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Abstract Sexual reproduction and dispersal are often coupled in organisms mixing
sexual and asexual reproduction, such as fungi. The aim of this study is to evaluate the
impact of mate limitation on the spreading speed of fungal plant parasites. Starting
from a simplemodelwith two coupled partial differential equations, we take advantage
of the fact that we are interested in the dynamics over large spatial and temporal scales
to reduce the model to a single equation. We obtain a simple expression for speed of
spread, accounting for both sexual and asexual reproduction. Taking Black Sigatoka
disease of banana plants as a case study, the model prediction is in close agreement
with the actual spreading speed (100km per year), whereas a similar model without
mate limitation predicts a wave speed one order of magnitude greater. We discuss
the implications of these results to control parasites in which sexual reproduction and
dispersal are intrinsically coupled.
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1 Introduction

Sexual reproduction and dispersal are often coupled in organisms combining sexual
and asexual reproduction, i.e. facultative parthenogens. Quoting Williams (1975),
‘where both asexual and sexual reproduction can occur simultaneously, the asexual
offspring will develop immediately and near the parent, but dormant, widely dispersed
propagules will be produced sexually’. In plants for instance, sexual reproduction and
dispersal are intrinsically coupled as seeds are often theirmost efficient way to disperse
(Cheptou 2012). From an evolutionary perspective, sexual reproduction and dispersal
may both be selected for in spatially and temporally varying environments, so that these
environments could favour a coupling between the two functions (Bonner 1958).

However, self-incompatible sexual reproduction requires finding a mate, which
may be challenging at low population density. Such a positive correlation between
one component of the per capita growth rate (mating success) and population density
is termed a component Allee effect (Allee et al. 1949). Mate limitation has actually
been reported as the most common mechanism leading to Allee effects (Gascoigne
et al. 2009). Allee effects may give rise to a critical density belowwhich the population
goes extinct, a phenomenon termed a strong Allee effect (Taylor and Hastings 2005;
e.g. Garrett and Bowden 2002; Castel et al. 2014 in fungi). Moreover, Allee effects are
known to influence the spread of invading organisms both negatively (critical patch
size, Lewis andKareiva 1993; Vercken et al. 2011) and positively: Roques et al. (2012)
showed that with an Allee effect, the population propagates as a pushed wave, which
prevents erosion of genetic diversity in the invasion front. Pushed waves are driven
by the whole invasion front rather than by the leading edge only, as opposed to pulled
waves (Stokes 1976; Morel-Journel et al. 2015). Mate finding as a prerequisite to
reproduction and dispersal therefore deserves particular attention.

In plant ecology, the so-called Baker law (Baker 1955) states that long-distance
dispersal is more likely associated with self-compatible sexual reproduction, because
mate and pollen limitation likely limit self-incompatible reproduction after long-
distance dispersal. Although intuitive, this statement is not clearly supported by theory
or data (Cheptou 2012; Pannell et al. 2015). In particular, Cheptou and Massol (2009)
and Massol and Cheptou (2011a, b) studied the joint evolution of dispersal and self-
fertilization with spatially and temporally heterogeneous pollination. They found
either complete outcrossing associated with dispersal (the ‘dispersal/outcrossing’
syndrome) or complete/mixed selfing associated with the absence of dispersal (the
‘no-dispersal/selfing’ syndrome). Their results contrast with Baker’s intuition and
provide an explanation for the unexpectedly high frequency of plants with separate
male and female individuals on islands (Cheptou 2012).

In animal ecology, Shaw and Kokko (2015) explored how mating system, strength
of an Allee effect, and dispersal evolution influence invasion speed. From individual-
based simulations, they found that mating system differences can dramatically alter
the spread rate. In particular, they found that removing the mate finding Allee effect by
introducing parthenogenesis can increase the rate of population spread by almost one
order of magnitude (actually by a factor 8). Although the literature addresses density-
dependent dispersal in general (Gurney and Nisbet 1975; Travis et al. 1999; Lutscher
2008), we are aware of only one additional study explicitly accounting for dispersal as

123

Author's personal copy



Mate Limitation and the Spread of Fungi

conditioned by amating event.More specifically, Veit and Lewis (1996) focused on the
spread of house finches in North America and showed that positive density-dependent
dispersal associated with an Allee effect explains their initially slow invasion speed.

