1
cos? 6

2
(6) = exp(—% tan? 6). (8.17)

Figure 8.4 shows the comparison of analytical results and non-scattering sim-

ulation results. For a fixed length of the simulation box in transverse directions,
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Figure 8.4: The far-field distributions of a Gaussian beam with (a) f/15 and (b)

£/12. The solid lines represent the analytical results (8.17) and circles are our

non-scattering simulation results with L, = L, = 80A and A = 0.6328um.
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i.e. Ly = L, = 80, deviations of analytical and simulation results decrease with
the f number of Gaussian beam. The wider beam, the greater the proportion of
the beam profile which extends beyond the transverse boundary. As described
in Chapter 3, we only collect signals on the plane of z = X, for forward far-field
calculation. Given L, = L, = 80X and f = 12, the analytical result (8.17)
and the simulation result fully agree with each other over 6 orders of magnitude
(refer to Fig. 8.4 (b)). Therefore, one can conclude that with L, = L, = 80A,
the widest Gaussian beam which can be accurately modelled with our simulation
code (3D scalar solver) is a beam with f/12 optics.

If an incident Gaussian beam is focused on a cell of radius R, the average
incident flux on the cell takes the following form -

ID 27 R 1,.2
I, = 71__12_2‘/0 d¢£ GXP (—-gz-)Td’l'

= B(%)P - e(- )] (8.18

where I is the maximum flux of a Gaussian beam (8.5).
" A plane wave can be used to model a wider beam than f/12 if necessary. The
derivation of the normalization constant for a plane wave will be given in next

section.

8.3 Plane Wave

An ideal plane wave extends out to £o0 in the two transverse directions (assumed
ﬁo be y and z). Without scattering, the Fourier Transform of the distribution
in the far-field should be a J-function in both the k, and &, components. How-
ever, in our simulations, we are only able to include a finite range of the two
transverse dimensions L, and L,. As a result, in the absence of scattering, the

far-field distribution exhibits a finite d-function-like spike at a scattering angle of
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zero degrees. Figure 8.5 illustrates a such distribution. Assuming that the nor-
malization is Qg with unit of J/(s.sr) and the normalized distribution is ®(6),

the total power in the field takes the form
27 w /2
P=Qq / dé / &(6) sin 6. (8.19)
0 0
Based on the distribution function shown in Fig. 8.5, integral (8.19) becomes
1 2] ’
P= 5@027(‘/ sin 0(10, (820)
0
which can be evaluated to give
P = 210, sin? (%59), (8.21)

where 66 is the resolution determined by the length of our simulation box in the
transverse directions (Ly = L, = L = 80 ). In particular,

_%_2%1_/\ 1

= = =l )
=T TE LS (822)

where n is the refractive index of surrounding medium. Therefore, we use the

small angle approximation to express sin’(346) = (%)% and Eq. (8.21) then

becomes
T A
P = —Q,(-=)% .
5Q(F) (8:23)
The incident optical power takes the form
_ c|E? 2 | .
R = '—é‘;r—"L . | (824)

By energy conservation, we have P, = P. Therefore, the normalization

constant for a plane wave takes the form

2Py, nlL

Qo (——)-\—)2 (J/s.s7), (8.25)

T

where we have used the fact that the incident flux is given by I = 918%3 = %&

and that P, is expressed in units of J/s.
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Figure 8.5: The far-field distribution for an incident plane wave in the absence of
scattering. The resolution is determined by the length of the transverse directions

in our simulation box.
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So far, we have derived the normalization constant ¢Jy for both Gaussian beam
and plane wave incident light sources. In the next section, we present our simu-
lation results for the scattered intensity—in absolute units of photons/(s.sr)—as

obtained from our 3D scalar solver code.

8.4 Simulation Results

We shall start by comparing the results of our simulation with analytical Mie
theory calculation results published in Ref. [4]. In this study, Kashima et.al.
computed the scattering cross-section for beads of various radii. Their calcula-
tions used refractive indices of 1.40 and 1.349 for the beads and the surrounding
media, respectively, and used a laser wavelength of 0.805um.

For our simulation, we will assume that the total power is ImW. We begin
by computing the appropriate normalization constants for both the Gaussian
beam and the plane wave cases. Through the use of Eq. (8.16), we determine
Qo = 0.734 x 10'8photons/(s.sr) for a Gaussian beam with f/12 optics. Similarly
by using Eq. (8.25), we find @y = 3.01 x 10*photons/(s.sr) for a plane wave.

