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Abstract

A collection of algorithms and data structures are presented which rep-
resent a generalized framework for inheritance management and method
dispatch in reflexive, dynamically typed, single-receiver languages with
type/implementation-paired multiple inheritance. By storing a small amount
of information, the algorithms can incrementally maintain the entire dis-
patch environment during the four fundamental environment modification
requests — adding /removing selectors to/from classes and adding/removing
class hierarchy links. By merging inheritance management, inheritance
conflict detection and method dispatch calculation, the algorithms are
computationally efficient, and can be used to maintain dispatch informa-
tion even in a reflexive environment. The algorithms are applicable to all
table-based method dispatch techniques and require the use of only a few
dispatch-specific functions. A group of object-oriented classes are used
to implement both the technique-independent and technique-dependent
algorithms, providing a complete framework for table-based method dis-
patch. Although general enough to apply to reflexive languages, the
framework is also useful in statically typed languages, as it incrementally
computes hierarchy information needed by the compiler to establish which
method addresses can be uniquely identified during compilation. This al-
lows compile-time optimizations instead of a runtime table look-up. The
framework can and will be extended to multi-method languages.



1 Introduction

Object-oriented programming languages have become popular due to the ab-
straction and information hiding provided by inheritance and polymorphism.
However, these same properties pose difficulties for efficient implementation, ne-
cessitating (among others) algorithms for inheritance management and method
dispatch. In this paper, we present an object-oriented solution to an object-
oriented problem.

Various object-oriented programming techniques, called design patterns, have
been identified. One such pattern is the template method, which “Defines the
skeleton of an algorithm in an operation, deferring some steps to subclasses”
([GHJV95]). The first part of this paper presents a collection of such template
methods that identify all actions necessary for any table-based method dispatch
technique to incrementally maintain a dispatch table. Each of these methods 1s
technique-independent, calling technique-dependent operations to provide low-
level functionality like table access and modification.

Object-oriented languages provide code-reuse at two levels. At the first level
are generic libraries of basic data structures like sets and growable arrays. Rich
libraries for collections, graphics and other specialized areas provide object-
oriented languages with much of their power. At a second level, application
frameworks capture the collaborations of a group of objects, leaving the specific
details to be implemented. These details are implemented by framework clients,
who subclass on the classes provided by the Framework. These subclasses im-
plement concrete versions of the abstract functionality to provide client-specific
behavior. In other cases, the user merely chooses between concrete leaf classes
to obtain the desired functionality. Thus, in the same way that C++ templates
generalize the implementation of a particular class, frameworks generalize the
implementation of an entire group of interacting classes. Templates are instan-
tiated by providing parameters to the template class. Frameworks are instanti-
ated by providing concrete implementations of abstract functions. The second
part of this paper presents the DT Framework; a general framework for both
compile-time and run-time inheritance management and method dispatch.

The DT algorithms (and hence the DT Framework) apply to a broad class
of object-oriented languages: reflexive, dynamically typed, single-receiver lan-
guages with type/implementation-paired multiple inheritance. A reflexive lan-
guage is one with the ability to define new methods and classes at run-time. A
dynamically typed language is one in which some (or all) variables and method
return values are unconstrained, in that they can be bound to instances of any
class in the entire environment. A single-recetver language is one in which
a single class, together with a selector, uniquely establishes a method to in-
voke (as opposed to multi-method languages, discussed in Section 8). Type/-
implementation-paired inheritance refers to the traditional form of inheritance
used in most object-oriented languages, in which both the definition and im-
plementation of inherited selectors are propogated together (as opposed to in-
heritance in which these two concepts are separated, as discussed in Section 8).
Finally, multiple inheritance refers to the ability of a class to inherit selectors



from more than one direct superclass. Within this paper, we will refer to this
collection of languages as V.

Any compiler or run-time system for a language in ¥ must implement the
functionality provided by the DT algorithms. Furthermore, since the DT algo-
rithms merge inheritance propogation and dispatch-table modification, they are
highly efficient. As well, the DT Framework, built on top of the DT algorithms,
provides implementors of languages in ¥ with immediate code reuse. In this
paper, we will refer to compilers and run-time systems as DT Framework clients.
For our purposes, a language that can be compiled is inherently non-reflexive,
and compilers can be used on such languages. By run-time system we mean
support existing at run-time to allowing reflexivity in the language.

This paper makes a variety of research contributions. It extends research in
each of these areas:

1. FPramework: the algorithms can be implemented as a collection of classes.
Framework clients (implementors of languages in ¥) obtain efficient in-
heritance management, inheritance conflict detection, and incremental
dispatch-table modification (as well as other advantages) via inheritance.

2. Data Structures: the division data structure is identified, a critical struc-
ture that allows inheritance management to be made incremental, allows
detection and recording of inheritance conflicts, and maintains information
useful in compile-time optimizations.

3. Algorithms: The framework demonstrates how inheritance management
and maintenance of dispatch information can be made incremental. A
critical recursive algorithm is designed that handles both of these issues
and recomputes only the information necessary for a particular environ-
ment modification. As well, the similarities and differences between adding
information to the environment and removing information from the envi-
ronment are identified, and the algorithms are optimized for each.

4. Table-Based Dispatch: The framework identifies the similarities and dif-
ferences between the various table-based dispatch techniques. It shows
how the division data-structure and inheritance management algorithms
can be used to allow incremental modification of the underlying table in
any table-based dispatch technique.

The division data structure, the incremental algorithms, and their ability
to be used in conjunction with any table-based dispatch technique results in a
complete framework for inheritance management and maintenance of dispatch
information that is usable by both compilers and run-time systems. The al-
gorithms provided by the framework are incremental at the level of individual
environment modifications, consisting of any of the following:

1. Adding a selector to a class.

2. Adding one or more superclasses to an existing class (which may already
have zero or more superclasses).



3.
4.

Removing a selector from a class

Removing one or more superclasses of an existing class.

The following capabilities are provided by the algorithms:

1.

Inheritance Conflict Detection: In multiple inheritance, it 1s possible for
inheritance conflicts to occur when a selector is visible in a class from two
or more superclasses. The Framework detects and records such conflicts
as they occur.

. Dispatch Technique Independence: Clients of the framework can change

between different table-based dispatch techniques with a simple recompi-
lation.

. Reflexive Languages: Dispatch tables have traditionally been created by

compilers and were not extendible at run-time. This implied that reflex-
ive languages could not use table-based dispatch techniques. By making
dispatch table modification incremental, the DT Framework allows reflex-
ive languages to use any table-based dispatch technique, maintaining the
dispatch table at run-time as the environment is dynamically altered.

. Dynamic Schema Evolution: The DT Framework provides efficient al-

gorithms for arbitrary environment modification, including adding class
hierarchy links to classes already in an inheritance hierarchy. Even more
important, the algorithms handle both additions to the environment and
deletions from the environment.

. Separate Compilation: Of the five table-based dispatch techniques dis-

cussed 1n Section 2, four of them currently require knowledge of the com-
plete environment. In situations where library developers provide object
files, but not source code, these techniques are unusable. Incremental dis-
patch table modification allows the DT Framework to provide separate
compilation in all five dispatch techniques.

. Compile-time Method Determination : Tt is often possible (especially in

statically typed languages) for a compiler to uniquely determine a method
address for a specific message send. The more refined the static typing of
a particular variable, the more limited is the set of applicable behaviors
when a message is sent to that variable. If only one method applies, the
compiler can generate a function call or inline the method. The division
data structure maintains information to allow immediate determination
of such uniqueness.

The rest of this paper is organized as follows. Section 2 summarizes the
various method dispatch techniques. Section 3 presents the DT algorithms.
Section 4 presents the DT Framework. Section 5 discusses how the table-based



method dispatch techniques can be implemented using the DT Framework. Sec-
tion 6 discusses details specific to compilers and details specific to run-time sys-
tems. Section 7 reports execution performance results when the DT Framework
is applied to various real-world class hierarchies. Section 8 discusses related and
future work. Section 9 summarizes the results. Appendix A provides proofs
of some assertions, and Appendix B provides utility algorithms. Both the as-
sertions and utility algorithms are used in Section 3. Finally, Appendix C
describes how the information stored by the DT algorithms can be used to
establish whether a method 1s uniquely determined at compile-time.

2 Method Dispatch Techniques

Due to inheritance and polymorphism, it is not possible to always determine the
method to be invoked at a particular call-site at compile-time, so some run-time
method dispatch technique is necessary. Two primary categories of method dis-
patch techniques exist: dynamic techniques and table-based techniques. This
paper generalizes existing research into table-based dispatch techniques. Each
table-based technique is described in detail in the subsections that follow. How-
ever, a very brief description of the various dynamic dispatch techniques is
provided first, where C' denotes a class and ¢ a selector.

ML) Method Lookup' (Smalltalk-80 [GR83]). Method dictionaries are searched
for selector ¢ starting at class C', going up the inheritance chain, until
a method for ¢ is found or no more parents exist (in which case a mes-
sageNotUnderstood method is invoked to warn the user). This technique
1s space efficient but time inefficient.

LC) Global Lookup Cache ([GR83, Kra83]) uses < C,o > as a hash into a
global cache, whose entries store a class ', selector o, and address A. Dur-
ing a dispatch, if the entry hashed to by < ;¢ > contains a method for
the class/selector pair, it can be executed immediately, avoiding ML. Oth-
erwise, ML is called to obtain an address and the resulting class, selector
and address are stored in the global cache.

IC) Inline Cache ([DS94]) caches addresses at each call-site. The initial ad-
dress at each call-site invokes ML, which modifies the call-site once an
address is obtained. Subsequent executions of the call-site invoke the pre-
viously computed method. Within each method, a method prologue exists
to ensure that the receiver class matches the expected class (if not, ML is
called to recompute and modify the call-site address).

PIC) Polymorphic Inline Caches ([HCU91]) cache multiple addresses, modify-
ing a special call-site specific stub-routine. On the first invocation of a
stub-routine, ML is called. However, each time ML is called, the stub is

In [DHV95, Dri93a], and others, this is referred to as Dispatch Table Search (DTS).

However, to avoid confusion with our dispatch tables, we refer to it as Method Lookup



extended by adding code to compare subsequent receiver classes against
the current class, providing a direct function call (or even code inlining)
if the test succeeds.

In subsections that follow, each of the table-based techniques are presented
and discussed in detail. We will use definitions and notations from Table 1
during the discussion, and will provide example dispatch tables based on the
inheritance graph in Figure 1. The exact structure of the dispatch table depends
on the dispatch technique. In our discussion, we will represent the tables as
global two dimensional tables. However, in an implementation, it is not strictly
necessary, and sometimes not desirable, to have global tables, since per-selector
or per-class arrays can improve data locality. In all of these techniques, classes
and selectors are assigned numbers which serve as indexes into the dispatch
table. We have arbitrarily choosen to index rows by selectors and columns by
classes, and to treat tables as row-major. In the tables displayed, the notation
C:0 18 used to refer to the method that is defined natively in class C' for selector
o. If C:o exists as an entry for some subclass, C; of C', it implies that C; inherits
o from C.

)
o
2

Figure 1: Sample Inheritance Graph

In developing the DT algorithms, we have abstracted out those concepts that
are similar among the various table-based dispatch techniques. Each technique
has an underlying data array, and uses selector and class indices to obtain the
address for a particular class/selector pair. Each selector and class is assigned an
index. Each class/selector pair, < C, ¢ > | establishes an index pair < L, K >
which is used to determine a unique index, T[o, C], within the underlying data
array of the table in a technique-dependent fashion. Each entry in the table con-
tains a diviston. A division represents a method to be executed for a particular
class/selector pair, but contains extra information in addition to the method
address (usually, a class and a selector). The class associated with a division
is referred to as the defining class of the division. Selector index conflicts can
occur in certain dispatch techniques, when T[o, (] returns a division that does
not represent selector o. Class index conflicts are also possible, occuring when
T[o, C] does not represent class C.

While describing the table-based method dispatch techniques, we will present
simple high-level algorithms describing how the dispatch techniques can be im-
plemented if complete knowledge of the environment exists. We will then discuss



| Notation | Definition
o a selector
L a selector index
index(co) the current index of selector o
K a class index
C,C, classes
C; < C class ('; is a subclass of class €'
< C,o> notation to represent a class/selector pair
index(C) the current index of class C
subclasses(C) the set of all subclasses of C
children(C) the set of immediate subclasses of class C
parents(C) the set of immediate superclasses of class C
selectors(C) the set of selectors defined natively in C
T a table
T[L, C] the table entry identified by selector index L and class C'
Tle, O] short-hand for T[indez(c), C]
methodFor(s,C) | the method to execute for class C' and selector o

Table 1: Notations and Definitions for the DT algorithms

how these algorithms need to be modified to allow them to be incremental. For
our purposes, an incremental algorithm for dispatch-table maintenance is one
that modifies an existing dispatch table each time an environment modification
occurs (adding/removing a selector or hierarchy link). The algorithm must work
independent of the order in which environment modifications occur (although
differing orders may produce better compression results and execution times).