Fungi are major biological invaders (Desprez-Loustau et al. 2007; Fisher et al.
2012) andmajor plant parasites (Brown andHovmøller 2002; Soubeyrand et al. 2009).
Most fungi combine sexual and asexual spore production. Sexual and asexual spores
usually differ in their shapes, sizes, and therefore dispersal abilities. For instance,
Mycosphaerella fijiensis, the causal agent of the Black Sigatoka disease of banana
plants which recently invaded all banana-growing regions, produces two types of
spores: ascospores are the product of sexual reproduction, while conidia are produced
through asexual reproduction. While ascospores are dispersed by wind from several
hundred metres to several kilometres, conidia are dispersed by rain-splash up to a few
metres only (Rieux et al. 2014).

In many species, the successful fusion of gametes can only occur between haploids
carrying functionally different mating-type alleles (say + and −), a phenomenon
termed heterothallism. In haploid heterothallic fungi (including most ascomycetes),
sexual spore production thus results from the interaction between two individuals
with compatible mating types (+ and −) (Billiard et al. 2011). Genomic studies now
increasingly support the idea that this mating system is shared by many plant and
animal (including human) parasites (Ene and Bennett 2014).

How mating precisely occurs can be specific to the species considered and may
be unknown even in ecologically or economically important species. In M. fijiensis,
mating occurs through a direct contact between two adjacent lesions on the same leaf.
By contrast, some fungi such as the causal agent of the poplar rust,Melampsora larici
populina, mate remotely through gamete-like propagules (spermatia) transported by
wind or by insects (Bultman et al. 1995; Pernaci et al. 2014). Some fungi even induce
the plants that they infect to produce pseudo-flowers to attract insects, and sometimes
provide them a nectar-like reward for outcrossing service (Roy 1994).

Theway fungi spread has been the object of a number of studies, including (Frantzen
andvandenBosch 2000;Aylor 2003; Powell et al. 2005;Burie et al. 2006;Cunniffe and
Gilligan 2008; Mundt et al. 2009). Yet, whether mate finding significantly limits the
spread of plant pathogenic fungi remains unknown, despite its potential practical con-
sequences. For instance, the causal agent of AshDieback,Hymenoscyphus fraxineus, a
lethal disease of ash trees which is currently invading Europe at the approximate speed
of 75km per year (more than 1200km travelled within 16years in Europe; Fig. 1),
has been recently reported to be heterothallic (Gross et al. 2014). Again, this implies
that mating between two compatible sexual partners must take place for spores to be
dispersed. As a case study, we focus on the Black Sigatoka disease of banana plants
(M. fijiensis), whose spreading speed is around 100km per year (Halkett et al. 2010),
and which similarly produces dispersive spores only when two compatible (+ and −)
lesions meet on the same leaf.

We aim at evaluating the impact of mate limitation on the spreading speed of
fungal plant parasites through a mathematical model combining sexual and asexual
reproduction. First, we explore an original reaction-diffusion model accounting for
mate limitation in plant pathogenic fungi and show how it can be parameterized using
data available in the literature, using M. fijiensis as case study. Taking advantage of
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Fig. 1 (Color Figure Online) The spread of Ash Dieback (H. fraxineus) in France, from 2008 to 2015
(source: DSF, French Forest Health Survey System)

the fact that we are interested in invasion dynamics over large spatial and temporal
scales we successively approximate the original model by two simpler models. The
third model allows us to get an explicit expression of the spreading speed as a function
of the ratio of asexual to sexual spore production. We finally compare the spreading
speed obtained with mate limitation to that obtained from an analogous model without
mate limitation.

2 Models

We focus on plant pathogenic fungi to make assumptions explicit and to parameterize
the model, but we keep it as simple as possible for the sake of generality. A detailed
description of an analogous spatially implicit model, including the choice of an appro-
priate mating function, can be found in (Ravigné et al, unpublished manuscript). Thus,
we make a concise presentation of the spatially explicit model here.

