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Abstract
The purpose of this study was to determine if glucose tolerance or immune function were
affected by longterm (14 d) fiber ingestion. Dogs (n=16) received isonitrogenous
isoenergetic diets differing in fermentability of dietary fiber using a randomized cross-
over design. Proglucagon mRNA, intestinal GLP-1(7-36)NH; and incremental area under
the curve (AUC) for plasma GLP-1(7-36)NH; and insulin were increased (p < 0.05) while
the incremental AUC for plasma glucose decreased (p < 0.05) in dogs fed high
fermentable fiber after an oral glucose tolerance test. Jejunal villi height, D-glucose
Vmax and GLUT2 and SGLT! transporter abundance were increased in dogs fed high
fermentable fiber (p < 0.05). Immune function of isolated lymphocytes were not affected
by diet nor were immune phenotypes except for CD4:CDS8 ratio and % B-lymphocytes in
the periphery (p < 0.05). In conclusion, fiber fermentability is important in glucose

homeostasis and can affect lymphocyte population distributions in the periphery.
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I. Literature Review

1.NIDDM

Diabetes mellitus (DM) is a chronic metabolic disease characterized by
hyperglycemia and disturbances in carbohydrate, fat and protein metabolism. DM is
associated with absolute or relative deficiencies in the secretion and/or action of the
hormone insulin (WHO, 1994; DeFronzo et al., 1992). Epidemiological studies have
shown that DM affects almost all populations and all age groups. Approximately 60
million people worldwide have diabetes (Global Health Situation, 1993) and that number
is constantly rising (King and Rewers, 1991). Non-insulin dependent diabetes mellitus
(NIDDM) is the most common form of diabetes comprising approximately 85% of people
with the disease. The world health organization (WHO) has estimated that the number of
individuals worldwide with NIDDM may exceed 100 million by the year 2000 (WHO,
1994). Defective insulin response to glucose and decreased insulin sensitivity are the
major metabolic impairments related to NIDDM (Efendic et al., 1986; Zimmet, 1992). It
is well established that dietary fiber is effective in the dietary treatment of NIDDM.
Studies have demonstrated that consumption of a diet rich in dietary fiber results in
elevated plasma insulin concentrations and improved glucose tolerance during oral
glucose tolerance tests in NIDDM subjects (Miranda et al., 1978; O’Dea et al., 1989;
Pastors et al., 1991), lower serum cholesterol and blood pressure (Anderson and Chen
1979; Anderson 1983), whereas consumption of dietary fiber with a meal results in
decreased postprandial hyperglycemia and lower insulin requirements (Anderson et al.,
1995; Jenkins et al., 1980a; Jenkins et al., 1980b; Wolever et al., 1979).
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2.Dietary Fiber

2.1. Structural and Physical Properties

The definition of dietary fiber is problematic and measurements are dependent
upon methodology used. The broadest definition of dietary fiber is that component of the
diet which is resistant to hydrolysis by mammalian digestive enzymes and is
anaerobically fermented to some extent by the microflora in the large intestine. Different
dietary fibers have differing physiochemical properties with regards to solubility, cation-
exchange capacity and fermentative properties (McBurney 1991; McBumney and Sauer,

1993; Bourquin et al., 1993).

2.2. Dietary Fiber & Health

The medical and public sector began to increase their attention towards dietary
fiber in the 1970s when possible links between fiber intake and certain diseases were
made, including coronary heart disease (Morris et al., 1977), hypertension (Sacks et al.,
1975), several western-diet associated gastrointestinal disorders (Burkitt and Trowell
1975) and cancer (Report from the international agency for research on cancer intestinal
microecology group, 1977). Since the suggestion by Trowell (1975) that diabetes may be
a fiber-deficiency disorder, fiber has become an important component of diabetic diets.
Traditionally, the beneficial effects of dietary fiber were attributed to its mechanical
effects in the gut which essentially result in less energy consumption and/or slower
absorption (Leeds, 1987; Wolever et al.,, 1991; Jenkins et al., 1980c). Although these
effects are beneficial, recent studies have also demonstrated improvements in glucose
control with long term ingestion of soluble, fermentable dietary fiber (Pastors et al., 1991;
Reimer 1997). Fiber supplements taken at a meal have been shown to produce beneficial
effects on glucose tolerance to subsequent meals (Trinick et al, 1986; Jenkins et al.,
1980a) and long-term consumption of fiber results in improved glucose tolerance (Aro et
al., 1981; Hagander et al., 1984; Lovejoy and DiGirolama 1992; Groop et al., 1993). In
healthy humans, NIDDM and in adipocytes and monocytes isolated from individuals with



NIDDM, the ingestion of high fiber diets is associated with significant improvements in
peripheral insulin sensitivity (Fukagawa et al., 1990; Hallfrisch et al., 1995; Anderson et
al., 1986; Lovejoy and DiGirolamo, 1992; Pederson 1982; Hjollund 1983; Ward 1982).
Long term ingestion of fiber supplemented diets has been reported to significantly flatten
the glucose curve and decrease fasting plasma insulin and glucose concentrations
(Fukagawa et al., 1990; Hallfrisch et al.,1995; Pastors et al., 1991). All these effects
cannot be attributed simply to the presence and/or physical properties of dietary fiber.
thus suggesting an alternate mechanism(s). Reimer and McBurney (1996) reported that
supplemental fiber (30%) significantly increased ileal, cecal and total colon weight and
total colon length. As well, Tappenden et al (1996) reported that SCFA increased
mucosal, submucosal and total intestinal weight, including ileal protein, DNA and RNA
concentrations. Many studies have established a correlation between cell proliferation and
significantly greater plasma levels of proglucagon-derived peptides (Sagor et al., 1982;
Dowling 1982; Bloom and Polak 1982; Sagor et al., 1983). As well, plasma
enteroglucagon levels are significantly elevated with consumption of fermentable dietary
fiber (Southon et al., 1987; Gee et al., 1996), suggesting a role for short chain fatty acids
(SCFA).

2.3. Measurement of Dietary Fiber

It is difficult to measure fiber content of diets and values remain controversial due
to the various methods available. The proximate (Weende) system for fiber analysis is the
oldest system (Henneberg and Stohmann, 1859) and is a gravametric method where the
sample is sequentially refluxed in dilute base and acid. This method measures primarily
cellulose (with some noncellulosic components) and this crude fiber underestimates fiber
content of foods. Neutral detergent fiber (NDF), developed by Van Soest (1963), uses a
combination of chemical extraction (a neutral detergent solution under reflux) and
gravametric determination. NDF also underestimates total fiber content because pectin is
solubilized (Van Soest 1994). Acid detergent fiber (ADF) also developed by Van Soest

(1963) measures cellulose, variable amounts of xylans and other components, however it



solubilizes a significant portion of the lignin. A common practice is to use the NDF as a
pretreatment followed by the ADF (Van Soest and Robertson, 1980). A major method for
measuring fiber is the Prosky dietary fiber (DF) method (Prosky et al., 1984). This
method uses a series of enzymatic and chemical treatments and precipitation in ethanol
for fiber isolation. This method is considered to retain all fiber components. The only
problem associated with this method is starch and protein removal can be difficult
causing overestimation of fiber concentration. Another very important measure of fiber is
as non-starch polysaccharides (NSP). The basis of NSP stems from Trowell’s definition
of fiber as plant polysaccharides and lignin which are resistant to hydrolysis by the
digestive enzymes of man (Trowell et al., 1976). Since the only polysaccharide known to
be hydrolyzed by digestive enzymes is starch, we can define these undigestable starches
as non-starch polysaccharides. NSP can be separated further into cellulose and non-
cellulosic polysaccharides (NCP). NSP analysis consists of three main steps; removal of
starch and free sugars, hydrolysis of NSP and measurement of the constituent sugars

released from NSP (Englyst and Cummings 1986).

3.Short Chain Fatty Acids (SCFA)

When fermentable dietary fiber reaches the colon, it can be fermented by the
endogenous anaerobic bacteria which produce short chain fatty acids (SCFA) as end-
products (McBumey and Thompson, 1989, McBumey and Sauer, 1993). Although
differences do exist between fiber sources in the rate (McBurney et al., 1988) and extent
of fermentation (McBumey and Thompson 1987, McBurmey and Thompson 1990,
McBumney and Thompson 1991; Bourquin et al., 1993), SCFA production generally
increases with increasing dietary fiber intake (McBumey and Sauer, 1993). SCFA are
absorbed, metabolized, and account for approximately 3-13% metabolizable energy
(McBumney et al., 1988). The SCFA found in the highest proportion are acetate,
propionate and butyrate (Cummings and Branch, 1986).



3.1. SCFA and Glucose Tolerance

SCFA have been correlated with modulating glucose homeostasis. In ruminants,
propionate and butyrate were reported to be insulin secretagogues, independent of glucose
concentration (de Jong, 1982), and SCFA infusion have been reported to significantly
increase plasma insulin concentrations in sheep after an overnight fast (Husveth et al.,
1996). SCFA have been reported to significantly lower hepatic glucose output (Thorbumn
et al., 1993), fasting plasma glucose (Boillot et al., 1995; Berggren et al., 1996) and
urinary glucose excretion (Berggren et al., 1996). Although the mechanism(s) by which
SCFA elicit their effects on glucose tolerance are not yet fully elucidated, McBurney et al

(1995) reported that splancnic SCFA infusion is not directly responsible.

3.2. SCFA and Proliferative Effects

The ingestion of fermentable dietary fiber or SCFA supplementation of parenteral
diets results in a significant increase in distal small and large intestinal mass (Sakata and
von Englehardt, 1983; Jacobs and Lupton, 1984; Goodlad et al., 1987a; Goodlad et al.,
1987b; Koruda et al., 1988, Marsman and McBurney, 1995; Reimer and McBurney,
1996; Tappenden et al, 1997b). SCFA are also associated with hypertrophy of the small
intestine as SCFA supplemented total parenteral nutrition (TPN) significantly increased
total, mucosal and submucosal mass, ileal DNA and RNA and proglucagon mRNA after
both 3 and 7 d after massive small bowel resection (Tappenden et al., 1996).

3.3. SCFA and Immunity

There is little information available on the effects of SCFA and immunity. The
work that has been done has produced interesting results suggesting a positive effect on
immune function. Recently, SCFA have been implicated in modulation of the immune
system as SCFA supplemented TPN significantly increased the relative percent of T-cells,
decreased the relative percent of macrophages, and increased NK cell cytotoxicity from

rats 3 d after massive small bowel resection (Pratt et al., 1996). SCFA lower pH in the



gut, which can affect bile acid metabolism (Jacob 1988), and bile acids are known to

affect immunoglobulin production (Lim et al., 1994).

4, Incretins

Many of the beneficial effects involving dietary fiber could be mediated by
gastrointestinal hormones or incretins. The term “incretin” was coined by Zunz and La
Barre (1929) for a humoral factor released from the gastrointestinal tract that releases
insulin or potentiates the glucose-induced insulin release. Because of incretins, oral
glucose augments insulin secretion to a greater extent than intravenous glucose infusion
in healthy individuals (Perley and Kipnis, 1967; Nauck et al., 1986). It is estimated that
>50% of post- prandial insulin secretion is triggered by intestinal peptide hormones, or

incretins (MclIntyre et al., 1964; Hampton et al., 1986).

4.1. Glucose-Dependent Insulinotropic Polypeptide (GIP)

Glucose-dependent insulinotropic polypeptide (GIP) is a 42 amino acid peptide
hormone produced by the K cells of the proximal intestine. GIP is released into the
circulation in response to the ingestion of glucose, fat and some amino acids (Cataland et
al., 1974; Falko et al., 1975; Pederson et al., 1975; Thomas et al., 1978). Kieffer et al
(1994) demonstrated a dose dependent GIP release by glucose from isolated canine
intestinal duodenal and jejunal epithelial cell preparations enriched for GIP endocrine
cells maintained in short term culture indicating glucose acts directly on the GIP cell. GIP
is recognized as being an established incretin able to induce the glucose-mediated release
of insulin via the enteroinsular axis (Brown et al., 1989; Dupre et al., 1973). In patients
with NIDDM, the overall incretin effect is reduced due primarily to GIP which loses
much of its insulinotropic activity (Nauck et al., 1993b; Elahi et al., 1994).



4.2. Glucagon-Like Peptide-1(GLP-1)

4.2.1. Proglucagon. Proglucagon is a 180 amino acid precursor containing the
glucagon sequence and two glucagon-like polypeptides arranged in tandem. Proglucagon
is produced in the pancreatic alpha-cells and the intestinal L-cells which are found in an
increasing gradient from the proximal intestine to distal colon (Holst 1994). In both the
intestine and pancreas, proglucagon mRNA is identical and diversification of
proglucagon gene expression occurs during post-translational processing (Mojsov et al.,
1986; Orskov et al., 1987). In the pancreas, the main products are glucagon, glicentin-
related pancreatic peptide and the major proglucagon fragment. The main products in the
small intestine are glicentin, glucagon-like peptide-1 (GLP-1) and glucagon-like peptide-
2 (GLP-2), (see Figure 1). Proglucagon is processed in the large intestine in the same
manner as the small intestine and results in the formation of fully processed biologically
active GLP-1 (Deacon et al., 1995b). Northern blot analyses of mRNA transcripts for the
prohormone convertases (PC), PC1 and PC2, in cell lines demonstrated correlations
between PC2 and the presence of glucagon and PC1 and the production of intestinal
GLP-1 and GLP-2 providing support that prohormone convertases play roles in tissue

specific post-translational processing of proglucagon (Tucker et al., 1996).