2.1 Selector Table Indexing (STI)

Selector Table Indexing ([Cox87]) is the most time efficient, but space-inefficent,
table-based dispatch technique. It uses a two-dimensional table in which both
class and selector indices are unique. Even in dynamic languages where it is
possible to invoke a non-understood message, no special code is necessary; the
dispatch table stores the address of a special error method for any class/selector
pairs that do not have an associated method. Unfortunately, although this
approach is fast, it is not feasible for even medium sized environments because
the space required is the product of the number of classes and selectors. Table 2
shows an STT dispatch table for Figure 1.

| selectors | index | F | G | H | K | M |
0 F:5 | F:$ H:$ - -
1 - G:3 - K:p | K:g
2 - - H:o - -

3 - - - - M:v

TR W

Table 2: STT dispatch table

A simple, efficient algorithm to assign class and selector indices is easily



implemented. Since class and selector indices are unique and orthogonal to
one another, the algorithm works equally well in either an incremental or non-
incremental setting.

Algorithm STI
L:=-1; K:=-1
foreach class C
K := K+1
index(C) := K
foreach selector ¢ recognized by C
if index(o) is unassigned
L :=L+1
index(S) := L
T[L][K] := methodFor(s,C)
end STI

2.2 Selector Coloring (SC)

Selector Coloring ([DMSV89, AR92]) compresses the two-dimensional STT table
by allowing selector indices to be non-unique. Two selectors can share the same
index as long as no class recognizes both selectors. The amount of compression is
limited by the largest complete behavior (the largest set of selectors recognized
by a single class). Since this approach is implementable as a graph coloring
algorithm, the selector indices are usually referred to as colors.

Table 2 can be colored to produce Table 3. Since no class understands both
a and 3, the rows for these two selectors can be merged into one. Similarily,
the rows for § and v can also be merged.

[ selectors [index | F [ G | H | K | M |
5, v 0 F:5 | F:6 | H:$ - M:v
a, B 1 - G:5 | Hia | K:g | K:3

Table 3: SC dispatch table

In languages where a message can be sent to an object that does not un-
derstand it (i.e., dynamically typed languages), this approach is not quite as
efficient as STI. In STI, a message is not understood only if the entry in the
table for the class/selector pair is not associated with a meaningful method ad-
dress. Recall that in this case it 1s initialized with the address of a function that
reports an appropriate error message. However, in the colored table, two or
more selectors can share the same row, so the wrong message may be invoked.

As an example, suppose that a message is sent to an instance of class F' with
selector v. Since selector v shares color 1 with § the address in the table is F:§,
from Table 3. However, from Figure 1, class F' does not understand selector v,
and so the dispatch technique must somehow detect this.

It 1s common to add a method prologue at the beginning of every method def-
inition, which tests the current selector (passed as a hidden argument in every



method invocation) against the expected selector (which is known at compile-
time). If the comparison fails, an apropriate error message is generated. Oth-
erwise, the rest of the method code 1s executed.

A non-incremental algorithm for selector coloring is presented in [DMSV89],
and an incremental version in [AR92]. Some terminology is necessary:

1. Conflict Table: each row, r in a conflict table represents a particular
selector, r.o, and stores the set of selectors, r.V, that conflict with o.
Two selectors conflict if any class in the environment understands both.

2. Partition type: Each class/selector pair < C,o > is assigned one of four
different partition types:

(a) specific: ¢ is not yet defined in the system

(b) separate: o is not recognized by class C 2, any superclass of C, or any
subclass of C, but is recognized by some class (i.e. is not specific).

(c) declared: o is not recognized by class C or any superclass of C (and
is not specific or separate)

(d) redefined: o is recognized by C.

3. colorsFreeFor(G): The set of all colors unused by all classes in the set G.
A class is using a color,L, if it recognizes a selector whose color is L.

4. classesUsingColor(L): The set of classes using color L.

In [DMSV89], the non-incremental algorithm for selector coloring is divided
into two parts: conflict table calculation, and color assignment.

Algorithm SC-static
“compute conflict table”
foreach selector o
R := conflict table row for o
foreach selector o;
if 3C" that recognizes o;
add o; to R.V
“assign colors”
foreach row R in conflict table
index(c) := smallest index not in R.V
end SC-static

In [AR92], an incremental version of SC is presented. However, the declara-
tive nature of the presentation does not provide any indication of how to imple-
ment the algorithm efficienctly. Furthermore, some errors exist in the algorithm.
We present, a procedural version of the [AR92] algorithm, and discuss it.

2[AR92] does not explicitly exclude class C. It should be excluded so that after ¢ is added
to C, the partition type of < C,c > becomes redefined
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Figure 2: Example dispatch table
Algorithm SC
K:=-1
foreach class C
K := K+1
index(C) := K

foreach selector o
L4 = index(o)
P := partition(c,C)
if P = specific

L := any color in colorsFreeFor(subclasses(C))
elsif P = redefined
L := Lyqa

elsif P = separate
if L,1q € colorsFreeFor(C) then L := L4
else L := any color in colorsFreeFor(classesUsingColor(L;4))
else “P = declared”
if L,1q € colorsFreeFor(C) then L := L4
else L := any color in colorsFreeFor(classesUsingColor(L;4))
index(c) := L
T[L,K] := methodFor(s,C)
end SC

There are a few errors in the AR algorithm. If < ()0 > 1s specific,
[AR92] states that the color for o can be any color free for all subclasses of C.
However, if we assume that inheritance exceptions are represented as special
method definitions (i.e. a method still exists for the selector, but just generates
an error), then it is sufficent to check only the leaf classes of C. If inheritance
exceptions do actually remove the selector, then class C and all subclasses must
be checked.

If < C,0 > isseparate, it is not sufficient to check only class C to determine
if the color can remain unchanged. Subclasses of C must also be checked. Once
again, however, if inheritance exceptions are modeled as special methods, only
leaf classes need to be checked.

As an example illustrating why AR is not sufficient, suppose we have the
color map and inheritance graph of Figure 2. If we add a method for 5 to class
F, then although color 1 is free for class F, it cannot be used for [ since selectors
a and B in class H cannot share the same color.

If < C,o > is partition type declared, the [AR92] specification is in err on
two counts. First, it is not sufficient to look only at classes using the current

10
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Figure 3: The color map for a simple inheritance graph

color unless a deletion mechanism is used to collapse rows. Second, the AR
algorithm is too restrictive. That is, it may exclude a color that can be used.
Instead of finding a color free for classes using the current color, the algorithm
should find a color free for all dependent classes of < C, o > and free for all
classes currently using selector . Dependent classes will be discussed later.

Consider Figure 3 where we are trying to add the selector v to class F.
The AR algorithm seeks a color free for the class set, G, K, L. Therefore, color
3 appears acceptable. However, color 3 cannot be used since G, a dependent
class of < F,o > is already using color 3 for # (since class G will inherit
it cannot use color 3 for both 5 and 7). Observe that the way in which this
example was constructed, rows 1 and 3 can be collapsed into a single row, in
which case the formula would work properly. In general, any example which
demonstrates the above problem will have this property that rows could be
collasped. Thus, this first problem with the AR formula is avoided only if
the coloring algorithm includes a deletion mechanism that ensures that rows
are fully collapsed. However, the time complexity of detecting such potential
collapses may not be justified, in which case the AR formula is insufficient.

Consider Figure 3 again. The AR algorithm excludes color 2 since class K
uses it (for selector A). However, color 2 can be used for 7 since class K does
not recognize selector v and is not a dependent class of F'.

2.3 Row Displacement (RD)

Row Displacement ([DH95]) compresses the two-dimensional STT table into a
one-dimensional master array. Selectors are assigned unique indices in such a
way that when all selector rows are shifted to the right by the index amount,
the two-dimensional table has only one method in each column. The table
is then collasped into a one-dimensional array. When dispatching a method
invocation, the shift index of the selector and the index of the receiver class
are added together to determine the index of the desired address within the
master array. It is also possible to shift classes instead of selectors, as shown in
[Dri93b]. However, it is observed in [DH95] that shifting selectors yields better
compression rates. Table 4 shows how the class/selector table of Table 2 can be
compressed using this technique:

11



Figure 4: RD dispatch table

It is important that the shift indices be unique, to ensure that two different
selectors will not access the same dispatch table location for the same class.
For example, no address conflicts occur if row 3 (selector v) is assigned a shift
index of 0 (M:v can fit into the fifth slot of the array without conflicting with
any other selector). However, this is not allowed since row 1 (selector §) has
already claimed shift index 0. If v was assigned shift index 0, a dispatch on
< F,v > would invoke F:J, instead of detecting a non-understood method.
Although this situation could be detected by extending the method prologue to
compare both the selector and class against their expected counterparts, it is
more efficient to enforce uniqueness of selector shift indices so as not to incur
an extra comparision on every dispatch. Similarily, row 4 (selector «) can not
have shift index 2 because it would conflict with row 2 (selector /), even though
this results in leaving the fifth slot empty.

In order to present an algorithm computing an RD dispatch table, we need
the following terminology:

1. Table: the table, T, is a one-dimensional master array. A selector index,
L, and class index, K, identify the entry T[K+L].

2. Block: a block is a structure representing a contiguous collection of class
indices. It contains a starting index, start, and a block length, run.

3. Row: a row structure contains a selector, o, and a collection of Blocks
representing all classes which use ¢. The number of such classes is referred
to as the width of the row. The primary block of a row is the block with
the largest run.

4. Free(s): The entries in the table T can be divided into two categories,
used and unused. All unused entries can be described by Blocks. That is,
if entry T[i-1] is used, and entry T[i+1] is the next used entry, a free block
with start ¢ and run r can be used to represent all unused entries between
these two entries. Free(s) is a doubly linked list of all free blocks whose
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size is s. firstFree(s) returns the smallest free block (across all freelists)
whose size is greater-equal s. nextFree(F) returns the freeblock after F,
unless F doesn’t have any more freeblocks, in which case it returns the
result of calling firstFree(F.run+1).

5. DRO sort order: The row structures are to be sorted in descending order
based on row width. All rows with width 1 are to be sorted in descending
order based on the start index of their primary block.

Algorithm RD
assign class indices in depth first preorder
create a Row structure for each selector o
perform a DRO sort on the collection of Row structures
foreach row R with width > 1 (in DRO order)
L := unassigned
F := firstFree(R.primary.run)
while L is unassigned
max := F.run - R.primary.run
i:=0
while L unassigned and ¢ < maz do
L := F.start - R.primary.start + i
foreach non-primary block B in R
for K := B.start to B.start + B.run
if T[L4+K] is used
L := unassigned
break two levels
1:=1+1
if L unassigned
F := nextFree(F)
foreach block B in R
F := the freeblock containing entry T[L,B.start]
for K := B.start to B.start + B.run
T[L,K] := methodFor(R.c, classWithIndex(K))
update free lists (split F into two smaller freeblocks)

form a singly linked list of every free entry in the master array
F := firstFree(1)
foreach row R with width = 1
L := F.start - R.primary.start
T[L,K] := methodFor(R.c, classWithIndex(K))
F := F.next
end RD

There are only two real differences between the incremental version of RD
dispatch provided by the DT algorithms and the non-incremental version pro-
vided in [DH95]. The first difference has to do with the optimizations the
non-incremental version can make because it has access to the entire class hi-
erarchy before selector index assignment begins. The non-incremental version
sorts selectors according to how many classes recognize them; such sorting is
not possible in an incremental algorithm. The non-incremental version relies
on this sorting to fit all selectors with a width of one last. During the fitting
of selectors with width greater than one, the algorithm does not worry about
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maintaining a single-entry freelist (with only one entry, the doubly linked freel-
ist structure could not be encoded into the master array directly). In this way,
the algorithm can ignore single-entry freeblocks until the width 1 selectors are
encountered, at which time a pass is made through the main array to generate
a singly linked list of 1 element freeblocks. This pass destroys the doubly linked
list of arbitrarily sized freeblocks maintained before, but in the non-incremental
version such freeblocks are no longer needed by this time.

The incremental version cannot sort selectors by width, and cannot rely on
one-entry selectors occuring last. Thus, doubly linked single-entry freeblocks
must be maintained like any other size of freeblock. Fortunately, tables in the
DT Framework store divisions rather than method addresses, so a special Free-
Division can be used to represent freeblocks. Thus, even single-entry freeblocks
can encode the doubly-linked freeblock structure within the master array (Free-
Division instances have next and previous fields pointing to other FreeDivision
instances representing freeblocks of the same size.

[DH95] discusses the impact of selector ordering on both execution perfor-
mance and fillrate. It can be expected that execution performance and fillrate
will degrade in the incremental version. This is discussed in Section 7.

2.4 Compact Selector-Indexed Dispatch Tables (CT)

Compact Selector-Indexed Dispatch Tables ([VH96]) compress the STI table
by using four different strategies: selector separation, selector aliasing, class
partitioning, and class sharing. Selector separation divides selectors into two
groups: standard selectors have one main definition and are only overridden
in subclasses, and any selector that is not standard is a conflict selector. Two
different tables are maintained, one for standard selectors, the other for conflict
selectors. Selector aliasing can be performed only on the standard selector
table, and relies entirely on classes being sorted top-down and having at most
one parent class. Thus, CT dispatch as presented in [VH96] is limited to single
inheritance languages.