Let i(x, t) be the density of infected leaves at time t > 0 and location x ∈
(−∞,+∞) (i.e. we adopt a unidimensional conception of space for simplicity). Let
n be the total leaf density. Note that the term ‘leaf’ is a shorthand for the ‘leaf part
that a lesion occupies’, so that multiple infections cannot occur in the model. Let α

be the number of asexual spores (conidia) produced per infected leaf per unit time,
and 0 < p < 1 be their infectivity, i.e. the probability that an asexual spore in contact
with a susceptible leaf succeeds to infect it. Similarly, let σ be the number of sexual
spores (ascospores) produced per infected leaf per unit time, and 0 < q < 1 be their
infectivity. However, sexual spore production is conditioned to the local presence of a
mating partner, whose probability is (i/2)/n, assuming a balanced mating-type ratio.
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We assume that only sexual spores diffuse; asexual spores do not diffuse. Let then
u(x, t) be the density of sexual spores (ascospores), with diffusion coefficient κ , and
rate of deposit upon leaves μ. Letting t and x subscripts represents derivatives with
respect to these variables, the model is:

rate of change
of spores

︷︸︸︷

ut =

mating
︷︸︸︷

1

2

i

n
×
takeoff
︷︸︸︷

σ i +
diffusion

︷︸︸︷

κuxx −
settling
︷︸︸︷

μu ,

it
︸︷︷︸

rate of change
of lesions

= ( qμu
︸︷︷︸

infection by
sexual spores

+ pαi
︸︷︷︸

infection by
asexual spores

) × (n − i)/n
︸ ︷︷ ︸

healthy fraction
of leaves

. (1)

2.1 Parameterization

To later evaluate whether model predictions are compatible with observed data, we
parameterize the model with values for the Black Sigatoka disease of banana plants
(Ravigné et al, unpublishedmanuscript), after (Stover 1980; Fouré 1982; Robert 2012;
Landry 2015). We only focus on orders of magnitude here, since full parameterization
would require dedicated experiments.

We first show that all parameters but the diffusion coefficient can be estimated
through relatively common plant pathology laboratory measurements. The causal
agent of Black Sigatoka (M. fijiensis) produces on average 200 asexual conidia per
lesion. The average duration of the infection is 65days (including the latent period,
which is left implicit for simplicity), so we let α = 200/65 ≈ 3 asexual spores per
day. In addition, the fungus may produce 4000 sexual ascospores per lesion, so we
let σ = 4000/65 ≈ 60 ascospores per day. Burie et al. (2008) report that spores of
Erysiphe necator (a comparable ascomycete causing Powdery mildew of grape) lifted
in the atmosphere fall within 30 min, so we let μ = 48 per day as well. We assume the
same infection efficiency for ascospores as for conidia: p = q = 0.01 (Landry 2015,
and references therein).

The diffusion coefficient may be derived from gene flow in population genetics
(the standard deviation of the distribution of parent-offspring distances; Mallet 2001).
More specifically, Rieux et al. (2013) used neutral genetic cline theory to estimate gene
flow inM. fijiensis as 1.2 km/generation1/2. The time from leaf infection to ascospore
release (about 50days) represents a large part of the parasite generation time during
which it does not diffuse, as accounted for in the immobile part of the model (i stage).
To estimate the ascospore diffusion coefficient (u stage), we therefore consider only
the actual time of diffusion (30 min on average). This yields κ ≈ 1.22 × 48 ≈ 70 km2

day−1 (3 km2 hour−1).

2.2 Dimensionless form of the Equations

We define T and L to be the temporal and geographical scales over which we are
interested in the invasion process and rescale variables according to
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Table 1 Dimensional variables and their estimated values forM. fijiensis

Label Meaning Unit Value

t Time

x Spatial location

n Total host density Per unit area

i(x, t) Infected host density

u(x, t) Sexual spores density

α Asexual spore production rate Per unit time 3 per day

σ Sexual spore production rate Per unit time 60 per day

p Asexual spores infectivity None .01

q Sexual spores infectivity None .01

κ Sexual spores diffusion coefficient Per unit area per unit time 70 km2 per day

μ Sexual spores deposition rate Per unit time 48 per day

c Spreading speed Length unit per time unit

t∗ = t

T
, x∗ = x

L
, i∗ = i

n
, u∗ = 2μ

σn
× u , (2)

and

a = 2

qσT
, ε = 1

μT
, d =

√

κ

μL2 , b = 2
pα

qσ
. (3)

The variable and parameters introduced are dimensionless. Dropping the asterisks for
convenience, model (1) reads:

ait = (u + bi)(1 − i) ,

εut = i2 − u + d2uxx . (4)

We consider the case where the infection probability q is small and the rate of spore
deposition μ is comparable to the rate of spore emission σ so

ε

a
= qσ

2μ
� 1 .