4.2.2. Glucagon-Like Peptide-1. Glucagon-like peptide-1 (GLP-1) is a 30 amino
acid peptide with a 50% sequence homology to glucagon (see Figure 2). GLP-1 is
physiologically present in 2 forms, amidated GLP-1 (GLP-1(7-36)NH>) which
corresponds to 80% of the GLP-1 immunoreactivity (Orskov et al., 1994) and glycine
extended GLP-1 (GLP-1(7-37)) which corresponds to 20% (Orskov et al., 1994).
Amidation at the arginine residue of GLP-1(7-37) occurs during post-translational
processing to form GLP-1(7-36)NH; (Kreymann et al., 1988). GLP-1(7-36)NH,,
corresponding to proglucagon 78-107NH, (Orskov et al., 1989) is the gut derived
insulinotropic hormone. GLP-1(7-36)NH, and GLP-1(7-37) equipotently stimulate
integrated insulin and c-peptide response and lower the plasma glucose and glucagon

response (Orskov et al., 1993) thereby indicating both as insulinotropic peptides (Mojsov



et al., 1990; Weir et al., 1989). GLP-1 also stimulates proinsulin gene expression and
proinsulin biosynthesis (Fehmann and Habener, 1992) thereby not causing a depletion of
insulin stores. In non-diabetic subjects and in the presence of elevated glucose
concentrations, GLP-1 stimulates insulin secretion, inhibits glucagon secretion and acts as
a physiological inhibitor of gastric acid secretion and emptying resulting in significant
decreases in fasting and postprandial plasma glucose concentrations (Van Dijk et al.,
1996; D’ Alessio et al., 1994; Hvidberg et al., 1994; Wettergren et al., 1993; Willms et al.,
1996; O’Halloran et al., 1990; Komatsu et al., 1989). GLP-1 may also have a separate
peripheral insulin-independent glucose clearing effect (Van Dijk et al., 1996; D’ Alessio et
al., 1995). Although GLP-1 is a potent and glucose-dependent insulin secretagogue
(Hendrick et al., 1993) when plasma glucose concentrations are in the normal fasting
range, GLP-1 is unable to stimulate insulin secretion to a degree that causes
hypoglycemia (Qualmann et al, 1995). With NIDDM, the overall incretin effect is
reduced. However, GLP-1 retains much of its insulinotropic activity (Nauck et al., 1993b;

Elahi et al., 1994).

4.2.3. GLP-1 Receptor. Consistent with the role of GLP-1 on insulin secretion,
GLP-1 receptor (GLP-1R) mRNA is highly expressed on both human and rat pancreatic
islets (Thorens 1992; Dillon et al., 1993; Thorens et al., 1993; Bullock et al., 1996).
Radioligand binding studies have localized GLP-1R to several extrapancreatic tissues,
including the brain (Uttenthal et al., 1992; Shimizu et al., 1987; Kanse et al., 1988), lung
(Kanse et al., 1988; Richter et al., 1990), gastric glands of the stomach (Uttenthal and
Blazquez 1990), rat hepatocytes (Villaneuva-Penacarrillo et al., 1995) and skeletal muscle
(Delgado et al., 1995; Villaneuva-Penacarrillo et al., 1994). The GLP-1R is a specific
receptor (Thorens 1992) that belongs to a subfamily of seven-transmembrane spanning G
protein-coupling receptors. The mechanism of action of GLP-1 has not been elucidated,
but GLP-1 stimulates adenylate cyclase and activation of protein kinase A seems essential
(Fehmann and Habener, 1992). There is a significant elevation in intracellular Ca?* which

is probably the mechanism by which insulin secretion is stimulated (Gromada et al.,



1995; Holz et al., 1995). Therefore, the GLP-1 receptor, like the structurally related
glucagon and parathyroid hormone receptors, can activate multiple intracellular signaling
pathways. Important to the study of GLP-1R specific responses are two peptides isolated
from the venom of the lizard Heloderma suspectum, exenden-4 and exenden 9-39 which
are an agonist and antagonist to GLP-1R respectively (Goke et al., 1993; Thorens et al.,
1993). Exenden-4 is a 39 amino acid peptide which shares 53% homology to GLP-1(7-
36)NH, (Eng et al., 1992).

4.2.4. Satiery. Previously, many peptides initially thought to be specific to the
gastroenteropancreatic system were later found to be present in the mammalian brain,
modulating appetite, energy balance and body weight. Among these hormones are
cholecystokinin, bombesin, and glucagon (Gibbs 1985; Leibowitz 1992; Shimizu et al.,
1993). GLP-1 has recently been thought of as one of these gut-brain peptides (Calvo et
al., 1995). GLP-1 may play a role as a neurotransmitter, controlling food and water
intake. Immunohistochemical evidence suggests that proglucagon-like
immunodeterminants are present in specific areas of the brain known to be involved in
neuroendocrine and autonomic regulation of homeostatic mechanisms including
carbohydrate metabolism and fluid balance (Jin et al., 1988). High densities of GLP-1
binding sites have been found by receptor autoradiographic experiments in specific areas
of the brain (Goke et al., 1995a; Goke et al., 1995b). Cells in the subfornical organ and
the area postrema could even be responsive to blood borne GLP-1. Both these areas have
close neuroanatomical connections with hypothalamic areas involved in water and
appetite homeostasis (Orskov et al., 1996a). There is a highly specific effect of
intraventricularly administered GLP-1 to profoundly inhibit food intake in rats (Tang-
Christensen et al., 1996; Turton et al., 1996), which is completely blocked with exendin
9-39 administration.
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4.3. Degradation

Dipeptidyl peptidase IV (DPIV) is an enzyme that circulates in plasma and is
associated with the plasma membrane of a variety of cells, including capillary endothelial
cells, enterocytes, hepatocytes and cells of the kidney brush border (Mentlein 1988).
DPIV preferentially cleaves peptides and proteins having either X-Pro, X-Hyp, or X-Ala
at the end terminus (Walter et al., 1980) and to a lesser extent, X-Ser, X-Thr and X-Val
(Martin et al., 1993). Both intact GIP and GLP-1 serve as substrates for DPIV since both
have alanine residues at the penultimate N-terminal position. Mentlein et al (1993)
reported that incubation of GIP(1-42) or GLP-1(7-36)amide with either serum or purified
DPIV resulted in the production of GIP(3-42) or GLP-1(9-36)amide. Removal of these
two N-terminal amino acids is significant in GIP (Brown et al., 1981; Moody et al., 1981)
and GLP-1 (Adelhorst et al., 1994) as it renders these peptides biologically inactive.
DPIV has been identified as the primary mechanism by which GLP-1 is degraded in
human plasma in vitro (Deacon et al., 1995a; Pauly et al., 1996; Keiffer et al., 1995). The
half-life of GLP-1 and GIP have not yet been fully established, however, in vivo studies
show that 50% of 'I-GLP-1 and ‘*I-GIP are converted to their N-terminally truncated
forms within 2 minutes in the rat (Keiffer et al., 1995). It appears as though the kidney is
the major site of GIP (Hanks et al., 1984; Chap et al., 1987) and GLP-1 (Orskov et al.,
1992: Ruiz-Grande et al., 1993) catabolism.

4.4. GLP-1 and GIP Interactions

Both GIP and GLP-1 concentrations increase significantly and in parallel with
insulin in response to meals (Orskov et al., 1996b; Elliot et al., 1993). Kreymann et al
(1987) reported that infusion of GLP-1(7-36)NH, significantly elevated plasma insulin
values and significantly lowered glucose and glucagon concentrations whereas infusion of
GIP was less effective in stimulating insulin release. These authors concluded that GLP-
1(7-36)NH, is a more powerful incretin than GIP. Dose response studies of the
insulinotropic activity of GIP and GLP-1 indicate that lower plasma concentrations of

GLP-1 (~10-100 pmol / L) than GIP (~ 40-240 pmol / L) are necessary to enhance insulin
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secretion (Holst et al., 1987; Mojsov et al., 1987; Weir et al., 1989) especially at elevated
glucose concentrations (Nauck et al., 1989; Creutzfeldt, 1979). This last feature is of
particular interest in regards to NIDDM, because when plasma glucose concentrations are
in the normal fasting range, GLP-1 is unable to stimulate insulin secretion to a degree that
causes hypoglycemia (Qualmann et al., 1995). This is in contrast to the oral sulfonureas
currently in use. The proximal location of intestinal K cells would make GIP the perfect
incretin as it could produce an early signal for the release of insulin upon the oral
ingestion of nutrients. In spite of the distal location of the intestinal L cells, GLP-1 (along
with GIP) are both seen to rise early and rapidly in response to a mixed meal. It has been
suggested that these two important incretins interact significantly in an additive manner
(Nauck et al., 1993a), probably through an enteroendocrine pathway and this may account
for the early release of GLP-1 (Plaisancie et al., 1994; Roberge et al., 1993).

4.5. NIDDM & Incretin Effect

In patients with NIDDM, the overall incretin effect is reduced. This is due to a
decreased insulinotropic activity of GIP in contrast to GLP-1 which retains much of its
insulinotropic activity (Nauck et al., 1993b; Elahi et al., 1994). At equimolar
concentrations and infusion rates, GLP-1 is more potent than GIP in stimulating the
pancreatic B-cell to secrete insulin (Andersen et al., 1990; Shima et al., 1988). Many
studies have demonstrated a beneficial effect of GLP-1 in NIDDM patients, including
lowered fasting and postprandial blood glucose, increased glucose induced insulin and c-
peptide secretion, suppressed glucagon release and delayed gastric emptying (Ahren et al.,
1997; Gutniak et al., 1996; Willms et al., 1996; Gutniak et al., 1994; Nauck et al., 1993c).
Controversy exists over circulating GLP-1 concentrations in NIDDM patients. Orskov et
al (1991) reported significantly elevated fasting and postprandial GLP-1 values in
NIDDM versus non-diabetic controls. The authors reported significantly elevated fasting
levels of GLP-1 in NIDDM subjects when compared to a control group (47 +7 vs 37 +3
pmol / L). These rose to approximately 100 pmol / L (NIDDM) vs approximately 50 pmol
/ L (control) after an oral glucose load peaking at 30 min. This resulted in a significantly
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larger area under the curve for GLP-1 (5776 + 1674 vs 2015 + 644 pmol / Lehr, NIDDM
vs control respectively, p < 0.05). In contrast to this finding, Vaag et al (1996) reported
decreased plasma concentrations of GLP-1 in NIDDM twins after an oral glucose
tolerance test and hypothesized that decreased intestinal GLP-1 secretion may contribute
to the abnormal insulin secretion seen with NIDDM. These authors reported fasting
plasma GLP-1 levels in healthy control subjects of 7.1 + 0.7 pmol / L and 6.1 + 0.9 pmol
/ L in NIDDM subjects. GLP-1 concentrations measured 30 min after a test meal were not
found to be significantly different between healthy normal subjects and NIDDM patients
(22.4 + 5.0 pmol /L vs 18.1 + 1.7 pmol / L, p > 0.05). The area under the curve for GLP-
1 in healthy subjects was significantly greater than NIDDM patients (1.17 + 0.25 nmol /
L*min vs 0.55 + 0.14 nmol / L*min, p < 0.05).

5. Intestinal Adaptation

There are a number of physiological and pathological conditions which alter the
absorptive capacity of nutrients in the small intestine. These include developmental age,
pregnancy and lactation, disease states such as diabetes and thyrotoxicosis, starvation and
alterations in the type and quantity of diet (reviewed in Philpott et al., 1992). Published
studies have shown that high fiber diets stimulate hypertrophy of the distal small and
large intestine (Goodlad et al., 1987b; Jacobs and Lupton, 1984) which are the primary
sites of proglucagon mRNA and GLP-1 secretion (Larsson et al., 1975; Mojsov et al.,
1986; Tappenden et al., 1996). It was only recently shown that GLP-2 may play a role in
intestinal adaptation. GLP-2 is released in equimolar amounts with GLP-1 from the
posttranslational processing of intestinally derived proglucagon (Orskov et al., 1986).
Cheeseman and Tsang (1996) reported that vascular infusion of GIP or GLP-2
significantly increased D-glucose maximal transport rate in rat jejunum. GLP-2 has been
shown to stimulate crypt cell proliferation and consistently induced a marked increase in
bowel weight and villus growth in the jejunum (Drucker et al., 1996). These observations

suggest a biological role of GLP-2 as an intestinal-derived stimulator of small intestinal
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epithelial mass. In NIDDM, there is an increase in total hexose transport due primarily to
a premature expression of transporters along the crypt-villus axis, causing a cumulative
increase in enterocyte transporter protein during maturation (Burant et al., 1994). These
changes suggest an adaptive response to increase nutrient absorption in a perceived state
of tissue starvation (Burant et al., 1994), which is most likely due to increased DNA

synthesis and crypt cell production rates (Bloom and Polak 1982b; Miazza et al., 1985).

6. Glucose Transporters & Upregulation Effects

SCFA supplemented TPN has been reported to significantly increase total,
mucosal and sub-mucosal weights after major bowel resection in rats. (Tappenden et al.,
1996). There are multiple mechanisms by which glucose enters and exits enterocytes (see
Figure 3). SGLT-1 and GLUTS are the transport proteins associated with the brush
border membrane. Intestinal brush border glucose uptake is affected by dietary
carbohydrate levels (Cheeseman and Harley, 1991). GLUT2 is the transport protein
responsible for moving both fructose and glucose out of the enterocyte across the
basolateral membrane under basal conditions (Cheeseman, 1993). The activity of this
transporter is rapidly upregulated by the presence of hexoses in the intestinal lumen
(Cheeseman, 1993) via increasing the number of carriers in this membrane (Cheeseman
and Harley, 1991). In response to glucose infusion, D-glucose transport in the basolateral
membrane is regulated by subsequent changes in carrier site density (Cheeseman and
Maenz, 1989). Ferraris and Diamond (1992) concluded that this signal for glucose
upregulation is perceived in the crypts and the observed lag time is due largely to cell
migration times. Therefore, substrate-dependent upregulation of intestinal glucose
transport is reported to involve increased numbers of transporters along the crypt-villus
axis (Ferraris et al., 1992). It is not known whether or not the fermentability of
carbohydrates is able to alter nutrient uptake, however, Tappenden et al., (1997b)
demonstrated that intravenous SCFA facilitate intestinal adaptation after resection by

increasing basolateral intestinal nutrient transport in which ileal D-glucose uptake and
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GLUT2 mRNA were significantly elevated. Reimer (1997) reported consumption of a
diet supplemented with a physiologically relevant concentration of fermentable dietary
fiber significantly increased the passive permeability coefficient for D-glucose as
estimated by L-glucose, and significantly increased the estimated values for the apparent

Michaelis affinity constant when compared to a cellulose-supplemented diet.

7. Immunology Review:

7.1. Background

The immune system is a defense mechanism which is capable of adapting to
protect the host from external (invading pathogenic microorganisms) and internal
(cancer) destructive forces, thereby maintaining body integrity. There are limitless
numbers of pathogens in the environment, and the immune system is able to adapt to
specifically recognize and eliminate most of these components.

There are two types of immunity all healthy individuals possess. Innate immunity
is the branch of the immune system present at all times, whereas adaptive immunity
requires induction by antigen and adapts over time. The former is phylogenetically older
with some forms present in all multicellular organisms, whereas the latter evolved
approximately 400 million years ago and is found only in cartilaginous and bony fish,
amphibians, reptiles, birds and mammals (Thompson, 1995). These two constituents of
the immune system do not function individually, rather an integrated response mediated
through cytokines (reviewed in Kuby 1994c) is essential for combating invading

pathogens and maintenance of health.