Algorithm CT
Order classes top-down
Separate selectors into standard and conflict sets

“Standard Table Index Assignment”

K:=-1
foreach class C (ordered top-down)
L:=-1
K := K+1
index(C) := K
foreach selector ¢ recognized by C
L :=L+1
index(S) := L

T[L][K] := methodFor(s,C)
“Conflict Table Index Assignment”
L:=-1; K:=-1

foreach class C

14



K := K+1
index(C) := K
foreach selector ¢ recognized by C
if index(o) is unassigned
L :=L+1
index(S) := L
T[L][K] := methodFor(s,C)

Partition standard table into subarrays, each with ps elements
Partition conflict table into subarrays, each with p. elements

Within each partitioned subtable, merge identical columns together

end CT

The CT technique obtains its excellent compression from two distinct mech-
anisms. First, by relying on single inheritance and knowledge of all classes in the
environment, selector indices in the standard table are assigned on a per-class
basis. However, this never results in an index being assigned different indices
in different classes as long as the order in which selectors are traversed remains
constant across classes. The result of this is that all internal space in the STI
table for standard selectors is entirely removed (that is, the only unused space
is at the end of each column). The separation of selectors into standard and
conflicting provides this selector aliasing capability.

Second, class sharing can substantially reduce the amount of space taken up
by the table, especially for small partition sizes, p; and p.. However, a reduction
in table size does not necessarily imply a reduction in overall memory utiliza-
tion, because there is memory overhead involved in maintaining partitions, as
discussed in [VH96]. Without partitioning, class sharing will almost never pro-
vide any benefit, but with judicious choices for partition sizes, this technique
uses less space than any other.

An incremental version of the CT dispatch technique as it exists in [VH96]
necessitates some inefficiency, due to the inherently non-incremental nature of
selector aliasing. In an incremental version, classes can be added as parent
classes of already existing classes. Since selector aliasing relies on assigning
selector indices based on a top-down traversal of classes, this would result in a
need to change the indices of many selectors. Although the index reassignment
itself is not particularily expensive, the movement of divisions from old locations
to new locations can involve a reshuffling of the entire table.

Fortunately, a simple observation makes incremental selector aliasing un-
necessary; the standard table can be compressed equally well by using selector
coloring. Having separated conflict selectors out of the table, selector coloring
will assign indices so as to not leave any internal space (however, later we will
discuss certain optimizations for SC dispatch that will result in a few internal
spaces, in exchange for faster performance).

Having resolved the issue of incremental selector aliasing, we now turn our
attention to incremental class partitioning and class sharing. Rather than cre-
ating standard and conflict tables in their entirety, then partitioning them, we
can maintain fixed-size subtables that represent each partition. As addresses
are added to the table, new subtables can be dynamically created as they are
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needed. Although an extremely efficient mechanism for incremental type shar-
ing exists as long as we disallow adding of parent classes to existing classes, it
is even possible (albeit more inefficient) to handle dynamic schema evolution.

Thus, the incremental version of CT consists of a table with two subtables,
a standard selector table and a conflict selector table. Selectors exist in only
one or the other of these tables, but the same class can exist in both (thus,
class indices are selector dependent). Furthermore, each of these two subtables
is divided into a collection of fixed-row subsubtables representing partitions.
Each subsubtable in the standard selector subtable is compressed via selector
aliasing and class sharing, and each subsubtable in the conflict selector subtable
1s compressed via class sharing alone.

As will be discussed in some detail later, the incremental version of CT
is only one of many variations arising from separated and partitioned tables.
Later, we will introduce a new dispatch technique, SCCT, that merges the SC
and CT dispatch techniques, keeping the advantages of both, and removing the
limitations of CT. In particular, SCCT is applicable to languages with multiple
inheritance, and provides even better compression than CT.

2.5 Virtual Function Tables (VTBL)

Virtual Function Tables ([ES90]) have a different dispatch table for each class,
so selector indices are class-specific, although they are constrained to be equal
across inheritance subgraphs. Since this constraint is not possible in multiple
inheritance, each class stores multiple tables; for selector ¢, class C has as many
tables are there are classes in selectorRoot(o) that are superclasses of C.

1. Inheritance Paths: An inheritance path for the class/selector pair <
C, 0 > is defined as an ordered collection of classes C, Cy, ..., C in which
(4 € parents(C), C; € parents(C;_1), and Cj € rootClasses(c). Multiple
paths are induced by multiple inheritance

Algorithm VTBL
foreach selector o
foreach class C (sorted top-down)
if o € selectors(C)
V := C.vtbl[0]
L := V.size
V[L] := methodFor(s,C)
index(s,C) := L
else
foreach inheritance path P; for < C,o >
i 30, in P;
V := C.vtbl[i]
L := index(c,C)
V[L] := methodFor(c,C)
end VIBL

Unfortunately, an incremental version of the VIBL technique is expensive
for two reasons. First, it is not possible to store all current selector indices
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explicitly, because selector indices are class specific. This problem exists for the
same reason STI dispatch is not practical; the product of classes and selectors
requires far more memory than is feasible. This means that selector index
determination becomes a search, rather than just a field access. Even efficient
implementations like hash tables with binary search tree probes will be an order
of magnitude more expensive than selector index determination in any other
technique.

The second inefficiency is due to the need to handle dynamic schema evolu-
tion. If a class is added as a parent of an existing class, C, all selectors defined
in C or any subclass of C which are not defined in any parent of C must have
their indices reassigned. Thus, if a class is added as a parent of a hierarchy with
a single current root class, every selector of every class in the hierarchy must be
assigned a new index.

Note that although an incremental VIBL technique is potentially very ex-
pensive, it is not impossible. It could even be used in reflexive languages, as
long as every virtual function table used thunks, rather than just those tables
involving multiple inheritance. However, since this would have a profound im-
pact on execution performance, we have not included VIBL dispatch in the DT
Framework.

3 The DT Algorithms

The DT algorithms interact with a few fundamental data structures in order
to modify dispatch table information incrementally when the programming en-
vironment changes. The environment changes (from the perspective of the DT
algorithms) when selectors or class hierarchy links are added or removed. We
will refer to these four actions as environment modifications. These actions
are divided into two categories: method adding occurs when selectors and class
links are added, and method removal occurs when selectors and class links are
removed. Data structures to represent classes and selectors are needed. Classes
maintain a name, a set of native selectors, a set of parent classes, and a set of
child classes. Selectors maintain only a name. The algorithms also need data
structures to represent two special constructs, divisions and division tables.
These are discussed in subsections that follow.

There are four DT algorithms that act as the interface to the framework.
They correspond to the four fundamental operations that cause environment
modification: adding a selector (Algorithm AS), removing a selector (Algorithm
RS), adding class hierarchy links (Algorithm ACL) and removing class hierarchy
links (Algorithm RCL). Note that defining a class does not itself modify the
dispatch information. Only when selectors are added, or the class is connected to
other classes via inheritance, does the dispatch information change. In addition
to the interface algorithms, there are some fundamental algorithms to perform
inheritance management, inheritance conflict detection, index determination,
and index conflict resolution. The DT algorithms, and their overall purposes,
are summarized in Table 4. Each algorithm is presented in subsections after we
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mtroduce divisions and division tables.

| Algorithm | Semantic Name

Algorithm Purpose

AS Add Selector Add a selector to an existing class

RS Remove Selector Remove a selector from an existing class

ACL Add Class Links Add inheritance links to a class

RCL Remove Class Links Remove inheritance links from a class

IMA Inheritance Manager, Adding Inheritance propogation and conflict detection
IMR Inheritance Manager, Removing | Inheritance propogation and conflict detection
DSI Determine Selector Index Assign an index to a selector

DCI Determine Class Index Assign an index to a class

Table 4: DT Algorithm Purposes

3.1 Divisions and the Generalized Dispatch Table

One of the most fundamental DT Framework concepts is that of a division.
Divisions are the mechanism by which both the functionality and efficiency of
the DT algorithms is provided. A division represents a method to be executed
for a particular class/selector pair, but contains extra information in addition
to the method address (usually, a class and a selector). The class associated
with a division is referred to as the defining class of the division.

The Table class and its subclasses represent extended dispatch tables called
division tables, which store division pointers instead of addressed. By storing
divisions in the tables, rather than simple addresses, the following capabilities
become possible:

1. Localized modification of the division table during environment modifica-
tion so that only those entries that need to be recomputed are affected.

2. Efficient inheritance propogation and inheritance conflict detection.

3. Detection of simple recompilations (replacing a method for a selector by
a different method) and avoidance of unnecessary computation in such
situations.

4. compile-time method determination.

Every entry of a division table contains a division instance, including entries
that do not have user-specified methods associated with them. Such empty
entries usually contain a special unique EmptyDivision instance, but some in-
dexing strategies use FreeDiwision instances, which represent a contiguous block
of unused table entries. Instances of both of these classes have a special method-
NotUnderstood address associated with them.

Table entries corresponding to class/selector pairs having a user-specified
method are standard divisions, and as such have a defining class, selector, ad-
dress and a set of child divisions. Two alternative forms of standard division
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exist, normal divisions and conflict divisions. A normal division is used to rep-
resent a user-provided method for a particular class/selector pair. A conflict
division 1s used to represent inheritance conflicts due to multiple inheritance.
If a class C inherits two or more distinct methods for a selector o, a conflict
division 1s created with defining class C selector ¢ and a special inheritance-
Conflict method address. Note that this mechanism for handling inheritance
conflicts implies that conflicts in a class C' result in an implicit native definition
of selector o in class C.

Associated with standard divisions is the concept of dependent classes. For
a division D representing class/selector pair < C, o > , the dependent classes of
D consist of all classes which inherit selector ¢ from class C'. Furthermore, each
selector o defined in the environment generates a division inheritance graph,
which is an induced subgraph of the class inheritance hierarchy, formed by
removing all classes which do not natively define ¢. Division hierarchy graphs
are what allow division tables to perform compile-time method determination.
These graphs can be maintained by having each division store a set of child
divisions. For a division D with defining class C' and selector o, the child
divisions of D are the divisions for selector o and classes C; immediately below
(' in the division inheritance graph for o.

3.2 The DT Algorithms
3.2.1 Algorithms AS and RS (Add/Remove Selector)

Algorithm AS is one of the interface routines provided by the DT Environment.
Each time a compiler encounters a new method declaration for a selector, o, in
a particular class, C, it calls this routine (the compiler is assumed to have made
an instance of the DT Environment before it started any parsing). As well, a
run-time system that encounters a method declaration at run-time does exactly
the same thing, calling Algorithm AS with the appropriate selector and class
arguments.

Algorithm AS(inout o : Selector, inout C : Class, in A : Address, inout T: DivisionTable)

1 if index (o) = unassigned or ( T[o,C] # & and T[o, Cl.c # ¢ ) then
2 DSI(o,C, T)

3 endif

4 D¢ := T[o, C]

5 if Do.C = C and Dg.o = o then

6 Do A= A

7 remove any conflict marking on D¢
8 else

9 insert ¢ into selectors(C)

10 Dy := newDivision(C, 0, A)

11 addDivisionChild(D¢, D)

12 IMA(C, C, Dy, nil, T)
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13 endif
end AS

Lines 1-3 of Algorithm AS determines whether a new selector index is needed,
and if so, calls Algorithm DSI (Determine Selector Index) to establish a new
index and move the division as appropriate.

Lines 4-7 determine whether a method recompilation or inheritance conflict
removal has occured. In either case, a division already exists that has been
propogated to a dependent class, so no propogation is necessary. Since the
table entries for all dependent classes of < C,o > store a pointer to the
same division, assigning the new address to the current division has the effect
of modifying the information in multiple division table entries simulaneously.

If the test in line b fails, Algorithm AS falls into its most common scenario,
lines 8-12. A new division is created, a division hierarchy link is added, and
Algorithm IMA is called to propogate the new division to the child classes.

Algorithm RS makes all necessary adjustments to the division table and
related data structures when a selector is removed from a particular class. It
i1s impossible for selector index conflicts to occur when removing a class. On
the other hand, it is possible for inheritance conflicts to occur, when the native
selector definition being removed hides an otherwise multiply visible selector.

Algorithm RS(in ¢ : Selector, in C : Class, in T : DivisionTable)
1 remove ¢ from selectors(C)

2 Dy :=1ID(o, C, parents(C),{},T)

3 IMR(C,o, Dy, nil,T)

end RS

3.2.2 Algorithm IMA /IMR (Inheritance Management)

Algorithm IMA, and its interactions with Algorithms AS and ACL, form the
most important parts of the DT algorithms (along with the analogous case for
Algorithms IMR, RS and RCL). Algorithm IMA is responsible for propogating
a division provided to it from Algorithm AS or ACL, to all dependent classes
of the division. During this propogation the algorithm is also responsible for
maintaining inheritance conflict information and managing selector index con-
flicts.