For instance, with the parameter values corresponding to M. fijiensis (Table 1) ε =
5.71 × 10−5, a = 9.13 × 10−3, b = 0.1, and d = 1.2 × 10−2 with L = 100 km and
T = 365 days. Also, we consider 0 < ε � d < 1.

2.3 Nonlocal Integrodifferential Equation Approximation

Because we are interested in the asymptotic spread of the population over long
timescales, we apply the quasi-steady-state approximation to the second equation
of (4) to yield the density of sexual spores u directly in terms of the density of infected
leaves i as

123

Author's personal copy



Mate Limitation and the Spread of Fungi

u(x, t) =
∫ ∞

−∞
H(x − y)i2(y, t) dy . (5)

Here

H(z) = 1

2d
exp

(

−|z|
d

)

(6)

is the fundamental solution to the modified Helmholtz equation

d2Hxx − H = −δ(x − y) , (7)

where δ is the Dirac delta function.
This yields a nonlocal integrodifferential equation for the rate of change of density

of infected leaves with respect to time

ait = (1 − i)

(

bi +
∫ ∞

−∞
H(x − y)i2(y, t) dy

)

. (8)

2.4 Degenerate Reaction Diffusion Approximation

Looking at the spread of the population over a large spatial scale,we can take advantage
of the small size of d and expand (5) in a Taylor series to give (see “Appendix” for
more details):

u(x, t) ≈
(

i2(x, t) + d2
∂2

∂x2

(

i2(x, t)
)
)

, (9)

which yields a reaction diffusion model with a cubic reaction term and a nonlinear
diffusion term which is degenerate at i = 0:

ait = (1 − i)

(

bi + i2(x, t) + d2
∂2

∂x2

(

i2(x, t)
)
)

. (10)

Equivalently, a second-order Taylor expansion as d goes to zero in (8) yields the same
equation. This also corresponds to considering a diffusion kernel H̃(z) = δ(z) +
d2δ′′(z) (Medlock and Kot 2003) instead of the Laplace kernel (6) in (5).

3 Analysis

3.1 Comparing Original and Approximate Models

We compared numerically the original model (1), its integrodifferential approximation
(8), and its lower-order reaction-diffusion approximation (10). It turns out that the latter
approximation holds for b � 1; otherwise, the integrodifferential approximation is
much more accurate (Figs. 2, 3). Since the dimensionless parameter b corresponds to
the ratio of asexual to sexual spore production (Eq. 3), this means that model (10) fits
species reproducing predominantly in a sexual manner (which actually corresponds
toM. fijiensis, where b ≈ 0.1). From now on, we assume 0 ≤ b � 1.
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Fig. 2 The solutions of the original model (4), its integrodifferential approximation (8), and its lower-order
reaction-diffusion approximation (10), for t∗ = 0 (dotted), t∗ = 100 (dashed), and t∗ = 200 (solid), with
d = 10−2, ε = 10−5, a = 10−2, and b = 0.1 (A), or b = 1 (B). This figure shows that the disease spreads
as a travelling wave, and that the approximations are better for low b values
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Fig. 3 Travelling wave velocity c∗ as a function of the ratio of asexual to sexual spore production b. The
black curve corresponds to the reaction-diffusion approximation (10), and the grey curve corresponds to
the integrodifferential approximation (8), which is numerically very close to the original model (4) for
ε = 10−5. Circles and crosses represent numerically calculated points for d = 10−2, and a = 10−2

3.2 Travelling Wave Form

We are interested in a travelling wave solution such that i(x, t) = I (z), where z =
(x − ct)/d, and c is the travelling wave velocity. Let ĉ = ac/d. Eq. (10) becomes

− ĉ I ′ = (1 − I )

(

bI + I 2 +
(

I 2
)′′)

, (11)

where the prime denotes differentiation w.r.t. z. This equation can be analysed in the
phase plane with the travelling wave as a heteroclinic orbit connecting the invaded
steady state I = 1 to the uninvaded steady state I = 0.