7.2. Innate Immune System

When antigens overcome the initial physiological barriers (skin, mucous
membranes, etc.), a wave of innate immune responses occur. Innate immunity is known
as such because it develops early in life and it does not need to adapt during an

immunologic challenge. The most important function of this system is to provide the
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early phase of host defense which will protect the host during the time required for the
adaptive immune response to occur. It is the first line of defense against invading
pathogens. Besides some soluble factors (complement, lysozymes, interferons and heat
shock proteins), the innate immune system is comprised of various cells including
macrophages, neutrophils, eosinophils, basophils, mast cells and natural killer (NK) cells.

NK cells were originally identified through the natural cytotoxic activity found in
peripheral lymphoid organs against different tumor cell lines (Kiessling et al.,, 1975a;
Kiessling et al., 1975b). Typically, NK cells are defined as lymphoid cells able to kill
altered self-cells (virally infected and tumor cells) to which they have not been previously
sensitized (Timonen et al, 1979; Trinchieri 1989; Yokoyama et al., 1995). How this
recognition occurs has not yet been fully elucidated, however cells which have
downregulated or absent major histocompatability class I (MHC I) molecules are known
targets for NK cells (Trinchieri 1989; Yokoyama et al., 1995). As well, certain lectin
receptors (killer cell inhibitory receptors, KIRs) are now thought to play a role (Olcese et
al., 1997; Binstadt et al., 1997; Yokoyama and Seaman 1993).

Monocytes (CD14+ cells) circulate in the blood for 1-2 days and then migrate to
the tissues and differentiate into macrophages. Macrophages phagocytose foreign material
and express these antigenic peptides on their cell membrane by way of an MHC I
complex (Unanue 1978; Unanue and Allen 1987; Rosenthal 1978) for recognition by
cells of the adaptive immune system. Macrophages can become activated by T-helper /
inducer cells (CD4+ T-cells) which recognize this material as foreign and secrete IFN-y.
Activated macrophages have enhanced killing ability due to the production and secretion

of toxic chemical mediators such as nitric oxide and TNF-q.

7.3. Adaptive Immunity

Unlike innate immunity, adaptive immunity exhibits unique characteristics such
as specificity, memory and diversity. Immunological memory is probably the most
important property of adaptive immunity and is defined as the ability of the immune

system to react with increased efficiency to an antigen to which it has been previously
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encountered (Colle et al., 1988). This secondary exposure to the same antigen induces a
quicker and more intensive response with higher affinity (Colle et al., 1988) resulting in
rapid elimination of the offending antigen. Roitt et al (1969) initially defined the terms T-
cell and B-cell to emphasize that these two types of cells are of distinct lineages. T is used
to denote thymus-dependent lymphocytes and B for Bursa-dependent lymphocytes, after
the Bursa of Fabricus in birds (Roitt et al., 1969). It is now accepted that T-lymphocytes
develop in the thymus and B-lymphocytes are derived from the bone marrow. Both bear
clonally distributed antigen receptors whose specificities are generated by somatic
mechanisms (Medzhitov and Janeway Jr. 1997). These two categories of lymphocytes
comprise both the cell-mediated and humoral class of immunity respectively (reviewed in
Janeway and Travers 1994b).

T-cells carry out a wide variety of functions that are specific to the different
subsets of T-cells which can be defined by cell surface structures. These subsets can be
identified by the use of specific monoclonal antibodies (mAb) for these markers. All T-
lymphocytes have a T-cell receptor (TCR) in association with CD3, a cell surface
molecule and all peripheral T-cells have CD5 molecules. The T-cells can then be
subdivided into two major groups, the CD4+ and CD8+ T-cells.

Helper / inducer T-cells (CD4+ T-cells) have a T-cell receptor (TCR) associated
with CD3 and interacts with foreign peptides bound to MHC I molecules on antigen
presenting cells (APC) (Rudensky 1995). Helper / inducer T-cells orchestrate an acquired
immune response by promoting intracellular killing by macrophages, antibody production
by B-cells and clonal expansion of cytotoxic T-cells (Kuby 1991c). CD4+ cells can be
further subdivided based on their secretory cytokine profiles into Ty; and Twy cells
(Romagnani 1992). Ty cells mediate delayed hypersensitivity reactions and activate
macrophages. They secrete IL-2, IFN-y, and TNF. Ty, cells help B-cells to produce
antibodies. When activated, Ty, cells secrete IL-4, IL-5, IL-6 and IL-10. All these
cytokines influence B-cell growth and development. A third CD4+ T-cell has been
identified and classified as Tyo (Firestein et al., 1989) which has both Ty, and Ty

cytokine secretory profiles. ¢
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The second type of T-cell is the cytotoxic / suppressor cell (CD8+ T-cell) which
has a TCR associated with CD3 and interacts with foreign peptides bound to MHC I
molecules on target cells (Kuby 1991a). Cytotoxic T-cells kill infected cells by delivery
of a cytotoxic hit (release of destructive agents) and suppressor T-cells turn off the
immune system once a pathogen is cleared. As with CD4+ T-cells, CD8+ T-cells can be
classified in regards to their cytokine secretory profiles, but still have similar functions.
Tc; T-cells secrete v-IFN and Tca T-cells secrete IL-4 and IL.-5 (reviewed in Mosmann et
al., 1997). Recently, a third CD8+ subset known as Tcy (Maggi et al., 1997) has been
identified which secretes both IL-4 and y-IFN.

CD45, the common leukocyte antigen, includes a family of isoforms characterized
by the use of alternatively spliced exons creating alternative external domains
(Trowbridge 1991) and is expressed on all T-cells, including CD4+ and CD8+ T-cells.
The high molecular mass isoform CD45RA is preferentially expressed on T-cells
throughout childhood and on antigen-inexperienced T-cells while the low molecular mass
isoform, CD45R0O is expressed after childhood on antigen-experienced memory cells
(Sanders et al., 1988; Deans et al., 1989, Akbar et al., 1988; Deans et al., 1991; Deans et
al., 1992).

When T-cells become activated by proper signals, they are able to carry out one or
more of the following functions: proliferation, differentiation, production of cytokines
and development of effector function. Effector cells are those lymphocytes that can
mediate the removal of pathogens from the body without the need for further
differentiation and proliferation (Janeway and Travers, 1994b). The delay seen with
adaptive immune responses is a result of this activation process. As with all lymphocytes,
T-cells requires a second signal for activation (Croft and Dubey, 1997) which can come
from a variety of sources including macrophages, B-cells or dendritic cells. T-cells can be
activated specifically (antigen and MHC from antigen-presenting cells interact with TCR
and CD3 on T-cells) or non-specifically (polyclonal activators such as mitogens).
Mitogens stimulate a large number of T-cells by interacting with receptors on the T-cell

surface that are different from the antigen specific TCR, therefore inducing a polyclonal
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(all T-cells) response. An individuals response to such a mitogen is an estimate of T-cell
capacity.

B-cells, like T-cells, can be stimulated from their resting state to enlarge and
develop synthetic machinery, divide, mature and become antibody-secreting cells, known
as plasma cells. The second signal for activation for B-cells are secreted by T-cells (Jones
1996). Proper signals for stimulation depend on the triggers and again can be specific
(complimentary antigen to surface Ig) and non-specific (polyclonal activation via B-cell
mitogens). B-cells can be identified by immunoglobulins (Ig) present on the cell surface.
There are five different Ig isotypes, including IgM, IgG, IgA, IgE, and IgD. IgG is the
most abundant isotype in serum constituting approximately 80% of total serum Ig (Kuby
1991b). IgM accounts for 5-10% of total serum Ig (Kuby 1991b). Although IgA
represents only 10-15% of total serum Ig, it is the predominant Ig class in peripheral
tissues and their secretions, such as that from the gut-associated lymphoid tissue (GALT)
(Kagnoff 1993b). IgA enhances barrier function by preventing the attachment of bacteria

to mucosal cell surfaces (Pabst 1987).

7.4. Peripheral Lymphocytes and Secondary Lymphoid Organs

Lymphocytes are very mobile in vivo, migrating from one lymphoid (and non-
lymphoid) organ to another via the lymph and blood (Yednock and Rosen 1989; Pabst
and Binns 1989). Secondary lymphoid organs include the spleen, lymph nodes, Peyers’
patches, tonsils, skin, and the gut-associated lymphoid tissue (GALT). These lymphatic
tissues are not static collections of lymphocytes. On the contrary, lymphocytes are
continually entering and exiting these sites. Since most lymphoid (and non-lymphoid)
organs are included in the migration routes of lymphocytes, alterations in lymphocyte
composition within these organs may be detected by studying lymphocytes in the blood
(Westermann and Pabst 1990). However, measures made in peripheral lymphocytes
should not be extrapolated to estimate responses in the secondary lymphoid organs
(Westermann and Pabst 1990). Blood only represents approximately 2% of the total
lymphocyte pool in the healthy adult human (Trepel 1974). It would be incorrect to
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assume that these lymphocytes are truly representative of the other 98% of the
lymphocytes distributed throughout the rest of the body. However, the peripheral blood
itself is a distinct compartment in terms of lymphoid composition and can be examined to

understand the immune system.

7.5. Gut Associated Lymphoid Tissue (GALT)

The gut mucosa is protected by a complex lymphoid system. The gut associated
lymphoid tissue (GALT) represents a considerable lymphoid mass, quantitatively
exceeding that of peripheral lymphoid organs (Cerf-Bensussan and Guy-Grand, 1991).
The immune cells of GALT (intraepithelial lymphocytes, lamina propria lymphocytes,
and the cells found in Peyers patches and the mesenteric lymph nodes) are continually
migrating back and forth between the periphery and the intestine (Cerf-Bensussan and
Guy-Grand, 1991). In the gut, immune cells are in constant exposure to dietary antigens,
therefore it could be predicted that changes in dietary nutrients or digestion/fermentation

products could directly impact immune function.

7.6. Diet and Immunity

Nutrition is essential in maintaining all normal physiological functions including
defense of self. Changes in dietary intake logically should affect certain physiological
functions, and the immune system is no exception. It has been known for centuries that
malnutrition predisposes patients to infection and recent research suggests many
individual dietary components can exert profound effects on the body’s immune system
(Bower 1990). For example, deficiency in vitamin A and the carotenoids results in
depressed antibody responses and decreased cellular-mediated (Nauss et al., 1979).
Vitamin C can affect both cell-mediated and humoral immunity (Panush and Delafuente
1985) and both excessive and deficient levels of linoleic acid (a polyunsaturated fatty
acid) affects neutrophil and monocyte function (Endres et al., 1993). Because of the

importance of fiber in modulating the structure and function of the gut, attention has
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focused on the effects of dietary fiber and its effects on GALT in modulating the immune
system (Lim et al., 1997; Field et al., submitted).

7.7. Dietary Fiber and Immunity

Dietary fiber helps to maintain normal gut microflora (Crowther et al., 1973)
which protects against colonization by pathogenic bacteria (Fleming and Arce 1986).
Indeed, changes in the gut microflora have been hypothesized to affect immune function
(Finegold et al., 1974). Recently, Lim et al (1997) reported that the type of dietary fiber
modified the proportion of CD4+ and CD8+ lymphocytes in the mesenteric lymph nodes.
Fiber type can also affect mucous secretion which influences barrier function (Lee and
Ogilvie 1982; Iatskovskii et al., 1989). The type of dietary fiber is reported to influence
the anaerobic microbial production of short chain fatty acid (SCFA) composition in the
colon (Zhang and Lupton, 1994) which could then affect immune function. SCFA have
been reported to prevent gut atrophy (Tappenden et al., 1997; Koruda et al., 1988) and gut
atrophy is related to an increase in gut-barrier dysfunction and the translocation of
bacteria and toxins (Deitch and Berg 1987; Wilmore et al., 1988). Butyrate, a SCFA,
accounts for approximately 17% of all SCFA produced endogenously and is an important
energy source for colonic epithelial cells (Roediger 1980). Butyrate concentrations from 1
to 10 mM have profound effects on the phenotype and proliferation of cultured human
cells (Kruh 1982). Acetate is another SCFA produced in the colon and has been reported
to activate the immune system in mice (Ishizaka et al., 1990) and enhance peripheral
blood antibody production (Ishizaka et al., 1993). This has been suggested to be due to
the involvement of acetate in phospholipid synthesis by lymphocyte membranes (Huber et
al., 1968). SCFA lower pH (Lupton et al., 1988) which inhibit the conversion of primary
bile acids to secondary bile acids (Jacob 1988), and bile acids have been reported to
influence immune function (Lim et al., 1994).

Lymphocytes in the intestinal mucosa first interact with antigens (or other factors,
i.e. SCFA) in the organized lymphoid tissues (Peyer’s patches and lymphoid follicles in

the colon) and further differentiate and mature in the germinal centers (Stephen and
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Martin 1994). They leave the mucosa and migrate through the mesenteric lymph nodes
and thoracic duct to reach systemic circulation (Stephen and Martin 1994). Therefore it is
reasonable to suggest that dietary fiber type and fermentation end-products via their effect

in GALT may affect lymphocytes in the periphery.

7.8. Immunity and NIDDM

Although there are a number of long term complications associated with diabetes
mellitus (Diehl 1995), infection is associated with significant morbidity and mortality in
the diabetes population (McMahon and Bistrian 1995; Rayfield et al., 1982). Indeed, the
leading cause of death in people with diabetes mellitus at the Kaohsiung Medical College
hospital was infection (25.8%) followed by cardiovascular disease (18.5%) (Wei et al.,
1996).

Alexiewicz et al, (1995) reported that patients with NIDDM have elevated
cytosolic levels of polymorphonuclear leukocytes and that this abnormality is probably
induced by hyperglycemia and may be responsible for the impaired phagocytosis seen in
these subjects. In another study there were no differences in peripheral blood T-cells
between pan T-cells (CD3), CD4, CD8 or the CD4:CD8 ratio in NIDDM compared to
healthy subjects (Chang and Shaio 1995). There was however a decreased expression of
interleukin-2 receptors (IL-2R) on activated lymphocytes, despite a higher production of
TNF-a, resulting in decreased lymphocyte proliferation in patients with NIDDM (Chang
and Shaio 1995). TNF-a is part of a family of soluble immune mediators known as
cytokines. Another cytokine, IL-1 in combination with TNF-@, increases net glucose flux
and oxidation (Ling et al., 1994) thereby indicating a possible role of cytokines in glucose
metabolism. Traditionally, it was thought that the disease played a role in the increased
occurrence of infections with diabetes mellitus. However, hyperglycemia itself is thought
to influence immune function (Kwoun et al., 1997) impairing key steps which may

promote the virulence of certain microorganisms (Rayfield et al., 1982).
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7.9. Functional and Phenotypic Assays

7.9.1. Mitogen-induced cellular proliferation: The polyclonal activation of
lymphocytes provides a useful model for studying the metabolic events associated with
antigen stimulation (Field 1995). Cellular proliferation is measured as [3H]thymidine
uptake by cultured lymphocytes in the presence or absence of mitogens and is expressed
as a stimulation index, that is the response of stimulated cells compared to unstimulated
cells. [3H]thymidine provides an alternative nucleotide to be incorporated into the
replicating DNA of the lymphocytes, and it is this retained [*Hjthymidine DNA that is
measured to estimate proliferation.