Algorithm IMA is a recursive algorithm that is applied to one class, then
to each child class of that class. Recursion terminates when a class with a
native definition is encountered, or no child classes exist. The algorithm has
five arguments, but two of them are critical: the class on which the current
recursive invocation applies, and the division to be propogated. The class is
referred to as the target class, and denoted by Cp. The division is referred to as
the new dwision, and denoted by Dpy. The other arguments will be discussed

20



later

. For now, simply note that each invocation of the algorithm is attempting

to propogate a new division, Dy to a particular target class, Cp.

| Notation | Definition |

De The current division, T[o, Cr]
Dy The new division (established in Algorithm AS, ACL, RS or RCL)
Cr The current target class, on which IMA /IMR is currently invoked.
Cn The defining class of the new division. Shorthand for Dy .C'.
Cr The class from which Cp currently inherits the method for Dy .o
Cp The class from which division propogation is to begin
Boolean test indicating whether, after D has been added to the
T division table, D .o is visible in C'p from both C'n and C7,
where C'yy # C7.

Table 5: Notation and Definitions for IM Algorithms

Within a particular invocation of Algorithm IMA, the primary goal is deter-

mini

. Th

ng which division should be placed in the division table for < Cp, Dy.o >
ere are only three possibilities: 1) the new division, Dy is inserted into the

table, 2) the division, D¢, that currently exists in the table for the entry is left

unto

uched, or 3) a new division is created/obtained to be placed in the table.

These three possibilities correspond to three distinct scenarios. In the dis-
cussion of these scenarios, o refers to Dy .o. Also, note that in Algorithm IMR,
method removal actually refers to the propogation of a division, since removal

of a

method is implemented by propogating (adding) an appropriate division.

la Division inserting (DI): This scenario occurs when we have previously

1b

established that the new division, Dy, should be placed in the table for
all dependent classes of < Cg,o > . Thus, scenario DI occurs when Cp
is a dependent class of Dy, and consists solely of inserting Dy into the
division table and continuing recursion.

Division re-inserting (DRI): In class hierarchies with multiple inheritance,
there is often more than one path from a base class, Cp to an arbitrary
subclass, Cr. This implies that during a recursive traversal of child classes,
our inheritance management algorithm can visit the same target class more
than once. However, on the second and subsequent visits, absolutely no
work needs to be done. Scenario DRI occurs when Dy = D¢ # Q and
consists solely of terminating the recursion.

Division child updating (DCU): Termination of the recursive traversal of
the class hierarchy stops when a class is detected which has a native dec-
laration for o. In this case, we want to leave the current division, D¢,
as 1s, since native definitions override inherited ones. However, since each
division maintains the set of its child divisions, we must update these
links. Scenario DCU occurs when a native definition (implicit or explicit)
for o exists in Cp, and involves updating division child information and
stopping recursion.
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3a Conflict-creating (CC): In Algorithm IMA, propogating a division can
result in an inheritance conflict. The boolean test m from Table 5 is useful
because an inheritance conflict exists in Cp if the test is true, and does
not exist in Cp if it is false. We will discuss how to efficiently determine
the truth value of m later. Note that D¢ represents the method that
Cr currently executes for selector . Furthermore, D¢e.C' represents the
defining class of this method. Scenario CC occurs when there exists a path
between Cr and D¢ .C' which does not pass through Dy .C. It involves
creating a conflict division and propogating this division to all dependent
classes of < Cp,D.c > .

3b Conflict-removing (CR): In Algorithm IMR, propogating a division can
result in the removal of an existing inheritance conflict. Scenario CR
occurs when D¢ is a conflict, there exists exactly two parent divisions of
D¢ (ie. | Do P |=2), and either Dy is empty or is an element of D¢ P.
It involves propogating the single division element of De.P — {Dy, Dg}
to all dependent classes of < Cp, D.oc > , where Dp refers to the division
being removed.

Four fundamental boolean tests exist that allow us to efficiently determine
what scenario should be performed during a particular invocation of Algorithm
IMA or IMR.

The four tests are:

1. Cp = C1 (does a native definition exist?)
2. Cn = Cf (have we already propogated a division to this class?)
3. C1 = nil (does the current class recognize the selector in question?)

4. m = true (after adding Dy, does an inheritance conflict exist?)

Table 6 shows how these four tests efficiently determine which scenario to
perform during Algorithms IMA and IMR. Many combinations of truth values
are not possible because the four tests are not entirely independent. Each com-
bination of truth values that i1s not possible has one or more assertion numbers,
presented in Appendix A, explaining why it is not possible. Legal truth value
combinations are marked with the appropriate scenario to perform.

From Table 6, we can determine which tests are necessary to identify the
desired scenario during an invocation of Algorithms IMA and IMR. Tests for
Algorithm IMA are summarized in Table 7 and tests for Algorithm IMR are
summarized in Table 8.

All of these tests are simple comparisons, except for determining the truth
value of m. Remember that 7 is true if ¢ is visible in Cp from both C'y and Cfy,
when Cy # Cr. 1t is useful because an inheritance conflict exists in Cp if the test
is true, and does not exist in C'p if it 1s false. A naive algorithm could determine
the truth value of 7 by traversing down the inheritance hierarchy from both Cy
and (7, looking for Cr. However, a much more efficient mechanism exists.
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| Cpr =0Cp | Cy=0C7p | Cr = nal | T | IMA scenarios | IMR scenarios
T T T T | 1,4,8,100r 11 | 1,6,8,10 or 11
T T T F | 1,40r8 1,6 or 8
T T F T | 5,8 0r11 5,8 or 11
T T F F |8 8
T F T T | 1or10 1,6 or 10
T F T F | 1or10 loré6
T F F T | DCU DCU
T F F F | DCU if isConflict(D_C) CR else DCU
F T T T | 4,10 or 11 6, 10, or 11
F T T F |4 6
F T F T | 11 11
F T F F | DRI DRI
F F T T | 10 6 or 10
F F T F | DI 6
F F F T | CC 12
F F F F | DI DI

Table 6: All truth combinations of the four fundamental DT tests

Scenario | Tests

DCU Cp =0

DRI OT ;ﬁ OI and ON = OI

CcC Cp # Cr and O # C7 and 7 = true
DI Cp # Cr and O # C7 and 7 = false

Table 7: Determining scenario during IMA invocations

Even though the truth value of 7 asssumes that Dy has already been added, it
1s possible to use information stored in the table before Dy is placed to efficiently
determine 7. In Algorithm IMA, we define ¥ = {D | D = T[Dy.0,C;],C; €
parents(Cp)}—{Q}. That is, X represents the set of non-empty divisions stored
in the division table for all parent classes of Cp. If X > 1, a conflict would exist
if Dy were added to Cp. When Cr has a native definition for o, ¥ is identical to
D¢ . P, where D¢ is the division T[o, Cr], and D.P is the set of parent divisions
of D.

For Algorithm IMR, ¥ is defined as for Algorithm IMA, except that the
division being removed, Dg, is not considered as part of the set. Later, we will
see that in Algorithm IMR, Dy does not refer to Dg, but rather to the division
that should be visible in Cp if Dg were removed. This necessitates some other
mechanism for obtaining Dg, which will be discussed when Algorithm IMR is
presented. In any event, once ¥ has been obtained, if | ¥ |> 1, a conflict would
exist in Cp if Dy were added (i.e. if D were removed).

There are also certain times when computation of ¥ 1s not even necessary.
First, = is immediately true if C; < Cy (from Assertion 9 of Appendix A).
Second, 7 can never be true if Cr has only one parent class (¢ cannot be
multiply visible if there is only one path by which selectors can be visible).
Third, = can never be true if Cny = C (from the definition of n). Thus, an
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Scenario | Tests

DRI OT ;ﬁ OI and ON = OI

DI OT ;ﬁ OI and ON ;ﬁ OI

CR Cp = C; and isConflict(D¢) and 7 = false
DCU Cp = C; and ( not isConflict(D¢) or 7 = true )

Table 8: Determining scenario during IMR invocation

efficient test for establishing the true value of 7 is: ( Cf < Cy ) or ( Cy # Cf
and | parents(Cr) |> 1 and | X |> 1).

It is possible for this test to generate temporary conflicts where they do not
truly exist, during a particular invocation. However, by the time all invocations
of Algorithm IMA/IMR are finished (for a particular invocation of Algorithm
AS/RS,ACL or RCL), such temporary conflicts will be removed.

So far, we have determined the possible scenarios that can occur during in-
heritance propogation, and found efficient tests for establishing which scenario
is applicable during a particular invocation of Algorithms IMA and IMR. How-
ever, before presenting the algorithms, there is an important issue that must
be discussed. Up to this point, we have not explained in any detail the role
that a selector index plays in the division tables. We mentioned previously that
the selector index establishes a starting location within the table, and that the
exact interpretation of the index depends on the dispatch technique used. We
must discuss this in more detail, because Algorithm IMA needs to be aware of a
special type of conflict called a selector index conflict. A selector index conflict
can occur in certain table-based dispatch techniques because selector indices are
not necessarily unique. Two different selectors can share the same index as long
as only one non-empty division needs to be stored in a particular division table
entry at a given time. A selector index conflict occurs when an attempt is made
to insert a division into a division table entry that already contains a non-empty
division with a different selector. In these situations, one of the selectors must
be assigned a new index, and all divisions in the division table associated with
that selector must be moved to new locations, based on the new index value.

Algorithm DST (Determine Selector Index) is responsible for assigning a legal
index to a selector. It is presented in Section 3.2.4. Algorithm DSI needs to
be invoked in two distinct situations: 1) when the current selector does not
yet have an index (i.e. its index is unassigned), and 2) when a selector index
conflict is detected. Algorithm AS only needs to invoke Algorithm DSI when the
index, L, of the current selector, Dy .o, is unassigned. Otherwise, Algorithm AS
assumes that no selector index exists and calls Algorithm IMA. Algorithm IMA
is perfectly suited for detecting selector index conflicts, and it directly invokes
Algorithm DSI when it detects a conflict. Detecting a conflict involves a simple
test: Do # Q2 and De.o # Dy.o. If this test is true, a selector index conflict
exists, and Algorithm DSI is called to obtain a new selector index for Dy .o and
move all existing divisions for Dy .o to the new table entries indicated by this
new index.
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Note that Algorithm DSI can be called during any recursive invocation of
Algorithm IMA even though this means that, at the time it is called, the new
division has only been propgated to some of the dependent classes. Algorithm
DSI will move the already propogated divisions to their new locations, and the
subsequent recursive invocations will have a new selector index, L, thus placing
divisions in their correct locations.

Unlike Algorithm IMA, Algorithm IMR does not need to worry about se-
lector index conflicts, because it propogates either empty divisions or divisions
that already exist in the table.

Having established the possible scenarios for a particular invocation of Al-
gorithm IMA | as well as how to efficiently determine which scenario to perform,
we are ready to present Algorithm IMA. It has five arguments:

1. Cp, the current target class.

2. Cp, the base class from which inheritance propogation should start (needed
by Algorithm DSI)

3. Dy, the new division which is to be propogated to all dependent classes
of <(Cp,o0>.

4. Dp, the division in the table for the parent class of Cp from which this
invocation occured.

5. T, the division table to be modified.

Algorithm IMA( in Cp : Class, in Cp : Class, in Dy : Division,
in Dp : Division, inout T : Table)

” Assign important variables”
oc:=Dyn.c

Dy == T[Cn,0]

OI = Dcc

W N

”Check for selector index conflict”
if Do #8Q and De.o # Dy .o then
DSI(Dy.c,Cp,T)
Dc = T[U7 OT]
OI = Dcc
endif

[NoJe SR BN

"Determine and perform appropriate scenarios”

10  if Cp = C7 then "scenario DCU”

11 addDivisionChild(Dy, D)
12 removeDivisionChild(D p, D)
13 return

14 elsif ( C; = Cn ) "scenario DRI”

15 return

16  elsif ( 7 = true ) then
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17 D := RIC(O’,CT,{DN,Dc})

18  else "scenario DI”

19 D := DN
20  endif
" Insert division and propogate to children”

21 T[e,Cp,:]=D
22 foreach C; € children(Cr) do

23 IMA(C;,Cp,D,D¢,T)
24  endfor
end IMA

Algorithm IMA can be divided into four distinct parts. Lines 1-4 determine
the values of the test variables. Note that Do = © when Dy .o is not currently
visible in C'r. We define €2.C' = nil, so in such cases, C; will be nil.

Lines 5-9 test for a selector index conflict, and, if one i1s detected, invoke
Algorithm DSI and reassign test variables that change due to selector index
modification. Recall that Algorithm DSI is responsible for assigning selector
indices, establishing new indicies when selector index conflicts occur, and mov-
ing all selectors in a division table when selector indices change. Note that
selector index conflicts are not possible in STT and VITBL dispatch techniques,
so the DT Table classes used to implement these dispatch techniques provide
an implementation of Algorithm IMA without lines 5-9. Furthermore, due to
the manner in which Algorithm DSI assigns selector indices, it is not possible
for more than one selector index conflict to occur during a single invocation of
Algorithms AS and ACL, so if lines 6-8 are ever executed, subsequent recursive
invocations can avoid the check for selector index conflicts by calling the version
of Algorithm IMA without them.