Figure 8.6 shows our 3D scalar simulation results for the case when the radius
of cell is 2.78um. Fig. 8.6 (a) gives the scatté_red intensity distribution for a f/12

Gaussian beam. The total scattered power is given by

180°
P, = 271'/ I(0) sinAdf = 4.96 x 10" (photons/s). (8.26)
0

By using Eq. (8.18), the average incident intensity I,, on a cell can be shown to
be 1.32 x 10'3(photons/(s.um?)). The scattering cross section is therefore given

by
P,,[photons/ s
L[photons/s/um?|

Conversely, when the incident laser light is a plane wave, we obtain the scattered

O scalim?] = (8.27)

intensity distribution function 7(6) as shown in Fig. 8.6 (b). The total scattered
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power is 4.80 x 10'3(photons/s). In this case, the average incident intensity I,
is given by
I, = P/L?, (8.28)
where L is the length of two transverse directions, taking L, = L, = L = 80A.
The scattering cross sections obtained from our simulations were compared
with published results in Ref. [4], and these are tabulated in Table 8.1. It is
readily seen that our simulation results for the Gaussian beam and the plane wave

bracket the published results. In particular, there is reasonably good agreement

between the published results and our simulation results for the plane wave.

Published Result Gaussian Beam Plane Wave
R(um) | uca(pmm?®) | Lo (B225) | Pos(B%™) | Osca(pm?®) | Pis(P2%22) | Ogea(pim?)
5.5 N/A 1.18 x 10'% | 8.09 x 10* 68.6 1.067 x 10* | 109.2
2.78 46.7 1.32 x 10%3 | 4.96 x 10 37.6 4.80 x 103 49.1
2.56 35.0 1.33 x 1013 | 4.12 x 101 31.0 3.85 x 10%3 39.4
2.29 23.3 1.33 x 1013 | 2.95 x 10 22.2 2.77 x 103 28.3

Table 8.1: Our calculation results of scattering cross section against the published
results in Ref. [4]. In the plane wave case, the average incident intensity is equal

to 9.77 x 10" (photons/s/pm?).

For the case of our proposed experiments, the refractive index of the beads is
1.35 and the refractive index of the surrounding medium is 1.30; the wavelength
of the laser light is 0.6328um and total laser power is 1.0mW; and the incident
beam can be described as a Gaussian beam but with large f number. Therefore,
we provide our simulation results in two cases: incident light source as a Gaussian
beam with f/12 optics and as a plane wave.

Figure 8.7 gives the scattered intensity distribution using the absolute units

of photons/(s.sr) when the radius of the beads is 5.5um. Fig. 8.7 (a) shows
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Figure 8.6: The far-field distributions (a) for a Gaussian Beam with f/12 and (b)
for a plane wave. The wavelength ) = 0.805um; the radius of cell is 2.78um; the

incident power P = 1073J/s; and the refractive indices of cell and surrounding

media are 1.4 and 1.349, respectively.
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the intensity distribution when the incident beam is a Gaussian beam with f/12
optics, while Fig. 8.7 (b) illustrates the corresponding distribution in the plane
wave case. Figure 8.8 shows the scattered intensity distribution using absolute
units of photons/(s.sr) when the radius of the beads is 3.5um.

The scattering cross sections of the beads obtained from our calculations for

both the Gaussian beam and plane wave cases are given in Table 8.2.

Radius Gaussiari Beam Plane Wave

R(,U/m) Iav(%g) Hs(m:’%ﬁ) Usca(ﬂmz) Iav(%) Hs(afg?'@) o'sca(/"'m2)
5.5 1.36 x 1013 | 8.30 x 10** 61.0 1.24 % 102 | 1.106 x 10 89.2
3.5 1.58 x 10'3 | 7.31 x 1014 46.3 1.24 x 10'2 | 8.398 x 10 67.7

Table 8.2: The cross section of the beads obtained from our calculation for the
proposed experiments: the wavelength A = 0.6328um; the refractive indices of

the cell and the surrounding medium are 1.35 and 1.30, respectively.

A term of figure merit (FOM) is introduced to express the intensity level of the
brightest peak (excepting the one at 0°) with respect to the weakest peak at 35°.
For example, the FOM in Fig. 8.7 (a) is approximately equal to 3 and this will

restrict the acquisition of cytometry data to reduced angular ranges. Recording
scattering intensities over small angle intervals and combining results will increase
the time and cost of medical diagndstics. Therefore, we propose a method of using
a angular radial gradient filter to selectively attenuating scattering intensities
over a wide angular range.