7.9.2. Natural killer cell cytotoxicity: The activity measured as % specific lysis
by NK cells provides a useful measure of the capacity for lysis by these cells and
indirectly provides information on the innate immune system. Specific lysis (%) is
determined by lysis of 3 !Cr-incorporated target cells which is non-specifically taken up
but not released from live cells. Upon lysis, the 3ICr is released into the media and an
aliquot of this is counted. Specific lysis (%) is expressed by experimental lysis compared
to complete lysis and is corrected for spontaneous lysis. The NK sensitive target cells
which are chosen are normally allogeneic tumor cells due to a higher degree of specific
lysis.

7.9.3. Flow Cytometry: A suspension of cells is passed through a laser beam in a
flow cytometer. The cells, attached to mAb which are conjugated to fluorescent markers
(fluorochromes). The resulting fluorescent emission and scattered light from the cells are
collected by photodetectors and converted to electronic data signals. Light scatter can
occur either as forward scatter (related to cell size) and side scatter (corresponding to cell
shape and granularity). There are different fluorochromes which can be used including
fluorescein isothiocyanate (FITC), phycoerythrin (PE) and peridinin-chlorophyll a
complex (PerCP). These fluorescent dyes can all be excited at one wavelength (488 nm)
but emit light in different regions, therefore are distinguished based on colour. Single
colour immunofluorescence allows for a mAb conjugated to a fluorochrome, to attach to

a specific cell surface molecule thereby distinguishing classes of lymphocytes. Two
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colour immunofluorescence uses two different mAb each conjugated to a different
fluorochrome thereby allowing further classification into subsets of lymphocytes (e.i.,
CD4+CD5+ T-cells vs CD8+CDS+ T-cells). This assay determines percentages of
lymphocytes by quantifying the amount of fluorescence each population and/or subset of

these lymphocyte populations emits.

8. Rationale & Hypotheses

Two primary goals in the treatment of NIDDM are to prevent hyperglycemia
(Diabetes Control and Complications trial, 1993) and prevent major complications
involved with NIDDM, i.e. the occurrence of infections (Nichols and Crenshaw, 1995;
Diehl, 1995). Dietary intervention is a major component in achieving blood glucose
control and preventing the complications associated with diabetes (Ihle, 1995) such as
infection (Wei et al., 1996).

Reimer and McBurney (1996) demonstrated that a diet supplemented with fiber is
able to significantly alter proglucagon gene expression and modulate GLP-1 and insulin
secretion 30 min after an oral glucose gavage in rats. Fermentable fiber has recently been
reported to significantly increase ileal proglucagon mRNA and modulate intestinal
glucose uptake in rats (Reimer 1997). Tappenden et al (1996) demonstrated that SCFA
supplemented TPN upregulates proglucagon expression. Dogs are a useful animal model
for several reasons. This larger animal model allows for greater sample volume thereby
allowing a complete characterization of response curves to an OGTT, not just a one time
blood sample and larger gut samples. The dog, although not as extensively studied as the
rat, has been used as the animal model in many GLP-1 and glucose tolerance studies
(Knudsen and Pridal 1996; Pridal et al., 1996; van der Burg et al., 1995; Wen et al., 1995;
Sugiyama et al., 1994; Ohneda et al., 1991; Kawai et al., 1990; Kawai et al., 1989).

The gastrointestinal tract is a large lymphoid organ containing approximately 25%
of the immune cells in the body. Although the effects of fermentable dietary fiber on the
immune system are not fully known, Lim et al (1997) reported different dietary fibers
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modulated the mesenteric lymph node cells in rats and Pratt et al (1996), reported that
SCFA supplemented TPN improved components of the non-specific immune system after
major bowel resection in rats. Whether any of these components modulate the immune
system in the periphery is unknown.

Based on this previous work, our hypotheses were: The consumption of a highly

fermentable fiber diet will:

1) increase proglucagon mRNA abundance which will be associated with:
a) increased postprandial GLP-1 and insulin secretion and,
b) increased intestinal glucose transport capacity.
with a net improvement in glucose homeostasis and,

2) improve components of the non-specific immune system (i.e. NK activity)
without causing deleterious effects on other components of the specific
immune system (cellular response to mitogens and lymphocyte population

distributions of peripheral blood).



II. Materials and Methods

1.Diets.

Experimental diets were designed to be isonitrogenous and isoenergetic providing
approximately 19.5 MJ/kg diet with 35% of the energy from carbohydrate, 30% from fat
and 35% from protein. The low fermentable fiber (LFF) diet contained wood cellulose as
the fiber source and the high fermentable fiber diet (HFF) diet contained a mixture of
more fermentable plant fibers. The total dietary fiber (TDF) content of the diets,
determined by AOAC (Association of Official Analytical Chemists Official Method
985.29 under section 45.4.07) was 8.3 g/kg for the LFF diet and 7.3 g/kg for the HFF diet
(Table 1a and 1b). Fructooligosaccharides (FOS) which are added as 15 g/kg diet, are
not recovered in the AOAC method. Assuming 95% of the FOS is dietary powder, the
actual fiber content of the HFF diet was calculated as (7.3 + (0.95 x 1.5 g/ 100g diet) =
8.7%). The predicted fermentability of the LFF and HFF diets are 9 mmol of total SCFA /
kg OM and 229 mmol of total SCFA / kg OM respectively where total SCFA
concentrations were calculated from the sum of acetate, propionate and butyrate using
average 24 h fermentations (Sunvold et al., 1995a; Sunvold et al., 1995b; Sunvold et al.,

1995¢). The pre-experimental chow diet composition is shown in Table 2.

2. Animals.

All procedures received ethical approval from the Health Sciences Animal
Welfare Committee of the University of Alberta and are consistent with the guidelines of
the Canadian Council on Animal Care.

Adult dogs (n=16) were obtained from Butler Farms USA Inc., (North Rose,
NY). Upon arrival, animals were acclimatized for a 7 d period and fed a nutritionally
complete diet (Can-Pro, Beaumont, AB, Canada). A crossover experimental design was
used whereby animals were randomly assigned to receive one of two isoenergetic,
isonitrogenous diets. Animals were weighed daily and food offerings were adjusted to
ensure minimal weight gain/loss using the formula: MJ = 0.553 x kgBW%¢’ (NRC.,
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1985). Eight dogs were fed the HFF diet for 14 d followed by LFF diet for 14 d whereas
the other eight dogs were fed the diets in the opposite order (Figure 4). Because all 16
dogs could not be accommodated at one time, dogs were paired throughout the cross-over
design. This is referred to as group within the statistical model. All dogs were

individually fed to meet energy requirements and water was provided ad libitum.

3.0ral Glucose Tolerance Test.

Food was removed at 1600 h on Days 13 and 27. At 0845 - 0900 h on Days 14
and 28, the dogs were loosely restrained in a table sling and were given an oral glucose
tolerance test (OGTT) using 70% (w/w) dextrose to provide 2 g glucose / kg BW.
Peripheral blood was sampled at time points 0, 15, 30, 45, 60, 90 and 120 min, via the
saphenous vein using a Insyte-W 20GA 2” catheter (Becton-Dickinson Vascular Access,
Sandy, UT). Blood samples were also obtained after the pre-experimental period (Pre-

Exp) for immune function assays.

4. Peripheral blood samples.

Blood samples for general chemistry screen and complete blood counts (2 mL)
and immune assays (10 mL) were collected in 3 mL and 10 mL heparinized vacutainer™
tubes (Becton-Dickinson, Sunnyvale, CA) respectively and stored on ice until analysis.
Hematological analyses were conducted using a Coulter STKS instrument (Coulter
Electronics Inc., Hialeah, FA) and manual differential counts were performed by the staff
at the Veterinary Pathology Laboratory (Edmonton, AB). Blood samples for insulin and
GLP-1 analysis were collected into 10 mLL EDTA heparinized vacutainer™ tubes
(Becton-Dickinson, Sunnyvale, CA) with aprotinin (500 KIU / ml blood, Sigma
Chemicals, St. Louis, MO) and stored at -70°C (GLP-1) or -35°C (insulin). Blood
samples for serum glucose determinations were placed in 250 uL microcentrifuge tubes,
centrifuged at 2900 x g for 10 min at room temperature, the serum was removed by pipet

and stored at -35°C.
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5. Intestinal samples and sacrifice.

On Day 28, the dogs were anesthetized with somnitol (MTC Pharmaceuticals,
Cambridge ON) using 1 mL / 2.27 kg BW. Duodenal, jejunal, ileal and colonic samples
were taken for northern biot analysis and histology. Northern blot samples were promptly
placed in liquid nitrogen, and histological samples were placed directly into formalin.
Jejunal and ileal samples were taken for and nutrient uptake assays and western blot
analysis. Western blot samples were scraped gently to free the mucosal lining and stored
on ice until analysis, and nutrient uptake samples were placed immediately into ice cold
saline. Histological slide preparation was performed by the staff at the Veterinary
Pathology Laboratory (Edmonton, AB). The animals were then killed by euthanol (MTC
Pharmaceuticals, Cambridge ON.) using 2 mL /4.5 Kg BW.

6.Glucose.

Serum glucose was determined using the Sigma Diagnostics Glucose (Trinder)
Reagent for the enzymatic determination of glucose at 505 nm (Cat # 315-100, Sigma
Chemical, St. Louis, MO).

7. Insulin.
Serum insulin concentrations were determined using the Coat-A-Count® 1'%
diagnostic radioimmunoassay (Cat # TKIN1, Diagnostics Products Corporation, Los

Angeles, CA).

8. Plasma GLP-1(7-36)NH; Extraction.

GLP-1 immunoreactive peptides were extracted from 2.5 mL of plasma using a
SEP-COLUMN containing 200 mg of C;s (Cat # RIK-SEPCOL 1, Peninsula -
Laboratories, Belmont, CA) with Buffer A (0.1% trifluoroacetic acid (Cat # RIK-BA-1,
Peninsula Laboratories, Belmont, CA)) and Buffer B (60% acetonitrile (Cat # RIK-BB 1,
Peninsula Laboratories, Belmont, CA)) as elution solvents. Samples were lyophilized

overnight using a speed-vac (Savant Inc., Midland, MI) and stored at -70°C.



9. Intestinal GLP-1(7-36)NH Extraction.

Extraction of GLP-1(7-36)NH; from intestinal segments has been described by
Xioyan (1996) and was carried out with modifications. Briefly, 400-500 mg of each
segment ( jejunum, ileum and colon ) was added to a 12 x 75 mm Simport polypropylene
tube ( Fischer Scientific, Edmonton, AB) with 0.5 mL 2M acetic acid and boiled for 1 h.
Tubes were centrifuged at 4500 x g for 10 min, the supernatant collected, transferred to a
fresh tube and neutralized with 1N NaOH. For RIA purposes, the sample of supernatant
was diluted 1:10 with RIA buffer (100 mM Tris, S0 mM NaCl, 200 mM Nay-EDTA, 0.2
g/L Na azide, pH 8.5) to give a final sample volume of 100 pL.

10. GLP-1(7-36)NH, Radioimmunoassay.

Concentrations of GLP-1(7-36)NH, were measured using a competitive binding
radioimmunoassay described by Xiaoyan, (1996) with modifications. Briefly, the
lyophilized plasma samples were reconstituted in 250 gL of RIA assay buffer (100 mM
Tris, 50 mM NaCl, 20 mM Na,-EDTA, 0.2 g/L. Na azide, pH 8.5). Polypropylene tubes
(12mm x 75mm) were used for controls, standards and samples and the entire procedure
was carried out on ice. GLP-1 (7-36 NH,) standards (Peninsula Laboratories, Belmont,
CA) made from serial dilutions, ranged from 4000 pg/mL to 15 pg/mL. Total counts
(TC), non-specific binding (NSB), total bound (TB), standards and samples were
determined in duplicate as outlined in Table 3. The GLP-1(7-36)NH> Ab (KMJ-03)
(1:20000) was a generous gift from Dr. Chris McIntosh (University of British Columbia,
BC, Canada). Tubes were mixed and incubated 24 hr at 4°C. Following incubation, 50Bq
of 'PI-GLP-1(7-36)NH, tracer was added to the tubes, the tubes were mixed by vortexing
and incubated for 48 hr at 4°C. Dextran-charcoal suspension (4 g/L dextran T70, 80 g/L
charcoal in assay buffer) was added to all tubes (100 pL) except TC tubes. Tubes were
mixed by vortexing and left on ice for 15 min, centrifuged at 2200 x g for 30 min and 600
UL of supernatant was transferred to new tubes which were counted using a Cobra™

Auto-Gamma counter (Packard Instrument Company, Downers Grove, IL).



11. GLP-1 (7-36)NH; lodination.

GLP-1 (7-36 NH,) was iodinated using the chloramine-T method as described by
Xiaoyan (1996). Briefly, the cartridge was primed by allowing 10 mL acetonitrile with
0.1% trifluoroacetic acid (TFA) followed by 10 mL of ddH,O with 0.1% TFA to flow
through. The cartridge was dried by allowing 10 mL of air to be pushed through via a
syringe. The iodination was carried out by weighing 30 - 40 pg of GLP-1, dissolving it in
30 - 40 pL of ddH,O and transferring 10 puL to a fresh eppendorf tube. To this, 10 uL 0.5
M PO, (pH 7.0) was added followed by 0.5 mCi '2]. Chloramine-T (10 pL) was added
and the tube was tapped for exactly 30 s. Sodium metabisulfite (5 mg / mL) was added
followed by 1 mL of 0.1% TFA which was then transferred to the primed column. Gentle
pressured was applied to the column using a 10cc syringe. Acetonitrile with 0.1% TFA
was used as the elutant to acquire 5 fractions. Acetonitrile (5 mL, 10% + 0.1% TFA) and
acetonitrile (5 mL, 20% + 0.1% TFA) are the first 2 elutants used in that order and the
fractions were collected into 14 mL round bottom tubes. Then 30 % acetonitrile (1 mL +
0.1% TFA, 4 times), 38% acetonitrile (1 mL + 0.1% TFA, once) and 40% acetonitrile (1
mL + 0.1% TFA, 5 times) were used as the next elutants in that order and the fractions
were collected in small polypropylene tubes. Each eluted fraction was mixed well and 10
puL from each fraction was counted using a Cobra™ Auto-Gamma counter (Packard
Instrument Company, Downers Grove, IL). The label usually was eluted in fraction 1, 2
and/or 3 of the 40% acetonitrile. Fractions containing the labelled GLP-1(7-36)NH, were
pooled and stored at -35°C. The 1251.GLP-1(7-36)NH; has a storage life of approximately
2 weeks.