Lines 10-22 apply the scenario determining tests to establish one of the three
scenarios. Only one of the three scenarios is performed for each invocation of Al-
gorithm IMA, but in all scenarios, one of two things must occur: 1) the scenario
performs an immediate return, thus stopping recursion and not performing any
additional code in the algorithm or 2) the scenario assigns a value to the special
variable, D. If the algorithm reaches the fourth part, variable D is to represent
the division that should be placed in the division table for C'r, and propogated
to child classes of C'p. It 1s usually Dy, but during conflict-creation this is not
the case. In line 11, procedure addDivisionChild adds its second argument as a
child division of its first argument. in line 12, procedure removeDivisionChaild
removes its second argument as a child of its first argument. In both cases, if
either argument is an empty division, no link is added.

When the DT Algorithms are used on a language with single inheritance,
conflict detection is unnecessary and multiple paths to classes do not exist, so
scenarios conflict-creating and division re-inserting are not possible. In such
languages, Algorithm IMA simplifies to a single test: if Cp = Cf, perform
division child updating, and if not, perform division inserting.

Finally, Lines 21-24 are only executed if the scenario determined in the third
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part does not request an explicit return. It consists of inserting division D into
the division table for < Cp,¢ > and recursively invoking the algorithm on all
child classes of Cp, passing in the division D as the division to be propogated.
It is important that division table entries in parents be modified before those in

children, in order for 7 to be efficiently determined.

The arguments to Algorithm IMR, are similar, but not identical to those for
Algorithm IMA. Selector index conflicts cannot occur in Algorithm IMR, and
since (g, the base class, is needed only for passing to Algorithm DSI, Cp is
not necessary for Algorithm IMR. However, it is necessary to explicitly pass in
the selector for which the removal 1s occuring, because the propogated division,
Dy can be empty. In Algorithm IMA | this argument was not needed because
it can be obtained from Dy .o, since Dy # § (Assertion 4 of Appendix A).

Algorithm IMR( in Cp : Class, in o : Selector, in Dy : Division,
in Dp : Division, inout T : Table)
” Assign important variables”

1 oc:=Dyn.c

2 ON = DNO

3 DN = T[ON,CT]
4 OI = Dcc

"Determine and perform appropriate action”

5 if Cp # C7 then

6 if Cn = C7 then "action DRI”

7 return

8 else "action DI”

9 D := DN

10 endif

11 elsif isConflict(D¢) and not | £ |> 1 then "action CR”
12 if |  |= 0 then

13 D:=Q

14 else

15 D := the single element of X
16 endif

17 else "action DCU”

18 addDivisionChild(D y, D)

19 removeDivisionChild(D p, D)

20 return

21 endif

" Insert division and propogate to children”
22  T[e,Cr]:=D
23 foreach C; € children(Cr) do

24 IMR(C;,0,D,D¢,G,T)
25 endfor
end IMR

Algorithm IMR is divided into only three parts, since index conflicts are not
possible. Lines 1-4 set the values of test variables. Note that for Algorithm IMR,
C1 will never be nil because D¢ will never be empty (it represents the division
of the selector being removed, or a removed conflict division). However, since
Dy can be empty, Cx can be nil. If this occurs, it indicates that no method
for the selector is visible (in C7) after the existing method is removed.

Lines 5-21 establish which scenario to execute, and perform the appropriate
actions. In line 11, remember that we have established that the truth value of
m, if Dy were added to C7p, is efficiently computable with the following test:
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(Cr < Cpy) or ( Cn # Cr and | parents(Cr) |> 1 and | X |> 1). Everything in
this test before X exists to avoid calculating X, but since ¥ 1s needed in order
to obtain a value for D, we must always compute it, so the other tests are not
used. Recall that, for Algorithm IMR, X is the set of non-empty divisions stored
for selector o and all parent classes of Cr, where the division being removed is
not considered part of the set. Since the division being removed is represented
by Dp, we have all the information necessary to compute X. Also, notice from
Table 8 that when Cp = Cf, it is not possible for Cy = Cf, so we can avoid
that test. If m is false, there can be at most one element in ¥. ¥ can also be
empty, since it does not contain €2 — in such cases, D is assigned 2. Otherwise,
D is assigned the single element of 3.

Lines 22-25 are only executed if the scenario determined in the second part
did not perform an explicit return. The division table entry identified by <
Cr,o > is modified, and the algorithm is recursively invoked on all child classes
of class Cr.

3.2.3 Algorithms ACL and RCL (Add/Remove Class Links)

Algorithm ACL is responsible for updating the division table when new inher-
itance links are added to the inheritance graph. Dynamic schema evolution is
possible, so new parent and child links can be added to a class which already
has parent and/or child classes. Rather than having Algorithm ACL add one
inheritance link at a time, we have generalized it so that an arbitrary number
of both parent and child class links can be added. This is done because the
number of calls to Algorithm IMA can often be reduced when multiple parents
are given. For example, when a conflict occurs between one or more of the new
parent classes, such conflicts can be detected in Algorithm ACL, allowing for a
single conflict division to be propogated. If only a single parent were provided
at a time, the first parent specified would propogate the division normally, but
when the second (presumably conflicting) parent was added, a conflict division
would have to be created and propogated instead. Algorithm ACL accepts a
class ', a set of parent classes, Gp, and a set of children classes G¢.

Algorithm ACL(in C : Class, in Gp : Set, in G¢ : Set, inout T : DivisionTable) : Boolean

1 update parent and child sets of all classes in {C'} U G- UG p as appropriate
2 if inheritance graph is cylic then

3 undo changes

4 return false

5 endif

6 if (|Ge |>0) then

7 foreach ¢ € selectors(C) do

8 D := T[e, C]

9 foreach C; € G do

10 IMA(C;,C,D,D,T)
11 endfor

12 endfor

13 endif

14 i (|Gp|>0) then
15 G := ICB(C,Gp,T)
16 for < o,D >€ G do
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17 if not isEmpty(D) then

18 IMA(C,C,D,nil,T)
19 endif

20 endfor

21 endif

end ACL

Lines 1-5 are responsible for updating class hierarchy links and ensuring the
inheritance graph remains acylic. Lines 7-12 propogate the native behavior of
class C to classes in G'¢. Note that it is neither possible, nor desirable, to invoke
Algorithm IMA on class C' directly. It 1s not possible, because this would result
in Cy = C7 = Cp within Algorithm IMA, which has been intentionally disal-
lowed for efficiency reason. It is undesirable because it would result in division
propogation to children that have already had propogation performed (since G¢
need not be the entire set of child classes of C). Thus, we call Algorithm IMA
in each child class found in G¢. In lines 15-20, Algorithm ICB (Inherited Class
Behavior) returns the set of all divisions inerited in class C for ¢ from parents
classes in the class set Gp. If different methods for the same selector are in-
herited, Algorithm ICB detects this and replaces the multiple divisions with a
single conflict division to be propogated. Thus, the set G is guaranteed to have
at most one division for each selector in the environment. All such divisions are
propogated to class C' and dependent classes of C by calling Algorithm IMA on

C itself.
Algorithm RCL is used to update the division table when inheritance links
between classes are removed.

Algorithm RCL(in C : Class, in Gp : Set of Classes, in G : Set of Classes, in T : DivisionTable)

1 remove classes in GGp from parent set of C

2 remove classes in G from child set of C

3 if (|Ge |>0) then

4 foreach ¢ € selectors(C) do

5 foreach CelementG s do

6 Dy := ID(o, C;, parents(C;) —{C}{},T)
7 IMR(C;,C, Dy, nil, T)

8 endfor

9 endfor

10  endif

11 i (|Gp |>0) then

12 G := ICB(C, parents(C) — Gp,T)
13 for < o,D >€ G do

14 IMR(C,e,D,nil,T)

15 endfor

16  endif

end RCL

In line 5, similar to Algorithm ACL, we treat native selectors separately
from inherited behavior. We iterate over every native selector in class C, and
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for each child class of C, obtain the appropriate division inherited in the child
class, given that the child no longer inherits from C. Algorithm ID returns the
division inherited in class C for selector ¢ if no native definition existed in C
and C had as parents only the classes in the provided set.

In line 12, the inherited behavior consists of the behavior inherited from all
parents of class C not in the set Gp. Set G is guaranteed to have at most one
division for each selector.

3.2.4 Algorithms DSI and DCI (Determine Selector/Class Index)

Algorithm DSI is called to obtain a selector index, given a class selector pair.
If the selector already has an index, the algorithm must determine whether a
selector index conflict exists, and if so, compute a new index, store the index,
allocate space in the table to handle the new index, and move all divisions for
the selector from their old positions in the table to their new positions.

Algorithm DSI(inout o : Selector, in C : Class, inout T : DivisionTable)
L4 = index(o)
if L4 is unassigned or a selector index conflict exists
Lpew := indexFreeFor( classesUsing(c) U dependentClasses(C,o) )
index( ¢ ) := Lpew
if L,;q # unassigned then
for C; € classesUsing(c) do
T[Lnew, Ci] := T[Loa, Cil
T[Lota, Ci] =8

endfor

W O Uk W

Ne}

10 endif

11 extend selector dimension of table to handle Lyew
12 index(¢) := Lpew

13 endif

end DSI

In line 3, the function indexFreeFor is a dispatch-technique dependent al-
gorithm that obtains an index that is not currently being used for any class
that is currently using o, as well as those classes that are dependent classes of
< (C,0 > . The algorithm 1is responsible for allocating any new space in the
table necessary for the new index.

In line 5, if the old index is unassigned there are no divisions to move, since
no divisions for o currently exist in the table. Otherwise, the divisions for o
have changed location, and must be moved. The old locations are initialized
with empty divisions.

Algorithm DCI is trivial, and is not presented.

4 The DT Framework

The DT Framework provides a collection of abstract classes that define the
data and functionality necessary to modify dispatch information incrementally
during environment modification. Recall that, from the perspective of the DT
Framework, environment modification occurs when selectors or class hierarchy
links are added or removed.
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The DT Framework consists of a variety of special purposes classes 3. Fig-
ure 5 shows the class hierarchies. We describe the data and functionality that
each class hierarchy needs from the perspective of inheritance management and
dispatch table modification. Clients of the framework can specify additional
data and functionality by subclassing some or all of the classes provided by the
framework.

EmptyDivision StandardDivision 2DTable OuterTable
/ \ Selector / 1DTable \

NormalDivision ConflictDivision Extendable2DTable SeparatedTable

FreeDivision m FixedRow2DTable PartitionedTable
Class
S CIS
2D-8s . NonSharedCIS SharedCIS
ShiftedSIS OuterSIS
/ \ OuterCIS
PlansiS | Aliassdss PartiionedSIS ~ SeparatedSIS T~
PartitionedCIS SeparatedCIS
ColoredSIS

Figure 5: The DT Framework Class Hierarchy

4.1 The DT Classes

The Environment, Class and Selector classes are not subclassed within the DT
Framework itself, but the Division, Table, SIS and CIS classes are subclassed.
In the following subsections, we discuss the purpose of each class.

4.1.1 Environment, Class and Selector

The DT Environment class acts as an interface between the DT Framework
client and the framework itself. However, since the client can subclass the DT
Framework, the interface is a white box, not a black one. Each client creates a
unique instance of the DT Environment and as class and method declarations are
parsed (or evaluated at run-time), the client informs the Environment instance
of these environment modifications by invoking its interface operations. These
interface operations are: AS (Add Selector), RS (Remove Selector), ACL (Add
Class Links), and RCL (Remove Class Links). The environment also provides
functionality to register selectors and classes with the environment, save division

3In this discussion, we present the conceptual names of the classes, rather than the exact
class names used in the C++ implementation.
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tables, convert division tables to dispatch tables, merge division tables together
and perform actual dispath for a particular class/selector pair.

Within the DT Framework, instances of Selector need to maintain a name.
They do not maintain indices, since such indices are table-specific. Instances of
Class maintain a name, a set of native behaviors, a set of immediate superclasses
(parent classes), and a set of immediate subclasses (child classes). They provide
mechanisms to add to, remove from and iterate over the sets. Furthermore,
they implement an efficient mechanism for determining whether another class
is a subclass or not.

4.1.2 Divisions

The Division hierarchy is in some ways private to the DT Framework, and
language implementors that use the DT Framework will usually not need to
know anything about these classes. However, divisions are of critical importance
in providing the DT Framework with its incremental efficiency and compile-time
method determination. Each division represents a method to be executed for a
particular class/selector pair, and the class is referred to as the defining class
of the division. Divisions, and their role in division tables, was discussed in
Section 3.1.

4.1.3 Tables

Each Table class provides a fundamental structure for storing divisions, and
maps the indices associated with a class/selector pair to a particular entry in
the table structure. Each of the concrete table classes in the DT Framework
provides a different underlying table structure. The only functionality that
subclasses need to provide is that which is dependent on the structure. This
includes table access, table modification, and dynamic extension of the selector
and class dimensions of the table.

The 2DTable class is an abstract superclass for tables with orthogonal class
and selector dimensions. Rows represent the selector dimension, and columns
represent the class dimension. The Extendable2DTable class can dynamically
grow in both selector and class dimensions as additional elements are added to
the dimensions. The FixedRow2DTable dynamically grows in the class dimen-
sion, but the size of the selector dimension is established at the time of table
creation, and cannot grow larger.