Equation (11) becomes

I ′ = J , −ĉ J = (1 − I )(bI + I 2 + 2J 2 + 2I J ′) ,

or equivalently

I ′ = J , 2I (1 − I )J ′ = −ĉ J − (1 − I )(bI + I 2 + 2J 2) .

There are singularities at I = 0 , 1 in the second equation. As in (Murray 2002), we
remove these singularities by defining a new variable ζ as

2I (1 − I )
d

dz
= d

dζ
,

so that Eq. (11) becomes

İ = 2I J (1 − I ) ,

J̇ = −ĉ J − (1 − I )(bI + I 2 + 2J 2) , (12)
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Fig. 4 Phase plane solution for ĉ ≈ 0.612 in the strictly sexual case (b = 0)

where the dot denotes differentiation w.r.t. ζ . The equilibria of system (12) are

(I, J ) = (0, 0) , (1, 0) ,

(

0,− ĉ

2

)

, (−b, 0) .

The last equilibrium is not in an admissible region of the state space since I must be
positive for biological consistency. Similarly to Murray (2002)’s Section 13.4 (Eq.
13.50 and Fig. 13.4), the travelling wave solution is the one which connects (1, 0) to
(0,−ĉ/2). We numerically solved this two-point boundary value problem. Figure 4
shows that ĉ ≈ 0.612 in the b = 0 case. Also, we numerically solved Eq. (10) and
checked that the wave speed ĉ indeed is around 0.612 for b = 0 (Fig. 5).

Figure 6 shows that, extending the analysis to positive b values, one can approximate
the mapping b 	→ ĉ by the following power function

ĉ ≈ .612 (2.317b + 1)1/2 ,

More accurately, a power of 0.5009 fits better in a least squares sense. However, we
consider a simple square root function, as it is comparable with the exact solution
from the analogous analysis without mate limitation (“Appendix”). We checked that
numerical solutions as for b = 0 (Fig. 5) indeed agree with this mapping.

We obtain an explicit but approximate expression of the travelling wave speed: in
terms of the original dimensional Eq. (15), the wave speed can be expressed as

c ≈ .306

(

κ

μ
qσ(4.634 × pα + qσ)

)1/2

. (13)

3.3 Impact of Mate Limitation on the Spreading Speed

Our aim was to get an explicit expression for the spreading speed of organisms that
rely on sexual reproduction to produce their propagules, so as to evaluate the impact of
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(b = 0), with initial conditions i∗(x∗) = 1 for −.01 ≤ x∗ ≤ .01, i∗(x) = 0 elsewhere. The wave front
is at x∗ ≈ 61.2, which confirms the mathematical analysis (c∗ = dĉ/a = 0.612 with d = 10−2, and
a = 10−2)
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Fig. 6 Travelling wave velocity ĉ as a function of the ratio of asexual to sexual spore production b, from
the reaction-diffusion approximation (10). Calculated points (Sect. 3.2) are represented by open circles.
The curve corresponds to ĉ = .612

√
2.317b + 1

mate limitation on their spreading speed. Without mate limitation (other assumptions
being equal; “Appendix”), the spreading speed is

c = 2

(

κ

μ
qσ(pα + qσ)

)1/2

. (14)

Equations (13) and (14) qualitatively agree: Regardless of mate limitation, the
spreading speed scales linearly with sexual spore production (qσ ), while it scales
with the square root of asexual spore production (pα). Quantitatively, mate limitation
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slows the expected spreading speed of a strictly sexual parasite (α = 0) by a factor
2/.306 ≈ 6.5. Also, with mate limitation, local asexual buildup contributes 4.634
times more to the spreading speed than without mate limitation.

4 Discussion

In this study, our aim was to evaluate the impact of mate limitation on the spreading
speed of fungal plant parasites which combine sexual and asexual spore production.
We built a simple model from first principles and showed how it can be parameterized
from data available in the literature, focusing on M. fijiensis as a case study. Next
we performed several approximations in order to get an explicit expression of the
spreading speed as a function of sexual and asexual spore production.