12. Isolation of Total RNA.

Total RNA was isolated from each intestinal segment using Trizol™ (Gibco BRL,
Burlington, ON, Canada) according to the protocol provided by the manufacturer. Briefly,
400 - 500 mg of tissue was ground in a pre-chilled sterile mortar with pestle. The ground
tissue (200 mg in duplicate) was weighed and transferred in duplicate to polypropylene

tubes (12mm x 75mm), 2 mL of Trizol™ solution was added and samples were
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homogenized with a Polytron homogenizer for 30 s at setting 10. The homogenized
sample was transferred to a 14 mL sterile polypropylene falcon™ tube and incubated for
5 min at room temperature. To each sample, 400 pulL of chloroform was added, tubes
vigorously hand shaken for 15 sec and incubated for another 2-5 min at room
temperature. Next, samples were centrifuged at 12,000 x g for 15 min at 4°C. The
aqueous phase was transferred to a fresh eppendorf tube, 1 mL isopropanol was added,
tubes were vortexed, and the RNA precipitated overnight at -20°C. Samples were
centrifuged at 10 000 - 12 000 x g for 10 min at 4°C, the supernatant was removed, and
the pellet was washed 2 times with 75% ethanol (at least 1 mL). The sample was mixed
by vortexing and pelleted by centrifuging at 7,500 x g for 10 min at 4°C. The RNA
pellet was briefly allowed to air dry (no more than 10 min) and dissolved in RNAse free
water (50-100 pL per 100 mg of tissue) by gentle vortexing, incubated for 5 - 10 min at
55 - 60°C and stored at -70°C. Quantity and purity of RINA were determined by
ultraviolet spectrophotometry at 260, 280 and 230nm.

13. Northern Blot Analysis.

Messenger RNA was measured by Northern blot analysis as described by Zhao et
al (1993). Aliquots of 15 pg total RNA were dissolved in 10 pL loading gel buffer (50%
deionized formamide (vol/vol), 2M formaldehyde, 1.3% glycerol (vol/vol), 0.02M
morpholinopropanesulphonic acid (MOPS), 5 mM sodium acetate, | mM EDTA and
0.1% bromophenol blue (wt/vol)) and boiled for 2 min to denature the RNA which was
then loaded onto a 1% agarose (wt/vol) gel containing (0.66M) formaldehyde. RNA was
fractionated according to size by electrophoresis in the presence of a recirculating running
buffer containing 0.02M MOPS, 5 mM sodium acetate and | mM EDTA (5 h at 100V).
After electrophoresis, the gels were soaked in two changes of 10X standard saline citrate
(SSC) (1.5 M NaCl, 0.15M trisodium citrate, pH 7.0) and blotted onto a zeta-probe GT
Genomi tested blotting membrane (BioRad, Mississauga ON, Canada), employing the
capillary method by Southern (1975). The RNA was fixed onto membranes by baking in



31

vacuum at 80°C for 2 h. Prior to hybridization with the [ **P ] CTP-labelled riboprobe,
each membrane was prehybridized for 2 h at 50°C in 20 mL of prehybridization buffer
(deionized formamide (60% vol/vol), 20 x SSPE (5% vol/vol), 10% blotto (5% vol/vol),
20% SDS (5% vol/vol), and 10 mg/mL sheared salmon DNA (denatured by boiling in a
hot water bath for 10 min, 5% vol/vol)). Hybridization was carried out for 12-16 h at
50°C in an identical volume of fresh hybridization solution (deionized formamide (55%
vol/vol), 20 x SSPE (5% vol/vol), 10% blotto (5% vol/vol), 20% SDS (5% vol/vol), and
10 mg/mL sheared salmon DNA (2.5% vol/vol mixed with an equal part of deionized
formamide. To this, 16.7KBq (1 x 10° cpm) of labelled riboprobe was added and pre-
warmed in a 70°C water bath for 5 min before being added to the pre-warmed
hybridization solution. The membranes were washed with 2 x SSC at room temperature
for 5 min and then in 2 x SSC/ 0.1% SDS for either 10 min (GLUT2, GLUTS) or 15 min
(proglucagon, SGLT-1). The membranes were transferred to a bath of 0.2 x SSC/ 1%
SDS as follows: proglucagon (70°C for 10 min), SGLT-1 (70°C for 20mins), GLUTS
(45°C for 3-4 min), and GLUT2 (60°C for 2-3 min). Lastly, the membranes were washed
in 0.2 x SSC at room temperature for 2-3 min. Membranes were heat sealed in plastic
bags and exposed to Kodak XRAS5 film (Eastman Kodak, Rochester, NY) at -70°C using
an intensifying screen (Dupont Canada, Mississauga, ON). For statistical analysis, the
signals were quantified using laser densitometry (Model GS-670 Imaging Densitometer,
BioRad Laboratories (Canada) LTD., Mississauga, ON). The 28S and 18S ribosomal
bands were quantified from negatives of photographs of the membranes. These bands
were used to confirm the integrity of the RNA and compensate for minor loading

discrepancies.

14. Riboprobes.

A 3.8 kb radiolabeled GLUT?2 antisense riboprobe was generated from Xba I-
linearized plasmid DNA [ pGEM4Z - HTL - 3 ] and T7 polymerase. The GLUTS cDNA
insert from plasmid pUC13 - phJHT - 5 was subcloned into the BAM HI and ECO RI
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sites of gPEM3 plasmid and a 2.2 kb antisense riboprobe was synthesized using BAN HI
- linearized plasmid and T7 RNA polymerase. The 350 kb proglucagon sense riboprobe
was generated from Rsa I-linearized plasmid DNA [ pGEM4Z - HTL - 3 ] and Sp6
polymerase. Lastly, the 2.1 kb SGLT-1 antisense riboprobe was generated from a 1.4 Kb
fragment of lamb intestinal SGLT-1 clone (aa 207-664), Wood et al, (1994).

15. BBM and BLM Isolation.

All procedures were performed on ice using previously described procedures
(Maenz and Cheeseman, 1986). Briefly, approximately 5 g of mucosal scrapings were
added to 15 mL of membrane suspension solution, (MSS buffer, 125 mM/L sucrose. 1
mM/L Tris-HCL, 0.05 mM/L PMSF, pH 7.4) and homogenized with a Polytron
homogenizer for 30 s at setting 8. Aliquots of this homogenate were then taken for
enrichment assays. The samples were split into two 30 mL eppendorf tubes and 20 mL of
MSS buffer was added to each tube which were homogenized twice more at setting 8 for
30 s. Samples were then centrifuged for 15 min at 2400 x g, the supernatant was collected
and centrifuged at 43 700 x g for 20 min. The remaining pellet consisted of two fractions.
The outer white fluffy layer comprised the basolateral membranes (BLM) and the inner
dark brown pellet comprised the brush border membranes (BBM). BLM were gently
resuspended in a small amount of MSS buffer and transferred to a 14 mL eppendorf tube.
BBM were resuspended in MSS buffer and samples from the same animal were pooled
into 1 tube and made up in 20 mL of MSS buffer. BBM were then centrifuged for 20 min
at 43 700 x g. Again the fluffy white pellet was gently resuspended with MSS buffer and
added to the 14 mL eppendorf tube and the dark pellet was resuspended in exactly 30 mL
of MSS buffer.

16. BLM Preparation.
Isolated BLM were homogenized for 15 s on setting 8. The sample was loaded on
25 mL of 20% percoll and centrifuged for 30 min at 46 000 x g. This resulted in a fluffy

band appearing in the percoll which was collected and transferred to 25mm x 89mm
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polycarbonate ultracentrifuge tubes (Beckman Instruments Inc., Palo Alto, CA) which
were brought up to volume (approximately 38 mL) with MSS buffer and centrifuged at
115 000 x g for 30 min. The membrane layer was removed, diluted with 20 mL of MSS
buffer, and homogenized for 15 s at setting 8. CaCl, ( 1 M, 100 pg) was added stirred
gently on ice for 10 min. Samples were centrifuged for 10 min at 7700 x g, the pellet
resuspended in 20 mL MSS buffer, and homogenized for 15 s at setting 8. Samples were
centrifuged another 20 min at 46 000 x g and the pellet was resuspended in 1 mL MSS

buffer. Aliquots were then taken for enrichment assays.

17. BBM Preparation.

BBM samples were homogenized for 15 s at setting 8 and centrifuged for 10 min
at 1900 x g. The supernatant was transferred and centrifuged another 15 min at 14 600 x
g. Again, the supernatant was transferred to a tube containing 300 pL of 1 M CaCl; and
stirred gently on ice for 20 min. Samples were centrifuged for 30 min at 3000 x g, the
supernatant was collected, and centrifuged another 30 min at 46 000 x g. The pellet was

resuspended in 1 mL of ddH;0 and aliquots were taken for enrichment assays.

18. BLM Enrichment.

The enrichment assay described by Esmann M (1988) was used for the basolateral
membrane enzyme Na'K" ATPase. Briefly, total ATPase activity was assayed by
incubating mucosal homogenates and membrane preparations in the presence of ATP and
Mg2+ and measuring the liberated inorganic phosphate using the classic molybdenum
reaction. Ouabain insensitive ATPase activity was assayed as described above in the
presence of ouabain. Na*K" ATPase activity is ouabain sensitive, therefore the difference
between total and ouabain insensitive ATPase activity is the Na'K" ATPase activity.

Results are expressed as percent-fold enrichment.
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19. BBM Enrichment.

The enrichment assay for the brush border membrane enzyme alkaline
phosphatase was measured using the Alkaline Phosphatase kit from Sigma (Cat # 245-10,
Sigma Diagnostics, St. Louis, MO). Briefly, the procedure is based on the hydrolysis of p-
nitrophenyl phosphate to p-nitrophenol and inorganic phosphate by alkaline phosphatase.
The p-nitrophenol which is formed is yellow in colour and shows a maximum absorbance

at 405 nm.

20. Western Blot Analysis.

The Western blot analysis protocol as described by Tappenden et al (1997) was
used for the quantification of brush border membrane (BBM) and basolateral membrane
(BLM) glucose transporters. BLM (60 pg isolated protein) samples were diluted at 1:4
with 1x sample buffer (0.5M Tris-HCI pH 6.8 (13.2% vol/vol), glycerol (10.5% vol/vol),
0.05% (w/vol) bromophenol blue and 10% SDS (0.21% w/vol)) and BBM (60 g isolated
protein) samples were diluted 3:1 with 4x sample buffer (0.24M Tris-HCL, 40% glycerol,
8% vol/vol of 10% wi/vol SDS, 0.5 mL bromophenol blue). BBM were boiled for 10 min
but BLM were not. The stacking gel (4.1 M acrylamide / 21 mM N’N-bis methylene-acryl
(10.7% vol/vol), 0.5 M Tris-HCL, pH 6.8 (0.24% vol/vol), 10% (w/vol) SDS (0.97%
vol/vol), 10% APS w/v (4.86% vol/vol) and 0.4% TEMED (vol/vol)) was placed on top
of the separating gel (4.1 M acrylamide / 21 mM N’N-bis methylene-acryl (32.1%
vol/vol) , 1.5 M Tris-HCL, pH 8.8 (32.1% vol/vol), 10% (w/vol) SDS (1.3% vol/vol),
10% (w/vol) APS (0.66% vol/vol) and 0.16% (vol/vol) TEMED) . Electrophoresis was
carried out in running buffer (0.3% Tris (w/vol), 1.44% glycine (w/vol) and 0.1% SDS))
at 100 - 200 V for 1 - 2 h until the dye front reached the end of the gel. Proteins were then
transferred to a nitrocellulose membrane (MSI Laboratories, Houston, TX), using a
transfer unit (BioRad, Mississauga, ON, Canada) and transfer buffer (Tris-base (0.189%
wi/vol), glycine (0.9% w/vol), methanol (20% vol/vol), SDS (0.02% w/vol)) for 1.5-2h
at 200 V. Following the transfer, the membranes were placed immediately into TBST (
IM Tris pH 7.5 (2% vol/vol), NaCl (0.88% wi/vol), 0.05% Tween-20 (0.05% vol/vol)).
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Membranes were blocked in TBSTM (TBST with 5% (w/vol) powdered milk) for at least
1 h with gentle agitation and incubated with primary antibodies to SGLT-1 (Cat #
AB1352, Chemicon International Inc., Temecula, CA.) at a dilution of 1:1000 or GLUT?2
(Cat # AB1342, Chemicon International Inc., Temecula, CA.) at a dilution of 1:500
overnight at 4°C. Membranes were washed 3 x 10 min in TBST with gentle agitation,
followed by an incubation with the secondary antibody (anti-rabbit [gG HRP-conjugate,
Signal Transduction, PDI Bioscience, Inc., Aurora, ON) at a dilution of 1:4000 for at least
2 h with gentle agitation. Blots were covered completely and incubated with Supersignal
CL-HRP (Cat # 34080, Pierce, Rockford, [L) working solution for 5 min before being
exposed to KODAK XRAS film (Eastman Kodak, Rochester, NY). Loading consistency
and protein transfer was confirmed by staining the blots with Ponceau S (0.1% w/vol
Ponceau S (BDH), 5% acetic acid ). Statistical analysis was performed on the relative
intensities of the bands. For statistical analysis, the signals were quantified using laser
densitometry (Model GS-670 Imaging Densitometer, BioRad Laboratories (Canada)
LTD., Mississauga, ON).

21. Measurement of Transport Kinetics.

Transport kinetics were measured as previously described by Thomson and
Rajotte (1983). Briefly, a 12 cm segment of intestine was removed from each animal,
opened along the mesenteric border and carefully washed with ice-cold saline to remove
visible mucus and debris. Pieces of intestine (1 cm?) were cut out and the tissue was
mounted as flat sheets in incubation chambers containing oxygenated Kreb’s bicarbonate
buffer (pH 7.4) at 37°C. Tissue discs were preincubated in this buffer for 15 min to allow
equilibration at this temperature. After preincubation, the chambers were transferred to
beakers containing [*H]-inulin and various [*C]-probe molecules in oxygenated Kreb’s
bicarbonate buffer (pH 7.4) at 37°C. The concentration of solutes was 4, 8, 16, 32 and 64
mM for D-glucose and 16mM for L-glucose. The preincubation and incubation solutions
were mixed using circular magnetic bars which were adjusted with a strobe light to

achieve a stirring rate of 600 rpm and a low effective resistance of the intestinal unstirred
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water layer (Thomson and Dietschy, 1980). The experiment was terminated by removing
the chambers, quickly rinsing the tissue in cold saline for approximately 5 s and cutting
the exposed mucosal tissue from the chamber with a circular steel punch. The tissue was
dried overnight in an oven at 55°C to determine the dry weight of the tissue and then
saponified with 0.75 N NaOH. Scintillation fluid (Beckman Ready Solv HP) was added
to the sample and radioactivity was determined using an external standardization
technique to correct for variable quenching of the two isotopes (Beckman Beta LS-5801,
Beckman Instruments Inc, Mountain View, CA). The weight of the mucosa in the
samples used to measure uptake was determined by multiplying the dry weight of the
intestinal sample by the percentage of the intestinal wall comprised of mucosa. The

uptake of nutrients was expressed as nmol + 100mg tissue” » minute™.