The 1DTable class 1s concrete, and represents tables in which selectors and
classes share the same dimension. Selector and class indices are added together
to establish an entry within this one dimensional table.

The OuterTable class is an abstract superclass for tables which contain sub-
tables. Most of the functionality of these classes involves requesting the same
functionality from a particular subtable. For example, requesting the entry for a
class/selector pair involves determining (based on selector index) which subtable
is needed, and requesting table access from that subtable. Individual selectors
exist in at most one subtable, but the same class can exist in multiple subta-
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bles. For this reason, class indices for these tables are dependent on selector
indices (because the subtable is determined by selector index). For efficiency,
selector indices are encoded so as to maintain both the subtable to which they
belong, as well as the actual index within that subtable. The PartitionedTable
class has a dynamic number of FixedRow2DTable instances as subtables. A
new FixedRow2DTable instance is added when a selector cannot fit in any ex-
isting subtable. The SeparatedTable class has two subtables, one for standard
selectors and one for conflict selectors. A standard selector is one with only
one root division (a new selector is also standard), and a conflict selector is one
with more than one root division. Each of these subtables can be an instance
of either Extendable2DTable or PartitionedTable. Since PartitionedTables are
also outer tables, such implementations express tables as subtables containing
subsubtables.

4.1.4 Selector Index Strategy — SIS

Each table has associated with 1t a selector index strategy, which is represented
as an instance of some subclass of SIS. The OuterTable and 1DTable classes
have one particular selector index strategy that they must use, but the 2DTable
classes can choose from any of the 2D-SIS subclasses.

Each subclass of SIS implements Algorithm DST (Determine Selector Index),
which provides a mechanism for determining the index to associate with a se-
lector, given a class/selector pair. Each SIS class maintains the current index
for each selector, and is responsible for detecting selector index conflicts. When
such conflicts are detected, a new index must be determined that does not con-
flict with existing indices. Algorithm DSI is responsible for detecting conflicts,
determining a new index, storing the index, ensuring that space exists in the
table for the new index, moving divisions from the old table locations to new
table locations, and returning the selector index to the caller.

The abstract 2D-SIS class repesents selector index strategies for use with
2D-Tables. These strategies are interchangable, so any 2D-Table subclass can
use any concrete subclass of 2D-SIS in order to provide selector index deter-
mination. The PlainSIS class is a naive strategy that assigns a unique index
to each selector. The ColoredSIS and AliasedSIS classes allow two selectors to
share the same index as long as no class in the environment recognizes both
selectors. They differ in how they determine which selectors can share indices.
AliasedSIS is only applicable to languages with single inheritance.

The ShiftedSIS class provides selector index determination for tables in
which selectors and classes share the same dimension. This strategy imple-
ments a variety of auxillary functions which maintain doubly-linked freelists of
unused entries in the one-dimensional table. These freelists are used to effi-
ciently determine a new selector index. The selector index is interpreted as a
shift offset within the table, to which class indices are added in order to obtain
a table entry for a class/selector pair.

The PartitionedSIS class implements selector index determination for Parti-
tionedTable instances. When selector index conflicts are detected, a new index
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is obtained by asking a subtable to determine an index. Since FixedRow2D
subtables of PartitionedTable instances are not guaranteed to be able to assign
an index, all subtables are asked for an index until a subtable is found that
can assign an index. If no subtable can assign an index, a new subtable is
dynamically created.

The SeparatedSIS class implements selector index determination for Sepa-
ratedTable instances. A new index needs to be assigned when a selector index
conflict is detected or when a selector changes status from standard to conflict-
ing, or vice-versa. Such index determination involves asking either the standard
or conflict subtable to find a selector index.

4.1.5 Class Index Strategy — CIS

Each table has associated with it a class index strategy, which is represented as
an instance of some subclass of CIS. The OuterTable and 1DTable classes have
one particular class index strategy that they must use, but the 2DTable classes
can choose from either of the 2D-CIS subclasses.

Each subclass of CIS implements Algorithm DCI (Determine Class Index),
which provides a mechanism for determining the index to associate with a class,
given a class/selector pair. Each CIS class maintains the current index for each
class, and is responsible for detecting class index conflicts. When such conflicts
are detected, a new index must be determined that does not conflict with ex-
isting indices. Algorithm DCI is responsible for detecting conflicts, determining
a new index, storing the index, ensuring that space exists in the table for the
new index, moving divisions from old table locations to new table locations, and
returning the class index to the caller.

The NonSharedCIS class implements the standard class index strategy, in
which each class is assigned a unique index as it is added to the table. The
SharedCIS class allows two or more classes to share the same index if all classes
sharing the index have exactly the same division for every selector in the table.

The PartitionedCIS and SeparatedCIS classes implement class index deter-
mination for PartitionedTable and SeparatedTable respectively. In both cases,
this involves establishing a subtable based on the selector index and asking that
subtable to find a class index.

5 Incremental Table-based Method Dispatch

All of the table-based techniques can be implemented using the DT Framework.
However, due to the non-incremental nature of the virtual function table tech-
nique (VIBL), an incremental implementation of VIBL would be quite ineffi-
cient, so the current implementation of the framework does not support VIBL
dispatch. All other techniques are provided, and the exact dispatch mechanism
is controlled by parameters passed to the DT Environment constructor. The
parameters indicate which table(s) to use, and specify the selector and class
index strategies to be associated with each of these tables.
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1. STI: uses Extendable2DTable, PlainSIS, and NonSharedCIS.
SC': uses Extendable2DTable, ColoredSIS, and NonSharedCIS.
RD: uses 1DTable, ShiftedSIS and NonSharedCIS.

- N

CT': uses a SeparatedTable with two PartitionedTable subtables, each
with FixedRow2DTable subsubtables. The selector index strategy for all
subsubtables of the standard subtable 1s AliasedSIS, and the strategy for
all subsubtables of the conflict subtable is PlainSIS. All subsubtables use
SharedCIS.

5. SCCT: uses a SeparatedTable with two PartitionedTable subtables, each
with FixedRow2DTable subsubtables. All subsubtables use ColoredSIS
and SharedCIS.

The framework provides an elegant mechanism by which SC and CT dis-
patch can be merged into a new hybrid technique, SCCT. Using both SC and
CT together works well to extend CT dispatch to languages with multiple in-
heritance. The selector aliasing performed by CT can remove all internal empty
entries from each column of the table, without concern for other columns, as
long as the table contains only standard selectors and uses only single inher-
itance. However, using selector coloring will often provide exactly the same
compression (and will have a very small amount of internal empty space even in
the worst cases), and is not restricted to single inheritance. Furthermore, CT
dispatch cannot use selector aliasing to compress the conflict table, so all con-
flict selectors are effectively placed in an STT style table (although partitioning
and class sharing can still be applied to this table to compress it). Using the
SC technique on the conflict table provides the potential for more compression
(note however, that coloring may reduce the amount of class sharing possible).
The SCCT technique has the same dispatch performance as CT, slightly bet-
ter space performance than CT, and generalizes CT to languages with multiple
inheritance.

In addition to providing each of the above dispatch techniques, the frame-
work can be used to analyze the various compression strategies introduced by
CT dispatch in isolation from the others. For example, a dispatch table consist-
ing of a PartitionedTable, whose FixedRow2DTable subtables each use Plain-
SIS and SharedCIS indexing strategies, allows us to determine how much table
compression is obtained by class sharing alone. Many variations based on Sep-
aratedTable and PartitionedTable, their subtables, and the associated index
strategies, are possible.

6 Efficiency issues within Compilers and Run-
time Systems

Both compilers and run-time systems benefit equally from the dispatch tech-
nique independence provided by the DT Framework. In addition, the framework
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provides each of them with powerful functionality.

6.1 Compilers

The DT Framework provides compilers with the following advantages: 1) main-
tenance of inheritance conflicts, 2) compile-time method determination, and 3)
the ability to perform separate compilation.

In languages with multiple inheritance, it 1s possible for inheritance conflicts
to occur, when a class with no native definition for a selector inherits two distinct
methods for the selector from two or more superclasses. For the purposes of both
efficiency and software verification, compile-time detection of such conflicts 1s
highly desirable.

The most substantial benefit that the DT Framework provides to compil-
ers is the recording of information needed to efficiently determine whether a
particular class/selector pair is uniquely determined at compile-time. In such
cases, the compiler can avoid run-time method dispatch entirely, and generate
an immediate function call or even inline the code.

Another powerful capability provided to compilers by the DT Framework
i1s separate compilation. Each library or collection of related classes can be
compiled, and a full division table stored with the associated object code. At
link-time, a separate DT Environment for each library or module can be created
from the stored division tables. The linker can then pick one such environment
(usually the largest) and ask that environment to merge each of the other en-
vironments into itself. This facility is critical in situations where a library is
being used for which source code is not provided. Since certain dispatch table
techniques require the full environment in order to maintain accurate tables (i.e.
SC, RD and CT) library providers who do not want to share their source code
need only provide the inheritance hierarchy and selector definition information
needed by the DT Framework.

Finally, note that although it is necessary to use the extended dispatch table
(i.e. a division table) to incrementally modify the inheritance information, in
non-reflexive compiled languages it is not necessary to maintain the division
table at run-time. Once linking is finished, the linker can ask the DT Environ-
ment to create a dispatch table from the division table, and this dispatch table
can be stored in the executable for static use at run-time.

6.2 Run-time Systems

The DT Framework provides run-time systems with: 1) table-based dispatch
in reflexive languages, 2) dynamic schema evolution, and 3) inheritance conflict
detection.

The utility of the DT Framework is fully revealed when it is used by run-time
systems. Because of the efficiency of incremental inheritance propogation and
dispatch table modification, it can be used even in heavily reflexive languages
like Smalltalk ([GR83]) and Tigukat ([OPS*95]). However, this functionality is

provided at the cost of additional space, because the entire division table must
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be maintained at run-time, rather than just a dispatch table containing addreses.
Note also that without additional space utilization, division-table based dispatch
is more expensive than normal table dispatch because of the indirection through
the division stored at a division table entry in order to obtain an address. By
doubling the table size, this can be avoided by having the division table store
both a division pointer and an address. In dispatch techniques like RD and CT
that are space-efficient, this doubling of size may be worth the improvements in
dispatch performance.

Some mechanism to support dynamic schema evolution is necessary to pro-
vide languages with true reflexivity. The DT Framework allows arbitrary class
hierarchy links to be added and removed no matter what the current state of
the classes.

Finally, the framework allows inheritance conflicts to be detected at the time
they are produced, rather than during dispatch. This allows reflexive languages
to return error indicators immediately after a run-time environment modifica-
tion. A common complaint with reflexivity is a lack of software verification; the
DT Framework provides partial a solution to this.

7 Performance Results

In this section, we present some performance results obtained by applying the
DT Framework to the class libraries described in Table 9. In the table, C'
is the total number of classes, S is the total number of selectors, M is the
total number of legitimate class-selector combinations, m is the total number
of defined methods, P is the average number of parents per class, and B is the
size of the largest complete behavior, (c.f. [DH95]).

| Library | C | S | M | m | P | B |
Digitalk ST/V 2.0 534 4490 154616 6858 1 677
Parcplacel 774 5086 178230 8540 1 401
Geode 1318 6549 302709 | 14194 | 2.11 795
IBM Smalltalk 2.0 | 2320 14064 485779 | 26017 1 656
Parcplace2 1956 12583 578309 | 22968 1 514
Digitalk ST/V 3.0 1356 10062 613676 | 17104 1 1065
Self System 4.0 1801 10121 1038573 | 29414 | 1.02 966
Visual Age 2.0 3241 17404 | 1045949 | 37080 1 745

Table 9: Statistics for various object-oriented environments

In order to obtain the statistics presented in this section, a simple driver
program was written which creates an instance of the DT Environment and
parses an input file. Each line of the input file contains one of four directives
(add/remove a selector for a class, or add/remove class hierarchy links). Thus,
each line results in the invocation of one of the four DT Environment interface
algorithms: AS, RS, ACL or RCL. Timings presented here are in milliseconds,
and refer to the total user and system time taken to parse the entire input
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file and incrementally build a division table for the environment. The experi-
ments were performed on a SparcStation-20/50 with 160Mb of RAM running
Sun0S4.1.4. The DT source code was compiled using g+4 -O2. Some caveats
on the timings should be noted. Relative performance results, in terms of ex-
ecution speed, between the various dispatch techniques, are not representative
of the fastest possible times. In general, none of the techniques have been opti-
mized, and it is expected that a careful profiling will reveal many ways in which
the overall framework, and the specific dispatch technique implementations, can
be improved. On the other hand, fill-rate performance between techniques is
optimal, but is discussed elsewhere ([VH96, DH95]) so is not readdressed here.

