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Abstract

A collection of algorithms and data structures are presented which rep�
resent a generalized framework for inheritance management and method
dispatch in re�exive� dynamically typed� single�receiver languages with
type�implementation�paired multiple inheritance� By storing a small amount
of information� the algorithms can incrementally maintain the entire dis�
patch environment during the four fundamental environment modi�cation
requests � adding�removing selectors to�from classes and adding�removing
class hierarchy links� By merging inheritance management� inheritance
con�ict detection and method dispatch calculation� the algorithms are
computationally e�cient� and can be used to maintain dispatch informa�
tion even in a re�exive environment� The algorithms are applicable to all
table�based method dispatch techniques and require the use of only a few
dispatch�speci�c functions� A group of object�oriented classes are used
to implement both the technique�independent and technique�dependent
algorithms� providing a complete framework for table�based method dis�
patch� Although general enough to apply to re�exive languages� the
framework is also useful in statically typed languages� as it incrementally
computes hierarchy information needed by the compiler to establish which
method addresses can be uniquely identi�ed during compilation� This al�
lows compile�time optimizations instead of a runtime table look�up� The
framework can and will be extended to multi�method languages�
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� Introduction

Object�oriented programming languages have become popular due to the ab�
straction and information hiding provided by inheritance and polymorphism�
However� these same properties pose di�culties for e�cient implementation� ne�
cessitating �among others� algorithms for inheritance management and method
dispatch� In this paper� we present an object�oriented solution to an object�
oriented problem�

Various object�oriented programming techniques� called design patterns� have
been identi�ed� One such pattern is the template method� which �De�nes the
skeleton of an algorithm in an operation� deferring some steps to subclasses	
�
GHJV���� The �rst part of this paper presents a collection of such template
methods that identify all actions necessary for any table�based method dispatch
technique to incrementally maintain a dispatch table� Each of these methods is
technique�independent� calling technique�dependent operations to provide low�
level functionality like table access and modi�cation�

Object�oriented languages provide code�reuse at two levels� At the �rst level
are generic libraries of basic data structures like sets and growable arrays� Rich
libraries for collections� graphics and other specialized areas provide object�
oriented languages with much of their power� At a second level� application
frameworks capture the collaborations of a group of objects� leaving the speci�c
details to be implemented� These details are implemented by framework clients�
who subclass on the classes provided by the Framework� These subclasses im�
plement concrete versions of the abstract functionality to provide client�speci�c
behavior� In other cases� the user merely chooses between concrete leaf classes
to obtain the desired functionality� Thus� in the same way that C�� templates
generalize the implementation of a particular class� frameworks generalize the
implementation of an entire group of interacting classes� Templates are instan�
tiated by providing parameters to the template class� Frameworks are instanti�
ated by providing concrete implementations of abstract functions� The second
part of this paper presents the DT Framework� a general framework for both
compile�time and run�time inheritance management and method dispatch�

The DT algorithms �and hence the DT Framework� apply to a broad class
of object�oriented languages� re�exive� dynamically typed� single�receiver lan�
guages with type�implementation�paired multiple inheritance� A re�exive lan�
guage is one with the ability to de�ne new methods and classes at run�time� A
dynamically typed language is one in which some �or all� variables and method
return values are unconstrained� in that they can be bound to instances of any
class in the entire environment� A single�receiver language is one in which
a single class� together with a selector� uniquely establishes a method to in�
voke �as opposed to multi�method languages� discussed in Section ��� Type��
implementation�paired inheritance refers to the traditional form of inheritance
used in most object�oriented languages� in which both the de�nition and im�
plementation of inherited selectors are propogated together �as opposed to in�
heritance in which these two concepts are separated� as discussed in Section ���
Finally� multiple inheritance refers to the ability of a class to inherit selectors
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from more than one direct superclass� Within this paper� we will refer to this
collection of languages as ��

Any compiler or run�time system for a language in � must implement the
functionality provided by the DT algorithms� Furthermore� since the DT algo�
rithms merge inheritance propogation and dispatch�table modi�cation� they are
highly e�cient� As well� the DT Framework� built on top of the DT algorithms�
provides implementors of languages in � with immediate code reuse� In this
paper� we will refer to compilers and run�time systems as DT Framework clients�
For our purposes� a language that can be compiled is inherently non�re�exive�
and compilers can be used on such languages� By run�time system we mean
support existing at run�time to allowing re�exivity in the language�

This paper makes a variety of research contributions� It extends research in
each of these areas�

�� Framework � the algorithms can be implemented as a collection of classes�
Framework clients �implementors of languages in �� obtain e�cient in�
heritance management� inheritance con�ict detection� and incremental
dispatch�table modi�cation �as well as other advantages� via inheritance�

�� Data Structures� the division data structure is identi�ed� a critical struc�
ture that allows inheritance management to be made incremental� allows
detection and recording of inheritance con�icts� and maintains information
useful in compile�time optimizations�

�� Algorithms� The framework demonstrates how inheritance management
and maintenance of dispatch information can be made incremental� A
critical recursive algorithm is designed that handles both of these issues
and recomputes only the information necessary for a particular environ�
ment modi�cation� As well� the similarities and di�erences between adding
information to the environment and removing information from the envi�
ronment are identi�ed� and the algorithms are optimized for each�

�� Table�Based Dispatch� The framework identi�es the similarities and dif�
ferences between the various table�based dispatch techniques� It shows
how the division data�structure and inheritance management algorithms
can be used to allow incremental modi�cation of the underlying table in
any table�based dispatch technique�

The division data structure� the incremental algorithms� and their ability
to be used in conjunction with any table�based dispatch technique results in a
complete framework for inheritance management and maintenance of dispatch
information that is usable by both compilers and run�time systems� The al�
gorithms provided by the framework are incremental at the level of individual
environment modi�cations� consisting of any of the following�

�� Adding a selector to a class�

�� Adding one or more superclasses to an existing class �which may already
have zero or more superclasses��
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�� Removing a selector from a class

�� Removing one or more superclasses of an existing class�

The following capabilities are provided by the algorithms�

�� Inheritance Con�ict Detection� In multiple inheritance� it is possible for
inheritance con�icts to occur when a selector is visible in a class from two
or more superclasses� The Framework detects and records such con�icts
as they occur�

�� Dispatch Technique Independence� Clients of the framework can change
between di�erent table�based dispatch techniques with a simple recompi�
lation�

�� Re�exive Languages� Dispatch tables have traditionally been created by
compilers and were not extendible at run�time� This implied that re�ex�
ive languages could not use table�based dispatch techniques� By making
dispatch table modi�cation incremental� the DT Framework allows re�ex�
ive languages to use any table�based dispatch technique� maintaining the
dispatch table at run�time as the environment is dynamically altered�

�� Dynamic Schema Evolution� The DT Framework provides e�cient al�
gorithms for arbitrary environment modi�cation� including adding class
hierarchy links to classes already in an inheritance hierarchy� Even more
important� the algorithms handle both additions to the environment and
deletions from the environment�

�� Separate Compilation� Of the �ve table�based dispatch techniques dis�
cussed in Section �� four of them currently require knowledge of the com�
plete environment� In situations where library developers provide object
�les� but not source code� these techniques are unusable� Incremental dis�
patch table modi�cation allows the DT Framework to provide separate
compilation in all �ve dispatch techniques�

�� Compile�time Method Determination � It is often possible �especially in
statically typed languages� for a compiler to uniquely determine a method
address for a speci�c message send� The more re�ned the static typing of
a particular variable� the more limited is the set of applicable behaviors
when a message is sent to that variable� If only one method applies� the
compiler can generate a function call or inline the method� The division
data structure maintains information to allow immediate determination
of such uniqueness�

The rest of this paper is organized as follows� Section � summarizes the
various method dispatch techniques� Section � presents the DT algorithms�
Section � presents the DT Framework� Section � discusses how the table�based
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method dispatch techniques can be implemented using the DT Framework� Sec�
tion � discusses details speci�c to compilers and details speci�c to run�time sys�
tems� Section � reports execution performance results when the DT Framework
is applied to various real�world class hierarchies� Section � discusses related and
future work� Section � summarizes the results� Appendix A provides proofs
of some assertions� and Appendix B provides utility algorithms� Both the as�
sertions and utility algorithms are used in Section �� Finally� Appendix C
describes how the information stored by the DT algorithms can be used to
establish whether a method is uniquely determined at compile�time�

� Method Dispatch Techniques

Due to inheritance and polymorphism� it is not possible to always determine the
method to be invoked at a particular call�site at compile�time� so some run�time
method dispatch technique is necessary� Two primary categories of method dis�
patch techniques exist� dynamic techniques and table�based techniques� This
paper generalizes existing research into table�based dispatch techniques� Each
table�based technique is described in detail in the subsections that follow� How�
ever� a very brief description of the various dynamic dispatch techniques is
provided �rst� where C denotes a class and � a selector�

ML� Method Lookup� �Smalltalk��� 
GR���� Method dictionaries are searched
for selector � starting at class C� going up the inheritance chain� until
a method for � is found or no more parents exist �in which case a mes�
sageNotUnderstood method is invoked to warn the user�� This technique
is space e�cient but time ine�cient�

LC� Global Lookup Cache �
GR��� Kra��� uses � C� � � as a hash into a
global cache� whose entries store a class C� selector �� and address A� Dur�
ing a dispatch� if the entry hashed to by � C� � � contains a method for
the class�selector pair� it can be executed immediately� avoiding ML� Oth�
erwise� ML is called to obtain an address and the resulting class� selector
and address are stored in the global cache�

IC� Inline Cache �
DS��� caches addresses at each call�site� The initial ad�
dress at each call�site invokes ML� which modi�es the call�site once an
address is obtained� Subsequent executions of the call�site invoke the pre�
viously computed method� Within each method� a method prologue exists
to ensure that the receiver class matches the expected class �if not� ML is
called to recompute and modify the call�site address��

PIC� Polymorphic Inline Caches �
HCU��� cache multiple addresses� modify�
ing a special call�site speci�c stub�routine� On the �rst invocation of a
stub�routine� ML is called� However� each time ML is called� the stub is

�In �DHV��� Dri��a�� and others� this is referred to as Dispatch Table Search �DTS��
However� to avoid confusion with our dispatch tables� we refer to it as Method Lookup

�



extended by adding code to compare subsequent receiver classes against
the current class� providing a direct function call �or even code inlining�
if the test succeeds�

In subsections that follow� each of the table�based techniques are presented
and discussed in detail� We will use de�nitions and notations from Table �
during the discussion� and will provide example dispatch tables based on the
inheritance graph in Figure �� The exact structure of the dispatch table depends
on the dispatch technique� In our discussion� we will represent the tables as
global two dimensional tables� However� in an implementation� it is not strictly
necessary� and sometimes not desirable� to have global tables� since per�selector
or per�class arrays can improve data locality� In all of these techniques� classes
and selectors are assigned numbers which serve as indexes into the dispatch
table� We have arbitrarily choosen to index rows by selectors and columns by
classes� and to treat tables as row�major� In the tables displayed� the notation
C�� is used to refer to the method that is de�ned natively in class C for selector
�� If C�� exists as an entry for some subclass� Ci of C� it implies that Ci inherits
� from C�

FF δδ

GG
ββ

HH
δδ ,,αα

KK ββ

MM νν

Figure �� Sample Inheritance Graph

In developing the DT algorithms� we have abstracted out those concepts that
are similar among the various table�based dispatch techniques� Each technique
has an underlying data array� and uses selector and class indices to obtain the
address for a particular class�selector pair� Each selector and class is assigned an
index� Each class�selector pair� � C� � � � establishes an index pair � L�K �

which is used to determine a unique index� T
��C� within the underlying data
array of the table in a technique�dependent fashion� Each entry in the table con�
tains a division� A division represents a method to be executed for a particular
class�selector pair� but contains extra information in addition to the method
address �usually� a class and a selector�� The class associated with a division
is referred to as the de�ning class of the division� Selector index con�icts can
occur in certain dispatch techniques� when T
��C returns a division that does
not represent selector �� Class index con�icts are also possible� occuring when
T
��C does not represent class C�

While describing the table�based method dispatch techniques� we will present
simple high�level algorithms describing how the dispatch techniques can be im�
plemented if complete knowledge of the environment exists� We will then discuss
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Notation De	nition

� a selector
L a selector index
index��� the current index of selector �

K a class index
C�Ci classes
Ci � C class Ci is a subclass of class C
� C� � � notation to represent a class
selector pair
index�C� the current index of class C
subclasses�C� the set of all subclasses of C
children�C� the set of immediate subclasses of class C
parents�C� the set of immediate superclasses of class C
selectors�C� the set of selectors de	ned natively in C

T a table
T�L�C� the table entry identi	ed by selector index L and class C
T��� C� short�hand for T�index���� C�
methodFor���C� the method to execute for class C and selector �

Table �� Notations and De�nitions for the DT algorithms

how these algorithms need to be modi�ed to allow them to be incremental� For
our purposes� an incremental algorithm for dispatch�table maintenance is one
that modi�es an existing dispatch table each time an environment modi�cation
occurs �adding�removing a selector or hierarchy link�� The algorithmmust work
independent of the order in which environment modi�cations occur �although
di�ering orders may produce better compression results and execution times��

��� Selector Table Indexing �STI�

Selector Table Indexing �
Cox��� is the most time e�cient� but space�ine�cent�
table�based dispatch technique� It uses a two�dimensional table in which both
class and selector indices are unique� Even in dynamic languages where it is
possible to invoke a non�understood message� no special code is necessary� the
dispatch table stores the address of a special error method for any class�selector
pairs that do not have an associated method� Unfortunately� although this
approach is fast� it is not feasible for even medium sized environments because
the space required is the product of the number of classes and selectors� Table �
shows an STI dispatch table for Figure ��

selectors index F G H K M

� � F� F� H� � �
� � � G� � K� K�
� � � � H� � �
� � � � � � M�

Table �� STI dispatch table

A simple� e�cient algorithm to assign class and selector indices is easily
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implemented� Since class and selector indices are unique and orthogonal to
one another� the algorithm works equally well in either an incremental or non�
incremental setting�

Algorithm STI
L � ��� K � ��
foreach class C

K � K��
index�C� � K
foreach selector � recognized by C

if index��� is unassigned
L � L��
index�S� � L

T�L��K� � methodFor���C�
end STI

��� Selector Coloring �SC�

Selector Coloring �
DMSV��� AR��� compresses the two�dimensional STI table
by allowing selector indices to be non�unique� Two selectors can share the same
index as long as no class recognizes both selectors� The amount of compression is
limited by the largest complete behavior �the largest set of selectors recognized
by a single class�� Since this approach is implementable as a graph coloring
algorithm� the selector indices are usually referred to as colors�

Table � can be colored to produce Table �� Since no class understands both
� and �� the rows for these two selectors can be merged into one� Similarily�
the rows for � and � can also be merged�

selectors index F G H K M

�� � � F� F� H� � M�
�� � � � G� H� K� K�

Table �� SC dispatch table

In languages where a message can be sent to an object that does not un�
derstand it �i�e�� dynamically typed languages�� this approach is not quite as
e�cient as STI� In STI� a message is not understood only if the entry in the
table for the class�selector pair is not associated with a meaningful method ad�
dress� Recall that in this case it is initialized with the address of a function that
reports an appropriate error message� However� in the colored table� two or
more selectors can share the same row� so the wrong message may be invoked�

As an example� suppose that a message is sent to an instance of class F with
selector �� Since selector � shares color � with � the address in the table is F���
from Table �� However� from Figure �� class F does not understand selector ��
and so the dispatch technique must somehow detect this�

It is common to add a method prologue at the beginning of every method def�
inition� which tests the current selector �passed as a hidden argument in every
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method invocation� against the expected selector �which is known at compile�
time�� If the comparison fails� an apropriate error message is generated� Oth�
erwise� the rest of the method code is executed�

A non�incremental algorithm for selector coloring is presented in 
DMSV���
and an incremental version in 
AR��� Some terminology is necessary�

�� Con�ict Table� each row� r in a con�ict table represents a particular
selector� r��� and stores the set of selectors� r�V� that con�ict with ��
Two selectors con�ict if any class in the environment understands both�

�� Partition type� Each class�selector pair � C� � � is assigned one of four
di�erent partition types�

�a� speci�c� � is not yet de�ned in the system

�b� separate� � is not recognized by class C �� any superclass of C� or any
subclass of C� but is recognized by some class �i�e� is not speci�c��

�c� declared � � is not recognized by class C or any superclass of C �and
is not speci�c or separate�

�d� rede�ned � � is recognized by C�

�� colorsFreeFor�G�� The set of all colors unused by all classes in the set G�
A class is using a color�L� if it recognizes a selector whose color is L�

�� classesUsingColor�L�� The set of classes using color L�

In 
DMSV��� the non�incremental algorithm for selector coloring is divided
into two parts� con�ict table calculation� and color assignment�

Algorithm SC�static
�compute con�ict table�
foreach selector �

R � con�ict table row for �
foreach selector �i

if �C that recognizes �i
add �i to R�V

�assign colors�
foreach row R in con�ict table

index��� � smallest index not in R�V
end SC�static

In 
AR��� an incremental version of SC is presented� However� the declara�
tive nature of the presentation does not provide any indication of how to imple�
ment the algorithm e�cienctly� Furthermore� some errors exist in the algorithm�
We present a procedural version of the 
AR�� algorithm� and discuss it�

��AR��� does not explicitly exclude class C� It should be excluded so that after � is added
to C� the partition type of � C� � � becomes rede�ned
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Figure �� Example dispatch table

Algorithm SC
K � ��
foreach class C

K � K��
index�C� � K
foreach selector �

Lold � index���
P � partition���C�
if P � speci	c

L � any color in colorsFreeFor�subclasses�C��
elsif P � rede	ned

L � Lold
elsif P � separate

if Lold � colorsFreeFor�C� then L � Lold
else L � any color in colorsFreeFor�classesUsingColor�Lold��

else �P � declared�
if Lold � colorsFreeFor�C� then L � Lold
else L � any color in colorsFreeFor�classesUsingColor�Lold��

index��� � L
T�L�K� � methodFor���C�

end SC

There are a few errors in the AR algorithm� If � C� � � is speci�c�

AR�� states that the color for � can be any color free for all subclasses of C�
However� if we assume that inheritance exceptions are represented as special
method de�nitions �i�e� a method still exists for the selector� but just generates
an error�� then it is su�cent to check only the leaf classes of C� If inheritance
exceptions do actually remove the selector� then class C and all subclasses must
be checked�

If � C� � � is separate� it is not su�cient to check only class C to determine
if the color can remain unchanged� Subclasses of C must also be checked� Once
again� however� if inheritance exceptions are modeled as special methods� only
leaf classes need to be checked�

As an example illustrating why AR is not su�cient� suppose we have the
color map and inheritance graph of Figure �� If we add a method for � to class
F� then although color � is free for class F� it cannot be used for � since selectors
� and � in class H cannot share the same color�

If � C� � � is partition type declared� the 
AR�� speci�cation is in err on
two counts� First� it is not su�cient to look only at classes using the current
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Figure �� The color map for a simple inheritance graph

color unless a deletion mechanism is used to collapse rows� Second� the AR
algorithm is too restrictive� That is� it may exclude a color that can be used�
Instead of �nding a color free for classes using the current color� the algorithm
should �nd a color free for all dependent classes of � C� � � and free for all
classes currently using selector �� Dependent classes will be discussed later�

Consider Figure � where we are trying to add the selector � to class F �
The AR algorithm seeks a color free for the class set� G�K�L� Therefore� color
� appears acceptable� However� color � cannot be used since G� a dependent
class of � F� � � is already using color � for � �since class G will inherit �
it cannot use color � for both � and ��� Observe that the way in which this
example was constructed� rows � and � can be collapsed into a single row� in
which case the formula would work properly� In general� any example which
demonstrates the above problem will have this property that rows could be
collasped� Thus� this �rst problem with the AR formula is avoided only if
the coloring algorithm includes a deletion mechanism that ensures that rows
are fully collapsed� However� the time complexity of detecting such potential
collapses may not be justi�ed� in which case the AR formula is insu�cient�

Consider Figure � again� The AR algorithm excludes color � since class K
uses it �for selector 	�� However� color � can be used for � since class K does
not recognize selector � and is not a dependent class of F �

��� Row Displacement �RD�

Row Displacement �
DH��� compresses the two�dimensional STI table into a
one�dimensional master array� Selectors are assigned unique indices in such a
way that when all selector rows are shifted to the right by the index amount�
the two�dimensional table has only one method in each column� The table
is then collasped into a one�dimensional array� When dispatching a method
invocation� the shift index of the selector and the index of the receiver class
are added together to determine the index of the desired address within the
master array� It is also possible to shift classes instead of selectors� as shown in

Dri��b� However� it is observed in 
DH�� that shifting selectors yields better
compression rates� Table � shows how the class�selector table of Table � can be
compressed using this technique�
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Figure �� RD dispatch table

It is important that the shift indices be unique� to ensure that two di�erent
selectors will not access the same dispatch table location for the same class�
For example� no address con�icts occur if row � �selector �� is assigned a shift
index of � �M�� can �t into the �fth slot of the array without con�icting with
any other selector�� However� this is not allowed since row � �selector �� has
already claimed shift index �� If � was assigned shift index �� a dispatch on
� F� � � would invoke F��� instead of detecting a non�understood method�
Although this situation could be detected by extending the method prologue to
compare both the selector and class against their expected counterparts� it is
more e�cient to enforce uniqueness of selector shift indices so as not to incur
an extra comparision on every dispatch� Similarily� row � �selector �� can not
have shift index � because it would con�ict with row � �selector ��� even though
this results in leaving the �fth slot empty�

In order to present an algorithm computing an RD dispatch table� we need
the following terminology�

�� Table� the table� T� is a one�dimensional master array� A selector index�
L� and class index� K� identify the entry T
K�L�

�� Block � a block is a structure representing a contiguous collection of class
indices� It contains a starting index� start� and a block length� run�

�� Row � a row structure contains a selector� �� and a collection of Blocks
representing all classes which use �� The number of such classes is referred
to as the width of the row� The primary block of a row is the block with
the largest run�

�� Free�s�� The entries in the table T can be divided into two categories�
used and unused� All unused entries can be described by Blocks� That is�
if entry T
i�� is used� and entry T
i�r is the next used entry� a free block
with start i and run r can be used to represent all unused entries between
these two entries� Free�s� is a doubly linked list of all free blocks whose
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size is s� �rstFree�s� returns the smallest free block �across all freelists�
whose size is greater�equal s� nextFree�F� returns the freeblock after F�
unless F doesn�t have any more freeblocks� in which case it returns the
result of calling �rstFree�F�run����

�� DRO sort order � The row structures are to be sorted in descending order
based on row width� All rows with width � are to be sorted in descending
order based on the start index of their primary block�

Algorithm RD
assign class indices in depth 	rst preorder
create a Row structure for each selector �
perform a DRO sort on the collection of Row structures
foreach row R with width � � �in DRO order�

L � unassigned
F � 	rstFree�R�primary�run�
while L is unassigned

max � F�run � R�primary�run
i � �
while L unassigned and i � max do

L � F�start � R�primary�start � i
foreach non�primary block B in R

for K � B�start to B�start � B�run
if T�L�K� is used

L � unassigned
break two levels

i � i��
if L unassigned

F � nextFree�F�
foreach block B in R

F � the freeblock containing entry T�L�B�start�
for K � B�start to B�start � B�run

T�L�K� � methodFor�R��� classWithIndex�K��
update free lists �split F into two smaller freeblocks�

form a singly linked list of every free entry in the master array
F � 	rstFree���
foreach row R with width � �

L � F�start � R�primary�start
T�L�K� � methodFor�R��� classWithIndex�K��
F � F�next

end RD

There are only two real di�erences between the incremental version of RD
dispatch provided by the DT algorithms and the non�incremental version pro�
vided in 
DH��� The �rst di�erence has to do with the optimizations the
non�incremental version can make because it has access to the entire class hi�
erarchy before selector index assignment begins� The non�incremental version
sorts selectors according to how many classes recognize them� such sorting is
not possible in an incremental algorithm� The non�incremental version relies
on this sorting to �t all selectors with a width of one last� During the �tting
of selectors with width greater than one� the algorithm does not worry about
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maintaining a single�entry freelist �with only one entry� the doubly linked freel�
ist structure could not be encoded into the master array directly�� In this way�
the algorithm can ignore single�entry freeblocks until the width � selectors are
encountered� at which time a pass is made through the main array to generate
a singly linked list of � element freeblocks� This pass destroys the doubly linked
list of arbitrarily sized freeblocks maintained before� but in the non�incremental
version such freeblocks are no longer needed by this time�

The incremental version cannot sort selectors by width� and cannot rely on
one�entry selectors occuring last� Thus� doubly linked single�entry freeblocks
must be maintained like any other size of freeblock� Fortunately� tables in the
DT Framework store divisions rather than method addresses� so a special Free�
Division can be used to represent freeblocks� Thus� even single�entry freeblocks
can encode the doubly�linked freeblock structure within the master array �Free�
Division instances have next and previous �elds pointing to other FreeDivision
instances representing freeblocks of the same size�


DH�� discusses the impact of selector ordering on both execution perfor�
mance and �llrate� It can be expected that execution performance and �llrate
will degrade in the incremental version� This is discussed in Section ��

��� Compact Selector�Indexed Dispatch Tables �CT�

Compact Selector�Indexed Dispatch Tables �
VH��� compress the STI table
by using four di�erent strategies� selector separation� selector aliasing� class
partitioning� and class sharing� Selector separation divides selectors into two
groups� standard selectors have one main de�nition and are only overridden
in subclasses� and any selector that is not standard is a con�ict selector� Two
di�erent tables are maintained� one for standard selectors� the other for con�ict
selectors� Selector aliasing can be performed only on the standard selector
table� and relies entirely on classes being sorted top�down and having at most
one parent class� Thus� CT dispatch as presented in 
VH�� is limited to single
inheritance languages�

Algorithm CT
Order classes top�down
Separate selectors into standard and con�ict sets

�Standard Table Index Assignment�
K � ��
foreach class C �ordered top�down�

L � ��
K � K��
index�C� � K
foreach selector � recognized by C

L � L��
index�S� � L
T�L��K� � methodFor���C�

�Con�ict Table Index Assignment�
L � ��� K � ��
foreach class C
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K � K��
index�C� � K
foreach selector � recognized by C

if index��� is unassigned
L � L��
index�S� � L

T�L��K� � methodFor���C�

Partition standard table into subarrays� each with ps elements
Partition con�ict table into subarrays� each with pc elements

Within each partitioned subtable� merge identical columns together
end CT

The CT technique obtains its excellent compression from two distinct mech�
anisms� First� by relying on single inheritance and knowledge of all classes in the
environment� selector indices in the standard table are assigned on a per�class
basis� However� this never results in an index being assigned di�erent indices
in di�erent classes as long as the order in which selectors are traversed remains
constant across classes� The result of this is that all internal space in the STI
table for standard selectors is entirely removed �that is� the only unused space
is at the end of each column�� The separation of selectors into standard and
con�icting provides this selector aliasing capability�

Second� class sharing can substantially reduce the amount of space taken up
by the table� especially for small partition sizes� ps and pc� However� a reduction
in table size does not necessarily imply a reduction in overall memory utiliza�
tion� because there is memory overhead involved in maintaining partitions� as
discussed in 
VH��� Without partitioning� class sharing will almost never pro�
vide any bene�t� but with judicious choices for partition sizes� this technique
uses less space than any other�

An incremental version of the CT dispatch technique as it exists in 
VH��
necessitates some ine�ciency� due to the inherently non�incremental nature of
selector aliasing� In an incremental version� classes can be added as parent
classes of already existing classes� Since selector aliasing relies on assigning
selector indices based on a top�down traversal of classes� this would result in a
need to change the indices of many selectors� Although the index reassignment
itself is not particularily expensive� the movement of divisions from old locations
to new locations can involve a reshu�ing of the entire table�

Fortunately� a simple observation makes incremental selector aliasing un�
necessary� the standard table can be compressed equally well by using selector
coloring� Having separated con�ict selectors out of the table� selector coloring
will assign indices so as to not leave any internal space �however� later we will
discuss certain optimizations for SC dispatch that will result in a few internal
spaces� in exchange for faster performance��

Having resolved the issue of incremental selector aliasing� we now turn our
attention to incremental class partitioning and class sharing� Rather than cre�
ating standard and con�ict tables in their entirety� then partitioning them� we
can maintain �xed�size subtables that represent each partition� As addresses
are added to the table� new subtables can be dynamically created as they are

��



needed� Although an extremely e�cient mechanism for incremental type shar�
ing exists as long as we disallow adding of parent classes to existing classes� it
is even possible �albeit more ine�cient� to handle dynamic schema evolution�

Thus� the incremental version of CT consists of a table with two subtables�
a standard selector table and a con�ict selector table� Selectors exist in only
one or the other of these tables� but the same class can exist in both �thus�
class indices are selector dependent�� Furthermore� each of these two subtables
is divided into a collection of �xed�row subsubtables representing partitions�
Each subsubtable in the standard selector subtable is compressed via selector
aliasing and class sharing� and each subsubtable in the con�ict selector subtable
is compressed via class sharing alone�

As will be discussed in some detail later� the incremental version of CT
is only one of many variations arising from separated and partitioned tables�
Later� we will introduce a new dispatch technique� SCCT� that merges the SC
and CT dispatch techniques� keeping the advantages of both� and removing the
limitations of CT� In particular� SCCT is applicable to languages with multiple
inheritance� and provides even better compression than CT�

��� Virtual Function Tables �VTBL�

Virtual Function Tables �
ES��� have a di�erent dispatch table for each class�
so selector indices are class�speci�c� although they are constrained to be equal
across inheritance subgraphs� Since this constraint is not possible in multiple
inheritance� each class stores multiple tables� for selector �� class C has as many
tables are there are classes in selectorRoot��� that are superclasses of C�

�� Inheritance Paths� An inheritance path for the class�selector pair �

C� � � is de�ned as an ordered collection of classes C�� C�� 


� Ck in which
C� � parents�C�� Ci � parents�Ci���� and Ck � rootClasses���� Multiple
paths are induced by multiple inheritance

Algorithm VTBL
foreach selector �

foreach class C �sorted top�down�
if � � selectors�C�

V � C�vtbl���
L � V�size
V�L� � methodFor���C�
index���C� � L

else
foreach inheritance path Pi for � C� � �

if �Ck in Pi
V � C�vtbl�i�
L � index���C�
V�L� � methodFor���C�

end VTBL

Unfortunately� an incremental version of the VTBL technique is expensive
for two reasons� First� it is not possible to store all current selector indices
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explicitly� because selector indices are class speci�c� This problem exists for the
same reason STI dispatch is not practical� the product of classes and selectors
requires far more memory than is feasible� This means that selector index
determination becomes a search� rather than just a �eld access� Even e�cient
implementations like hash tables with binary search tree probes will be an order
of magnitude more expensive than selector index determination in any other
technique�

The second ine�ciency is due to the need to handle dynamic schema evolu�
tion� If a class is added as a parent of an existing class� C� all selectors de�ned
in C or any subclass of C which are not de�ned in any parent of C must have
their indices reassigned� Thus� if a class is added as a parent of a hierarchy with
a single current root class� every selector of every class in the hierarchy must be
assigned a new index�

Note that although an incremental VTBL technique is potentially very ex�
pensive� it is not impossible� It could even be used in re�exive languages� as
long as every virtual function table used thunks� rather than just those tables
involving multiple inheritance� However� since this would have a profound im�
pact on execution performance� we have not included VTBL dispatch in the DT
Framework�

� The DT Algorithms

The DT algorithms interact with a few fundamental data structures in order
to modify dispatch table information incrementally when the programming en�
vironment changes� The environment changes �from the perspective of the DT
algorithms� when selectors or class hierarchy links are added or removed� We
will refer to these four actions as environment modi�cations� These actions
are divided into two categories� method adding occurs when selectors and class
links are added� and method removal occurs when selectors and class links are
removed� Data structures to represent classes and selectors are needed� Classes
maintain a name� a set of native selectors� a set of parent classes� and a set of
child classes� Selectors maintain only a name� The algorithms also need data
structures to represent two special constructs� divisions and division tables�
These are discussed in subsections that follow�

There are four DT algorithms that act as the interface to the framework�
They correspond to the four fundamental operations that cause environment
modi�cation� adding a selector �Algorithm AS�� removing a selector �Algorithm
RS�� adding class hierarchy links �AlgorithmACL� and removing class hierarchy
links �Algorithm RCL�� Note that de�ning a class does not itself modify the
dispatch information� Only when selectors are added� or the class is connected to
other classes via inheritance� does the dispatch information change� In addition
to the interface algorithms� there are some fundamental algorithms to perform
inheritance management� inheritance con�ict detection� index determination�
and index con�ict resolution� The DT algorithms� and their overall purposes�
are summarized in Table �� Each algorithm is presented in subsections after we
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introduce divisions and division tables�

Algorithm Semantic Name Algorithm Purpose

AS Add Selector Add a selector to an existing class
RS Remove Selector Remove a selector from an existing class
ACL Add Class Links Add inheritance links to a class
RCL Remove Class Links Remove inheritance links from a class
IMA Inheritance Manager� Adding Inheritance propogation and con�ict detection
IMR Inheritance Manager� Removing Inheritance propogation and con�ict detection
DSI Determine Selector Index Assign an index to a selector
DCI Determine Class Index Assign an index to a class

Table �� DT Algorithm Purposes

��� Divisions and the Generalized Dispatch Table

One of the most fundamental DT Framework concepts is that of a division�
Divisions are the mechanism by which both the functionality and e�ciency of
the DT algorithms is provided� A division represents a method to be executed
for a particular class�selector pair� but contains extra information in addition
to the method address �usually� a class and a selector�� The class associated
with a division is referred to as the de�ning class of the division�

The Table class and its subclasses represent extended dispatch tables called
division tables� which store division pointers instead of addressed� By storing
divisions in the tables� rather than simple addresses� the following capabilities
become possible�

�� Localized modi�cation of the division table during environment modi�ca�
tion so that only those entries that need to be recomputed are a�ected�

�� E�cient inheritance propogation and inheritance con�ict detection�

�� Detection of simple recompilations �replacing a method for a selector by
a di�erent method� and avoidance of unnecessary computation in such
situations�

�� compile�time method determination�

Every entry of a division table contains a division instance� including entries
that do not have user�speci�ed methods associated with them� Such empty
entries usually contain a special unique EmptyDivision instance� but some in�
dexing strategies use FreeDivision instances� which represent a contiguous block
of unused table entries� Instances of both of these classes have a special method�
NotUnderstood address associated with them�

Table entries corresponding to class�selector pairs having a user�speci�ed
method are standard divisions� and as such have a de�ning class� selector� ad�
dress and a set of child divisions� Two alternative forms of standard division
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exist� normal divisions and con�ict divisions� A normal division is used to rep�
resent a user�provided method for a particular class�selector pair� A con�ict
division is used to represent inheritance con�icts due to multiple inheritance�
If a class C inherits two or more distinct methods for a selector �� a con�ict
division is created with de�ning class C� selector � and a special inheritance�
Con�ict method address� Note that this mechanism for handling inheritance
con�icts implies that con�icts in a class C result in an implicit native de�nition
of selector � in class C�

Associated with standard divisions is the concept of dependent classes� For
a divisionD representing class�selector pair � C� � � � the dependent classes of
D consist of all classes which inherit selector � from class C� Furthermore� each
selector � de�ned in the environment generates a division inheritance graph�
which is an induced subgraph of the class inheritance hierarchy� formed by
removing all classes which do not natively de�ne �� Division hierarchy graphs
are what allow division tables to perform compile�time method determination�
These graphs can be maintained by having each division store a set of child
divisions� For a division D with de�ning class C and selector �� the child
divisions of D are the divisions for selector � and classes Ci immediately below
C in the division inheritance graph for ��

��� The DT Algorithms

����� Algorithms AS and RS �Add�Remove Selector�

Algorithm AS is one of the interface routines provided by the DT Environment�
Each time a compiler encounters a new method declaration for a selector� �� in
a particular class� C� it calls this routine �the compiler is assumed to have made
an instance of the DT Environment before it started any parsing�� As well� a
run�time system that encounters a method declaration at run�time does exactly
the same thing� calling Algorithm AS with the appropriate selector and class
arguments�

Algorithm AS�inout �  Selector� inout C  Class� in A  Address� inout T DivisionTable�

� if index��� � unassigned or � T���C� �� � and T��� C��� �� � � then
� DSI���C� T �
� endif

� DC � T��� C�
� if DC �C � C and DC �� � � then
� DC �A � A
� remove any con�ict marking on DC

� else
� insert � into selectors�C�
�� DN � newDivision�C���A�
�� addDivisionChild�DC� DN �
�� IMA�C� C�DN � nil� T �
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�� endif
end AS

Lines ��� of AlgorithmAS determines whether a new selector index is needed�
and if so� calls Algorithm DSI �Determine Selector Index� to establish a new
index and move the division as appropriate�

Lines ��� determine whether a method recompilation or inheritance con�ict
removal has occured� In either case� a division already exists that has been
propogated to a dependent class� so no propogation is necessary� Since the
table entries for all dependent classes of � C� � � store a pointer to the
same division� assigning the new address to the current division has the e�ect
of modifying the information in multiple division table entries simulaneously�

If the test in line � fails� Algorithm AS falls into its most common scenario�
lines ����� A new division is created� a division hierarchy link is added� and
Algorithm IMA is called to propogate the new division to the child classes�

Algorithm RS makes all necessary adjustments to the division table and
related data structures when a selector is removed from a particular class� It
is impossible for selector index con�icts to occur when removing a class� On
the other hand� it is possible for inheritance con�icts to occur� when the native
selector de�nition being removed hides an otherwise multiply visible selector�

Algorithm RS�in �  Selector� in C  Class� in T  DivisionTable�

� remove � from selectors�C�

� DN � ID���C� parents�C�� fg� T �

� IMR�C� ��DN � nil� T �

end RS

����� Algorithm IMA�IMR �Inheritance Management�

Algorithm IMA� and its interactions with Algorithms AS and ACL� form the
most important parts of the DT algorithms �along with the analogous case for
Algorithms IMR� RS and RCL�� Algorithm IMA is responsible for propogating
a division provided to it from Algorithm AS or ACL� to all dependent classes
of the division� During this propogation the algorithm is also responsible for
maintaining inheritance con�ict information and managing selector index con�
�icts�

Algorithm IMA is a recursive algorithm that is applied to one class� then
to each child class of that class� Recursion terminates when a class with a
native de�nition is encountered� or no child classes exist� The algorithm has
�ve arguments� but two of them are critical� the class on which the current
recursive invocation applies� and the division to be propogated� The class is
referred to as the target class� and denoted by CT � The division is referred to as
the new division� and denoted by DN � The other arguments will be discussed
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later� For now� simply note that each invocation of the algorithm is attempting
to propogate a new division� DN to a particular target class� CT �

Notation De	nition

DC The current division� T���CT �
DN The new division �established in Algorithm AS� ACL� RS or RCL�

CT The current target class� on which IMA
IMR is currently invoked�
CN The de	ning class of the new division� Shorthand for DN �C�
CI The class from which CT currently inherits the method for DN ��

CB The class from which division propogation is to begin

Boolean test indicating whether� after DN has been added to the
� division table� DN �� is visible in CT from both CN and CI �

where CN �� CI�

Table �� Notation and De�nitions for IM Algorithms

Within a particular invocation of Algorithm IMA� the primary goal is deter�
mining which division should be placed in the division table for � CT � DN 
� �

� There are only three possibilities� �� the new division� DN is inserted into the
table� �� the division� DC � that currently exists in the table for the entry is left
untouched� or �� a new division is created�obtained to be placed in the table�

These three possibilities correspond to three distinct scenarios� In the dis�
cussion of these scenarios� � refers to DN ��� Also� note that in Algorithm IMR�
method removal actually refers to the propogation of a division� since removal
of a method is implemented by propogating �adding� an appropriate division�

�a Division inserting �DI�� This scenario occurs when we have previously
established that the new division� DN � should be placed in the table for
all dependent classes of � CB� � � � Thus� scenario DI occurs when CT
is a dependent class of DN � and consists solely of inserting DN into the
division table and continuing recursion�

�b Division re�inserting �DRI�� In class hierarchies with multiple inheritance�
there is often more than one path from a base class� CB to an arbitrary
subclass� CT � This implies that during a recursive traversal of child classes�
our inheritance managementalgorithm can visit the same target class more
than once� However� on the second and subsequent visits� absolutely no
work needs to be done� Scenario DRI occurs when DN � DC �� � and
consists solely of terminating the recursion�

� Division child updating �DCU�� Termination of the recursive traversal of
the class hierarchy stops when a class is detected which has a native dec�
laration for �� In this case� we want to leave the current division� DC �
as is� since native de�nitions override inherited ones� However� since each
division maintains the set of its child divisions� we must update these
links� Scenario DCU occurs when a native de�nition �implicit or explicit�
for � exists in CT � and involves updating division child information and
stopping recursion�
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�a Con�ict�creating �CC�� In Algorithm IMA� propogating a division can
result in an inheritance con�ict� The boolean test � from Table � is useful
because an inheritance con�ict exists in CT if the test is true� and does
not exist in CT if it is false� We will discuss how to e�ciently determine
the truth value of � later� Note that DC represents the method that
CT currently executes for selector �� Furthermore� DC 
C represents the
de�ning class of this method� Scenario CC occurs when there exists a path
between CT and DC 
C which does not pass through DN 
C� It involves
creating a con�ict division and propogating this division to all dependent
classes of � CT � D
� � �

�b Con�ict�removing �CR�� In Algorithm IMR� propogating a division can
result in the removal of an existing inheritance con�ict� Scenario CR
occurs when DC is a con�ict� there exists exactly two parent divisions of
DC �i�e� j DC 
P j� ��� and either DN is empty or is an element of DC 
P �
It involves propogating the single division element of DC 
P � fDN � DRg
to all dependent classes of � CT � D
� � � where DR refers to the division
being removed�

Four fundamental boolean tests exist that allow us to e�ciently determine
what scenario should be performed during a particular invocation of Algorithm
IMA or IMR�

The four tests are�

�� CT � CI �does a native de�nition exist �

�� CN � CI �have we already propogated a division to this class �

�� CI � nil �does the current class recognize the selector in question �

�� � � true �after adding DN � does an inheritance con�ict exist �

Table � shows how these four tests e�ciently determine which scenario to
perform during Algorithms IMA and IMR� Many combinations of truth values
are not possible because the four tests are not entirely independent� Each com�
bination of truth values that is not possible has one or more assertion numbers�
presented in Appendix A� explaining why it is not possible� Legal truth value
combinations are marked with the appropriate scenario to perform�

From Table �� we can determine which tests are necessary to identify the
desired scenario during an invocation of Algorithms IMA and IMR� Tests for
Algorithm IMA are summarized in Table � and tests for Algorithm IMR are
summarized in Table ��

All of these tests are simple comparisons� except for determining the truth
value of �� Remember that � is true if � is visible in CT from both CN and CI �
when CN �� CI � It is useful because an inheritance con�ict exists inCT if the test
is true� and does not exist in CT if it is false� A naive algorithm could determine
the truth value of � by traversing down the inheritance hierarchy from both CN
and CI� looking for CT � However� a much more e�cient mechanism exists�
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CT � CI CN � CI CI � nil � IMA scenarios IMR scenarios

T T T T �������� or �� �������� or ��
T T T F ��� or � ��� or �
T T F T ��� or �� ��� or ��
T T F F � �
T F T T � or �� ��� or ��
T F T F � or �� � or �
T F F T DCU DCU

T F F F DCU if isCon�ict�D C� CR else DCU

F T T T ���� or �� �� ��� or ��
F T T F � �
F T F T �� ��
F T F F DRI DRI

F F T T �� � or ��
F F T F DI �
F F F T CC ��
F F F F DI DI

Table �� All truth combinations of the four fundamental DT tests

Scenario Tests

DCU CT � CI
DRI CT �� CI and CN � CI
CC CT �� CI and CN �� CI and � � true
DI CT �� CI and CN �� CI and � � false

Table �� Determining scenario during IMA invocations

Even though the truth value of � asssumes that DN has already been added� it
is possible to use information stored in the table before DN is placed to e�ciently
determine �� In Algorithm IMA� we de�ne ! � fD j D � T 
DN 
�� Ci� Ci �
parents�CT �g�f�g� That is� ! represents the set of non�empty divisions stored
in the division table for all parent classes of CT � If ! � �� a con�ict would exist
ifDN were added to CT � When CT has a native de�nition for �� ! is identical to
DC 
P � where DC is the division T
��CT � and D
P is the set of parent divisions
of D�

For Algorithm IMR� ! is de�ned as for Algorithm IMA� except that the
division being removed� DR� is not considered as part of the set� Later� we will
see that in Algorithm IMR� DN does not refer to DR� but rather to the division
that should be visible in CT if DR were removed� This necessitates some other
mechanism for obtaining DR� which will be discussed when Algorithm IMR is
presented� In any event� once ! has been obtained� if j ! j� �� a con�ict would
exist in CT if DN were added �i�e� if DR were removed��

There are also certain times when computation of ! is not even necessary�
First� � is immediately true if CI � CN �from Assertion � of Appendix A��
Second� � can never be true if CT has only one parent class �� cannot be
multiply visible if there is only one path by which selectors can be visible��
Third� � can never be true if CN � CI �from the de�nition of ��� Thus� an
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Scenario Tests

DRI CT �� CI and CN � CI
DI CT �� CI and CN �� CI
CR CT � CI and isCon�ict�DC� and � � false
DCU CT � CI and � not isCon�ict�DC� or � � true �

Table �� Determining scenario during IMR invocation

e�cient test for establishing the true value of � is� � CI � CN � or � CN �� CI
and j parents�CT � j� � and j ! j� ���

It is possible for this test to generate temporary con�icts where they do not
truly exist� during a particular invocation� However� by the time all invocations
of Algorithm IMA�IMR are �nished �for a particular invocation of Algorithm
AS�RS�ACL or RCL�� such temporary con�icts will be removed�

So far� we have determined the possible scenarios that can occur during in�
heritance propogation� and found e�cient tests for establishing which scenario
is applicable during a particular invocation of Algorithms IMA and IMR� How�
ever� before presenting the algorithms� there is an important issue that must
be discussed� Up to this point� we have not explained in any detail the role
that a selector index plays in the division tables� We mentioned previously that
the selector index establishes a starting location within the table� and that the
exact interpretation of the index depends on the dispatch technique used� We
must discuss this in more detail� because Algorithm IMA needs to be aware of a
special type of con�ict called a selector index con�ict� A selector index con�ict
can occur in certain table�based dispatch techniques because selector indices are
not necessarily unique� Two di�erent selectors can share the same index as long
as only one non�empty division needs to be stored in a particular division table
entry at a given time� A selector index con�ict occurs when an attempt is made
to insert a division into a division table entry that already contains a non�empty
division with a di�erent selector� In these situations� one of the selectors must
be assigned a new index� and all divisions in the division table associated with
that selector must be moved to new locations� based on the new index value�

AlgorithmDSI �Determine Selector Index� is responsible for assigning a legal
index to a selector� It is presented in Section ������ Algorithm DSI needs to
be invoked in two distinct situations� �� when the current selector does not
yet have an index �i�e� its index is unassigned�� and �� when a selector index
con�ict is detected� AlgorithmAS only needs to invoke AlgorithmDSI when the
index� L� of the current selector� DN 
�� is unassigned� Otherwise� Algorithm AS
assumes that no selector index exists and calls Algorithm IMA� Algorithm IMA
is perfectly suited for detecting selector index con�icts� and it directly invokes
Algorithm DSI when it detects a con�ict� Detecting a con�ict involves a simple
test� DC �� � and DC 
� �� DN 
�� If this test is true� a selector index con�ict
exists� and Algorithm DSI is called to obtain a new selector index for DN 
� and
move all existing divisions for DN 
� to the new table entries indicated by this
new index�
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Note that Algorithm DSI can be called during any recursive invocation of
Algorithm IMA even though this means that� at the time it is called� the new
division has only been propgated to some of the dependent classes� Algorithm
DSI will move the already propogated divisions to their new locations� and the
subsequent recursive invocations will have a new selector index� L� thus placing
divisions in their correct locations�

Unlike Algorithm IMA� Algorithm IMR does not need to worry about se�
lector index con�icts� because it propogates either empty divisions or divisions
that already exist in the table�

Having established the possible scenarios for a particular invocation of Al�
gorithm IMA� as well as how to e�ciently determine which scenario to perform�
we are ready to present Algorithm IMA� It has �ve arguments�

�� CT � the current target class�

�� CB� the base class fromwhich inheritance propogation should start �needed
by Algorithm DSI�

�� DN � the new division which is to be propogated to all dependent classes
of � CB� � � �

�� DP � the division in the table for the parent class of CT from which this
invocation occured�

�� T � the division table to be modi�ed�

Algorithm IMA� in CT  Class� in CB  Class� in DN  Division�
in DP  Division� inout T  Table�

�Assign important variables�
� � � DN ��

� CN � DN �C

� DN � T�CN � ��
� CI � DC �C

�Check for selector index con�ict�
� if DC �� � and DC �� �� DN �� then
� DSI�DN ���CB �T�
� DC � T���CT �
� CI � DC �C

� endif

�Determine and perform appropriate scenarios�
�� if CT � CI then �scenario DCU�
�� addDivisionChild�DN� DC�
�� removeDivisionChild�DP � DC�
�� return

�� elsif � CI � CN � �scenario DRI�
�� return

�� elsif � � � true � then
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�� D � RIC���CT �fDN �DCg�

�� else �scenario DI�
�� D � DN

�� endif

�Insert division and propogate to children�
�� T���CT � �� D
�� foreach Ci � children�CT� do
�� IMA�Ci� CB� D�DC � T �
�� endfor

end IMA

Algorithm IMA can be divided into four distinct parts� Lines ��� determine
the values of the test variables� Note that DC � � when DN 
� is not currently
visible in CT � We de�ne �
C � nil� so in such cases� CI will be nil�

Lines ��� test for a selector index con�ict� and� if one is detected� invoke
Algorithm DSI and reassign test variables that change due to selector index
modi�cation� Recall that Algorithm DSI is responsible for assigning selector
indices� establishing new indicies when selector index con�icts occur� and mov�
ing all selectors in a division table when selector indices change� Note that
selector index con�icts are not possible in STI and VTBL dispatch techniques�
so the DT Table classes used to implement these dispatch techniques provide
an implementation of Algorithm IMA without lines ���� Furthermore� due to
the manner in which Algorithm DSI assigns selector indices� it is not possible
for more than one selector index con�ict to occur during a single invocation of
Algorithms AS and ACL� so if lines ��� are ever executed� subsequent recursive
invocations can avoid the check for selector index con�icts by calling the version
of Algorithm IMA without them�

Lines ����� apply the scenario determining tests to establish one of the three
scenarios� Only one of the three scenarios is performed for each invocation of Al�
gorithm IMA� but in all scenarios� one of two things must occur� �� the scenario
performs an immediate return� thus stopping recursion and not performing any
additional code in the algorithm or �� the scenario assigns a value to the special
variable� D� If the algorithm reaches the fourth part� variable D is to represent
the division that should be placed in the division table for CT � and propogated
to child classes of CT � It is usually DN � but during con�ict�creation this is not
the case� In line ��� procedure addDivisionChild adds its second argument as a
child division of its �rst argument� in line ��� procedure removeDivisionChild
removes its second argument as a child of its �rst argument� In both cases� if
either argument is an empty division� no link is added�

When the DT Algorithms are used on a language with single inheritance�
con�ict detection is unnecessary and multiple paths to classes do not exist� so
scenarios con�ict�creating and division re�inserting are not possible� In such
languages� Algorithm IMA simpli�es to a single test� if CT � CI� perform
division child updating� and if not� perform division inserting�

Finally� Lines ����� are only executed if the scenario determined in the third
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part does not request an explicit return� It consists of inserting division D into
the division table for � CT � � � and recursively invoking the algorithm on all
child classes of CT � passing in the division D as the division to be propogated�
It is important that division table entries in parents be modi�ed before those in
children� in order for � to be e�ciently determined�

The arguments to Algorithm IMR are similar� but not identical to those for
Algorithm IMA� Selector index con�icts cannot occur in Algorithm IMR� and
since CB � the base class� is needed only for passing to Algorithm DSI� CB is
not necessary for Algorithm IMR� However� it is necessary to explicitly pass in
the selector for which the removal is occuring� because the propogated division�
DN can be empty� In Algorithm IMA� this argument was not needed because
it can be obtained from DN 
�� since DN �� � �Assertion � of Appendix A��

Algorithm IMR� in CT  Class� in �  Selector� in DN  Division�
in DP  Division� inout T  Table�
�Assign important variables�

� � � DN ��

� CN � DN �C

� DN � T�CN � ��
� CI � DC �C

�Determine and perform appropriate action�
� if CT �� CI then
� if CN � CI then �action DRI�
� return
� else �action DI�
� D � DN

�� endif
�� elsif isCon�ict�DC� and not j � j� � then �action CR�
�� if j � j� � then
�� D � �
�� else
�� D � the single element of �
�� endif
�� else �action DCU�
�� addDivisionChild�DN� DC�
�� removeDivisionChild�DP � DC�
�� return
�� endif

�Insert division and propogate to children�
�� T���CT � � D
�� foreach Ci � children�CT � do
�� IMR�Ci� ��D�DC �G� T �
�� endfor
end IMR

Algorithm IMR is divided into only three parts� since index con�icts are not
possible� Lines ��� set the values of test variables� Note that for Algorithm IMR�
CI will never be nil because DC will never be empty �it represents the division
of the selector being removed� or a removed con�ict division�� However� since
DN can be empty� CN can be nil� If this occurs� it indicates that no method
for the selector is visible �in CT � after the existing method is removed�

Lines ���� establish which scenario to execute� and perform the appropriate
actions� In line ��� remember that we have established that the truth value of
�� if DN were added to CT � is e�ciently computable with the following test�
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�CI � CN � or � CN �� CI and j parents�CT � j� � and j ! j� ��� Everything in
this test before ! exists to avoid calculating !� but since ! is needed in order
to obtain a value for D� we must always compute it� so the other tests are not
used� Recall that� for Algorithm IMR� ! is the set of non�empty divisions stored
for selector � and all parent classes of CT � where the division being removed is
not considered part of the set� Since the division being removed is represented
by DP � we have all the information necessary to compute !� Also� notice from
Table � that when CT � CI � it is not possible for CN � CI� so we can avoid
that test� If � is false� there can be at most one element in !� ! can also be
empty� since it does not contain � " in such cases� D is assigned �� Otherwise�
D is assigned the single element of !�

Lines ����� are only executed if the scenario determined in the second part
did not perform an explicit return� The division table entry identi�ed by �

CT � � � is modi�ed� and the algorithm is recursively invoked on all child classes
of class CT �

����� Algorithms ACL and RCL �Add�Remove Class Links�

Algorithm ACL is responsible for updating the division table when new inher�
itance links are added to the inheritance graph� Dynamic schema evolution is
possible� so new parent and child links can be added to a class which already
has parent and�or child classes� Rather than having Algorithm ACL add one
inheritance link at a time� we have generalized it so that an arbitrary number
of both parent and child class links can be added� This is done because the
number of calls to Algorithm IMA can often be reduced when multiple parents
are given� For example� when a con�ict occurs between one or more of the new
parent classes� such con�icts can be detected in Algorithm ACL� allowing for a
single con�ict division to be propogated� If only a single parent were provided
at a time� the �rst parent speci�ed would propogate the division normally� but
when the second �presumably con�icting� parent was added� a con�ict division
would have to be created and propogated instead� Algorithm ACL accepts a
class C� a set of parent classes� GP � and a set of children classes GC�

Algorithm ACL�in C  Class� in GP  Set � in GC  Set� inout T  DivisionTable�  Boolean

� update parent and child sets of all classes in fCg �GC �GP as appropriate
� if inheritance graph is cylic then
� undo changes
� return false
� endif

� if � j GC j� � � then
� foreach � � selectors�C� do
� D � T���C�
� foreach Ci � GC do
�� IMA�Ci� C�D�D� T �
�� endfor
�� endfor
�� endif

�� if � j GP j� � � then
�� G � ICB�C�GP � T �
�� for � ��D �� G do
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�� if not isEmpty�D� then
�� IMA�C� C�D� nil� T �
�� endif
�� endfor
�� endif

end ACL

Lines ��� are responsible for updating class hierarchy links and ensuring the
inheritance graph remains acylic� Lines ���� propogate the native behavior of
class C to classes in GC � Note that it is neither possible� nor desirable� to invoke
Algorithm IMA on class C directly� It is not possible� because this would result
in CN � CI � CT within Algorithm IMA� which has been intentionally disal�
lowed for e�ciency reason� It is undesirable because it would result in division
propogation to children that have already had propogation performed �since GC

need not be the entire set of child classes of C�� Thus� we call Algorithm IMA
in each child class found in GC � In lines ������ Algorithm ICB �Inherited Class
Behavior� returns the set of all divisions inerited in class C for � from parents
classes in the class set GP � If di�erent methods for the same selector are in�
herited� Algorithm ICB detects this and replaces the multiple divisions with a
single con�ict division to be propogated� Thus� the set G is guaranteed to have
at most one division for each selector in the environment� All such divisions are
propogated to class C and dependent classes of C by calling Algorithm IMA on
C itself�

Algorithm RCL is used to update the division table when inheritance links
between classes are removed�

Algorithm RCL�in C  Class� in GP  Set of Classes� in GC  Set of Classes� in T  DivisionTable�

� remove classes in GP from parent set of C
� remove classes in GC from child set of C

� if � j GC j� � � then
� foreach � � selectors�C� do
� foreach CielementGC do
� DN � ID���Ci� parents�Ci�� fCg�fg� T �
� IMR�Ci�C�DN � nil� T �
� endfor
� endfor
�� endif

�� if � j GP j� � � then
�� G � ICB�C� parents�C��GP � T �
�� for � ��D �� G do
�� IMR�C� ��D� nil� T �
�� endfor
�� endif

end RCL

In line �� similar to Algorithm ACL� we treat native selectors separately
from inherited behavior� We iterate over every native selector in class C� and
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for each child class of C� obtain the appropriate division inherited in the child
class� given that the child no longer inherits from C� Algorithm ID returns the
division inherited in class C for selector � if no native de�nition existed in C
and C had as parents only the classes in the provided set�

In line ��� the inherited behavior consists of the behavior inherited from all
parents of class C not in the set GP � Set G is guaranteed to have at most one
division for each selector�

����� Algorithms DSI and DCI �Determine Selector�Class Index�

Algorithm DSI is called to obtain a selector index� given a class selector pair�
If the selector already has an index� the algorithm must determine whether a
selector index con�ict exists� and if so� compute a new index� store the index�
allocate space in the table to handle the new index� and move all divisions for
the selector from their old positions in the table to their new positions�

Algorithm DSI�inout �  Selector� in C  Class� inout T  DivisionTable�
� Lold � index���
� if Lold is unassigned or a selector index con�ict exists
� Lnew � indexFreeFor� classesUsing��� � dependentClasses�C��� �
� index� � � � Lnew

� if Lold �� unassigned then
� for Ci � classesUsing��� do
� T�Lnew �Ci� � T�Lold�Ci�
� T�Lold� Ci� � �
� endfor
�� endif
�� extend selector dimension of table to handle Lnew
�� index��� � Lnew
�� endif
end DSI

In line �� the function indexFreeFor is a dispatch�technique dependent al�
gorithm that obtains an index that is not currently being used for any class
that is currently using �� as well as those classes that are dependent classes of
� C� � � � The algorithm is responsible for allocating any new space in the
table necessary for the new index�

In line �� if the old index is unassigned there are no divisions to move� since
no divisions for � currently exist in the table� Otherwise� the divisions for �
have changed location� and must be moved� The old locations are initialized
with empty divisions�

Algorithm DCI is trivial� and is not presented�

� The DT Framework

The DT Framework provides a collection of abstract classes that de�ne the
data and functionality necessary to modify dispatch information incrementally
during environment modi�cation� Recall that� from the perspective of the DT
Framework� environment modi�cation occurs when selectors or class hierarchy
links are added or removed�
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The DT Framework consists of a variety of special purposes classes �� Fig�
ure � shows the class hierarchies� We describe the data and functionality that
each class hierarchy needs from the perspective of inheritance management and
dispatch table modi�cation� Clients of the framework can specify additional
data and functionality by subclassing some or all of the classes provided by the
framework�

Environment

Selector

Class

SeparatedTableExtendable2DTable

FixedRow2DTable

OuterTable2DTable

Table

PartitionedTable

1DTable

SIS

OuterSIS

SeparatedSISPartitionedSISAliasedSIS
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Figure �� The DT Framework Class Hierarchy

��� The DT Classes

The Environment� Class and Selector classes are not subclassed within the DT
Framework itself� but the Division� Table� SIS and CIS classes are subclassed�
In the following subsections� we discuss the purpose of each class�

����� Environment� Class and Selector

The DT Environment class acts as an interface between the DT Framework
client and the framework itself� However� since the client can subclass the DT
Framework� the interface is a white box� not a black one� Each client creates a
unique instance of the DT Environment and as class and method declarations are
parsed �or evaluated at run�time�� the client informs the Environment instance
of these environment modi�cations by invoking its interface operations� These
interface operations are� AS �Add Selector�� RS �Remove Selector�� ACL �Add
Class Links�� and RCL �Remove Class Links�� The environment also provides
functionality to register selectors and classes with the environment� save division

�In this discussion� we present the conceptual names of the classes� rather than the exact
class names used in the C�� implementation�
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tables� convert division tables to dispatch tables� merge division tables together
and perform actual dispath for a particular class�selector pair�

Within the DT Framework� instances of Selector need to maintain a name�
They do not maintain indices� since such indices are table�speci�c� Instances of
Class maintain a name� a set of native behaviors� a set of immediate superclasses
�parent classes�� and a set of immediate subclasses �child classes�� They provide
mechanisms to add to� remove from and iterate over the sets� Furthermore�
they implement an e�cient mechanism for determining whether another class
is a subclass or not�

����� Divisions

The Division hierarchy is in some ways private to the DT Framework� and
language implementors that use the DT Framework will usually not need to
know anything about these classes� However� divisions are of critical importance
in providing the DT Framework with its incremental e�ciency and compile�time
method determination� Each division represents a method to be executed for a
particular class�selector pair� and the class is referred to as the de�ning class
of the division� Divisions� and their role in division tables� was discussed in
Section ����

����� Tables

Each Table class provides a fundamental structure for storing divisions� and
maps the indices associated with a class�selector pair to a particular entry in
the table structure� Each of the concrete table classes in the DT Framework
provides a di�erent underlying table structure� The only functionality that
subclasses need to provide is that which is dependent on the structure� This
includes table access� table modi�cation� and dynamic extension of the selector
and class dimensions of the table�

The �DTable class is an abstract superclass for tables with orthogonal class
and selector dimensions� Rows represent the selector dimension� and columns
represent the class dimension� The Extendable�DTable class can dynamically
grow in both selector and class dimensions as additional elements are added to
the dimensions� The FixedRow�DTable dynamically grows in the class dimen�
sion� but the size of the selector dimension is established at the time of table
creation� and cannot grow larger�

The �DTable class is concrete� and represents tables in which selectors and
classes share the same dimension� Selector and class indices are added together
to establish an entry within this one dimensional table�

The OuterTable class is an abstract superclass for tables which contain sub�
tables� Most of the functionality of these classes involves requesting the same
functionality from a particular subtable� For example� requesting the entry for a
class�selector pair involves determining �based on selector index� which subtable
is needed� and requesting table access from that subtable� Individual selectors
exist in at most one subtable� but the same class can exist in multiple subta�
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bles� For this reason� class indices for these tables are dependent on selector
indices �because the subtable is determined by selector index�� For e�ciency�
selector indices are encoded so as to maintain both the subtable to which they
belong� as well as the actual index within that subtable� The PartitionedTable
class has a dynamic number of FixedRow�DTable instances as subtables� A
new FixedRow�DTable instance is added when a selector cannot �t in any ex�
isting subtable� The SeparatedTable class has two subtables� one for standard
selectors and one for con�ict selectors� A standard selector is one with only
one root division �a new selector is also standard�� and a con�ict selector is one
with more than one root division� Each of these subtables can be an instance
of either Extendable�DTable or PartitionedTable� Since PartitionedTables are
also outer tables� such implementations express tables as subtables containing
subsubtables�

����� Selector Index Strategy 	 SIS

Each table has associated with it a selector index strategy� which is represented
as an instance of some subclass of SIS� The OuterTable and �DTable classes
have one particular selector index strategy that they must use� but the �DTable
classes can choose from any of the �D�SIS subclasses�

Each subclass of SIS implements AlgorithmDSI �Determine Selector Index��
which provides a mechanism for determining the index to associate with a se�
lector� given a class�selector pair� Each SIS class maintains the current index
for each selector� and is responsible for detecting selector index con�icts� When
such con�icts are detected� a new index must be determined that does not con�
�ict with existing indices� Algorithm DSI is responsible for detecting con�icts�
determining a new index� storing the index� ensuring that space exists in the
table for the new index� moving divisions from the old table locations to new
table locations� and returning the selector index to the caller�

The abstract �D�SIS class repesents selector index strategies for use with
�D�Tables� These strategies are interchangable� so any �D�Table subclass can
use any concrete subclass of �D�SIS in order to provide selector index deter�
mination� The PlainSIS class is a naive strategy that assigns a unique index
to each selector� The ColoredSIS and AliasedSIS classes allow two selectors to
share the same index as long as no class in the environment recognizes both
selectors� They di�er in how they determine which selectors can share indices�
AliasedSIS is only applicable to languages with single inheritance�

The ShiftedSIS class provides selector index determination for tables in
which selectors and classes share the same dimension� This strategy imple�
ments a variety of auxillary functions which maintain doubly�linked freelists of
unused entries in the one�dimensional table� These freelists are used to e��
ciently determine a new selector index� The selector index is interpreted as a
shift o�set within the table� to which class indices are added in order to obtain
a table entry for a class�selector pair�

The PartitionedSIS class implements selector index determination for Parti�
tionedTable instances� When selector index con�icts are detected� a new index
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is obtained by asking a subtable to determine an index� Since FixedRow�D
subtables of PartitionedTable instances are not guaranteed to be able to assign
an index� all subtables are asked for an index until a subtable is found that
can assign an index� If no subtable can assign an index� a new subtable is
dynamically created�

The SeparatedSIS class implements selector index determination for Sepa�
ratedTable instances� A new index needs to be assigned when a selector index
con�ict is detected or when a selector changes status from standard to con�ict�
ing� or vice�versa� Such index determination involves asking either the standard
or con�ict subtable to �nd a selector index�

����
 Class Index Strategy 	 CIS

Each table has associated with it a class index strategy� which is represented as
an instance of some subclass of CIS� The OuterTable and �DTable classes have
one particular class index strategy that they must use� but the �DTable classes
can choose from either of the �D�CIS subclasses�

Each subclass of CIS implements Algorithm DCI �Determine Class Index��
which provides a mechanism for determining the index to associate with a class�
given a class�selector pair� Each CIS class maintains the current index for each
class� and is responsible for detecting class index con�icts� When such con�icts
are detected� a new index must be determined that does not con�ict with ex�
isting indices� Algorithm DCI is responsible for detecting con�icts� determining
a new index� storing the index� ensuring that space exists in the table for the
new index� moving divisions from old table locations to new table locations� and
returning the class index to the caller�

The NonSharedCIS class implements the standard class index strategy� in
which each class is assigned a unique index as it is added to the table� The
SharedCIS class allows two or more classes to share the same index if all classes
sharing the index have exactly the same division for every selector in the table�

The PartitionedCIS and SeparatedCIS classes implement class index deter�
mination for PartitionedTable and SeparatedTable respectively� In both cases�
this involves establishing a subtable based on the selector index and asking that
subtable to �nd a class index�

� Incremental Table�based Method Dispatch

All of the table�based techniques can be implemented using the DT Framework�
However� due to the non�incremental nature of the virtual function table tech�
nique �VTBL�� an incremental implementation of VTBL would be quite ine��
cient� so the current implementation of the framework does not support VTBL
dispatch� All other techniques are provided� and the exact dispatch mechanism
is controlled by parameters passed to the DT Environment constructor� The
parameters indicate which table�s� to use� and specify the selector and class
index strategies to be associated with each of these tables�
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�� STI � uses Extendable�DTable� PlainSIS� and NonSharedCIS�

�� SC � uses Extendable�DTable� ColoredSIS� and NonSharedCIS�

�� RD � uses �DTable� ShiftedSIS and NonSharedCIS�

�� CT � uses a SeparatedTable with two PartitionedTable subtables� each
with FixedRow�DTable subsubtables� The selector index strategy for all
subsubtables of the standard subtable is AliasedSIS� and the strategy for
all subsubtables of the con�ict subtable is PlainSIS� All subsubtables use
SharedCIS�

�� SCCT � uses a SeparatedTable with two PartitionedTable subtables� each
with FixedRow�DTable subsubtables� All subsubtables use ColoredSIS
and SharedCIS�

The framework provides an elegant mechanism by which SC and CT dis�
patch can be merged into a new hybrid technique� SCCT� Using both SC and
CT together works well to extend CT dispatch to languages with multiple in�
heritance� The selector aliasing performed by CT can remove all internal empty
entries from each column of the table� without concern for other columns� as
long as the table contains only standard selectors and uses only single inher�
itance� However� using selector coloring will often provide exactly the same
compression �and will have a very small amount of internal empty space even in
the worst cases�� and is not restricted to single inheritance� Furthermore� CT
dispatch cannot use selector aliasing to compress the con�ict table� so all con�
�ict selectors are e�ectively placed in an STI style table �although partitioning
and class sharing can still be applied to this table to compress it�� Using the
SC technique on the con�ict table provides the potential for more compression
�note however� that coloring may reduce the amount of class sharing possible��
The SCCT technique has the same dispatch performance as CT� slightly bet�
ter space performance than CT� and generalizes CT to languages with multiple
inheritance�

In addition to providing each of the above dispatch techniques� the frame�
work can be used to analyze the various compression strategies introduced by
CT dispatch in isolation from the others� For example� a dispatch table consist�
ing of a PartitionedTable� whose FixedRow�DTable subtables each use Plain�
SIS and SharedCIS indexing strategies� allows us to determine how much table
compression is obtained by class sharing alone� Many variations based on Sep�
aratedTable and PartitionedTable� their subtables� and the associated index
strategies� are possible�

� E�ciency issues within Compilers and Run�

time Systems

Both compilers and run�time systems bene�t equally from the dispatch tech�
nique independence provided by the DT Framework� In addition� the framework
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provides each of them with powerful functionality�

	�� Compilers

The DT Framework provides compilers with the following advantages� �� main�
tenance of inheritance con�icts� �� compile�time method determination� and ��
the ability to perform separate compilation�

In languages with multiple inheritance� it is possible for inheritance con�icts
to occur� when a class with no native de�nition for a selector inherits two distinct
methods for the selector from two or more superclasses� For the purposes of both
e�ciency and software veri�cation� compile�time detection of such con�icts is
highly desirable�

The most substantial bene�t that the DT Framework provides to compil�
ers is the recording of information needed to e�ciently determine whether a
particular class�selector pair is uniquely determined at compile�time� In such
cases� the compiler can avoid run�time method dispatch entirely� and generate
an immediate function call or even inline the code�

Another powerful capability provided to compilers by the DT Framework
is separate compilation� Each library or collection of related classes can be
compiled� and a full division table stored with the associated object code� At
link�time� a separate DT Environment for each library or module can be created
from the stored division tables� The linker can then pick one such environment
�usually the largest� and ask that environment to merge each of the other en�
vironments into itself� This facility is critical in situations where a library is
being used for which source code is not provided� Since certain dispatch table
techniques require the full environment in order to maintain accurate tables �i�e�
SC� RD and CT� library providers who do not want to share their source code
need only provide the inheritance hierarchy and selector de�nition information
needed by the DT Framework�

Finally� note that although it is necessary to use the extended dispatch table
�i�e� a division table� to incrementally modify the inheritance information� in
non�re�exive compiled languages it is not necessary to maintain the division
table at run�time� Once linking is �nished� the linker can ask the DT Environ�
ment to create a dispatch table from the division table� and this dispatch table
can be stored in the executable for static use at run�time�

	�� Run�time Systems

The DT Framework provides run�time systems with� �� table�based dispatch
in re�exive languages� �� dynamic schema evolution� and �� inheritance con�ict
detection�

The utility of the DT Framework is fully revealed when it is used by run�time
systems� Because of the e�ciency of incremental inheritance propogation and
dispatch table modi�cation� it can be used even in heavily re�exive languages
like Smalltalk �
GR��� and Tigukat �
OPS����� However� this functionality is
provided at the cost of additional space� because the entire division table must
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be maintained at run�time� rather than just a dispatch table containing addreses�
Note also that without additional space utilization� division�table based dispatch
is more expensive than normal table dispatch because of the indirection through
the division stored at a division table entry in order to obtain an address� By
doubling the table size� this can be avoided by having the division table store
both a division pointer and an address� In dispatch techniques like RD and CT
that are space�e�cient� this doubling of size may be worth the improvements in
dispatch performance�

Some mechanism to support dynamic schema evolution is necessary to pro�
vide languages with true re�exivity� The DT Framework allows arbitrary class
hierarchy links to be added and removed no matter what the current state of
the classes�

Finally� the framework allows inheritance con�icts to be detected at the time
they are produced� rather than during dispatch� This allows re�exive languages
to return error indicators immediately after a run�time environment modi�ca�
tion� A common complaint with re�exivity is a lack of software veri�cation� the
DT Framework provides partial a solution to this�

� Performance Results

In this section� we present some performance results obtained by applying the
DT Framework to the class libraries described in Table �� In the table� C
is the total number of classes� S is the total number of selectors� M is the
total number of legitimate class�selector combinations� m is the total number
of de�ned methods� P is the average number of parents per class� and B is the
size of the largest complete behavior� �c�f� 
DH����

Library C S M m P B

Digitalk ST
V ��� ��� ���� ������ ���� � ���
Parcplace� ��� ���� ������ ���� � ���
Geode ���� ���� ������ ����� ���� ���
IBM Smalltalk ��� ���� ����� ������ ����� � ���
Parcplace� ���� ����� ������ ����� � ���
Digitalk ST
V ��� ���� ����� ������ ����� � ����
Self System ��� ���� ����� ������� ����� ���� ���
Visual Age ��� ���� ����� ������� ����� � ���

Table �� Statistics for various object�oriented environments

In order to obtain the statistics presented in this section� a simple driver
program was written which creates an instance of the DT Environment and
parses an input �le� Each line of the input �le contains one of four directives
�add�remove a selector for a class� or add�remove class hierarchy links�� Thus�
each line results in the invocation of one of the four DT Environment interface
algorithms� AS� RS� ACL or RCL� Timings presented here are in milliseconds�
and refer to the total user and system time taken to parse the entire input
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�le and incrementally build a division table for the environment� The experi�
ments were performed on a SparcStation������ with ���Mb of RAM running
SunOS������ The DT source code was compiled using g�� �O�� Some caveats
on the timings should be noted� Relative performance results� in terms of ex�
ecution speed� between the various dispatch techniques� are not representative
of the fastest possible times� In general� none of the techniques have been opti�
mized� and it is expected that a careful pro�ling will reveal many ways in which
the overall framework� and the speci�c dispatch technique implementations� can
be improved� On the other hand� �ll�rate performance between techniques is
optimal� but is discussed elsewhere �
VH��� DH��� so is not readdressed here�

Not surprisingly� the order in which the environment is parsed can have a
substantial e�ect on both execution performance and dispatch table �ll�rate�
given the incremental nature of the DT algorithms� In order to measure this
e�ect� each of the library environments of Table � was ordered in multiple ways�
and the DT algorithms were run on each input variation to establish timings
and �llrates� From these experiments� it is possible to establish the optimal
ordering for storing static libraries� as well as indicate how expensive random
orderings are in re�exive languages� We have divided each input ordering using
a primary ordering and a secondary ordering� The primary ordering determines
how class de�nitions and selector de�nitions are intermixed� Native selectors
can be de�ned immediately after each class de�nition� all selector de�nitions can
occur after all class de�nitions� or all class de�nitions can occur after all selector
de�nitions� Within each primary ordering� a secondary ordering establishes the
order in which individual items �classes or selectors� appear� Classes can be
ordered top�down� bottom�up or randomly� Selectors can occur by ordering
the classes in various ways and and putting all native selectors for each class
together� or can be grouped according to name �all selectors of the same name
appear together�� The DT Framework has been tested on the following input
orderings�

�� CSD � classes are ordered top�down and all native selectors for each class
occur immediately after the class de�nition

�� CSU � classes are ordered bottom�up and all native selectors for each class
occur immediately after the class de�nition

�� CSR� classes are ordered randomly and all native selectors for each class
occur immediately after the class de�nition

�� CDSD � all class de�nitions occur before any selector de�nition� Classes
are de�ned by ordering them top�down� The order in which selectors
appear is determined by ordering classes top�down and de�ning all native
selectors for each class in this ordering together� before native selectors
for others classes in the ordering�

�� CDSU � like CDSD except selectors are de�ned by ordering classes bottom�
up and putting all native behaviors for each class in this order together�
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�� CDSR� like CDSD except selectors are de�ned by ordering classes ran�
domly and putting all native behaviors for each class in this order together�

�� CUSD � all class de�nitions occur before any selector de�nition� Classes
are de�ned by ordering them bottom�up� The order in which selectors
appear is determined by ordering classes top�down and de�ning all native
selectors for each class in this ordering together� before native selectors
for other classes in the ordering�

�� CUSU � like CUSD except selectors are de�ned by ordering classes bottom�
up and putting all native behaviors for each class in this order together�

�� CUSR� like CUSD except selectors are de�ned by ordering classes ran�
domly and putting all native behaviors for each class in this order together�

��� CRSD � all class de�nitions occur before any selector de�nition� Classes are
de�ned by ordering them randomly� The order in which selectors appear is
determined by ordering classes top�down and de�ning all native selectors
for each class in this ordering together� before native selectors for other
classes in the ordering�

��� CRSU � like CRSD except selectors are de�ned by ordering classes bottom�
up and putting all native behaviors for each class in this order together�

��� CRSR� like CRSD except selectors are de�ned by ordering classes ran�
domly and putting all native behaviors for each class in this order together�

��� RDD � all classes are de�ned before any selector� and classes are ordered
top�down� All de�nitions for the same selector occur together� and selec�
tors occur by sorting them in descending order based on the number of
classes that recognize them �i�e�� selectors recognized by more classes are
de�ned before those recognized by fewer�� Note that the RDD ordering is
the closest to the optimal ordering identi�ed by 
DH�� for RD dispatch�

��� RDU � like RDD except that classes are ordered bottom�up �selectors ap�
pear in the same order they do in RDD��

��� RND � the totally random ordering # the order of class and selector de��
nitions is completely random�

Due to the number of combinations possible� we do no present results for
every combination of dispatch technique� library and input ordering in this
paper� Instead� we have choosen representative examples� For the most part�
we will focus on SC dispatch and the Parcplace� library� whose graphs are� for
the most part� representative of other techniques and libraries�

The results have been divided into two subsections� In the �rst� we deter�
mine which input ordering provides the best execution time and �ll�rate per�
formance� This is useful because all object�oriented languages� re�exive or not�
provide code reuse via libraries� The DT algorithms can be used to create a
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division table for each library� This division table would be stored with the
library and loaded as the initial division table when application code is to be
compiled� Thus� application code would incrementally modify a precomputed
division table� The time taken for the DT algorithms to create a division table
for a library represents the amount by which compilation would slow down if
the DT algorithms were used by the compiler� The second subsection presents
results on the e�ects of random input orderings on execution time and �ll�rate�
including per�modi�cation timings� These timings represent how long the exe�
cution of a run�time system is delayed each time a selector or class is added at
run�time�


�� Static Input Orderings

0

50000

100000

150000

200000

250000

300000

350000

400000

RDD RDU CDSD CUSD CDSU CUSU CSU CSD

to
ta

l t
im

e 
(m

ill
is

ec
on

ds
)

input order

Parcplace1
Geode
IBM Smalltalk 2.0
Digitalk ST/V 3.0
Visual Age 2.0

Figure �� Input order vs� Execution time for SC dispatch

There are two ways in which input order a�ects execution time� First� certain
orderings will require less inheritance propogation than others� For example� an
input ordering in which selectors are de�ned based on top�down class order will
require much more inheritance propogation than an ordering in which selectors
are de�ned based on bottom�up class ordering �the former order must propogate
divisions that are subsequently overridden�� Second� certain orderings will re�
quire fewer calls to Algorithm DSI� Since Algorithm DSI is usually the most
expensive algorithm in the DT Framework� avoiding it is desirable� Unneces�
sary calls to Algorithm DSI can be avoided by ordering the environment so that
selectors appear based on top�down class order� In this way� the �rst call to
DSI will �nd an index free for the largest number of dependent classes� In the
opposite order� with selectors appearing based on bottom�up class order� indices
are assigned based on only a small number of the classes that will eventually
recognize the selector� requiring additional calls to DSI as selector de�nitions
for classes higher in the hierarchy are obtained� Note that the two manners
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in which input order a�ect execution time compete with one another� One is
minimized by selectors ordered by classes top�down� and the other by selectors
ordered by classes bottom�up�
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Figure �� Input order vs� Execution time for Parcplace�

Figure � shows the time� in milliseconds� taken by the DT Framework to
create a selector colored division table �SC�� using each of the non�random input
orderings� From the graph� we can make the following conclusions� RDD� RDU�
CDSD and CUSD are roughly equal �which is better depends on the library
being processed�� All of these are slightly better than CDSU and CUSU� which
are usually much better than CSD and CSU� These overall trends hold true
across all techniques� although the degree by which timings are a�ected varies
with technique� Figure � shows the e�ects of input order on execution time for
each of STI� SC� RD and CT� on the Parcplace� library� Results for SCCT are
not shown because they are almost identical to CT�

Input ordering has a slightly di�erent e�ect on �ll�rate� Figure � shows
�llrates for the non�random input orderings using SC dispatch� and Figure �
shows �llrates for all four of the dispatch techniques when these input orderings
are applied to the Parcplace� library�

Input orders RDD and RDU provide the best �ll�rates� followed by CDSD�
CUSD and CSD �unlike for execution times� where CSD was worst�� The
bottom�up selector orderings �CDSU� CUSU and CSU� give the worst �ll�rates�
Notice that� from a �ll�rate perspective� RD dispatch is most sensitive to input
ordering� and STI dispatch is not a�ected at all� Remember that RDD�RDU
represent the input ordering identi�ed by 
DH�� as optimal for �ll�rate perfor�
mance in RD dispatch�

From the previous graphs� we can conclude that the best possible ordering
for both execution time and maximal �ll�rate is RDD or RDU� Exactly which

�The results reported here are for a version of CT in which selector coloring is used instead
of selector aliasing�
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Figure �� Input order vs� Fill�Rate for SC dispatch

one is better varies on the dispatch technique� library and input order� but� on
average� RDD gives the best results�


�� Random Orderings

Knowing the optimal static ordering is useful in determining how library code
should be stored to make recomputation of a library division table optimal�
However� in re�exive languages� such �ne control over input ordering is not
possible� In order to determine how the DT Framework performs on random
input� we generated �� versions of each of the random orderings� The average
execution time and �ll�rate across these �� input �les gives a good measure of
the performance of the algorithms on random data� Figures �� and �� show the
execution time and �ll�rate performance respectively for some of these random
orderings� We have also included some non�random orderings for comparison�
The totally random ordering� RND� is approximately ��� times slower than the
optimal ordering� RDD� and twice as fast as the worst ordering� CSD�

In re�exive environments� the per�invocation cost of the incremental algo�
rithms is also of interest� Figures �� and �� show the average time �in millisec�
onds� of a call to Algorithm AS and ACL respectively�

The average per�invocation cost of adding a selector in environments with
about half a million class�selector pairs is approximately one millisecond� The
average per�invocation cost of adding class hierarchy links is at most �� mil�
liseconds� Note that although order CSD is optimal for Algorithm AS� it is the
absolute worst ordering for Algorithm ACL� In this ordering� no inheritance pro�
pogation occurs during Algorithm AS� and redundant inheritance propogation
occurs during Algorithm ACL� As expected� the best overall ordering is RDD�
During Algorithm AS� the truly random ordering� RND� is not much more ex�
pensive than RDD� However� during Algorithm ACL� the random ordering is
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much more expensive than order RDD� but is about ��$ more e�cient than
order CSD�

	 Related and Future Work

��� Related Work


DHV�� presents an analysis of the various dispatch techniques and indicates
that in most cases� IC and PIC are more e�cient than STI� SC and RD� espe�
cially on highly pipelined processors� because IC and PIC do not cause pipeline
stalls that the table indirections of STI� SC and RD do� However� even if the
primary dispatch technique is IC or PIC� it may still be useful to maintain a
dispatch table for cases were a miss occurs� as a much faster alternative to us�
ing ML �method lookup� or LC �global cache� and ML together� Especially
in re�exive languages with substantial multiple inheritance� ML is extremely
ine�cient� since each inheritance path must be searched �in order to detect
inheritance con�icts��


DGC�� discusses static class hierarchy analysis and its utility in optimizing
object�oriented programs� They introduce an applies�to set representing the set
of classes that share the same method for a particular selector� These sets are
represented by our concept of dependent classes� Since each division implicitly
maintains its set of dependent classes� the DT algorithms have access to such
sets� and to the compile�time optimizations provided by them�


AR�� presents an incremental approach to selector coloring� However�
the algorithm proposed often performs redundant work by checking the valid�
ity of selector colors each time a new selector is added� The DT algorithms
demonstrates how to perform selector color determination only when absolutely
necessary �i�e� only when a selector color con�ict occurs�� and generalize the ap�
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Figure ��� Random Input Order vs� Execution Time for Parcplace�

proach to a variety of table�based approaches� 
DH�� presents selector�based
row displacement �RD� and discusses how to obtain optimal compression re�
sults� 
VH�� presents the compact selector indexed table �CT�� expanding on
previous work in 
VH���

Predicate classes� as implemented in Cecil �
Cha���� allow a class to change
its set of superclasses� at run�time� The DT Framework provides an e�cient
mechanism for implementing predicate classes using table�based dispatch�

��� Future Work

The DT Framework provides a general description of all work that needs to be
performed to handle inheritance management and method dispatch in re�ex�
ive� dynamically typed� single�receiver languages with multiple inheritance� A
variety of extensions are possible�

First� the framework as presented handles methods� but not internal state�
A mechanism to incrementally modify object layout is a logical� and necessary�
extension� Second� multi�method languages such as Tigukat 
OPS��� and Ce�
cil 
Cha�� have the ability to dispatch a method based not only on the dynamic
type of a receiver� but also on the dynamic types of all secondary arguments
to the behavior� Multi�methods extend the expressive power of a language� but
e�cient method dispatch and inheritance management is an even more di�cult
issue in such languages� Third� the framework currently assumes that inher�
iting the interface of parent classes implies that the implementation assocated
with the interface is inherited also� A more general mechanism for inheritance
management that separates these concepts is desirable�

Fourth� although the DT Framework provides a general mechanism for han�
dling table�based method dispatch� it is really only one component of a much
larger framework that handles all method dispatch techniques� The DT Frame�
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work can be extended so that framework clients call interface algorithms each
time a call�site is encountered� similar to the manner in which the environment
is currently called� when class and selector de�nitions are encountered�

Fifth� research into the impact on dispatch performace incurred by the dy�
namic nature of the DT Framework is needed� Note that in the framework� the
fundamental structures like arrays and sets �used by many classes� are grown dy�
namically� with additional space being added as necessary� Unfortunately� this
capability to dynamically extend selector and class dimensions within tables
necessitates additional indirections during table access� making actual dispatch
less e�cient than non�dynamic implementations of the same table�based tech�
niques� As observed in 
DHV��� the table�based dispatch techniques are more
ine�cient than dynamic techniques like IC and PIC� since table�based dispatch
techniques cause pipe�line stalls� Since one indirection stalls a pipe as e�ectively
as two or three indirections� it is expected that the extra indirections incurred by
the dynamic nature of the division tables will not substantially reduce dispatch
times�

Sixth� the DT Framework allows various compression techniques� like selec�
tor aliasing� selector coloring� and class sharing� to be analyzed both in isolation�
and in interaction with one another� More research about how these techniques
interact� and about how SCCT dispatch can be optimized� is necessary�


 Conclusion

We have presented a framework that is usable by both compilers and run�time
systems to provide table�based method dispatch� inheritance con�ict detection�
and compile�time method determination� The framework relies on a collection
of technique independent algorithms for environment modi�cation� which call
technique�dependent algorithms to perform fundamental operations like table
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Figure ��� Cost of Algorithm AS Invocation

access and index determination� The framework uni�es all table�based method
dispatch techniques into a cohesive whole� allowing a language implementor
to change between techniques by changing the manner in which the DT En�
vironment is instantiated� Incremental versions of all table�based techniques
except VTBL have been implemented� all of which have low milli�second per�
modi�cation execution times�

The framework provides a variety of new capabilities� The various table�
based dispatch techniques have di�ering dispatch execution times and memory
requirements� Since the framework allows any table�based dispatch technique to
be used� a particular application can be optimized for either space or dispatch
performance� Furthermore� the DT Framework allows table�based dispatch
techniques to be used in re�exive languages� In the past� re�exive languages
necessitated the use of a non�table�based techique� One reason that C�� uses
virtual function tables is that they allow for separate compilation� unlike other
table�based dispatch techniques� The DT Framework now allows all table�based
dispatch techniques to work with separate compilation� Finally� the framework
introduces a new level of software veri�cation in re�exive languages by allowing
inheritance con�icts to be detected immediately when they occur� rather than
during dispatch�

The framework has been used to merge SC and CT method dispatch into a
hybrid dispatch technique with the advantages of both� The CT dispatch tech�
nique is limited by its restriction to single�inheritance� By replacing selector
aliasing by selector coloring� we obtain a dispatch technique that works with
multiple inheritance and that bene�ts from the class sharing made possible by
CT partitioning� Furthermore� SCCT dispatch provides slightly better com�
pression because the con�ict table can be colored� unlike in CT dispatch� where
it remains uncompressed�

As an indication of the e�ciency of our algorithms and implementation�
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Figure ��� Cost of Algorithm ACL Invocation


AR�� reports a time of �� minutes to color the Smalltalk��� Version ��� hi�
erarchy when the ��� selectors native to Object are ignored� using a Sun �����
Our implementation of the DT algorithms color the entire library in ��� sec�
onds on a Sun ����� while performing inheritance detection and maintaining
compile�time optimization information� The DT Framework currently consists
of �� classes� ��� selectors� ��� methods� and ���� meaningful class�selector
pairs� When the DT Framework is applied to a completely random ordering of
itself� a SCCT�based dispatch table is generated in ����� seconds� Since com�
piling the framework requires ��� seconds� even the slowest dispatch technique
and input ordering produce a dispatch table in a negligible amount of time�
relative to overall compilation time�
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A Assertions

In Section ������ a variety of division and class concepts were introduced and
used to obtain e�cient tests for identifying which of three scenarios a particular
invocation of Algorithm IMA or IMR should execute� Table � is a truth table
showing all possible combinations of truth values for four fundamental tests�
The following assertions allow us to eliminate most combinations of the tests as
impossibilities� In the assertions� we use � to represent DN 
��

�� CT is never nil � From the de�nition of target class� CT �

�� CB is never nil � From the de�nition of base class� CB �

�� D
C � nil � D � �� The only division whose de�ning class is nil is
the empty division� �� This is the de�nition of the representation of the
empty division�

�� In IMA
 DN �� �� During method addition� such an empty division will
never be propogated �Algorithm AS always creates a new division� and
Algorithm ACL only propogates non�empty divisions�� This implies that
in Algorithm IMA� DN 
C �� nil and DN 
� �� nil� from Assertion ��

�� CT � CB � CN � follows from the de�nition of these classes� CB � CN is
obviously only true when CN �� nil

��



�� In IMR
 CI is never nil � remember that CI refers to the class from which
CT inherits �� before � is added�removed from CB � During method re�
moval� if the de�nition of � in CB is not visible to CT it is because some
class between CB and CT has rede�ned �� In either case� CT inherits �
from some real class and thus CI cannot be nil�

�� If CI �� nil� CT � CI � It is not possible to inherit a method from a
subclass� so since CI is de�ned as the class from which CT inherits �

before DN is inserted� CT � CI � if such an inheriting class� CI � exists�

�� CN � CI � CI �� CT � Suppose not� so it is possible that CN � CI � CT �
However� in Algorithms ACL� RCL and RS� DN is always associated with
a class strictly above CB in the inheritance hierarchy� Thus� our assump�
tion is only possible from Algorithm AS� In this situation� Algorithm AS
does not need to do any inheritance propogation whatsoever� since DC 
C

� DN 
C and DC 
� � DN 
�� Thus� this assertion is true because it is
enforced to be true by our algorithms�

�� CN �� nil and CI �� nil and CN NLE CI � � is true� First� note that
CN NLE CI � CI � CN or CI and CN are not orderable�

�a� Suppose CI and CN are not orderable� By the de�nition of CI � � is
visible in CT from CI before adding DN � Since CN NLE CI� the
new division does not block the visiblity of � in CT from CI � so after
the method addition� � is visible in CT from CI � Similarily� after
method addition� � is visible in CT from CN because CI NLE CN �
Thus� � is true�

�b� Suppose CI � CN � Since CT � CI �from ��� at least one path from
CN to CT has CI along it� Suppose all paths from CN to CT have CI
along them� Then CT would never have been reached by the algo�
rithm� because� on a previous invocation� the algorithm would have
previously encountered the situation in which CT � CI � and recur�
sion would have stopped� Since CT has been reached� our supposition
is incorrect� and there exists a path from CN to CT that does not
pass through CI � so � is visible in CT from CN � Since CI � CN �
there is a path from CI to CT that does not pass through CN � so �
is visible in CT from CI� Thus� � is true�

��� CI � nil � � is false� CI � nil � sigma is not visible in CT from CI �
Condition �requires that � be visible in CT from both CI and CD�

��� CN � CI � � is false � by the de�nition of ��

��� In IMR
 CT �� CI � CI � CB� Suppose CT � CB � CI � Observe that
there must exist a native de�nition for � in CB in order to be able to
remove � from CB � Thus� before adding DN � CT would inherit � from
CB �� CI� which contradicts the de�nition of CI � Therefore� CB NL CI �
Suppose CT � CI � CB� Algorithm IMR is initially invoked on child
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classes of CB� and would stop recursion when it encountered a subclass
with a native de�nition �i�e� when it encountered CI�� But this implies
that CT would never be reached �since CT � CI� unless there exists some
other path from CB to CT that does not pass through CI � However�
if this were the case� � would be visible in CT from both CB and CI �
implying that a con�ict exists� in which case an implicit native de�nition
representing a con�ict would exist in CT � This would mean that CT � CI �
contradicting our initial assumption� Therefore� CI NL CB� Similarily� if
CI and CB were unrelated in the inheritance hierarchy� � would be visible
in CT from both CI and CB � and we have already shown that this is not
possible� since CT �� CI� The only remaining possibility is that CI � CB�

��� In IMR
 CT �� CI � � is false� CT �� CI implies that� before DN is added�
there was no inheritance con�ict �remember that an inheritance con�ict
results in an implicit native de�nition�� DN is either ��which can never
cause an inheritance con�ict� or a division de�ned in some superclass of
CI � CB �see Assertion ���� In the latter case� since the de�nition in CI
is being removed� after adding DN � � is not visible in CT from CI � so � is
false� This implication says that it is not possible to create an inheritance
con�ict during method removal �i�e� during an invocation of IMR��

B Utility Algorithms

B�� Algorithm RIC �Record Inheritance Con�ict�

Algorithm RIC abstracts all the code necessary to record an inheritance con�ict
between two divisions�

Algorithm RIC�in �  Selector� in C  Class� in G  Set of Divisions�  Division
G � G � �

if normG � � then
if �D � Gst isCon�ict�D� and D�C � C then Note �

foreach Di � G� fDg do
addDivisionChild�D�Di�

endfor
else

D � newCon�ictDivision�C��� Note �
foreach Di � G do

addDivisionChild�Di�D�
endfor

endif

return D
end RIC

��



B���� Notes for Algorithm RIC

�� Division D already represents a con�ict division for class C� so all other
divisions in G are new parent divisions adding to an existing con�ict� We
make the appropriate division links� Only one such con�ict division can
possibly exist in G at any given time�

�� Algorithm newCon�ictDivision creates a new con�ict division for class C
and selector �� It is trivial� and not presented here�

B�� Algorithm ID �Inherited Division�

Algorithm ID �Inherited Division� obtains the division that would be inherited
in class C for selector � if a native de�nition did not exist and class C only had
the classes in GP as parents�

Algorithm ID�inout �  Selector� in C  Class� in romanGP  Set of Classes� in G  Set of Division� inout T  DivisionTable�
foreach Ci � GP do Note �

D � divisionFor���Ci�
if not isEmpty�D� then

add D to G
endif

endfor

if normG � � then Note �
DN � �

elsif normG � � then Note �
DN � the single element of G

else Note �
DN � RIC���C�G�

endif

return DN

end ID

B�� Notes for Algorithm ID

�� Loop over all classes in speci�ed parent set and obtain the non�empty
divisions associated with them for �� The resulting set� G� represents all
methods visible in class C from parents in GP � The procedure

�� divisionFor��
C� returns the division representing the address to be ex�
ecuted for selector � and class C� In STI dispatch� this is identical to
T
��C� but in SC and RD dispatch� the division obtained via T
��C may
not even represent � �due to the table compression performed by these
techniques� Thus� if T
��C�� �� �� the procedure returns �instead� The
procedure is trivial� and is not presented�

�� If there are no parent divisions� removing the current selector means that
the empty division should be stored in dependent classes of C�

��



�� If there is exactly one parent division� this parent division should be pro�
pogated to dependent classes of C�

�� If there are more than one parent divisions� an inheritance con�ict has
occured� Algorithm RIC is called to record this inheritance con�ict� and
the resulting con�ict division is placed in the dependent classes of C�

B�� Algorithm ICB �Inherited Class Behavior

Given a class� C� and a set of classes� G� Algorithm ICB returns the set of
divisions that would be inherited from classes in G if each of these classes was
a parent of class C� Since G can be a subset of the complete set of parents for
class C� the division set returned will not� in general� constitute all inherited
behavior� If a particular selector has both a native de�nition and a de�nition
in a superclass� it is not included in the returned set �because it is not inherited
in class C�� However� in determining whether� for a given selector� a con�ict
exists� the algorithm considers the divisions for class C and all classes in G� If
more than one division represents the same selector� a con�ict for that selector
is made and added to the set to be returned�

Algorithm ICB�in C  Class� in G  Set of Classes� in T  DivisionTable�  Set of Divisions
H � Note �
foreach selector � do

DC � divisionFor���C� Note �
if DC �C �� C then

D � ID���C�G� fDCg� T � Note �
add � ��D � to H

endif
endfor

return H
end ICB

B�� Notes for Algorithm ICB

�� Set H will contain two�tuples as elements� where each tuple contains a
selector and a division� The selector is redundant when the division is
non�empty� but necessary when empty divisions need to be propogated
�i�e� Algorithm IMR�� The set is guaranteed to have only one tuple per
selector�

�� The procedure divisionFor��
C� returns the division representing the ad�
dress to be executed for selector � and class C� In STI dispatch� this is
identical to T
��C� but in SC and RD dispatch� the division obtained
via T
��C may not even represent � �due to the table compression per�
formed by these techniques� Thus� if T
��C�� �� �� the procedure returns
�instead� The procedure is trivial� and is not presented�
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�� Algorithm ID returns the division that would be inherited in class C for
selector � if no native de�nition existed in C and C only had the parents
in G� It is presented in this appendix

C Compile�time Method Determination

This appendix summarizes how the DT algorithms can be used to determine
when a method is uniquely identi�ed at compile�time� Each class�selector pair
is characterized in terms of its relation to other class�selector pairs in the envi�
ronment� To this end� we de�ne six mutually exclusive partition types that are
useful for various purposes� Each class�selector pair � C� � � has one partion
type�

�� unde�ned � � has not been de�ned any class in the application� In Figure ��
� F� � � is unde�ned since � is not de�ned in any of the application
classes F��Q

�� unrelated � � has been de�ned in at least one class in the application�
but has not been de�ned in any class in the connected inheritance graph
containing C� In Figure �� � F� 	 � is unrelated since 	 is not de�ned in
any of the application classes F��I� but is de�ned in class M�

�� sub�de�ned � � has been de�ned in at least one subclass of C� but has not
been de�ned in C or any of its superclasses� In Figure �� � F� � � is
sub�de�ned since � is de�ned in class G� but not in F�

�� de�ned�determined � � is uniquely visible in C� but is not explicitly de�ned
in any subclass of C� In Figure �� � K� � � is de�neddetermined since �
is de�ned in superclass J of K� but not in any subclass of K�

�� de�ned�undetermined � � is uniquely visible in C and is de�ned in a sub�
class of C� In Figure �� � N� 	 � is de�nedundetermined since 	 is
de�ned in superclass M and in subclass P of N�

�� con�icting � � is multiply visible in C and C does not explicitly de�ne ��
In Figure �� � M�� � is con�icting since � is de�ned in both K and L�

At every call�site� the compiler knows the selector and the static type �class�
of the receiver object� By asking the DT Environment for the partition type
of this class�selector pair� the compiler can establish whether a unique method
exists for the call�site� In particular� if the partition type is de�ned�determined�
unde�ned� con�icting� or unrelated� a unique method exists�
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