22. Villi height and Crypt Depth Measurements

Intestinal segments were sectioned by staff at the Veterinary Pathology Laboratory
(Edmonton, AB). Intestinal villi height and crypt depths were measured under a light
microscope using Northem Exposure Image Analysis software (Empix Imaging Inc.,
ON). A total of 10 recordings were made for each animal and each segment, with the

average used for statistical analysis.

23. Obtaining Viable Lymphocytes.

Lymphocytes were obtained from 10 mL peripheral blood by separation by
density centrifugation through a 1.077 Ficoll-Hypaque (Sigma Diagnostics, St. Louis,
MO) gradient at 450 x g at 22°C for 30 min. The lymphocyte layer was located at the
interface of the serum and Ficoll-Hypaque. The cells were gently removed by suction and
diluted upto 2 mL with sterile PBS. Once cells were obtained, a 20 uL sample was added
with 20 pL of trypan blue and were counted using a hemocytometer under a light
microscope. Cell viability was determined using the trypan blue (Sigma Chemical Co., St.
Louis, MO) exclusion test by counting cells in which the dye had not permeated the

membrane and was not less than 95%.



A i S A b e ot R i AR

37

24. Mononuclear Cell Phenotyping.

Peripheral blood mononuclear cells were characterized by immunofluorescence
assay using monoclonal antibodies specific to canine cell surface molecules. Monoclonal
antibodies CD4, CDS5 and CD14 were purchased from VMRD Inc, Pullman, WA. CDg,
CD45R and Ig (G+A+M) were purchased from Serotec Ltd, Toronto, ON, Canada. CDS
(DH3B) recognizes all peripheral T-lymphocytes, CD4 (DH29A) recognizes MHC-II
restricted T- lymphocytes (helper/inducer T-cells), CD8 (YCATESS.9) recognizes MHC-
I restricted T- lymphocytes (cytotoxic / suppressor T-cells), CD14 (CAM36A) recognizes
monocytes, CD45R (YKIX753.22) is a maturity marker for all T-lymphocytes and 1gG,
(K992E3) recognizes the immunoglobulins IgG + IgA + IgM on canine B-lymphocytes.
Aliquots of 5 x 10° lymphocytes from individual dogs were incubated for 20 minutes at
4°C with each antibody, washed three times in 200 pL of phosphate buffered saline
containing fetal calf serum (40 g/L), and incubated for another 20 minutes at 4°C in 50 pL
of a 1:300 dilution of fluoroscein isothiocyanate (CedarLane® Laboratories Limited,
Homby, ON, Canada). Cells were washed three times and fixed in phosphate buffered
saline containing paraformaldehyde (10 g/L) and relative fluorescence was measured
using a FACScan® (Lysis I, Becton-Dickinson, Sunnyvale, CA). Background
fluorescence (1-3%) was determined by incubating the cells with fluoroscein
isothiocyanate only. For double label immunofluorescence, cells were washed three more
times in PBS after the addition of fluoroscein isothiocyanate and then a second antibody
was added. Cells were washed three times in PBS and were incubated in 10 pl of a 1:25
dilution of R-phycoerythrin (Ceda.rLane® Laboratories Limited, Homby, ON, Canada).
Background fluorescence was measured by incubating the lymphocytes with both
fluoroscein isothiocyanate and R-phycoerythrin. Relative fluorescence was measured

using a FACScan®.

2S. Natural Killer (NK) Cell Cytotoxicity.
NK cell cytotoxicity was measured using a 4 h SICr release assay. NK sensitive

Canine Thyroid Adenocarcinoma cells (CTAC) were a generous gift from Dr. Sandmaier,
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Seattle, WA. CTAC were incubated with 18.5 MBq 51[Cr] sodium chromate / well
(Amersham Canada, Oakville, ON, Canada) and seeded into 96 well v-bottom microtiter
plates (Becton-Dickinson Labware, Lincoln Park, NJ). Lymphocytes were added in
triplicate to the wells to achieve effector:target ratios between 10:1 and 150:1. Following
a 4 h incubation at 37 °C, plates were centrifuged at 157 x g and an aliquot of the
supernatent (75 pL) was counted in a Gamma counter (Beckman Gamma 8000°,
Beckman Instruments Inc, Mississauga, ON, Canada) to determine the extent of target
cell lysis. Spontaneous release was determined from target cells incubated in the absence
of effector cells. Maximum release was determined from detergent lysis (1:10 Triton-X
100, BDH Chemicals, Toronto, ON) of labelled target cells. Cytotoxicity was determined

as follows:

% Specific lysis = 100 x _(experimental release - spontaneous release)

(experimental release - spontaneous release)

26. Mitogenic Responses of immune Cells.

Peripheral lymphocytes (2 x 10° cells / well) were cultured in 96 well microtiter
plates (Corning Glass Works, Corning, NY) without mitogen or with either 5 mg / L
Concanavalin A (ICN, Montreal, Que, Canada), 5 mg / L Phytohemagglutinin (ICN,
Montreal, Que, Canada PHA), 55 mg / L pokeweed mitogen (Sigma Chemical Co., St.
Louis, MO) or 40 pg / L Phorbol Myristate Acetate (ICN, Montreal, Que, Canada) plus
0.5 ug / L ionomycin (Sigma Chemical Co., St. Louis, MO) for 48 and 72 hours. Cells
were incubated in humidified 5% CO, atmosphere at 37°C. Six hours before harvesting
the cells, each well was pulsed with 37 KBq [*H] thymidine (Amersham Canada,
Oakville, ON, Canada). Cells were harvested on glass fiber filters using a multiwell
harvester (Skatron, Lier, Norway) and counted using Ecolite® (ICN, Montreal, Canada) in
a Beckman betacounter (LS 5801%, Beckman Instruments Inc., Mississauga, ON,
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Canada). All assays were performed in triplicate and stimulation indices (SI) were

calculated as follows:

SI = ([°Hlthymidine SC' - [’H]thymidine UC)*
[*H]thymidine UC?

'*H] thymidine SC = thymidine incorporation of stimulated cells measured in kBg/min
2[*H] thymidine UC = thymidine incorporation of unstimulated cells measured in

kBg/min

27. Statistical Analysis.

All statistical analyses were performed using the Statistical Analysis System
(SAS) statistical package (version 6.10, SAS Institute, Cary, NC). For proglucagon and
SGLT-1 mRNA abundance, and SGLT-1 and GLUT?2 transporter abundance, data was
analyzed using proc GLM and significant differences were identified by one-way
ANOVA. The model included diet, gel, period, group and dieteperiod. Both period and
dieteperiod were found to be non-significant and subsequently excluded. Villi height,
crypt depth and intestinal GLP-1 concentrations were analyzed using proc GLM and the
one-way ANOVA which included diet and group. Again both period and dieteperiod were
non-significant and excluded from the model. Plasma AUC for GLP-1, insulin and
glucose were analyzed using paired T-tests within proc GLM. Repeated measures
ANOVA was used to analyze for differences between animal weights, cell phenotypes,
lymphocyte proliferation and NK cytotoxicity, and effect of period of feeding was tested
but not significant (p > 0.05). Differences between diets were identified by least squares
means for cell phenotype, lymphocyte proliferation and NK cytotoxicity data. Data

presented are means + SEM. Significant differences were identified when p < 0.05.
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III. RESULTS

1. Effect of diet on body weight.

Energy requirements were individually calculated and dietary portions were
adjusted accordingly such that animal weights did not differ by experimental diet (23.4 +
1.8 kg, 229 + 1.8 kg, 23.5 + 1.8 kg for pre-experimental, HFF and LFF respectively,
Figure 5, p > 0.05) or by period (23.4 + 1.8 kg, 23.4 + 1.8 kg, 23.4 + 1.8 kg for day 7,
21 and 35 respectively, p > 0.05).

2. Effect of OGTT on plasma GLP-1, insulin and glucose.

Plasma GLP-1 concentrations were higher (p < 0.05) at 30 and 90 min for dogs
when fed the HFF diet vs the animals fed the LFF diet (Figure 6a). Insulin concentrations
were statistically higher (p < 0.05) at 90 min for dogs when fed the high fermentable fiber
(HFF) diet vs dogs fed the low fermentable fiber (LFF) diet (Figure 6b). Dietary fiber
type did not influence blood glucose concentrations at any time points during the OGTT
(Figure 6¢). The incremental area under the curve was significantly higher for GLP-1
(Figure 7a, 988 + 92 vs 648 + 92 pmol / L*h, p < 0.05) and insulin (Figure 7b, 15781 +
1371 vs. 11209 + 1371 pmol / L*hr, p < 0.05) for dogs fed the HFF diet vs LFF diet. The
area under the curve for glucose was significantly lower for dogs fed the HFF diet vs LFF
diet (219 + 22 mmol / L*hr vs 291 + 22 mmol / L*hr, p < 0.05, Figure 7c).

3. Effect of diet on intestinal proglucagon and GLP-1 concentration.

Consumption of HFF vs LFF resulted in significantly greater proglucagon mRNA
abundance in the ileum (1.13 + 0.04 vs. 0.83 + 0.04 densitometer units, p < 0.001) and
the colon (1.45 + 0.05 vs. 0.78 + 0.05 densitometer units, p < 0.01) (Figure 8).
Proglucagon mRNA expression was not detected in the duodenum. Of the three intestinal
samples analyzed, only the ileal mucosal scrapings were significantly higher in GLP-1 for
dogs fed the HFF diet vs LFF diet (41 + 4 pmol GLP-1 / mg protein vs. 25 + 4 pmol
GLP-1 / mg protein, p < 0.05), (Figure 9). GLP-1 concentrations in whole ileum tended
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to be higher in dogs fed the HFF diet (43 + 4 pmol GLP-1 / mg protein vs 33 + 4 pmol
GLP-1 / mg protein, p = 0.09). There was no significant effect of diet on colonic GLP-1
concentrations (40 + 7 pmol GLP-1 / mg protein vs. 36 + 7 pmol GLP-1 / mg protein, p >
0.05).

4. Histology.

Dietary effects on intestinal villi height and crpyt depth are shown in Figure 10.
Duodenal villi height tended to be higher on the HFF diet (1505 + 83 vs 1294 + 83 um, p
= 0.096), and there were no significant differences in duodenal crypt depth (289 + 28 vs
262 + 28 pum, p = 0.488). Jejunal villi height was significantly higher on the HFF diet vs
LFF diet (1517 + 43 vs 1343 + 43 um respectively, p < 0.05) but no significant
differences were noted in crypt depth (277 + 19 vs 234 + 19 um, p = 0.142). Heal villi
height and crypt depth were not significantly different on either HFF or LFF diet (1035 +
45 vs 993 + 45 um, p = 0.517 and 251 + 46 vs 357 + 46 pum, p = 0.125 respectively).
Colonic crypt depth was not significantly different (724 + 33 vs 727 + 33 um, p = 0.943,
HFF vs LFF respectively).

5. Nutrient uptake.

The effect of dietary fiber source on nutrient uptake is shown in Table 4.
Consumption of HFF resulted in a significantly higher Vmax for D-glucose uptake in the
jejunum (p < 0.05). This is also represented in Figure 11. A significant diet effect was
also noted in fatty acid-12 uptake in the jejunum (p < 0.05). The Michaelis affinity
constant (Km) was not affected by diet (p > 0.05). The estimation of paracellular D-
glucose uptake, as determined by L-glucose uptake at 16 mM normalized to 1 mM, was
not significantly affected by diet (p > 0.05). Kd for D-fructose was not affected by diet (p
> 0.05).



6. Glucose Transporters.

Diet did not affect SGLT-1 mRNA in any of the intestinal segments measured
(Figure 12, p > 0.05). The consumption of HFF vs LFF was associated with higher
jejunal SGLT-1 transporter abundance (22.2 + 3.7 vs 6.6 + 3.7 densitometer units, p <
0.01). SGLT-1 transporter abundance tended to be higher in the ileum (13.4 + 0.7 vs 10.4
+ 0.7 densitometer units, p = 0.09, Figure 13). Significant differences due to diet are seen
in both jejunum and ileum GLUT?2 transporter abundance (Figure 14) which showed an
increase with consumption of HFF (1.9 + 0.2 vs. 0.9 + 0.1 densitometer units p < 0.05

and 4.2 + 0.2 vs. 1.5 + 0.2 densitometer units p < 0.01, respectively).

7. Hematology.
Blood hematology (Table 5a) and chemistry (Table 5b) were not found to be
significantly different (p > 0.05) by diet.

8. Peripheral mononuclear cell phenotypes.

The relative proportion of peripheral mononuclear cell phenotypes identified
using anti-rat and anti-mouse monoclonal antibodies was significantly affected by diet
(Figure 15). The proportion of CD5 bearing cells were significantly (p < 0.01) lower in
pre-experimental diet fed animals. IgG+A+M bearing cells were significantly higher in
LFF fed animals vs HFF (p < 0.05) and tended to be higher vs pre-experimental diet fed
animals (p = 0.06). The proportion of cells bearing the CD4 marker were significantly
elevated in the HFF diet vs pre-experimental diet fed animals (p < 0.001) and were also
significantly elevated in the LFF diet vs pre-experimental diet fed animals (p < 0.05).
This significant elevation of % CD4 bearing cells was found to consist of normal
CD4+CDS8- cells determined by double label immunofluorescence (data not shown). As a
result of this elevation of CD4 bearing cells in the HFF diet, there was a subsequent
significant increase in the CD4:CD8 ratio over the LFF and the pre-experimental diet fed
animals (p < 0.01). Lastly, % CD14 bearing cells were significantly lower in the pre-
experimental diet fed animals vs HFF (p < 0.01) and LFF (p < 0.05) diet fed animals.
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9. Cell proliferation by mitogenic stimulation.