Not surprisingly, the order in which the environment is parsed can have a
substantial effect on both execution performance and dispatch table fill-rate,
given the incremental nature of the DT algorithms. In order to measure this
effect, each of the library environments of Table 9 was ordered in multiple ways,
and the DT algorithms were run on each input variation to establish timings
and fillrates. From these experiments, it is possible to establish the optimal
ordering for storing static libraries, as well as indicate how expensive random
orderings are in reflexive languages. We have divided each input ordering using
a primary ordering and a secondary ordering. The primary ordering determines
how class definitions and selector definitions are intermixed. Native selectors
can be defined immediately after each class definition, all selector definitions can
occur after all class definitions, or all class definitions can occur after all selector
definitions. Within each primary ordering, a secondary ordering establishes the
order in which individual items (classes or selectors) appear. Classes can be
ordered top-down, bottom-up or randomly. Selectors can occur by ordering
the classes in various ways and and putting all native selectors for each class
together, or can be grouped according to name (all selectors of the same name
appear together). The DT Framework has been tested on the following input
orderings:

1. CSD: classes are ordered top-down and all native selectors for each class
occur immediately after the class definition

2. CSU: classes are ordered bottom-up and all native selectors for each class
occur immediately after the class definition

3. CSR: classes are ordered randomly and all native selectors for each class
occur immediately after the class definition

4. CDSD: all class definitions occur before any selector definition. Classes
are defined by ordering them top-down. The order in which selectors
appear is determined by ordering classes top-down and defining all native
selectors for each class in this ordering together, before native selectors
for others classes in the ordering.

5. CDSU: like CDSD except selectors are defined by ordering classes bottom-
up and putting all native behaviors for each class in this order together.
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10.

11.

12.

13.

14.

15.

. CDSR: like CDSD except selectors are defined by ordering classes ran-

domly and putting all native behaviors for each class in this order together.

CUSD: all class definitions occur before any selector definition. Classes
are defined by ordering them bottom-up. The order in which selectors
appear is determined by ordering classes top-down and defining all native
selectors for each class in this ordering together, before native selectors
for other classes in the ordering.

. CUSU: like CUSD except selectors are defined by ordering classes bottom-

up and putting all native behaviors for each class in this order together.

. CUSR: like CUSD except selectors are defined by ordering classes ran-

domly and putting all native behaviors for each class in this order together.

CRSD: all class definitions occur before any selector definition. Classes are
defined by ordering them randomly. The order in which selectors appear is
determined by ordering classes top-down and defining all native selectors
for each class in this ordering together, before native selectors for other
classes in the ordering.

CRSU: like CRSD except selectors are defined by ordering classes bottom-
up and putting all native behaviors for each class in this order together.

CRSR: like CRSD except selectors are defined by ordering classes ran-
domly and putting all native behaviors for each class in this order together.

RDD: all classes are defined before any selector, and classes are ordered
top-down. All definitions for the same selector occur together, and selec-
tors occur by sorting them in descending order based on the number of
classes that recognize them (i.e., selectors recognized by more classes are
defined before those recognized by fewer). Note that the RDD ordering is
the closest to the optimal ordering identified by [DH95] for RD dispatch.

RDU: like RDD except that classes are ordered bottom-up (selectors ap-
pear in the same order they do in RDD).

RND: the totally random ordering — the order of class and selector defi-
nitions is completely random.

Due to the number of combinations possible, we do no present results for
every combination of dispatch technique, library and input ordering in this
paper. Instead, we have choosen representative examples. For the most part,
we will focus on SC dispatch and the Parcplacel library, whose graphs are, for
the most part, representative of other techniques and libraries.

The results have been divided into two subsections. In the first, we deter-
mine which input ordering provides the best execution time and fill-rate per-
formance. This is useful because all object-oriented languages, reflexive or not,
provide code reuse via libraries. The DT algorithms can be used to create a
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division table for each library. This division table would be stored with the
library and loaded as the initial division table when application code is to be
compiled. Thus, application code would incrementally modify a precomputed
division table. The time taken for the DT algorithms to create a division table
for a library represents the amount by which compilation would slow down if
the DT algorithms were used by the compiler. The second subsection presents
results on the effects of random input orderings on execution time and fill-rate,
including per-modification timings. These timings represent how long the exe-
cution of a run-time system is delayed each time a selector or class is added at
run-time.

7.1 Static Input Orderings
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Figure 6: Input order vs. Execution time for SC dispatch

There are two ways in which input order affects execution time. First, certain
orderings will require less inheritance propogation than others. For example, an
input ordering in which selectors are defined based on top-down class order will
require much more inheritance propogation than an ordering in which selectors
are defined based on bottom-up class ordering (the former order must propogate
divisions that are subsequently overridden). Second, certain orderings will re-
quire fewer calls to Algorithm DSI. Since Algorithm DSI is usually the most
expensive algorithm in the DT Framework, avoiding it is desirable. Unneces-
sary calls to Algorithm DSI can be avoided by ordering the environment so that
selectors appear based on top-down class order. In this way, the first call to
DSI will find an index free for the largest number of dependent classes. In the
opposite order, with selectors appearing based on bottom-up class order, indices
are assigned based on only a small number of the classes that will eventually
recognize the selector, requiring additional calls to DSI as selector definitions
for classes higher in the hierarchy are obtained. Note that the two manners
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in which input order affect execution time compete with one another. One is
minimized by selectors ordered by classes top-down, and the other by selectors
ordered by classes bottom-up.
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Figure 7: Input order vs. Execution time for Parcplacel

Figure 6 shows the time, in milliseconds, taken by the DT Framework to
create a selector colored division table (SC), using each of the non-random input
orderings. From the graph, we can make the following conclusions. RDD; RDU,
CDSD and CUSD are roughly equal (which is better depends on the library
being processed). All of these are slightly better than CDSU and CUSU, which
are usually much better than CSD and CSU. These overall trends hold true
across all techniques, although the degree by which timings are affected varies
with technique. Figure 7 shows the effects of input order on execution time for
each of STI, SC, RD and CT* on the Parcplacel library. Results for SCCT are
not shown because they are almost identical to CT.

Input ordering has a slightly different effect on fill-rate. Figure 8 shows
fillrates for the non-random input orderings using SC dispatch, and Figure 9
shows fillrates for all four of the dispatch techniques when these input orderings
are applied to the Parcplacel library.

Input orders RDD and RDU provide the best fill-rates, followed by CDSD,
CUSD and CSD (unlike for execution times, where CSD was worst). The
bottom-up selector orderings (CDSU, CUSU and CSU) give the worst fill-rates.
Notice that, from a fill-rate perspective, RD dispatch is most sensitive to input
ordering, and STI dispatch is not affected at all. Remember that RDD/RDU
represent the input ordering identified by [DH95] as optimal for fill-rate perfor-
mance in RD dispatch.

From the previous graphs, we can conclude that the best possible ordering
for both execution time and maximal fill-rate is RDD or RDU. Exactly which

4The results reported here are for a version of CT in which selector coloring is used instead
of selector aliasing.
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Figure 8: Input order vs. Fill-Rate for SC dispatch

one 18 better varies on the dispatch technique, library and input order, but, on
average, RDD gives the best results.

7.2 Random Orderings

Knowing the optimal static ordering is useful in determining how library code
should be stored to make recomputation of a library division table optimal.
However, in reflexive languages, such fine control over input ordering is not
possible. In order to determine how the DT Framework performs on random
input, we generated 10 versions of each of the random orderings. The average
execution time and fill-rate across these 10 input files gives a good measure of
the performance of the algorithms on random data. Figures 10 and 11 show the
execution time and fill-rate performance respectively for some of these random
orderings. We have also included some non-random orderings for comparison.
The totally random ordering, RND, is approximately 2.5 times slower than the
optimal ordering, RDD, and twice as fast as the worst ordering, CSD.

In reflexive environments, the per-invocation cost of the incremental algo-
rithms is also of interest. Figures 12 and 13 show the average time (in millisec-
onds) of a call to Algorithm AS and ACL respectively.

The average per-invocation cost of adding a selector in environments with
about half a million class/selector pairs is approximately one millisecond. The
average per-invocation cost of adding class hierarchy links is at most 80 mil-
liseconds. Note that although order CSD is optimal for Algorithm AS; it is the
absolute worst ordering for Algorithm ACL. In this ordering, no inheritance pro-
pogation occurs during Algorithm AS, and redundant inheritance propogation
occurs during Algorithm ACL. As expected, the best overall ordering is RDD.
During Algorithm AS, the truly random ordering, RND, i1s not much more ex-
pensive than RDD. However, during Algorithm ACL, the random ordering is
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Figure 9: Input order vs. Fill-Rate for Parcplacel

much more expensive than order RDD, but is about 75% more efficient than

order CSD.

8 Related and Future Work
8.1 Related Work

[DHV95] presents an analysis of the various dispatch techniques and indicates
that in most cases, IC and PIC are more efficient than STIT, SC and RD, espe-
cially on highly pipelined processors, because IC and PIC do not cause pipeline
stalls that the table indirections of STT, SC and RD do. However, even if the
primary dispatch technique is IC or PIC, it may still be useful to maintain a
dispatch table for cases were a miss occurs, as a much faster alternative to us-
ing ML (method lookup) or LC (global cache) and ML together. Especially
in reflexive languages with substantial multiple inheritance, ML is extremely
inefficient, since each inheritance path must be searched (in order to detect
inheritance conflicts).

[DGCY5] discusses static class hierarchy analysis and its utility in optimizing
object-oriented programs. They introduce an applies-to set representing the set
of classes that share the same method for a particular selector. These sets are
represented by our concept of dependent classes. Since each division implicitly
maintains its set of dependent classes, the DT algorithms have access to such
sets, and to the compile-time optimizations provided by them.

[AR92] presents an incremental approach to selector coloring. However,
the algorithm proposed often performs redundant work by checking the valid-
ity of selector colors each time a new selector is added. The DT algorithms
demonstrates how to perform selector color determination only when absolutely
necessary (i.e. only when a selector color conflict occurs), and generalize the ap-
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Figure 10: Random Input Order vs. Execution Time for Parcplacel

proach to a variety of table-based approaches. [DH95] presents selector-based
row displacement (RD) and discusses how to obtain optimal compression re-
sults. [VH96] presents the compact selector indexed table (CT), expanding on
previous work in [VH94].

Predicate classes, as implemented in Cecil ([Cha93]), allow a class to change
its set of superclasses, at run-time. The DT Framework provides an efficient
mechanism for implementing predicate classes using table-based dispatch.

8.2 Future Work

The DT Framework provides a general description of all work that needs to be
performed to handle inheritance management and method dispatch in reflex-
ive, dynamically typed, single-receiver languages with multiple inheritance. A
variety of extensions are possible.

First, the framework as presented handles methods, but not internal state.
A mechanism to incrementally modify object layout 1s a logical, and necessary,
extension. Second, multi-method languages such as Tigukat [OPS195] and Ce-
cil [Cha92] have the ability to dispatch a method based not only on the dynamic
type of a receiver, but also on the dynamic types of all secondary arguments
to the behavior. Multi-methods extend the expressive power of a language, but
efficient method dispatch and inheritance management is an even more difficult
issue in such languages. Third, the framework currently assumes that inher-
iting the interface of parent classes implies that the implementation assocated
with the interface is inherited also. A more general mechanism for inheritance
management that separates these concepts is desirable.

Fourth, although the DT Framework provides a general mechanism for han-
dling table-based method dispatch, it is really only one component of a much
larger framework that handles all method dispatch techniques. The DT Frame-
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work can be extended so that framework clients call interface algorithms each
time a call-site 1s encountered, similar to the manner in which the environment
1s currently called, when class and selector definitions are encountered.

Fifth, research into the impact on dispatch performace incurred by the dy-
namic nature of the DT Framework 1s needed. Note that in the framework, the
fundamental structures like arrays and sets (used by many classes) are grown dy-
namically, with additional space being added as necessary. Unfortunately, this
capability to dynamically extend selector and class dimensions within tables
necessitates additional indirections during table access, making actual dispatch
less efficient than non-dynamic implementations of the same table-based tech-
niques. As observed in [DHV95], the table-based dispatch techniques are more
inefficient than dynamic techniques like IC and PIC| since table-based dispatch
techniques cause pipe-line stalls. Since one indirection stalls a pipe as effectively
as two or three indirections, it 1s expected that the extra indirections incurred by
the dynamic nature of the division tables will not substantially reduce dispatch
times.

Sixth, the DT Framework allows various compression techniques, like selec-
tor aliasing, selector coloring, and class sharing, to be analyzed both in isolation,
and in interaction with one another. More research about how these techniques
interact, and about how SCCT dispatch can be optimized, is necessary.

9 Conclusion

We have presented a framework that is usable by both compilers and run-time
systems to provide table-based method dispatch, inheritance conflict detection,
and compile-time method determination. The framework relies on a collection
of technique independent algorithms for environment modification, which call
technique-dependent algorithms to perform fundamental operations like table
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access and index determination. The framework unifies all table-based method
dispatch techniques into a cohesive whole, allowing a language implementor
to change between techniques by changing the manner in which the DT En-
vironment is instantiated. Incremental versions of all table-based techniques
except VIBL have been implemented, all of which have low milli-second per-
modification execution times.