Assuming that spore dispersal occurs on a shorter timescale than plant infection
(30 minutes versus 65 days on average), we first made a quasi-steady-state approxi-
mation for the spore compartment and obtained an integrodifferential approximation
of the original reaction-diffusion model (resulting in one equation instead of two).
Focusing on the spread of the parasite over a large spatial scale, we showed that the
model may be further approximated by a single reaction-diffusion equation. We com-
pared numerically the original model, its integrodifferential approximation, and its
lower-order reaction-diffusion approximation. We found that the latter approximation
holds as long as the ratio of asexual to sexual spore production is low; otherwise, the
integrodifferential approximation ismuchmore accurate. Thismeans that the reaction-
diffusion approximation fits species reproducing predominantly in a sexual manner,
which actually corresponds to Black Sigatoka (M. fijiensis).

Assuming that the ratio of asexual to sexual spore production is low,we then focused
on the reaction-diffusion approximation and found a very good approximation of the
spreading speed. Also, we analysed an analogous model without mate limitation and
derived an exact expression of the spreading speed in this simpler model (“Appen-
dix”). Both expressions are qualitatively similar. The spreading speed scales linearly
with sexual spore production, while it scales with the square root of asexual spore
production.

An important question is whether the model predicts a reasonable spreading speed
in our case study, the causal agent of the Black Sigatoka disease of banana plants
(M. fijiensis), for which parameter estimates are available (Table 1). We get c ≈ 542
km per year without mate limitation and c ≈ 90 km per year with mate limitation. The
spreading speed obtained without mate limitation is almost one order of magnitude
greater than the spreading speed obtained with mate limitation (actually greater by a
factor 6). From the spatial temporal maps provided by Halkett et al. (2010), one can
estimate the spreading speed of M. fijiensis to be slightly less than 100 km per year.
This is in remarkably good agreement with our model with mate limitation (90 km
per year). Therefore, the model taking into account mate limitation makes a better job
than the model without mate limitation in estimating disease spreading speed.

Importantly, the model may not be restricted to mating through direct contact
between two adjacent lesions on the same leaf, as inM. fijiensis. As mentioned earlier,
the model may fit fungi which mate remotely through gamete-like propagules (sper-
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matia) transported by wind or by insects (Bultman et al. 1995). Our results might,
for instance, be applied to Ash Dieback disease (H. fraxineus), where asexual spores
only serve as spermatia (Gross et al. 2014), and therefore rarely generate infections
by themselves (b � 1). However, our results do not readily extend to this disease
as the ash decline is a monocyclic disease (i.e. there is at most one infection cycle
per year) which would rather require a discrete-time model. It would be interesting to
compare our model to an analogous integrodifference equation (Veit and Lewis 1996).
Also, measuring sexual spores production, infectivity, and dispersal of newly invad-
ing species would be interesting to compare the theoretical and observed spreading
speeds. Indeed, we believe that the strength of this model is its simplicity, whichmakes
it generic and relatively easy to parameterize. However, key to the parameterization
was the diffusion coefficient, which came from genetic data on rates of spread. For a
new invader this would hardly be available.

Our model ignores trade and focuses on natural dispersion. However, one of the
prospects of this study is to show that mate limitation entails a critical patch size (here
an initial infected area) below which the disease cannot spread (Lewis and Kareiva
1993). This would be expected to limit the impact of trade or other anthropogenic
pathways for disease dispersal when the focus created has a size too small to enable
spread. This might explain the very regular wave-like spread of ash decline observed
in France (Fig. 1; Husson et al. 2011).

Since the SI epidemiological model and the Verhulst logistic equation are mathe-
matically equivalent, and because the present model was kept as simple as possible, it
may apply to other species than fungi. In plants for instance, local asexual reproduc-
tion would correspond to vegetative growth and sexual propagule production would
correspond to seed production. In self-incompatible plant species, mate finding indeed
conditions sexual reproduction. Our diffusionmodel seems to better fit wind-dispersed
species although it may nevertheless be relevant for some water or animal-dispersed
plants. The probability for a spore to fall upon a healthy plant would correspond
to the probability for a wind-dispersed seed to fall into an empty site. For instance,
Cheptou (2012)’s Table 1 reports several examples of long-distance wind-dispersed
self-incompatible plants. These include the dwarf birch Betula nana and the mountain
avens Dryas octopetala, which can be found in the Svalbard Archipelago, although
they originate from Russia (Alsos et al. 2007).