Incubation of peripheral lymphocytes with pokeweed mitogen significantly
depressed *[H]-thymidine incorporation at both 48 and 72 h for both HFF and LFF diets
when compared to the pre-exp diet (Figure 16, p < 0.05). Diet did not significantly (p >
0.05) affect all other mitogen-induced stimulation indeces (p > 0.05) for both 48 and 72 h

incubations.

10. Natural Killer (NK) cell cytotoxicity.

Peripheral NK cell specific lysis between the 3 diets is illustrated in Figure 17
and was found to be significantly affected by diet. Effector : target ratios ranging from
50:1 to 100:1 were not significantly different between pre-experimental and HFF diets (p
> 0.05). However, values at these ratios were found to be significantly lower in the LFF

diet vs pre-experimental (p < 0.05).



s SRR PRI SRt L e TR LT Dt T

IV. Discussion

The ingestion of high fiber diets has been shown to modulate proglucagon gene
expression and postprandial GLP-1 secretion (Reimer & McBurney, 1996). Recently,
Reimer (1997) reported that proglucagon mRNA abundance was increased in rats fed
diets containing fermentable fiber sources. This study suggests that the ingestion of
fermentable fiber supplemented diets upregulates intestinal proglucagon gene expression
to modulate intestinal glucose transport capacity and GLP-1(7-36)NH, secretion. Fiber
type also modulates the proportion of lymphocytes in peripheral blood.

The GLP-1 antibody used in the radioimmunoassay in this study is specific for the
c-terminally amidated GLP-1 isomers. Therefore, it does not distinguish between GLP-
1(7-36)NH,, GLP-1(9-36)NH, or GLP-1(1-36)NH,. However, an increase in insulin
secretion was seen in this study, and the only two GLP-1 isomers which are known to be
insulinotropic are GLP-1(7-36)NH; and GLP-1(7-37) (Suzuki et al., 1989). Therefore it
can be assumed that there was an increase in GLP-1(7-36)NH, secretion. The canine
plasma GLP-1(7-36)NH; concentrations measured in this study are in the same range
reported previously in dogs (Wen et al., 1993) and humans (Vaag et al., 1996).

GLP-1 has been proposed to be an antidiabetogenic agent because of its biological
functions as an inhibitor of gastric acid secretion and emptying (Willms et al., 1996;
Nauck et al., 1996; Wettergren et al., 1994; Layer et al., 1995; Schlodager et al., 1989),
glucagon secretion (Hvidberg et al., 1994; Orskov et al., 1993; Wettergren et al., 1993;
Komatsu et al., 1989) and as a potent insulin secretagogue (Ahren et al., 1997; Qualmann
et al., 1995; Orskov et al., 1993; Wettergren et al., 1993; Mojsov et al., 1987; Holst et al.,
1987). The current study demonstrates that consumption of the HFF diet results in a
significant increase in intestinal proglucagon mRNA expression. The incremental area
under the curve for plasma GLP-1(7-36)NH; was significantly higher after an OGTT,
thereby resulting in significantly elevated glucose-induced plasma insulin secretion and

consequently, significantly lower plasma glucose concentrations.
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In support of these results, Van Dijk et al (1996) reported a significantly reduced
rate of glucose appearance and an increased rate of glucose clearance with GLP-1
administration. These effects appear to be mediated by an increased insulin:glucagon ratio
and the increased rate of glucose clearance was dependent on insulin (Van Dijk et al,,
1996). D’ Alessio et al (1995) reported similar findings and attributed the promotion of
glucose assimilation to increased insulin secretion.

The mechanism whereby diet modulates proglucagon expression and GLP-1
secretion remains unknown. The L-cell has a pyramid shape with the apical process found
in the microvilli of the intestinal lumen and the base, rich in endocrine granules near the
basal lamina, suggests that the cell is able to respond to luminal contents with a basal
discharge of granular contents (Holst, 1997). However, it is unknown if the L-cell
responds directly to nutrients and absorption or if other signals are involved. Colonic
infusions of various fibers and SCFA do not affect GLP-1 release in fasted rats
(Plaisancie et al., 1995) but SCFA administration in rats receiving parenteral nutriton
does (Tappenden et al., 1997a) and this effect is seen within 3 d of SCFA administration
(Tappenden et al., 1996). Therefore, the 14 d experimental periods used in this study
should have been more than adequate to elicit a response to diet. It was not determined in
this study whether there was an increase in L-cell number or in proglucagon expression
and GLP-1 production per L-cell. However, Hoyt et al (1996) showed that proglucagon
mRNA per cell, as determined by in situ hybridization, increased with refeeding after
food was withheld suggesting more proglucagon production and GLP-1 secretion per L-
cell.

Long term consumption of fiber-supplemented diets is associated with changes in
intestinal motility, mass and length (Bornet 1994; Jacobs 1983; Johnson et al., 1984;
Pond et al., 1989; Savory 1992; Sigleo 1984), and the rates of intestinal cell turnover,
enterocyte migration along the crypt-villus axis, enterocyte life span, and villus
appearance (Brown et al., 1979; Chiou et al., 1994; Johnson et al., 1984). Dogs which
consumed the HFF had significantly longer jejunal villi and D-glucose transport capacity.

Karasov and Diamond (1983) reported protein mediated transport is predominantly
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altered by changes in Vmax. The mechanistic basis for an alteration in the absorption rate
of a single nutrient is usually the result of a change in the number of transport sites per
enterocyte arising from an altered rate of synthesis or degradation of that transport site
(reviewed in Ferraris and Diamond, 1997). Consumption of the HFF diet was
significantly associated with upregulated jejunal SGLT-1 and jejunal and ileal GLUT2
glucose transporter levels. Since an effect of both transporter quantity and activity
upregulation was seen on the HFF diet, a specific moiety of HFF must be involved in
both the non-specific and specific mechanisms of adaptation seen in this study.
Intravenous supplementation of SCFA significantly increases ileal D-glucose uptake
(Tappenden et al., 1997b). As well, SCFA have been reported to significantly increase
functional adaptation by increasing total, mucosal and submucosal weight, and increasing
ileal DNA, RNA and protein concentrations (Tappenden et al., 1996; Koruda et al.,
1988). GLP-2 which is co-secreted with GLP-1 (Orskov et al., 1986), may also play a
role. The biological actions of GLP-2 have only been recently proposed to include an
intestinally-derived stimulator of small bowel epithelial proliferation (Drucker et al.,
1996; Tappenden et al., 1997a) and a modulator of basolateral glucose uptake
(Cheeseman and Tsang, 1996). Since a significant increase in GLP-1 secretion was noted
on the HFF diet, a resulting significant increase in GLP-2 may also have occurred. This
would also explain the increase in transporter abundance and Vmax seen in dogs which
consumed the HFF diet.

The observed improvements in glucose homeostasis in dogs which consumed the
HFF diet suggests that enhanced insulin secretion or tissue sensitivity must occur to
compensate for greater glucose transport capacity seen with the HFF diet. GLP-1(7-
36)NH, is known to inhibit gastric emptying (Willms et al., 1996; Nauck et al., 1996;
Layer et al., 1995) which would slow glucose delivery to the small intestine where it is
transported into the systemic circulation. Thus, GLP-1(7-36)NH, mediated effects on
gastric emptying and glucose absorption in glucose homeostasis cannot be excluded from

this study. In other words, the relative importance of GLP-1(7-36)NH; action on gastric
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emptying and pancreatic insulin secretion in maintaining glucose homeostasis remains to
be determined.

Blood chemistry or total and differential white blood cell counts were not affected
by fiber fermentability. The current study reports no diet differences in the absolute
numbers of the major white blood cell (WBC) types.

Dogs which consumed the HFF diet had a significantly elevated proportion of
CD4+ T-cells, thereby resulting in an elevated CD4:CD8 ratio. This ratio has been used
to monitor immune system status (Hansbrough et al., 1984). CD4+ cells generally provide
stimulatory signals to other cell subsets (Maes et al., 1992). For example, they co-operate
with B-cells in the production of antibodies, they are involved in the maturation of
cytotoxic T-cells, and they release cytokines which help macrophages kill
microorganisms (Kuby 1994c). CD8+ T-cells include cytotoxic T-cells which play an
important role in the elimination of virally infected cells, and suppressor T-cells which
suppress the function(s) of other T and B-cells (Janeway and Travers, 1994a). A
decreased CD4:CDS8 ratio has been associated with an immunosuppressive state
(Stagnaro-Green et al., 1992). Specifically, previous studies have reported a parallel loss
of innate immunity with decreasing CD4:CD8 ratios (Hanlon et al., 1993), a loss of
proliferative T-cell responses (Kneitz et al., 1993) and immunoglobulin secretion (Farrant
et al., 1994). Although these other studies were conducted in disease states, the effect of
increasing the CD4:CD8 ratio in healthy models is unknown. Despite changing the
CD4:CDS ratio, fiber fermentability did not affect peripheral lymphocyte proliferation or
NK cell mediated cytotoxicity. Recently it was shown that fiber type was able to
modulate GALT (Lim et al., 1997; Field et al., 1997 submitted).

Although the two experimental diets (HFF and LFF) were similar in composition
except for dietary fiber type, the pre-experimental diet was not (Tables 1a, 1b, 2) and
nutrient intakes were probably different during the pre-experimental period when the
dogs were also adapting to their new environment. Dog weights were unaffected by diet
or period, and all macronutrients and micronutrients met known nutrient requirements for

dogs (Kalifelz 1989). The composition of the pre-experimental chow diet and the
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experimental fiber diets were not identical in macronutrient content which can modulate
immune function. For example, dietary protein type (Corman 1985; Wong and Watson,
1995; Field et al., 1995), protein concentration (reviewed in Daly et al., 1990) and amino
acid concentrations modulate immune responsiveness (reviewed in O’Riordain et al.,
1996; Heberer et al., 1996; Sax 1994), as do dietary fat intakes (Kelley and Dauda, 1993).
Omega-3 fatty acids, which were higher in the experimental diets suppress lymphocyte
proliferation (reviewed in Blok et al., 1996). Dietary vitamin (Chandra 1997; Bendrich
1996; Bendrich 1992) and mineral (Scrimshaw 1990) intakes are known to affect immune
function. Since the pre-experimental diet was not balanced with the experimental diets for
any of these macronutrients or micronutrients, any or all of these nutrients may have
contributed to the differences seen in this study in lymphocyte proliferation and NK cell
mediated cytotoxicity. However, no differences in these functions were noted between
HFF and LFF supplemented diets which were balanced for all the above nutrients.

Both psychological and physical stress has been reported to alter immune function
in both humans (Bartrop et al., 1977; Kiecolt-Glaser et al., 1984) and animals (Keller et
al., 1983; Maier and Laudenslager 1988). Anxiety has been reported to suppress immune
function (Cunnick et al., 1988; Cunnick et al., 1990) and is a learned response that does
not necessarily require an aversive stimulus. This may explain why the pre-experimental
diet, which was always the first exposure of the dogs to laboratory conditions, was
different in terms of lymphocyte proliferation and NK cell mediated cytotoxicity, whereas
the HFF and LFF experimental diets which were randomized to control for order, did not.
Stress hormones or glucose tolerance were not measured on Day O, so the role that stress
may have played cannot be determined.

To summarize the immunology data, the fermentability of dietary fiber does not
appear to affect lymphocyte proliferative responses to mitogenic stimulation, NK cell
mediated cytotoxicity nor total lymphocyte numbers, but it does result in a higher
CD4:CD8 ratio in peripheral blood. It is important to realize that only two measures of
lymphocyte function were used in this study. Many assays are available to study

lymphocyte responses (i.e., cytokine production, macrophage nitric oxide production, B-
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cell function) and the effect of dietary fiber type on the outcome of these responses is
unknown.

In conclusion, the addition of highly fermentable fiber sources vs low fermentable
fibers significantly increases proglucagon mRNA expression, intestinal GLP-1(7-36)NH,
concentration and pancreatic insulin secretion. The net effect is a lower integrated glucose
response to an OGTT in healthy dogs despite an increased capacity to absorb glucose and
increased abundance of brush border and basolateral glucose transporters. Dietary fiber
type does not affect peripheral lymphocyte proliferation in response to mitogenic
stimulation or NK cell cytotoxicity, but the CD4:CD8 ratio was increased with the
ingestion of fermentable fibers. Based on these findings in healthy dogs, fermentable fiber
may be important in the dietary management of non-insulin dependent diabetes mellitus.
Future work should determine if the ingestion of fermentable fibers elicits similar
improvements in glucose homeostasis in diabetic individuals with residual pancreatic
function and to determine if changes in the CD4:CDS8 ratio improves overall health. As

well, other assays to assess cell-mediated and humoral immunity should explored.
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Proglucagon
1 160
Pancreas
1 30 33 61 64 69 72 158
GRPP Glucagon IP-1 Major Proglucagon Fragment
72 107NH,
GLP-1
1-36NH, IP-2|| GLP-2
72 108
GLP-1
1-37
Small Intestine
1 69 78 107NH, 126 158
o GLP-1
Glicentin 7-36NH, IP-2|| GLP-2
1 30 33 69 78 108
. GLP-1
GRPP Oxyntomodulin 7.37

Figure 1. Post-translational processing of proglucagon in the pancreas and
intestinal L-cells. Enzymatic cleavage occurs at positions indicated by numbers.
Adapted from Fehmann & Habener, 1992.



His - Ala - Glu - Thr - Phe - Thr - Ser - Asp - Val - Ser - Ser - Tyr -

Leu - Glu - Gly - Ala - Ala - Lys - Glu - Phe - le - Ala - Trp - Leu -
Val - Lys - Gly - Arg - NH,

Figure 2. The amino acid structure of mammalian glucagon-like

peptide-1(7-36)NH,. Amino acids shown in bold occur at the same
position in the sequence of glucagon. Adapted from Orskov, 1992.
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Figure 3. Mechanisms of intestinal hexose transport. 1) Na+-dependent
glucose transporter SGLT-1; 2) facilitative glucose transporter GLUTS; 3)
Na+K+ ATPase; 4) Na+independent glucose transporter GLUT2; 5)
paracellular route of absorption. Adapted from Philpott et al., 1992.
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7d 14 d Experimental Diet | 14 d Experimental Diet
pre-experimental High FF / Low FF Low FF / High FF
diet
Day 0 Day 7 Day 21

Day 35

Figure 4. Experimental design illustrating the feeding regime for dogs (n=16). After
food was withheld for 16 h, oral glucose tolerance tests were conducted on days 21 & 35
providing 2 g glucose / kg BW and samples taken at 0, 15, 30, 45, 60, 90 and 120 min
glucose, insulin and GLP-1 concentrations. Blood samples were obtained for
hematological and immune data on days 7, 14 and 28 at O min.
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Figure 5. Effect of diet on dog weight. Each bar represents the
means + SEM of 16 dogs. No significant difference between diet
was found (p > 0.05) as determined by repeated measures anova.
HFF = high fermentable fiber, LFF = low fermentable fiber.
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Figure 6. Plasma GLP-1 (A), insulin (B) and glucose (C) concentrations

in dogs after an OGTT. Peripheral blood samples were taken at 0, 15, 30,

45, 60, 90 and 120 min after an overnight fast followed by an oral glucose
tolerance test supplying 2g glucose / kg BW. Values are means + SEM,

n = 13 / diet (glucose), n = 14 / diet (insulin and GLP-1). Significantly different
time points ( p < 0.05 ) are indicated by * * “. HFF = high fermentable fiber,
LFF = low fermentable fiber.