The framework provides a variety of new capabilities. The various table-
based dispatch techniques have differing dispatch execution times and memory
requirements. Since the framework allows any table-based dispatch technique to
be used, a particular application can be optimized for either space or dispatch
performance. Furthermore, the DT Framework allows table-based dispatch
techniques to be used in reflexive languages. In the past, reflexive languages
necessitated the use of a non-table-based techique. One reason that C4++ uses
virtual function tables is that they allow for separate compilation, unlike other
table-based dispatch techniques. The DT Framework now allows all table-based
dispatch techniques to work with separate compilation. Finally, the framework
introduces a new level of software verification in reflexive languages by allowing
inheritance conflicts to be detected immediately when they occur, rather than
during dispatch.

The framework has been used to merge SC and CT method dispatch into a
hybrid dispatch technique with the advantages of both. The CT dispatch tech-
nique is limited by its restriction to single-inheritance. By replacing selector
aliasing by selector coloring, we obtain a dispatch technique that works with
multiple inheritance and that benefits from the class sharing made possible by
CT partitioning. Furthermore, SCCT dispatch provides slightly better com-
pression because the conflict table can be colored, unlike in CT dispatch, where
it remains uncompressed.

As an indication of the efficiency of our algorithms and implementation,
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[AR92] reports a time of 12 minutes to color the Smalltalk-80 Version 2.5 hi-
erarchy when the 106 selectors native to Object are ignored, using a Sun 3/80.
Our implementation of the DT algorithms color the entire library in 113 sec-
onds on a Sun 3/80, while performing inheritance detection and maintaining
compile-time optimization information. The DT Framework currently consists
of 36 classes, 208 selectors, 494 methods, and 1081 meaningful class/selector
pairs. When the DT Framework is applied to a completely random ordering of
itself, a SCCT-based dispatch table is generated in 0.436 seconds. Since com-
piling the framework requires 390 seconds, even the slowest dispatch technique
and input ordering produce a dispatch table in a negligible amount of time,
relative to overall compilation time.
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A Assertions

In Section 3.2.2, a variety of division and class concepts were introduced and
used to obtain efficient tests for identifying which of three scenarios a particular
invocation of Algorithm IMA or IMR should execute. Table 6 is a truth table
showing all possible combinations of truth values for four fundamental tests.

The following assertions allow us to eliminate most combinations of the tests as
impossibilities. In the assertions, we use ¢ to represent Dy.o.

1. Cr is never nil: From the definition of target class, Cp.

2. Cp is never nil: From the definition of base class, Cpg.

3. D.C' = nil = D = €: The only division whose defining class is nil is
the empty division, €2. This is the definition of the representation of the
empty division.

4. In IMA, Dy # £2: During method addition, such an empty division will
never be propogated (Algorithm AS always creates a new division, and
Algorithm ACL only propogates non-empty divisions). This implies that
in Algorithm IMA, Dy .C' # nil and Dy .o # nil, from Assertion 3.

5. Cp < Cpg < Cy: follows from the definition of these classes. C'p < Cy i1s
obviously only true when Cn # nil
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10.

11.
12.

. In IMR, C is never nil: remember that C7 refers to the class from which

Cp inherits o, before ¢ is added/removed from Cg. During method re-
moval, if the definition of ¢ in C'g is not visible to C'r it is because some
class between Cp and C7p has redefined o. In either case, Cr inherits o
from some real class and thus C; cannot be nil.

If Cr # nil,Cp < Cr: It is not possible to inherit a method from a
subclass, so since Cf is defined as the class from which Cp inherits o
before Dy is inserted, C'p < C7 | if such an inheriting class, C, exists.

. Cny = Cr = Cr # Cp: Suppose not, so it is possible that Cx = Cr = Cr.

However, in Algorithms ACL, RCL and RS, Dy 1s always associated with
a class strictly above Cp in the inheritance hierarchy. Thus, our assump-
tion is only possible from Algorithm AS. In this situation, Algorithm AS
does not need to do any inheritance propogation whatsoever, since D¢ .C'
= Dy.C' and D¢.oc = Dy.o. Thus, this assertion is true because it 1s
enforced to be true by our algorithms.

. Cn £ nil and Cr # nil and Cy NLE C; = m s true: First, note that

Cy NLE C;r = (7 < Cy or Cf and Cy are not orderable.

(a) Suppose Cr and Cn are not orderable: By the definition of Cf, o is
visible in Cp from Cf before adding Dy. Since Cny NLE (7, the
new division does not block the visiblity of o in Cr from Cf, so after
the method addition, ¢ is visible in Cp from C7. Similarily, after
method addition, ¢ is visible in Cp from C'y because C; NLE Chy.
Thus, 7 1s true.

(b) Suppose Cr < Cn: Since Cp < Cp (from T), at least one path from
Cy to Cp has CT along it. Suppose all paths from C'y to Cp have Cf
along them. Then Cp would never have been reached by the algo-
rithm, because, on a previous invocation, the algorithm would have
previously encountered the situation in which Cpr = (7, and recur-
sion would have stopped. Since Cr has been reached, our supposition
is incorrect, and there exists a path from Cx to Cp that does not
pass through C7, so ¢ is visible in Cr from Cy. Since C7 < Chy,
there is a path from C7 to Cp that does not pass through Cy, so o
1s visible in Cp from C7. Thus, 7 is true.

Cr = mil = m 1s false: C1 = nil = sigma 1s not visible in Cp from Cfy.
Condition wrequires that ¢ be visible in Cr from both €7 and Cp.

Cn = C; = 7 1s false : by the definition of .
In IMR, C7 # Cr = Cr = Cg: Suppose Cr < Cp < Cr. Observe that

there must exist a native definition for ¢ in Cg in order to be able to
remove ¢ from Cpg. Thus, before adding Dy, Cr would inherit o from
Cp # C1, which contradicts the definition of C7. Therefore, Cp NL Cf.
Suppose Cp < (7 < Cpg. Algorithm IMR is initially invoked on child
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classes of C'p, and would stop recursion when it encountered a subclass
with a native definition (i.e. when it encountered C7). But this implies
that Cr would never be reached (since Cp < C) unless there exists some
other path from Cp to Cp that does not pass through C7. However,
if this were the case, ¢ would be visible in Cr from both Cp and (7,
implying that a conflict exists, in which case an implicit native definition
representing a conflict would exist in Cp. This would mean that Cp = Cf,
contradicting our initial assumption. Therefore, Ct NL C'p. Similarily, if
Cr and C'p were unrelated in the inheritance hierarchy, o would be visible
in Cp from both (7 and Cg, and we have already shown that this is not
possible, since Cr # C7. The only remaining possibility is that Cr = Cp.

13. In IMR, Ct # C1 = w is false: Cp # Crimplies that, before Dy is added,
there was no inheritance conflict (remember that an inheritance conflict
results in an implicit native definition). Dy is either Q(which can never
cause an inheritance conflict) or a division defined in some superclass of
C1 = Cp (see Assertion 12). In the latter case, since the definition in Cy
is being removed, after adding Dy, ¢ is not visible in Cr from (7, so 7 is
false. This implication says that it is not possible to create an inheritance
conflict during method removal (i.e. during an invocation of IMR).

B Utility Algorithms
B.1 Algorithm RIC (Record Inheritance Conflict)

Algorithm RIC abstracts all the code necessary to record an inheritance conflict
between two divisions.

Algorithm RIC(in o : Selector, in C : Class, in G : Set of Divisions) : Division
G=G-Q

if normG > 1 then
if 3D € Gst isConflict(D) and D.C = C then Note 1
foreach D; € G — {D} do
addDivisionChild(D, D;)
endfor
else
D := newConflictDivision(C,c) Note 2
foreach D; € (G do
addDivisionChild(D;, D)
endfor

endif

return D

end RIC
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B.1.1 Notes for Algorithm RIC

1. Division D already represents a conflict division for class C, so all other
divisions in G are new parent divisions adding to an existing conflict. We
make the appropriate division links. Only one such conflict division can
possibly exist in G at any given time.

2. Algorithm newConflict Division creates a new conflict division for class C
and selector o. It is trivial, and not presented here.

B.2 Algorithm ID (Inherited Division)

Algorithm ID (Inherited Division) obtains the division that would be inherited
in class C for selector o if a native definition did not exist and class C only had
the classes in G'p as parents.

Algorithm ID(inout ¢ : Selector, in C : Class, in romanGp : Set of Classes, in G : Set of Division, inout T : DivisionTable)
foreach C; € Gp do Note 1
D := divisionFor(o,C;)
if not isEmpty(D) then
add D to G
endif

endfor

if normG = 0 then Note 2
DN =0
elsif normG = 1 then Note 3
Dy := the single element of G
else Note 4
Dy := RIC(0,C,G)
endif

return Dy
end ID

B.3 Notes for Algorithm ID

1. Loop over all classes in specified parent set and obtain the non-empty
divisions associated with them for o. The resulting set, G, represents all
methods visible in class C from parents in Gp. The procedure

2. dwisionFor(c,C) returns the division representing the address to be ex-
ecuted for selector ¢ and class C. In STI dispatch, this is identical to
T[e,C], but in SC and RD dispatch, the division obtained via T[o,C] may
not even represent o (due to the table compression performed by these
techniques. Thus, if T[o, C].c # o, the procedure returns Qinstead. The
procedure is trivial, and is not presented.

3. If there are no parent divisions, removing the current selector means that
the empty division should be stored in dependent classes of C.

52



4. If there is exactly one parent division, this parent division should be pro-
pogated to dependent classes of C.

5. If there are more than one parent divisions, an inheritance conflict has
occured. Algorithm RIC is called to record this inheritance conflict, and
the resulting conflict division is placed in the dependent classes of C.

B.4 Algorithm ICB (Inherited Class Behavior

Given a class, C, and a set of classes, G, Algorithm ICB returns the set of
divisions that would be inherited from classes in G if each of these classes was
a parent of class C. Since G can be a subset of the complete set of parents for
class C, the division set returned will not, in general, constitute all inherited
behavior. If a particular selector has both a native definition and a definition
in a superclass, it is not included in the returned set (because it is not inherited
in class C). However, in determining whether, for a given selector, a conflict
exists, the algorithm considers the divisions for class C and all classes in G. If
more than one division represents the same selector, a conflict for that selector
is made and added to the set to be returned.

Algorithm ICB(in C : Class, in G : Set of Classes, in T : DivisionTable) : Set of Divisions
H := Note 1
foreach selector o do
D¢ := divisionFor(o,C) Note 2
if Do.C # C then
D := ID(0,C,G,{D¢},T) Note 3
add < o, D > to H
endif

endfor

return H

end ICB

B.5 Notes for Algorithm ICB

1. Set H will contain two-tuples as elements, where each tuple contains a
selector and a division. The selector is redundant when the division is
non-empty, but necessary when empty divisions need to be propogated
(i.e. Algorithm IMR). The set is guaranteed to have only one tuple per
selector.

2. The procedure divisionFor(o,C) returns the division representing the ad-
dress to be executed for selector ¢ and class C. In STI dispatch, this is
identical to T[e, C], but in SC and RD dispatch, the division obtained
via T[o, C'] may not even represent ¢ (due to the table compression per-
formed by these techniques. Thus, if T[e, C].0 # o, the procedure returns
Qinstead. The procedure 1is trivial, and is not presented.
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3. Algorithm ID returns the division that would be inherited in class C for
selector o if no native definition existed in C and C only had the parents
in G. It is presented in this appendix

C Compile-time Method Determination

This appendix summarizes how the DT algorithms can be used to determine
when a method is uniquely identified at compile-time. Each class/selector pair
is characterized in terms of its relation to other class/selector pairs in the envi-
ronment. To this end, we define six mutually exclusive partition types that are
useful for various purposes. Each class/selector pair < C',¢ > has one partion

type.

1. undefined: o has not been defined any class in the application. In Figure 1,
< F,~v > 1s undefined since 7 is not defined in any of the application
classes F..QQ

2. unrelated: o has been defined in at least one class in the application,
but has not been defined in any class in the connected inheritance graph
containing C. In Figure 1, < F, X > is unrelated since A is not defined in
any of the application classes F..I, but is defined in class M.

3. sub-defined: o has been defined in at least one subclass of C, but has not
been defined in C or any of its superclasses. In Figure 1, < F|3 > 1is
sub-defined since 3 is defined in class G, but not in F.

4. defined-determined: ¢ is uniquely visible in C, but is not explicitly defined
in any subclass of C. In Figure 1, < K, > is defineddetermined since
is defined in superclass J of K, but not in any subclass of K.

5. defined-undetermined: o is uniquely visible in C and is defined in a sub-
class of C. In Figure 1, < N /XA > is definedundetermined since A is
defined in superclass M and in subclass P of N.

6. conflicting: o 1s multiply visible in C' and C' does not explicitly define o.
In Figure 1, < M,a > is conflicting since « is defined in both K and L.

At every call-site, the compiler knows the selector and the static type (class)
of the receiver object. By asking the DT Environment for the partition type
of this class/selector pair, the compiler can establish whether a unique method
exists for the call-site. In particular, if the partition type i1s defined-determined,
undefined, conflicting, or unrelated, a unique method exists.
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