Last, this paper is likely the first to deal with how fast a species spreads as a
function of the ratio of asexual to sexual reproduction (b). We hope that such a shift
in perspective will lead to new insights regarding self-incompatible species in which
sex conditions dispersal.

Possibilities for future research include:

– demonstrating the convergence of the solutions of (4) and (8) as ε goes to zero,
– exploring travelling wave solutions in the integrodifferential model (8) with non-
linear dispersal (mate limitation) and comparing with the linear (mate unlimited)
theory (Medlock and Kot 2003),

– extending our study to a 2-dimensional spatial domain and exploring how the
critical patch size (Lewis and Kareiva 1993) depends on the ratio of sexual to
asexual reproduction,
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– including stochastic mating in the model as it may have important consequences
even under a balanced sex ratio (Wilson and Harder 2003).
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Appendix: Analogous Analysis Without Mate Limitation

In this section, sexual spores can be produced regardless of the presence of a mate,
which amounts to removing the probability (i/2)/n inEq. (1).Withoutmate limitation,
model (1) becomes

ut = σ i − μu + κuxx ,

it = (qμu + pαi) (n − i)/n . (15)

We rescale variables according to

t∗ = t

T
, x∗ = x

L
, i∗ = i

n
, u∗ = μ

σn
× u ,

and

a = 1

qσT
, ε = 1

μT
, b = pα

qσ
, d =

√

κ

μL2 .

Dropping the asterisks for convenience, model (15) reads:

ait = (u + bi)(1 − i) ,

εut = i − u + d2uxx . (16)

Applying the quasi-steady-state approximation to the second equation of (16) yields
the following nonlocal integrodifferential equation for i:

ait = (1 − i)

(

bi +
∫ ∞

−∞
H(x − y)i(y, t) dy

)

, (17)

where H is the Laplace kernel (6).
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A Taylor expansion of i(y, t) at x in (17) yields

∫ ∞

−∞
H(x − y)i(y, t) dy = i(x, t)

∫ ∞

−∞
H(x − y) dy

+ ix (x, t)
∫ ∞

−∞
(x − y)H(x − y) dy

+ ixx (x, t)

2

∫ ∞

−∞
(x − y)2H(x − y) dy

+ · · · . (18)

Using the moments of the Laplace distribution in (18), we get

ait = (1 − i)(bi + i + d2ixx + d4ixxxx + . . .) . (19)

A second-order Taylor expansion as d goes to zero in (19) yields

ait ≈ (1 − i)
(

bi + i + d2ixx
)

. (20)

Equation (20) can be expressed in a travelling wave form as

− ĉ I ′ = (1 − I )
(

(b + 1) I + I ′′) , (21)

where ĉ = ac/d, and the prime denotes differentiation w.r.t. z = (x − ct)/d. Pro-
ceeding as in Sect. 3.2, Eq. (21) can be expressed as a dynamical system:

İ = J (1 − I ) ,

J̇ = −ĉ J − (1 − I )(b + 1)I . (22)

Its equilibria are (I, J ) = (0, 0) and (1, 0). Let G be the associated Jacobian matrix:

G =
( −J 1 − I

−(b + 1)(1 − 2I ) −ĉ

)

.

Linearizing around (0, 0), we get

G(0,0) =
(

0 1
−(b + 1) −ĉ

)

,

whose eigenvalues are

λ± = −ĉ ± √

ĉ2 − 4(b + 1)

2
.

So (0, 0) is a stable node if ĉ > 2
√
b + 1, and a stable spiral otherwise. From Murray

(2002)’s Sect. 13.2 (Eq. 13.12 and Fig. 13.1), we conjecture that there is a trajectory
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from (1, 0) to (0, 0) lying entirely in the quadrant I ≥ 0, J ≤ 0 with 0 ≤ I ≤ 1 for
all wave speeds ĉ ≥ ĉ�, with

ĉ� = 2
√
b + 1 .

We numerically checked that only ĉ� is relevant, greater wave speeds being unstable.
In terms of the original dimensional Eq. (15), the wave speed can be expressed as

c = qσ

√

κ

μ
2
√

pα

qσ
+ 1 .
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