Ideally, we would like to obtain the same intensity levels for all scattering
peaks. However, it is not trivial to develop such a angular radial gradient filter.
We have developed a method of obtaining such an equalization although we are in
the process of improving performance. At present we can obtain the attenuated

scattering intensities shown in Fig. 8.9 with an improved FOM of 1.5 [5]. This
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Figure 8.7: The far-field distributions (a) for a Gaussian Beam with f/12 and

(b) for a plane wave. The wavelength A = 0.6328um; the radius of cell is 5.5um;

the incident power P = 1073J/s; and the refractive indices of the cell and the

surrounding medium are 1.35 and 1.30, respectively
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Figure 8.8: The far-field distributions (a) for a Gaussian Beam with f/12 and
(b) for a plane wave. The wavelength A = 0.6328um; the radius of cell is 3.5um;
the incident power P = 1073J/s; and the refractive indices of the cell and the

surrounding medium are 1.35 and 1.30, respectively.
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figure displays the number of photons/s incident on 1um? of a charge- coupled
device (CCD) vs scattering angle at 2.5cm distance which is for CCD cameras.
This leads us to believe that our method allows scattering data collection in one
single test, eliminating the need for preferential sampling at particular angle.

It is also important to choose an adequately sensitive CCD camera capable
of dealing with the low illumination levels at larger angles and to have a reliable
recording of scattering data. The simulations described above allow us to make
prediction photon counts. Based on this infbrmation, we éstimated a signal-to-
noise ratio (SNR) of ~ 36 dB, taking into account the brightest and weakest
scattering peaks. The SNR for a CCD camera is calculated as: [6]

I-QFE -t
VI-QE-t+ Ng-t+ N?

SNR = (8.29)

where I stands for the intensity in the unit of photons/sperpizel, QFE is the
quantum efficiency, ¢ stands for the integration time in the unit of seconds, N,
is the dark current noise in unit of electrons/pizel/second, and N, is the read
noise in the unit of electronsrms/pizel. We conclude that a camera designed for
astronomical observations, such as Starlight- Xpress HX 516 [7] is an approprié,te

choice.

8.5 Conclusions

In this chapter we presented a detailed derivation of the normalization constant
for both Gaussian beam and plane wave incident sources. We observed good
agreement between our simulation results and those published in Ref. [4]. We
were also able to use our 3D scalar solver simulation results, normalized to appro-
priate units, to provide an estimate of our proposed experimental measurement
of the scattering cross-section and to help to refine our CCD camera criteria. The

simulations allow us to make prediction photon counts. Based on this informa-
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Figure 8.9: Photons/s incident on 1um? of CCD vs scattering angle for an ideal
equalization of scattering peaks and a calculated scenario using our method. Cell

radius 5.5um and laser wavelength 0.6328um.
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tion, we estimated a signal-to-noise ratio (SNR) of ~ 36 dB, taking into account
the brightest and weakest scattering peaks.Then we conclude that a camera de-
signed for astronomical observations, such as Starlight- Xpress HX 516 is an

appropriate choice.
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Chapter 9

Summary

This dissertation presents numerical and theoretical studies of the scattering
properties of inhomogeneous cells. The spectral method is applied to solve two-
and three-dimensional scalar wave equations. Simulation tools which include a
2D scalar solver and a 3D scalar solver have been implemented for modelling the
scattering of laser light in biological tissue. These simulation tools are capable
of predicting with high resolution the intensity of scattered light from cells with
internal structures, and provide numerical support for microcytometry experi-
ments which are being carried out in the ECE Department at the University of
Alberta. Furthermore, in order to explore polarization effects in the processes of
laser light-tissue scattering, the spectral technique has also been applied to solve
the 3—D, 2— electric field component coupled wave equations and the 3—D, 3—
electric field component coupled wave equations.

The Mie theory was reviewed in detail in chapter 2. For the case of laser light
scattered by a homogeneous sphere, the relationship between Stokes parameters
of the incident and scattered waves can be expressed as S; = M.S;, where the
scattering matrix M is a 4 x 4 matrix called the Mueller matrix. If the incident

light is 100% polarized parallel to an arbitrary scattering plane, the scattered
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light is also 100% polarized parallel to the scattering plane. If the incident light
is 100% polarized parallel to an arbitrary scattering plane, the scattered light
is also 100% polarized parallel to the scattering plane. If the incident light is
unpolarized, the scattered light may be polarized perpendicular to or parallel to
the scattering plane. However, the degree of polarization of the scattered light is
always equal to zero in the forward (0°) and backward (180°) directions. A Mie
theory code has been developed and its computational results are applied as a
benchmark for our other more detailed numerical simulations.

A detailed computational model, which allows us to describe the interaction
of a laser with biological objects on spatial scales ranging from single cells to
larger samples, has been presented in Chapter 3. In this model, a 3D scalar wave
equation has been derived from Maxwell’s equations and the nonparaxial spectral
method is employed to solve the equation. The issue of far-field calculations has
also been addressed.

In Chapter 4, based on the computational model, a 2D scalar solver and a
3D scalar solver were developed and implemented as optimized and parallelized
simulation tools. The accuracy of the 2D scalar solver has been verified by
comparison with linear perturbation theory. Comparison with Mie theory also
indicated that the 3D scalar wave equation is a good approximation to the full
set of Maxwell equations for light scattering at moderate angles.