[GLP-1] pmol / L*hr

finsulin] pmol / L*hr

[glucose] mmol / L*hr

1500 1 100

1000 T~

500 1T

L )
S
e @
T--F

300 +

200 +

100 +

B HFF @ LFF

Figure 7. Incremental area under the curve for plasma (A) GLP-1,
insulin (B) and glucose (C) in dogs after an OGTT. Samples were obtained
after an overnight fast followed by an oral glucose tolerance test (OGTT)
supplying 2 g glucose / kg BW. Peripheral blood was collected at 0, 15, 30,
45, 60, 90 and 120 min. Values are means + SEM. n = 13 / diet (glucose) and
n = 14/ diet (insulin and GLP-1). Bars with different letters are significantly
different ( p < 0.05 ). HFF = high fermentable fiber, LFF = low fermentable
fiber.
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Figure 8. Effect of diet on intestinal proglucagon mRNA.

Values are means + SEM, n=16 / diet. Bars with different letters are
significantly different ( p<0.05 ). Bars are not comparable between
intestinal sections. Each lane was loaded with 15 ug of total RNA.
HFF = high fermentable fiber, LFF = low fermentable fiber.
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Figure 9. Effect of diet on ileal mucosal scrapings (A), whole ileum

(B) and colonic (C) GLP-1(7-36)NH, concentrations after an OGTT
in dogs. Values expressed are means + SEM, n = 8 / diet ( scrapings and
whole ileum ), n = 7 / diet ( colon ). Units are in pmol GLP-1 / mg protein.
Bars with differing letters are significantly different (p <0.05 ). HFF =
high fermentable fiber, LFF = low fermentable fiber.
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Figure 10. Villi height (A) and crypt depth (B) in canine intestinal
sections. Values are in micrometers and are mean + SEM, n = 8 / diet.
Villi measured / animal / section (n=10) were averaged to deduce a
single value, and those values were averaged for each diet value. Values
with different letters are significantly different ( p < 0.05 ). HFF = high
fermentable fiber, LFF = low fermentable fiber.
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Figure 11. The effect of diet on D-glucose uptake in jejunum (A) and ileum (B)
in dogs. Values are means + SEM, n = 8 / diet. HFF = high fermentable fiber, LFF =

low fermentable fiber.
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Figure 12. Effect of diet on intestinal SGLT-1 transporter mRNA.
Values are means + SEM (n = 16 dogs per dietary treatment) and are
measured as relative abundance using arbitrary densitometry units.
No significant differences between diets was observed. Each lane was
loaded with 15 ug of total RNA. HFF = high fermentable fiber, LFF =
low fermentable fiber.
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Figure 13. Effect of diet on jejunal (A) and ileal (B) SGLT-1
transporter abundance in dogs. Values are means + SEM.

n =7/ diet (ileum) and n = 6 / diet (jejunum). Bars with different
letters are significantly different ( p<0.05 ). Each well was loaded
with 60 ug of total protein and membranes were stained with ponceau
S to confirm equal protein loading. HFF = high fermentable fiber,
LFF = low fermentable fiber.
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Figure 14. Effect of diet on intestinal GLUT?2 transporter abundance in
jejunum (A) and ileum (B) in dogs. Values are means + SEM, n = 6/ diet
(jejunum, ileurn HFF) and n = 7 / diet ( ileum LFF). Bars with different
letters are significantly different ( p<0.05 ). Each well was loaded with 60 ug
of total protein and membranes were stained with ponceau S to confirm equal
protein loading. HFF = high fermentable fiber, LFF = low fermentable fiber.
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Figure 15. Effect of diet on distribution of mononuclear cell phenotypes
in peripheral blood. Values are means + SEM and are expressed as % cells
as measured by relative fluorescence. n = 12 / diet (CD45, CD8, CD4,
CD4:CD8), n = 11/ diet IgG+A+M), n = 10/ diet (CD14). For each
antibody, bars with different letters are significantly different ( p<0.05 ).
HFF = high fermentable fiber, LFF = low fermentable fiber.



Stimulation Index

109

200]
160]
120:-

80 1 a

404 bb 3 bb

0. . s

48hrs 72hrs 48hrs 72hrs 48hrs 72hrs 48hrs 72hrs
ConA PHA PWM PMA-+lono
O = Pre-Exp N = HFF B =LFF

Figure 16. Effect of diet on mitogenic response of peripheral lymphocytes

from dogs. Values are means + SEM. n= 11/ diet for all groups. Mitogenic response
is expressed as the stimulation index = (amount of [3H] thymidine incorporated by
stimulated cells - amount of [*H] thymidine incorporated by unstimulated cells) /
amount of [*H] thymidine incorporated by unstimulated cells. Cells were incubated
with mitogens for 48 and 72 hr. Bars with different letters are significantly different
(p<0.05) within a mitogen*time interaction. ConA = concanavalin A, PHA =
phytohematagglutinin, PWM = pokeweed mitogen, PMA = Phobol Myrsitate Acetate,
Iono = ionomycin, HFF = high fermentable fiber, LFF = low fermentable fiber.
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Figure 17. The effect of diet on NK cell specific lysis in dogs as
measured by repeated measures. Values are means + SEM. n = 16/ diet
(HFF 50:1 75:1 100:1, LFF 50:1, pre-experimental 50:1), n = 15/ diet
(LFF 75:1 100:1, pre-experimental 75:1), n = 13 / diet (pre-experimental
100:1). Different letters at a time point indicate significantly different

(p < 0.05) effects. HFF = high fermentable fiber, LFF = low fermentable
fiber.
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Low Fermentable Fiber High Fermentable Fiber
(g/kg diet as fed) (g/kg diet as fed)

poultry by-product meal 460 460

poultry fat 164 164

fishmeal 122 121
pre-gelled cornstarch 110 80
Menhaden oil 3 3
dried whole egg 40 40
Biodigest' 25 25
IAMS vitamin premix” 3.2 3.2

IAMS mineral premix’ 2.4 2.4

cellulose 70 - —

beet pulp — 60

gum arabic S e . 20
fructooligosaccharides — 15
Potassium chloride 2.2 2.1
Calcium chloride 1.9 1.1

Choline chloride 1.1 —
Sodium chloride 0.3 0.3

Table 1a. Ingredient composition of experimental diets.

'Biodigest™ is a palatability enhancer.

2Vitamin premix provided the following per kg diet: 25 KIU vitamin A, 124 IU vitamin
E, 1561 IU vitamin D3, 14 mg thiamin, 59 mg riboflavin, 90 mg niacin, 32 mg d-
pantothenic acid, 10 mg pyrodoxine, 0.6 mg biotin, 1.9 mg folic acid, 2 067 mg choline,
23 mg inositol, 0.31 vitamin Bj,.

*Mineral premix provided the following per kg diet: 41 mg manganese, 217 mg zinc, 168
mg iron, 47 mg copper, 4 mg iodine, 0.08 mg magnesium, 4.8 mg sulfur, 0.62 mg
selenium.
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Nutrient Low Fermentable Fiber High Fermentable Fiber
Protein (g/kg) 418 427
Fat (g/kg) 268" 270"
Calcium (g/kg) 14.0 14.1
Phosphorus (g/kg) 9.9 9.7
Moisture (g/kg) 80 80
Ash (g/kg) 68 71
Total Dietary fiber (g/kg)” 83 73
Short Chain Fatty Acids 9 220
(mmol/kg OM)3
Metabolizable Energy 19.5 19.5
(MJ/kg)

Table 1b. Nutrient composition of experimental diets.

!Contains 41 g/kg n-6 fatty acids and 6.6 g/kg n-3 fatty acids.

*TDF was determined by the AOAC Official Method 985.29 listed under section 45.4.07.
The AOAC method does not recover FOS powder which was added at 15 g/kg diet.
Assuming that 95% of the FOS powder is dietary fiber, then the actual fiber content of the
HFF diet is approximately 7.3 + (0.95% x 1.5 g/100g diet) = 8.7%.

3Using 24 h fermentation results as described by Sunvold et al. (1995a), Sunvold et al.
(1995b), Sunvold et al. (1995c¢).
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Nutrient g/ kg diet
Crude protein 260
Digestible protein 190
Crude fat 160
Added fat 114
Crude fiber 27
Ash 75
Moisture 89
Calcium 17
Phosphorus 12
Metabolizable energy (kcal / kg) 3203
Vitamin / mineral mix’ see below

Table 2. Nutrient composition of pre-experimental chow diet.

'Vitamin / mineral mix, as determined by the manufacturer, provided: 130 mg/kg
magnesium, 580 mg/kg potassium, 126 mg/kg manganese, 377 mg/kg zinc, 17 mg/kg
copper, 3 mg/kg cobalt, 0.3 mg/kg selenium, 444 mg/kg iron, 3.6 mg/kg iodine, 16.1
KIU/kg vitamin A, 1.5 IU/kg vitamin D, 200 KIU/kg vitamin E, 1.5 mg/kg vitamin K
(mena), 13.2 mg/kg thiamin, 25 mg/kg riboflavin, 87 mg/kg niacin, 32 mg/kg pantothenic

acid, 11 mg/kg pyrodoxine, 1.4 g/kg choline, 1.8 mg/kg biotin, 234 pug/kg vitamin B)o.
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Day Day 1 Day 1 Day 1 Day 2
Assay Sample / | anti-GLP-1 (uL) | "~I-GLP-1
Tube # Buffer Standard tracer
(uL)
(1/2) Total counts (TC) —————— 100
(3/4) Non specific binding 700 —- ——— 100
(NSB)

(5/6) Total bound (TB) 600 ——me 100 100
(7/8) - (23/24) Standards 1-9 500 100 100 100
(25/26 onward) Samples 400 100 100 100

Table 3. Tube protocol for the GLP-1(7-36)NH, radioimmunoassay. All counts were
recorded in duplicate. Bracketed are tube numbers alongside which counts they represent.
Although not stated in table, 100 puL of charcoal solution was added on day 4 of the
protocol (refer to methods section).
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JEJUNUM| ILEUM |(JEJUNUM | ILEUM

D-GLUCOSE
Vmax (nmol/mg tissue/min) 182 + 15 a 132 + 11 133 + 13 b 146 + 15
Km (mM) 10+ 1.9 55 +1.2 80 + 2 127 + 2.2
L-GLUCOSE
(nmol/mg tissue/min)
at 16 mM 21.7 £+ 1.2 337+ 53 215 £33 278+ 35
at lmM 14+ 0.1 2.1+ 03 14 +02 1.7+02
D-FRUCTOSE
Kd 1.96 243 1.61 2.28
FA 12 Uptake
a b

(nmol/mg tissue/min) 24 + 0.2 36+ 05 17+02 42 +02

Table 4. Effects of diet on nutrient uptakes. Values are mean + SEM, n = 8 / diet.
Differing superscripts indicate p < 0.05 between HFF vs LFF. Kd = slope of the line
describing the uptake data for D-glucose. Uptake of L-glucose is normalized to 1 mM
which is representative of the Kd for D-glucose uptake. Fatty acid 12 uptake is a
measure of unstirred water layer resistance. HFF = high fermentable fiber diet, LFF =
low fermentable fiber diet.
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Pre-Experimental HFF LFF
Hemoglobin (g/dL ) 16.6 +0.2 16.2+04 169 +04
PVC (% ) 46.8 +0.7 467+ 1.2 477+ 12
RBC (x 10" cells/L )? 6.8 + 0.1 6.8 +0.2 7.0+0.2
MCV (fL ) 68.4+0.2 68.3+0.4 68.2 + 0.4
MCH (pg)* 24.3+0.2 23.7+0.3 24.0+0.3
MCHC (g/dL ) 355+0.3 348 +0.6 354 +0.6
WBC (x 10° cells /L )¢ 9.4 +0.7 8.0+1.2 80+1.2
Neutrophils (x 10 cells/ L) 5.9 +0.49 52+08 55+08
Monocytes (x 10° cells / L) 042 +09 0.5+0.2 0.5+0.2

Table Sa. The effects of diet on the canine complete blood count. Values are means +
SEM, n = 16 (p > 0.05). 'PVC = packed cell volume, RBC = red blood cells, MCV =
mean corpuscular volume, “MCH = mean corpuscular hemoglobin, "MCHC = mean

corpuscular hemoglobin concentration, "WBC = white blood cell count.



117

Pre-Experimental HFF LFF

ALT'! (GTP)’ U /L) 27.8+5.5 348 +5.5 37.9+5.5
Alkaline phosphatase (IU /L) 355+27 31.1+£2.7 31.2+27
Total bilirubin (umol/L) 6.9+0.8 6.5+0.8 6.7+0.8
Glucose (umol/L) 3.6+03 33+03 33+0.3
Total protein (g/L) 63.2+1.5 63+1.5 64.1 +1.5
Albumin (g/L) 322+1.6 334+1.6 338+1.6
Globulin (g/L) 307+1.3 29.6+1.3 303+1.3

BUN? ( mmol/L) 4.29 +0.9 4.7+09 4.6+0.9
Creatinine (umol/L) 87.2+3.1 91.0+3.1 909 +3.1
Amylase (IU /L) 674 +51 601 +51 610 +51
Lipase IU /L) 314 +37 344 + 37 355 +37
Creatine kinase (IU /L) 273 +48 287 +48 248 + 48

Osmolality ( mOsm/kg) 296 + 7 291 +7 292 +7
Anion gap (mEq/L) 185+4 13.6+4 13.8 +4

Na ( mmol/L) 143 +4 141 +4 142 +4

K ( mmol/L) 44+04 45+04 46+04

Cl ( mmol/L) 110+3 112+3 111 +3

CO; (mmol/L) 197 +3 214+3 21 +3
Ca ( mmol/L) 23+03 24+03 24+03
P (mmol/L) 1.1 +0.3 1.1+0.3 1.2+03

Table Sb. The effects of diet on the canine general chemistry screen. Values are
means + SEM, n = 16 (p > 0.05). 'ALT = serum alanine aminotransferase, 2GTP = serum

glutamic pyruvic transaminase, >BUN = blood urea nitrogen.