The simulation results of our 2D scalar solver were presented in Chapter
5. It was demonstrated that the spectral method can be efficiently used in
modelling laser light scattering for samples ranging in size from a single cell to
large biological samples. In the case of laser light scattering from single cells,
the most significant features of the angular distribution of the scattered light
from various cells occurs at small angles. Cells containing large nuclei have more

scattering at small angles compared to cells containing normal-sized nuclei. The
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amplitude of scattered light decreases even further for cells without a nuclei. In
the case of scattering from multiple cells, the simulation results show that the
fraction of the scattered power depends on the number of scatterers and not on
the size of simulation region. In fact, the fraction of the scattered power is almost
linearly proportional to the number of scatterers. Finally, the scattering pattern
from many cells still retains the angular distribution characteristic of single cell
forward scattering.

In Chapter 6, an optimized and parallelized 3D scalar solver has been used
to efficiently model laser light scattering from both single cells and larger bio-
logical samples. In the case of laser light scattered by single cells, the cases of a
plane wave and a Gaussian beam are used as the incident laser light source. The
simulation results demonstrate that this 3D scalar solver is a valuable simulation
tool in cell cytometry, for example, in the detection of rare event cells and can-
cerous cells. The healthy cell usually has a nucleus with diameter of 3um and
the cancerous cell has a nucleus with diameter of 6um. The scattered spectra
from a cell with a 3um diameter nucleus and with a 6ym nucleus are different.
This is the first reported implementation of the spectral technique for modeling
the scattering of laser light in biological tissue. The accuracy of the spectral nu-
merical method has been verified by comparison with linear perturbation theory
and Mie theory.

The polarization information in the processes of light scattering with cells
has been addressed in Chapter 7. In order to explore the effects of the polar-

‘ization of light, a vector equation for 2 transverse field components is derived
from Maxwell’s equations. An algorithm to solve this coupled equation is pre-
sented and a 3D-2 components vector solver (code) is implemented and tested.
Comparing to 3D scalar solver’ results, the simulation resulfs from the 3D-2

components vector solver improve the backward scattering distribution which is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 9. SUMMARY 152

closer the Mie theory result. The simulation results of 3D-2 component vector
solver also shows that if the incident light is 100% polarized parallel to a scat-
tering plane (¢ = 45°), then the scattered light is also 100% polarized parallel to
that scattering plane, which, again, in in agreement with Mie theory. Further-
more, a 3 electric field component wave equation is also derived from Maxwell’s
equations. An algorithm to solve this coupled vector wave equation is developed
and a 3D-3 component solver is implemented. The simulation results of 3D-3
components give our best agreement with Mie theory in the backward scatter-
ing region. Both our 3D-2 and 3D-3 component solvers agree with each other
regarding the polarization of the scattered light.

In Chapter 8, we give an outline of our proposal to consider the scattering
of laserr light from latex beads. The issue of appropriate normalization of our
simulation results in both plane wave and Gaussian beam cases is addressed. We
are therefore able to present the angular spectra of the scattered light intensity in
units of photons/(s.sr). Moreover, we may use our results for the angluar spectra
to calculate the the scattering cross section. The simulations allow us to make
prediction photon counts. Based on this information, we estimated a signal-
to-noise-ratio (SNR) ~ 36 dB, taking into account the brightest and weakest
scattering peaksv. ‘Then we conclude that a camera designed for astronomical
observations, such as Starlight-Xpress HX 516 is an appropriate choice.

The computational requirements for the spectral method in modeling laser in-
teraction with biological samples are much lower than the requirements for other
established numerical methods: FDTD and MC. For example, three-dimensional

.simulations of a sample with each spatial dimension approximately equal to
100um, only require about 1 Gb of operational memory and 3 hours of com-
putational time on a 16 processors SGI Origin 2400 computer. The spectral

method can be successfully applied to address scattering from individual cells
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and from biological samples containing many cells.

Our spectral technique has a very high spatial resolution which is limited by
the dimension of transverse directions; for example, if the laser wavelength A is
equal to 1.0pm and the L, = L, = 80A, then the resolution is 0.53 degrees, which
is comparable to the resolution obtained in experiments. It accurately models
inhomogeneities on spatial scales larger than the laser wavelength, and treats
ihhomogeneities with a spatial scale much smaller than the laser wavelength as
sharp boundaries.

Our simulation codes have been successfully used in prediction of our pro-
posed experimental measurement of scattered laser light from latex beads. In
’the future, our simulation codes will be extensively used in micro-cytometry
experiments. By comparison of our simulation results with experimental mea-
surements, we can determine cell parameters, such as size, refractive index, and

composition.
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